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Abstract An improved long-short-term memory neural network (FS-LSTM) fault 
diagnosis method is proposed based on the problems of damage false alarm, data 
of health monitoring system incorrect caused by sensor fault in bridge structure 
health monitoring system. The method is verified by simulating three-span contin-
uous beams to install several sensors and considering the five failures of one sensor, 
the faults such as: constant, gain, bias, gain linearity bias, and noise. At first, several 
pieces of white noise data are randomly generated, and each piece of white noise 
data is applied as a ground pulsation excitation to the structure support, and the 
acceleration response of the structure at the sensor location is calculated. Simulta-
neously, each structural response record of each sensor adds white noise with the 
same signal-to-noise ratio to obtain the test value of each sensor; Secondly, in order 
to study the generality, except for the five types of faulty sensors in sequence, one 
sensor is randomly selected from each of the remaining spans, to verify whether there 
will be a situation where an intact sensor is misdiagnosed as a faulty sensor; Finally, 
the FS-LSTM network is constructed through the training set to predict the acceler-
ation data, determine the sensor fault threshold, and compare the residual sequence 
with the fault threshold to diagnose whether the sensor is faulty. The case research 
of a three-span continuous beam shows that when the above-mentioned five types of 
faults occur in the sensor, the proposed method can correctly determine whether the 
sensor is faulty, and it will not be misdiagnosed, which can be used for daily bridge
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health monitoring. Furthermore, it provides a new method for the maintenance of 
the bridge health monitoring system. 

Keywords Bridge engineering · Sensor fault · LSTM · Three-span continuous 
beam 

1 Introduction 

With the constantly increasing trend of our infrastructure construction, the world 
bridge center has been transferred gradually from developed countries like America, 
Japan to China. At the same time, since the bridge construction in our country is 
experiencing the process of large span, high technology along with high difficulties, 
more and more bridges start to apply the SHM (structural health monitoring) system 
in case of assuring the structure operation safety [1–4]. 

The sensors in SHM systems usually have a short-term limit of life scale because 
of the complex operation environment as well as the improper use, which also makes 
it difficult to match the sensors have short-term life with those built structures that 
can last hundreds of years. What’s worse, the data distortion caused by the failure of 
the sensors will also lead to the high false alarm rate, which can pose a certain threat 
to the operation of the expensive health monitoring system. In this case, it is urgent 
to carry out related researches on self-diagnosis of sensor faults. 

Self-diagnosis of sensor faults can be divided into two types [5]. One is based 
on models, the other is focused on the data. The model-based type can estimate 
the system output by forming observers with precise mathematical models or finite 
element models and then compare the output data with actual measured values to 
obtain details of faults [6]. The model-based type takes the advantage of high effi-
ciency and good effect, which also shows its terrific adaption to those sensor systems 
with accurate linear models. However, the development of model-based method has 
been restricted when considering the difficulties of establishing precise non-linear 
mathematical models on structural engineering with large complex nonlinear system 
[7, 8]. 

The data-based method is to process the output data obtained by the sensor 
measurement, and diagnose the sensor faults based on the analysis results [9, 10]. 
One outstanding advantage of this method over model-based method is that it does 
not require precise mathematical models and rich prior knowledge. 

The neural network method is widely used in the field of fault diagnosis because 
of its fast response, good fault tolerance, strong learning ability, excellent adaptive 
performance, and high degree of nonlinear approximation. Deep learning has under-
gone structural changes based on neural networks, which not only overcomes the 
shortcomings of traditional neural networks, but also makes the new round of deep 
learning methods more widely used. The main feature of this method is that it can do 
adaptive feature learning and strengthen the extraction and combination of abstract 
fault features which realizes artificial intelligence in the true sense [11].
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In the field of bridge SHM, research based on deep learning has initially realized 
structural damage identification and location, abnormal data diagnosis and classifica-
tion [12–15]. It is shown that although deep learning method has already carried out 
some researches in the field of bridge SHM, they mainly focus on the detection and 
identification of bridge apparent disease, and the routine fault diagnosis of sensors. 
In another word, researches on sensor fault self-diagnosis are still in the initial stage, 
few theoretical results have been obtained and therefore it is necessary to study many 
basic problems systematically and deeply. 

In this case, the FS-LSTM sensor fault diagnosis method is proposed when consid-
ering problems of sensor fault diagnosis in the bridge SHM system, with the law of 
data produced by sensors in abnormal working conditions and the principle of deep 
learning. Based on the traditional LSTM neural network, the prediction ability and 
robustness of the network are improved by constructing a new fully connected layer 
and state memory unit, thereby improving the recognition rate of sensor faults, and 
reducing the occurrence of false alarms. 

2 Mathematical Model of Sensor Faults 

Acceleration sensors with different test principles often have different failures, and 
acceleration sensors with the same test principle may also have different types of 
failures [16]. Therefore, difference can appear in sensors faults’ causes, locations, 
and forms. In a word, these faults can be generalized into the following five types 
according to the statistical law of the distorted data output by the fault sensor. 

2.1 Constant 

When internal coil of the sensor has been broken, its sensitivity will decrease and 
output constant, this kind of fault can be defined as the constant fault. 

xout (t) ≡ c (1) 

As is shown in formula (1), where c stands for a constant, xout (t) represents the 
output signal of sensor. Since noise is inevitably introduced in the process of data 
collection and transmission, when the sensor has a stuck fault, the collected signal 
closer to the true value can be expressed as 

xout (t) ≡ c + δ (2) 

where δ represents white noise.
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2.2 Gain 

When the internal spring of the sensor undergoes plastic deformation, the output 
signal of the sensor can be several times of the real signal. This type of fault is 
defined as the sensor gain fault, and the mathematical model is shown as follows 

xout (t) = βx(t) + δ (3) 

where x(t), β stands for real signal and gain coefficient respectively, the size of the 
gain is different at each moment and the gain coefficient is proportional to the signal 
variance. 

2.3 Bias 

When the sensor base is loose or the sensitive components creep, the sensor will 
appear as a deviation fault. Its mathematical model is expressed as follows: 

xout = x(t) + d + δ (4) 

where d represents the degree of Bias. 

2.4 Gain and Linear Drift 

When the transmission cable is artificially bent and rubbed on the ground, there 
exist a gain and linear drift change in the response of the fault sensor over time. The 
mathematical model can be expressed as 

xout = β1x(t) + a + b · t + δ (5) 

where β1, a, b, t represents constant term, linear offset monomial term and time 
variable respectively. 

2.5 Noise 

When the sensor is subject to external electromagnetic interference. Its mathematical 
model is expressed as follows: 

xout = K (6)
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where, K stands for a random signal with unknown mean and variance. However, in 
a lot of cases white noise is usually used to represent this kind of signal. 

3 Fault Diagnosis Method of FS-LSTM 

In order to deal with the long-term or short-term time dependence of the time series 
data in the bridge structure, while considering that the bridge structure is exposed to 
humidity, high temperature and complex external environment for a long time. The 
acceleration response of the bridge structure is determined by both time dependence 
and environmental factors. Two improvements have been made to the acceleration 
response characteristics of the bridge structure, which are carried out based on the 
neutral network basic architecture shown in literature [17] as well as lots of real 
bridge acceleration data. As is demonstrated in Fig. 1, the first improvement is to 
introduce a fully connected layer between the input layer and the LSTM layer and the 
second one is to add a full training sample (epoch) state memory unit to the LSTM 
layer, instead of only performing state memory on each training sample batch. 

The first improvement is considered because the acceleration response of the 
bridge structure is a time series output. The acceleration response at the current time 
point is similar to the data at the historical time point within a certain range, and 
will be affected by the temperature, air humidity, air humidity and external factors 
such as rain and snow. As is shown in Fig. 2, taking the 10 s’ data of the same 
sensor from a real bridge in different seasons and months, it can be found that the 
data amplitude of each season is obviously different. Therefore, in order to make a 
reasonable prediction of the acceleration response. It is necessary to fully consider 
the influence of external factors and the acceleration at all time.

Fig. 1 FS-LSTM neural 
network simple architecture 
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Fig. 2 Four season data of a real bridge accelerometer 

The reason for proposing the second improvement is that considering the current 
network has poor robustness by setting the memory state on the grouped data, and 
the memory state unit is added through all training samples to improve its robustness. 
As is shown in Fig. 3, in the improved model, when constructing the LSTM layer, the 
inherent state parameter must be set to true. It is not necessary to specify the input 
size, and encoding the number of samples, along with the time step and the feature 
number in time step must through setting batch input shape. What’s more, by adding 
Stateful unit to LSTM layer under the Keras frame, the LSTM network can get more 
refined control. At the same time, the same batch size is used when evaluating the 
model and making predictions. Usually, after training a group each time, the state 
in the network is reset and the model is fitted, and the model is called to predict 
or evaluate the model each time. These all allow the new model to establish a state 
throughout the training sequence and even maintain that state when it needs to make 
predictions. 

Fig. 3 Full training sample to add a structure diagram of the memory state unit
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3.1 Update and Forecasting Process 

(1) Network Update Process 

FS-LSTM has two improvements in the network structure. Compared with the 
LSTM network, in the update process of network weights and deviations, there are 
extra weight and deviation vector Wout, bout and full training sample state vector 
output by the fully connected layer. The forward calculation is mainly reflected in 
the input gate, as is shown in formula (7), (8), and the other steps are the same as the 
forward calculation of LSTM in literature [17]. 

f
(
ut 
l

) = f
[
WX t Wn r t

] + [
b bn

]
(7) 

f
(
ut 
l,F
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Wout f ut l + bout
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W and b represent the weight and deviation vector of the input samples, Wn and bn 

stand for weight and deviation vector of full training sample, Wout and bout are weight 
and deviation vector of fully-connected layer, ut 

l and u
t 
l,F represent the output of the 

inactive layer input and the output of the fully connected layer. 
Backpropagation is mainly to obtain the weight Wout, the deviation bout, and 

the update process of the triple gate weight and deviation parameters of the fully 
connected layer output after adding the full training sample state vector rt. The  
gradient calculation of the entire backpropagation process of the algorithm is shown 
as follows (9)–(19). 
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The above is all the gradient solving process in FS-LSTM, and all weights and 
deviation coefficients in the network can be updated by using the above gradients. 
from the back propagation process shown in formula (9)–(19), δ represents the recip-
rocal of the weight, N is the total time step, L represents the loss function, k repre-
sents the last time step, Wxτ represents the state corresponding to the input value, 
the weight parameters of input gate, forget gate and output gate, Whτ represents the 
corresponding state, input gate, forget gate and output gate weight parameter of the 
output at the previous moment, bτ is the corresponding deviation with state, input 
gate, forget gate and output gate. 

(2) Network Forecasting Process 

In the improved FS-LSTM network for fault diagnosis of the bridge structure 
acceleration sensor, suppose there are m samples, the i-th sample is the time series 
data of length t, where t represents the time step of the sequence, that is, use data 
from t time points to predict the data at the next time point. 

The number of nodes in the input layer and output layer of the network is deter-
mined by the characteristics of the network task and the sample. In the prediction 
process, acceleration data with a specific time lag is grouped into input (represented 
by the dotted rectangle) and prediction (represented by the solid rectangle), as shown 
in Fig. 4.

The predicted value ŷ(i) is generated through the constructed FS-LSTM network 
model. The loss function is selected to minimize the sum of square errors and the 
L2 regularization of the model, as shown in formula (20). Subsequently, the mini-
batch gradient descent optimization method is used for weight correction and model 
training to make it approach the target value. The bridge structure acceleration time 
series prediction model uses a small batch of samples to calculate the gradient loss 
in each iteration of the gradient descent.
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Fig. 4 Network prediction process
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where, y(i) stands for the true value of the i-th sample. λ represents the regularization 
parameter, and θ is the model parameter. 

At the same time, in order to prevent the local explosion of gradient and the 
robustness of model training, the method of gradient truncation is introduced. The 
principle of gradient truncation is to determine whether the L2 norm of the gradient 
loss generated by the model during backpropagation exceeds the preset gradient 
threshold. If it exceeds, the gradient is truncated by using formula (21). 

ĝ = 
threshold

∥
∥ĝ

∥
∥2 ĝ (21) 

where, ĝ represents the gradient loss, ‖‖2 represents the L2 norm, and threshold 
represents the threshold set in advance. At the same time, in order to prevent network 
overfitting, the dropout parameter is used to reduce the complexity of the model. 

3.2 Determine Network Structure Hyper Parameters 

In the FS-LSTM bridge acceleration time series model, the main hyper parameters 
include the number of output layer nodes, the number of input layer nodes, the time 
step of time series data, the number of neurons in the fully connected layer, the 
number of LSTM units in the hidden layer, the loss of the model threshold, number 
of sample training mini-batch, and initial learning rate. The K-fold cross-validation 
algorithm in literature [18] is used to determine the hyper parameters of the network 
in the improved LSTM bridge acceleration time series prediction model. FS-LSTM 
neural network structure network model parameter settings are shown in Table 1.



496 L. Li et al.

Table 1 FS-LSTM neural 
network parameter list 

Parameters Values 

Number of input layer nodes 5 

Number of output layer nodes 1 

Number of neurons in the fully connected layer 126 

Number of neurons in the feedforward hidden layer 128 

Number of FS-LSTM units 256 

Threshold of model loss 5 

The number of small batches during sample training 200 

Initial learning rate 0.001 

Model evaluation index RMSE 

The maximum number of iterations 1000 

Epoch 40 

The value of dropout 0.3 

Note Table 1 is the optimal parameter combination after applying 
the K-fold cross-validation algorithm 

3.3 Fault Threshold 

When the sensor is healthy and the structure is intact, the established FS-LSTM NN 
is used to calculate its predicted value, and the residual Re of the true value and the 
predicted value is used as an indicator for diagnosing sensor faults. Residual error 
calculation is shown in formula (22). 

Re = ∥∥ŷ − y
∥∥2 

(22) 

According to the parameter confidence interval setting in statistics, the mean and 
variance of the residual series are calculated by Eqs. (23) and (24). 

μ(Re) = 
1 

n 

n∑

i=1 

Rei (23) 

σ 2 (Re) = 1 

n − 1 

n∑

i=1 

[Rei − μ(Re)]
2 (24) 

where Rei is the residual value corresponding to different moments. The confidence 
interval with a confidence level of α can be expressed as: 

P(μ − Z α 
2 
σ, μ + Z α 

2 
σ)  = 1 − α (25) 

where α is the confidence level; Z is the coefficient related to confidence level and 
it is set as 3, and the confidence level is 99.74%. Therefore, the threshold can be
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derived from the 3σ criteria: 

λ = μ(Re) + 3σ 2 (Re) (26) 

The λ value is the fault threshold for judging whether the sensor is faulty or not. 
When Rei > λ  the sensor is faulty, and vice versa. 

4 Numerical Example 

Using ANSYS finite element software to build a three-span continuous beam model, 
elastic modulus E = 3 × 1010 N/m2, Poisson’s ratio μ = 0.3, density ρ = 2500 kg/m3. 
The beam length is 40 m, the rectangular section is 0.25 m × 0.6 m, and the beam 
is equally divided into 200 units, as shown in Fig. 5. Random white noise pulsation 
is selected to excite of the continuous beam, without considering the influence of 
damping, and the acceleration time history response is calculated by the Newmark-β 
method [19]. The placement position of the 10 acceleration sensors on the beam is 
shown in Fig. 5, and they are numbered S1–S10 sensors from left to right. Where 
the S1 sensor marked by the red solid circle is an analog fault sensor, and the S6 and 
S8 marked by the green dashed circle are randomly selected health sensors for each 
span, and they are supposed to verify whether there will be a second type of error in 
the fault diagnosis (the sensor health is misdiagnosed as a fault). 

Randomly generate 400 pieces of white noise data, each piece of white noise data 
contains 120 data points, assuming that each data point has an interval of 0.01 s. 
Apply each piece of white noise data as ground pulsation excitation to the structure 
support, and calculate the acceleration response y∗ 

i, j (t) of the structure where the 
sensor is installed. The subscript i represents the sensor number, i = 1, 2…,10; j 
represents the number of white noise excitation, j = 1, 2,…400; t represents the time 
step, t = 1,2,…120. In order to avoid the non-stationary acceleration response of the 
structure at the initial stage of excitation, the first 20 data points of all the structure 
acceleration response records y∗ 

i, j (t) are discarded, that is, each acceleration response 
data contains only 100-time steps. Then, for each structural response record of each 
sensor, white noise with a signal-to-noise ratio (SNR) of 20 is added to obtain the 
test value y∗ 

i, j (t) of each sensor.

3m 

40m 

3m 3m 6m 3m 3m 4m 2m 3m 2m8m 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

Accelerometers 

Fig. 5 Three-span continuous beam model 
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Table 2 Sensor fault 
thresholds 

Sensor number Mean μ( Re) Variance 
σ 2(Re) 

Threshold λ 

S1 0.0180 0.0092 0.0455 

S6 0.0607 0.0693 0.2685 

S8 0.0339 0.0331 0.1310 

Assuming that the S1 sensor has constant fault, gain fault, bias fault, gain and 
linear drift fault, noise fault in sequence and these five operating conditions plus its 
own health conditions, a total of six operating conditions have been studied. Failure 
simulation can be found through formula (2)–(6), the fault parameters are selected 
by interpolation operation to obtain the optimal parameter combination. Each sensor 
response sample data consists of 40,000 time points. In order to study without loss 
of generality, randomly select a sensor from each remaining span as the research 
object (S6 and S8 sensors) to verify whether there will be a second type of fault 
diagnosis error (the intact sensor is misdiagnosed as a faulty sensor). The training 
set data (40,000 × 68%) and Eqs. (22)–(26) are used to calculate the fault thresholds 
of the three selected sensors. The calculation results are shown in Table 2. 

The fault diagnosis result of the S1 sensor is shown in Fig. 6. The diagnosis result 
shows that under the above five fault conditions when the sensor has stuck faults, 
gain faults, deviation faults, gain linear drift faults, and noise faults in sequence, 
its residual values will greatly exceed the failure threshold obtained when they are 
healthy. From this, it can be determined that when the above five types of faults occur 
in the sensor, the proposed methods can work effectively.

In order to compare the diagnostic effects of the traditional LSTM and the 
improved FS-LSTM network, Figs. 7 and 8 show the fault diagnosis results of the 
S6 and S8 health sensors in different networks, as can be seen from Fig. 7a and b 
when the sensor does not fail, the residual values are all less than the set threshold. 
Although there are four test points in Fig. 7b (marked by the circle in Fig. 7b) 
that exceed the set threshold, they are in the allowable range (40,000 × 32% × 
0.26%≈33) of the 3σ Guidelines, so the sensor is considered healthy. Compared 
with the FS-LSTM network diagnosis result, the LSTM network diagnosis result 
shows that many test points exceed the threshold, far exceeding the number allowed 
by the 3σ criteria. Therefore, if the traditional LSTM network is used to diagnose 
the fault of the sensor, its diagnosis result does not match the actual sensor fault 
condition, and a misdiagnosis will occur.

5 Conclusion 

Based on the traditional long and short-term memory neural network, a new type 
of deep learning network is constructed by introducing fully connected layers and 
epoch state memory units. The parameter update, prediction process and the design
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Fig. 6 Five fault detection results of the S1 sensor

of hyper parameters of the new network, have been described in detail. By setting 
a reasonable fault threshold, a new method of sensor fault diagnosis in the bridge 
health monitoring system is proposed. Numerical example studies show that when 
the sensor has stuck faults, gain faults, deviation faults, gain linear drift faults, and 
noise faults in sequence, the proposed FS-LSTM fault diagnosis method can correctly 
distinguish whether the faults in the bridge monitoring system are faulty or not.; At
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(a) S6 sensor diagnosis result (b) S8 sensor diagnosis result 

Fig. 7 Fault detection results for health sensors under FS-LSTM 

(a) S6 sensor diagnosis result   (b) S8 sensor diagnosis result 

Fig. 8 Fault detection results of health sensors under LSTM

the same time, by randomly selecting the health sensor for each span, it is verified 
that the proposed method will not cause the second type of fault diagnosis error 
that misdiagnoses the health sensor as a fault sensor. The above research results are 
mainly based on the structural response of the finite element simulation for sensor 
fault diagnosis. In the future, the applicability of the proposed method can be further 
explored through the actual response of the real bridge. 

Acknowledgements This work was financially supported by the China Post-doctoral Science 
Foundation (Grant Nos.2021M690838). 

References 

1. Hernandez GM, Masri SF (2008) Multivariate statistical analysis for detection and identification 
of fault sensors using latent variable methods. Adv Sci Technol 56(4):501–507 

2. Zhang W, Cai CS, Pan F (2008) Nonlinear fatigue damage assessment of existing bridges 
considering progressively deteriorated road conditions. Eng Struct 56(6):1922–1932 

3. Yi TH, Li HN, Sun HM (2013) Multi-stage structural damage diagnosis method based on 
“energy-damage” theory. Smart Struct Syst 12(3–4):345–361



Sensor Fault Diagnosis Method of Bridge Monitoring System Based … 501

4. Huang HB, Yi TH, Li HN (2016) Canonical correlation analysis based fault diagnosis method 
for structural monitoring sensor networks. Smart Struct Syst 17(6):1031–1105 

5. Thomas P (2002) Fault detection and diagnosis in engineering systems: Janos J. Gertler; Marcel 
Dekker Inc., New York, 1998. Control Eng Pract 10(9):1037–1038. ISBN: 0-8247-9427-3 

6. Shao JY, Xu Mq, Wang RX (2008) Model-based fault diagnosis system for spacecraft 
propulsion system. Gas Turbine Exp Res 22(003):47–49 

7. Olivier A, Smyth AW (2017) Particle filtering and marginalization for parameter identification 
in structural systems. Struct Control Health Monit 24(3):e1874 

8. Wan Z, Wang T, Li S (2018) A modified particle filter for parameter identification with unknown 
inputs. 25:e2268 

9. Hung HB, Yi TH, Li HN (2017) Bayesian combination of weighted principal-component 
analysis for diagnosing sensor faults in structural monitoring systems. J Eng Mech 143(9) 

10. Li LL, Liu G, Zhang LL (2019) Sensor fault detection with generalized likelihood ratio and 
correlation coefficient for bridge SHM. J Sound Vib 442:445–458 

11. Ren H, Qu Jf, Chai Y, Tang Q, Ye X (2017) Deep learning for fault diagnosis: the state of the 
art and challenge. Control Decis 32(8):1345–1358 

12. Cha YJ, Choi W, Büyüköztürk O (2017) Deep learning-based crack damage detection using 
convolutional neural networks. Comput-Aided Civ Infrastruct Eng 32(5):361–378 

13. Lin Y, Nie Z, Ma H (2017) Structural damage detection with automatic feature-extraction 
through deep learning. Comput-Aided Civ Infrastruct Eng 32(12):1025–1046 

14. Bao YQ, Tang ZY, Li HN (2019) Computer vision and deep learning–based data anomaly 
detection method for structural health monitoring. Struct Health Monit 18(2):401–421 

15. Bao YQ, Chen Z, Wei S (2019) The state of the art of data science and engineering in structural 
health monitoring. Engineering 5(2):234–242 

16. Salmasi FRA (2017) Self-healing induction motor drive with model free sensor tampering and 
sensor fault detection, isolation, and compensation. Trans Ind Electron 64(1):6105–6115 

17. Malhotra P, Vig L, Shroff G, Agarwal P (2008) Long short term memory networks for anomaly 
detection in time series. In: European symposium on artificial neural networks, vol 23 

18. Nam JS (2018) Injection-moulded lens form error prediction using cavity pressure and 
temperature signals based on k-fold cross validation. Proc Inst Mech Eng B 232:928–934 

19. Zhang XS, Zhu YS, Gu H (1996) Study on the technology for transducer fault detection based 
on signal processing. J Electron Meas Instroment 4:1–5 

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made. 

The images or other third party material in this chapter are included in the chapter’s Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter’s Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	 Sensor Fault Diagnosis Method of Bridge Monitoring System Based on FS-LSTM
	1 Introduction
	2 Mathematical Model of Sensor Faults
	2.1 Constant
	2.2 Gain
	2.3 Bias
	2.4 Gain and Linear Drift
	2.5 Noise

	3 Fault Diagnosis Method of FS-LSTM
	3.1 Update and Forecasting Process
	3.2 Determine Network Structure Hyper Parameters
	3.3 Fault Threshold

	4 Numerical Example
	5 Conclusion
	References




