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Preface

The main objective of this book is to facilitate both the theoretical background and
applications of fuzzy, intuitionistic fuzzy and rough sets in the area of data science.
This book provides various individual and hybridization techniques of fuzzy and
intuitionistic fuzzy sets with rough sets and their applications for data handling along
with some theoretical base. Some concepts of fuzzy sets, intuitionistic fuzzy sets and
rough sets and different algebraic and logical operations performed over these sets
are discussed for better understanding of their applications. This book focuses on
various learning techniques for data handling with emphasizing the problems of
uncertainty, vagueness, imprecision, inconsistency and ambiguity available in data
sets.

Machine learning techniques are effectively implemented to solve a diversity of
problems in pattern recognition, datamining, bioinformatics, etc.Due to the advance-
ment of high-throughput assay systems in modern laboratories and the development
of modern Internet-based technology, large volume of data sets is created every day.
Data size is continuously enlarging in the form of data instances (tuples) as well
as the data attributes (features). Imbalanced and high-dimensional data sets affect
the learning of classifiers. This may reduce the average performance of most of the
machine learning algorithms, especially in the presence of redundant and/or irrelevant
features. So, the overall accuracy decreases and imbalanced data sets result in clas-
sifier bias towards the majority class and is the cause for lower sensitivity. There are
basically two approaches to handle such problems: firstly, internal approaches, which
are included within existing algorithms for handling class distribution and secondly,
external approaches, which involve resampling and feature selection approaches.
External approaches have an advantage over internal approaches as they are inde-
pendent of machine learning algorithms and can be easily used with any machine
learning algorithm.

This book investigates both imbalanced and high-dimensional data sets. In the
present book, dimensionality reduction, rule extraction, decision-making, classifica-
tion, etc., techniques and time series forecasting approaches are developed, imple-
mented and discussed for handling both rows (instances) and columns (features) of
an information system (data set) and future prediction of patterns. Various studies are

vii
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carried out in different aspects to take research to the next higher level by focusing
more on improving the performances of various classifiers.

A time series is a sequence of statistical observations of the recorded data over a
period at uniform intervals yearly, monthly, weekly or daily. Time series analysis is
an important tool for forecasting the future values on the basis of past observations.
In the last few decades, several researchers have developed many methodologies,
and tools have emerged to deal with the forecasting processes. A forecast is an
estimate for observations of uncertain future events. Time series forecasting has been
emerging as one of the useful tools to predict the future behaviour in many practical
fields such as financial trading, economics, marketing, tourism demand and many
other branches of science and engineering. Several chapters provide a very carefully
crafted introduction to the basic and logical concepts and techniques of fuzzy set
theory, intuitionistic fuzzy set theory, rough set theory and their hybridization for
data handling, time series forecasting with modelling and optimization aspects. It
also provides the basic back ground of intuitionistic fuzzy sets (IFS) and intuitionistic
fuzzy numbers (IFN). Further, rough set theory and its applications for data handling
are also discussed. Rough set theory is a notable tool for data science in different
domains because of its character of analysis friendly. From the literature, it can be
observed that rough set theory is very useful for both practitioners and researchers
as it does not require any external information. Moreover, combination of fuzzy and
intuitionistic fuzzy sets with rough sets is proposed, discussed and implemented, and
a brief discussion of deep learning concept is presented, which can be extended with
the hybridization of rough and fuzzy sets to handle uncertainty in a much better way.

Finally, this book concludeswith supplementary studies to the relatedfields of data
science, including rule induction, decision-making, pattern recognition, dimension-
ality reduction, time series forecasting, etc., by using fuzzy, intuitionistic fuzzy, rough
sets theories and their hybridizations along with modelling and optimization aspects
also. Entire book offers various innovative frontiers for the continuous advancement
of the core technologies presented in the area of computational intelligence. This
book is predominantly envisioned for senior undergraduates, postgraduates, medical
scientists, professional engineers and researchers handling data science, However,
it advances a candid demonstration of the underlying notions that any fellow with a
non-specialist scope would be capable to understand and implement.

Varanasi, India
Tijuana, Mexico
Mahendergarh, India
Kanpur, India

Tanmoy Som
Oscar Castillo

Anoop Kumar Tiwari
Shivam Shreevastava
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Chapter 1
Fuzzy Sets and Rough Sets:
A Mathematical Narrative

Mihir Kumar Chakraborty and Pulak Samanta

1.1 Introduction

Fuzzy set theory was introduced by L. A. Zadeh in the year 1965 [53] and rough
set theory was introduced by Z. Pawlak in 1982 [38]. Inventors of both the theories
were, formally speaking, computer scientists. Their motivations originated from the
problems/issues belonging to the domain of computer science. This will be apparent
from the following quotations:

Whether the particular concept defined in this paperwill prove to be of value in system design
or analysis remains to be seen. It is clear, though, that in one form or another, the notion
of fuzziness will come to play an important role in pattern classification, control, system
optimization and other fields since fuzziness is a basic and pervasive part of life that cannot
be avoided. … (Zadeh, 1965, First paper [53])

The rough set concept can be of some importance, primarily in some branches of artifi-
cial intelligence such as inductive reasoning, automatic classification, pattern recognition,
learning algorithm, etc. (Pawlak, 1982, First paper [38])

In subsequent years, world has witnessed enormous usefulness of the two theories
in computer science and its applications, in the above two quotes, though, both the
scientists were a bit skeptic about the future of their theories as evidenced from the
italic portions in the above paragraphs.

However, the insight of the two great minds while proposing their theories had
been so deep that the theories surpassed the boundary of computer science and
extended to the domains of mathematics, philosophy, linguistics and even natural

Both authors contributed equally to this work.
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2 M. K. Chakraborty and P. Samanta

sciences. In our opinion, both Zadeh and Pawlak were basically philosophers in the
broad sense of the term as well as visioneries.

In this article, we shall present some theoretical aspects of both the theories in
which Chakraborty alongwith the group of researchers around him has been engaged
for over past forty years. Areas touched upon will be primarily the algebras arising
out of the theories (Sects. 1.2 and 1.3) interrelationship between fuzzy sets and rough
sets (Sect. 1.4) and glimpses of the logical aspect (Sect. 1.5).

1.2 Algebraic Aspects

1.2.1 Initial Definitions

Although these are well known now a days, in order to link the current article to the
source, we would like to present the initial definitions of fuzzy sets and rough sets.

Definition 1 Fuzzy set: A fuzzy set in the universe of discourse X is a mapping Ã
from X to the unit interval [0, 1]. It is, in fact, a generalization of the characteris-
tic function of a set within the universe. In this sense, fuzzy sets generalize crisp
sets. The notions of intersection, union and complementation of crisp sets (or their
characteristic functions) are generalized to fuzzy sets Ã ∩ B̃, Ã ∪ B̃ and Ãc by the
following functions respectively:

Ã ∩ B̃(x) = min( Ã(x), B̃(x)) ≡ ( Ã(x) ∧ B̃(x)),

Ã ∪ B̃(x) = max( Ã(x), B̃(x)) ≡ ( Ã(x) ∨ B̃(x))

and

Ãc(x) = 1 − Ã(x)

for all x ∈ X.

The value Ã(x) is said to be the membership degree of x in the fuzzy set Ã.
Hence, here the notion of membership is ‘gradual’ unlike the crisp case when it
abruptly changes from 1 to 0 (or otherwise). However, crisp sets represented by their
characteristic functions are special cases of fuzzy sets.

A fuzzy n-ary relation R̃ is naturally defined by a function

R̃ : Xn −→ [0, 1].

In case of binary R̃, one reads as ‘x is related to y to the degree R̃(x, y).’ These are
fuzzy relations on the crisp universe X . Amore general notion of fuzzy relation over a
fuzzy set was introduced and developed [13]. The natural question of generalization
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of notions reflexivity, symmetry, anti-symmetry, transitivity, etc. arises for which
we refer to [14, 21]. The set of fuzzy sets forms a quasi-Boolean algebra with
respect to the operations ∩,∪,c. A qBa is short of Boolean algebra in that the law of
contradiction (equivalently, the law of excluded middle) does not hold [46].

For the original definition of rough sets, one may see Pawlak’s paper of 1982
[38]. Here, the universe X is endowed with a partition in it generated by an equiva-
lence relation. Formally, it begins with a pair (X, R) called the approximation space,
X being a non-empty set and R an equivalence relation (reflexive, symmetric and
transitive) in it. Any subset A ⊆ X is then approximated by two sets A (the lower
approximation) and A (the upper approximation) given by the following definitions:

A = {x ∈ X : [x]R ⊆ A} and

A = {x ∈ X : [x]R ∩ A 
= φ}

where [x]R is the equivalence class (or block) of the element x formed by the relation
R. Clearly, A ⊆ A ⊆ A.

The set Bd(A) = A \ A is called the boundary of A. In [42], a set A is called
a ‘rough set’ if Bd(A) 
= φ. According to this definition, ‘rough’ is an adjective
applicable to an ordinary set A, as in case of ‘finite/infinite sets’ or ‘open/closed sets.’
On the other hand, by ‘fuzzy set’ is meant a different mathematical object, namely
the function from X to [0, 1], the word ‘fuzzy’ is not a qualifier. However in his first
paper [38] as well as his book [41], Pawlak defined a rough set as an equivalence
class [A]≈ of the power set P(X) of X determined by the equivalence relation ≈
given by A ≈ B if and only if A = B and A = B, i.e., the sets are ‘roughly equal.’
This definition is equivalent to defining a rough set as a pair< A, A >. Clearly, there
may be sets A 
= B such that < A, A > = < B, B > both A, B belonging to the
same equivalence class [·]≈. Several other definitions were also introduced for which
we refer to [4, 12]. The lower–upper definition has, however, been the most popular
one. It is to be noted that the pair < A, A > will be called a rough set even though
Bd(A) = A \ A = φ. In such a situation, A = A = A. Because of this property, a
subset A of X which is the union of some equivalence classes is considered to be
‘crisp’ relative to the approximation space< X, R >. In the case when R completely
discretises X , that is, all the equivalence classes are singletons, A = A = A for all
A ⊆ X . In this sense, ‘rough set’ may be taken as a generalization of the notion of
set.

Union, intersection and complementation of rough sets are defined by

< A, A > � < B, B >=< A ∩ B, A ∩ B >,

< A, A >  < B, B >=< A ∪ B, A ∪ B >,

< A, A >c=< A′, A′
>
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where ∩, ∪, ′ are ordinary union, intersection and complementation of sets. To vali-
date the first two identities, it is required to prove that there are sets P ⊆ X , Q ⊆ X
such that

P = A ∩ B, P = A ∩ B and

Q = A ∪ B, Q = A ∪ B.

Existence of such P and Q has been shown in [4] viz.

P = (A ∩ B) ∪ (A ∩ B ∩ (A ∩ B)
c
),

Q = (A ∪ B) ∪ (A ∪ B ∪ (A ∪ B)
c
).

The algebra thus generated is called a pre-rough algebra which has many equiv-
alents. These are all qBas with additional properties.

An abstract pre-rough algebra < A,�,,¬, L , 0, 1 > is defined as follows:

1. < A,�,, 0, 1 > is a bounded distributive lattice, ¬ and L are two unary oper-
ators satisfying

2. ¬¬a = a
3. ¬(a  b) = ¬a � ¬b
4. La ≤ a
5. L(a � b) = La � Lb
6. LLa = La
7. L1 = 1
8. MLa = La
9. ¬La  La = 1
10. L(a  b) = La  Lb
11. La ≤ Lb and Ma ≤ Mb imply a ≤ b where Ma = ¬L¬a and a, b ∈ A.

This definition has been simplified later in [47]. If an algebraic structure satisfies
axioms 1–8, it is called a topological quasi-Boolean algebra (tqBa). Other algebras
can also be built on rough set structures.

For a survey of algebras generated out of rough set structures, we refer to [3, 6].
With respect to the above definitions of fuzzy sets and rough sets, both turn out to be
quasi-Boolean algebras. But the generalized varieties of the two concepts may give
rise to different algebras.

1.3 Generalizations

There have been many generalizations of both the notions, fuzzy set as well as rough
set.
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1.3.1 Fuzzy Sets

It may be observed that since the algebraic operations ∩, ∪, c of fuzzy sets are
defined by the corresponding operations in the membership-value set pointwise, the
algebra of the value set induces a similar algebra in the set of all fuzzy sets in the
universe. As per above definition, the algebra generated in the set [0, 1] with respect
to the operations (∧) min, (∨) max and 1 − (·) turns out to be the same algebra as of
(F(X), ∩, ∪, c, φ, X), F(X) being the set of all fuzzy sets in X . The algebra of
fuzzy sets is a quasi-Boolean algebra [46] since ([0, 1],∧,∨, 1 − (·), 0, 1) is a qBa.

Instead ofmin (∧), max (∨), a host of other operators, called t-norms and s-norms,
are taken in [0, 1] and corresponding fuzzy set operations are defined. With respect
to these operations, [0, 1] may not turn into a qBa, and hence, the corresponding
fuzzy sets algebra will change. Below we present one such algebra which is called
Łukasiewicz (- Moisil) algebra. Here, the t-norm is t = max(0, a + b − 1) and s-
norm is s = min(1, a + b), a, b ∈ [0, 1]. These operators take care of intersection
and union, respectively. The complementation of a fuzzy set is defined, as before, by
the operator 1 − (·). Though the laws of contradiction and excluded middle also hold
here, it is a different algebra since t (a, a) < a and s(a, a) > a for all 0 < a < 1,
and hence, unlike the min-max case, idempotence law does not hold. Another such
pair of t-norm, s-norm is (a · b, a + b − a · b).

For an extensive list of t-norms and s-norms, readers are referred to [29].
The next step of generalization consists in taking an arbitrary algebraic structure

having operations corresponding to ∩,∪,c of fuzzy sets. The minimal structure that
is expected of the value set is that of a lattice with an involution operator. Long back
in 1967 Goguen publish the first paper in this direction, fuzzy sets thus obtained are
called lattice-valued fuzzy sets or simply L-fuzzy sets [23]. Of course, some special
kind of lattices has gained importance such as MV-algebra and residuated lattices
[16, 17, 19, 25]. Residuated lattice is used in fuzzy logic to compute implication
operator, in particular, and thus to define fuzzy consequence relations in the theory
of graded consequence. We give the definition below [25].

A residuated lattice is an algebraic structure (A,∧,∨, ∗,→, 0, 1) such that

• (A,∧,∨, 0, 1) is a bounded lattice,
• (A, ∗, 1) is a commutative monoid,
• a ≤ b implies a ∗ c ≤ b ∗ c and
• (∗,→) forms an adjoint pair, i.e.,
a ∗ b ≤ c iff a ≤ b → c
for all a, b, c ∈ A.

It is, in fact, necessary to take the lattice complete, and then, the algebraic structure
is called a complete residuated lattice.We shall see the use of the implication operator
→ in section 1.5 for the computation of the degree (grade) of fuzzy MP rule.

The above cases of t and s norms and complementation are instances of MV-
algebra which is defined below. An MV-algebra (A,⊕,¬, 0, 1) where ⊕ and ¬ are
binary and unary operations and 0 is a constant is an algebra satisfying the following
conditions :
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MV 1. a ⊕ b = b ⊕ a
MV 2. a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c
MV 3. a ⊕ 0 = a
MV 4. ¬¬a = a
MV 5. a ⊕ 1 = 1 (where 1 = ¬0)
MV 6. ¬(¬a ⊕ b) ⊕ b = ¬(¬b ⊕ a) ⊕ a.

Defining another dual binary operator � by a � b = ¬(¬a ⊕ ¬b), one gets the
dual properties of MV 1–MV 3, MV 5–MV 6. � and ⊕ serve as the operators
for intersection and union respectively of A-valued fuzzy sets on any universe X .
Complementation is computed by ¬. An MV-algebra turns into a lattice by defining
the order relation ≤ by a ≤ b if and only if ¬a ⊕ b = 1 (equivalently a � ¬b = 0.
The above set of axioms MV 1–MV 6 are proposed much later in [17]. The original
notion is due to Chang with an elaborate set of axioms for ⊕ and � (see [16]).

Yet another direction of generalization of fuzzy sets consists in the so called ‘intu-
itionistic’ fuzzy sets (IFS) where a pair of functions (A+, A−) from the universe X to
[0, 1] are taken giving the belongingness degree and non-belongingness degree [1].
Thus, the intuitionistic fuzzy set Ã

I = (A+, A−) such that A+, A− : X → [0, 1] and
A+(x) + A−(x) ≤ 1. A+(x) and A−(x) are respectively the measures of belonging-
ness and non-belongingness of the object x ∈ X in the IFS Ã

I
. Though the word

‘intuitionistic’ is somewhat misleading (about which point we will say a few words
later), the idea of measuring the degrees of belongingness and non-belongingness
by two separate functions (of course, bounded by a condition) seems to be a very
natural extension and acceptable from the standpoint of the philosophy of vagueness.
Intersection, union, complementation and inclusion are then defined as follows.

Let Ã
I = (A+, A−), B̃

I = (B+, B−). Then
Ã

I ∩ B̃
I = (A+ ∧ B+, A− ∨ B−),

Ã
I ∪ B̃

I = (A+ ∨ B+, A− ∧ B−),
( Ã

I
)c = (A−, A+)

and Ã
I ⊆ B̃

I
iff A+ ≤ B+, B− ≤ A− (both pointwise).

There may be another way of defining an IFS that shows the algebraic structure
more directly. Instead of taking two functions A+ and A−, one can first take the
product [0, 1] × [0, 1] and consider ÃI

as a mapping from X to [0, 1]2. Thus, ÃI
(x)

is a pair (a, b) such that a + b ≤ 1, the first and second components are respectively
the degrees of belongingness and non-belongingness of x in the intuitionistic fuzzy
set Ã

I
. Intersection, union and complementation are defined w.r.t. suitable t-norms,

s-norms and negation operators in the base set [0, 1]. For the first two operators, min
and max are generally used. How can other t-norms and s-norms maybe chosen has
been aptly discussed in [18]. We, however, present below the algebraic structure to
develop IFS-algebra w.r.t. min and max operators. The value set now is a subset K
of [0, 1]2 viz. K = {(a, b) : a + b ≤ 1, a, b ∈ [0, 1]}. ∧,∨,¬ are defined by,
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(a, b) ∧ (c, d) = (min(a, c),max(b, d))),

(a, b) ∨ (c, d) = (max(a, c),min(b, d))) and

¬(a, b) = (b, a).

(K ,∧,∨) turns out to be a distributive lattice in which the order relation becomes
(a, b) ≤ (c, d) iff a ≤ c, d ≤ b. In fact, this lattice is complete with (0, 1) and (1, 0)
as the least and top elements, respectively. The following properties for ¬ hold.

• ¬¬(a, b) = (a, b) (double negation),
• ¬(0, 1) = (1, 0), ¬(1, 0) = (0, 1),
• De Morgan laws and
• the law of contradiction (equivalently, the law of excluded middle) does not hold.

Since the law ‘double negation’ holds in K , calling the structure of functions from
X to K ‘intuitionistic’ is not justified.

Besides, topological operators L an M may be defined by L(a, b) = (a, 1 − a)

and M(a, b) = (1 − b, b). It is easily verified that L , M satisfy

L(a, b) = ¬M¬(a, b), M(a, b) = ¬L¬(a, b),

L(a, b) ≤ (a, b) ≤ M(a, b), LL(a, b) = L(a, b),

MM(a, b) = M(a, b), LM(a, b) = M(a, b), ML(a, b) = L(a, b).

Hence, K with the above operators is a topological quasi-Boolean algebra. In fact, the
algebraic structure satisfies all the axioms 1–11 of pre-rough algebra except axiom
9. In [47], there are some discussions on this type of algebra.

From the definition of L and M , it follows that if Ã
I
is an IFS, then L( Ã

I
) and

M( Ã
I
) are ordinary fuzzy sets. Ordinary fuzzy sets form a proper subclass of the

class of intuitionistic fuzzy sets both over X as the universe.

1.3.2 Rough Sets

In the case of rough sets also,weobservegeneralizations fromvarious angles ofwhich
two types are quite natural. The first one is by taking an arbitrary relation R in the
universe instead of an equivalence relation. With respect to the generalized approx-
imation space (X, R) thus obtained, the lower and upper approximations of a set

A ⊆ X are defined by AR = {x ∈ X : Rx ⊆ A} and A
R = {x ∈ X : Rx ∩ A 
= φ}

where Rx = {y ∈ X : x Ry}. Depending upon various properties (such as reflexivity,
symmetry, transitivity, seriality, etc.), various properties of the approximations are
generated (see Table 1.1). For an extensive list of such properties, we refer to [48, 52].
It should be clear from the definitions above and the table that modal logic systems
can be given rough set semantics by interpreting the modality ‘necessity’ as lower
approximation and the modality ‘possibility’ as the upper approximation.
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Table 1.1 Properties of relation-based approximations

R Rr Rs Rt Rrs Rrt Rst Rrst Rser

Duality of A, A Y Y Y Y Y Y Y Y Y

φ = φ N Y N N Y Y N Y Y

φ = φ Y Y Y Y Y Y Y Y Y

X = X Y Y Y Y Y Y Y Y Y

X = X N Y N N Y Y N Y Y

A ∩ B ⊆ A ∩ B Y Y Y Y Y Y Y Y Y

A ∩ B ⊆ A ∩ B Y Y Y Y Y Y Y Y Y

A ∪ B ⊆ A ∪ B Y Y Y Y Y Y Y Y Y

A ∪ B ⊆ A ∪ B Y Y Y Y Y Y Y Y Y

A ⊆ B implies
A ⊆ B

Y Y Y Y Y Y Y Y Y

A ⊆ B implies
A ⊆ B

Y Y Y Y Y Y Y Y Y

A ⊆ A N Y N N Y Y N Y N

A ⊆ A N Y N N Y Y N Y N

A ⊆ A N Y N N Y Y N Y Y

A ⊆ (A) N N Y N Y N Y Y N

(A) ⊆ A N N Y N Y N Y Y N

A ⊆ (A) N N N Y N Y Y Y N

(A) ⊆ A N N N Y N Y Y Y N

A ⊆ (A) N N N N N N N Y N

(A) ⊆ A N N N N N N N Y N

It may be mentioned that the most important of all these cases is the one when R
is reflexive and transitive. The second natural generalization is obtained by taking a
covering C on the universe X in place of the partition. (X, C) is called the covering
space. A covering C is a collection {Ci }i∈I of subsets of X such that

⋃
i∈I Ci = X .

Given a covering C = {Ci }, for each x ∈ X , the following subsets of X are taken:

Nx =
⋃

{Ci ∈ C : x ∈ Ci },
N (x) =

⋂
{Ci ∈ C : x ∈ Ci } and

Px = {y ∈ X : x ∈ Ci iff y ∈ Ci for all i ∈ I }.

Various types of lower and upper approximations of a set A have been defined
using the above sets (often called ‘granules’). Among these lower–upper approxi-
mation pairs, some are non-duals yet they possess many, often almost all, important
properties of these approximation operators. For an elaborate survey of covering
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based rough sets, we refer again to [48, 52]. Various kinds of abstract algebraic
structures have come into existence from studies of generalized rough set [6, 7, 9,
27, 28, 30, 36, 45].

For topological approaches to covering rough sets, we refer [36, 52].
We shall not, however, delve into the topological aspects of both the theories

which, in itself is a fascinating area of research.

1.4 Fuzzy Sets Vis a Vis Rough Sets

Although, in some early papers, there had been efforts to see the connections between
fuzzy sets and rough sets [50], at least from themathematical angle, it did not advance
much. In [39] Pawlak states that neither fuzzy set nor rough set may be subsumed in
the other. There were, rather, attempts to make a fusion between the two. The seminal
work in this direction was by Dubios and Parade [20]. However, there had been other
significant publications also [34]. In [20], notions of fuzzy rough set and rough fuzzy
set are introduced. In the first, a fuzzy equivalence relation is taken on the universe
X . Then a fuzzy subset Ã (in particular a crisp subset) of X is approximated by two
fuzzy subset Ã∗ and Ã∗, while in the second, in the universe X , a crisp equivalence
relation R is taken and a fuzzy subset Ã of X is approximated by two fuzzy sets,
R( Ã) and R( Ã). This was in 1990. Definitions of the above mentioned pairs in a
little modified form are given below.

1.4.1 Fuzzy Rough Set

It will be easier to comprehend the definitions by re-writing Pawlakian lower/upper
approximations in the following way:

(1) x ∈ A iff for all y ∈ X, y ∈ [x] implies y ∈ A

and

(2) x ∈ A iff there exists y ∈ X such that y ∈ [x] ∩ A.

Let R̃ be a fuzzy equivalence relation on X . Then the fuzzy equivalence class of
x ∈ X denoted by [x]R̃ is a fuzzy set in X defined by

[x]R̃(y) = R̃(x, y) for all y ∈ X.

Now, lower and upper approximations of a fuzzy set Ã w.r.t. R̃ denoted by R̃∗( Ã)

and R̃∗( Ã), respectively, are fuzzy sets obtained by generalizing (1) and (2) which
are given by
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R̃∗( Ã)(x) = infy∈X (y ∈ [x]R̃ → y ∈ Ã)

= infy∈X ((1 − [x]R̃(y)) ∨ Ã(y))

and
R̃∗( Ã) = supy∈X ([x]R(y) ∧ Ã(y)).

The pair (R̃∗( Ã), R̃∗( Ã)) is called a fuzzy rough set.

1.4.2 Rough Fuzzy Set

Let X be the universe with the crisp equivalence relation R and Ã : X −→ [0, 1] a
fuzzy set in X . Then the lower and upper approximations R( Ã) and R( Ã) of Ã are
given by fuzzy sets in X as defined below.

R( Ã)(x) = inf{ Ã(x) : x ∈ [x]R}

and

R( Ã)(x) = sup{ Ã(x) : x ∈ [x]R}.

1.4.3 Some Other Approaches

We would like to present briefly some other efforts to put fuzzy and rough sets
together.

(a) In 1992, a short paper was published in Fuzzy Sets and Systems [34] bearing the
title ‘fuzzy rough set’ but it meant something different. By this term the authors
meant a pair of < ÃL , ÃU > of L-fuzzy sets ÃL : XL −→ L , ÃU : XU −→ L
where < XL , XU > forms a generalized version of standard rough set and such
that ÃL(x) ≤ ÃU (x) for all x ∈ XU where L is a lattice. It appears that these
authors and the reviewers as well were unaware of the paper by Dubois and
Prade [20] published two years ago.

(b) A notion of rough fuzzy sets based on soft sets was introduced in [22]. In order
to understand this notion, the idea of soft sets is to be discussed. Soft set is a very
close associate of rough set. It was introduced byMolodtsov in 1999 [33]. A soft
set in the universe X is a pair (F,A)whereA ⊆ E (called the set of parameters)
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and F : A → P(X). Parameters may be interpreted as properties or attribute
of the objects of X . In rough set theory, the equivalence relation emerges from
the attribute-value information of the objects of the universe, formally called
‘information system.’ So, for every attribute e ∈ A, F(e) may be considered as
the subset of all objects in X having the same value with respect to the attribute
e. In fact, soft set and information system are mutually definable and in this
sense equivalent. But the two theories diverge in formalism just after this initial
overlap. They converge again on many domains of application however.

Binary operations of soft sets are defined with respect to the binary operations in
P(X). If ⊕ is an operation in P(X) and (F,A) and (G,B) are two soft sets in X
then a binary operation ⊕′ between them is defined by

(F,A)⊕′(G,B) = (H,A × B)

where A × B is the cartesian product of A and B and for (e1, e2) ∈ A × B ,
H(e1, e2) = F(e) ⊕ F(e′). A soft set (F,A) in X is said to be full if

⋃
a∈A F(a) =

X , that is {F(a) : a ∈ A} forms a covering of X . In such a case, (X, F,A) is
called a soft approximation space. Now with respect to a soft approximation space
S = (X, F,A), a fuzzy subset Ã of X is approximated following Dubois and Prade
by

S( Ã)(x) = infy∈X { Ã(y) : {x, y} ⊆ F(a) for some a ∈ A}

and

S( Ã)(x) = supy∈X { Ã(y) : {x, y} ⊆ F(a) for some a ∈ A}.

S( Ã) and S( Ã) are called the lower and upper approximation of Ã w.r.t. the soft
approximation space S. In case the subset Ã is crisp, say A, then the above two
equations reduce to

S(A) =
⋃

a∈A
{F(a) : F(a) ⊆ A}

and

S(A) =
⋃

a∈A
{F(a) : F(a) ∩ A 
= φ}.

For some other interesting results, see [22].



12 M. K. Chakraborty and P. Samanta

(c) Based on soft sets, one also gets fuzzy rough sets [32]. The notion of fuzzy soft
sets was already introduced by Maji et al. [31]. Let X be the universe and E
the set of parameters. Then a pair (F,A) is called a fuzzy soft set if A ⊆ E
and F : A → F , the set of all fuzzy subsets of X , i.e., F maps an attribute to a
fuzzy subset of X . In this sense, the soft set is fuzzy. For any fuzzy subset Ã of
X , fuzzy lower and upper approximations of it w.r.t. the pair (F,A)(≡ S) are
defined respectively by the equations (1) and (2) below.

(1) S( Ã)(x) = infa∈A(1 − F(a)(x)) ∨ (infy∈X ((1 − F(a)(y)) ∨ Ã(y))).
(2) S( Ã)(x) = supa∈A(F(a)(x) ∧ (supy∈X (F(a)(y) ∧ Ã(y)))).

The interpretations of the above two equations in the case when Ã is a crisp set
(say A) and F(a) is also a crisp subset are the following:

x ∈ S(A) iff x ∈ F(a) implies F(a) ⊆ A for all a ∈ A

and

x ∈ S(A) iff there is some a ∈ A such that x ∈ F(a) and F(a) ∩ A 
= φ.

Wehave observed above several attempts to put fuzzy, rough and soft sets together.
In the following section, the question of reducibility of one to another, in particular
rough sets into fuzzy sets via rough membership functions, will be discussed.

1.4.4 Rough Membership Function-Based Approach

We shall present here a direct correspondence between the two kinds ofmathematical
entities. The notion of rough membership function is quite old; it was introduced by
Pawlak and Skowron [43] and developed in [44].

Definition 2 Rough membership function: given the approximation space (X, R)

and a set A ⊆ X , the rough membership function f A : X −→ [0, 1] is defined by:

f A(x) = | [x]R ∩ A |
| [x]R |

where | P | denotes the cardinality of the set P .

Originally, the notion was defined on the finite universe but later in [11], it was
extended over any universe with the assumption that the equivalence classes gener-
ated by R are of finite cardinalities. It is immediately observed that
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f A(x) =
⎧
⎨

⎩

1 if x ∈ AR

0 if x ∈ (A
R
)c

0 < f A(x) < 1 if x ∈ Bd(A).

The following properties of rough membership function are established [51]:

• max[0, fA(x) + fB(x) − 1] ≤ f A∩B(x) ≤ min[ f A(x), fB(x)],
• max[ f A(x), fB(x)] ≤ f A∪B(x) ≤ min[1, f A(x) + fB(x)],
• f A∪B(x) = f A(x) + fB(x) − f A∪B(x).

There may be two distinct sets A, B such that f A = fB .
Though these functions resembled fuzzy subsets of X , they could not be consid-

ered as fuzzy sets proper until [11] was published, where the following properties had
been established: for any two rough membership functions, f A and fB the functions
defined by f A ∧ fB and f A ∨ fB pointwise are also rough membership functions.
This means, for any sets A, B, there exist sets P and Q such that f A ∧ fB = fP and
f A ∨ fB = fQ . This observation in a sense, may be considered as a breakthrough in
establishing the relation between fuzzy and rough sets.

Let X be a universe with a partition. Let F(X) denote the collection of all fuzzy
subsets of X . On the other side, byMF(X), we denote the set of all roughmembership
functions viz.

{ f A : A ∈ P(X), the power set of X}.

A correspondence between these two sets may be established. For the cluster of
subsets {A′ : f A = f ′

A}, the corresponding fuzzy set is f A. This correspondence from
MF(X) to F(X) may not be surjective (onto). The set MF(X)is now partitioned
in terms of the above mentioned clusters. More formally, in the power set P(X), an
equivalence relation≡ is defined by A ≡ B if and only if f A = fB . Each equivalence
class [A]≡ has a unique fuzzy set inF(X) viz. f A. It may be recalled that a Pawlakian
rough set < A, A > is equivalently defined as the equivalence class [A]≈ where ≈
is the equivalence relation defined in P(X) by A ≈ B if and only if A = B and
A = B. Obviously, ≡ generates a finer partition than ≈ in P(X). Since all members
of [A]≡ have the same membership function, [A]≡ is called a membership function
based rough set or m- f rough set which corresponds to a unique member of F(X).
In fact, the fuzzy set f A is itself named as an m- f rough set and intersection, union
and complementation of m- f rough sets are defined exactly as those of fuzzy sets
viz. f A ∧ fB , f A ∨ fB and 1 − f A = f Ac , respectively. Thus, MF(X) constitutes a
substructure of (F(X),∧,∨, 1 − ·).

The converse question is the following.
Given a fuzzy set f : X −→ [0, 1], does there exist a partition of X and a subset

A ⊆ X such that the rough membership function f A = f ? The answer to this ques-
tion is ‘no,’ though we are not providing here a formal proof of the above claim.
However, in a special case, the answer is positive. The statement of that assertion
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may be formulated as follows: given a universe with a partition (X, R), the equiva-
lence classes being of finite cardinality, any fuzzy set f : X −→ [0, 1] such that for
any x ∈ X , f (x) = 0/ 1

n /
2
n / . . . / n−1

n /1 where | [x]R |= n is the rough membership
function f A for some A ⊆ X . It is immediately observed that the A is obtained by
picking up 0/1/2/ . . . /n − 1/n elements respectively from the equivalence class
[x]R . Obviously, A can be constructed in more than one ways. Thus, in this special
case, there can be a matching between the fuzzy sets and m- f rough sets.

1.5 Logics

In this last section, we shall discuss some core issues of fuzzy logic and rough logic.
In fact, it would be proper to say ‘logics’ instead of ‘logic’ in both the cases. Here is
a big divergence: while fuzzy logics are based on many-valued logics, rough logics
are based on modal logics. In almost all logics, classical or otherwise, the rule of
inference called Modus Ponens (MP) plays a key role. Informally speaking, the
rule is:

(�): from two statements (or formulae) ‘α’ and ‘if α then β’ one is allowed to
infer ‘β’ since when ‘α’ and ‘if α then β’ are ‘true,’ ‘β’ is true as well, whatever
notion of truth one is inclined to adopt.

In the following subsections,wepresent fuzzy and roughMP rules, both generalize
the classical MP rule �.

1.5.1 Fuzzy MP Rule

Fuzzy logics are broadly of two kinds viz. fuzzy logic in narrow sense (or math-
ematical fuzzy logic) [25] and the theory of graded consequence [15]. Pavelka in
[37] introduced the idea of fuzzy rule of inference that follows Goguen’s [24] notion
where the fuzzy MP rule is intended to capture the following idea:

‘If you know α is true at least to the degree a and α → β at least to the degree b,
you conclude thatβ is true at least to the degree a · b’ (· being themultiplication in the
interval [0.1]). As mentioned before, the logic is based on many-valued semantics.
Formally written, the fuzzy MP rule may be expressed as

(α, a)

(α → β, b)
——————-

(β, a · b)
The product (·) may be generalized to any t-norm [24].
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Pavelka generalized the above schema over to a complete residuated lattice as the
truth set and in his notation the rule stands as

α (a)

α → β (b)
——————-

β (a ∗ b)

∗ being the product operator of the residuated lattice. In fact, in Pavelka’s presenta-
tion, a fuzzy rule of inference r consists of two components (r ′, r ′′) where the first
(grammatical) component r ′ operates on formulas and the second (evaluation) r ′′
operates on the values. The above MP rule is one such rule of inference.

On the other hand, in the context of graded consequence, the fuzzy rule Modus
Ponens is a fuzzy relation |∼ assigning a fixed value to {α, α → β} |∼ β for all
α, β. This value denoted by gr({α, α → β} |∼ β) is determined with respect to a
set {Ti }i∈I of fuzzy sets on the set of formulas For, i.e., Ti : For −→ [0, 1], i ∈ I .
Ti ’s constitute a set of fuzzy valuations of the set of formulas. The determining
expression is

gr({α, α → β} |∼ β) = infα,β(infi [(Ti (α) ∧ (Ti (α) →o Ti (β))) →m Ti (β)]).

The above expression, though looks complicated, is in fact, value of the following
sentence:

‘For all α, β and for all valuations Ti , if α and α → β are true with respect to Ti ,
then β is also true w.r.t. Ti .’ This is a generalization of� in the many-valued context.

It is to be noted that there are involved two implication operators →o and →m

defined in [0, 1], the first for the object language and the second for themeta language.
The meta language implication →m has to be a residuation in a residuated lattice
in particular the set [0, 1] with a residuation operator. (For details see [15]). The
gross difference between the fuzzy MP rule and graded MP rule lies in that while
the first is a crisp relation that holds between the set of pairs {(α, a), (α → β, b)}
and the pair (β, a ∗ b) for all α, β, a and b, i.e., a crisp relation between fuzzy sets,
the second is a fuzzy relation between the set {α, α → β} and β. The formalism and
various notions such as the notion of consistent set in the two logical systems are
quite different. Outside the logic systems proper, application of the two MP rules in
addressing the Sorites paradox is intriguing [15].

1.5.2 Rough Modus Ponens Rules

As mentioned before, Rough Modus Ponens (RMP) pre-supposes an underlying
modal logical system. We shall not delve into modal systems here for which the
reader may consult [26]. It may only bementioned that the basic modal logic systems
are K , T, S4, B and S5 all having the same language but different sets of axioms.
Since we shall deal with the system S5 only, its axioms and rules are given below. It is
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to note that the propositional modal language is the classical propositional language
enhanced by two more unary operators L (necessity) and M (possibility) where L
and M are interdefinable.

Axioms:

All propositional logic axioms and
Ax K : L(α → β) → (Lα → Lβ)

Ax T : Lα → α

Ax S5: Mα → LMα.

Rules:

α, α → β

β
(MP)

α

Lα
(N)

Just to recall that in the system S5, Lα → LL(α) (Ax S4) and α → LMα (Ax
B) can be derived. The system S5 has a direct relationship with the original rough
set theory as proposed by Pawlak. The standard interpretation of the formulas of
S5 is made in the Kripke frame (X, R) [26] where X is a set of ‘possible worlds’
and R is an ‘accessibility relation’ which is reflexive, symmetric and transitive. So,
the Kripke frame, in this case, is the approximation space of rough set theory. Also,
the wffs Lα and Mα admit a rough set theoretic interpretation by v(Lα) = v(α)

R

and v(Mα) = v(α)
R
where v is a Kripke frame-based interpretation [35]. We have

mentioned this point in Sect. 1.3.2. With this very brief introductory remarks, we
shall now present rough MP rules and logics developed thereby.

In the more general setup, classical MP rule may be written as

� � α, � � α → β

� � β

where� is a set of wffs denoting the premise set and� denotes classical consequence
relation. In rough logics, the above MP rule is generalized by

� |∼ α, � |∼ β → γ,�S5 ℵ(α, β)

� |∼ γ

where |∼ is the rough consequence relation and ℵ(α, β) is anyone of the following
list of wffs:
(i) Lα → Lβ (iv) α → Lβ (vii) Mα → Lβ (x) M(α → β)

(ii) Lα → β (v) α → β (viii) Mα → β (xi) L(α → β)

(iii) Lα → Mβ (vi) α → Mβ (ix) Mα → Mβ (xii) α ⇒ β (xiii) α ⇔ β.
[α ⇒ β standing for (Lα → Lβ) ∧ (Mα → Mβ) and α ⇔ β for (α ⇒ β) ∧ (β ⇒
α)]. These thirteen formulas are partitioned in the following equivalence classes
under the base modal logic S5.
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{(i), (ii)}, {(iii), (x)}, {(iv), (vii), (viii)}, {(v), (xi)}, {(vi), (ix)}, {(xii)}, {(xiii)}.
This means that any two formulas belonging to the same class are mutually derivable
in the system S5.

Thus, seven RMP rules would be available picking up one from each class viz.

RMP1
�|∼α, �|∼β→γ, �S5Lα→Lβ

�|∼γ

RMP2
�|∼α, �|∼β→γ, �S5Lα→Mβ

�|∼γ

RMP3
�|∼α, �|∼β→γ, �S5Mα→β

�|∼γ

RMP4
�|∼α, �|∼β→γ, �S5α→β

�|∼γ

RMP5
�|∼α, �|∼β→γ, �S5Mα→Mβ

�|∼γ

RMP6
�|∼α, �|∼β→γ, �S5α⇒β

�|∼γ

RMP7
�|∼α, �|∼β→γ, �S5α⇔β

�|∼γ
.

The interpretation of RMP1 is the following:
if α and β → γ roughly follow from � and in the semantics of the underlying

system S5, v(α) ⊆ v(β), then γ roughly follows from �. Similarly, the other rules
may be interpreted.

Axiomatic presentation of the notion ‘roughly follows’ is given in Sect. 1.5.3.
The above RMP rules are related by the following hierarchical relations:

RMP1 ⇒ RMP4 ⇒ RMP3,
RMP2 ⇒ RMP5 and
RMP1 ⇒ RMP6 ⇒ RMP7.

where RMPi ⇒ RMP j means that the i th rule implies the j th one, i ≤ j . Besides
these, two more rules, also called rough MP, had been proposed in [2, 8] which are
as follows:

R1

�|∼α, �S5Mα→Mγ

�|∼γ
and

R2
�|∼Mα, �|∼Mγ

�|∼Mα∧Mγ

Depending on various RMP rules, various rough logics are obtained. For more
detail, see [49].

1.5.3 Rough Logics

Let S be a modal system with consequence relation �S . Based on S, system Lr is
defined axiomatically by using Rough consequence relation |∼ as follows:



18 M. K. Chakraborty and P. Samanta

Lr :

(i) �S α implies � |∼ α.
(ii) {α} |∼ α.
(iii) � |∼ α implies � ∪ � |∼ α.
(iv) RMP may be applied.

Sowe have rough logic systems Lr1–Lr7 corresponding to the rules RMP1–RMP7
and twomore systems LR1 and LR2 corresponding to the rules R1 and R2. However,
first coinage of the term ‘rough consequence’ was most probably in [10], since then
lot of modifications have taken place.

The relation between the corresponding logics Lri and Lr j will be reverse inclu-
sion, Lr j � Lri for i ≤ j .

A detailed study of the systems Lri when S is S5 with rules RMPi is done in [8,
49].

We present below a diagram (Fig. 1.1) depicting the relevant portion of that study
after making a few modifications.

In the following diagram, (Fig. 1.1) ∼ means equivalence, connection by a line
means the lower logical system is proper subsystem of the upper one and connection
by dotted line means the corresponding systems are mutually independent.

Fig. 1.1 Hierarchy of rough
logics

LR1

LR2

Lr2
∼ Lr5

Lr3

Lr1
∼ L

r6
∼ Lr7

Lr4
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It is to be noted that we have presented only tiny fragments of fuzzy logics and
rough logics. Both Zadeh and Pawlak were interested in logic and the notion of truth.
In Zadeh’s perception, a statementmay be ‘true,’ ‘very true,’ ‘more or less true’ and so
on. He proposed linguistic calculi with these values to model approximate reasoning
[54]. On the other hand, Pawlak proposed for rough truth [40] which was formalized
in [2]. For an earlier survey of rough logics, we refer to [5].

1.6 Concluding Remarks

In this chapter, we have presented only glimpses of a few aspects of fuzzy set theory
and rough set theory andmade a comparative analysis. Besides the presented aspects,
there is a number of others. However, both the theories have had wide range of
applications that overlap. This aspect has not been touched upon at all. In our opinion,
it is high time to do a comprehensive research on the similarities and differences of
the two theories from all aspects, viz., mathematical import, range of applications
and philosophy of vagueness and indiscernibility.

Acknowledgements We are thankful to the referee for some helpful suggestions.
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Chapter 2
Enhancing the Prediction of Anti-cancer
Peptides by Suitable Feature Extraction
and FRFS with ACO Search Followed
by Resampling

Rakesh Kumar Pandey, Anoop Kumar Tiwari, Shivam Shreevastava,
and Tanmoy Som

2.1 Introduction

Fermentation is one of the well-known techniques of food-processing that uses
biochemical transformations to improve the qualities of food products. Fermenta-
tion produces enzymatic hydrolysates that imparts to taste characteristics [1]. Enzy-
matic hydrolysates available in food proteins are usually an anti-cancer taste. In
the literature [2, 3], the association between anti-cancerness and chemical structure
is widely discussed and found that anti-cancer-tasting peptides are usually isolated
from numerous sources. Anti-cancer taste [4, 5] is a Japanese notion, which means
“savoury” or “broth-like” and is produced by several peptides. This concept is speci-
fied by the taste of monosodium L-glutamate and prototypical stimulus, and sodium
lactate or peptides. Anti-cancer peptides [6], especially tripeptides and dipeptides,
have been segregated and specified from soy sauce, cheese, and miso, which can
play vital role in various health advantages, including weight gain, reducing fat
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removal andplasma leptin levels.Anti-cancer ingredients are used to control gastroin-
testinal operations and to reduce the threat of stroke as well as coronary heart disease.
Moreover, anti-cancer ingredients play key role for food seasoning and are exten-
sively utilized in food production. However, identification and characterization of
anti-cancer peptides are always time consuming and expensive. So, computer-aided
methods are always effective to complete this task by expediting the experimental
techniques. In the literature, very few investigations have been reported for building
computational models to predict anti-cancer peptides. Wei et al. [4] have given
one of the most interesting machine learning-based approach, which was developed
specifically for discriminating anti-cancer and non-anti-cancer peptides.

There are variety of factors that can directly degrade the average performances
of the learning algorithms to predict the anti-cancer peptides. Extraction of infor-
mative features [7], selection of relevant and/or non-redundant features from large
number of features [8, 9], resampling of imbalanced datasets [10], and selection of
suitable learning technique [11, 12] are key factors among them. In case of peptide
sequences with variety of lengths, feature extraction can play a key role in designing
well-performed predictors. Feature extraction process produces a constant length
of feature vectors from the different lengths of peptide sequences that reflects the
necessary correlation with the target to establish a potential classifier. Feature extrac-
tion techniques can provide various characteristics of the data points to the machine
learning algorithms as it produces different interesting representative features, which
leads to improve the average performances of the learned models.

Dimensionality of the datasets is increasing expeditiously by procuring and
amassing an increasing number of features from peptide sequences. Some of the
features are responsible for creation of noise to the target. Noisy features can be
irrelevant and/or redundant and degrade the performance of the learning algorithms.
Irrelevant features do not have any direct association with the decision features but
adversely influence the overall performances of the learning techniques. Redun-
dant features do not produce any supplementary information to the decision feature.
Therefore, prior to use a dataset containing noisy features, it is the foremost necessity
to pre-process the dataset for eliminating redundant and irrelevant features. Feature
selection is an efficacious and extensively used tool to remove redundant and/or irrel-
evant features. The main objective is to ascertain a subset of optimal features with
powerful classification capability based on specific evaluation criteria. Moreover,
feature selection provides better interpretation ability as high-dimensional charac-
teristics can be obtained by analysing low-dimensional datasets.Hence, feature selec-
tion can be applied as a tool for simplification of data and reduction of computational
complexity for learning algorithms.

Class imbalance is the frequent and common challenge for the researchers in the
field of data mining [13, 14]. Area. Class imbalance is concerned with the fact that
the samples related to the one class is much higher in number than that of samples in
other class. Conventional learning approaches are often biased towards the class with
higher number of samples, while the class of importance is usually the class with
the less number of samples. Consequently, lower sensitivity and higher specificity
are reported for these datasets. The available solutions for class imbalance problems
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can be divided into four categories namely: cost-sensitive techniques, algorithm-
driven methods, data-level methods, and integration approaches. Data-level methods
are extensively implemented among other techniques as these methods include easy
operations and found to be independent of algorithms. The main notion of data-
level methods are associated with resampling concept. Resampling can be further
divided into twomajor concepts namely: oversampling and undersampling. In the last
few years, oversampling techniques have produced excellent results for imbalanced
biological datasets.

After applying the above mentioned pre-processing approaches, selection of
effective learning algorithms always plays a vital role in improving the prediction
performances. Predominantly, ensemble learning algorithms produce a better sensi-
tivity and accuracy when compared to conventional learning algorithms in case of
biological datasets.

In the current study, we employ iFeature web server to extract diverse features
of fixed-length feature vectors from variety length of peptide sequences containing
anti-cancer and non-anti-cancer. Then, fuzzy rough feature selection with harmony
search and particle swarm optimization (PSO) search is implemented to produce
non-redundant and relevant features. Next, SMOTE is applied on reduced datasets to
generate balanced datasets to avoid the biasedness of learning algorithms. Moreover,
eight classifiers are used to evaluate their performances on highly balanced reduced
datasets based on the evaluation parameters. Finally, we observe that the predic-
tion of anti-cancer and non-anti-cancer peptides by using pre-processing techniques,
such as feature extraction, feature selection, and data balancing techniques followed
by selection of an appropriate machine learning algorithm. Entire methodology is
displayed through schematic framework (see Fig. 2.1).

2.2 Material and Methods

2.2.1 Dataset

An authentic and informative benchmark dataset is always a key aspect to develop
suitable and robust models. In the present work, we have completed the experimental
study by using a benchmark dataset ACP500, which was obtained by performing
instance selection in Wei et al. [4] dataset. ACP500 was comprised of 200 posi-
tive class samples, i.e. anti-cancer peptides and 300 negative class samples, i.e.
non-anti-cancer peptides after applying instance selection. This dataset (ACP500) is
consisted of the ubiquitous class imbalance issue as the ratio of positive to negative
samples is different from 1:1.Wei et al. [4] exercised three steps to construct ACP500
dataset. Firstly, various literatures and BIOPEPUWM databases were utilized to
collect different anti-cancer peptides, which were already validated through a series
of experiments.Moreover, anti-cancer peptides presented byWei et al. were accumu-
lated as non-anti-cancer peptides as anti-cancer taste contains the intuitively aversive



26 R. K. Pandey et al.

Op�mally balanced dataset using SMOTE

Feature Selec�on Protocol (FRFS with PSO and ACO 

search)

Feature extrac�on in the form of informa�ve 

features (AAC, DPC, AAIndex, Binary, CTDC, 

CTriad, GAAC, GDPC, Moran, QSOrder, and 

PAAC)

Aggregated Feature Vector

Data Set (ACP250)

An�-cancer (Posi�ve Class) Non-An�-cancer (Nega�ve Class)

Machine Learning Protocol  (Vote (IBK+RARF))

Fig. 2.1 Schematic framework for entire methodology

taste when compared to anti-cancer taste. Secondly, peptides comprising of non-
standard letters such as “B”, “X”, “U”, or “Z” were eliminated. Thirdly, peptide
sequences having redundancy were also deleted for further processing.

2.2.2 Feature Extraction

The feature extraction from peptide samples is the foremost and essential step
for developing a strong predictor. Peptide sequences consisting of anti-cancer and
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non-anti-cancer classes can be formulated with an extensive and suitable feature
vector that demonstrates an effective correlation with decision class for creating a
powerful predictor. Amino acid sequences carry diverse aspects, including composi-
tion, permutation, physicochemical properties, profiles, and combination modes of
amino acids, which can be used for differentiating positive and negative samples.
In this paper, feature vector of fixed length from various protein sequences has
been generated by using iFeature web server [15]. Here, we have extracted 11 types
of features [16, 17] namely: Amino acid composition (AAC), dipeptide compo-
sition (DPC), binary composition (binary), Moran correlation (Moran), composi-
tion/transition/distribution (CTD), pseudo-amino acid composition (PAAC), conjoint
triad (CTF), quasi-sequence order (QSO), amino acid index (AAI), grouped dipep-
tide composition (GDPC), grouped amino acid composition (GAAC). Hence, we
have applied feature extraction process on this dataset to extract appropriate features
for conducting the entire experiments. After applying feature extraction, we obtain
489 suitable features from different categories.

2.2.3 Feature Selection

Feature selection is an effective and widely used method to remove negative effects
caused by irrelevant and/or redundant features [18, 19]. Feature selection approach
is preferred over other reduction techniques as it maintains the original sense of the
available features. Data generated from various sources usually include the problems
of imprecision, vagueness, and uncertainty. Conventional feature selection methods
cannot address these issues in effective and efficient way. Moreover, traditional
feature selectors can lead to information loss as they require additional informa-
tion to eliminate redundant and/irrelevant features. In the recent years, rough set
theory [20] has been efficaciously utilized as a mathematical notion to handle afore-
mentioned issues in data analysis. Three aspects are responsible for the successful
implementation of rough set theory. First, it produces depiction of knowledge in a
minimal form for the available data. Second, this facilitates to analyse only the hidden
facts present in the datasets. Third, no extra information such as threshold value or
expert knowledge about particular domain is needed for data analysis. Various feature
selection algorithms based on rough set theory have been introduced and success-
fully applied for high-dimensional datasets. However, classical rough set theory is
based on equivalence relation concept and can handle nominal attributes only. So, it
is not applicable on real-life datasets as these contain continuous features.

One of the attainable solution to dealwith numerical attributes is to discretize these
attributes, which is an important cause of information loss. In response to this issue,
fuzzy rough set theory [21] was utilized to avoid the problem of discretization to
deal with real-valued datasets. In the last few years, different fuzzy rough set-based
feature selection [22] have been developed and effectively applied to the datasets
containing numerical or continuous features. Fuzzy rough sets summarize connected
but distinct notions of indiscernibility and fuzziness. In fuzzy rough sets assisted
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feature selection, fuzzy binary relations are employed to characterize the similarity
between data points. So, continuous feature values are no longer required to be
discretized. They are transformed to membership grades of samples corresponding
to decisions. Hence, information about numerical or continuous feature values can
be preserved.

Dataset with numerical or continuous feature values is normalized to fuzzy infor-
mation system (U, C, D). Here, U indicates a non-empty set of data points, C denotes
collection of conditional features, and D represents collection of decision features.
Fuzzy lower and upper approximations are computed based on similarity between
features. By calculating union of lower approximations, we can obtain positive
region. This positive region indicates degree of certainty of a sample belong to a
category. Now, the degree of dependency of target feature over conditional feature
is assessed based on positive region value. In this approach, features are added iter-
atively to potential reduct set and evaluation is done based on degree of dependency.
Finally, the algorithm provides reduct set when some convergence criteria is attained.
Various extensions of fuzzy rough feature selection concept have been presented in
the recent years [23–29]. In this study, we have applied FRFS with ACO and PSO
to obtain the reduct sets [30, 31].

2.2.4 Balancing Protocol

Due to development of IoT and advanced data computing technologies, various
researchers have access these advancement to achieve more data with various types
and large amount. However, imbalanced data problem leads to information loss for
artificial intelligence models built on these data and results in extremely poor perfor-
mances [32]. Essentially, an imbalanced dataset refers to those samples in the dataset
which fails to provide approximately equal representations for all patterns. Over-
sampling is well-known efficient technique to cope with class imbalance ubiquitous
issue by reduplicating or generating the minority class samples, resulting in balance
between the samples of the majority and minority class. Chawla et al. [33] intro-
duced an interesting and massively applied oversampling technique, which is known
as synthetic minority oversampling technique (SMOTE). In this method, synthetic
samples of minority class are generated by employing the idea of nearest neighbour.
These samples are created artificially by randomly choosing minority class samples
and its nearest sample from the same class. For each instance m related to minority
class, n nearest neighbours of the identical class are selected. If the available sampling
rate is j, then j instances from n nearest neighbours are selected randomly. Here, a
new object can be generated by using the information from each object mi (i = 1, 2,
…, j) and the original instance m as below:

mnew = m + rand(0, 1)× (mi − m)
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where rand(0, 1) indicates a random number in the interval (0, 1) and plays vital
role in the generation of synthetic samples. After combining the generated artificial
samples with the original available samples, we obtain a new balanced dataset for
further processing.

2.2.5 Machine Learning Protocol

A comprehensive experimental study has been performed in the current study to
justify the domination of our methodology. Nine classifiers namely (1) random forest
[34], (2) vote-based classifier [35, 36], (3) JRip [37], (4), boosted random forest
(RARF) [38], (5) sequential minimization optimization (SMO) [39], (6) PART [40],
(7) rotation forest [41], (8) IBK [42], and (9) Naïve Bayes [43], have been employed
on original, reduced, and optimally balanced reduced versions of benchmark dataset
(ACP500). These classifiers are extensively utilized learning algorithms on biological
datasets to perform the prediction tasks effectively. Vote-based classifier has reported
the best results in the current study. A brief depiction of vote-based classifier can be
given as follows.

2.2.5.1 Vote-Based Classifier

For the biological datasets, the conventional classifiers have their own limitations
and advantages while carrying out the prediction tasks. The vote-based classifier
comes in the category of ensemble learning techniques, which can be applied to
overcome the inadequacy of individual classifiers. In case of vote-based classification
technique, different base classifiers are trainedwith training datasets. Thereafter, their
predictions are combined to achieve better precision and recall, which results in the
enhanced value of F-measure and overall accuracy when compared to individual
models. Here, individual experts assign class labels to each pattern and vote-based
classifiers operate on these class labels. The maximum value selectors are utilized to
obtain the class labels, which can be achieved by adjusting the soft decision outputs.
Specific expert produces the votes for each class and the vote rule output can be
expressed as a function of votes. We always select the choice containing maximum
value wherein the decision consisting of multiple choices. In this paper, IBK and
RARF are used as base learner for vote-based classifier.

2.2.6 Performance Measures

There are various validation techniques such as jackknife test, independent dataset
test, and k-fold cross validation for learning models evaluation. In this paper, tenfold
cross validation (CV) and percentage split of 80:20 validation techniques have been
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used to evaluate our entire methodology for the prediction of anti-cancer and non-
anti-cancer. In tenfold CV, entire dataset is randomly divided into 10 identical sets
or folds, where all the 10 sets contain similar number of positive as well as negative
samples. Then, 9 sets or folds are employed for training purpose and remaining
1 for testing. Entire procedure iterates 10 times, and we obtain average values of
the evaluation metrics for different learning algorithms. In percentage split of 80:20
validation method, 80% of the samples are randomly divided for constructing a
prediction model and rest 20% of the samples are applied for evaluation of the
model.

In addition to efficient and feasible evaluation method for conducting the exper-
iments, effective evaluation indicators are also required to assess the predictive
potential of the model. In the experimental study, five basic metrics are examined
for evaluating the performance of the nine learning algorithms. These metrics are
the combination of both threshold-dependent and threshold-independent. Confusion
matrix provides a way to compute evaluation parameters. There are four elements
of the confusion matrix namely: true positive (tp), false positive (fp), true negative
(tn), and false negative (fn). Here, tp denotes count of correctly predicted anti-cancer
peptides, fp represents count of incorrectly predicted anti-cancer peptides, tn is the
representation of correctly predicted non-anti-cancer peptides, whereas incorrectly
predicted non-anti-cancer peptides are indicated by fn. Threshold-dependent and
threshold-independent evaluation parameters can be briefly describes as follows:

Sensitivity: This parameter indicates the percentage of rightly predicted anti-cancer
peptides and is calculated as follow:

Sensitivity = tp

(tp+ fn)
× 100

Specificity: This parameter denotes the percentage of rightly predicted non-anti-
cancer peptides and is computed by the following equation:

Specificity = tn

(tn+ fp)
× 100

Accuracy: The percentage of rightly predicted anti-cancer and non-anti-cancer
peptides is denoted by this metric and is expressed by the following equation:

Accuracy = tp+ tn

tp+ fp+ tn+ fn
× 100

AUC: This evaluation metric is the abbreviation of area under the receiver operating
characteristic curve (AUROC). For a better performing predictor, AUCgives its value
closer to 1.
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MCC: Mathew’s correlation coefficient is extensively used parameter for binary
classifications and can be expressed by the following equation:

MCC = tp× tn− fp× fn
√
(tp+ fp)(tp+ fn)(tn+ fp)(tn+ fn)

MCC value nearer to 1 can be contemplated as better predictor when compared
to others.

2.3 Experimentation

In this paper, we have done a complete observational study to determine the strength,
abstraction, and applicable authentication of our suggested methodology. In Begin-
ning, iFeature web server has applied to excerpt various feature vectors of nailed
length from 500 peptide sequences of ACP500 for a given each peptide sequence.
Attributes were extracted from 11 various compositions, which encompasses of
various properties for making competent predictors to identify anti-cancer and non-
anti-cancer peptides. Thereafter, we imposed distinct traditional and fuzzy [44]
concept-based attribute selection approach to rule out superfluous and extraneous
features. Filter-based attribute selection [45] as classic crisp approach and FRFS
along with PSO and ACO were used to give rise to useful and significant attributes.
In our concern, FSS, FRFS along with PSO, and ACO has been used to get useful
and significant attributes. In this FSS, FRFS with PSO and FRFS along with ACO
has extensively produced 145, 73, and 117 attributes, respectively. Complete data
with respect to ACP500 dataset after doing attribute extraction and attribute selec-
tion operations have recorded in Table 2.1. The reduced datasets which were given
by various FRFS techniques had been changed into rationally balanced dataset with
the help of SMOTE. In continuation of this positive to negative sample ratios are
also changed into 1:1.

Further, we usedmajorly ninemachine learningmodels to analyse their realization
over reduced and unreduced datasets.Over fitting aswell as unbiasedness of our given
methodology have also been avoided by using tenfold CV and percentage split in
ratios of 80:20 validation methods.

Attainment of all AImodels for integral datasets which are being provided by FFS
has also been represented in Tables 2.2 and 2.3. Estimation measures for diminished
dataset as given by FFS have also been represented in Tables 2.4 and 2.5. Datasets

Table 2.1 Benchmark datasets characteristics and reduct size

Dataset Instances Attributes Reduct size

FSS FRFS with PSO FRFS with ACO

ACP500 500 489 145 73 117
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having more reduced attributes as given by FRFS using PSO and ACO and opti-
mally uniform datasets by SMOTE had been used to give insight performance of
various learning models and tabulated in Tables 2.6, 2.7, 2.8, and 2.9. With basis of
experimental datasets, one can easily make conclusions that vote-based classifier is
better performing in comparison of other machine learning algorithms. The finest
results had been achieved with specificity, sensitivity, accuracy, AUC, and MCC of
99.1, 97.3%, 98.2%, 0.983, and 0.888, respectively, along with vote-based classi-
fiers which are based upon percentage split in ratios of 80:20 for rationally balanced
reduced dataset given by FRFS with ACO search followed by SMOTE.

The overall statistics have shown that our representational methodology
(approach) is the best approach for favouring the anti-cancer and non-anti-cancer
peptides as the lastly reported best analysis was produced with specificity, sensi-
tivity, accuracy, AUC, and MCC 97.5%, 75.4%, 91.5%, 0.902, and 0.683, respec-
tively. As per tenfold cross validation, our supposed methodology has been reported

Table 2.2 Performance results of different learning algorithms based on evaluation metrics for
original ACP500 dataset using percentage split of 80:20

IBK Specificity Sensitivity Accuracy AUC MCC

Naïve Bayes 86.4 81.6 83.8 0.842 0.609

IBK 91.4 72.7 86.5 0.805 0.602

JRip 91.7 69.6 84.7 0.826 0.604

Random forest 92.7 74.4 86.6 0.902 0.618

Rotation forest 92.4 75.9 88.8 0.904 0.624

PART 89.1 66.7 81.6 0.804 0.504

SMO 88.1 78.4 86.1 0.808 0.625

Vote 93.1 77.3 82.7 0.914 0.656

RARF 92.4 75.1 87.8 0.902 0.619

Table 2.3 Performance of various learning algorithms based on evaluation metrics for original
ACP500 dataset using tenfold CV

Learning algorithm Specificity Sensitivity Accuracy AUC MCC

Naïve Bayes 84.8 82.0 88.8 0.826 0.645

IBK 91.1 66.7 88.1 0.851 0.656

JRip 86.5 64.7 82.4 0.762 0.551

Random forest 93.4 61.3 84.8 0.885 0.592

Rotation forest 88.2 68.3 79.4 0.895 0.529

PART 75.3 65.0 74.7 0.769 0.363

SMO 78.0 66.3 77.0 0.742 0.474

Vote 91.1 68.7 86.1 0.865 0.686

RARF 90.1 68.3 87.0 0.896 0.689
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Table 2.4 Performance results of different learning algorithms based on evaluation metrics using
percentage split of 80:20 for reduced ACP500 dataset generated by conventional filter subset
selection method

Learning algorithm Specificity Sensitivity Accuracy AUC MCC

Naïve Bayes 87.4 78.4 81.2 0.893 0.659

IBK 82.7 69.1 80.6 0.800 0.598

JRip 86.7 74.0 80.8 0.823 0.599

Random forest 89.7 71.3 81.6 0.889 0.655

Rotation forest 88.4 68.1 79.6 0.802 0.659

PART 87.7 69.4 80.9 0.834 0.653

SMO 88.4 71.6 86.4 0.798 0.666

Vote 91.1 72.0 84.1 0.827 0.686

RARF 88.1 71.0 81.7 0.892 0.686

Table 2.5 Performance results of different learning algorithms based on evaluation metrics using
tenfold CV for reduced ACP500 dataset produced by conventional filter subset selection method

Learning algorithm Specificity Sensitivity Accuracy AUC MCC

Naïve Bayes 83.0 81.3 82.8 0.816 0.651

IBK 88.7 52.3 71.3 0.727 0.451

JRip 90.4 64.7 81.0 0.718 0.650

Random forest 86.7 61.3 82.7 0.827 0.517

Rotation forest 87.7 72.0 81.0 0.814 0.624

PART 83.0 71.7 74.7 0.716 0.314

SMO 84.2 72.7 82.0 0.824 0.604

Vote 88.9 63.5 76.5 0.814 0.525

RARF 84.3 64.3 88.7 0.827 0.517

Table 2.6 Performance results of different learning algorithms based on evaluation metrics using
percentage split of 80:20 for reduced ACP500 dataset generated by FRFS with PSO search

Learning algorithm Specificity Sensitivity Accuracy AUC MCC

Naïve Bayes 71.0 76.5 75.9 0.816 0.517

IBK 92.4 86.2 94.9 0.918 0.829

JRip 81.9 83.7 85.8 0.824 0.715

Random forest 92.2 81.7 84.4 0.910 0.729

Rotation forest 90.8 82.3 95.1 0.920 0.812

PART 82.2 81.0 84.6 0.813 0.624

SMO 91.6 82.3 85.6 0.826 0.714

Vote 93.8 91.4 94.7 0.919 0.827

RARF 92.8 90.7 95.7 0.904 0.809
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Table 2.7 Performance results of different learning algorithms based on evaluation metrics using
tenfold CV for reduced ACP500 dataset produced by FRFS with PSO search

IBK Specificity Sensitivity Accuracy AUC MCC

Naïve Bayes 77.5 84.8 78.6 0.898 0.574

IBK 88.7 96.4 93.1 0.957 0.872

JRip 84.4 84.5 84.9 0.862 0.689

Random forest 89.7 92.4 88.6 0.978 0.771

Rotation forest 89.4 95.1 87.7 0.972 0.786

PART 87.1 88.8 87.9 0.892 0.739

SMO 87.8 89.4 88.1 0.891 0.772

Vote 89.7 96.0 93.4 0.979 0.849

RARF 88.7 95.7 92.7 0.980 0.835

Table 2.8 Performance results of different learning algorithms based on evaluation metrics using
percentage split of 80:20 for reduced ACP500 dataset generated by FRFS with ACO search

Learning algorithm Specificity Sensitivity Accuracy AUC MCC

Naïve Bayes 89.5 82.0 86.3 0.877 0.698

IBK 95.4 95.3 95.4 0.957 0.888

JRip 87.2 83.7 86.5 0.892 0.690

Random forest 97.1 93.7 95.4 0.982 0.888

Rotation forest 97.1 88.7 92.9 0.982 0.871

PART 92.2 88.7 89.4 0.897 0.789

SMO 89.5 92.0 88.3 0.883 0.795

Vote 99.1 97.3 98.2 0.983 0.888

RARF 95.4 92.0 93.7 0.959 0.845

Table 2.9 Performance results of different learning algorithms based on evaluation metrics using
tenfold CV for reduced ACP500 dataset produced by FRFS with ACO search

IBK Specificity Sensitivity Accuracy AUC MCC

Naïve Bayes 83.5 88.4 86.4 0.950 0.680

IBK 88.1 97.7 91.4 0.952 0.870

JRip 83.8 89.1 83.9 0.872 0.740

Random forest 88.4 92.4 89.9 0.975 0.788

Rotation forest 89.7 95.1 86.9 0.971 0.778

PART 88.4 89.1 89.2 0.872 0.775

SMO 87.8 93.1 89.9 0.875 0.790

Vote 97.6 99.8 99.7 0.999 0.902

RARF 89.7 95.1 90.9 0.932 0.789
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Fig. 2.2 AUC of eight learning algorithms for original ACP500 dataset

the best outcomes with specificity of 97.6%, sensitivity of 99.8%, accuracy of 99.7%,
AUC of 0.999, and MCC of 0.902 as the lastly reported best results were 95.0% for
specificity, sensitivity for 95.5%, accuracy for 95.5%, AUC for 0.965, and MCC
for 0.888. In Tables 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, and 2.9, it is reported that
fuzzy-based attribute selection is more active and adequate than traditional methods
used for making of powerful predictor for foretelling anti-cancer and non-anti-cancer
peptides. The capacious approach calledROC ismore applicable to visualize the real-
ization of all nine learning algorithms. In Figs. 2.2, 2.3, 2.4, and 2.5, there is a plot of
ROC for decreased and non-decreased ACP500 datasets. Extraction of attributes was
done at the beginning with iFeature web server, while experiments like as attribute
selection, classification, and visualization using various validation approaches were
accomplished inWeka 3.8 [46] onHardware platform using Intel®Core™ i5-8265U
CPU @ 1.60 GHz, 1.80 GHz with 8.00 GB RAM.

2.4 Conclusion

Anti-cancer taste plays vital role in the field of food industry as well as medical
science. Anti-cancer ingredients have been successfully utilized for treatment of
various critical diseases such as stroke and food seasoning. So, it is prerequisite to
present an efficient computational methodology to improve the discriminating ability
of machine learning algorithms for anti-cancer and non-anti-cancer peptides. Infor-
mative features related to different composition, relevant and non-redundant features,
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Fig. 2.3 AUC of eight learning algorithms for reduced ACP500 dataset generated by conventional
filter subset selection method

Fig. 2.4 AUC of eight learning algorithms for reduced ACP500 dataset produced by FRFS with
PSO search
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Fig. 2.5 AUC of eight learning algorithms for reduced ACP500 dataset produced by FRFS with
ACO search

optimal balancing, and effective learning algorithms are the key factors that can lead
to upgrade the overall performances of the classification techniques. In this paper, we
focussed on all the aforementioned factors and developed an efficient procedure to
enhance the prediction of anti-cancer and non-anti-cancer peptides. Firstly, peptide
sequences consisted of anti-cancer and non-anti-cancer peptideswere loaded on iFea-
ture web server and 489 features were extracted based on AAC, CTD, DPC, PAAC,
binary, Moran, AAI, QSO, GDPC, CTF, and GAAC compositions. Secondly, we
obtained a reduced feature set of 117 features after eliminating irrelevant and redun-
dant features by using FRFS with ACO search. Thirdly, SMOTE was applied on the
imbalanced dataset with reduced feature set and optimally balanced reduced dataset
was produced. Now, the performances of various classifiers were explored with the
optimally balanced reduced dataset by using percentage split of 80:20 and tenfold
CV. Then, a comprehensive comparative experimental work was performed. Finally,
we achieved the best results by using vote-based classifier with sensitivity of 97.1%,
specificity of 99.1%, accuracy of 98.2%, MCC of 0.888, and AUC of 0.983 based
on percentage split of 80:20 validation method. Entire experimental study indicated
that results provided by our proposed approach are better than existing results till
date.
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Chapter 3
New Methods of Vagueness
and Uncertainty Quantification in Lattice
Boltzmann Method-Based Solute
Transport Model

Tushar Kanti Pal, Debabrata Datta, and R. K. Bajpai

3.1 Introduction

Mathematical models of various science and engineering problems are associated
with parameters which cannot be treated as crisp parameters because of scarcity in
data collected and heterogeneity of the material/media involved with the process.
For example, the parameters permeability, porosity, etc., of a geological material
associated with groundwater flow models are imprecise in nature. Vagueness is
another word generally used to describe data uncertainty refers to lack of definite
or sharp distinction in data collected in the form of linguistic variable from various
sources such as literatures and expert opinions [1]. The model outcomes become
highly uncertain because of imprecision and vagueness present in the data of model
parameters. These types of problems with imprecise and vague data require estima-
tion of plausible range of the model outputs. Application of uncertainty analysis is
useful for enhancing confidence in model estimates and also useful for weighting the
various model estimates. Quantification of uncertainty and vagueness is therefore an
unavoidable and inevitable component of such studies. There are generally two types
of parametric uncertainty analysis techniques: the first one is called aleatory uncer-
tainty analysis where natural variability or randomness are the source of uncertainty
in the parameters, whereas in the second one which is called epistemic uncertainty
analysis, lack of knowledge and insufficient information are the source of uncer-
tainty [2]. Traditional Monte Carlo simulation (MCS) is used to quantify aleatory
uncertainty whereas various mathematical tools, such as fuzzy sets, interval-valued
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fuzzy sets, fuzzy-valued (type-2) fuzzy sets, intuitionistic fuzzy sets, rough sets,
hybridization of rough and fuzzy sets, are used to quantify epistemic uncertainty.

Fuzzy set, proposed by Zadeh [3], is used to model non-statistical uncertainty due
to imprecise data which are spread around a most likely measured value or data with
a most likely measured value that will lie in between its minimum and maximum.
These types of impression or fuzziness of model parameters are easily represented by
fuzzy numbers [4]. Intuitionistic fuzzy set (IFS), which was introduced byAtanassov
[5, 6] as a generalized version for the existing fuzzy sets, is more efficient than
fuzzy sets in tackling vagueness and representing imperfect knowledge of model
parameters. Parametric uncertainty analysis of a mathematical model having closed
form solution is easily carried out using various techniques such as MCS, fuzzy
set, IFS theory. However, in many practical situations, it become difficult to obtain
analytical solution of a physical model which represents a nonlinear process and
also for models with complicated boundary interfaces. In such cases, application of
numerical techniques is inevitable. Simulation of migration of dissolved contami-
nants through groundwater which is widely used for environmental assessment of
a contaminated site often requires numerical techniques for solving the governing
solute transport equation. Since themedium (geological rock, soil, etc.) thoughwhich
migration of solute takes place is highly heterogeneous, deterministic solute trans-
port equation is not applicable here. In fact, the parameters of the solute transport
equation are imprecise and vague due to scarcity of experimental data and/or use
of experts’ opinion in linguistic forms. Therefore, uncertainty and vagueness anal-
ysis of the solute transport model outcomes in the form of solute concentration at a
given spatio-temporal location are invaluable for appropriate decision making with
confidence. Researchers have successfully applied traditional numerical techniques
such as finite difference method (FDM), finite element method (FEM) as well as
advanced numerical techniques such as lattice Boltzmann (LB) method, differential
quadrature method (DQM) for uncertainty analysis of solute transport model with
imprecise model parameters which are represented by fuzzy numbers [7–11]. IFS
theory has not been used to elaborate uncertainty and vagueness associated with
solute transport model with vague parameters. This may be due to lack of attempt to
construct intuitionistic fuzzy numbers for the model parameters.

In this chapter, an attempt has been made to explore LB technique [12, 13] for
numerically solving solute transport equation with fuzzy as well as vague. Here,
imprecise and vague parameters are represented by fuzzy and intuitionistic fuzzy
numbers, and LB technique is used to solve the deterministic equation obtained using
fuzzy and intuitionistic fuzzy vortex methods [14]. These newly proposed numerical
techniques are therefore named as fuzzy lattice Boltzmann (FLB) and intuitionistic
fuzzy latticeBoltzmann (IFLB)methods. The chapter presents the detailed numerical
formulation of the LB scheme to solve a governing equation with fuzzy and vague
parameters as its coefficients. The developed schemes are applied for vagueness
and uncertainty analysis of one-dimensional model of solute transport in saturated
porous media. The remaining part of the chapter is organized in the following way.
Section 3.2 presents the mathematical model of solute transport through saturated
porous media in presence of imprecise and vague model parameters. Section 3.3
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presents preliminaries of fuzzy sets and IFS including fuzzy vertex method and intu-
itionistic fuzzy vertex method used to solve the governing solute transport equation.
Details of the numerical schemes, FLB and IFLB are provided in Sect. 3.4. Construc-
tion of fuzzy and intuitionistic fuzzy numbers using experts’ opinion and develop-
ment of LB solver and use of the solver for analysis of uncertainty and vagueness of
the solute transport model output for the presence of imprecise and vague parame-
ters, hydrodynamic dispersion coefficient and groundwater velocity are reported in
Sect. 3.5.

3.2 Solute Transport Model with Imprecise and Vague
Parameters

Transport of solutes through saturated porousmedia is governed by advection disper-
sion equation (ADE). These types of models are used to compute concentration of
solute (contaminant) moving through an aquifer at a specified location away from
the point of discharge and at any given time. Here, one-dimensional form of ADE
as given in Eq. (3.1) is considered for uncertainty analysis of the estimated solute
concentration. The parameters involved with the ADE are groundwater flow velocity
andhydrodynamic dispersion coefficient. For a saturated porousmedia, the governing
1D ADE can be written as

∂C(x, t)

∂t
= DL

∂2C(x, t)

∂x2
− u

∂C(x, t)

∂x
(3.1)

whereC(x, t) is solute concentration (mg/L), u represents groundwater flow velocity
(m/day),DL stands for longitudinal hydrodynamic dispersion coefficient (m2/day), x
and t are downstream distance (m) and time of observation (days), respectively. The
above equation is subjected to following initial and boundary conditions.

C(x, t) =
⎧
⎨

⎩

0 ∀x ≥ 0 at t = 0
C0 ∀t ≥ 0 at x = 0
0 ∀t ≥ 0 at x = ∞

For the above initial and boundary conditions, closed form solution of Eq. (3.1) can
be written as [8]

C(x, t) = C0

2

[

erfc

(
x − ut√
4DLt

)

+ exp

(
ux

DL

)

erfc

(
x + ut√
4DLt

)]

(3.2)

where
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erf(β) = 2√
π

β∫

0

e−t2dt and erfc(β) = 1 − erf(β)

Here, erf(x) and erfc(x) are mathematical error function and complementary error
functions, respectively. In order to model uncertainty and vagueness associated with
the estimated concentration of solute by solving an ADE with imprecise or vague
parameters, it is required to represent the model parameters in a proper way. When
there is most likely value of the measured data and others data are around the most
probable value, triangular fuzzy number is generally used to maintain the measure-
ment uncertainty in their representation, and when the numerical data are collected
from experts, triangular intuitionistic fuzzy number is used to represent vagueness
of these measures and to incorporate uncertainty due to hesitation.

When the parameters of the 1D ADE are fuzzy variables, Eq. (3.1) can be rewrite
as

∂C̃

∂t
= D̃L

∂2C̃

∂x2
− ũ

∂C̃

∂x
(3.3)

where D̃L and ũ are two fuzzy variables representing longitudinal hydrodynamic
dispersion coefficient and groundwater flow velocity, respectively. The tilde, “~”,
sign is used to distinguish these fuzzy parameters from their classical (crisp) represen-
tation. Similarly considering vagueness of the parameters of the governing Eq. (3.1),
we can rewrite it as

∂
∼i
C

∂t
= ∼i

DL
∂2

∼i
C

∂x2
− ∼i

C
∂

∼i
C

∂x
(3.4)

where
∼i
DL and

∼i
u are two intuitionistic fuzzy variables representing longitudinal

hydrodynamic dispersion coefficient and groundwater flow velocity, respectively.
Here, the tilde sign and i, “~i” sign is used to distinguish these intuitionistic fuzzy
variables from their classical (crisp) and fuzzy representation. In order to obtain
the numerical solutions of Eqs. (3.3) and (3.4), the fuzziness and vagueness of the
model parameters need to be removed by implementing the measure in the form a
closed interval which can be represented by the α-cut values of the fuzzy numbers,

D̃L , ũ and intuitionistic fuzzy numbers,
∼i
DL ,

∼i
u . In order to complete this chapter, a

short description pertaining to the definition of a fuzzy set, intuitionistic fuzzy set
and their α-cut representations and some algebraic properties which are required for
LBM scheme presented in the subsequent paragraphs. Detailed description of fuzzy
set and intuitionistic fuzzy set can be found elsewhere in [4, 15–17].
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3.3 Preliminaries of Fuzzy Set and Intuitionistic Fuzzy Set

In this section, some basic definitions of fuzzy set and intuitionistic fuzzy set are
presented before utilizing them for solving solute transport equation with imprecise
and vague parameters.

3.3.1 Fuzzy Set

A generalized version of classical set theory, where elements of a set have binary
membership, was introduced by Zadeh in the form of fuzzy set theory [3]. A fuzzy
set is a collection of objects with graded membership value which can be any number
from 0 to 1.

A fuzzy set, Ã, drawn from the universe of discourse X, is represented as

Ã = {x, μ Ã(x)|x ∈ X}

whereμ Ã(x) is degree of membership of elements x ∈ X to a fixed set A⊂ X, defined
as μ Ã(x) : X → [0, 1]. Fuzzy set theory provides a platform to address uncertainty
caused by imprecise information. The details of fuzzy set theory can be found from
available literatures [4]. Here, only the fuzzy vertex method [14], generally used for
computing function of fuzzy variables, is highlighted in the followings.

3.3.2 Basic Concept of Intuitionistic Fuzzy Set

Intuitionistic fuzzy set (IFS) can be viewed as a generalized version of conventional
fuzzy set. The inefficiency of the later one in dealing with vague information leads
to the development of IFS theory by Atanassov [5, 6]. In fuzzy set theory, the grade
of membership of an element xi in the universe of discourse X = {x1, x2, . . . , xn}
is represented by a real value between 0 and 1, and it provides evidence for xi ∈ X
but does not say anything against xi ∈ X . The problem faced due to the phrase “not
indicating evidence against xi ∈ X” is removed by bringing intuitionistic fuzzy set

(IFS). An IFS
∼i
A defined in X is bounded by two functions, one is called membership

function, μ∼i
A
(x) and another is non-membership function ν∼i

A
(x), each possess a real

number lying between 0 and 1. Higher grade of membership and lower grade of
non-membership of x means the value of membership function is closer to unity and

value of non-membership function is closer to zero. The element x belongs to
∼i
A

is defines by μ∼i
A
(x) = 1 and ν∼i

A
(x) = 0 and does not belong to

∼i
A is defined by

μ∼i
A
(x) = 0 and ν∼i

A
(x) = 1. The intuitionistic fuzzy set

∼i
A in X, is defined as
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∼i
A = {x, μ∼i

A
(x), ν∼i

A
(x)|x ∈ X}

whereμ∼i
A
(x) and ν∼i

A
(x) are degrees ofmembership and non-membership of elements

x ∈ X to a fixed set A ⊂ X, defined as μ∼i
A
(x) : X → [0, 1] and ν∼i

A
(x) : X → [0, 1].

For every element x ∈ X, 0 ≤ μ∼i
A
(x) + ν∼i

A
(x) ≤ 1. Furthermore, we have the term

π(x) = 1 − μ∼i
A
(x) − ν∼i

A
(x) called the intuitionistic fuzzy set index or hesitation

margin of x in X. π(x) is the degree of indeterminacy of x ∈ X to the IFS A and
defined as πA(x) : X → [0, 1]. For every element x ∈ X, 0 ≤ πA(x) ≤ 1. πA(x)
expresses the lack of knowledge or uncertainty level of the element x belongs to IFS.
Therefore, the degree of membership of x in the IFS is characterized by the interval[
μ∼i

A
(x), 1 − ν∼i

A
(x)

]
. For every fuzzy set, ν∼i

A
(x) = 1−μ∼i

A
(x) and hence πA(x) = 0

which implies fuzzy sets are not able to model hesitancy in data.

3.3.3 Fuzzy Vertex Method

Fuzzy vertex method (FVM) introduced by Dong and Shah (1987) has been used by
various researchers to solve fuzzy differential equation [1–3]. In thismethod, concept
of α-cut of a fuzzy set and interval analysis for computation of fuzzy number are
used to solve the fuzzy and intuitionistic fuzzy solute transport model [1]. The α-cut
of a fuzzy set is another fuzzy set where minimummembership value of any element
is α. The α-cut of a fuzzy set Ã = {

x, μ Ã(x)
}
is defined as Ãα = {x |μ Ã(x) ≥ α}. In

FVM, the deterministic model corresponding to the fuzzy model is executed for each
lower and upper bounds obtained from the α-cut representation of a fuzzy number,
and the same step is repeated for a set of values of α. The FVM used for the present
study can be written in following algorithmic steps:

1. Construct fuzzy numbers for all the uncertain input parameters (here in this study
triangular fuzzy numbers are constructed).

2. Obtain finite number of discrete α-cut levels from the continuous range of
membership grade [0, 1].

3. Formulate the representative intervals for each fuzzy number at the specified
α-cut levels.

4. Take one end point from each of the intervals (under an α-cut level). Note that,
there are 2n combinations for n fuzzy sets.

5. Solve 2n deterministic sub-models for each lower and upper bound of the model
output function.

6. Integrate the solutions of the sub-models by max–min rule and report the final
solution for the output function at any α-cut level as [lower bound, upper bound].
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3.3.4 Fuzzy Vertex Method for IFS

The α-cut and interval analysis used in the fuzzy vertex method described in
the previous section is extended to intuitionistic fuzzy set. Here, the same tech-
niques are applied on the membership function, μ∼i

A
(x) as well as on the member-

ship function with hesitancy, 1 − ν Ãi (x). The α-cut of an intuitionistic fuzzy set
∼i
A =

{
x, μ∼i

A
(x), ν∼i

A
(x)

}
in the universe of discourse X is similar to that of fuzzy

set and mathematically represented as
∼i
A
α

= {x ∈ X |μ∼i
A
(x) ≥ α, 1 − ν∼i

A
(x) ≥ α}.

The FVM for IFS used for the present study can be written in following algorithmic
steps:

1. Construct intuitionistic fuzzy numbers for all the vague input parameters (here
in this study triangular IFNs are constructed).

2. Obtain finite number of discrete α-cut levels from the continuous range of
membership grade [0, μ] and [0, 1 − ν]

3. Formulate the representative intervals for μ∼i
A
(x) and 1 − ν∼i

A
(x) for each IFS at

the specified α-cut levels.
4. Take one end point from each of the intervals (under an α-cut level). There are 2n

combinations for μ∼i
A
(x) as well as for 1 − ν∼i

A
(x) for n IFSs and therefore total

of 2 × 2n combinations for n IFSs.
5. Solve2×2n deterministic sub-models for each lower andupper boundofmember-

ship function and membership function with hesitation margin of the model
output function.

6. Integrate the solutions of the sub-models by max–min rule and report the final
solution for the output function with and without hesitation margin at any α-cut
level as [lower bound, upper bound].

3.4 Formulation of Fuzzy and Intuitionistic Fuzzy Lattice
Boltzmann Scheme

In this section, the fuzzy lattice Boltzmann (FLB) and intuitionistic fuzzy lattice
Boltzmann (IFLB) schemes used to solveEqs. (3.3) and (3.4) numerically are derived.
Single relaxation time (SRT)-based collision term is used in the formulation of the
numerical scheme. The formulation starts with α-cut representation of fuzzy param-

eters (D̃L and ũ) and intuitionistic fuzzy parameters (
∼i
D
L
and

∼i
u ) and corresponding

α-cut representation of Eqs. (3.3) and (3.4) as given in Eq. (3.5).

∂Cα

∂t
= DLα

∂2Cα

∂x2
− uα

∂Cα

∂x
(3.5)
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Equation (3.5) is similar to the ADE as given in Eq. (3.1) with defined parame-
ters. Equation (3.5) can be solved using conventional numerical techniques such as
FEM, FDM, and FVM where the algebraic form of Eq. (3.5) is solved, whereas in
LB method, discrete velocity Boltzmann equation is solved in a discretized special
and temporal domain. In this study, the standard SRT LB scheme for mass/energy
transport equations is utilized to solve it numerically [13]. The governing equation
of standard SRT LB scheme is a discrete velocity LB equation which can be written
as [12]

fi
(�r + −→ei �t, t + �t

) = fi (�r , t) + �BGK
i (�r , t)

�BGK
i (�r , t) = 1

τ

[
f eqi (�r , t) − fi (�r , t)

]
(3.6)

where fi (�r , t) and f eqi (�r , t) represent single particle distribution function and its equi-
librium form at a spatio-temporal location (�r , t) along the discrete velocity direction−→ei , �BGK

i (�r , t) is SRT BGK collision operator along ith direction at same spatio-
temporal coordinate, �t and τ are simulation time step and relaxation coefficient,
respectively. α-cut representation of the above LB Eqs. (3.6) can be written as

fiα
(�r + −→ei �t, t + �t

) = fiα(�r , t) + �BGK
iα (�r , t)

�BGK
iα (�r , t) = 1

τ

[
f eqiα (�r , t) − fiα(�r , t)] (3.7)

The same LB Eq. (3.6) can be used to solve various kinds of physical problems,
and the form of the single particle equilibrium distribution function (EDF) decides
the type of problem being solved. Therefore, EDF has important role in solving a
physical problem using LBM. Here, the EDF is basically the truncated form of the
famous Boltzmann equilibrium distribution function which for the ADE [Eq. (3.5)]
takes the following form [18]

f eqiα (�r , t) = wiCα(�r , t)
(

1 −
−→ei .−→uxα

e2s

)

(3.8)

wherewi isweight factor for the single particle distribution function along the discrete
velocity direction −→ei and es is called “pseudo-sound speed” [18]. Based on the type
of problem being solved, lattices for LB technique are selected, for example, D1Q2
and D1Q3 lattices are generally used for 1-D equations for diffusive and advective–
diffusive type of problems, for the same types of problems in 2-D, D2Q4, D2Q5 are
used and similarly for 3-D, D3Q7, D3Q9, D3Q15 lattices are generally used. The
factor n in the symbol of a general lattice DnQm represents the dimension of the
problem and m is the number of discrete velocity directions. Schematic views of
D1Q3, D2Q5 and D3Q15 lattices are shown in Fig. 3.1a, b and c, respectively.
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Fig. 3.1 a D1Q3 lattice. b
D2Q5 lattice. c D3Q15
lattice

The macroscopic dependent variable such as particle density is calculated from
the zero-order velocity moment of the particle distribution function, and therefore,
the solution of Eq. (3.5) in the form of solute concentration is written as

Cα(�r , t) =
∑

i

fiα(�r , t) (3.9)

The following moments of the EDF are used to calculate EDF and weight factors
for the LB scheme.

∑

i

wi = 1 (3.10)
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∑

i

f eqiα (�r , t)Cα(�r , t) (3.11)

∑

i

ei x f
eq
iα (�r , t) = uxαCα(�r , t) (3.12)

∑

i

ei x eiy f
eq
iα (�r , t) = e2s Cα(�r , t)δxy (3.13)

where the Kronecker delta function, δxy is equal to 1 when x = y and equal to 0
when x �= y. The recovery of 1D ADE governing solute transport process [Eq. (3.5)]
from the LBE [Eq. (3.7)] is carried out using Chapman–Enskog multi-scale analysis
technique [18], and in this process of derivation, we get the expression

DLα = e2s

(

τ − 1

2

)

(3.14)

Equation (3.14) correlates macroscopic parameter, hydrodynamic dispersion
coefficient, with the mesoscopic parameter, relaxation coefficient. It can be observed
from Eq. (3.14) that hydrodynamic dispersion coefficient has a linear relationship
with relaxation coefficient; therefore, it is appropriate to write τα for τ when LB
Eq. (3.7) is used to simulate the same process for different α-cut values of hydro-
dynamic dispersion coefficient. Here, τα represents the relaxation coefficient corre-
sponding to a given α-cut value of hydrodynamic dispersion coefficient (DLα). From
stability point of view, it is well established that LB solutions with lattice units are
more stable than the physical units [19]. Therefore, in this study, we have used lattice
units for the developed LB scheme. Equation (3.14) can be written in lattice units as

D∗
L = e2s

(

τ − 1

2

)

(3.15)

where D∗
L is lattice hydrodynamic dispersion coefficient. The time step (�t∗) and

lattice length (�x∗) in lattice units are taken as �t∗ = 1 and �x∗ = 1. Therefore,
magnitude of lattice velocity (�e) is

−→|e| = �x∗

�t∗
= 1

The value of the “pseudo-sound speed” is es = −→|e|/√3 (valid for D1Q3, D2Q5,
D2Q9 and similar lattices [18]). Therefore, the lattice hydrodynamic dispersion
coefficient as given in Eq. (3.15) can be rewritten for a D1Q3 lattice as

D∗
L = 1

3

(

τ − 1

2

)

(3.16)
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The lattice dispersion coefficient (D∗
L ) is linked with physical hydrodynamic

dispersion coefficient (DL ) by the following equation.

D∗
L = DL

�x2
�t

(3.17)

From the above two Eqs. (3.16) and (3.17), physical time step can be written in
the following form

�t = �x2

3DL

(

τ − 1

2

)

(3.18)

For τ = 1, Eq. (3.18) can be written as

�t = �x2

6DL
(3.19)

Equation (3.19) shows that the physical time step (�t) is inversely proportional
to the hydrodynamic dispersion coefficient, and therefore, for different values of the
parameter obtained from the α-cuts, time step value (�t) will vary. In the form of
α-cuts, Eq. (3.19) can therefore be written as

�tα = �x2

6Dxα
(3.20)

There are four combinations of input parameters (hydrodynamic dispersion coef-
ficient and groundwater flow velocity), such as,

[
DLow

L , uLow
]

α
,

[
DLow

L , uHigh
]

α
,

[
DHigh

L , uLow
]

α
,
[
DHigh

L , uHigh
]

α
at each α-cut value (except α-cut = 1). Our task

here is to simulate the process of solute transport using the LBE [Eq. (3.7)] for
each combination of these input parameters. It can be observed from Eq. (3.8) that
groundwater flow velocity is associated with the EDF, and therefore, its change can
be directly incorporated into the LBE by changing the EDF accordingly. The phys-
ical hydrodynamic dispersion coefficient is not directly linked with the LBE, but
its effect can be incorporated into the LB equation by the following way; change
in hydrodynamic dispersion coefficient modifies the physical time step value via
Eq. (3.20) and physical time step value determines the numbers of iterations need to
be executed for a given simulation time. Following the standard LB algorithm, the
algorithm for the fuzzy LB equation as provided in Eq. (3.7) can be decomposed in
the following two processes [18].

Collision process

In this process, the single particles distribution function relaxes towards the local
EDF, which can be expressed mathematically as



52 T. K. Pal et al.

f ∗
iα(�r , t + �t) = fiα(�r , t) + �BGK

iα (�r , t) (3.21)

where f ∗
i (�r , t + �t) is called post-collision single particle distribution function, and

the collision operators is the same BGK collision operator as given in Eq. (3.7).

Streaming process

Streaming is basically the process of hopping of particles from one lattice location
to its nearest neighbour lattice location along the lattice velocity direction. In this
process, no algebraic operation is carried out only swapping in storage memory takes
place. The process can be written in following algorithmic form

fiα
(�r + −→ei �t, t + �t

) = f ∗
iα(�r , t + �t) (3.22)

Dirichlet, Neumann and Cauchy type boundary conditions are easily incorpo-
rated in the LB framework and a special type of boundary condition called bounce-
back boundary conditions [20] where particles reverse their velocity directions after
colliding with obstacles or boundary walls are widely used for fluid flow simulation
required for estimation of ground water flow velocity.

3.5 Vagueness and Uncertainty Analysis of Solute
Transport Model

In this section, vagueness and uncertainty analysis of the solute transport model
(STM) discussed in Sect. 3.3 is carried in three steps. In the first step, fuzzy and
intuitionistic fuzzy numbers for the input variables such as groundwater velocity
and hydrodynamic dispersion coefficient are constructed using inputs from expert
opinion. In the second step, stability analysis of the developedFLBand IFLBschemes
is carried out for a given set of fuzzy and intuitionistic fuzzy numbers. Finally, fuzzy
membership and intuitionistic fuzzy membership and non-membership functions of
solute concentration are computed using the developed FLB and IFLB schemes.

3.5.1 Generation of Fuzzy and Intuitionistic Fuzzy Number

The input data in the form of lower bound, most likely, upper bound for construction
of triangular fuzzy and intuitionistic fuzzy numbers for the solute transport model
parameters such as groundwater velocity and hydrodynamic dispersion coefficient
are collected from expert for a specific site. The initial imprecise data were in the
form of a real number a and its upper and lower uncertainties in the range of h1%
and h2%. Using these data, triangular fuzzy numbers are constructed in the form of[
a − a · h2

100 , a, a + a · h1
100

];μ with an α-cut aα = [
aα
L , a

α
U

]
. The lower and upper
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Table 3.1 Input fuzzy parameters

Parameters Lower bound Most likely Upper bound

Velocity of flow (m/day) 0.1 0.3 0.6

Hydrodynamic dispersion coefficient (m2/day) 0.8 3.0 9.0

bounds and most probable values of the imprecise parameters, ground water velocity
and hydrodynamic dispersion coefficient are as shown in Table 3.1, and their fuzzy
membership functions are as shown in Fig. 3.2a and b, respectively. Similarly, trian-
gular intuitionistic fuzzy numbers are constructed by considering degree of accep-
tance of the data for groundwater velocity and hydrodynamic dispersion coefficient
as 0.6 and 0.7 and equal degree of rejection as 0.1. So, the degree of hesitation or
degree of uncertainty is 1 − (0.6 + 0.1) = 0.3 for groundwater velocity and 1 − (0.7
+ 0.1) = 0.2 for hydrodynamic dispersion coefficient. The constructed triangular
intuitionistic fuzzy membership functions are as shown in Fig. 3.2c and d.

3.5.2 Development of LB Solver

The numerical simulation is carried out using an in-house developed LB solver in
Python programming language. For verification and validation of the LB solver, the
results are compared with the closed form solution provided in Eq. (3.2). For a given
set of crisp input parameters, hydrodynamic dispersion coefficient as 1.0 m2/day
and groundwater velocity as 0.3 m/day, the LB simulation of the solute transport
process is carried out for four different lattice sizes (2.5, 5, 10 and 20 m). The special
profiles of solute concentrations after 800 days are shown in Fig. 3.3a–d for these
four different lattice lengths, respectively. It can be observed from the results that the
stability of the LB solution dependent on lattice size. The solution becomes unstable
for a lattice length ≥ 10 m. From this study, a lattice length of 5 m was initially
selected. In the next step, the ground water flow velocity is uniformly varied from
the lower bound (0.1 m/day) to the upper bound (0.6 m/day) and hydrodynamic
dispersion coefficient is fixed at the lower limit (0.8 m2/day). Two different lattice
lengths (5 and 2.5 m) are used in this study, and the results as shown in Fig. 3.4a
and b indicate that the solution for the upper bound of velocity is unstable for a
lattice length of 5 m. It can be observed from the results shown in Fig. 3.4c that LB
solution is highly stable for all the velocity values even at a lattice length of 20 m
when the value of hydrodynamic dispersion coefficient is the upper bound value, i.e.
9.0 m2/day. All these studies can be concluded by the result shown in Fig. 3.4d where
it can be observed that stability of the LB solution is dependent on the Peclet (Pe)
number. The figure shows that for a stable LB solution, the Peclet number should be
kept below 2.0. The Peclet number 1.88 corresponds to the upper bound of velocity
and lower bound of dispersion coefficient with a lattice length of 2.5 m. Therefore,
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this value of lattice length ensures stability for all the LB solutions need to be obtained
for vagueness and uncertainty analysis.

3.5.3 LB-Based Numerical Solution

At the beginning of the LB simulation, preprocessing of the fuzzy number and intu-
itionistic fuzzy number of the hydrodynamic dispersion coefficient and groundwater
velocity is carried out to obtain α-cuts in the form of closed intervals. Then for every

Fig. 3.2 a Triangular fuzzy
velocity: α-cut
representation. b Triangular
fuzzy dispersion coefficient:
α-cut representation. c
Triangular intuitionistic
fuzzy velocity: α-cut
representation. d Triangular
intuitionistic fuzzy velocity:
α-cut representation
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Fig. 3.2 (continued)

α-cut, vertices are constructed using fuzzy vertex method. For the solute transport
model with two parameters, 22 = 4 vertices are constructed at each α-cut for the
fuzzy number and 2 × 22 = 8 vertices for IFN, where four vertices for membership
and four for non-membership function. These vertices are used as inputs for the LB
simulations. Therefore, a set of four numerical solutions of solute concentration at
any spatio-temporal location are obtained for a given α-cut. Minimum andmaximum
values of solute concentrations are then extracted from these four solutions. This step
is repeated for other values of alpha with an increment of 0.1 for estimation of lower
and upper bounds of the solute concentration. For the case of IFN, lower and upper
bounds of the solute concentration with and without hesitation margin are computed.

The domain length of 1000 m and 401 uniform grid points are used in the LB
simulation. Therefore, physical lattice length is �x = 2.5 m. In the actual LB
simulation, unit lattice units, i.e. �x∗ = 1 lbu, and �t∗ = 1 lbu as discussed in
Sect. 3.4 are considered. The time step (�t) for different values of hydrodynamic
dispersion coefficients, DLα , taken from theα-cuts, is calculated usingEq. (3.20). The
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Fig. 3.3 a Spatial profile of solute concentration after 800 days with 2.5 m lattice length. b Spatial
profile of solute concentration after 800 days with 5 m lattice length. c Spatial profile of solute
concentration after 800 days with 10 m lattice length. d Spatial profile of solute concentration after
800 days with 20 m lattice length
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Fig. 3.3 (continued)

solute concentration at source position, i.e. at x = 0 m, is taken as C0 = 100 mg/l
for any time t > 0. The LB-based numerical results are calculated in the form of
solute concentration at a spatial distance of 250 m from the source position after
600, 700, 800 and 900 days. The fuzziness of the solute concentration in the form
of fuzzy membership function and vagueness of the solute concentration in form of
membership function and non-membership function are shown in Fig. 3.5a–d. The
computation was carried out on a platform having Intel 1.2 GHz i3 processor, and
the required computation time to obtain any one of the following figures was about
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Fig. 3.4 a Velocity dependent spatial profiles of solute concentration after 600 days with 2.5 m
lattice length and lower bound of dispersion coefficient. b Velocity dependent spatial profiles of
solute concentration after 600 dayswith 5m lattice length and lower bound of dispersion coefficient.
c Velocity dependent spatial profiles of solute concentration after 600 days with 20 m lattice length
and upper bound of dispersion coefficient. d Spatial profile of solute concentration after 600 days
with different Peclet numbers
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Fig. 3.4 (continued)

50 s. Uncertainty and vagueness of solute concentration can be calculated using any
defuzzification technique generally used for fuzzy number and intuitionistic fuzzy
number [21, 22].
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Fig. 3.5 a Solute concentration at 250 m after 600 days. b Solute concentration at 250 m after
700 days. c Solute concentration at 250 m after 800 days. d Solute concentration at 250 m after
900 days
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Fig. 3.5 (continued)

3.6 Conclusions

In this chapter, advanced numerical technique such as LB method is used to develop
numerical schemes for solving solute transport equation in presence of imprecise
and vague parameters. Detailed formulation of FLB and IFLB schemes is provided
which can be used to solve other related problems. The developed schemes are
basically amalgamation of LB technique with fuzzy set and IFS. The simple collision
and streaming operations of LB algorithm which are not directly linked with the
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macroscopic parameters of the solute transport equation make the schemes very
flexible for implementation. The chapter highlighted how the required fuzzy and
intuitionistic fuzzy numbers can be generated using experts’ opinion. The stability
analysis of the LB scheme shows that the Peclet number must be kept below 2,
and therefore, corresponding lattice length can be calculated using the upper bound
of ground water velocity and lower limit of hydrodynamic dispersion coefficient.
The comparison of LB solution with corresponding closed form solution shows that
LB technique provides very accurate results when stability criterion is fulfilled. The
membership functions of the fuzzy and intuitionistic fuzzy solute concentration at a
given spatial location are constructed for four different simulation times using the
developed FLB and IFLB schemes. The computation time is very minimal about
50 s for construction of fuzzy and intuitionistic fuzzy solute concentration at given
spatio-temporal location. The solutions of the solute transport equation are presented
in the form of membership functions. The results can also be presented in crisp form
using standard defuzzification techniques.
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Chapter 4
Fuzzy Rough Set-Based Feature Selection
for Text Categorization

Ananya Gupta and Shahin Ara Begum

4.1 Introduction

With recent trends in digital revolution, accumulation of information in digital repos-
itories have grown exponentially. Tools for knowledge acquisition, recovery, storage
and maintenance must progress at an equal pace so as to combat this exponential
growth. Knowledge Discovery in Databases (KDD) is increasingly gaining popu-
larity [16, 38] as proper KDD aids in using knowledge effectively and efficiently.
Traditional process of KDD is based on manual investigation and interpretation of
data. Manual form of searching data has many limitations and thus evolved auto-
mated process of knowledge discovery. The KDD process consists of several stages
represented in Fig. 4.1 [20].

DataMining: This stage involves mining relevant information from databases based
on the domain under consideration. The choice of mining algorithm is dependent on
many factors, including but not limited to dataset source and values in it.

Interpretation/Evaluation: After knowledge discovery, it is assessed in terms of its
validity, simplicity and usefulness.

Feature selection aims at dimensionality reduction, whichmay result in significant
data loss. There are two methods of dimensionality reduction. These are the feature
selection and feature extractionmethods [8, 14, 17]. Feature selectionmethod focuses
on reducing dimensionality of original feature space by selecting feature subset
without any transformation. It preserves the physical interpretability of the selected
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Fig. 4.1 Knowledge discovery process

features as in the original space. Feature extraction methods reduce the dimension-
ality by linear transformation of the input features into a completely different space.
The linear transformation involved in feature extraction causes the features to be
altered, making their interpretation difficult. Features in the transformed space lose
their physical interpretability and their original contribution becomes difficult to
ascertain [8].

The choice of the dimensionality reduction method is completely application
specific and depends on the type of data. Feature selection is advantageous especially
as features keep their original physical meaning because no transformation of data
is made. Figure 4.2 depicts a schematic representation of data dimension reduction
methods.

Selection-based approach encompasses dimensionality reduction on the basis of
preserving semantics. The paper highlights the potential of fuzzy rough feature selec-
tion in the domain of text categorization. This paper proposes a hybrid feature selec-
tion technique called landmark-based fuzzy rough feature selection (LBFRFS) for

Dimensionality Reduction

Transformation Based Selection Based

Linear Non- Linear Feature 

Selection
Preserving semantics

Fig. 4.2 Taxonomy of dimension reduction approaches
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data dimensionality reduction of large-scale datasets such as text datasets formemory
short environments. The proposed technique (LBFRFS) hybridizes large-scale spec-
tral clustering [5] with landmark-based representation [10] with fuzzy rough set-
based feature selection and its efficiency is evaluated on three text datasets using
k-means clustering.

The remainder of the paper is organized as follows: Sects. 4.2 and 4.3 describe
the theoretical background of feature selection and fuzzy rough feature selection,
Sect. 4.4 is on related work pertaining to fuzzy rough feature selection, Sect. 4.5 is
on potential of fuzzy rough feature selection on text categorization, and Sect. 4.6
concludes the paper.

4.2 Feature Selection

Feature selection selects discriminative features from high dimensional feature space
toward dimensionality reduction, which in turn reduces the computational cost, elim-
inates redundant and irrelevant features thereby improving prediction performance.
Principle of parsimony (or Occam’s Razor) is the basis of feature selection. It aims
to enhance classification performance and produces fast and cost-effective predic-
tors. Moreover, feature selection enables simplification of classification problems
as it provides better understanding of the process that generates the data. Different
authors define relevancy of features in different ways. Almuallim and Dietterich
[3] define features to be relevant if they appear in any logical formula that defines
the target concept. Gennari et al. [18] consider features to be relevant if they affect
the conditional distribution of the labels. John et al. [25] demonstrate the notion of
strong and weak relevance. A feature (or a set of features) is said to be strongly
relevant if they cannot be replaced by a feature (or set of features), whereas a feature
is considered weakly relevant when they are useful yet can be replaced by other
feature (or set of features). The authors emphasize that relevance does not imply
optimality and conversely optimality does not imply relevance. Yu and Liu [42] in
their paper demonstrate that relevance of feature is not the absolute parameter for
feature selection.

It is hard to apply the principle of parsimony to problems involving feature selec-
tion. The selection of best features is a NP-complete problem [2]. The task of feature
selection is challenging because (i) a single feature may not appear relevant yet in
combination with other features may become highly relevant. Real-world datasets
are characterized by multiple interdependencies among its features. Consequently,
a weak association of a feature with a prediction (or classification) can enhance
prediction accuracy if complemented with other features and (ii) some of the rele-
vant features may be redundant as there can be multi-way redundancy in the feature
space. Removal of such features will reduce complexity of the prediction problem.

The subset of best features can be obtained by an exhaustive search of subsets of
features. However, an exhaustive search is practically infeasible even for a medium
sized database with n features as the number of possible outcomes is 2n . The current
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Fig. 4.3 Feature selection
process
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research trends rely on an optimal subset of features. A trade-off has to be worked
out between the quality of the feature subset generated and its computational time.

A feature selection process typically comprises four basic stages, viz., generating
subset, evaluating subset, criterion for stopping, and validation of results [12] as
shown in Fig. 4.3.

Subset Generation

Subset generation process generates the next subset for evaluation. On the basis
of a given search strategy, candidate features are produced that are subsequently
evaluated. Candidate subsets produced are compared with the previous best subset
on the basis of certain evaluation criterion. If the new subset produced is found better
than the previous one, then the new subset replaces the previous best subset.

Two issues that are of utmost importance in this stage are the search starting
points and the search strategy. There exist different generation procedures such as
the sequential, exhaustive, and random search. Sequential algorithms can be easily
implemented and are computationally fast due to their linear complexity. Features
are added or removed one at a time. In case of exhaustive search strategy, all probable
combinations of features are considered for evaluation.

However, it is practically infeasible even for small sized feature sets due to its
high complexity. Even small sized feature sets have complexity as large as O (2n),
where n denotes the cardinality of the entire set of features. In the case of random
search algorithms, search beginswith a randomly selected subset of features, towhich
feature sets are randomly inserted or deleted. Their performance degrades with large
feature sets. The generation procedure can begin with all features, no features or
with random feature subset. In the first two cases, features are removed iteratively or
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added, whereas features either are iteratively added/removed or randomly produced
thereafter in the last case [13].

Subset Evaluation

Subset evaluation evaluates the goodness of a generated subset using a given criterion
function. The value obtained by the function is compared to the previous best subset.
If the current subset has an evaluation value better than the previous value, then the
newly generated subset replaces the previous one. A subset is considered optimal
subject to a specific evaluation function (i.e., an optimal subset produced by a given
evaluation function may not be the same as the optimal subset produced by another).
Evaluation functions can be independent or dependent on the basis of the dependency
criterion of the mining algorithms.

Stopping Criteria

An appropriate stopping criterion is necessary for the feature selection process, as
otherwise it may exhaustively run through the space of subsets. The choice of the
stopping criterion relies on the generation process and evaluation functions. Stopping
criteria for a generation process can be set as a predefined number of features selected.
Alternatively, a predefined number of iterations can also be considered as stopping
criteria. For an evaluation function, the stopping criteria considered can be (i) any
further addition (or deletion) of features produces superior subset and (ii) whether
some evaluation function produces an optimal subset.

Validation

Validation does not form the core of the feature selection process. Rather, it validates
the feature subset produced by feature selection by comparing it with previously
established results on synthetic and real-world datasets.

Feature selection finds its applicability in diverse domains that deal with high
dimension data. Some of use cases of feature selection are image recognition,
bioinformatics, rule induction, and text categorization.

4.3 Fuzzy Rough Feature Selection

Feature attributes are crisp and real-valued, and herein traditional feature selectors
encounter a problem particularly in terms of information loss. Although feature
selection based on rough set theory can minimize the information loss and reveals
the data interdependencies and reduces the dimensionality of the dataset immensely
[33], yet it fails to ascertain the extent of similarity between two attribute values. For
example, two close attribute values may differ due to noise, yet, rough set theory will
consider these two values as completely different with different magnitudes. One
possible way to tackle this problem is prior discretization of the dataset. However,
this method remains inadequate, as the membership degrees of discretized values
are not taken into account. It may be the case that two attribute values correspond to
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a “negative” label, but that one value is much more negative than the other, despite
being significantly different. This certainly leads to information loss. A detailed
discussion on this aspect can be found in [29].

It is therefore evident that there exists a requirement of some method that can
accommodate data reduction of crisp real-valued datasets with measure of similarity
extent among attribute values. The concept of fuzzy set theory [27] and the process
of fuzzification provide a mechanism to assign membership values to the crisp real-
valued attributes. The vagueness in the data can be modeled by assigning values of
crisp attributes to multiple labels with variable membership degrees. This concept
of reasoning under uncertainty can be explained by fuzzy concepts.

Fuzzy rough set feature selection combines the strength of rough set theory and
fuzzy set theory. It can successfully handle the data dependencies and reduce data
dimensionality without compromising the performance of classification and clus-
tering (Chouchoulas and Shen, 2001). It can at the same time accommodate reasoning
under uncertainty by assigning membership values to real-valued crisp attributes.
Fuzzy rough set feature selection retains the most discriminative features while rest
are removed without information loss. A fuzzy rough set consists of two fuzzy sets,
a fuzzy lower and a fuzzy upper approximation, which are extensions of crisp rough
set theory notions. Traditional rough set theory considers elements to be members
with absolute certainty of lower approximation or are otherwise not members at all.
In case of fuzzy rough set theory, elements have membership in the range [0, 1],
thereby providing higher flexibility in handling uncertainty.

The following sub-section gives a detailed description of fuzzy rough set-based
feature selection. Traditional fuzzy rough set approaches are supervised feature selec-
tion techniques; however, its unsupervised variants are also available in the literature
[32].

4.3.1 Supervised Fuzzy Rough Feature Selection

Supervised fuzzy rough feature selection find reducts using evaluation metric that
are guided by the decision labels of the concerned dataset. A detail account of fuzzy
rough feature selection can be found in [15].

Let I = (
U ′, Ao

)
be an information system, where U ′ is a finite non-empty set

of objects considered as the universe and Ao represents a finite non-empty attribute
set such that a : U ′ → Va for every a ∈ Ao. The attribute a may take its value from
the set given by Va . The equivalence relation associated with any P ⊆ Ao is given
by Eq. (4.1)

IND(P) = {(x, y) ∈ U
′2 |∀a ∈ P, a(x) = a(y)} (4.1)

IND(P) generates partition denoted by U ′/IND(P) given by Eq. (4.2)
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U ′/IND(P) = ⊗{U ′/IND({a})|a ∈ P} (4.2)

where the implication of ⊗ defined for the sets Ao and Bo is given by Eq. (4.3)

Ao ⊗ Bo = {X ∩ Y |X ∈ Ao,Y ∈ Bo, X ∩ Y 	= ∅} (4.3)

If (x, y) ∈ IND(P), then it can be said that x, y are indiscernible by attributes
from P . Let X ⊆ U ′, the P-lower and P-upper approximations of X are given by
Eqs. (4.4) and (4.5), respectively.

PX = {
x ∈ U ′|[x]P ⊆ X

}
(4.4)

PX = {
x ∈ U ′|[x]P ∩ X 	= ∅}

(4.5)

〈
PX, PX

〉
forms a tuple and is called the rough set. [x]P denotes the equivalence

classes of P indiscernibility relation. The positive region is given by Eq. (4.6)

POSP(Q) =
⋃

x∈U ′
/Q

PX (4.6)

where P and Q represent set of attributes that induce equivalence relation over U ′.
All objects ofU ′ lie in the positive region and are classified intoU ′/Q classes based
on the information in P . For the set of attributes P and Q ⊂ Ao, the interdependency
between them is given by Eq. (4.7)

k = γP(Q) = |POSP(Q)|
|U ′ | (4.7)

where 0 ≤ k ≤ 1.
A minimal reduct R with respect to the initial set of attributes Ca , for a given

attribute set Da, is γR(Da) = γCa (D). For a ∈ R, R is minimal if γR−{a}(Da) 	=
γR(Da).

A detailed description of fuzzy upper and lower approximation is found in [1].
A minimum subset of features that can preserve the degree of dependency for

the whole dataset is defined as a fuzzy rough reduct which is calculated using the
QuickReduct algorithm summarized in Algorithm 1 [32].

Algorithm 1 QuickReduct Algorithm

Input: C // conditional feature set
D// decision feature set

Output: R // an optimal reduct
1: begin
2: R ← ∅ // empty reduct set
3: γbest ← 0 // best fuzzy rough dependency score set to 0.
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4:γprev ← 0 // fuzzy rough dependency score of previous reduct set to 0
5: repeat
4:T ← R
5:γprev ← γbest .
6: for each x ∈ C − R.
7: if γR∪{x}(D) > γT (D) then // evaluates fuzzy rough dependency score of
the decision features of two pairs of attribute sets

8: T ← R ∪ {x} // appends attribute x to reduct R
9: γbest (D) > γT (D).
10: R ← T .
11: until γbest = γprev // fuzzy dependency score equals for the current reduct

and
previous reduct

12: return R.

4.3.2 Unsupervised Fuzzy Rough Feature Selection

Unsupervised fuzzy rough feature selection has similarity to fuzzy supervised
approach except that the decision features of the supervised approach are replaced
by any given set of features or group of features Q. Three different measures can be
adopted to perform unsupervised feature selection based on fuzzy rough set theory.
Fuzzy rough dependency measure, fuzzy rough boundary-based measure, and fuzzy
rough discernibility measure may be employed for unsupervised fuzzy rough feature
selection.

Given P ⊆ A and Q is any given set of features or group of features, then
dependency measure between P and Q

γ
′
P(Q) =

∑
x∈U μPOSP (Q)(x)

|U | (4.8)

where P ∩ Q = ∅ and μPOSP(Q) (x) is fuzzy positive region.

μPOSRP (Q)(x) = supμRP RQZ (x) (4.9)

x ∈ U ′

RP represents the similarity relation induced by subset of features P and RP is fuzzy
lower approximation where a T transitive is used to approximate a fuzzy concept X,

RQZ is the fuzzy tolerance class or equivalence class of object z.
Most fuzzy rough feature selections use lower approximations for feature selec-

tion. The lower approximations define the certainty regions of objects membership
to a concept. Upper approximations give the uncertainty regions of an object. Hence,
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the upper approximation regions can help in discriminating between the subsets. The
fuzzy rough boundary region for fuzzy tolerance class RQZ X is given by Eq. (4.10)

μBND(P)(RQZ)(x) = μRP RQZ
(x) − μRP RQZ (x) (4.10)

The upper approximation is given by Eq. (4.11).

μRP RQZ
(x) = sup T (μRP (x, y), μRQ (y, z) (4.11)

y ∈ U ′

BNDP(x) is the boundary region of the object x . With the progress of search
of optimal subset, the boundary region membership of the object decreases till a
minimum is obtained. The total certainty of a feature P is given by Eq. (4.12)

λP(Q) = 1 −
∑

z∈U
∑

x∈U μBNDRP (RQz)(x)

|U |2 (4.12)

Classical discernibility relations can be extended to fuzzy tolerance relations
such that it represents an objects’ approximate equality. For a given combination
of features P , a value is calculated to assess how good discernibility these features
maintain relative to another subset of features Q among all objects and is given by
Eq. (4.13)

f (P, Q) = T
(
ci j (P, Q)

)

︸ ︷︷ ︸
1≤i< j≤|U |

(4.13)

with

ci j (P, Q) = I (T (μRa (xi , x j ))︸ ︷︷ ︸
), μRQ

(
xi , x j

)
(4.14)

where a ∈ P .

4.3.3 Reduction Calculation

In unsupervised feature selection, the search is conducted in the space P(Ca)×P(Ca)

so that a particular subset is compared with any other subset. To obtain the desired
reduction, the algorithm initiates with all features with a linear backward search. The
algorithm begins with all features in the dataset. Features are removed iteratively one
by one to calculate the desired measure. If the measure is unaffected by removal of
a feature, then it can be removed easily. The algorithm returns the full feature set
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in case of absence of interdependency in the dataset. The worst-case complexity
of the search is O(m), where m is the original number of features. Reduction is
achieved for by using any of γ

′
T ({x}), λT ({x}) or by fuzzy discernibility measure

given by Eq. 4.14. The algorithm employed for reduction calculation is summarized
in Algorithm 2 [32].

Algorithm 2. Unsupervised fuzzy rough feature selection

Input: X (x1, x2, . . . , xm) // a dataset with m datapoints
Output: R // an optimal reduct
1: begin
2: R ← C // assigns the entire conditional feature set

C to the reduct R
3: for each x ∈ C
4: R ← R − {x} // each feature {x} is removed from R
5: if CM(R, {x}) < 1 // calculates the combined measure

of evaluation
6: R ← R ∪ {x}
7: return R

4.4 Related Work

Research over the years has led to availability of extensive fuzzy rough feature
selection techniques. In this section, the discussion is on some select fuzzy rough
feature selection techniques across diverse application domains.

Kuncheva [26] conceptualized fuzzy rough set-based feature selection and used
it in fuzzy pattern recognition. Subsequently, pioneering work is done by Shen and
Jensen on fuzzy rough set-based feature selection methods [21–23, 36]. The concept
of dependency functions of crisp rough sets is extended to their fuzzy counterparts.
They developed the QuickReduct algorithm based on a fuzzy rough dependency
function for feature selection. A minimal reduct is calculated using the QuickReduct
algorithm. However, it has limitations as it could not exhaustively generate all the
possible feature subsets. Despite limitations, experimental results with QuickReduct
demonstrate satisfactory results, Zhao et al. [43] show that feature selection with
QuickReduct has limitations in terms of mathematical foundation and theoretical
analysis. To consolidate itsmathematical formulation and theoretical analysis, Jensen
and Shen [23, 24] propose a discernibility matrix using fuzzy for feature selection
based on improved dependency function.

Hu et al. [19] point out that the QuickReduct algorithm has a computational
complexity that exponentially increases with increase of input variables. Bhatt and
Gopal [6, 7] show that stopping criteria of QuickReduct algorithm in certain cases
led to non-convergence. Thus, they model new methods of feature selection based
on fuzzy rough set theory that have improved time and computational complexity
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for feature selection in compact computational domain. Their methods have effi-
cient termination criteria that achieves convergence on the considered datasets with
improved reliability of selected set of features.

Selection of features based on fuzzy discernibility matrix [24] resulted in an
over-reduct or under-reduct due to its stopping criteria [9, 41].

Jensen and Shen [24] in their paper highlight the efficiency of fuzzy rough set
theory in dimensionality reduction. However, they observed that it also has limita-
tions for large datasets. They have proposed three new approaches viz. fuzzy lower
approximation-based feature selection, fuzzy boundary-based feature selection, and
fuzzy discernibility-based feature selection on the basis of fuzzy similarity measures
toward feature selection based on fuzzy rough set theory. Experimental results reveal
that the methods can efficiently reduce dimensionality and simultaneously preserve
accuracy of classification.

Wang et al. [39] argue that this model of fuzzy rough feature selection based
on fuzzy rough dependency measure suffers a drawback. It is unable to maintain
the maximal dependency function. They have put forward a new fuzzy rough set
model that provides a good fit for the dataset under consideration. Moreover, it can
tackle sample classification differences thereby minimizing misclassification. Their
experimental results reveal that the proposed model is more efficient for datasets
with numerous categories having large degree of overlap.

Anaraki and Eftekhari [4] employ the concept of fuzzy lower approximation-
based feature selection (L-FRFS) to propose a new model of feature selection. It
produces smaller reducts with better classification accuracy and execution time than
L-FRFS, with respect to big datasets.

Qian et al. [34] propose a fuzzy rough feature selection accelerator called forward
approximation, which can simultaneously perform dimensionality as well as sample
reduction. The model is computationally efficient. The performance of the algorithm
based on the accelerator is noteworthy particularly in case of large datasets.

Incremental methods of fuzzy rough feature selection using dynamic data is put
forward by Yang et al. [41] using discernibility relation. Wang et al. [39] show that
fuzzy rough set-based feature selection limited to batch processing is not very cost-
effective and cannot be satisfactorily used with big datasets. Moreover, incremental
fuzzy rough feature selections are advantageous as they have the flexibility to update
knowledge from time to time.

Multi-label datasets have very high computational complexity. A fuzzy rough
feature selection method for multi-label data is put forward by Qu et al. [35]. Asso-
ciation rules between labels are developed so as to collapse the combination labels
into a sub-label set. Subsequently, the data that are relabeled are subjected to fuzzy
rough feature selection. Although, the scale of labels is reduced and label overlapping
avoided, yet it does not significantly improve the fuzzy rough feature selection.

Recently, Chen et al. [11] propose a graph theory-based fuzzy rough feature
selection method. Their model considers to search a minimal transversal path from
a hypergraph derivative. Thus, it avoids generation of hypergraph for the purpose
of feature selection. The model efficiently minimizes time complexity in finding
reducts, while dealing with large-scale datasets.
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Ni et al. [30] propose a fuzzy rough set-based incremental feature selection algo-
rithm. It reduces the data dimensionality without any domain knowledge. Experi-
ments reveal that their model produces efficient results with minimal computation
time and is found to be particularly effective in large-scale datasets. Table 4.1 summa-
rizes the developments in the fuzzy rough feature selection domain over the past few
decades.

Table 4.1 Developments in fuzzy rough feature selection

Authors Developments

Jensen and Shen [21–23] Dependency functions of crisp rough set is extended to
their fuzzy counterpart

Bhatt and Gopal [6, 7] QuickReduct algorithm in certain cases led to
non-convergence arising due to stopping criteria

Bhatt and Gopal [6, 7] Fuzzy rough set feature selection model that has improved
time and computational complexity for feature selection
in compact computational domain

Hu et al. [19] With increase of input variables, computational
complexity of QuickReduct algorithm increases
exponentially

Zhao et al. [43] QuickReduct has limitations in terms of its mathematical
basis and theoretical analysis

Chen et al. [9] and Yang et al. [41] Fuzzy discernibility matrix result in an over-reduct or
under-reduct due to its stopping criteria

Anaraki and Eftekhari [4] Concept of fuzzy lower approximation-based feature
selection (L-FRFS) is used to propose a new model of
feature selection

Qian et al. [34] Fuzzy rough feature selection accelerator called forward
approximation, which can simultaneously perform
dimensionality as well as sample reduction

Wang et al. [39] New fuzzy rough set model that provides a good fit for a
considered dataset which can tackle sample classification
differences thereby minimizing misclassification

Yang et al. [41] Incremental methods of fuzzy rough feature selection
using dynamic data using discernibility relation

Qu et al. [35] Feature selection for multi-label data using association
rules between labels using fuzzy rough set concepts

Chen et al. [11] Graph theory-based fuzzy rough feature selection method

Ni et al. [30] Fuzzy rough set-based incremental feature selection
algorithm that reduces the data dimensionality without
any domain knowledge
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4.5 Potential of Fuzzy Rough Feature Selection in Text
Categorization

The problem of assigning texts to predefined categories automatically is called text
categorization [28, 31]. With the massive accumulation of online texts in digital
libraries, text categorization is of great practical importance in extracting valuable
information from the repositories. Text categorization is often confronted with the
high dimensionality problem of the feature space. Even for a moderate collection,
the feature space consists of hundreds of thousand terms. Data mining algorithms
find it difficult to handle the prohibitively high data dimension, thereby rendering
mining tasks intractable. Therefore, it becomes necessary to retain accuracy of cate-
gorization as well as to diminish the original feature space. Yang and Pederson [40]
evaluate different feature selection techniques for text categorization problems in
crisp domains. It is observed that the considered methods can effectively remove
50–90% of the terms while retaining the categorization accuracy.

Although, the potential of fuzzy rough set-based feature selection is evident from
the reported literature in the period 2000–2020, yet feature selection in text catego-
rization using fuzzy rough set-based models remain practically unexplored. All the
reviewed literatures in Sect. 4.4 of the paper are based on diverse datasets other than
text data. Jensen [20] reports text categorization using fuzzy rough feature selec-
tion (FRFS) with acceptable degree of dimensionality reduction and satisfactory
classification. There exists immense scope of research in this domain utilizing the
concept of fuzzy rough set models. Considering the breakthrough of feature selection
using fuzzy rough sets in diverse domains, it can be anticipated that it will provide
promising results in the area of text categorization. Therefore, there exists immense
scope for researchers to make progress in the field of text categorization using fuzzy
rough set models.

Fuzzy rough set feature selection is extremely useful in dimensionality reduc-
tion. However, for large-scale datasets fuzzy rough set-based techniques are time-
consuming [11]. Most fuzzy rough set-based feature selection techniques require the
entire dataset to be loaded in the memory, which may act as constraint in memory
short environments when the dataset is too large like text datasets. One way to over-
come the problem is to reduce the data dimension beforehand usingmanifold learning
and subsequently the follow-up fuzzy rough set-based feature selection performed
on an affinity matrix of much reduced dimension.

This paper proposes a hybrid feature selection technique called landmark-based
fuzzy rough feature selection (LBFRFS) for data dimensionality reduction of large-
scale datasets such as text datasets for memory short environments. The proposed
technique (LBFRFS) hybridizes large-scale spectral clustering with landmark-based
representation [10] with fuzzy rough set-based feature selection. The idea behind it
is to construct an affinity matrix of much reduced dimension p × n, where p � n
(n is the number of datapoints) using landmark-based spectral clustering. p repre-
sents the landmark points of the original dataset and the remaining points are linear
combinations of these landmark points.
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4.5.1 Proposed Hybrid Landmark-Based Fuzzy Rough
Feature Selection (LBFRFS)

In this section, the landmark-based fuzzy rough feature selection (LBFRFS) is
proposed based on the concepts of large-scale spectral clustering with landmark-
based representation and fuzzy rough feature selection described in Sect. 4.3. Given
a dataset X = {x1, x2, . . . , xn}, be a subset of Rm with n instances and m features,
large-scale spectral clustering with landmark-based representation selects p(� n)

landmarks, the representative data points, and original data points are represented
as linear combinations of the landmark points. Large-scale spectral clustering with
landmark-based representation efficiently leads to construction of sparse affinity
matrix of much reduced dimension p × n, between the data points and landmark
points where p � n with property

W = Ẑ T Ẑ (4.15)

where W is the adjacency matrix and Z is the regression matrix that unfolds the
underlying relationship between the data points X and landmark points.

A detailed description of large-scale spectral clustering with landmark-based
representation can be found in [10]. The affinitymatrix in Eq. 4.15 is further subjected
to fuzzy rough set-based feature selection. The algorithm of the proposed LBFRFS
is summarized in Algorithm 3.

Algorithm 3. Landmark-Based Fuzzy Rough Feature Selection

Input: N data points with M variables
u the number of landmark points

Output: R the optimal reduct
1. Select the cluster centers using k-means as landmark points.
2. Compute the affinity matrix W = Ẑ T Ẑ
3. Assign W to reduct R.
4. For each x ∈ W,

5. Remove x from R.
6. Calculate the fuzzy rough dependency measure

γ
′
P(Q) =

∑
x∈U μPOSP (Q)(x)

|U |

7. If the fuzzy rough dependency measure is less than 1, then retain x in R else
remove.
8. Return R
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4.5.2 Experimental Results

In this section, the results of the experiments performed to demonstrate the effec-
tiveness of the proposed LBFRFS are presented along with the benchmark datasets
used and the performance evaluation metrics. The experimental results are evaluated
for text categorization using k-means clustering.

4.5.2.1 Dataset

Three benchmark datasets used for the experimentation. The TDT2 dataset consists
of 11,201 on-topic documents that have been classified into 96 categories. The
experimental analysis is conducted on 9394 documents that belong to the largest
30 categories. Documents that appear in multiple categories are removed. Reuters
21,578 dataset consists of 21,578 documents distributed across 135 categories. Docu-
ments belonging tomultiple categories are discarded leaving behind 8293 documents
distributed across 65 categories which are considered for experiments. The 20 News-
groups (NG) corpus is a collection of approximately 20,000 documents belonging to
different newsgroups, classified into 20 categories. 1000 documents are taken from
each group. There is a small fraction of documents that belong to more than one
category which are discarded, leaving behind 18,846 documents.

4.5.2.2 Evaluation Metrics

The experimental results evaluated on standard metrics of accuracy and normalized
mutual information.

Accuracy is defined as:

Accuracy = TP + TN

TP + TN + FP + FN

TP, TN, FP, and FN are true positives, true negatives, false positives, and false
negatives, respectively.

Normalized mutual information (NMI) is defined as:

MI = MI
(
C,C ′)

max(H(C), H(C ′))

where C represents set of cluster labels from the ground truth and C ′ represents the
set of clusters labels after clustering, respectively. H(C), H

(
C ′) are entropies of C

and C ′, respectively.
Their mutual information MI

(
C,C ′) is defined as:
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MI
(
C,C ′) =

∑

ci∈C,C ′
j∈C ′

P(Ci ,C
′
j ) log2

P
(
Ci ,C ′

j

)

P(Ci ) · P
(
C ′

j

)

where P(Ci ) and P
(
C ′

j

)
denote probabilities that documents selected arbitrarily

from the corpus belong to Ci and C ′
j , respectively, and P

(
Ci ,C ′

j

)
denote joint

probabilities that the documents selected simultaneously belong to both the clusters.
The range of MI

(
C,C ′) is from 0 to 1. MI = 0 indicates that two clusters are

independent while MI = 1, indicate that the clusters are identical.

4.5.2.3 Experiments and Analysis

Feature selection is carried out with the proposed LBFRFS over the considered
datasets. Further, the results obtained with LBFRFS are compared with the unsu-
pervised and supervised fuzzy rough feature selection techniques viz. unsupervised
fuzzy rough lower approximation-based feature selection (UFRFS), unsupervised
fuzzy boundary region-based feature selection (B-UFRFS) and unsupervised fuzzy
discernibility-based feature selection (D-UFRFS), supervised fuzzy rough lower
approximation-based feature selection (FRFS), supervised fuzzy boundary region-
based feature selection (B-FRFS), and supervised fuzzy discernibility-based feature
selection (D-FRFS). The datasets used in the experiment are labeled.However, before
using the LBFRFS, UFRFS, B-UFRFS, and D-UFRFS, the decision variables are
removed as they are unsupervised, and the approaches are applied on unlabelled data.
In case of FRFS, B-FRFS, and D-FRFS the entire dataset with decision variables is
used as they are supervised. The quality of the subset of features produced is evaluated
in terms of k-means clustering. Two separate approaches are adopted when gener-
ating the reduct for considered datasets. Firstly, a near optimal reduct is selected from
the dataset and secondly; a reduct is selected from each fold of tenfold cross valida-
tion. Subsequently, average for each fold is calculated. The reduct size produced by
the considered feature selection techniques over the benchmark datasets is depicted
in Table 4.2. Table 4.3 reports the results of the average reduct sizes produced by
above mentioned techniques, respectively, using tenfold cross validation.

Table 4.2 Reduct size obtained using the considered feature selection techniques

Dataset Features Objects FRFS B-FRFS D-FRFS UFRFS B-UFRFS D-UFRFS LBFRFS

TDT2 36,771 9394 1096 1246 1268 1437 1478 1506 1516

Reuters 18,933 8293 3160 3160 3158 4008 4015 4203 4199

20NG 26,214 18,846 3243 3242 3199 3578 3578 3596 3572
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Table 4.3 Average reduct sizes obtained from tenfold cross validation using the feature selection
techniques

Dataset Features Objects FRFS B-FRFS D-FRFS UFRFS B-UFRFS D-UFRFS LBFRFS

TDT2 36,771 9394 1096.7 1246.6 1268.1 1437.5 1478.6 1506.8 1516.3

Reuters 18,933 8293 3160.4 3160.5 3158.2 4008.4 4015.6 4203.1 4199.1

20NG 26,214 18,846 3243.2 3242.4 3199.4 3578.2 3578.5 3596.3 3572.4

It is observed that LBFRFS produces reduct whose sizes are near comparable
with those of the considered unsupervised fuzzy rough set approaches on TDT2 and
Reuters datasets. With 20NG, LBFRFS produces remarkable performance in terms
of reduct size, producing minimal reduct size compared to the unsupervised fuzzy
rough set approaches. However, the supervised fuzzy rough set feature selection
techniques have reduct size smaller than unsupervised approaches.

In order to assess the quality of reduct obtained, clustering is performed using
k-means with the reduct. To randomize the experiments, different k values (k = 5,
10, 15, 20) are considered. For a given cluster k, 30 tests are performed randomly
and their average results are noted with respect to the evaluation metric. The k-means
clustering is performed 20 times with random initial points. The best result is noted
in terms of k-means objective function. Clustering is done using the reduct obtained
by the various techniques for k = 5, 10, 15, 20, and results are depicted in Table 4.4.

Table 4.4 Clustering accuracy of the feature selection techniques using k-means clustering

Dataset k = 5

FRFS B-FRFS D-FRFS UFRFS B-UFRFS D-UFRFS LBFRFS

TDT2 79.36 7933 80.12 78.12 76.89 77.32 77.83

Reuters 81.22 80.97 81.07 81.70 81.74 80.32 82.57

20NG 80.66 81.09 80.79 81.54 82.09 82.06 82.14

k = 10

TDT2 77.66 77.32 77.49 76.88 75.93 75.37 77.39

Reuters 75.18 74.94 75.17 75.69 75.17 75.19 75.21

20NG 72.84 72.81 72.87 71.39 71.08 71.50 71.59

k = 15

TDT2 75.24 75.39 75.27 75.24 75.06 75.10 76.28

Reuters 71.36 71.38 70.19 72.03 73.05 71.29 73.46

20NG 77.33 78.53 79.29 78.18 79.44 79.61 79.66

k = 20

TDT2 77.17 77.63 76.93 76.43 75.67 76.49 77.09

Reuters 74.11 75.29 75.18 74.17 75.16 73.35 72.74

20NG 76.55 76.28 77.16 77.27 77.29 78.37 78.64
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Table 4.5 NMI of the feature selection techniques using k-means clustering

Dataset k = 5

FRFS B-FRFS D-FRFS UFRFS B-UFRFS D-UFRFS LBFRFS

TDT2 72.67 73.38 73.62 75.62 75.88 74.39 74.88

Reuters 71.72 70.97 71.67 71.70 71.44 72.22 72.17

20NG 71.86 71.89 70.99 71.74 72.69 72.76 72.79

k = 10

TDT2 70.44 70.42 70.46 70.08 70.09 70.37 70.49

Reuters 71.08 71.14 71.07 70.69 70.27 72.19 71.91

20NG 72.34 72.71 72.77 72.69 72.88 72.57 72.59

k = 15

TDT2 69.14 70.09 70.27 69.24 70.06 70.27 69.18

Reuters 70.06 70.28 70.29 71.03 69.05 68.79 71.46

20NG 68.63 68.78 69.29 68.11 69.54 69.61 69.65

k = 20

TDT2 67.76 67.63 67.32 67.83 66.79 66.97 67.09

Reuters 65.21 66.29 66.28 64.77 65.16 66.35 66.24

20NG 66.25 66.28 66.16 67.27 66.29 66.17 66.14

It is observed from Table 4.4 that LBFRFS produces best results for Reuters
and 20 NG datasets for k = 5. Also, remarkable performance is obtained with the
proposed technique on all the three considered datasets for k = 15. In the remaining
cases, LBFRFShas comparable performancewith the considered fuzzy rough feature
selection techniques. Itmust be noted here that LBFRFS is an unsupervised technique
yet produces better clustering accuracy than the supervised ones.

From Table 4.5, it is observed that the NMI measure of the clusters produces best
results for 20 NG with k = 5, for TDT2 with k = 10, for Reuters, and 20 NG for
k = 15. In all other cases, LBFRFS gives a close performance with the rest of the
techniques considered.

4.6 Conclusions

Fuzzy rough sets are powerful mathematical tools which can model data dependency
and uncertainty in data analysis. This concept has been widely applied by researchers
for feature selection and dimensionality reduction. The paper reviews the major
developments in fuzzy rough set-based feature selection over a period of twenty
years. It has been observed that fuzzy rough set-based feature selection has success-
fully been applied to various application domains. However, its applicability in the
field of text categorization remains practically unexplored. Considering its effective-
ness and efficiency in diverse fields, fuzzy rough set-based feature selection may
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be expected to perform satisfactorily in the domain of text categorization. However,
for large-scale datasets, fuzzy rough set-based techniques are time-consuming. Most
fuzzy rough set-based feature selection techniques require the entire dataset to be
loaded in the memory, which may be constrained in memory short environments
when the dataset is too large like text datasets. To overcome this problem, the paper
proposes a hybrid feature selection technique called landmark-based fuzzy rough
feature selection (LBFRFS) for dimensionality reduction of large-scale datasets such
as text datasets for memory short environments. It is observed from experimental
results and analysis the effectiveness and efficiency of LBFRFSwhen compared with
the state-of-the-art fuzzy rough feature selection techniques. As a future work, the
efficiency of the proposed LBFRFS feature selection technique can be further eval-
uated with various classifiers to assess the predictive accuracy of the feature subset
(reduct) produced over large benchmark text datasets.
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Chapter 5
An Extensive Survey on Classification
of Malaria Parasites in Patients Based
on Fuzzy Approaches

Divya Srivastava, Samya Muhuri, Shashank Sheshar Singh,
and Madhushi Verma

5.1 Introduction

Malaria is one of the world’s most significant endemic diseases. According to the
world health organization (WHO), 229millionmalaria cases were estimated in 2019,
killing another 409000 people. 94% of these cases and deaths are from the African
region [1]. The disease is caused by a parasite called Plasmodium malariae which
can be transported into the human bloodstream through a female anopheles mosquito
[2]. Four varieties of these parasites (P. malaria, P. vivax, P. falciparum, and P. ovale)
can infect humans. Each depends on the geographical and temperate condition, and
another estimated 120 species affect other animals [3].

Over time, the most popular and effective way of detecting the presence of these
parasites is to examine the human blood cells under a microscope by an expert.
Light microscopy is one of the cost-effective approaches for detecting the presence
of malaria parasites. In a simple description, the approach requires a microscopic
expert to take the blood sample of a patient, add some staining solutions to expose
the visibility of the malaria parasite, examine them under the light microscope, and
finally, interpret the results of the examination for diagnosis. However, one of the
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limitations of this approach is that it is time-consuming to comprehend malaria
parasites’ behavior fully, hence costly to train an expert for a vast country like India
[4]. Also, the success of this approach depends on the level of experience of the
expert to achieve good efficiency [5, 6].

A new approach called Rapid Diagnostic Tests (RDT) was introduced to address
these limitations. This approach tests for a malaria parasite antigen. WHO has rec-
ommended RDTs as an effective alternative approach for detecting malaria parasites
[7, 8]. As RDT does not require high expert knowledge, it is very effective in rural
areas in the unavailability of a microscopic expert.

In 2017, RDTwas responsible for the classification ofmalaria parasites in approx-
imately 47% of the malaria-endemic countries across the world [9]. The simplicity
of RDTs comes with a cost. Since four malaria parasites infect humans, four antigens
for each species will be tested and incur additional costs. RDTs are more expensive
as compared to light microscopy examination. Furthermore, RDTs do not provide
quantification of its results [10]. According to a comparative study by [11], from
the total of 1724 blood samples tested, 128 (13.3%) were false negatives. Therefore,
RDT results are not very accurate.

Polymerase chain reaction (PCR) is another approach that is considered the most
accurate compared to all the approaches discussed thus far. It is capable of detecting
the presence of malaria parasites and their species at a molecular level. However,
despite the high accuracy of this approach, its complexity has made it infeasible to
replace existing classification methods because it is time-consuming and requires
skilled experts [12].

According to [13], the requirements for any malaria-detecting approach should
consider the following: the time and cost per test, level of experience required to
process, provide quantification description of parasite stages, resistance to drugs, and
other interacting indicators. Several alternative approaches have been developed to
achieve these requirements. The automated classification approach has gained much
interest in recent times. Due to the advancement in computational systems, different
machine learning techniques have been adopted to locate parasites in an image of
blood smears [14–18]. In recent times, deep learning is considered more often in
the automated classification of malaria parasites. With the success of Alexnet [19]
in 2012, convolutional neural network (CNN) has gained interest in various image
recognition areas. Harnessing the properties of CNN to recognize malaria parasites
was first considered by [4] to differentiate infected and uninfected cells from images.
Since then, several studies have considered CNN for feature extraction in malaria
parasite recognition, like in [3, 4, 20–26].Meanwhile, training a deep learningmodel
requires an enormous amount of data to fit properly, which is not readily available
in the medical application area. Other automated classification approaches involve
different image processing approaches to segment infected parasites from the red
blood cells (RBC). These approaches include clustering [27–30], morphological
approach [31–34], contour segmentation [35–37], fuzzy systems [38, 39] , and many
more.
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5.1.1 Fuzzy Logic

Fuzzy logic takes after the human dynamic procedure and manages ambiguous and
loose data. The word fuzzy alludes to things which are not satisfactory or obscure.
Any occasion, interaction, or capacity that is changing ceaselessly cannot generally
be characterized as one or the other valid or bogus, which implies that we want to
characterize such exercises in a Fuzzy way.

5.1.1.1 Preliminaries

Fuzzy Logic: Fuzzy logic takes after the human powerful system and oversees vague
and free information. The word fuzzy insinuates things which are not agreeable or
are dark. Any event, cooperation, or limit that is changing interminably cannot by
and large be described as either legitimate or sham, which suggests that we need to
portray such practices in a Fuzzy manner.

Fuzzy Set: Fuzzy Set: A fuzzy set is a class of things with a continuum of grades of
interest. Such a set is depicted by an interest (brand name) work which allots to each
fight a grade of enlistment heading off to some place in the range of nothing and
one. The ideas of consideration, association, convergence, supplement, connection,
convexity, and so forth are reached out to such sets.

Fuzzy Numbers: A fuzzy number is a hypothesis of a standard, certifiable number as
in it does not suggest one single worth yet rather to a related arrangement of likely
characteristics, where each possible worth has its own heap some place in the scope
of 0 and 1. This weight is known as the participation work. A fuzzy number is along
these lines an uncommon instance of a curved, standardized fuzzy arrangement of
the genuine line.

Fuzzification and De-fuzzification: Fuzzification is a stage to decide howmuch infor-
mation has a place with every one of the proper fuzzy sets through the participation
capacities. De-fuzzification is the method involved with getting a solitary number
from the yield of the collected fuzzy set. It is utilized to move fuzzy derivation
results into a fresh yield. All in all, de-fuzzification is acknowledged by a dynamic
calculation that chooses the best fresh worth dependent on a fuzzy set.

5.1.2 Fuzzy Logic Application on Disease Diagnosis

In the recent era, medical diagnostic procedures are aided with technologies and
became independent of human intervention. Thus, fuzzy-based logic is mainly uti-
lized in medical diagnosis to enhance accuracy and precision. In disease diagnosis,
fuzzy systems can help us in four broad domains: physical symptoms, medical his-
tory, pathological tests, and histological investigations of the patient. Fuzzy set theory
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and fuzzy logic are highly applicable for developing knowledge-based medical diag-
nostic systems due to their precise performance in uncertainty. In [40], a fuzzy-based
decision support system is designed for diagnosing coronary artery. In another work
[41], a fuzzy-based methodology is presented for the classification of arrhythmic
and ischemic beat. A five-layer fuzzy ontology is also designed for decision support
application of diabetes [42]. The researchers have shown fuzzy systems for locating
abnormalities in bone scintigraphy [43]. In [44], the authors have shown the method
of dealing with the uncertainty of medical data using several features of fuzzy logic.

5.2 Fuzzy Logic and Fuzzy-Based Malaria Diagnosis
Framework

The fuzzy systems approach is highly considered for inspecting malaria parasites
based on anymicroscopic image of theRBC.This section discusses existing literature
that is related to the classification ofmalaria fromblood images. Fuzzification and de-
fuzzification are the two key steps for recognizing malaria parasites from the blood
samples. On the contrary, a fuzzy rule-based system can be designed to examine
malaria from the patients’ symptoms. The section will demonstrate different steps
of fuzzy rule-based diagnosis framework based on conventional and unconventional
methods.

5.2.1 Fuzzy Logic

Fuzzy logic takes after the human unique method and oversees vague and free infor-
mation. The word fuzzy insinuates things which are not palatable or are dark. Any
event, association, or limit that is changing interminably cannot for the most part be
described as either legitimate or counterfeit, which suggests that we need to portray
such practices in a Fuzzy manner.

5.2.2 Pre-processing the Data

Malaria can be recognized utilizing two types of data, which are conventional and
non-conventional. The conventional method includes examination of blood samples,
whereas non-conventional methods purely depend on observing symptoms of the
patient. As all types of medical data involve complexity and vagueness, the diagno-
sis tools need some level of decision support. Though data gathered from images and
symptoms are treated differently, data pre-processing is necessary for accurate anal-
ysis. Pre-processing steps involve data normalization, denoising, interpolation, and
registration. The processed data then passes through the fuzzy framework for disease
detection. Whereas blood image samples go through fuzzification, de-fuzzification,
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and clustering steps, several fuzzy-based rules can be developed for deciding symp-
toms of malaria.

5.2.3 Fuzzification and De-fuzzification

Fuzzification is an approach of transferring a crisp input value to a fuzzy value based
on the available information in the knowledge base. Three popular membership
functions that have been employed in the data fuzzification process are Gaussian, tri-
angular, and trapezoidal. In the de-fuzzification approach, best crisp value is selected
based on a fuzzy set for the decision-making algorithm. Next, the appropriate fea-
tures should be considered from the blood samples to detect the trace of malaria
parasites.

5.2.4 Feature Selection and Clustering

There are several features in the images that can differentiate malaria parasites
from the blood samples. As shown in [45], image exposure compensation and edge
enhancement have increased the efficiency of the approach. Afterward, fuzzy c-
means algorithm is utilized for distinguishing malaria parasites. Ghosh et al. [46]
have shown the fuzzy diversion method over entropy of the blood images to segment
the parasite. Histogram thresholding is introduced in [47] to locate infected cells. We
have shown the frequently used stages for detecting malaria parasites from images
in Fig. 5.1.

5.2.5 Malaria Parasite Classification from Blood Images

Chayadevi et al. [48] have proposed a fuzzy logic system to automatically segment
the color of the malaria parasite in digital images of a blood film. Their approach
has been used for pre-processing the image to highlight specific features like col-
ors and fractal feature. Some other approaches consist of classification of the seg-
mented malaria parasites (using either Adaptive Resonance Theory Neural Network
(ARTNN), Back Propagation Network (BPN), or SVM). The fuzzy segmentation
approach is described in different steps as follows: (a) using a suitable clustering
algorithm to perform pixel classification for a specified number of regions, (b) select-
ing the center of each region, defining their membership function, and finding their
key weight and a threshold value, and (c) iterating through all the n pixels and cal-
culating each region’s membership function for all the unclassified pixels. Finally,
the fuzzy rules have been implemented to classify each pixel and assign them to
corresponding regions.
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Fig. 5.1 Frequently used
stages in surveyed literature
for detecting malaria parasite
in microscopic digital image
of blood smear

Madhu [49] proposed a fuzzy set method to enhance edges in a microscopic dig-
ital image. The approach was sectioned into four phases; (a) grayscale conversion,
which transforms the original given image into a grayscale image, and a min-max
normalization is performed, (b) Gaussian membership functions of type II fuzzy
sets are computed, and with the help of a threshold value, the boundary of the
membership values are measured, (c) Hamacher t-conorm is introduced to com-
pute additional membership values based on lower and upper membership values,
and (d) a median filter algorithm is applied to obtain edge-enhanced microscopic
digital images, which enhances the classification of these malaria parasites. In [50],
the same author exploits the Einstein t-conorm function to compute the membership
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Table 5.1 Fuzzy-based rules for detecting malaria disease

Rule Symptoms Inference

Fever Headache Vomiting Dizziness Nausea Liver
fattiness

Weakness

1 Gentle Gentle Gentle Gentle Gentle Gentle Gentle Gentle

2 Gentle Gentle Gentle Average Average Average Acute Gentle

3 Average Gentle Average Average Average Acute Acute Average

4 Average Gentle Average Average Acute Acute Acute Average

5 Average Average Average Average Acute Acute Acute Acute

6 Acute Average Average Acute Acute Acute Very
acute

Acute

7 Acute Acute Acute Average Average Very
acute

Very
acute

Acute

8 Acute Acute Acute Acute Acute Very
acute

Very
acute

Acute

9 Very
acute

Very
acute

Very
acute

Very
acute

Acute Acute Acute Very
acute

10 Very
acute

Very
acute

Very
acute

Very
acute

Very
acute

Very
acute

Very
acute

Very
acute

function for the segmentation-infected regions in the RBC. Further implements the
inverse of the Gaussian gradient function for its final segmentation of the malaria
parasites.

Ghosh et al. [51] proposed an extension of fuzzy divergence with Yager’s measure
to segmentmalaria parasites in amicroscopic digital image. Theirmembership values
were computed using Cauchy’s membership function to measure the threshold for
the segmentation of malaria parasites in the RBC.

Adaptive Neuro-Fuzzy Inference System (ANFIS) was introduced in 1993 [52].
Rather than manually selecting a fixed membership function, it is designed to permit
adaptability and adjustment of themembership functions. Both fuzzy logic and neural
network framework have been used to achieve more accuracy [53].

Appiah [54] proposed a malaria diagnostic system using the ANFIS approach,
which uses clinical data to diagnose a patient’s malaria status. Tsegay and Anusuya
[55] also proposed a similar diagnostic system utilizing both Artificial Neural Net-
work (ANN) and fuzzy logic. All these abovementioned papers are mostly focused
on detecting the presence of malaria parasites in microscopic digital images of blood
smears using fuzzy logic (Table 5.1).

The exactness of our forecast calculation with the marked test information is
calculated by using precision and recall. A disarray lattice is displayed in Table5.2
that permits perception of the exhibition of an expectation calculation. True Positive,
and Negative, False Positive, and Negative are addressed as Trp, T Rn , Fp, and Fn ,
respectively. Reliable analytical metrics like precision, recall, F-measure, accuracy,
and specificity are formulated in Eqs. 5.1–5.4.
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Table 5.2 Confusion matrix representation

Values Real positive (+) Real negative (−)

Predicted true (+) Trp Trn
Predicted false (−) Fp Tn

Precision (Pr ) = Trp
Trp + Fp

(5.1)

Recall (Rc) = Trp
Trp + Fn

(5.2)

F-measure = 2 ∗ pr ∗ Rc

Pr + Rc
(5.3)

Accuracy = Trp + Trn
Trp + Trn + Fp + Fn

(5.4)

Specificity = Trn
Trn + Fp

(5.5)

5.3 Classification of Malaria from Non-conventional
Method

Other than the traditional blood test, several off-bit procedures have been also utilized
to identify malaria. The popular methods are quantitative buffy coat (QBC) method
[56], rapid diagnostic tests [57], ParaScreen [58], SD Bioline [59], and polymerase
chain reaction (PCR) [60]. In [61], authors have shown that both saliva and urine can
be utilized as the noninvasive sources of DNA for molecular classification of both
P. falciparum and P. vivax. Though till date, these non-conventional methods are not
fully utilized due to lack of infrastructure or less experimental data.

Medical practitioners have also emphasized the symptoms of the patients to antic-
ipate the presence of malaria. The common symptoms include fever, headache, vom-
iting, dizziness, nausea, liver fattiness, and weakness. Based only on the symptoms,
it would become very difficult to judge whether a patient is suffering frommalaria or
not. As the solution, some fuzzy rules can be formulated on the symptoms to provide
a benchmark to the decision support system as shown in [62]. In Table5.1, we have
shown some fuzzy rules based on the symptoms of malaria. The degree of truth on
the rules can be determined by calculating minimum nonzero input values based on
operators and ‘root sum square’ method. The membership function would describe
the probability of severity of a patient to be affected by malaria.
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Table 5.3 Comparison of different approaches

Method Approach Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

Comment

Oladele et al.
[63]

Combination of
neural network
and fuzzy logic

89.26 83.21 90.02 Performing
better than only
fuzzy-based
systems

Bias et al. [39] Histogram
analysis based on
fuzzy logic

90.53 84.93 90.12 Performing
better than
conventional
edge detection
methods

Preethi et al. [64] ANN and DCNN 94.85 87.14 95.10 Perform better in
noise removal

Muda et al. [65] Hybrid K-means
and median-cut

95.12 89.62 95.32 Perform better
for object
segmentation

Ghosh et al. [46] Thresholding
fuzzy divergence

95.63 90.08 95.84 Performing
better only for
some specific
stages of malaria
parasites

Here, we have discussed several methods for diagnosing malaria parasite from
conventional and non-conventional methods based on fuzzy system. As shown in
Fig. 5.2, a knowledge base can be developed by utilizing both patients’ pathologi-
cal history and symptoms. Comparison among different approaches is tabulated in
Table5.3. It is seen that most of the fuzzy-based frameworks have achieved more
than 90% accuracy. It is also observed that the proper image segmentation algorithms
always lead toward better accuracy in malaria parasite detection by the pathologists
in peripheral blood smears.

5.4 Detection of Malaria from Soft-Computing Methods

In today’s world, deep learning-based models have enhanced the efficiency of clas-
sification algorithms. In [66], a customized convolutional neural network model has
been proposed for malaria parasite detection from blood smears. A computer-aided
diagnosis framework is also developed for finding a trace of parasites from blood
images [67]. Recently, some prominent works have been proposed by utilizing the
power of neural network [68, 69]. A deep learning-based feature extraction proce-
dure is proposed in [70]. The performance of several convolutional neural networks is
depicted in [25]. For detecting malaria parasites, a data-driven approach is proposed
in [71]. A deep transfer learning framework is suggested in [72]. All these frame-



96 D. Srivastava et al.

Fig. 5.2 Fuzzy-based malaria detection framework

works have established a strong base for detecting malaria parasites mostly from
blood images mostly in unsupervised nature. Though they have not directly used the
fuzzy-based logic, the efficiency of these methods is considered as the baseline for
future research.

5.5 Conclusion and Future Research Scope

In this current manuscript, we have discussed several approaches for detection of
malaria parasites. The methods include blood sample segmentation and realizing
symptoms of the patients.Wehave considered different fuzzy-based decision-making
systems that can remove human interpretation and assist themedical practitioner. The
scope of machine learning algorithms has also been communicated that can enhance
the faithfulness of the automated medical diagnosis. Our work not only opens up the
path in medical investigation but also encourages the scientists of interdisciplinary
research areas.

The current topic has wide future perspective as fuzzy-based systems have more
capabilities than the conventional methods to determine malaria parasites. In the
future, conventional and non-conventional approaches can be blended for acquiring
better accuracy and precision. A knowledge base can be developed by utilizing both
patients’ pathological history and symptoms. Fuzzy rules can be developed from the
symptoms, whereas the fuzzy interface can be fabricated for blood image segmen-
tation. The result of both interfaces can be fused to make an automated decision.
Also, several machine learning algorithms can be maneuvered for better fidelity of
our approach.
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69. Mitrović, K., Milošević, D.: Classification of malaria-infected cells using convolutional neural
networks. In: 2021 IEEE15th International SymposiumonAppliedComputational Intelligence
and Informatics (SACI), pp. 000323–000328 (2021). IEEE

70. Raj, M., Sharma, R., Sain, D.: A deep convolutional neural network for detection of malaria
parasite in thin blood smear images. In: 2021 10th IEEE International Conference on Commu-
nication Systems and Network Technologies (CSNT), pp. 510–514 (2021). IEEE

71. Qin, B., Wu, Y., Wang, Z., Zheng, H.: Malaria cell detection using evolutionary convolutional
deep networks. In: 2019 Computing, Communications and IoT Applications (ComComAp),
pp. 333–336 (2019). IEEE

72. Var, E., Tek, F.B.: Malaria parasite detection with deep transfer learning. In: 2018 3rd Inter-
national Conference on Computer Science and Engineering (UBMK), pp. 298–302 (2018).
IEEE



Chapter 6
Application of Feature Extraction
and Feature Selection Followed
by SMOTE to Improve the Prediction
of DNA-Binding Proteins

Anoop Kumar Tiwari, Shivam Shreevastava, Neelam Kumari, Arti Malik,
and Tanmoy Som

6.1 Introduction

DNA-binding proteins (DNA-BPs) (Fig. 6.1) are defined as the proteins that perform
interaction and binding with DNA. DNA-BP acts as a key factor in the structural
composition of the DNA as well as in gene regulations [1–3]. The main functions
of the DNA-BPs can be categorized into two parts. Firstly, the DNA is organized
and constructed. Secondly, various cellular processes include transcription, DNA
recombination, replication, modification, and repair. So, they can be employed as
potential element in developing drugs for curing cancers and genetic diseases [4–6].
In recent years, DNA-binding proteins have drawn attentions of the researchers due to
their important role in different bimolecular functions [7, 8]. DNA-binding proteins
can be identified through several biological experimental techniques, such as filter
binding assays, genetic analysis, chromatin immunoprecipitation on microarrays,
X-ray crystallography, and gene analysis [9]. Detecting DNA-BPs by using exper-
imental approaches is always expensive and time-consuming as protein sequence
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data is increasing expeditiously due to advancement of next-generation technologies
for high-throughput DNA sequencing. Researchers have approximated that the tran-
scription factors number solitary can be either about 3000 or 10% out of available
protein-coding genes in the human genome. Therefore, there is a continuous require-
ment of a quick and reliable computational tool that can handle this large volume of
protein sequence data to identify DNA-BPs. Here, machine learning-assisted compu-
tational methods are always preferable as these are more quick, less expensive, and
reliable when compared to available conventional methods. However, performance
assessment of a machine learning algorithm is usually degraded due to scarcity of
appropriate pre-processing steps including extraction of instructive features, selec-
tion of relevant and/or non-redundant features, resampling for imbalanced dataset,
and choosing adequate learning algorithms.

In the case of peptide sequences with variety of lengths, feature extraction can
play a key role in designing well-performed predictors. Feature extraction process
produces a constant length of feature vectors from the different lengths of peptide
sequences that reflect the necessary correlation with the target to establish a potential

Fig. 6.1 DNA-binding
protein structure [10]



6 Application of Feature Extraction and Feature Selection Followed … 103

classifier. Feature extraction techniques can provide various characteristics of the
data points to the machine learning algorithms as it produces different interesting
representative features, which leads to improve the average performances of the
learned models.

The computational implementation of pattern recognition and other machine
learning tasks are hampered by high dimensionality of datasets. In many real-world
applications, data is constantly generated and expanded through various sources.
The most important task in the field of knowledge discovery in database (KDD) is
mining-required knowledge from real-valued datasets. A dataset consists of many
attributes but some of them are not useful for learning tasks because they mini-
mize the actual performance of algorithms and increase the complexity and hence
training and testing times. Feature selection improves classification accuracy and
prediction ability of proposed algorithms by removing inconsistent and redundant
attributes [11–13]. Themethod of choosing the most informative attributes of a given
dataset in order to minimize classification time, complexity, and cost is known as
feature selection. Feature selection attains the predetermined goal while giving the
maximum classification accuracy for test data. Areas like document classification,
computer vision, and object recognition are based upon several applications of feature
selection as it focuses on the interpretation of selected features rather than extracted
features.

Pawlak gave the idea of rough set approximations that acquires information from
the information system itself [14]. Rough set theory (RST) does not rely on prior
model conventions and handles the vagueness available in the information systems.
Its wide range of applications in the areas of decision support, data mining, infor-
mation discovery, and pattern recognition attracts researcher from various fields. To
deal with real-valued datasets, several discretization techniques are needed in order
to apply RST before feature selection which results in information loss.

To overcome this issue, Dubois and Prade combined rough set with fuzzy set
(proposed byZadeh [15]) and proposed fuzzy rough set (FRS) conceptwhich handles
both vagueness and uncertainty in an information system [16]. Researchers imple-
mented FRS theory on many real-valued datasets for feature selection and classi-
fication as this method does not require discretization [17–19]. Jensen and Shen
presented tolerance-based FRS technique for feature selection and applied their
model on various datasets for classification accuracies [20–23].

Another important issue is class imbalance, which occurs due to huge difference
among total objects related to positive and negative classes. Class imbalance has
received a lot of attention in the literature because it has a direct impact on machine
learning algorithms necessary to solve prediction problems in bioinformatics datasets
[24]. In datamining,machine learning, and pattern recognition tasks, this class imbal-
ance problem is almost universal. Class imbalanced data usually leads to perfor-
mance loss but some treatments like cost-sensitive learning, ensemble learning, and
sampling are capable to enhance prediction performance [25, 26].

In this paper, we present a new methodology to improve the prediction perfor-
mance of different learning algorithms for discriminating DNA-binding proteins and
non-DNA-binding proteins. Firstly, same informative features are extracted from
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training and testing sets. Then, redundant and irrelevant features are removed from
training sets by using fuzzy rough feature selection with harmony search [27]. Next,
same features are removed from testing sets. Training and testing sets are converted
into optimally balanced datasets using SMOTE. Now, numerous machine learning
algorithms are applied onboth training and testing sets andperformances are recorded
using percentage split of 70:30. Moreover, a schematic framework is also presented
for proposed methodology for better understanding. The results of the performed
experiment show that proposed methodology outperforms when compared to the
previously reported results [28]. Furthermore, we used the fuzzy rough attribute eval-
uator technique to rate input features. Finally, ROC curves are presented to visualize
the performances of different classifiers in a suitable way. A schematic representation
can be seen in Fig. 6.2.

Boosted Random Forest (RARF)

Feature Selec�on (FRFS with harmony search)

Feature extrac�on (AAC, DPC, NC5, 

CTD, AAI)

Aggregated Feature Vector

Data Set (PDB1075 and PDB 186)

Posi�ve class Nega�ve class 

Op�mally balanced reduced dataset using 

Fig. 6.2 Schematic framework for proposed methodology
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Table 6.1 Characteristics of the datasets and size of the reduct sets

Dataset Instances Attributes Reduct size

FRFS ReliefF

PDB 1075 1075 459 128 168

PDB 186 186 459 128 168

6.2 Materials and Methods

6.2.1 Dataset

In the current study, datasets PDB1075 and PDB186 are used for the experimental
analysis which has a wide application in the prediction of DbPs. The sequence of
proteins can be found in the international protein database: PDB (https://www.rcsb.
org/). In this paper, we consider the dataset PDB1075 (created by Liu et al. [29])
as training set and the dataset PDB186 (created by Lou et al. [30]) as independent
testing set. Table 6.1 depicts the basic details of the above two datasets.

6.2.2 Input Features

Positive and negative samples can be differentiated by different sequences of amino
acids. Various factors like composition, physicochemical properties, and selec-
tions and arrangements of amino acids are responsible for the creation of different
sequences of amino acids. The following sequence-based features are extracted by
using iFeature web server [31] for experimental analysis: AAC, DPC, NC5, CTD,
and AAI.

(i) Amino acid composition (AAC)

AAC represents the occurrences of amino acids in a given peptide normalized by
the length of the sequence. Its application can be seen widely in the field of Bioin-
formatics [32]. Here, it is of fixed length with 20 features in total. Its mathematical
formulation is given as follows:

P = [ f v1, f v2, . . . , f v20] (6.1)

where fvi = Ri/L for all i = 1, 2, 3, …, 20 is the normalized frequency of the ith
amino acid in a given peptide. Ri is the quantity of type i amino acid, and L is the
length of the sequence observed in a peptide.

https://www.rcsb.org/
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(ii) Dipeptide composition (DPC)

In a given peptide, DPC represents the composition of a residue pair which further
describes the fraction of amino acids and their order. It consists of 400 vectors and
can be formulated as follows:

P = [
f v1, f v2, . . . , f v j , . . . , f v400

]
(6.2)

where frequency of jth amino acid pair in {AA, AC, AD, …, YY} is represented by
fvj.

(iii) Binary profile (NC5)

In this feature, each amino acid is encoded as a 0/1 vector of dimension 20. N- or
C-terminus of m-Amino acids (Amino Acids of length m) can be translated for a
given peptide as follows:

BPF(m) = [b(P1), b(P2), b(P3), . . . , b(Pm)] (6.3)

where the dimension of BPF(m) is 20 × m. After taking m = 5 at both termini, we
obtainBPFN5andBPFC5.A200-dimensional feature vector is formedby combining
these two termini.

(iv) Composition-Transition-Distribution (CTD)

In this feature, C stands for composition, which signifies the composition of amino
acids, T (transition) indicates the percentage of those amino acid residues which have
certain characteristics that are followedbyother types of amino acids, and distribution
(D) calculates the length of a sequence within which 1%, 25%, 50%, 75%, and 100%
of the amino acid residues with certain characteristics are located. In CTD feature,
composition, transition, and distribution are 21, 21, and 105-dimensional feature
vector, respectively.

(v) Amino acid index (AAI)

Previously, out of 566AAIs in theAAindex database, eight high-qualityAAIs (acces-
sions LIFS790101, TSAJ990101, MAXF760101, BIOV880101, CEDJ970104,
BLAM930101, MIYS990104, and NAKH920108) were identified from 566 total
AAIs in the AAindex database by applying a clustering technique. AAI generates a
160 (=20 amino acids × 8 properties) dimensional vector, which has been widely
applied in numerous sequence-based prediction tasks [33].

6.2.3 Classification Protocol. RF Boosted

Our experiments are carried out independently using eight extensively used machine
learning algorithms that are commonly used for classification and prediction tasks on
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biological datasets. We applied boosted random forest (BRF) [34] algorithm for our
experiments and found that it is better performing algorithm as compared to other.

A BRF algorithm consists of two parts: AdaBoost and the random forest classifier
algorithm which itself consists of multiple decision trees. A decision tree builds
models similar to an actual tree. Firstly, the algorithm divides data into smaller
subsets while adding branches to the tree. The outcome of this algorithm is a tree
with decision nodes and leaf nodes. A decision node consists of two ormore branches
which represent the value of each feature tested while the leaf node holds the result
value on the patient’s prospective condition (target value). Thus, the random forest
provides the final result by averaging the results obtained from multiple trees.

6.2.4 Optimal Balancing Protocol

Estimation parameter like overall precision favors the majority class for those
datasets, which consist of imbalanced negative and positive class instances. Which
further leads to less sensitivity and higher specificity in prediction of minority class
instances. To deal with this problem, Synthetic Minority Over-sampling Technique
(SMOTE) is used in order to balance the reduced testing collection as follows. In
recent years, SMOTE has been actively studied to address class imbalance issued
[35, 36].

SMOTE: It creates synthetic instances by selecting a minority sample and its
nearest neighbors randomly as a form of over-sampling. Then, it creates an artificial
minority class instance by inserting one of the nearest neighboring minority class
instance. SMOTE samples can be classified as linear combinations of two samples
of same kind that are connected to the minority class (p and pk) and are given as
follows:

s = p + i ∗ (
pk − p

)
(6.4)

where i belongs to [0, 1] and pk is chosen at random from the five minority class
instances or samples closest to p. The default value of nearest neighbors for SMOTE
in WEKA [37] is 5.

6.2.5 Feature Selection Protocol

Similar and overlapped attributes in bioinformatics datasets affect the classification
task and increase complexity. Overlapping of interclass functions and the presence of
similar attributes are main reasons for ambiguity and indistinctness. To handle such
issues, Pawlak proposed rough set approximation based on indiscernibility relation.
Zadeh’s fuzzy set tackles ambiguity available in a real-valued dataset. Dubois and
Prade combined these two theories and presented a fuzzy rough set theory which
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can handle vagueness and indiscernibility both. It also overcomes the shortcom-
ings of rough set for not being applicable to real-valued datasets directly without
discretization, which further leads to information loss. Fuzzy rough set theory has
vast applications in decision-making and Classification problems [38]. In this paper,
we used fuzzy rough feature selection (FRFS) technique to improve the prediction
of binding proteins. Pseudocode for fuzzy rough feature selection can be given as
below:

Algorithm 1 The algorithm for FRFS is as follows:

1. Input fuzzy information system

2. Find the decision classes U ′/Q =
{
Q

1
, Q

2
, . . . , Q

k

}

3. Initialize C ′ ← {
P ′
1, P

′
2, . . . , P

′
m

}
, R′ ← ∅

4. For every P ′
i ∈ C ′ − R′,

5. For i = 1, 2, . . . ,m, compute lower approximation X ↓t P ′(x)
6. Compute positive region

PosR∪{Pi }(x)

Calculate degree of dependency =
∑

x∈U |PosR∪{Pi }(x)|
|U | , for each P ′

i ∈ C ′ − R′.
7. Compute significance SigR∪{Pi }

Pi

8. Find attribute Pt with greatest Sig
R∪{Pi }
Pi

9. While SigR∪{Pi }
Pi

> δ, C ← C − R and R ← R ∪ {Pt }
10. Return Reduct .

6.2.6 Performance Evaluation Metrics

The eight machine learning algorithms’ relative prediction output is estimated using
threshold-dependent and threshold-independent parameters. These parameters are
derived from the confusion matrix values, specifically true positives (TP), which is
the number of correctly predicted binding proteins, false negatives (FN), which is
the number of incorrectly predicted binding proteins, true negatives (TN), which
is the number of correctly predicted non-binding proteins, and false positives (FP),
which is the number of incorrectly predicted non-binding proteins. Confusion matrix
diagram is given in Fig. 6.3.

Sensitivity: It can be calculated by using ratio of true-positive (TP) value to sum of
true-positive and false-negative (FN) values and denotes the percentage of correctly
predicted binding proteins as follows:

Sensitivity = TP

(TP + FN)
× 100 (6.5)
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Fig. 6.3 Confusion matrix
[39]

Specificity: It expresses the percentage of correctly predicted non-binding proteins
and can be determined using the following formula:

Specificity = TN

(TN + FP)
× 100 (6.6)

Accuracy: This parameter denotes the percentage of correctly predicted binding and
non-binding proteins as follows:

Accuracy = (TP + TN)

(TP + FP + TN + FN)
× 100 (6.7)

AUC: This evaluation metric is robust to imbalanced nature of the proteomics
datasets. It highlights the area under curve (AUC) of a receiver operating charac-
teristics curve (ROC). It is better binding protein predictor if its value is close to 1
and worst if its value is 0. In random ranking process, it takes a value of 0.5.

Mathew’s correlation coefficient (MCC): It is widely applicable as a performance
parameter in the field of binary classification. MCC value can be calculated as
follows:

MCC = (TP × TN − FP × FN)√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(6.8)

If MCC value is 1, then it is considered as best for non-binding protein predictor.
Furthermore, we carried out all our experiments using the open-source java-based
machine learning platform WEKA.
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6.3 Experimental Analysis

In the current paper, entire experiments are conducted with PDB 1075 and PDB
186 datasets containing DNA-binding proteins, where PDB 1075 is training dataset
whereas PDB 186 is testing dataset. Firstly, 459 features are extracted by using iFea-
ture web server. Then, we apply fuzzy rough feature selection with harmony search
on PDB1075 dataset to eliminate irrelevant and redundant features. Further, the same
features are eliminated from PDB 186 dataset as well (Table 6.1). Next, the reduced
datasets (PDB 1075 and PDB 186) are converted into balanced datasets by using
SMOTE. Now, we use eight well-known and widely used classifiers, namely sequen-
tial minimization optimization (SMO), IBK, PART, JRIP, Naïve Bayes, random
forest, rotation forest, and RealAdaBoost random forest to evaluate the performances
of the classifiers for original and reduced datasets, respectively. Tables 6.2 and 6.3
represent the performances of the learning algorithms based on various evaluation
parameters for original datasets. Performances of the machine learning algorithms
over reduced datasets produced by fuzzy rough feature selectionwith harmony search
and ReliefF algorithm are recorded in Tables 6.4, 6.5, 6.6, and 6.7. From Table 6.1,
we can observe that fuzzy rough feature selection with harmony search is producing
more reduced datasets when compared to ReliefF algorithm as FRFS and ReliefF
have produced 128 and 168 features, respectively. By observing the experimental
results (Tables 6.2, 6.3, 6.4, 6.5, 6.6, and 6.7), we can conclude that feature selection
based on fuzzy rough set-based concept is more effective for the prediction of DNA-
binding protein when compared to crisp approaches such as ReliefF. For training
(PDB1075) and testing (PDB 186) datasets, boosted random forest (RARF) gener-
ates the best results when compared to other learning techniques for both original as
well as reduced datasets produced by crisp and fuzzy assisted approaches. For PDB
1075, the best results are reported by RARF with sensitivity, specificity, accuracy,
AUC, and MCC of 90.5, 91.2, 92.1, 0.899, and 0.877, respectively, as mentioned in
Table 6.4. For PDB 186, the best results are yet again produced by RARF with sensi-
tivity, specificity, accuracy, AUC, and MCC of 84.3, 82.8, 84.6, 0.569, and 0.811,
respectively, as recorded in Table 6.4. Experimental results clearly demonstrate the
supremacy of the presented methodology for the AUC of DNA-binding proteins as
the previously available literatures have reported a maximum accuracy of 86.05%
for PDB 1075 and 75.30 for PDB 186 while our approach has provided a maximum
accuracy of 92.1 for PDB 1075 and 84.6% for PDB 186. ROC is a convenient way
to visualize the performance of all eight learning algorithms. Figures 6.4 and 6.5 are
a plot of ROC for reduced PDB 1075 and PDB 186 datasets.

All the experiments are performed using percentage split of 70:30 and tenfold
cross validation. Extraction of features was initially done with iFeature server, while
other experiments, such as feature selection, classification, and visualization, were
performed inWeka 3.8 on hardware platformwith Intel(R) Core(TM) i5-8265UCPU
@ 1.60 GHz, 1.80 GHz with 8.00 GB RAM.



6 Application of Feature Extraction and Feature Selection Followed … 111

Table 6.2 Performance evaluation metrics of learning algorithms with original PDB1075 dataset
using percentage split of 70:30

Learning algorithm Sensitivity Specificity Accuracy MCC AUC

IBK 58.6 54.7 56.5 0.132 0.566

Naïve Bayes 55.9 74.7 65.8 0.312 0.722

JRip 69.1 66.5 67.7 0.355 0.685

Rotation forest 71.7 74.1 73.0 0.459 0.791

Random forest 75.0 70.6 72.7 0.455 0.797

SMO 74.3 62.4 68.0 0.368 0.683

RARF 79.8 78.6 79.5 0.502 0.811

PART 59.9 60.0 59.9 0.198 0.622

Table 6.3 Performance evaluation metrics of learning algorithms with original PDB186 dataset
using percentage split of 70:30

Learning algorithm Sensitivity Specificity Accuracy MCC AUC

IBK 76.7 23.1 51.8 0.003 0.499

Naïve Bayes 63.3 65.4 64.3 0.286 0.630

JRip 50.0 65.4 57.1 0.155 0.558

Rotation forest 70.0 30.8 51.8 0.008 0.613

Random forest 70.0 69.2 69.6 0.392 0.772

SMO 60.0 69.2 64.3 0.292 0.646

RARF 73.3 72.5 75.6 0.488 0.763

PART 53.3 65.4 58.9 0.188 0.588

Table 6.4 Performance evaluation metrics of learning algorithms with optimally balanced reduced
PDB1075 dataset produced by FRFS using percentage split of 70:30

Learning algorithm Sensitivity Specificity Accuracy MCC AUC

IBK 65.6 64.4 69.5 0.228 0.566

Naïve Bayes 68.9 74.7 72.7 0.445 0.722

JRip 74.7 69.8 72.7 0.446 0.685

Rotation forest 78.8 79.5 80.4 0.566 0.822

Random forest 86.8 84.8 88.2 0.622 0.819

SMO 82.9 83.7 78.9 0.466 0.721

RARF 90.5 91.2 92.1 0.877 0.899

PART 69.5 68.2 69.2 0.211 0.655
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Table 6.5 Performance evaluation metrics of learning algorithms with optimally balanced reduced
PDB186 dataset produced by FRFS using percentage split of 70:30

IBK Sensitivity Specificity Accuracy MCC AUC

IBK 70.3 56.5 68.9 0.211 0.511

Naïve Bayes 69.8 68.6 66.9 0.286 0.630

JRip 62.1 68.9 71.1 0.298 0.558

Rotation forest 70.0 62.9 72.1 0.312 0.615

Random forest 79.8 78.8 81.9 0.511 0.792

SMO 72.1 73.5 74.7 0.421 0.646

RARF 84.3 82.8 84.6 0.569 0.811

PART 65.9 68.2 70.8 0.455 0.615

Table 6.6 Performance evaluation metrics of learning algorithms with optimally balanced reduced
PDB1075 dataset produced by ReliefF using percentage split of 70:30

Learning algorithm Sensitivity Specificity Accuracy MCC AUC

IBK 60.6 59.7 64.5 0.298 0.598

Naïve Bayes 68.9 69.5 70.3 0.511 0.698

JRip 72.1 70.8 74.5 0.556 0.721

Rotation forest 77.4 78.9 79.5 0.611 0.798

Random forest 83.4 81.2 82.6 0.599 0.711

SMO 78.8 79.2 75.5 0.511 0.723

RARF 86.2 88.7 86.8 0.777 0.866

PART 72.4 70.33 74.5 0.321 0.711

Table 6.7 Performance evaluation metrics of learning algorithms with optimally balanced reduced
PDB186 dataset produced by ReliefF [28] using percentage split of 70:30

IBK Sensitivity Specificity Accuracy MCC AUC

IBK 72.1 64.8 71.2 0.345 0.611

Naïve Bayes 72.9 71.8 69.8 0.412 0.711

JRip 65.5 70.2 72.4 0.398 0.655

Rotation forest 68.9 66.8 69.5 0.299 0.566

Random forest 75.4 77.8 78.2 0.612 0.792

SMO 73.2 70.8 70.9 0.511 0.698

RARF 80.3 81.2 81.9 0.566 0.829

PART 70.3 69.5 70.2 0.459 0.609
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Fig. 6.4 AUC of different machine learning algorithms for reduced PDB1075 dataset produced
FRFS

Fig. 6.5 AUC of different machine learning algorithms for reduced PDB186 dataset produced
FRFS
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6.4 Conclusion

In this paper, we have presented a new methodology to enhance the discriminating
ability of numerous classifiers for DNA-binding proteins and non-DNA-binding
proteins from optimally balanced reduced training and testing sets based on FRFS
technique followed by SMOTE. Firstly, informative features such as AAC, DPC,
NC5, CTD, and AAI were chosen from the training and testing sets. Secondly, we
selected relevant and non-redundant features from training sets (PDB 1075). Thirdly,
same features were chosen from testing sets (PDB 186). Training and testing sets
were balanced optimally by using SMOTE. Next, performance of different classi-
fiers was explored over training and testing sets. Finally, we obtain the best results
by using boosted random forest (RARF) with percentage split of 70:30 validation
over optimally balanced reduced PDB 1075 dataset with sensitivity, specificity, accu-
racy, MCC, and AUC of 90.5, 91.2, 92.1, 0.877, and 0.899, respectively. Compre-
hensive experiments clarify that our proposed methodology is better than previous
approaches. From the entire results, we notice that average performances of artificial
intelligencemodels in differentiatingDNA-binding proteins from non-DNA-binding
proteins can be enhanced by using feature extraction, feature selection with fuzzy
rough set-based technique with harmony search followed by SMOTE, and selection
of suitable learning model.
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Chapter 7
Perspectives of Soft Computing
in Multiscale Modeling for Fluid Flow
Systems

Debabrata Datta and Tushar Kanti Pal

7.1 Introduction

In a modeling scheme, when several models structured at more than one scales are
required to describe a complex system wherein physics also changes as per models,
we call that kind of modeling as multiscale modeling [1]. Multiscale modeling in
physical and biological sciences is focused toward the computation of material prop-
erties on one level based on multilevel information. Particular approaches are used
to describe the system at each level. Multiscale modeling plays an important role in
computational materials engineering. Scales which generally considered as multi-
scale are microscale, mesoscale and macroscale. In general, there exists a substantial
amount of nonlinearity in fluid dynamics and due to this, nonlinearity complex inter-
actions exist among multiscales. Multiscale transport phenomena take birth from the
nonlinearity of the fluid mechanical problems.

In order to carry out the modeling of a multiscale systems with its uncertain
parameters, decision-makers take the route of soft computing where fuzzy set is
used to address the uncertainty of the system. It is worth to remember that in multi-
scale modeling, both the spatial and temporal scales are taken into account [1].
It is one kind of fusion of decision theory and mathematics at multiscale giving
birth to a field known as multiscale decision-making. In the field of meteorology,
multiscale modeling refers to the interaction between weather systems of different
spatial and temporal scales. Lattice Boltzmann method (LBM) is one kind of multi-
scale modeling applied to investigate flow of fluid through any microchannel where
macroscale Navier–Stokes equation fails [2].

D. Datta (B)
Department of Information Technology, Heritage Institute of Technology, Kolkata, India
e-mail: debabrata.datta@heritageit.edu

T. K. Pal
Technology Development Division, Bhabha Atomic Research Centre, Mumbai, India

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
T. Som et al. (eds.), Fuzzy, Rough and Intuitionistic Fuzzy Set Approaches
for Data Handling, Forum for Interdisciplinary Mathematics,
https://doi.org/10.1007/978-981-19-8566-9_7

117

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-8566-9_7&domain=pdf
mailto:debabrata.datta@heritageit.edu
https://doi.org/10.1007/978-981-19-8566-9_7


118 D. Datta and T. K. Pal

Computational fluid dynamics (CFD) play a major role in multiscale modeling.
Soft computing approach of handling uncertainty of parameters of a multiscale
system using fuzzy set theory to turn the multiscale system by using fuzzy set theory
converts multiscale modeling as intelligent system, because soft computing provides
a machine learning technique within multiscale system while addressing the uncer-
tainty of the system. Modeling turbulence by CFD in multiscale is a challenging
task. The challenges are valid for both numerical and physical. Literature reviews of
multiscale modeling pertaining to industrial applications or domain of physics using
soft computing approach can be found elsewhere in [1–5]. One of the key challenges
is the simulation of physical processes across a range of scales from the macro
to microscales. Navier–Stokes equations describe macroscale-based physics prob-
lems and thus accessible to conventional CFD simulation [2]. However, inmicroscale
similar problems, the continuumapproximation no longer holds. Problems pertaining
to microscale, we need to solve corresponding kinetic equations. Therefore, many
systems use a holistic approach of aggregation of different simulation across a range
of scales, which is known as multiscale approach.

It is also necessary to investigate the parameters associated with the governing
equations of the problem. Very often, governing equations are numerically solved
using conventionalCFDapproachwith deterministic value of those parameterswhich
address the characteristics of the flow of fluid. However, deterministic values of the
representative parameters of the governing system of equations are biased and very
often, they are uncertain due to insufficiency of the experimental determinations.
In order to face this difficulty of this deterministic values, it is required to address
the uncertainty scheme of those parameters which can be probabilistic as well as
possibilistic [3]. Possibilistic approach of addressing uncertainty of physical param-
eters of fluid flow problem is preferred compared to probabilistic approach because
of less sample size of relevant experiments. Possibilistic approach may also call as
soft computing. This chapter will explore the soft computing approach of multiscale
modeling for fluid mechanical system. Fuzzy set theoretical method will address the
uncertainty of the relevant parameters in the form of an alpha cut which is basically
an interval. So, the said computational strategy will be applied to define the uncer-
tainty of the system in terms of a range [4]. The basic purpose of this chapter is
to demonstrate the multiscale modeling embedded with soft computing to address
the uncertainty of fluid flow. Remaining part of this chapter is designed into this
way. An overview of soft computing is described in Sect. 7.2. The concept of multi-
scale modeling is described in Sect. 7.3. Multiscale modeling is carried out using
lattice Boltzmannmethod (LBM). Hence, Sect. 7.4 presents the mathematical details
of LBM. Section 7.5 presents a fusion of soft computing and multiscale modeling
presenting that a new scheme of computation, where LBM is fused with fuzzy set
theoretic approach of soft computing. Results of few case studies of the fusion of soft
computing and multiscale modeling are also presented in Sect. 7.5. Conclusion of
the chapter is described in Sect. 7.6, wherein we have highlighted the lessons learned
by soft computing approach in modeling multiscale problems.



7 Perspectives of Soft Computing in Multiscale Modeling for Fluid Flow… 119

7.2 Overview of Soft Computing

Mathematical modeling can be done for relatively simple systems. Complex systems
that arise in flow of fluid throughmicrostructures (e.g., flow of blood in human body),
in biology, in medicine and many other management systems cannot be addressed by
conventional mathematical models and analytical methods [5]. Soft computing on
one hand facilitates to quantify epistemic uncertainty associated with an engineering
system (e.g., uncertainty of hydrologicalmodeling, uncertainty of any civil structures,
etc.) and on the other hand, soft computing provides machine learning that can
automate the system to built as smart system (e.g., fuzzy logic control-based washing
machine, fuzzy logic-based air conditionedmachine, etc.). Machine learning (ML) is
rapidly progressing in the field of bioscience includingmedical science.ML explores
the methodology of learning from data by computer like a human. As such, it is a
multidisciplinary subject that combines statistics, physics, computer science and
mathematics [5].

The interpretation of data appropriately provides the success rate of ML approach
to solve a problem. For example, a recent success story of ML in cancer diagnostic
has shown that it is possible to classify skin cancer into either malignant or benign
using photographic images from smartphones.

7.2.1 Why We Do Soft Computing?

Mathematicalmodel and analysis can be done for relatively simple systems. Complex
systems that arise in flow of fluid through microstructures (e.g., flow of blood in
human body), in biology, in medicine and many other management systems cannot
be addressed by conventional mathematical models and analytical methods [5]. Soft
computing on one hand facilitates to quantify epistemic uncertainty associated with
an engineering system (e.g., uncertainty of hydrologicalmodeling, uncertainty of any
civil structures, etc.) and on the other hand, soft computing providesmachine learning
that can automate the system to built as smart system (e.g., fuzzy logic control-based
washingmachine, fuzzy logic-based air conditionedmachine, etc.).Machine learning
(ML) is rapidly progressing in the field of bioscience including medical science. ML
explores the methodology of learning from data by computer like a human. As such,
it is a multidisciplinary subject that combines statistics, physics, computer science
and mathematics [5]. The interpretation of data appropriately provides the success
rate of ML approach to solve a problem. For example, a recent success story of ML
in cancer diagnostic has shown that it is possible to classify skin cancer into either
malignant or benign using photographic images from smartphones.
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7.3 Multiscale Modeling

Traditional approaches of mathematical or numerical modeling focus only on one
scale. The scale of a problem here we means micro, meso and macro. In general,
engineering problems are solved traditionally at macroscale. But, very often, prob-
lems are required to investigate by atomistic scale because of the composite materials
involved in the problem. Modeling of a problem using atomistic scale is known as
microscalemodeling. For example,molecular dynamics-based problemand quantum
mechanics-based problem need the construction of the Hamiltonian (total energy) of
the system, which is based on microscale. In this context, Dirac had stated that it is
very difficult to implement quantum mechanical-based problem in practical sense.
In order to remove this difficulty as well as to retain the macroscale property of
the material properties, one needs one more scale known as mesoscale which will
bridge the gap between microscale and macroscale. Therefore, multiscale modeling
is defined as that modeling in which all these scales are involved to some extent.
In multiscale modeling, governing constitutive equations are dependent on micro,
meso and macrophysics of the material properties of the system. In general, multi-
scale models are solved numerically. Hence, numerical methods for capturing macro
characteristics of the complex systems with microscopic models are to be redefined.
Multiscale modeling is categorized into two classes, viz. (a) sequential multiscale
modeling and (b) concurrent multiscale modeling. In the case of sequential multi-
scale modeling, precomputed details of the constitutive relations using microscale
models are used in macroscale models [5]. In concurrent multiscale modeling, as an
example, molecular dynamics approach (microscale method) is coupled to extended
finite element method (XFEM), which is a macroscale modeling. This implies that
concurrent multiscale modeling is a suitable modeling for solving three-dimensional
crack problems in which dislocations are computed at atomistic levels and overall
model is numerically solved using XFEM.

We need a new mathematical/numerical approach for embedding soft computing
in multiscale modeling through machine learning algorithms. By machine learning
algorithm, we can deal multiscale data for use in multiscale modeling. Multiscale
data refers to complex signal that may come from functions, curves and images and
we require to decompose multiscale data using either Fourier or wavelet decomposi-
tion. Medical images always contain various textures (e.g., edge of the images) that
require multiscale methods; however, data pertaining to these textures at different
scales are ambiguous (not detectable perfectly) and hence they are treated using
fuzzy set theory, wherein soft computing plays major role in this type of embedded
multiscale modeling. Machine learning incorporated with physics-based simulation
can immediately benefit frommultiscalemodeling toward the generation of synthetic
data which can further use to learn the scale of data [6].

Multiscale modeling with multiscale data (change of physics) can be also found
in differential equations:
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(a) Multiscale modeling with multiscale data in differential equation

Propagation of wave packet as the initial solution u(x, 0) = Const(x)eiζ (x)/τ of the
wave equation ∂2

t u = �u, is a multiscale problem because solution depends on the
two scales, such as envelope of the wave packet and scale of the wavelength, τ. In
the field of mechanics of composite materials, as per elasticity theory, modeling of
material property, stress tensor, ∇.τ = 0 and λ(∇.u)I + μ

(∇u + (∇u)T
)
depends

on the heterogeneity of lame’s constants that implies two scale rather two phase
problem.

(b) Multiscale modeling with multiphysics solution

The flow of non-Newtonian fluid, for example, blood in the cardiovascular system
possesses multiphysics solution because the cardiovascular system changes contin-
ually to fulfill the demands of the organisms in the diseased and healthy states.
Researchers have also investigated that the elastodynamic contraction of the heart is
also an example of multiscale multiphysics solution due to the variability of spatial
patterns of inherent heterogeneity. The governing equations describing the flow of
highly viscous non-Newtonian fluid are nonlinear and highly coupled, and based on
multiphysics that is ruled by laws of thermodynamics and fluidity of the system. A
fluid can be either Newtonian or non-Newtonian and accordingly laws of physics
change justifying that the system possess multiscale multiphysics solution. Multi-
scale modeling can forecast the behavior of a medical system at different length
and temporal scale that involves chemical, physiological, biological and biomedical
systems.

Traditional method of modeling such system is inefficient because we know that
such kind of problem is formulated mathematically by Navier–Stokes’ equation
which addresses the macroscale property of the fluid. But the fluid property of blood
depends on the microscale so without intervening microscale property into Navier–
Stokes’ equation, it is not possible to obtain any biologically meaningful solution.
The difficulty of this situation lies on the complexity of mathematics. As per Paul
Dirac, we can quote “the underlying physical laws necessary for the mathematical
theory of a large part of physics and the whole of chemistry are thus completely
known, and the difficulty is only that the exact application of these laws leads to
equations much too complicated to be soluble.” With a view to the deficiency of
traditional modeling of many real-life problem such as fluid flow through microp-
orous system for modeling medical images, neutron transport through diffusion for
modeling dynamics of nuclear reactor is solved by implementing lattice Boltzmann
method (LBM) which is known as multiscale modeling and based on the mesoscopic
scale. Therefore, it is mandatory to describe the mathematical and numerical details
of classical (traditional) LBM.
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7.4 Mathematical Structure of Classical LBM

The lattice Boltzmann is a mesoscopic scale modeling that bridges the gap between
microscopic scale andmacroscopic scale by taking into consideration of an ensemble
of particles as a unit with the behavior of each particle. The system is as shown in
Fig. 7.1. The ensemble of particles in themesoscopic scale is evolved by a distribution
function which acts as a representative for collection of particles.

In LBM, we enjoy the advantage of both macroscopic and microscopic characters
of the system, with manageable computer resources [6]. LBM is based on Boltzmann
transport equation, and in this section, we present its mathematical formulation.

7.4.1 Formulation of Boltzmann Transport Equation

Let f (r, c, t) represents the number ofmolecules (particles) at time t, having position
coordinates ranged between r and r + dr with a velocity lying between c and c + dc.
Let F represents the force which is applied on the system represented by f (r, c, t)
and the application of force F will disturb the order of the molecules. Basically, the
molecules (particles) of the system will collide with each other. This situation can
be described as a balanced system between number of molecules after collision and

Fig. 7.1 Techniques of simulation
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the same before collision. Mathematically, we can write this balanced situation as

No. of molecules after collision − no. of molecules before collision

= net no of molecules

f (r + cdt, c + Fdt, t + dt)drdc − f (r, c, t)drdc = �( f )drdcdt (7.1)

Dividing both sides of Eq. (7.1) by dt, we have

d f

dt
= �( f ) (7.2)

Since f = f (r, c, t), we can write

d f = ∂ f

∂r
dr + ∂ f

∂c
dc + ∂ f

∂t
dt (7.3)

d f

dt
= ∂ f

∂r
c + F

m

∂ f

∂c
+ ∂ f

∂t
= �( f ) (7.4)

In absence of external force F, we can write Eq. (7.4) as

D f

dt
= c

∂ f

∂r
+ ∂ f

∂t
= �( f ) (7.5)

Now, finally, in general (in three-dimension form), we can write Eq. (7.5) as

∂ f

∂t
+ c∇ f = �( f ) (7.6)

Equation (7.6) is known as Boltzmann transport equation without external force
F. In Eq. (7.6), c and ∇ f are vectors. The main issue of Eq. (7.6) is that it is an
integro-differential equation and difficult to solve. The macroscale properties of a
fluidmechanical system are governed by fluid density ρ, velocity vector of the fluid, �u
and internal energy, e. Hence, using macroscopic scale, we can write these properties
as

ρ(r, t) =
∫

m f (r, c, t)dc (7.7a)

ρ(r, t)u(r, t) =
∫

mcf (r, c, t)dc (7.7b)

ρ(r, t)e(r, t) = 1

2

∫
mu2a f (r, c, t)dc (7.7c)
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where m signifies the molecular mass and uα represents the velocity of the particle
in the direction of α, velocity relative to the fluid velocity as uα = c − u. By using
laws of the kinetic theory of gas, we can write the energy as, e = 3

2m kBT .
Now, in Eq. (7.6),�(f ) is called as collision operator, and using Bhatnagar-Gross-

Krook (BGK) formalism [6], collision operator can be written as

�( f ) = ω( f eq − f ) = 1

τ
( f eq − f ) (7.8)

where ω is known as collision frequency and τ is known as relaxation factor. The
local equilibrium distribution function, f eq, is obtained from Maxwell–Boltzmann
distribution. Substitution of collision operator, �, from Eq. (7.8) into Eq. (7.6), we
can write the final form of Boltzmann transport equation as

∂ f

∂t
+ c∇ f = 1

τ
( f eq − f ) (7.9)

Equation (7.9) is finally discretized using a numerical scheme into a specific
direction (lattice point) to transform the Boltzmann transport equation into its lattice
mode, named as lattice Boltzmann equation and this is written as

∂ fi
∂t

+ ci∇ fi = 1

τ

(
f eqi − fi

)
(7.10)

We replace Navier–Stokes equation used in computational fluid dynamics (CFD)
simulation by Eq. (7.10), which is defined as the engine of the LBM.

7.4.2 Arrangements of Lattice Structure

The generalized structure of lattice is expressed as DnQm, where n represents the
dimension of the problem in hands (n = 1 for 1D, n = 2 for 2D, n = 3 for 3D) and
m refers to the speed model, number of linkages. The lattice structures taken into
account for any problem are shown in Fig. 7.2.

The lattice structure signifies that the central node is connected with its neigh-
boring node. Hence, we define lattice speed as a specified speed due to which the
linkage of the neighboring nodes takes place with the stream of fictitious particles

Fig. 7.2 Lattice structure
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evolved from the central node. A few of the lattice structures generally used in the
computation of LBM is presented in Sect. 7.4.2.1.

7.4.2.1 Lattice Structure D1Q3 and D1Q2

The computation schema of LBM method depends on the lattice structure. For
example, the lattice structure D1Q3 represents one dimension problem and three
velocity vectors (c0, c1 and c2) for f 0, f 1 and f 2 which equal to 0, 1 and −1, respec-
tively. For the convenience of computation, we assume spatial incremental step dx
is equal to the temporal increment step dt. Otherwise, we can write c1 = �x/�t and
c2 = �x/�t; where �x and �t are the length linkage and corresponding time step,
respectively. In this arrangement, physics guides us that the total number of fictitious
particles at any instant of time will be always within the number of particles used
in the structure (here, in D1Q3, it is three particles). The central particle is the fixed
particle which has zero velocity. During streaming, the other two particles move
either to the left or to the right node. The weighting factors ωi in D1Q3 structure
have values of 4/6, 1/6 and 1/6 for f 0, f 1and f 2, respectively. The speed of sound,
cs, in lattice units for D1Q3 is 1/

√
3. In a similar way, the lattice structure D1Q2

signifies one dimension system and two lattice points. The weighting factors ωi have
values of 1/2 and 1/2 for f 1 and f 2, respectively. The speed of sound in this structure
is 1/

√
2. In the computation, we can consider more than one dimension as well as

more lattice points such as, D1Q5, D2Q9 and D3Q15.

7.4.2.2 Weighting Factors of Lattice Structure D1Q5

In this lattice structure, as per the hypothesis, the total number of fictitious particles
at any instant of time cannot exceed five particles. The weighting factors, ωi , are
6/12, 2/12, 2/12, 1/12 and 1/12 for f 0, f 1, f 2, f 3 and f 4, respectively. The speed of
sound in lattice units is 1/

√
3.

7.4.2.3 Weighting Factors of Two-Dimensional Lattice Structure D2Q9

The LBM model with the lattice structure D2Q9 has high velocity vectors, with the
central particle speed being zero, 2.5. The speeds are c(0, 0), c(1, 0), c(0, 1), c(1,
0), c(0, 1), c(1, 1), c(1, 1), c(1, 1) and c(1, 1) for f 0, f 1, f 2, f 3, f 4, f 5, f 6, f 7 and f 8,
respectively. The weighting factors for corresponding distribution functions are 4/9,
1/9, 1/9, 1/9, 1/9, 1/36, 1/36, 1/36 and 1/36. A lattice structure of D2Q9 is as shown
in Fig. 7.3.
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Fig. 7.3 D2Q9 lattice
structure

7.4.2.4 Multiscale Modeling with LBM—A Case Study

Lattice Boltzmann model of groundwater flow as a multiscale modeling is presented
here. Parent equation to describe the physical process is known as advection–diffu-
sion. Governing equation for this study is written as

∂C

∂t
+ ∂(uiC)

∂xi
= ∂

∂xi

(
Di

∂C

∂xi

)
(7.11)

where c represents the concentration, t signifies the time, Di signifies the dispersion
coefficient in ith direction, ui represents the fluid velocity and xi is the Cartesian
coordinate in the ith direction. It is required to solve the model governed by the
equation as shown, and to solve the above equation at pore scale by lattice Boltzmann
method, we treat the concentration of species as a distribution function which obeys
the Boltzmann equation given below

fα(x + eα�t, t + �t) − fα(x, t) = −1

τ

(
fα − f eqα

)
(7.12)

where fα presents the distribution function of particles, f eqα signifies the local equi-
librium distribution function, �t as the time step, eα as the vector of the particle
speed, τ as the single relaxation time and x presents the space vector for the used
Cartesian coordinate system. We can write the expression of concentration C as

C(x, t) =
∑

α

fα(x, t) (7.13)

The equilibrium distribution function is evaluated with the following constraints
on f eqα as

∑

α

f eqα = C (7.14a)

∑

α

eαi f
eq
α = uiC (7.14b)



7 Perspectives of Soft Computing in Multiscale Modeling for Fluid Flow… 127

∑

α

eαi eα j f
eq
α = λi exeyCδi j =

{
λxexeyC, i = j = x
λyexeyC, i = j = y

(7.14c)

We can evaluate f eqα based on the constraints (Eqs. 7.14a, 7.14b and 7.14c).
Chapman–Enskog expansion of distribution function can be applied to recover advec-
tion–diffusion equation. By doing this algebraic operation, we get parameters of
equilibrium distribution function (λs) in terms of macroscopic parameter (diffusion
coefficient, Di ) which can be written as

�t <

(
τ − 1

2

)
�x2�y2

Dx�y2 + Dy�x2
(7.15)

It is known that the advection–diffusion process is a process where both advection
and diffusion take place simultaneously. Let us consider a problem of concentration
of pollutant in an aquatic medium (river or lake) or a drop of ink in a porous medium
such as parchment paper. The concentration of pollutant or ink drop diffuses with the
corresponding streammoves away from the source. The physics involved in this case
is known as advection–diffusion and the defined problem is said to be a transport
problem.

Let us consider one-dimensional advection–diffusion equation in Cartesian
coordinate system as,

∂θ

∂t
+ u

∂θ

∂x
= α

∂2θ

∂x2
(7.16)

where the symbols have usual significances (u signifies the velocity of flow and α

signifies the diffusion coefficient). The LBM form of advection–diffusion problem
can be written as

fk(x + �x, t + �t) = fk(x, t)[1 − ω] + ω f eqk (x, t) (7.17)

f eqk = wkθ(x, t)

[
1 + ck .�u

c2s

]
(7.18)

ck = �x

�t
i + �y

�t
j (7.19)

The speed of sound cs for lattice structure D1Q2, D2Q4 and D3Q6 for ck = 1 is
estimated as

Cs = 1√
2

and the same for lattice structure D1Q3, D2Q5, D2Q9 and D3Q15 is
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Fig. 7.4 Comparison of LBM and finite difference outcome of ADE

Cs = 1√
2

The outcome of the lattice Boltzmann method-based multiscale modeling of the
advection–diffusion problem is shown in Fig. 7.4. The result is compared with the
finite difference solution of the same.

7.4.3 Soft Computing in Multiscale Modeling

Multiscale models contain parameters which play role in scaling of the system,
but those parameters are basically uncertain due to their imprecision or ambiguity.
Uncertainty of multiscale models can be quantified by implementing the uncertainty
of those parameters of multiscale models. Soft computing plays the role for quan-
tifying uncertainty of the governing parameters associated with multiscale model.
Fuzzy set theoretic approach is used to address the uncertainty (epistemic uncer-
tainty) and here in this case, we have used triangular fuzzy number for expressing
the membership function of the uncertain fuzzy parameters of the multiscale model
under investigation. Very often, one can apply machine learning algorithm to learn
the temporal uncertainty of multiscale model with soft computing. For example, we
can have fuzzy autoregressive integrated moving average (f-ARIMA), fuzzy deep
learning, etc. Nowadays, multiscale simulations in the field of biology, medical
science and other branches of engineering sciences, search to infer the uncertain
dynamical behavior of the system. Machine learning can apply for soft computing
and multiscale modeling can proceed with the outcome of the machine learning
guided soft computing. We can also implement soft computing by Dempster–Shafer
evidence theory (possibilistic computation) where we can choose the most feasible
uncertain parameters among many on the basis of rank and that kind of method
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Fig. 7.5 Soft computing embedded multiscale modeling and machine learning

is known as multi criteria decision-making method (MCDM). Robustness, effi-
ciency, sensitivity, specificity of multiscale modeling with soft computing depends
on machine learning tools. It is known that integration of fuzzy data from different
resources can be made using Bayesian learning to build predictive simulation tools
in multiscale modeling. Figure 7.5 presents the integration of machine learning and
soft computing embedded multiscale modeling. Details of multiscale modeling with
soft computing can be found elsewhere in [7].

7.5 Fusion of Soft Computing and Multiscale Modeling

Multiscalemodeling of fluid flowanalysis is carried out by latticeBoltzmannmethod,
in which soft computing plays the role of quantification of uncertainty of the fluid
flow model such as solute transport through geological medium. Uncertainty of the
parameters of the fluid flow model is categorized as epistemic uncertainty due to
their imprecision (less sample size for their experimental determination) and hence
the modeling is modified using fuzzy set theoretic concept of soft computing. We
have proposed a perspective of fuzzy set theory-based lattice Boltzmann method
and our approach generates a new dimension of lattice Boltzmann known as “Fuzzy
LatticeBoltzmann” (FLB).Wehave solved solute transport through geologicalmedia
using FLB which on one hand exhibits a multiscale modeling and on the other hand
estimates the uncertainty (epistemic or knowledge uncertainty) associated with the
system. In fact, parameters of the governing equation of solute transport problem
are assessed using alpha cut value of fuzzy parameters of the governing equation
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(Eq. 7.12)

∂(θC)

∂t
= ∂

∂x j

(
ϑDa

∂C

∂x j

)
− ∂

(
uajC

)

∂x j
(7.20)

where j= x, y and z for Cartesian coordinate system and Einstein summation conven-
tion rule is utilized, C represents concentration of solute in groundwater, ϑ signifies
the porosity, Da signifies apparent diffusion coefficient, uaj representsDarcy velocity
of groundwater along the direction j. On the basis of valid assumptions for a homo-
geneous formation of rock mass and for a suitable time frame shorter than geological
time scale (order of a few million years), simplified form of Eq. (7.20) can be written
as

∂C

∂t
= Da

∂2C

∂x2j
− u j

∂C

∂x j
(7.21)

where u j = uaj/ϑ is pore water velocity. Finally, governing equation of solute
transport in FLB mode can be shaped as

∂C̃

∂t
= D̃x

∂2C̃

∂x2
− ũx

∂C̃

∂x
(7.22)

where symbols have usual significances. Definition and corresponding fuzzy arith-
metic are skipped here as they can be found elsewhere in [7]. However, for the sake
of its completeness, a short description pertaining to its membership function and
corresponding α-cut representation with some algebraic properties as required for
fuzzy LBM scheme is described in short.

7.5.1 Definition of Fuzzy Set

A fuzzy set is defined as a pair of two numbers, such as

Ã = {(
x, μ Ã(x)

)|x ∈ R, μ Ã(x) ∈ [0, 1]
}

where μ Ã(x) represents the membership function of the crisp value x. The shape of
themembership function can be a continuous function such as triangular, trapezoidal,
Gaussian and sigmoidal. If the membership function is convex, bounded and normal,
then the corresponding fuzzy set is labeled as fuzzy number such as triangular fuzzy
number, trapezoidal fuzzy number, Gaussian fuzzy number and sigmoidal fuzzy
number. The detail of the arithmetic operation of two such fuzzy numbers is found
elsewhere in [8]. Basically, alpha cut of a fuzzy number is defined as an interval on
real number scale and one can use that interval for further operation as required in
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multiscale modeling through soft computing. In that sense, it is required to define
alpha cut of a fuzzy number and we have defined that in Sect. 7.5.2.

7.5.2 Alpha (α)-Cut and Algebraic Properties of Fuzzy
Number

Alpha (α)-cut of a fuzzy set is defined as the set of crisp values whose membership
values are greater than or equal to alpha. The shape of the triangular membership
function of a fuzzy set is given by

μ(x) =

⎧
⎪⎨

⎪⎩

xL−a
b−a , a ≤ xL ≤ b
c−xR
c−b , b ≤ xR ≤ c
0 otherwise

(7.23)

Now, using Eq. (7.23), alpha cut representation of a fuzzy number with respect to
its triangular membership function μ(x) can be written as

Aα = [xα
L , x

α
R] = [a + (b − a)α, c − (c − b)α] (7.24)

7.5.3 Mathematical Structure of Fuzzy Lattice Boltzmann
Scheme

Governing equation of solute transport (advection–diffusion equation) in the frame-
work of alpha cut representation of fuzzy parameters (diffusion coefficient D̃x , flow
velocity ũx ) can be written as

∂Cα

∂t
= Dxα

∂2Cα

∂x2
− uxα

∂Cα

∂x
(7.25)

Wehave solvedEq. (7.25) numerically using standard single relaxation time (SRT)
of LB scheme. Accordingly, standard SRT mode of discrete velocity LB equation
can be written as

fi
(�r + −→ei �t, t + �t

) = fi (�r , t) + �BGK
i (�r , t) (7.26)

�BGK
i (�r , t) = 1

τ

[
f eqi (�r , t) − fi (�r , t)

]
(7.27)
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where fi (�r , t) is particle distribution function at spatiotemporal coordinate (�r , t)
along ith direction, −→ei represents particle velocity along ith direction, �BGK

i (�r , t) is
BGK collision operator [9] along ith direction at same spatiotemporal coordinate,
�t is time step, α is relaxation coefficient and f eqi (�r , t) is particle equilibrium distri-
bution function along ith direction. α-cut representation of Eqs. (7.18) and (7.19)
can be written as

fiα
(�r + −→ei �t, t + �t

) = fiα(�r , t) + �BGK
iα (�r , t) (7.28)

�BGK
iα (�r , t) = 1

τ

[
f eqiα (�r , t) − fiα(�r , t)] (7.29)

where the particle equilibrium distribution function for an ADE can be written as

f eqiα (�r , t) = wiCα(�r , t)
(
1 −

−→ei .−→uxα

e2s

)
(7.30)

Here, in Eq. (7.30), wi are the weights for particle’s distribution function along ith
direction and es is “pseudo-sound speed” [9]. Lattice structures such as D1Q2 and
D1Q3 for 1D, D2Q4 and D2Q5 are for 2D and D3Q15 for 3D are used to solve
Eqs. (7.28), (7.29) and (7.30). Figure 7.6 presents the lattice structure D3Q15.

Owing to the macroscopic particle density as the zero order velocity moment of
distribution function, concentration of solute in terms of discrete particle distribution
function can be expressed as

Cα(�r , t) =
∑

i

fiα(�r , t) (7.31)

Equilibrium distribution function and weight factors defined in Eq. (7.23) satisfy
the following properties

Fig. 7.6 Lattice structure
D3Q15
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∑

i

wi = 1 (7.32)

∑

i

f eqiα (�r , t) = Cα(�r , t) (7.33)

∑

i

ei x f
eq
iα (�r , t) = uxαCα(�r , t) (7.34)

∑

i

ei x eiy f
eq
iα (�r , t) = e2s Cα(�r , t)δxy (7.35)

where δxy is the Dirac delta function, which is equal to 1 when x = y and equal to 0
when x �= y. Assuming that time step (�t) is small and equal to ε (i.e., �t = ε), and
using multiscale Chapman–Enskog expansion [9] technique Eqs. (7.28) and (7.29)
can be rewritten as

fiα
(�r + −→ei ε, t + ε

) = fiα(�r , t) + 1

τ

[
f eqiα (�r , t) − fiα(�r , t)] (7.36)

fiα = f (0)
iα +

∞∑

n=1

εn f (n)
iα = f (0)

iα + ε f (1)
iα + ε2 f (2)

iα + ϑ
(
ε3

)
(7.37)

Taylor series expansion of the left-hand side of Eq. (7.29) with respect to time
and space around point (�r , t) can be generalized as

∞∑

n=1

εn

n!
(

∂

∂t
+ ei j

∂

∂x j

)n

fiα(�r , t) = 1

τ

[
f eqiα (�r , t) − fiα(�r , t)] (7.38)

or,
∞∑

n=1

εn

n!
(

∂

∂t
+ ei j

∂

∂x j

)n(
f (0)
iα + ε f (1)

iα + ε2 f (2)
iα + ϑ

(
ε3

))

= 1

τ

[
f eqiα −

(
f (0)
iα + ε f (1)

iα + ε2 f (2)
iα + ϑ

(
ε3

))]
(7.39)

Grouping terms of the same order in ε yield the following successive approxima-
tions [9]

O
(
ε0

) : f eqiα = f (0)
iα (7.40)

O
(
ε1

) :
(

∂

∂t
+ ei j

∂

∂x j

)
f (0)
iα = −1

τ
f (1)
iα (7.41)

O
(
ε2

) :
(

∂

∂t
+ ei j

∂

∂x j

)
f (1)
iα + 1

2

(
∂

∂t
+ ei j

∂

∂x j

)2

f (0)
iα = −1

τ
f (2)
iα (7.42)
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we have now
(
1 − 1

2τ

)(
∂

∂t
+ ei j

∂

∂x j

)
f (1)
iα = −1

τ
f (2)
iα (7.43)

Adding Eq. (7.33) with ε × Eq. (7.35), we have

(
∂

∂t
+ ei j

∂

∂x j

)
f (0)
iα + ε

(
1 − 1

2τ

)(
∂

∂t
+ ei j

∂

∂x j

)
f (1)
iα = −1

τ

(
f (1)
iα + ε f (2)

iα

)

(7.44)

Using the properties of distribution function, following constraints on fluctuating
parts of the distribution function can be imposed and accordingly we obtain

∑

i

f (k)
iα (�r , t) = 0, k = 1, 2, 3, . . . (7.45)

And

∂

∂t

∑

i

f (k)
iα = 0, k = 1, 2, 3, . . . (7.46)

From Eq. (7.38), we obtain

∂

∂t

∑

i

f (0)
iα + ∂

∂x j

∑

i

ei j f
(0)
iα − τ

(
1 − 1

2τ

)
∂

∂x j

∑

i

ei j
∂ f (0)

iα

∂t

− τ

(
1 − 1

2τ

)
∂

∂x j

∑

i

ei j eik
∂ f (0)

iα

∂xk
= 0 (7.47)

The term containing time derivative of equilibrium distribution function is smaller
compared to the other three terms and hence, it can be omitted and can be treated
as error term. Using the properties of equilibrium distribution function, the above
equation (Eq. 7.39) can be written as

∂Cα

∂t
+ ∂

(
u jαCα

)

∂x j
−

(
τ − 1

2

)
∂

∂x j

(
e2s

∂Cα

∂x j

)
= 0 (7.48)

Equation (7.40) can be rearranged as

∂Cα

∂t
= ∂

∂x j

(
D

∂Cα

∂x j

)
− ∂

(
u jαCα

)

∂x j
(7.49)

where
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D = e2s

(
τ − 1

2

)
(7.50)

Since LB solutions are more stable in lattice unit compared to physical unit, we
have solved LBE in lattice unit. In lattice unit, Eq. (7.42) can be written as

D∗ = e2s

(
τ − 1

2

)
(7.51)

where D∗
x is the lattice diffusion coefficient. For unit lattice time step �t∗ = 1 and

unit lattice spatial step = 1, lattice velocity e = dx∗/�t∗ = 1 and es = e/
√
3 (valid

for D1Q3, D2Q5, D2Q9). Substituting these values in Eq. (7.43), we obtain the value
of lattice diffusion coefficient as

D∗ = 1

3

(
τ − 1

2

)
(7.52)

The relation between lattice diffusion coefficient and physical diffusion coefficient
is

D∗
x = Dx

�x2
�t

(7.53)

We further obtain the expression for physical time step as

�t = �x2

3Dx

(
τ − 1

2

)
(7.54)

For τ = 1, Eq. (7.46) can be written as

�t = �x2

6Dx
(7.55)

Equation (7.47) shows that corresponding to each α-cut value of diffusion coef-
ficient, we have different time step value (�t) and hence, Eq. (7.47) can be written
as

�tα = �x2

6Dxα
(7.56)

By using alpha (α)-cut representative values (except α-cut = 1) of system param-
eters, we have four combinations of diffusion coefficient and groundwater velocity,
such as, [DxLow, uxLow]α ,

[
DxLow, uxHigh

]
α
,

[
DxHigh, uxLow

]
α
,

[
DxHigh, uxHigh

]
α
.

LBM in fuzzy mode is solved using each combination of input parameters. Basi-
cally, various combinations are used as per fuzzy vertex theory [8]. Collision and
streaming operations of the system are depicted as:
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Collision process [10]

In collision process, particles distribution function relaxes toward local equilibrium
distribution function and it can be described by the following equation

f ∗
iα(�r , t + �t) = fiα(�r , t) + �BGK

iα (�r , t) (7.57)

where symbols have usual significances.

Streaming process [10]

In this process, particles move from one lattice point to nearest lattice point along
the direction of the lattice velocity. Computationally, this process is just memory
swapping and algorithmically, it can be written as

fiα
(�r + −→ei �t, t + �t

) = f ∗
iα(�r , t + �t) (7.58)

Additional bounce-back boundary conditions [11–13] are imposed at obstacle
sites and along boundary walls at which particles reverse its direction after collision
with obstacles or boundary walls. Mathematically, bounce-back algorithm [11–13]
for a D1Q3 lattice can be written as

f(i±1)α(�r + ei�t, t + �t) = fiα(�r + ei�t, t + �t) (7.59)

where + sign for i = 1 and − sign for i = 2.

7.5.4 Uncertainty Analysis

Uncertainty of concentration of solute is mainly due to the imprecision in measure-
ments of the solute diffusion coefficient and groundwater flow velocity and accord-
ingly, the α-cut representation of the solute concentration has been computed using
single relaxation time LB scheme in presence of the fuzziness of the solute diffu-
sion coefficient and groundwater flow velocity [14–16]. The membership function
of the solute concentration results as a generalized triangular fuzzy number. Analyt-
ical solution of the governing solute transport equation with following initial and
boundary conditions

C̃(x, t) = 0, x = ±∞ (7.60)

can be written as

C̃ = C0√
4π D̃x t

exp

(
− (x − ũx t)

2

4D̃x t

)
(7.61)
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The uncertainty of solute concentration is compared that of outcome from
Author’s fuzzy LB numerical scheme. Uncertainty output in both the cases is
expressed in terms of the α-cut representation as lower and upper bound for any
specified α-cut. The degree of uncertainty [17] of solute concentration is given by

�C |α =
[
CU − CL

CU + CL

]

α

(7.62)

where CL and CU are the alpha cut representation of lower and upper bound of the
solute concentration.

7.5.5 Results and Discussion

Input parameters for testing the soft computing method (Fuzzy LBM) of multiscale
modeling of fluid flow analysis are as follows:

Initial concentration of effluent of a particular chemical is taken into account as
1 kg/m3 and is discharged as a point source at downstream distance, x = 10 m in a
channel of length L = 400 m. The fuzziness of the model parameters are expressed
as triangular fuzzy number because the imprecision result is around the most likely
value (experimental measured mean).

Accordingly, the triangular fuzzy number of the solute diffusion coeffi-
cient, D̃x (m2/s) = 〈0.010, 0.014, 0.017〉, and velocity of water ũx (m/s) =
〈0.01, 0.012, 0.014〉.

The problem with deterministic values of diffusion coefficient and water velocity
has been solved using LBM by Zhou [8]. Membership function of diffusion coeffi-
cient and velocity for various α-cut values are given in tabular from in Table 7.1 and
in graphical form in Fig. 7.7a, b, respectively.

Uncertainty in solute concentration is expressed in terms of a closed interval
bounded by lower and upper value of solute concentration. The simulation is carried
out using lattice unit, i.e., dx l = dyl = 1 lbu, and dt l = 1 lbu to achieve numerical
stability. Corresponding spatial step lengths are taken as, dx = dy = 1 and time step
for each α-cut is calculated using Eq. (7.47). In order to test the stability of the LB
scheme [18–20] with the step lengths dx, dy and dt as mentioned, numerical calcu-
lation of spatial profile of solute concentration with most likely value of the model
parameters has been carried out and the results are compared with corresponding
analytical results. The comparison of numerical and analytical solutions is shown
graphically in Fig. 7.8 and tabulated in Table 7.2.

Thenumerical calculation of the upper and lower boundof the solute concentration
for a specific time and at each length of the domain results the fuzziness of the solute
concentration. The fuzziness of the solute concentration [21, 22] at lengths, x =
125 m, 140 m, and 150 m for specific time (t = 10,000 s) is represented in terms
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Table 7.1 Member values of diffusion coefficient and groundwater velocity at various α-cut font
sizes of headings

α-cut value Diffusion coefficient (m2/s) Groundwater velocity (m/s)

Lover value Upper value Lover value Upper value

0 0.01 0.017 0.01 0.014

0.1 0.0104 0.0167 0.0102 0.0138

0.2 0.0108 0.0164 0.0104 0.0136

0.3 0.0112 0.0161 0.0106 0.0134

0.4 0.0116 0.0158 0.0108 0.0132

0.5 0.012 0.0155 0.011 0.013

0.6 0.0124 0.0152 0.0112 0.0128

0.7 0.0128 0.0149 0.0114 0.0126

0.8 0.0132 0.0146 0.0116 0.0124

0.9 0.0136 0.0143 0.0118 0.0122

1.0 0.014 0.0120

of the membership function of solute concentration and the results are shown in
Fig. 7.9a–c.

Finally, spatial profiles of solute concentration using four different combinations
of fuzzy input parameters at any α-cut of 0.8 and 0.5 are computed for a total time of
simulation (t = 10,000 s) and corresponding results are presented in Figs. 7.10a, b
and 7.11, respectively. Lower and upper concentrations of solute at each spatial point
for the sameα-cut value and total simulation time are extracted from the four different
spatial profiles. Spatial profiles of lower and upper bound of solute concentration are
shown in Fig. 7.12, for α-cut value of 0.5, respectively. It can be observed from these
figures that transport of solute results an uncertainty of solute concentration due to
the fuzziness of the model parameters. The uncertainty increases with decrease of
α-cut value which is an obvious fact because lower the α-cut value higher is the
fuzziness in the input parameters. Comparison between analytical model and Fuzzy
LBM model-based uncertainty [22] is shown graphically in Fig. 7.13 and a good
agreement between the two results is established.

7.6 Conclusions

Multiscale modeling of fluid flow (solute transport) is explained using lattice Boltz-
mann method. Only single relaxation time (SRT) has been used to solve trans-
port equation that is advection–dispersion equation (ADE) using fuzziness of the
governing parameters such as parameters representing diffusion coefficient and
ground water velocity. Fuzzy set theory of soft computing plays an important role
to present the uncertainty of the model parameters of the system. Fuzziness of the
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Fig. 7.7 a Triangular membership function of diffusion coefficient. b Triangular membership
function of groundwater velocity

governing parameters is described by triangular fuzzy number because the imprecise
measurement is interpreted as around mean. Explicit representation of that impre-
cise measurement is written as [mean −c, mean +c] where c signifies as tolerance
limits (95% confidence level). Uncertainty of the problem under consideration using
soft computing approach is categorized as epistemic uncertainty. Lattice Boltzmann
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Fig. 7.8 Spatial concentration profile (numerical and analytical) of solute with most likely values
of model parameters

Table 7.2 Member values of concentration at distance 150 m and time 10,000 s

Membership value LBM solution of concentration at
100 m

Analytical Solution of
concentration at 100 m

Lover value Upper value Lover value Upper value

0 0.004757 0.015940 0.030839 0.030839

0.1 0.006748 0.018532 0.029597 0.029597

0.2 0.008994 0.020848 0.027902 0.027902

0.3 0.011389 0.022781 0.025906 0.025906

0.4 0.013810 0.024258 0.023739 0.023739

0.5 0.015889 0.025243 0.021505 0.021505

0.6 0.017561 0.025732 0.019284 0.019284

0.7 0.019210 0.025746 0.017138 0.017138

0.8 0.020754 0.025334 0.015108 0.015108

0.9 0.022224 0.024552 0.013313 0.013313

1.0 0.023469 0.004488

method of solving fuzzy solute transport is achieved in multiscale modeling. It can
be stated that Fuzzy LBM is effective and accurate for not only solving the advec-
tion–dispersion equation with uncertainty in terms of the fuzziness of the governing
parameters but also provides a tool for developing a fuzzy inference system using
Mamdani implication [8].
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Fig. 7.9 a Membership function of solute concentration at length 125 m. b Membership function
of solute concentration at length 140 m
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Fig. 7.10 aMembership function of solute concentration versus length of channel. bMembership
function of solute concentration at various length
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Fig. 7.11 Length profile of membership function of concentration of solute

Fig. 7.12 Length-wise variation of membership function of concentration of solute
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Fig. 7.13 Analytical and lattice Boltzmann method-based membership function of concentration
of solute
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Chapter 8
Various Generalizations of Fuzzy Sets
in the Context of Soft Computing
and Decision-Making

Jacob John Sunil

8.1 Preliminaries

Fuzzy sets and logic, which was put forward in 1965 by Zadeh [1] as an alternative
to the traditional concepts of classical sets and Aristotelian bi-valued logic, have
many applications going up to the leading edge of artificial intelligence and cloud
computing. But still, there is room for developments in theoretical as well as practical
scenarios for this relatively new concept. This certainly gives a value addition to
formal mathematics as a whole.

Apart from the traditional approaches of naive and axiomaticways, another trouble
connected to the primitive view of a set is the vagueness and how to handle it.
Classical mathematics needs that all notions, including the idea of a set, must be
exact. But this is not the situation in real practice, and vagueness is abundant in
practical problems handled by scientists and technologists. That is the reason why
philosophers and scientists have become more interested in these notions recently.
Fuzzy sets [1] tackle vagueness via membership function. There are other types of
structures also available for this purpose, and one important among them is the idea
of rough sets [2], which models vagueness using the idea of boundary region of a set.
Further, there are many hybrid structures [3] involving two or more such structures.

If one looks at the evolution ofmankind, there are various eraswith varying impor-
tance with a hierarchy as shown: AGRICULTURE → INDUSTRY → INFORMA-
TION → GENETIC-ALGORITHMS → NANO TECHNOLOGY. In this transfor-
mation, the problems that we were handling had developed an increased level in
magnitude and complexity. Often one needs a good simplification of the level of
complexity that supports minimum loss of information. One way of doing this is to
permit some degree of uncertainty into the problem by making the statements impre-
cise. Basically, there are two types of imprecision, vagueness and ambiguity. Loosely
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speaking, vagueness is the dilemma of making clear separation and ambiguity is the
situation of having two or more alternatives not specified. An initial insight into these
ideas can be seen in Black [4].

Historically, the traditional notions of membership and logic go back to Greek
philosophy and Aristotelian bi-valued logic. Alternatively, the Law of excluded mid-
dle demands “Every propositionmust be either TRUE or FALSE”. The first objection
to this was rised by Plato, and later, Lukasievicz came up with three valued logic and
ultimately by Zadeh with fuzzy or infinite valued logic.

After Zadeh, many researchers came up with various generalizations of fuzzy sets
which really broadened the scope in representing real-world problems more accu-
rately and precisely. These structures include type-2 fuzzy sets, Interval-valued fuzzy
sets, Intuitionistic fuzzy sets, Pythagorean fuzzy sets, Picture fuzzy sets, Spherical
fuzzy sets, Fermatean fuzzy sets, Hesitant fuzzy sets, and many more.
We begin with Zadeh [1]’s definition of fuzzy sets.

Definition 1 Let � be a set. A fuzzy set A in � is characterized by a member-
ship function ζ → μA(ζ ) from � to I = [0, 1]. μ is termed as membership value
function, and the fuzzy set is denoted by A = {(ζ, μA(ζ )) : ζ ∈ �}.

A major concern in the theory of fuzzy sets is the technique for assigning mem-
bership values suitably. Membership functions may be composed by analyzing the
problem under deliberation. Further, there are several practicable ways to construct
membership functions. Subjective evaluation and extraction, Converted frequencies
or probabilities, Physical measurement, and Learning and adaptation are somemajor
methods for the same.

8.2 Type-2 Fuzzy Sets and Systems

Right from the beginning of the theory of fuzzy sets, one major criticism regarding
ordinary fuzzy sets, also possible to call type-1 fuzzy sets, was that there is no uncer-
tainty associated with the membership function. Some even said that this contradicts
the meaning of fuzzy itself. In 1975, Zadeh himself [5] came up with an answer
to this by proposing types of fuzzy sets which are more sophisticated and the ones
which generalize the standard fuzzy sets of type-1. The first among these was called
type-2 fuzzy set. Instead of a fixed membership function, a fluctuating membership
function is used in type-2 fuzzy sets. Later, Zadeh himself [5] extended type-2 fuzzy
sets to type- n fuzzy sets. The membership function associated with type-2 fuzzy sets
are of three dimensions, where the third dimension is the value of the membership
function at any point on its two-dimensional domain, often described as the footprint
of uncertainty (FOU).

The membership grade of a type-2 fuzzy set is itself fuzzy. The membership is
a function at individual value of the primary variable. The domain of secondary
membership function is in [0, 1] (primary membership values), and the range may
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also be in [0, 1]. Accordingly, for a type-2 fuzzy set, the membership function is
dimension of three. This third dimension can provide new degrees of freedom for
managing vagueness. So these structures are often useful when it is challenging to
evaluate the precise membership for a fuzzy set, as if in situation of modeling a
word by a fuzzy set. Recently, type-2 fuzzy sets have become widely established for
modeling higher-order uncertainties.

Definition 2 A type-2 fuzzy set ˜A in a universal set � is described by a type-2
membership function μȦ(ζ, k), where ζ ∈ �, I = [0, 1], and k ∈ Jζ ⊆ I . That is,
˜A is expressed as

˜A = {(

(ζ, k), μ
˜A(ζ, k)/ζ ∈ �, k ∈ Jζ ⊆ I

}

where 0 ≤ μ
˜A(ζ, k) ≤ 1.

Also,

˜A =
∫

ζ∈�

∫

k∈Jζ

μ
˜A(ζ, k)

(ζ, k)
=
∫

ζ∈�

∫

k∈Jζ
fζ (k)/k

ζ

where fζ (k) = μĀ(ζ, k).

The secondary membership function, which is also known as secondary grades,
is a function from � × I to I . In the given expression of ˜A, μ

˜A(ζ, k) and fζ (k) are
all secondary grades. The primary membership of an element in � is the domain of
a secondary membership function. In ˜A, Jζ is the primary membership of ζ . If all
the secondary degrees of a type-2 fuzzy set ˜A are touched unity, i.e., μ

˜A(ζ, k) = 1,
for all ζ ∈ � and for all k ∈ Jζ ⊆ I , then ˜A is called an interval type-2 fuzzy set.

Basic Operations of Type-2 Fuzzy Sets [6, 7]

Let ˜A and ˜B be two type-2 fuzzy sets defined on universal set �: i.e.,

˜A =
∫

ζ∈�

∫

k∈Jζ
fζ (k)/k

ζ

˜B =
∫

ζ∈�

∫

l∈Jζ
gζ (l)/l

ζ

Basic operations for the type-2 fuzzy sets are given by,

1. Union : ˜A ∪ ˜B

μ
˜A∪˜B(ζ ) =

∫

k∈Jζ (k)

∫

l∈Jζ (l)

[

fζ (k) ∧ gζ (l)
]

(k ∨ l)
, ζ ∈ �.
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2. Intersection: ˜A ∩ ˜B

μ
˜A∩˜B(ζ ) =

∫

k∈Jζ (k)l∈Jζ (l)

[

fζ k) ∧ gζ (l)
]

(k ∧ l)
, ζ ∈ �.

where ∧ and ∨ denote the the minimum and the maximum operations, respec-
tively.

3. Complement (˜A)c:

μ( ˜A)c(ζ ) =
∫

k∈Jζ

fζ (k)

(1 − k)
.

Apart from fuzzy sets of type-2, fuzzy sets of order-2 are also available in litera-
ture and it is put forward by Zadeh [8]. Here, one is defining fuzzy set over a finite
family of fuzzy sets. For example, a fuzzy set representing low outside temperature
is possible to represent by a membership function that is specified over the range
of real numbers [−59C, 11C] (say). Now, the expression conformable temperature
can be considered as an order-2 fuzzy set. A collection of generic information gran-
ules that are fuzzy sets can be defined with the following members: low, medium,
and high temperature. Each of these is a fuzzy entity created over the collection of
real numbers. On this group, one can define an order-2 fuzzy set representing the
term comfortable temperature with membership grades [0.3 1.0 0.5]. This means
that low temperature has a membership value of 0.3 in the term comfortable tem-
perature and so on. It is observed, however, that the intensity and vigor of the study
in this area are limited compared to type-1 and order-1 fuzzy sets or type-2 fuzzy sets.

Interval-Valued Fuzzy Sets [5]

Another useful generalization of fuzzy sets is interval-valued fuzzy sets that instead
of singlemembership grades, there are intervals of feasiblemembership values. Here,
the concept of membership is represented in format of an interval.

8.3 Intuitionistic Fuzzy Sets

The word intuition means instinctive understanding of things or situation which is
natural or spontaneous or self-generated. A conscious way of reasoning may not be
needed here. As a part of new approaches and theories handling imprecision and
uncertainty, Atanassov [9, 10] in 1983 introduced Intuitionistic fuzzy sets (IFS).
Simultaneously, it was independently put forward by Takeuti and Titani [11] also.
An IFS has two membership functions, one for conveying the degree of membership
and the other for conveying degree of non-membership of members of the universe
to the IFS. The rationale behind this new idea is the quite intuitionistic fact that an
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individual nevertheless communicates the degree of non-belongingness exactly as
the negation/complement of belongingness. This corresponds to the psychological
event that linguistic negation does not every time coincide with logical negation.
This is also in-line with the concept of Intuitionism of L Brouwer in the beginning
of last century. The association between IFS and other theories modeling vagueness
is available in [12].

Definition 3 Let � be a universe. An IFS, P is defined on � is of the form

P = {(ζ, μP(ζ ), νP(ζ ) | ζ ∈ �)}

where μP(ζ ) ∈ [0, 1] is called the degree of membership of ζ in P, νP(ζ ) ∈ [0, 1] is
called the degree of non-membership of ζ in P, and where μP and νP satisfy:

(∀ζ ∈ �) (μP(ζ ) + νP(ζ ) ≤ 1) .

Remark A fuzzy set P on a universe � can be considered as an IFS of the form

P = {〈ζ : μP(ζ ), 1 − μP(ζ )〉 : ζ ∈ �}

The theory of IFSs is well developed and is having various ranges of applications.
For a detailed account, we suggest Attasanov [13]. For the remaining of this chapter,
we will focus on more recent and advanced versions of generalized fuzzy and Intu-
itionistic fuzzy structures.

8.4 Pythagorean Fuzzy Sets

Membership grades play a vital contribution in the application of classical fuzzy sets.
To improve the ability of fuzzy sets to capture and model user-driven information,
many authors put forward nonstandard fuzzy sets such as intuitionistic and interval-
valued fuzzy sets. A recent one among them, introduced by Yager [14–16] in 2013,
is the one called Pythagorean fuzzy sets (PyFS). The associated membership grades
are referred as Pythagorean membership grades. These membership values are given
as follows: For any ζ in the universe �, assign pair of values r(ζ ) and d(ζ ), where
r(ζ ) ∈ [0, 1] is called the strength of commitment at ζ and d(ζ ) ∈ [0, 1] is called
the direction of commitment. They actually represent the support for membership of
ζ and the assist opposed to membership of ζ in a Pythagorean fuzzy subset of �.

Particularly, the values PY (ζ ) and PN (ζ ) are defined using r(ζ ) and d(ζ ) as
follows: PY (ζ ) = r(ζ ) cos(θ(ζ )) and PN (ζ ) = r(ζ ) sin(θ(ζ )), where θ(ζ ) = (1 −
d(ζ )) π

2 . θ(ζ ) is given in radians and θ(ζ ) belong to
[

0, π
2

]

. It is observed that if
d(ζ ) is nearer to 1, then θ(ζ ) is closer to 0.
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Further, it can be easily proven that PY (ζ ) and PN (ζ ) are Pythagorean comple-
ments as regards strength of commitment r(ζ ).

For,
P2
Y (ζ ) + P2

N (ζ ) = r2(ζ ) cos2(θ(ζ )) + r2(ζ ) sin2(θ(ζ ))

From the well-known fact that cos2(θ) + sin2(θ) = 1 we haveP2
Y (ζ ) + P2

N (ζ ) =
r2(ζ ) and henceP2

Y (ζ ) = r2(ζ ) − P2
N (ζ ) andP2

N (ζ ) = r2(ζ )−P2
Y (ζ ). Hence,PY

and PN are Pythagorean complements with respect to r(ζ ).
It is an evident fact that Pythagorean membership grades enable for absence of

commitment and vagueness in giving membership grades. Obviously, r(ζ ) ∈ [0, 1]
represents the strength of commitment about membership at point ζ, with larger the
value of r(ζ ) stronger the commitment, lesser the uncertainty.

To understand d(ζ ), the direction of the strength, note that θ(ζ ) = (1− d(ζ ))π
2 .

Whend(ζ ) = 1, then θ(ζ ) = 0 andcos(θ(ζ )) = 1and sin(θ(ζ )) = 0.Thus,PY (ζ ) =
r(ζ ) and PN (ζ ) = 0. Again, if d(ζ ) = 0, then θ(ζ ) = π/2, and we get PY (ζ ) = 0
and PN (ζ ) = 1. Hence, the changes in d(ζ ) between 0 and 1 represent how fully
the strength r(ζ ) is indicating to membership. If d(ζ ) = 1, the direction of r(ζ ) is
entirely to membership, while d(ζ ) = 0 the direction of the strength is totally toward
non-membership. Intermediate or in-between value of d(ζ ) is an indication of partial
support to both membership and non-membership.

Definition 4 A Pythagorean fuzzy set P on a fixed universe � is of the form:

P = {(ζ, λP(ζ ), ηP(ζ )) | ζ ∈ �}

where λP(ζ ) and ηP(ζ ) are functions from � to [0, 1], with 0 ≤ λP(ζ ) ≤ 1,
0 ≤ ηP(ζ ) ≤ 1, and 0 ≤ λ2

P(ζ ) + η2
P(ζ ) ≤ 1, for all ζ ∈ �, and they denote the

degree of membership and degree of non-membership of element ζ ∈ � to set P ,
respectively.

πP(ζ ) =
√

1 − λ2
P(ζ ) − η2

P(ζ ) is the Pythagorean fuzzy index of element ζ ∈ � to
set P , representing the degree of indeterminacy of ζ to P and 0 ≤ πP(ζ ) ≤ 1, for
every ζ ∈ �.

We use PyFS(�) to refer the set of all the Pythagorean fuzzy sets on a universe
�.

From the facts that if p, q ∈ [0, 1] then p2 ≤ p and q2 ≤ q and if p + q ≤ 1 then
p2 + q2 ≤ 1, we have,

Theorem 1 PyFS(�) has a larger membership space than IFS(�).

Obviously, Pythagorean type membership grades accept a larger choice of mem-
bership values than that of intuitionistic ones and hence expand the scope of appli-
cations significantly.

Example 1 Consider P ∈ PyFS(�) with λP(ζ ) = 0.7 and ηP(ζ ) = 0.5 for � =
{ζ }. Clearly, 0.8 + 0.5 � 1, but 0.82 + 0.52 ≤ 1. Thus, πP(ζ ) = 0.3317, also,
(λP(ζ ))2 + (ηP(ζ ))2 + (πP(ζ ))2 = 1.
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Operations on Pythagorean Fuzzy Sets

Definition 5 (i) Complement of P ∈ PyFS(�), Pc is defined as: Pc = {〈ζ,

ηP(ζ ), λP(ζ )〉 | ζ ∈ �}. Clearly (Pc)c = P .
(ii) Union and intersection of P,Q ∈ PyFS(�), are defined, respectively, as:
P ∪ Q = {〈ζ,max (λP(ζ ), λQ(ζ )) ,min (ηP(ζ ), ηQ(ζ ))〉 | ζ ∈ �}.
P ∩ Q = {〈ζ,min (λP(ζ ), λQ(ζ )) ,max (ηP(ζ ), ηQ(ζ ))〉 | ζ ∈ �}.
The following table distinguishes IFS and PyFS.

IF sets PyF sets
μ + v ≤ 1 λ + η ≤ 1 or λ + η ≥ 1
0 ≤ μ + v ≤ 1 0 ≤ λ2 + η2 ≤ 1

π = 1 − (μ + v) π =
√

1 − [

λ2 + η2
]

μ + v + π = 1 λ2 + η2 + π2 = 1

8.5 Picture Fuzzy Sets

Even though IFS theory is implemented in many areas, one major drawback is the
lacking of neutrality degree concept. If we need to model situations involving human
opinions with more than two answer types such as yes, no, refusal, and abstain, the
concept of neutrality is prominent. It is more specific in situations involving voting in
democracy, where human voters may be divided into many groups. It may be noted
that “abstain” means refusing both “agree” and “disagree” but still picks up the vote.
Similarly, medical diagnosis is another part where the idea of neutrality plays a vital
role. As a remedy to these concerns, Cuong and Kreinovich [17, 18] put forward
the concept Picture fuzzy set (PFS) as a straight extension of fuzzy sets and IFS by
introducing the notions of positive, negative, and neutral membership degree of an
entity.

Definition 6 Let � be a universal st. A PFS ˜P on � is of the form

˜P = {(

ζ, μ
˜P(ζ ), η

˜P(ζ ), ν
˜P(ζ )

) | ζ ∈ �
}

where μ
˜P(ζ ), η

˜P(ζ ), and ν
˜P(ζ ) ∈ [0, 1] are called the degree of positive, neutral,

and negative memberships, respectively, of ζ in ˜P, with μ
˜P , η

˜P , and ν
˜P satisfying:

(∀ζ ∈ �)
(

μ
˜P(ζ ) + η

˜P(ζ ) + ν
˜P(ζ ) ≤ 1

)

Also,
(

1 − (

μ
˜P(ζ ) + η

˜P(ζ ) + ν
˜P(ζ )

)

is known as the degree of refusal member-
ship of ζ in ˜P . Also, PFS(�) is used to represent the collection of all the PFSs on a
universe �.
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Definition 7 For ˜P, ˜Q ∈ PFS(�), the definition of subset, union, intersection, and
complement are given by,
˜P ⊆ ˜Q ⇐⇒ (∀ζ ∈ �,μ

˜P(ζ ) ≤ μ
˜Q(ζ ) and η

˜P(ζ ) ≤ η
˜Q(ζ ) and ν

˜P(ζ ) ≥ ν
˜Q(ζ )

)

˜P = ˜Q ⇐⇒ (˜P ⊆ ˜Q and ˜Q ⊆ ˜P)
˜P ∪ ˜Q = {(

ζ,max
(

μ
˜P (ζ ), μ

˜Q(ζ )
)

,min
(

η
˜P (ζ ), η

˜Q(ζ )
)

,min
(

ν
˜P (ζ ), ν

˜Q(ζ )
) | ζ ∈ �

}

˜P ∩ ˜Q = {(

ζ,min
(

μ
˜P (ζ ), μ

˜Q(ζ )
)

,min
(

η
˜P (ζ ), η

˜Q(ζ )
)

,max
(

ν
˜P (ζ ), νB(ζ )

) | ζ ∈ �
}

co(˜P) = ¯̃P = {(

ν
˜P(ζ ), η

˜P(ζ ), μ
˜P(ζ )

) | ζ ∈ �
}

8.6 Spherical Fuzzy Sets

Even though Atanassov’s construction of IFSs is of exceptional reputation, decision-
makers are restricted when specifying values due to the condition on P(ζ ) and N (ζ )

(membership and non-membership values) that 0 ≤ P(ζ ) + N (ζ ) ≤ 1. Sometimes,
sum of their membership degrees is superior than 1. In such situation, to attain rea-
sonable outcome, IFS fails. So, dealingwith such situation, Yager in 2015 established
the PyFSs by assigning membership degree say “P(ζ )” along with non-membership
degree say “N (ζ )” with 0 ≤ P2(ζ ) + N 2(ζ ) ≤ 1. Further, one can extend the con-
cept of PyFSs to Spherical fuzzy set by assigning neutral membership degree say
“I(ζ )” along with positive and negative membership degrees say “P(ζ )” and “N (ζ )”
with condition that 0 ≤ P2(ζ ) + I2(ζ ) + N 2(ζ ) ≤ 1.

Cuong’s formation of PFSs is of exceptional fame but decision-makers are some-
how limited when specifying values due to the condition on P(ζ ), I(ζ ), and N (ζ ).
Sometimes, sum of their membership degrees is superior than 1. In such situa-
tion, to attain reasonable outcome, PFS fails. For dealing such situations, Ashraf
et al. [19] defined a novel structure called Spherical fuzzy sets (SFSs) which will
widen the feasible space of membership degrees P(ζ ), I(ζ ), and N (ζ ) in a better
manner than that of PFS. In SFS, membership degrees are satisfying the condition
0 < P2(ζ ) + I2(ζ ) + N 2(ζ ) < 1.

Definition 8 Let � be a universe set. Then, the SFS is of the form

J = {〈

ζ,Pj(ζ ), Ij(ζ ),Nj(ζ ) | ζ ∈ �
〉}

where Pj : � → [0, 1], Ij : � → [0, 1], and Nj : � → [0, 1] are indicated the posi-
tive, neutral, and negative membership degrees of each ζ ∈ �, respectively. In addi-
tion, Pj, Ij, and Nj satisfy 0 ≤ P2

j (ζ ) + I2j (ζ ) + N 2
j (ζ ) ≤ 1 ∀ζ ∈ �.

When a decision involves abstinence or refusal rather than yes or no, the usage of
SFSs is more suitable in modelling. Further SFS is a straightforward generalization
of fuzzy set, IFS and PFS.

Consider the example with Pj(ζ ) = 0.8, Ij(ζ ) = 0.5 andNj(ζ ) = 0.3 which inter-
rupts the condition that 0 ≤ Pj(ζ ) + Ij(ζ ) + Nj(ζ ) ≤ 1 but the square of these values
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such as, P2
j (ζ ) = 0.64, I2j (ζ ) = 0.25, and N 2

j (ζ ) = 0.09 is satisfied the condition
0 ≤ P2

i (ζ ) + I2i (ζ ) + N 2
i (ζ ) ≤ 1.

If Pj(ζ ), Ij(ζ ), and Nj(ζ ) represent the degrees of positive, neutral, and nega-
tive memberships of a SFS, respectively, such that 0 ≤ P2

j (ζ ) + I2j (ζ ) + N 2
j (ζ ) ≤ 1,

which is nothing but the region covered by a part of unit sphere. By a part of sphere,
we indent that we consider the values of Pj(ζ ), Ij(ζ ), and Nj(ζ ) in [0, 1]. The region
mentioned as per the inequality

Pj(ζ ) ≤
(

1 − I2j (ζ ) + N 2
j (ζ )

) 1
2
.

This is the justification for the name SFS. Also, if we take Ij(ζ ) = 0 in SPSs, then
SPSs reduced to PyFSs. Hence, SFSs are direct extensions of PyFSs and also are
extensions of PFSs.

Definition 9 Let � �= ϕ be a universe set. Then, any two SFSs J1, J2 can be
expressed as;

J1 = {〈

ζ,Pji(ζ ), Ij1(ζ ),Nji(ζ ) | ζ ∈ �
〉}

J2 = {〈

ζ,Pj2(ζ ), Ij2(ζ ),Nj2(ζ ) | ζ ∈ �
〉}

Union of SFSs J1 and J2 in universe set � is defined as

J1 ∪ J2 =
⎧

⎨

⎩

max
(

Pj1(ζ ),Pj2(ζ )
)

min
(

Ij1(ζ ), Ij2(ζ )
)

min
(

Nj1(ζ ),Nj2(ζ )
)

⎫

⎬

⎭

Intersection of SFSs J1 and J2 in universe set � is defined as

J1 ∩ J2 =
⎧

⎨

⎩

min
(

Pji(ζ ),Pj2(ζ )
)

min
(

Iji(ζ ), Ij2(ζ )
)

,

max
(

Nj1(ζ ),Nj2(ζ )
)

⎫

⎬

⎭

The complement of any SFS J1 in universe set � is defined as

J c
1 = {

Nj1(ζ ), Ij1(ζ ),Pj1(ζ )
}

.

8.7 Fermatean Fuzzy Set as a q-Rung Orthopair Fuzzy Set

From the discussions above, it is clear that for IFS the sum of membership values
and non-membership values is bounded by one and the sum of squares of those is
bounded by one for PyFS. As a generalization of these Yager [20] introduced the q
-rung orthopair fuzzy sets in which the sum of the qth powers of the membership and
non-membership values is bonded by one. Obviously, larger the value of q, more the
value of feasible orthopairs which significantly increases the domain of applicability.
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In particular, when q = 3, q-rung orthopair fuzzy sets are called Fermatean fuzzy
sets (FFS).

Definition 10 [21] Let � be a universe of discourse. A Fermatean fuzzy set F in �

is of the form
F = {〈ζ, αF (ζ ), βF (ζ )〉 : ζ ∈ �}

whereαF (ζ ) : � → [0, 1] andβF (ζ ) : � → [0, 1],with 0 ≤ (αF(ζ ))3 + (βF (ζ ))3 ≤
1 for all ζ ∈ �. The numbers αF(ζ ) and βF(ζ ) denote, respectively, the degree of
membership and the degree of non-membership of ζ in the set �.

For any FFS F and ζ ∈ �, πF(ζ ) = 3
√

1 − (αF(ζ ))3 − (βF (ζ ))3 is regarded as
the degree of indeterminacy of ζ to F .

For simplicity, one may mention the symbol F = (αF , βF ) for the FFS F =
{〈ζ, αF (ζ ), βF(ζ )〉 : ζ ∈ �} .

Definition 11 Let F = (αF , βF ) ,F1 = (

αF1 , βF1

)

, and F2 = (

αF2 , βF2

)

be three
FFSs, then the following operations can be defined:

(i) F1 ∩ F2 = (

min
{

αF1 , αF2

}

,max
{

βF1 , βF2

})

(ii) F1 ∪ F2 = (

max
{

αF1 , αF2

}

,min
{

βF1 , βF2

})

(iii) F c = (βF , αF ) .

8.8 Hesitant Fuzzy Sets

Notion of Hesitant fuzzy sets (HFSs) proposed by Torra [22, 23] is another exten-
sion of fuzzy sets. The motivation for this extension is the hesitancy arising in the
determination of the membership value of an element. Hesitancy does not arise just
because of an error margin or a possibility distribution. It arises because there are
some possible values of which there is a hesitation about which one would be the
right one. These situations mainly arise in decision-making problems where a group
of decision-makers examine the judgment of a scenario. In a HFS, the member-
ship function catches values from the power set of [0, 1]. This allows the use of
all the values simultaneously which helps in dealing with the situation effectively.
The main difference in HFS theory is conceptual when compared to other exten-
sions of fuzzy sets. HFS theory is having considerable applications in various fields
like multi-criteria decision-making, group decision-making, decision support sys-
tems, evaluation processes, and clustering algorithms. Zhu et al. [24] extended the
HFSs to dual Hesitant fuzzy sets (DHFSs) which deal hesitancy in membership and
non-membership functions. Thus, FS, HFS, and IFS are special cases of DHFSs.

Definition 12 AHesitant fuzzy set (HFS)H defined on a universe� is characterized
by a function defined on� which returns a subset of [0, 1], representing the possible
membership values for every member in �. Mathematically:
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H = {〈ζ,H(ζ )〉 | ζ ∈ �}

H(ζ ) is known as a Hesitant fuzzy element (HFE) and HF(�) denotes the set of all
HFSs in �.

Definition 13 Score of a Hesitant fuzzy element is defined as
s(H(ζ )) = 1

l(H(ζ ))

∑

γ∈h γ , where l(H(ζ )) denotes the number of values occurring
inH(ζ ).
One can define various operations on HFSs based on score.

Definition 14 Consider two HFSs H1 and H2 on �.

(i) Subset:H1 is a Hesitant subset ofH2 (H1 � H2 ) iff s (H1(ζ )) ≤ s (H2(ζ ))∀ζ

∈ �.
(ii) Equality: H1 is equal toH2 (H1 ≈ H2) iff s (H1(ζ )) = s (H2(ζ ))∀ζ ∈ �.
(iii) Complement: Complement ofH is defined asHc : � → P[0, 1] whereHc(ζ )

= ⋃

γ∈H(ζ ){1 − γ }∀ζ ∈ �.
(iv) Union: H1 ∪ H2 is defined as

(H1 ∪ H2) (ζ ) = {

γ ∈ (H1(ζ ) ∪ H2(ζ )/γ ≥ max
(H−

1 ,H−
2

)}

=
⋃

γ1∈H1,γ2∈H2

max {γ1, γ2}

(v) Intersection: H1 ∩ H2 is defined as

(H1 ∩ H2) (ζ ) = {

γ ∈ (H1(ζ ) ∪ H2(ζ )/γ ≤ min
(H+

1 ,H+
2

)}

.

=
⋃

γ1∈H1,γ2∈H2

min {γ1, γ2}

(vi) Score-based intersection of H1 and H2 (H1∧̃H2 ) is defined as

(H1∧̃H2
)

(ζ ) =

⎧

⎪

⎨

⎪

⎩

H1(ζ ) ifH1(ζ ) ≺ H2(ζ )

H2(ζ ) ifH2(ζ ) ≺ H1(ζ )

H1(ζ ) ∪ H2(ζ ) ifH1(ζ ) ≈ H2(ζ )

(vii) Score-based union of H1 and H2 (H1∨̃H2 ) is defined as

(H1∨̃H2
)

(ζ ) =

⎧

⎪

⎨

⎪

⎩

H1(ζ ) ifH1(ζ ) � H2(ζ )

H2(ζ ) ifH2(ζ ) � H1(ζ )

H1(ζ ) ∪ H2(ζ ) ifH1(ζ ) ≈ H2(ζ )

Definition 15 IfH ∈ HF(�) and α ∈ [0, 1], then α-level cut set of HFSH, denoted
byHα is defined asHα = {ζ ∈ �/s(H(ζ )) ≥ α}.Hα+ = {ζ ∈ �/s(H(ζ )) > α} is
termed strong α-level cut set of H.
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Definition 16 (i) AHesitant fuzzy relationR fromU toV is defined as a Hesitant
fuzzy subset of U × V

i.e.,
R : U × V → P[0, 1]

(ii) The complement RC of Hesitant fuzzy relation R from U to V is defined as
RC(ζ, ρ) = [R(ζ, ρ)]C = ⋃

γ∈R(ζ,ρ){1 − γ }
(iii) Inverse of R is a Hesitant fuzzy relation from V to U defined as

R−1(ρ, ζ ) = R(ζ, ρ).

Definition 17 For a Hesitant fuzzy relation R defined on a universe U , we may
define

Rα = {(s, t) ∈ U × U : s (hR(s, t)) ≥ α}
Rα(s) = {t ∈ U : s (hR(s, t)) ≥ α} ,∀α ∈ [0, 1]
Rα+ = {(s, t) ∈ U × U : s (hR(s, t)) > α}
Rα+(s) = {t ∈ U : s (hR(s, t)) > α} ,∀α ∈ [0, 1].

8.9 Applications

Given an information system, one of the most significant tasks in decision-making
problems as well as artificial intelligence applications is knowledge extraction from
these systems. This section is an attempt to present and study information system
(IS) in the Hesitant fuzzy environment. Here, we discuss an IS with a set of possible
membership values. An illustrative study is given in which Hesitant fuzzy member-
ship values, which are families of sets, are obtained from values of attributes. Further,
the concepts of reduct and core together with indiscernibility matrix are provided
in Hesitant fuzzy setup. The discussion given below on Hesitant fuzzy ISs is from
Deepak and John [25].

Hesitant Fuzzy Information Systems

A quadruple HFIS = 〈�,A, �, ℘〉 is regarded a Hesitant Fuzzy Information System
(HFIS) where the set � �= ∅ is the universal set containing objects, A �= ∅ is set of
attributes, � is the group of attribute values � = ⋃

a∈A �a, �a is the collection of
all feasible values of a ∈ A, and ℘ : � × A → P(P(�)) is a function in such a way
∀ζ ∈ �, a ∈ A, ℘ (ζ, a) ∈ P(P(�)).

A Hesitant Fuzzy Decision System is a quadruple HFDS = 〈�, C ∪ {d}, �, ℘〉,
where � �= φ is the universal set of objects, C �= φ is a finite set of conditional
attributes, d is a decision attribute with C ∩ {d} = φ;� = �c ∪ �d where �c is a set
of conditional attribute values, �d is the set of decision attribute values; and℘ : � ×
{C⋃{d}} → P(P(�)) such that℘ : � × C → P (P (�c)) ;℘ : � × {d} → �d is a
mappingwhich indicate for every conditional attribute-object pair a group of attribute
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Table 8.1 A hesitant fuzzy information system

� a1 a2 a3

ζ1 {r, s} {1, 2}, {3, 4} {r, s}, {t, u}
ζ2 {r, s, ζ }, {v,w}, {t, u} {5, 6}, {1, 2} {t, u, z}, {v,w}
ζ3 {t, u}, {r, v} {1, 2} {r, s, ζ }, {t, u, z, j}
ζ4 {r, s, ρ}, {t, u, j}, {v, ζ } {1, 2}, {3, 4} {r, s, ρ}, {t, u, k}
ζ5 {v,w, z}, {ζ, ρ} {5, 6} {v,w, l}

value sets and for the decision attribute we have one and only one value from the
attribute value domain.

Note For all a ∈ A and ζ ∈ �,℘(ζ, a) = a(ζ ) ∈ P(P(�)), and a(ζ ) =
{

�a
ζ1
, �a

ζ2
, . . . , �a

ζn

}

for some n ∈ N where each �a
ζi

∈ P(�) and �a
ζi

∩ �a
ζj

= φ for
any i �= j; i, j ≤ n.
i.e., for a given ζ ∈ �, elements of a(ζ ) are mutually disjoint.

Definition 18 For every a ∈ A, a Hesitant fuzzy relation˜Ra on HFIS S = 〈�,A, �,

℘〉, can be defined as

˜Ra(ζ, ρ) =
⋃

�a
ζi

∈a(ζ ),�a
ρj∈a(ρ)

�a
ζi

∩�a
ρ̇j

�=φ

∣

∣

∣�a
ζi

∩ �a
ρj

∣

∣

∣

∣

∣

∣�a
ζi

∪ �a
ρj

∣

∣

∣

and
˜Ra(ζ, ρ) = {0} if �a

ζi
∩ �a

ρj = φ ∀i, j

For an attribute subset ˜Q of A, a Hesitant fuzzy relation˜RB is defined as

˜RB(ζ, ρ) =̂∧

b∈B
˜Rb(ζ, ρ)

Example 2 An example of a HFIS is shown in Table 8.1.
Now,

˜R{a1} =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

˜Ra1 ζ1 ζ2 ζ3 ζ4 ζ5
ζ1 {1}
ζ2
{

2
3

} {1}
ζ3
{

1
3

} {

1
4 ,

1
3 , 1

} {1}
ζ4
{

2
3

} {

1
4 ,

1
3 ,

1
2 ,

2
3

} {

1
4 ,

1
3 ,

2
3

} {1}
ζ5 {0} {

1
4 ,

2
3

} {

1
4

} {

1
4 ,

1
3

} {1}

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦
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˜R{a2} =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

˜Ra1 ζ1 ζ2 ζ3 ζ4 ζ5
ζ1 {1}
ζ2 {1} {1}
ζ3 {1} {1} {1}
ζ4 {1} {1} {1} {1}
ζ5 {0} {1} {0} {0} {1}

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

˜R{a3} =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

˜Ra1 ζ1 ζ2 ζ3 ζ4 ζ5
ζ1 {1}
ζ2

{

2
3

} {1}
ζ3
{

1
2 ,

2
3

} {

3
4

} {1}
ζ4

{

2
3

} {

1
2

} {

1
2 ,

2
5

} {1}
ζ5 {0} {

2
3

} {0} {0} {1}

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

There can be values of the attribute in the IS which may not have any effect on the
classification of the system into equivalence classes. The reduct of an IS is defined as
the minimal subset of attributes which produces the same classification as that of the
initial set of attributes. Also, reduct is not unique and the intersection of all reducts
will form the core.

Definition 19 For a HFIS S = 〈�, C, �, ℘〉, C1 ⊆ C is a reduct of C iff

1. ∀ζ, ρ ∈ � ˜RC(ζ, ρ) ≈˜RC1(ζ, ρ).

2. For any C ′
1 ⊂ C1, ∃ζ, ρ ∈ � such that s

(

˜RC(ζ, ρ)
) �= s

(

˜RC′
1
(ζ, ρ)

)

.

Note If s
(

˜RC(ζ, ρ)
) �= s

(

˜RCv
1
(ζ, ρ)

)

, then itwill be denotedby˜RC(ζ, ρ) �˜RC1(ζ, ρ).

Definition 20 The core of C denoted by Core (C) is the intersection of all reducts,
i.e., Core (C) = ⋂

Red(C).

Definition 21 Let S = 〈�, C, �, ℘〉 be a HFIS. For attributes C, universe set �, and
a set of relations

{

˜Rd | d ∈ C}, the discernibility matrixD is defined as

Dn×n = (

Dij
)

n×n
=

⎡

⎢

⎢

⎢

⎣

D11 D12 · · · D1n

D21 D22 · · · D2n
...

...
. . .

...

Dn1 Dn2 · · · Dnn

⎤

⎥

⎥

⎥

⎦

where n = |�| andDij is a set of attributes where d ∈ Dij iff˜Rd

(

ζi, ζj
) ≈˜RC

(

ζi, ζj
)

(

ζi, ζj ∈ � and d ∈ A) . It is also demonstrated by d ∈ Dij iff˜Rd

(

ζi, ζj
) ≈ ∧̃˜Rd∈C˜Rd

(

ζi, ζj
)

. Thus, Dij is the collection of entire attributes with lowest possible degrees
of indiscernibility among elements ζi and ζj.

Theorem 2 [25] For the HFIS S = 〈�, C, �, ℘〉, C1 ⊆ C is a reduct of C iff C1 is
the minimal set agreeable ∀i, j C1 ∩ Dij �= φ.
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Theorem 3 [25] For a HFIS = 〈�, C, �, ℘, 〉, set of all single element entries of
the discernibility matrix is Core, i.e., d ∈ C is in Core (C) iff there exists anDij such
that Dij = {d}.
Definition 22 Let S = 〈�,�, �,℘〉 be a HFIS and B ⊆ A.A discernibility function
d for S is a Boolean function of k Boolean variables β∗

1 , β
∗
2 , . . . , β

∗
k corresponding

to the attributes β1, β2, · · · , βk

(βi ∈ B; i ∈ {1, 2, . . . k}) and is given by

d
(

B∗) = d
(

β∗
1 , β

∗
2 , . . . , β

∗
k

) =
∧
{
∨

D∗
ij : Dij ∈ Dn×n

}

where
∨

D∗
ij is the disjunction of all variables β∗ such that β ∈ Dij and ∧ is the

conjunction.

Theorem 4 All constituents in the minimal disjunctive normal form of the function
d (B∗) are all reducts of B.

Example 3 Given

D =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ζ1 ζ2 ζ3 ζ4 ζ5
ζ1 {β1, β2, β3}
ζ2 {β1, β3} {β1, β2, β3}
ζ3 {β1} {β1} {β1, β2, β3}
ζ4 {β1, β3} {β1} {β1} {β1, β2, β3}
ζ5 {β1, β2, β3} {β1} {β2, β3} {β2, β3} {β1, β2, β3}

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

The discernibility function is

d
(

β∗
1 , β

∗
2 , β

∗
3

) = (

β∗
1 ∨ β∗

2 ∨ β∗
3

) ∧ (β∗
1 ∨ β∗

3

) ∧ (β∗
1

) ∧ (β∗
2 ∨ β∗

3

)

= (

β∗
1 ∧ β∗

2

) ∨ (β∗
1 ∧ β∗

3

)

Thus, the reducts are {β1, β2} and {β1, β3} . Here, the core is {β1}.
Decision-Making Problems

Fuzzy sets, its various extensions, and generalizations are very useful and have
been applied successfully in decision-making, evaluation, and clustering problems
especially in the context of soft computing. To provide assessments over various
alternatives in multi-criteria, multi-expert decision-making problems, experts use
these extensions enormously. Various decision support systems can also be modified
effectively using these. Evaluation problems often deal with information which is
uncertain or vague. These problems which are provoked mainly by hesitation can
be effectively dealt with extensions of fuzzy sets, especially HFSs. To get a better
understanding, a typical decision-making algorithm in the picture fuzzy environment
is provided below from [18].
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For simplicity, we consider the following single criterion decision-making prob-
lem.Without any difficulty, the same can be extended to multi-criteria problems with
single or multiple experts also.

Consider a finite set of alternatives given as S = {α1, α2, . . . , αn}. Suppose that
the alternatives have evaluations as per the relevant criterion provided in the form of
a PFS as E = {e (α1) , . . . , e (αn)}, where for all i,
e (αi) = (μ (αi) , η (αi) , ν (αi)) , 0 ≤ μ (αi) , η (αi), ν (αi) ≤ 1, μ (αi) + η (αi) +
ν (αi) ≤ 1.

A typical decision problem is to sort out the alternatives and get an optimal solu-
tion. For this purpose, the following algorithm based on score function can be used.

Algorithm
Step 1 Define three score functions on S as

s1 (αi) = μ (αi) ,∀i,
s2 (αi) = η (αi) ,∀i,
s3 (αi) = μ (αi) + η (αi) − ν (αi) ,∀i

Step 2 Using score functions define three orders on S as

(i) αi ≥1 αk iff s1 (αi) ≥ s1 (sk),
(ii) αi ≥2 αk iff s2 (αi) ≥ s2 (αk),
(iii) αi ≥3 αk iff s3 (αi) ≥ s3 (αk)

Step 3Using the orders defined in step 2, define an aggregation order on S for ranking
and then choose the best solution.

8.10 Conclusions

There does exist a vast range of structures that model or describe various kinds of
non-probabilistic problems involving incomplete as well as inaccurate information
or data. Inspired by the pioneer work of Zadeh [1], there is tremendous amount of
work on generalizations and extensions of fuzzy sets, and some of them are discussed
in the chapter briefly. Nevertheless, the list is complete and ever expanding. Further,
there are possible hybridizations of these structures with other theories of uncertainty
dealing such as Soft sets [26], Rough sets [27], andMultisets [28]. Theoretical studies
such as topological and algebraic structures on these extensions are also promising
and worth studying.
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Chapter 9
A Linear Diophantine Fuzzy Soft
Set-Based Decision-Making Approach
Using Revised Max-Min Average
Composition Method

G Punnam Chander and Sujit Das

9.1 Introduction

In real life, it is necessary to choose the better alternative in emergency decision-
making under uncertain and imprecise environments for the best results or to avoid
worsening the situation. Solving decision-making problems in uncertain or impre-
cise environments with the multi-attribute decision-making methods and fuzzy set
theory demonstrates a significant role. The incertitude of emergency situations and
the presence of different alternatives makes it challenging for decision-makers to
provide concise decision-making evaluations. To solve the decision-making prob-
lems, it is important to create decision-making solutions in imprecise conditions
that reduce environmental damage while also enhancing efficiency. Fuzzy set-based
decision-making approaches in uncertain circumstances have shown their applicabil-
ity in a wide variety of fields like environmental planning, medical sciences, military
services, socio-economic and environmental development, etc. A robust decision-
making approach is found to be suitable to handle the problems and conclude with
the limited and imprecise information in intuitive environments. Employing fuzzy
set theory to manage uncertainty unveiled a new research platform in decision-
making studies [1]. In recent decades, handling imprecise and realisticmulti-attribute
decision-making (MADM) problems with fuzzy sets and their several extensions has
become an interesting and useful research study. The intrinsic capabilities ofMADM
techniques to evaluate the better alternative among a considerable number of alter-
natives with a variety of attributes are well established.
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The use of various fuzzy sets in MADM has made some notable contributions,
as shown below. In 1965, Zadeh [2] introduced fuzzy set (FS) theory, which has
been used in a variety of decision-making methods. As a valuable addition to the FS,
Atanassov [3] fostered an intuitionistic fuzzy set (IFS) to account for the importance
of non-membership degrees to handle imprecision better than the FS with its non-
membership, membership, and indeterminacy grades. Yager and Abbasov [4] further
enhanced IFS with the Pythagorean fuzzy set (PFS), which broadens the range of
membership and non-membership grades by the sum of the squares of membership
and non-membership grades. In comparison with IFS, PFS manages imprecision
better. With the incorporation of the qth reference parameter to the membership
and non-membership grades, the structural space of q-rung orthopair fuzzy sets [5]
(q-ROFS) iswidenedmore comparatively, allowing the expert to gradewithout reluc-
tance. Riaz and Hashmi [6] introduced a novel fuzzy set called the linear diophantine
fuzzy set (LDFS), which outperforms IFS, PFS, and q-ROFS. By integrating refer-
ence parameters in the LDFS representation, the structural space of non-membership
and membership grades is effectively expanded. In some circumstances, fuzzy sets,
q-ROFS, PFS, and IFS are constrained to describe the non-membership and mem-
bership grades by experts and decision-makers, which has an impact on selecting
the best decision or alternative. If the problem representation is bound to be limited
in uncertain circumstances, the problem might be handled in an approximate man-
ner and cannot be resolved properly with limited information. The significance of
reference parameters is that it allows experts and decision-makers to freely choose
membership and non-membership grades. These reference factors can also be utilized
to categorize the problem in a physical sense. For example, the problem information
is classified by reference parameters, which determine how much of the problem
must still be addressed, and the non-membership and membership grades determine
the factor included for a given problem. In comparison with the structural space in
FS, IFS, PFS, and q-ROFS, this makes LDFS more efficient in capturing problem
information and enhances its use of structural space. In terms of structural space of
bounds in uncertain situations, Table 9.1 [6] compares the LDFS to several current
fuzzy sets and highlights its limitations and characteristics.With its parameterization
feature, we can see that LDFS has more space in problem representation without any
limits. In few cases, IFS, PFS, and q-ROFS fail to manage the fuzzy values with
their respective conditions to lie between 0 and 1, whereas LDFS with the refer-
ence parameters α and β with the condition 0 ≤ α(UF (G)) + β(NF (G)) ≤ 1 ranges
between 0 and 1 in most of the cases. LDFSS contributes to the proposed decision-
making approach along with max-min average composition method for effective
decision-making.

Russian ScholarMolodtsov [7] introduced soft set theory as a completely compre-
hensive theory for modelling imprecision. By implementing this theory in different
directions, Maji et al. [8, 9] dealt with a variety of uncertain and imprecise prob-
lems, which was extended by Pei and Miao [10], and Chen et al. [11]. Yang and Ji
[12] used the matrix form of a fuzzy soft set to tackle a variety of decision-making
problems. Using an interval-valued Pythagorean fuzzy set, Chander and Das [13]
presented a similarity measure in the application of medical diagnostics. The fuzzy
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Table 9.1 Analysis of LDFS in comparison with existing fuzzy techniques

Sets Comments Parameterization

FS Unable to manage with non-membership grades X

IFS Unable to manage with the condition UF (G) + NF (G) > 1 X

PFS Unable to manage with the condition UF (G) + NF (G) > 1 X

q-ROFS Unable to manage with the smaller values of “q” with the
condition, (UF (G))q + (NF (G))q > 1 and for UF (G) = 1,
NF (G) = 1

X

LDFS It manages to deal with the condition, (UF (G))q + (NF (G))q

≤ 1 as well as all other conditions that do not hold for FS, IFS,
PFS, and q-ROFS. LDFS works under the influence of reference
parameters (α, β). UF andNF can be chosen at will from [0, 1]

�

soft matrix theory and its applications were extended by Neog and Sut [14]. Intu-
itionistic fuzzy soft set matrix model was propounded by Chetia and Das [15, 16].
Various definitions for intuitionistic fuzzy soft matrices were proposed by Rajesh-
wari and Dhanalakshmi [17, 18]. Shanmugasundaram et al. [19] proposed a new
decision-making methodology based on intuitionistic fuzzy soft matrix (IFSM) and
a revised max-min average composition method, as well as demonstrated its use-
fulness in the selection of students depending on their abilities for the recruitment.
This method uses the revised max-min average composition method based on intu-
itionistic fuzzy soft matrices. It implies some restrictions to the decision-maker by
limiting the membership grades, which can affect the selection of the best alternative
in the decision-making process. Applying Pythagorean fuzzy soft sets, multi-criteria
group decision-making problems (MCGDM) based on the methodologies of TOP-
SIS and VIKOR were addressed by Naeem et al. [20]. M-polar fuzzy soft rough
sets were described by Akram et al. [21], and its applicability in MADM issues was
demonstrated. Das et al. [22] suggested an algorithmic method to predict unknown
information in a fuzzy soft set that is incomplete. Riaz et al. [23] developed LDFS
to include soft rough LDFS sets (LDFSRS) and demonstrated its use in sustainable
material handling equipment. Chander and Das [24] presented a differential evo-
lutionary optimization-based decision-making method based on an interval-valued
Pythagorean fuzzy set and compared DE to the particle swarm optimization tech-
nique in decision-making. Ejegwa [25] presented a Pythagorean fuzzy relation in
terms of max-min composition as a decision-making technique for determining the
suitability of employment in career placement for candidates based on academic
achievement. Krishnakumar et al. [26] proposed a new decision-making method
based on q-ROFS with evidence-based Bayes approximation and validated it in a
green supplier selection application. In soft set theory, the problem information is
represented in approximate manner without any restrictions on the problem param-
eters. The priority attribute strategy can be used to prioritize the attributes for the
alternatives which in turn affects the decision-making approach and rendering the
soft set theory better feasible and rational in decision-making methods.
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The motivation for this work comes from the fact that the structural space of
bounds of LDFS is much larger than that of other fuzzy sets like FS, IFS, PFS,
and q-ROFS. Experts in grading membership and non-membership values have no
hesitation about providing the problem information. As a result, LDFS success-
fully accommodates uncertainty by incorporating the reference parameters to non-
membership and membership grades, whereas other fuzzy sets do not have this kind
of reference parameters concepts. LDFSS is a hybridization of LDFS and soft set
which is significant for making decisions in uncertain situations with its ability to
systemize membership and non-membership grades with respect to priority criteria.
The integration of reference parameters to the LDFSS widens the problem space
available to the decision-maker, allowing him/her to assess membership and non-
membership grades without constraint. As a result, inclusion of reference parame-
ters and priority criteria in decision-making problems through LDFSS improves its
efficiency and decisiveness in uncertain environments. Other fuzzy sets, on the other
hand, cannot deal with the priority to the attributes in decision-making in particular.
The choice of priority attribute strategy for the attributes of the alternatives renders
the soft set theory better feasible and realistic in decision-making methods. In the
recent study, weighted aggregation operators, geometric weighted aggregation oper-
ators, etc., have been employing for obtaining the aggregated fuzzy values. However,
the attribute with higher value may influence the decision-making. With the use of
LDFSS, themax-min average compositionmethod canbe used as a feasible technique
inMADM environments to obtain the average score matrix of the alternatives for the
problem information,which can result in decisive and effective decision-making. The
revised max-min average composition method, which was earlier proposed employ-
ing intuitionistic fuzzy softmatrices, has its own limits and restrictions in the problem
representation’s structural space of bounds. To improve the aggregation operation
and structural scope for the effectiveness of decision-making, the revised max-min
average composition technique was adopted and used with LDFSS in the proposed
decision-making approach. This motivated us to propose LDFSS theory in uncertain
decision-making, which can effectively handle uncertainty in dubious environments
while ensuring reliable and effective decision-making.

The objective of this paper is to propose a decision-making approach based on
LDFSS that uses the revised max-min average composition method to overcome the
limitations and uncertainties associatedwith structural space of bounds for describing
the problem using reference parameters.

• In this paper, we propose a multi-attribute decision-making approach for choosing
the best alternative in uncertain situations based on LDFSS and revised max-min
average composition method.

• Initially, decision-makers/experts present the problem information in the form of
linear diophantine fuzzy soft matrices (LDFSMs). LDFSM is the matrix represen-
tation of LDFSS.

• Next the revised max-min average composition method is used to aggregate the
LDFSMs into a combined LDFSM.



9 A Linear Diophantine Fuzzy Soft Set-Based … 169

• Finally, we compute the score values of the alternatives in order to rank them. The
object with the maximum score value is chosen as the best alternative.

Moreover, we have shown the applicability of the proposed approach using a real-
time case study and evaluated the consistency of the proposed approach using three
different LDFS-based score functions where all of the three score functions produced
almost similar ranking order. To the best of our knowledge, many of the decision-
making approaches have not justified the decision-making as consistent. However,
LDFSS using max-min average composition method can ensure consistent decision-
making by choosing the same alternative for three different score functions.

The rest of the paper is organized as follows. Section 9.2 describes few basic con-
cepts related to fuzzy set theory and methodologies. A linear diophantine fuzzy soft
set (LDFSS)-basedMADMapproach usingmax-min average compositionmethod is
presented in Sect. 9.3. Section 9.4 shows the real-time case study with a comparative
analysis. Section 9.5 concludes the work.

9.2 Preliminaries

This section covers the preliminary information related to the proposed approach.

Definition 9.2.1 [2]: If F be a fuzzy set on a non-empty discourse space S = {G1,
G2, …, Gn}, then F is defined as

F = {G,UF (G) ‖ G ∈ S} (9.1)

Here UF (G) represents the grade of membership of the entity G in the fuzzy set F ,
and it belongs to [0, 1].

Definition 9.2.2 [3]: If F an intuitionistic fuzzy set on a non-empty discourse space
S = {G1, G2, …, Gn}, then F is defined as

F = {G,UF (G),NF (G) ‖ G ∈ S} (9.2)

UF (G) and NF (G) denote the grade of membership and non-membership of entity
G, respectively, where UF (G) andNF (G) range between [0 and 1], with a condition
0 ≤ UF (G) + NF (G) ≤ 1 for all G ∈ S. The grade of indeterminacy or hesitation π

for the fuzzy set F is πF = 1 − UF (G) − NF (G). Figure 9.1 depicts IFS graphically.

Definition 9.2.3 [4]: If F a Pythagorean fuzzy set on a non-empty discourse space
S = {G1, G2, …, Gn}, then F is distinguished as

F = {G,UF (G),NF (G) ‖ G ∈ S} (9.3)

UF (G) andNF (G) denote the grade of membership and non-membership of entity G,
respectively, where UF (G) and NF (G) range between [0 and 1], with a condition 0
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Fig. 9.1 Intuitionistic fuzzy
set

Fig. 9.2 Pythagorean fuzzy
set

≤ (UF (G))2 + (NF (G))2 ≤ 1 for all G ∈ S. The grade of indeterminacy or hesitation
π for the fuzzy set F is πF =

√
1 − (UF (G))2 − (NF (G))2. Figure 9.2 depicts PFS

graphically.

Definition 9.2.4 [5]: If F a q-rung orthopair fuzzy set on a non-empty discourse
space S = {G1, G2, …, Gn}, then F is distinguished as

F = {G,UF (G),NF (G) ‖ G ∈ S} (9.4)

UF (G) and NF (G) denote the grade of membership and non-membership of entity
G, respectively, where UF (G) andNF (G) range between [0 and 1], with a condition
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Fig. 9.3 q-rung orthopair
fuzzy set

0 ≤ (UF (G))q + (NF (G))q ≤ 1; q ≥ 1, for all G ∈ S. The grade of indeterminacy
or hesitation π for the fuzzy set F is πF = q

√
1 − (UF (G))q − (NF (G))q . Figure 9.3

depicts q-ROFS graphically.

Definition 9.2.5 [6]: If F a linear diophantine fuzzy set on a non-empty discourse
space S = {G1, G2, …, Gn}, then F is distinguished as

F = {G, (UF (G),NF (G)), (α, β) ‖ G ∈ S} (9.5)

UF (G) andNF (G), respectively, denote thegradeofmembership andnon-membership
of entity G in F , and α and β are the reference parameters with a condition UF (G) ∈
[0, 1], NF (G) ∈ [0, 1], α, β ∈ [0, 1], 0 ≤ α(UF (G)) + β(NF (G)) ≤ 1, and 0 ≤ α +
β ≤ 1 for all G ∈ S. The grade of indeterminacy or hesitation π for the fuzzy set F
is πF = 1 − α(UF (G)) + β(NF (G)). Figure 9.4 depicts LDFS graphically.

Definition 9.2.6 [7]: Let U be a non-empty universe of discourse and E be the set
of attributes, we consider A ⊆ E , then the pair (F, A) is called a soft set over U
when F is a mapping of E into the set of all subsets of the setU , i.e. F : E → P(U ),
where P(U ) is the power set of U .

9.3 Proposed Approach

Wepropose an LDFSS-based decision-making approach based on a revisedmax-min
average composition method in this section. The proposed method ensures effective
decision-making by allowing the decision-maker to prioritize the attributes of the
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Fig. 9.4 Linear diophantine
fuzzy set

problem information based on the characteristics of the LDFSS and revised max-
min composition.

Definition 9.3.1: Let U be a non-empty universe of discourse and E be the set of
attributes. Let LDFS(U ) denote the set of all LDFS of U and A ⊆ E , then the pair
(F, A) is called a linear diophantine fuzzy soft set (LDFSS) over U if and only if
F is a mapping of E into the set of all subsets of the set U, i.e. F : E → LDFS(U ),
where LDFS(U ) be the power set ofU . Alternatively, it can also be stated as follows:

(F, A) = (A, F(A)) : A ∈ E, F(A) ∈ LDFS(U )

Definition 9.3.2: Let (F, A) be an LDFSS in non-empty universe of discourse U ,
where U = G1,G2, . . . ,Gm , and E = C1,C2, . . . ,Cn be the set of attributes, then
the LDFSS (F, A), A ⊆ E is represented using linear diophantine fuzzy soft matrix
(LDFSM) in the form Dm×n = (Gi ) × (C j )m×n as

(Di j )m×n =
{

(G, (U j (Gi ),N j (Gi )), (α j (Gi ), β j (Gi ))) A ∈ E

(0, 1) A /∈ E
(9.6)

Here U(G,C),N(G,C) ∈ [0, 1] are the membership and non-membership grades of
the decision matrix G × C , and α(G,C), β(G,C) ∈ [0, 1] are the reference param-
eters to the corresponding membership and non-membership grades, respectively,
with the condition 0 ≤ α(G,C)U(G,C) + β(G,C)N(G,C) ≤ 1 and 0 ≤ α(G,C) +
β(G,C) ≤ 1, where i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

Example 1: Let U = {G1,G2,G3,G4} and E = {C1,C2,C3} respectively be the
set of alternatives and attributes. Say, LDFSS (F, E) is considered as (F, A) =
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{{C1, (G1,G2,G3)}, {C2, (G2,G4)}, {C3, (G1,G2,G3,G4)}}, A ∈ E which is shown
below.

(F, A) = F(C1) = {(G1, 〈0.86, 0.34〉, 〈0.75, 0.24〉), (G2, 〈0.75, 0.34〉, 〈0.60, 0.24〉),
(G3, 〈0.56, 0.44〉, 〈0.48, 0.26〉, (G4, 〈0, 0〉, 〈0, 0〉)},

F(C2) = {(G1, 〈0, 0〉, 〈0, 0〉), (G2, 〈0.46, 0.74〉, 〈0.28, 0.60〉), (G3, 〈0, 0〉, 〈0, 0〉), (G4,
〈0.99, 0.21〉, 〈0.88, 0.08〉)},

F(C3) = {(G1, 〈0.78, 0.35〉, 〈0.65, 0.25〉), (G2, 〈0.45, 0.41〉, 〈0.32, 0.27〉), (G3, 〈0.78,
0.59〉, 〈0.61, 0.49〉), (G4, 〈0.86, 0.35〉, 〈0.75, 0.24〉)}.

The corresponding LDFSM is represented as follows:

⎛

⎜⎜
⎝

(〈0.86, 0.34〉, 〈0.75, 0.24〉) (〈0, 0〉, 〈0, 0〉) (〈0.78, 0.35〉, 〈0.65, 0.25〉)
(〈0.75, 0.34〉, 〈0.60, 0.24〉) (〈0.46, 0.74〉, 〈0.28, 0.60〉) (〈0.45, 0.41〉, 〈0.32, 0.27〉)
(〈0.56, 0.44〉, 〈0.48, 0.26〉) (〈0, 0〉, 〈0, 0〉) (〈0.78, 0.59〉, 〈0.61, 0.49〉)

(〈0, 0〉, 〈0, 0〉) (〈0.99, 0.21〉, 〈0.88, 0.08〉) (〈0.86, 0.35〉, 〈0.75, 0.24〉)

⎞

⎟⎟
⎠

Definition 9.3.3: Let (B1)m×n = [pi j ] and (B2)m×n = [qi j ] be two LDFSSs, then
addition and subtraction of LDFSMs of B1 and B2 are defined as follows:

B1 + B2 = {max[UB1(pi j ),UB2(qi j )],min[NB1(pi j ),NB2(qi j )],
max[αB1(pi j ), αB2(qi j )],min[βB1(pi j ), βB2(qi j )]}

B1 − B2 = {min[UB1(pi j ),UB2(qi j )],max[NB1(pi j ),NB2(qi j )],
min[αB1(pi j ), αB2(qi j )],max[βB1(pi j ), βB2(qi j )]}

Definition 9.3.4: Let (B1)m×n = [pi j ] = (〈UB1(pi j ),NB1(pi j )〉, 〈αB1(pi j ),
βB1(pi j )〉) be a LDFSS, then the complement of LDFSM (Bc

1)m×n is defined as,

(Bc
1)m×n = [pi j ]m×n = (〈NB1(pi j ),UB1

(pi j )〉, 〈βB1(pi j ), αB1(pi j )〉)
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Revised Fuzzy Max-Min Average Composition Method

Definition 9.3.5: [19]: If B1 and B2 are linear diophantine fuzzy soft sets on a non-
empty discourse space U = G1,G2, . . . ,Gm , then revised fuzzy max-min average
composition for linear diophantine fuzzy soft set is distinguished as

B1 φ B2 =
{
Max

{
UB1(G) + UB2(G)

2

}
,Min

{
NB1(G) + NB2(G)

2

}
,

Max

{
αB1(G) + αB2(G)

2

}
,Min

{
βB1(G) + βB2(G)

2

} } (9.7)

Example 2: Assume B1 =
(

(〈0.86, 0.34〉, 〈0.75, 0.24〉)
(〈0.75, 0.34〉, 〈0.60, 0.24〉)

)
, B2 =

(
(〈0.78, 0.35〉, 〈0.65, 0.25〉)
(〈0.45, 0.41〉, 〈0.32, 0.27〉)

)

be two LDFSMs, then the following operations can be calculated as follows:

B1 + B2 =
(

(〈0.86, 0.34〉, 〈0.75, 0.24〉)
(〈0.75, 0.34〉, 〈0.60, 0.24〉)

)

B1 − B2 =
(

(〈0.78, 0.35〉, 〈0.65, 0.25〉)
(〈0.45, 0.41〉, 〈0.32, 0.27〉)

)

(B1)
c =

(
(〈0.34, 0.86〉, 〈0.24, 0.75〉)
(〈0.34, 0.75〉, 〈0.24, 0.60〉)

)

B1 φ B2 =
(

(〈0.82, 0.345〉, 〈0.7, 0.245〉)
(〈0.6, 0.375〉, 〈0.46, 0.255〉)

)

Procedure
ConsiderU = (G1,G2, . . . ,Gm),C = (C1,C2, . . . ,Cn),DMl = (DM1,DM2, . . . ,DMk)

be the respective set of alternatives, attributes, and decision-makers, and an LDFSM
for decision-maker DMl , l = 1, 2, . . . , k is represented by Dl

m×n = (UF (G),NF (G),

α, β) as shown below.

⎛

⎜⎜⎜⎜
⎝

(U11(G),N11(G), (α11, β11)) (U12(G),N12(G), (α12, β12)) · · · (U1n(G),N1n(G), (α1n , β1n))

(U21(G),N21(G), (α21, β21)) (U22(G),N22(G), (α22, β22)) · · · (U2n(G),N2n(G), (α2n , β2n))

.

.

.

.

.

. · · ·
.
.
.

(Um1(G),Nm1(G), (αm1, βm1)) (Um2(G),Nm2(G), (αm2, βm2)) · · · (Umn(G),Nmn(G), (αmn , βmn))

⎞

⎟⎟⎟⎟
⎠

Here (UF (G),NF (G), (αF , βF )) is calledLDFVsand0 ≤ α(UF (G)) + β(NF (G)) ≤
1 and 0 ≤ α(G) + β(G) ≤ 1, for all G ∈ U .

The proposed approach is presented below in step-wise manner.
Step 1: The LDFSMs (Dl

i j )m×n are constructed based on the choice attributes of the
experts or the decision-makers DMl , l = 1, 2, . . . , k.

(Dl
i j )m×n =

{
(〈Ul

j (Gi ),N
l
j (Gi )〉, 〈αl

j (Gi ), β
l
j (Gi )〉) A ∈ E

(0, 1) A /∈ E
(9.8)
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Here, E is the set of attributes, and A is the choice attributes of the LDFSSM.
Step 2: Then compute the aggregated LDFSM represented by R based on revised
max-min average composition method using below Eq. (9.9).

B1 φ B2 =
{
Max

{
UDl (G) + UDl (G)

2

}
,Min

{
NDl (G) + NDl (G)

2

}
,

Max

{
αDl (G) + αDl (G)

2

}
,Min

{
βDl (G) + βDl (G)

2

}} (9.9)

Step 3: Compute the score values of the alternatives Gi , i = 1, 2, . . . ,m, based on
the aggregated LDFSM R, by using one of the score functions such as the expected
score function (ESF), the quadratic score function (QSF), and the score function
(SF), given, respectively, in Eqs. (9.10), (9.11), and (9.12), where ESF (Gi ) ∈ [0, 1]
and QSF and SF (Gi ) ∈ [−1, 1].

ESF(Gi ) = 1

2

[
(U(Gi ) − N(Gi ) + 1)

2
+ (α(Gi ) − β(Gi ) + 1)

2

]
(9.10)

QSF(Gi ) = 1

2

[
((U(Gi ))

2 − (N(Gi ))
2) + ((α(Gi ))

2 − (β(Gi ))
2)

]
(9.11)

SF(Gi ) = 1

2
[(U(Gi ) − N(Gi )) + (α(Gi ) − β(Gi ))] (9.12)

Step 4: The better alternative is chosen based on the larger score value.

Flow chart: Selection for the best alternative by using LDFSS and max-min average
composition method (Fig. 9.5).

9.4 Case Study and Comparative Analysis

This section describes the proposed approachusing a real-time case studyon selection
of vehicle for a better environment, performance, and maintenance followed by
a comparative analysis. Vehicles play an important role in a country’s growth by
meeting the needs of people and goods. It serves a purpose in terms of economic
development. As a result, it is a necessary component for long-term energy and
economic development. Vehicles, on the other hand, have a considerable impact
on the environment by emitting gases and liquids as a result of fuel consumption
and hence contribute to air pollution. Therefore, it is important to select a vehicle
that has a minimal environmental effect, high performance, and low maintenance
requirements, as well as safety measures.

This case study demonstrates the selection of a vehicle from various kinds of
vehicles such as battery electric vehicles (BEVs), plug-in hybrid electric vehicles
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Fig. 9.5 Flowchart of the proposed approach

(PHEVs), hybrid electric vehicles (HEVs), petrol, diesel, bio-diesel, and compressed
natural gas (CNG) vehicles, and their description is given in Table 9.2. The selection
of the vehicle is based on the multiple attributes such as cost, performance and ride,
mileage, features and technology, and safety and comfort as given in Table 9.3 along
with the description.

This case study considers the opinions of three decision-makers regarding a set
of seven vehicles (alternatives) Gi = {G1,G2,G3,G4, G5,G6,G7} = {CNG vehicles,
PHEVs, HEVs, bio-diesel, diesel, petrol, BEVs} and five factors or criteria Cn =
{C1,C2,C3,C4,C5} = {cost, performance, mileage, features and technology, safety
and comfort}, where the decision-makers present their opinions in terms of LDFSMs.
A brief description about the vehicles and factors is, respectively, given in Tables 9.2
and 9.3. Among these vehicles (alternatives), the better vehicle is selected based on
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Table 9.2 Brief description about the vehicles

Symbol Alternatives Description Types

G1 CNG It has a gasoline internal
combustion engine and is
equipped with a fuel tank. It
emits fewer carbon emissions
into the atmosphere

Aircraft, helicopters, bus, trucks,
vans, cars, bikes, bicycles, etc.

G2 PHEVs A PHEV is powered with a
charging cable plug-in from an
electric power source. It is
internally attached with internal
combustion engine power
generator

Bus, utility trucks, trains,
military vans, cars, bikes, etc.

G3 HEVs A HEV is powered by both
rechargeable electric battery
packs and internal combustion
engine. It also has a fuel tank and
internal combustion engine

Bus, light trucks, vans,
high-performance cars, bikes,
aircraft, etc.

G4 Bio-diesel It is a renewable and
domestically derived from plants,
animal fats, and fatty acid esters.
It has high oxygen content more
than petrol and diesel, which
reduces the air pollution

Bus, vans, cars, bikes, bicycles,
etc.

G5 Petrol It has a spark-ignition internal
combustion engine that runs on
gasoline and other fuels. The fuel
tank holds gasoline until the
engine needs it. It produces
carbon dioxide and a little
amount of toxic emissions

Bus, trucks, boats, vans, cars,
bikes, etc.

G6 Diesel It uses an internal combustion
engine and works by
compressing air and combustion
gases. It emits less carbon
dioxide emissions

Bus, trucks, boats, vans, cars,
bikes, bicycles, etc.

G7 BEVs A BEV is powered by
rechargeable electric battery
packs, which stores chemical
energy with no fuel tank and
internal combustion engine

Bus, trucks, boats, vans, cars,
bikes, bicycles, etc.

five factors or criteria Cn = {C1,C2,C3,C4,C5} for precise and efficient decision-
making by the group of three decision-makers, where 1 ≤ i ≤ 7, 1 ≤ n ≤ 5.

Step 1: Initially, the group of three decision-makers provide their opinions about the
vehicles G = {G1,G2,G3,G4, G5,G6,G7} and their criteria/attribute C = {C1,C2,C3,
C4,C5} based on their preferred attribute represented in the formofLDFSMs (Dl)7×5
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Table 9.3 Brief description about the criteria

Symbol Criteria Description

C1 Cost This aspect includes the vehicle’s cost, which you want to be as
minimal as possible, and it is determined by factors such as
service, maintenance, features, and technology

C2 Performance It defines the vehicle’s mobility against all forces and constraints
as a function of its engine horsepower

C3 Mileage This feature calculates the vehicle’s mileage and is an important
factor to consider when choosing a vehicle

C4 Features and
technology

This attribute describes a vehicle’s technical evolution. It also
redefines the vehicle’s driving experience

C5 Safety and
comfort

This attribute describes a vehicle’s safety and comfort for the
passengers while driving

= (U(Gi ),N(Gi ), α(Gi ), β(Gi )), where l = 1, 2, 3. Decision-maker DM1 prefers the
criteria set/factors p = {C1,C2,C4,C5}, p ⊆ C to express his/her opinion about the
vehicles, and the corresponding LDFSM is given below.

Similarly, decision-makers DM2 and DM3 prefer the criteria set/factors p =
{C1,C2,C3,C4} and p = {C1,C2,C3,C5}, p ⊆ C , respectively, to express their
opinion about the vehicles, and the corresponding LDFSMs are given below.

Step 2: Revised max-min average composition method is applied on the three LDF-
SMs mentioned above in Step 1 using (9.9) in order to get the aggregated LDFSM
R as shown below. R = {G1, (〈0.63, 0〉, 〈0.41, 0.406〉),G2, (〈0.74, 0〉, 〈0.41, 0〉),
G3, (〈0.71, 0〉, 〈0.51, 0〉), G4, (〈0.69, 0.136〉, 〈0.61, 0.137〉), G5, (〈0.553, 0〉,
〈0.28, 0〉), G6, (〈0.78, 0.273〉, 〈0.41, 0.14〉),G7, (〈0.81, 0〉, 〈0.49, 0〉)}.
Step 3: Finally, we calculate the score values of the vehicles Gi = {G1, G2, G3, G4,
G5, G6, G7} = {CNG vehicles, PHEVs, HEVs, bio-diesel, diesel, petrol, BEVs}
based on the aggregated LDFSM R obtained in Step 2, by using one of the score
functions given in Eqs. (9.10), (9.11), and (9.12). The computed results for the score
values are given in Table 9.5.

Step 4: Since the alternative G7, i.e. BEV vehicle has the highest score value with
0.825, 0.65, and 0.448 for ESF, SF, and QSF score functions, respectively, among
all other vehicles, it is chosen as the best vehicle.

For the given case study, the application of the LDFSS and max-min average
composition method provides the G7 vehicle as the better vehicle for the three dif-
ferent score functions as given in Table 9.4. We have also compared the proposed
approach with the IFSM-based revised max-min approach [19], where the reference
parameters are not considered. The comparative results are given in Table 9.5, and
it shows that both the approaches yield G7 as the best option. It is also observed
that all of the three score functions produce almost similar order of ranking, which
determines the consistency of the proposed approach.



9 A Linear Diophantine Fuzzy Soft Set-Based … 179

Table 9.4 Computed results

Score
functions

G1 G2 G3 G4 G5 G6 G7

ESF 0.759 0.787 0.805 0.756 0.708 0.694 0.825

QSF 0.518 0.575 0.61 0.513 0.417 0.388 0.65

SF 0.281 0.357 0.382 0.405 0.192 0.341 0.448

Table 9.5 Comparative analysis

Methods Order of ranking

IFSM method [19] G7 > G1 > G2 > G3 > G5 > G4 > G6

Proposed method
using ESF

G7 > G3 > G2 > G1 > G4 > G5 > G6

Proposed method
using SF

G7 > G3 > G2 > G1 > G4 > G5 > G6

Proposed method
using QSF

G7 > G4 > G3 > G2 > G6 > G1 > G5

LDFSM given by DM1 of the form (U(Gi ),N(Gi ), α(Gi ), β(Gi ));

DM1 =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

(〈0.73, 0.41〉, 〈0.31, 0.13〉) (〈0.63, 0.53〉, 〈0.13, 0.23〉) (〈0, 0〉, 〈0, 0〉) (〈0.63, 0.53〉, 〈0.31, 0.36〉) (〈0.63, 0.53〉, 〈0.31, 0.36〉)
(〈0.63, 0.43〉, 〈0.41, 0.42〉) (〈0.74, 0.32〉, 〈0.63, 0.21〉) (〈0, 0〉, 〈0, 0〉) (〈0, 0〉, 〈0, 0〉) (〈0.63, 0.59〉, 〈0.61, 0.21〉)
(〈0.71, 0.34〉, 〈0.51, 0.31〉) (〈0, 0〉, 〈0, 0〉) (〈0, 0〉, 〈0, 0〉) (〈0.69, 0.38〉, 〈0.41, 0.31〉) (〈0, 0〉, 〈0, 0〉)
(〈0.69, 0.59〉, 〈0.61, 0.21〉) (〈0.81, 0.51〉, 〈0.31, 0.42〉) (〈0, 0〉, 〈0, 0〉) (〈0.73, 0.49〉, 〈0.28, 0.41〉) (〈0.69, 0.73〉, 〈0.31, 0.31〉)

(〈0, 0〉, 〈0, 0〉) (〈0.83, 0.41〉, 〈0.42, 0.31〉) (〈0, 0〉, 〈0, 0〉) (〈0.83, 0.49〉, 〈0.18, 0.41〉) (〈0.73, 0.41〉, 〈0.31, 0.13〉)
(〈0.63, 0.59〉, 〈0.41, 0.31〉) (〈0.78, 0.43〉, 〈0.38, 0.41〉) (〈0, 0〉, 〈0, 0〉) (〈0.58, 0.49〉, 〈0.31, 0.42〉) (〈0.72, 0.41〉, 〈0.51, 0.21〉)
(〈0.81, 0.58〉, 〈0.49, 0.31〉) (〈0.73, 0.68〉, 〈0.43, 0.49〉) (〈0, 0〉, 〈0, 0〉) (〈0, 0〉, 〈0, 0〉) (〈0, 0〉, 〈0, 0〉)

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

LDFSM given by DM2 of the form (U(Gi ),N(Gi ), α(Gi ), β(Gi ));

DM2 =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

(〈0.73, 0.41〉, 〈0.31, 0.13〉) (〈0.63, 0.53〉, 〈0.13, 0.23〉) (〈0, 0〉, 〈0, 0〉) (〈0.63, 0.53〉, 〈0.31, 0.36〉) (〈0, 0〉, 〈0, 0〉)
(〈0, 0〉, 〈0, 0〉) (〈0.74, 0.32〉, 〈0.63, 0.21〉) (〈0, 0〉, 〈0, 0〉) (〈0.71, 0.41〉, 〈0.43, 0.28〉) (〈0, 0〉, 〈0, 0〉)

(〈0.71, 0.34〉, 〈0.51, 0.31〉) (〈0, 0〉, 〈0, 0〉) (〈0, 0〉, 〈0, 0〉) (〈0, 0〉, 〈0, 0〉) (〈0, 0〉, 〈0, 0〉)
(〈0.69, 0.59〉, 〈0.61, 0.21〉) (〈0, 0〉, 〈0, 0〉) (〈0.83, 0.41〉, 〈0.32, 0.41〉) (〈0, 0〉, 〈0, 0〉) (〈0, 0〉, 〈0, 0〉)
(〈0.72, 0.41〉, 〈0.51, 0.21〉) (〈0.83, 0.41〉, 〈0.42, 0.31〉) (〈0.73, 0.41〉, 〈0.31, 0.42〉) (〈0.83, 0.49〉, 〈0.28, 0.41〉) (〈0, 0〉, 〈0, 0〉)
(〈0.63, 0.59〉, 〈0.41, 0.31〉) (〈0.78, 0.43〉, 〈0.38, 0.41〉) (〈0.63, 0.48〉, 〈0.28, 0.17〉) (〈0.58, 0.49〉, 〈0.31, 0.42〉) (〈0, 0〉, 〈0, 0〉)
(〈0.81, 0.58〉, 〈0.49, 0.31〉) (〈0.73, 0.68〉, 〈0.43, 0.49〉) (〈0, 0〉, 〈0, 0〉) (〈0, 0〉, 〈0, 0〉) (〈0, 0〉, 〈0, 0〉)

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

LDFSM given by DM3 of the form (U(Gi ),N(Gi ), α(Gi ), β(Gi ));

DM3 =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

(〈0, 0〉, 〈0, 0〉) (〈0.63, 0.53〉, 〈0.13, 0.23〉) (〈0, 0〉, 〈0, 0〉) (〈0, 0〉, 〈0, 0〉) (〈0.69, 0.59〉, 〈0.61, 0.21〉)
(〈0.63, 0.43〉, 〈0.41, 0.42〉) (〈0.74, 0.32〉, 〈0.63, 0.21〉) (〈0, 0〉, 〈0, 0〉) (〈0, 0〉, 〈0, 0〉) (〈0.63, 0.59〉, 〈0.61, 0.21〉)
(〈0.71, 0.34〉, 〈0.51, 0.31〉) (〈0, 0〉, 〈0, 0〉) (〈0.71, 0.41〉, 〈0.31, 0.41〉) (〈0, 0〉, 〈0, 0〉) (〈0, 0〉, 〈0, 0〉)
(〈0.69, 0.59〉, 〈0.61, 0.21〉) (〈0.81, 0.51〉, 〈0.31, 0.42〉) (〈0, 0〉, 〈0, 0〉) (〈0, 0〉, 〈0, 0〉) (〈0.69, 0.73〉, 〈0.31, 0.31〉)
(〈0.72, 0.41〉, 〈0.51, 0.21〉) (〈0.83, 0.41〉, 〈0.42, 0.31〉) (〈0.73, 0.41〉, 〈0.31, 0.42〉) (〈0, 0〉, 〈0, 0〉) (〈0.73, 0.41〉, 〈0.31, 0.13〉)
(〈0.63, 0.59〉, 〈0.41, 0.31〉) (〈0, 0〉, 〈0, 0〉) (〈0.63, 0.48〉, 〈0.28, 0.17〉) (〈0, 0〉, 〈0, 0〉) (〈0.72, 0.41〉, 〈0.51, 0.21〉)
(〈0.81, 0.58〉, 〈0.49, 0.31〉) (〈0.73, 0.68〉, 〈0.43, 0.49〉) (〈0, 0〉, 〈0, 0〉) (〈0, 0〉, 〈0, 0〉) (〈0, 0〉, 〈0, 0〉)

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦
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9.5 Conclusion

Applicability of the LDFSS-based proposed approach is enhanced by removing the
limits and ambiguities for defining membership and non-membership grades given
by experts or decision-makers and embraces more imprecision in decision-making.
The proposed approach is based on the concepts of LDFSSs and max-min average
composition method which ensure consistent decision-making. LDFSS is significant
enough formaking decisions in uncertain situationswith its ability to systemizemem-
bership and non-membership grades along with the priority criteria in the decision-
making process. The revised max-min average composition method aggregates the
LDFSS matrices. Then, the score values of the alternatives are computed from the
aggregated LDFSM, and alternative with larger score is selected. The applicability
of the proposed approach has been illustrated with a case study related to vehicle
selection. The consistency of our approach is justified by performing a comparative
analysis using three different score functions. The comparative analysis mentioned
in Table 9.5 shows the validity of the proposed approach. In future, this study can be
enhanced in many ways by employing aggregation operators, evidential reasoning
methodology, nonlinear programming, distance and similarity measures, and other
relevant techniques.
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Chapter 10
Recent Developments in Fuzzy Dynamic
Data Envelopment Analysis and Its
Applications

Rajinder Kaur and Jolly Puri

10.1 Introduction

Data envelopment analysis (DEA) is a performance evaluation tool. It is a nonpara-
metric technique based on a linear programming approach to estimate the relative
efficiencies of similar decision-making units (DMUs) in terms of multiple inputs–
outputs. The DMUs can be educational institutions, banks, bank branches, hospitals,
etc. Charnes et al. [1] initially proposed DEA in terms of constant returns to scale
and later on extended by Banker et al. [2] to introduce variable returns to scale in
DEA. The wide literature on DEA models can be seen in Cooper et al. [3], Tone [4],
Tone and Tsutsui [5], Li et al. [6], Kao [7], Emrouznejad and Yang [8], and Contreras
[9]. Despite all these extensions and the immense literature on DEA models, it has
two key limitations: (i) It measures the performance statically in a particular period
and ignores interrelationship present between consecutive periods, and (ii) it entails
crisply defined input and output data. However, observed data values are imprecise or
vague in real-life applications, e.g., data for customer satisfaction cannot be defined
crisply. Fuzzy dynamic DEA (FDDEA) is found to be an emerging area that enables
to evaluate a DMU’s efficiency by considering interrelationship in the form of car-
ryovers between consecutive periods. Gholizadeh et al. [10] incorporated fuzzy data
in dynamic DEA for the first time to measure the efficiency of the investment corpo-
rations in the stock exchange. The present study presents a review of fuzzy dynamic
DEA (FDDEA) during the last decade by classifying the studies into four categories

R. Kaur · J. Puri (B)
School of Mathematics, Thapar Institute of Engineering and Technology,
Patiala, Punjab 147001, India
e-mail: jolly.puri@thapar.edu

R. Kaur
e-mail: rkaur_phd19@thapar.edu

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
T. Som et al. (eds.), Fuzzy, Rough and Intuitionistic Fuzzy Set Approaches
for Data Handling, Forum for Interdisciplinary Mathematics,
https://doi.org/10.1007/978-981-19-8566-9_10

183

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-8566-9_10&domain=pdf
mailto:jolly.puri@thapar.edu
mailto:rkaur_phd19@thapar.edu
https://doi.org/10.1007/978-981-19-8566-9_10


184 R. Kaur and J. Puri

(i) theoretical development of FDDEAmodels with different fuzzy sets, (ii) FDDEA
with network structure, (iii) applications of FDDEA approach, and (iv) integration
of FDDEA with other operations research and/or artificial intelligence techniques
that facilitates practical situations. As per the available literature, the present work
seems to be the first review on FDDEA.

Section 10.2 presents an overview of dynamic DEA models followed by a review
of FDDEA in Sect. 10.3. Section 10.4 classifies the FDDEA studies into four cat-
egories for a systematic review of the FDDEA. Section 10.5 concludes the present
study.

10.2 Overview of Dynamic DEA

Sengupta [11–14] introduced the term dynamic efficiency to overcome the limita-
tion of DEA for not incorporating time effect into the analysis and evaluated the
performance of DMUs over different time periods connected through intermediates
or links. Nemoto and Goto [15, 16] presented a dynamic approach in which inputs
are categorized as variable inputs and quasi-fixed inputs, and later, this approach has
been extended by many authors in literature. Many of the studies in literature allo-
cated different weights to the intermediates according to their role of input or output
in production system. Based on the idea of Kao [17] of assigning the same weights
to the same factor, Kao [18] introduced a relational model to evaluate efficiency in
dynamic environment when all the periods are linked through intermediates which
are assigned the same weights no matter which period they belong to and are acting
as an input or output in that period. Figure 10.1 presents a simple dynamic structure
for kth DMU over q periods connected through intermediates or links. Consider n
number of DMUs for evaluation over q periods, and each DMU consumes l number
of inputs to produce s number of outputs. Let Xi j = ∑q

t=1 X
(t)
i j and Ygj = ∑q

t=1 Y
(t)
g j

be the i th (i = 1, . . . , l) system input and gth (g = 1, 2, . . . , s) system output for
DMU j ( j = 1, . . . , n), respectively, where X (t)

i j and Y (t)
g j , respectively, denote the

lth input and gth output of DMU j in period t , and Z (t)
d j (d = 1, 2, . . . , h) acts as

an intermediate between the two successive periods t and t + 1 (t = 1, . . . , q − 1).
Let the initial and final links for DMU j be denoted by Z (0)

d j and Z (q)

d j , respectively.
Model-1 [18] presents an output-oriented model to evaluate dynamic efficiency of
DMUk for the structure depicted in Fig. 10.1.
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Fig. 10.1 Dynamic structure of DMUk over q periods

Model-1

1/ES
k = min

l∑

i=1

vi Xik +
h∑

d=1

wd Z
(0)
dk

s.t.
s∑

g=1

ugYgk +
h∑

d=1

wd Z
(q)

dk = 1

(
l∑

i=1

vi Xi j +
h∑

d=1

wd Z
(0)
d j

)

−
⎛

⎝
s∑

g=1

ugYgj +
h∑

d=1

wd Z
(q)

d j

⎞

⎠ ≥ 0, j = 1, . . . , n,

(
l∑

i=1

vi X
(t)
i j +

h∑

d=1

wd Z
(t−1)
d j

)

−
⎛

⎝
s∑

g=1

ugY
t
g j +

h∑

d=1

wd Z
(t)
d j

⎞

⎠ ≥ 0,

j = 1, . . . , n; t = 1, . . . , q,

vi ≥ ε; ug ≥ ε; wd ≥ ε,

where ε > 0 is a non-Archimedean infinitesimal.
By using the optimal weights (v∗

i ∀i , u∗
g ∀g, w∗

d ∀d) derived from the Model-1,

system efficiency (ES
k ) and period efficiencies (E (t)

k ) for DMUk are defined as

ES
k =

∑s
g=1 u

∗
gYgk + ∑h

d=1 w∗
d Z

(q)

dk
∑l

i=1 v∗
i Xik + ∑h

d=1 w∗
d Z

(0)
dk

(10.1)

E (t)
k =

∑s
g=1 u

∗
gY

t
g j + ∑h

d=1 w∗
d Z

(t)
d j

∑l
i=1 v∗

i X
(t)
i j + ∑h

d=1 w∗
d Z

(t−1)
d j

∀t = 1, . . . , q. (10.2)

Since the second set of constraints in Model-1 is redundant as it can be obtained
by taking summation over the constraints corresponding to all periods, so by using
this relation and Eqs. (10.1) and (10.2), a relationship has been established between
system efficiencies and the period efficiencies which is defined as follows:
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1 − ES
k =

q∑

t=1

(
1 − E (t)

k

)
α(t), (10.3)

where α(t) =
(∑l

i=1 v∗
i X

(t)
ik + ∑h

d=1 w∗
d Z

(t−1)
dk

)
/
(∑l

i=1 v∗
i Xik + ∑h

d=1 w∗
d Z

(0)
dk

)
,

i.e., the complement of the system efficiency (1 − ES
k ) can be written as linear com-

bination of the period efficiencies (1 − E (t)
k ).

10.3 Fuzzy Dynamic DEA

While dealing with real-life problems, it is not always possible to collect precise or
crisp data, as in the case of customer satisfaction. The uncertainty or imprecisionmay
exist in the form of interval numbers, linguistic data, ordinal data, or fuzzy numbers.
This section is devoted to an overview of fuzzy set theory and its use in dynamic
DEA.

10.3.1 Fuzzy Set Theory

Definition 1 [19] A fuzzy set Ã in a universe of discourse X is defined by Ã =
{(x, μ Ã(x)) : x ∈ X}, where μ Ã : X → [0, 1] is the membership function of Ã and
μ Ã(x) represents the degree of belongingness of x in Ã.

Definition 2 [20] The support of a fuzzy set Ã, denoted by S( Ã), is a crisp set
defined by

S( Ã) = {x |μ Ã(x) ≥ 0}.

Definition 3 [20] A fuzzy set Ã in universe of discourse X is said to be convex if
and only if

μ Ã(λx + (1 − λ)y) ≥ min(μ Ã(x), μ Ã(y)), for all x, y ∈ X and 0 ≤ λ ≤ 1.

Definition 4 [20] Let Ã be a fuzzy set in universe of discourse X . Then, it is said to
be normal if μ Ã(x) = 1 for some x ∈ X.

Definition 5 [20] Let Ã be a fuzzy set in universe of discourse X . Then, it is said to
be a fuzzy number if it is both convex and normal.

Definition 6 [21] Let Ã be a fuzzy set in universe of discourse X . Then, an α-cut
of Ã, denoted by Ãα , is defined as Ãα = {x ∈ X |μ Ã(x) ≥ α}. It is a crisp set of all
those elements of X having membership degree greater than or equal to α in Ã.
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Definition 7 [22] An l-r fuzzy number, denoted by Ã = (n, n, ρ, φ)lr , is a fuzzy
number with membership function μ Ã given by

μ Ã(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

l

(
n − x

ρ

)

, n − ρ ≤ x ≤ n,

1, n ≤ x ≤ n,

r

(
x − n

φ

)

, n ≤ x ≤ n + φ,

0, otherwise,

where l : [0, 1] → [0, 1] and r : [0, 1] → [0, 1] are non-increasing continuous shape
functions with l(0) = r(0) = 1 and l(1) = r(1) = 0, [n, n] is the peak of Ã, and ρ,
φ are positive scalars.

Definition 8 [19] A triangular fuzzy number Ã = (a1, a2, a3) is a fuzzy number
with membership function μ Ã defined as

μ Ã(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x − a1
a2 − a1

, a1 < x ≤ a2,

x − a3
a2 − a3

, a2 ≤ x < a3,

0, otherwise.

Definition 9 [23] A fuzzy set ˜̃A is said to be a type-2 fuzzy set if membership
function of its elements is of type-1 fuzzy set.

Definition 10 [24] Let ˜̃A be a type-2 fuzzy set in a universe of discourse X with

membership function denoted by μ ˜̃A, then
˜̃A is said to be an interval type-2 fuzzy

set if μ ˜̃A(x, v) = 1, for all x ∈ X, v ∈ lx ⊆ [0, 1].

Definition 11 [24] A trapezoidal interval type-2 fuzzy set ˜̃A is defined as

˜̃A = ( ÃU , ÃL)

= ((dU
1 , dU

2 , dU
3 , dU

4 , h1( Ã
U ), h2( Ã

U )), (dL
1 , dL

2 , dL
3 , dL

4 , h1( Ã
L), h2( Ã

L))),

where ÃU and ÃL denote the trapezoidal upper and lower membership functions,
respectively, and hl( ÃU ) ∈ [0, 1], hl( ÃL) ∈ [0, 1] are the membership values of dU

l+1
and dL

l+1 (l = 1, 2), respectively.
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10.3.2 Fuzzy Set Theory and Dynamic DEA

Dynamic DEA is used to evaluate efficiency while keeping in mind the interde-
pendence of periods represented by carryovers from one period to the subsequent
period. However, the data for inputs and outputs as well as carryovers are not always
in precise or crisp form like customer satisfaction, and environmental pollution [25],
airport reputation, and social responsibility [26]. Zadeh [27] introduced fuzzy num-
bers to represent various imprecise data forms. Since then, several authors have
incorporated the concept of fuzzy in DEA and other performance measuring tech-
niques [19, 28]. Let the data for all inputs, outputs, and links be fuzzy numbers and
X̃ik , Ỹgk , and Z̃dk denote the i th fuzzy input, gth fuzzy output, and dth fuzzy link
for DMUk , respectively, then dynamic fuzzy efficiency is evaluated by using the
following model.

Model-2

1/Ẽ S
k = min

l∑

i=1

vi X̃ ik +
h∑

d=1

wd Z̃
(0)
dk

s.t.
s∑

g=1

ugỸgk +
h∑

d=1

wd Z̃
(q)

dk = 1,

(
l∑

i=1

vi X̃ i j +
h∑

d=1

wd Z̃
(0)
d j

)

−
⎛

⎝
s∑

g=1

ugỸg j +
h∑

d=1

wd Z̃
(q)

d j

⎞

⎠ ≥ 0, j = 1, . . . , n,

(
l∑

i=1

vi X̃
(t)
i j +

h∑

d=1

wd Z̃
(t−1)
d j

)

−
⎛

⎝
s∑

g=1

ugỸ
t
g j +

h∑

d=1

wd Z̃
(t)
d j

⎞

⎠ ≥ 0,

j = 1, . . . , n; t = 1, . . . , q,

vi ≥ ε; ug ≥ ε; wd ≥ ε,

where ε is a non-Archimedean infinitesimal and vi , ug , and wd are the respective
multipliers for i th fuzzy input, gth fuzzy output, and dth fuzzy link.

10.4 Classification of FDDEA Studies

The literature on Fuzzy dynamic DEA can be classified into four categories: (i)
Theoretical development of FDDEA models with different fuzzy sets, (ii) FDDEA
with network structure, (iii) applications of FDDEA approach, and (iv) integration
of FDDEA with other techniques are discussed in detail in subsequent sections.
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10.4.1 Theoretical Development of FDDEA Models with
Different Fuzzy Sets

Nemoto and Goto [15, 16] proposed an approach in which inputs are classified
into two categories, (i) variable inputs and (ii) quasi-fixed inputs, which cannot
be immediately adjusted without acquiring an adjustment cost [15, 29]. Based on
this idea of Nemoto and Goto [15, 16], Chiang and Tzeng [30] developed a multi-
objective DEAmodel in a dynamic framework which is further extended by Jafarian-
Moghaddam and Ghoseiri [21] in fuzzy environment. To solve the given model, they
reduced it to a single-objective model by using the membership function suggested
in Zimmermann [20].

Kordrostami et al. [31] and Keikha-Javan et al. [32] presented dynamic network
DEAmodels to evaluate interval overall and interval period efficiencies for the whole
system and each subunit. The subunits are connected in a parallel structure to each
other where the inputs and outputs are not known precisely and are known in the
form of interval numbers. Kordrostami et al. [31] also derived a relationship between
the interval system efficiency and interval subunit efficiencies in a dynamic environ-
ment.Keikha-Javan [32] classified carryovers as desirable carryovers and undesirable
carryovers to reflect the interdependence of periods more realistically. Soleimani-
damaneh [22] provided a theoretical discussion on fuzzy dynamic DEA approaches
for incorporating imprecise data.

Ghobadi et al. [33] extended the models presented by Emrouznejad and Yang
[8] and Jahanshahloo et al. [34] to deal with fuzzy inputs–outputs in a dynamic
environment and presented an inverse dynamic DEA model to evaluate efficiency
when data are in the form of LR fuzzy numbers.

As while evaluating efficiency using the DEA model, it is possible for more than
one DMUs to be regarded as efficient, so to further rank these efficient DMUs,
Andersen and Petersen [35] presented a concept of super-efficiency in DEA. Li et al.
[36] further extended it to incorporate dynamic factors and interval data. Yaghoubi et
al. [37] presented a dynamic random fuzzy data envelopment analysis (DRF-DEA)
model using a common set of weights methodology with mean chance constraints to
evaluate efficiency when the inputs–outputs data are in the form of random triangular
fuzzy numbers with normal distribution and to deal with the same type of data,
Yaghoubi and Amiri [38] presented a multi-objective stochastic fuzzy DEA model
with a common set of weights under mean chance constraints to evaluate efficiency
in a dynamic environment. Further, the DDEA model of Emrouznejad and Yang [8]
has been extended by Yen and Chiou [39] to handle fuzzy data and is solved by
embedding the fuzzy DEA approach of Lan et al. [40].

Zhou et al. [25] developed a goal sequence with the help of a benchmarkingmodel
based on dynamic DEA in an uncertain environment (triangular fuzzy number) and
used α-cut approach to measure efficiency and presented a layering scheme for the
suppliers. Ebrahimi et al. [41] developed a slacks-based approach in dynamic network
DEA with free disposal hull in which four types of carryovers (good, bad, discre-
tionary, and non-discretionary carryovers) are considered for the interdependence
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of two consecutive periods when the data for all the variables are interval numbers.
The main feature of their study is that all the inefficient DMUs are projected to the
existing DMUs on the frontier. Bansal and Mehra [42] introduced a directional dis-
tance function-based model, namely the interval dynamic network DEA model, to
estimate efficiency when the data for inputs and outputs are available in the form
of integers, intervals, or negative data. Both optimistic and pessimistic approaches
were followed to evaluate interval efficiencies when the periods are connected by the
desirable and undesirable carryovers.

10.4.2 FDDEA with Network Structure

Although dynamic DEA incorporates the time factor, there is still a limitation that
it ignores the internal structure of a DMU. To deal with the issue, many researchers
studied dynamic DEA with different types of network structures, which can be seen
in Hashimoto et al. [43], Avkiran andMcCrystal [44], Tone and Tsutsui [45], Khalili-
Damghani et al. [46], and Omrani and Soltanzadeh [47].

Kordrostami et al. [31] and Keikha-Javan et al. [32] presented DNDEA models
to study the internal structure of DMUs in a dynamic environment and evaluated
interval overall and interval period efficiencies for the whole system and each sub-
unit where the subunits are connected in parallel to each other, and the data are in an
imprecise form, particularly interval form. Kordrostami et al. [31] provided a rela-
tionship between the interval system efficiency and the interval efficiency of subunits
in a manner that the interval dynamic efficiency of all the systems can be derived by
taking the sum or average of the interval dynamic efficiency of its subunits.

Considering into account the complexity of structures present in real-life prob-
lems, Zadeh [23] introduced type-2 fuzzy sets. Olfat et al. [26] extended dynamic
network slacks-based measure (DNSBM) to deal with trapezoidal interval type-2
fuzzy data with undesirable inputs–outputs. Let there be n DMUs with three nodes
connected through links, and periods are connected through carryovers as depicted in
Fig. 10.2. The trapezoidal interval type-2 fuzzy data are transformed into the interval
data by deriving its lower and upper bounds fromEqs. (10.4) and (10.5), respectively.

Let ˜̃A be an interval type-2 fuzzy number [26] written as

˜̃A = ( ÃU , ÃL)

= ((dU
1 , dU

2 , dU
3 , dU

4 , h1( Ã
U ), h2( Ã

U )), (dL
1 , dL

2 , dL
3 , dL

4 , h1( Ã
L), h2( Ã

L))),

then lower (ML) and upper (MU ) bounds of transformed interval number are defined
as

ML = 1

6
(dU

1 + 2dU
2 )hU1 + 1

6
(dL

1 + 2dL
2 )hL

1 (10.4)



10 Recent Developments in Fuzzy Dynamic Data Envelopment 191

Fig. 10.2 Dynamic network
structure with three nodes
over two periods

Node 1

Node 2 Node 3

Node 1

Node 2 Node 3

Period t Period t+1

Input 1

Link (1,2) Link (1,3)

Input 1

Link (1,2) Link (1,3)

Output 2 Output 2 Output 1Output 3Output 1 Output 3

Carryover

MU = 1

6
(dU

4 + 2dU
3 )hU2 + 1

6
(dL

4 + 2dL
3 )hL

2 (10.5)

After transforming all the data into interval numbers, Olfat et al. [26] presented
an approach to evaluate the upper bound and lower bound of system efficiency for
DMUo in which they considered constraints related to every input (x), link (zlink),
carryovers (zcarry), and output (y) for all nodes. While writing the constraints, all the
undesirable inputs are considered as desirable outputs, whereas all the undesirable
outputs are treated as desirable inputs, respectively. Also, a link from node a to node
b is both an input (desirable) to node b and output (desirable) of node a. So two sets
of constraints related to desirable inputs–outputs for each node (k) and time period
(t) are presented in Eqs. (10.6) and (10.7), respectively.

n∑

j=1

x Lt
j λt

k j + st−in
ki = x Lt

o , ∀t; k = 1, 2, 3; i = 1, . . . , nin, (10.6)

n∑

j=1

yUt
j λt

k j + st−out
kr = yUt

o , ∀t; k = 1, 2, 3; r = 1, . . . , nout. (10.7)

Equations (10.8) and (10.9) depict the continuity of links between nodes and con-
tinuity of carryovers between two consecutive periods, respectively. Equation (10.10)
represents the variable returns to scale, and Eq. (10.11) represents the non-negativity
of weights and slacks.

n∑

j=1

zU (out)
link j λt

bj =
n∑

j=1

zL(in)
link jλ

t
a j , ∀t, ∀ j (10.8)

n∑

j=1

zU (out)
carry jλ

t
bj =

n∑

j=1

zL(in)
carry jλ

t+1
aj , ∀t, ∀ j (10.9)

n∑

j=1

λt
k j = 1, ∀k; ∀t, (10.10)
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∀s ≥ 0; ∀λ ≥ 0. (10.11)

The upper bound of system efficiency can be obtained from the objective function
defined in Eq. (10.12) subject to the constraints given by Eqs. (10.6)–(10.11).

EU
o = min

⎡

⎢
⎢
⎢
⎢
⎣

∑T

t=1
Wt

[
∑3

k=1
wk

[

1 − 1

nin + lin + cin

(
∑nin

i=1

st−in
ki

x Lto
+

∑lin

l=1

st−in
kl

zLtlink o

+
∑cin

c=1

s(t,t+1)−in
kc

zL(t,t+1)
carry o

)]]

∑T

t=1
Wt

[
∑3

k=1
wk

[

1 + 1

nout + lout + cout

(
∑nout

r=1

st−out
kr

yUt
o

+
∑lout

l=1

st−out
kl

zUt
link o

+
∑cout

c=1

s(t,t+1)−out
kc

zU (t,t+1)
carry o

)]]

⎤

⎥
⎥
⎥
⎥
⎦
(10.12)

Upper bound efficiencies of node k for DMUo in period t (EU (t)
ko ) and for whole

time interval (EU
ko) are evaluated using Eqs. (10.13) and (10.14).

EU (t)
ko = min

1 − 1

nin + lin + cin

(
∑nin

i=1

st−in
ki

x Lto
+

∑lin

l=1

st−in
kl

zLtlink o

+
∑cin

c=1

s(t,t+1)−in
kc

zL(t,t+1)
carry o

)

1 + 1

nout + lout + cout

(
∑nout

r=1

st−out
kr

yUt
o

+
∑lout

l=1

st−out
kl

zUt
link o

+
∑cout

c=1

s(t,t+1)−out
kc

zU (t,t+1)
carry o

) (10.13)

EU
ko = min

∑T

t=1
Wt

⎡

⎣1 − 1

nin + lin + cin

⎛

⎝
∑nin
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st−in
ki

x Lto
+

∑lin
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kl

zLtlink o

+
∑cin

c=1

s(t,t+1)−in
kc

zL(t,t+1)
carry o

⎞

⎠

⎤

⎦
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t=1
Wt

⎡

⎣1 + 1

nout + lout + cout

⎛

⎝
∑nout

r=1

st−out
kr

yUt
o

+
∑lout

l=1

st−out
kl

zUt
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+
∑cout

c=1

s(t,t+1)−out
kc

zU (t,t+1)
carry o

⎞

⎠

⎤

⎦

(10.14)

In a similar way, lower bound of system efficiency can be evaluated from objective
function defined in Eq. (10.15) subject to the constraints given by Eqs. (10.16) and
(10.17) with Eqs. (10.8)–(10.11) and lower bounds of interval efficiencies of node k
in period t (EL(t)

ko ) and for whole time interval (EL
ko) are evaluated using Eqs. (10.18)

and (10.19).

EL
o = min

⎡

⎢
⎢
⎢
⎢
⎣

∑T

t=1
Wt

[
∑3

k=1
wk

[

1 − 1

nin + lin + cin

(
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st−in
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+
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kl
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+
∑cin
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s(t,t+1)−in
kc

zU (t,t+1)
carry o

)]]

∑T

t=1
Wt

[
∑3

k=1
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[

1 + 1

nout + lout + cout

(
∑nout

r=1
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∑lout
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+
∑cout
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s(t,t+1)−out
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zL(t,t+1)
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⎤

⎥
⎥
⎥
⎥
⎦
(10.15)

n∑

j=1

x Lt
j λt

k j + st−in
ki = xUt

o , ∀t; k = 1, 2, 3; i = 1, . . . , nin, (10.16)

n∑

j=1

yUt
j λt

k j + st−out
kr = yLto , ∀t; k = 1, 2, 3; r = 1, . . . , nout. (10.17)
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EL(t)
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1 + 1
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(10.18)

EL
ko = min

∑T

t=1
Wt

[

1 − 1

nin + lin + cin

(
∑nin

i=1

st−in
ki

xUt
o

+
∑lin

l=1

st−in
kl

zUt
link o

+
∑cin

c=1

s(t,t+1)−in
kc

zU (t,t+1)
carry o

)]

∑T

t=1
Wt

[

1 + 1

nout + lout + cout

(
∑nout

r=1

st−out
kr

yLto
+

∑lout

l=1

st−out
kl

zLtlink o

+
∑cout

c=1

s(t,t+1)−out
kc

zL(t,t+1)
carry o

)]

(10.19)

Olfat and Pishdar [48] presented an extended version of DNSBM to evaluate both
optimistic and pessimistic efficiencies with interval type-2 fuzzy data in the presence
of undesirable inputs–outputs.

Although dynamic DEAmeasures the efficiency of a DMUby taking into account
the interdependence of periods, ignoring the internal structure ofDMUsmay produce
misleading results. Tone and Tsutsui [45] proposed a slacks-based dynamic network
DEA model to compute system and period efficiencies when there exist four types
of links (as input link, as output link, free link, and fixed link) between subdivisions
of a DMU, and similarly, the periods are connected through four types of carryovers,
namely desirable, undesirable, free, and fixed carryovers. A dynamic network struc-
ture with subdivisions linked to each other through intermediate links and periods
connected through carryovers is shown in Fig. 10.3. Soltanzadeh and Omrani [49]
introduced a dynamic network DEA (DNDEA) model to evaluate efficiency using
the α-cut approach when the data for inputs, outputs, and links are of type-1 fuzzy
data. They extended the dynamic DEA model proposed by Omrani and Soltanzadeh
[47] in the presence of fuzzy data.

Nomenclature

n : Number of DMUs ( j = 1, . . . , n)

K : Number of divisions in a DMU (k = 1, . . . , K )

p: Number of time periods (t = 1, . . . , p)
mk : Number of inputs of kth division and i k ∈ {1, 2, . . . ,mk}
sk : Number of outputs of kth division and rk ∈ {1, 2, . . . , sk}
lk : Number of links from kth division to the next division and lk ∈

{1, 2, . . . , lk}
dk : Number of carryovers at kth division from period t to t + 1 and

dk ∈ {1, 2, . . . , dk}
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Fig. 10.3 Dynamic structure with K divisions over two periods t and t + 1

X̃ (k,t)
i j : i th fuzzy input of DMU j for kth division in period t where i =

1, 2, . . . ,mk , . . . ,m
Ỹ (k,t)
g j : gth fuzzy output of DMU j for kth division in period t where r =

1, 2, . . . , sk , . . . , s
C̃ (k,t)
l j : i th fuzzy intermediate link of DMU j for kth to (k + 1)th division in

period t where l = 1, 2, . . . , lk, . . . , L
Z̃ (k,t)
d j : dth fuzzy carry-over of DMU j for kth division from period t to t + 1

where d = 1, 2, . . . , dk, . . . , D

Let X̃io = ∑p
t=1

∑K
k=1 X̃

(k,t)
io and Ỹro = ∑p

t=1

∑K
k=1 Ỹ

(k,t)
ro be the i th fuzzy system

input and r th fuzzy system output for DMUo and the initial fuzzy carryovers as inputs
to division k from period t0 and the final fuzzy carryovers as outputs from division k
at period p be denoted by Z̃ (k,t0)

do and Z̃ (k,p)
do , respectively. Then efficiency of DMUo

over p periods is evaluated using following model:

Model-3

ES
o = max

s∑

r=1

ur Ỹro +
K∑

k=1

D∑

d=1

fd Z̃
(k,p)
do

s.t.
m∑

i=1

vi X̃ io +
K∑

k=1

D∑

d=1

fd Z̃
(k,t0)
do = 1

s∑

r=1

ur Ỹr j +
K∑

k=1

D∑

d=1

fd Z̃
(k,p)
d j −

m∑

i=1

vi X̃ i j −
K∑

k=1

D∑

d=1

fd Z̃
(k,t0)
d j ≤ 0 ∀ j,
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∑

r∈r1
ur Ỹ

(1,t)
r j +

∑

l∈l1
wl C̃

(1,t)
l j +

∑

d∈d1

fd Z̃
(1,t)
d j −

∑

i∈i1
vi X̃

(1,t)
i j

−
∑

d∈d(1)

fd Z̃
(1,t−1)
d j ≤ 0∀ j; ∀t; k = 1,

∑

r∈rk
ur Ỹ

(k,t)
r j +

∑

l∈lk
wl C̃

(k,t)
l j +

∑

d∈dk

fd Z̃
(k,t)
d j −

∑

i∈i k
vi X̃

(k,t)
i j −

∑

l∈lk
wl C̃

(k−1,t)
l j

−
∑

d∈d(k)

fd Z̃
(k,t−1)
d j ≤ 0 ∀ j; ∀t; k = 2, . . . , K − 1,

∑

r∈r K
ur Ỹ

(K ,t)
r j +

∑

d∈dK

fd Z̃
(K ,t)
d j −

∑

i∈i K
vi X̃

(K ,t)
i j −

∑

l∈lk
wl C̃

(K−1,t)
l j

−
∑

d∈d(K )

fd Z̃
K (t−1)
d j ≤ 0 ∀ j; ∀t; k = K ,

vi ≥ ε ∀i; ur ≥ ε ∀r; fd ≥ ε ∀d; wl ≥ ε ∀l.

It is obvious that the efficiency obtained from fuzzy numbers will also be a fuzzy
number. Let μX̃i j

, μỸr j
, μZ̃d j

, and μC̃l j
be the membership functions of X̃i j , Ỹr j ,

Z̃d j , and C̃l j , respectively. Then, membership function μẼk
for system efficiency of

division k of DMUo denoted by Ẽk is given by

μẼo
(e) = sup

x,y,z,c
min
i.r.d.l

{μ(k,t)
X̃i j

(x(k,t)
i j ), μ

(k,t)
Ỹr j

(y(k,t)
r j ), μ

(k,t)
Z̃d j

(z(k,t)d j ), μ
(k,t)
C̃l j

(c(k,t)l j )|e

= Ek(x
(k,t)
i j , y(k,t)

r j , z(k,t)d j , c(k,t)l j )}

Soltanzadeh and Omrani [49] used α-cut approach to solve Model-3. The α-cuts
for X̃i j , Ỹr j , Z̃d j , and C̃l j are defined as follows:

(X (k,t)
i j )α =

⎡

⎢
⎣ min
X(k,t)
i j

{

X (k,t)
i j ∈ S(X̃ (k,t)

i j )|μ(k,t)
X̃i j

(X (k,t)
i j ) ≥ α

}

, max
X(k,t)
i j

{

X (k,t)
i j ∈ S(X̃ (k,t)

i j )|μ(k,t)
X̃i j

(X (k,t)
i j ) ≥ α

}
⎤

⎥
⎦

=
[

(X (k,t)
i j )

L

α
, (X (k,t)

i j )
U

α

]

(Y (k,t)
r j )α =

⎡

⎢
⎣ min
Y (k,t)
r j

{

Y (k,t)
r j ∈ S(Ỹ (k,t)

r j )|μ(k,t)
Ỹr j

(Y (k,t)
r j ) ≥ α

}

, max
Y (k,t)
r j

{

Y (k,t)
r j ∈ S(Ỹ (k,t)

r j )|μ(k,t)
Ỹr j

(Y (k,t)
r j ) ≥ α

}
⎤

⎥
⎦

=
[

(Y (k,t)
r j )

L

α
, (Y (k,t)

r j )
U

α

]



196 R. Kaur and J. Puri

(Z (k,t)
d j )α =

⎡

⎢
⎣ min
Z(k,t)
d j

{

Z (k,t)
d j ∈ S(Z̃ (k,t)

d j )|μ(k,t)
Z̃d j

(Z (k,t)
d j ) ≥ α

}

, max
Z(k,t)
d j

{

Z (k,t)
d j ∈ S(Z̃ (k,t)

d j )|μ(k,t)
Z̃d j

(Z (k,t)
d j ) ≥ α

}
⎤

⎥
⎦

=
[

(Z (k,t)
d j )

L

α
, (Z (k,t)

d j )
U

α

]

(C(k,t)
l j )α =

⎡

⎢
⎣ min
C(k,t)
l j

{

C(k,t)
l j ∈ S(C̃(k,t)

l j )|μ(k,t)
C̃l j

(C(k,t)
l j ) ≥ α

}

, max
C(k,t)
l j

{

C(k,t)
l j ∈ S(C̃(k,t)

l j )|μ(k,t)
C̃l j

(C(k,t)
l j ) ≥ α

}
⎤

⎥
⎦

=
[

(C(k,t)
l j )

L

α
, (C(k,t)

l j )
U

α

]

After using an α-cut approach and some transformations, Model-4(a) andModel-
4(b) were presented to measure the lower and upper bounds of system efficiency Ẽo

for each α.

Model-4(a)

(ES
o )

U
α = max ES

o =
∑s

r=1
ur (Yro)

U
α +

∑K

k=1

∑D

d=1
ẑ(k,p)do

∑m

i=1
vi (Xio)

L
α +

∑K

k=1

∑D

d=1
ẑ(k,t0)do

s.t.

∑s

r=1
ur (Yro)

U
α +

∑K

k=1

∑D

d=1
ẑ(k,p)do

∑m

i=1
vi (Xio)

L
α +

∑K

k=1

∑D

d=1
ẑ(k,t0)do

≤ 1,

∑s

r=1
ur (Yr j )

L
α

+
∑K

k=1

∑D

d=1
ẑ(k,p)d j

∑m

i=1
vi (Xi j )

U
α

+
∑K

k=1

∑D

d=1
ẑ(k,t0)do

≤ 1; ∀ j 	= o,

∑

r∈r1 ur (Y
(1,t)
ro )

U
α +

∑

l∈l1 ĉ
(1,t)
lo +

∑

d∈d1 ẑ
(1,t)
do

∑

i∈i1 vi (X
(1,t)
io )

L

α
+

∑

d∈d(1)
Ẑ (1,t−1)
do

≤ 1; k = 1,

∑

r∈r1 ur (Y
(1,t)
r j )

L

α
+

∑

l∈l1 ĉ
(1,t)
l j +

∑

d∈d1 ẑ
(1,t)
d j

∑

i∈i1 vi (X
(1,t)
i j )

U

α
+

∑

d∈d(1)
Ẑ (1,t−1)
d j

≤ 1; ∀ j 	= o; k = 1,

∑

r∈rk ur (Y
(k,t)
ro )

U
α +

∑

l∈lk ĉ
(k,t)
lo +

∑

d∈dk ẑ
(k,t)
do

∑

i∈i k vi (X
(k,t)
io )

L

α
+

∑

l∈lk ĉ
(k−1,t)
lo +

∑

d∈d(k)
Ẑ (k,t−1)
do

≤ 1; ∀k 	= 1, K ,

∑

r∈rk ur (Y
(k,t)
r j )

L

α
+

∑

l∈lk ĉ
(k,t)
l j +

∑

d∈dk ẑ
(k,t)
d j

∑

i∈i k vi (X
(k,t)
i j )

U

α
+

∑

l∈lk ĉ
(k−1,t)
l j +

∑

d∈d(k)
Ẑ (k,t−1)
d j

≤ 1; ∀ j 	= o; ∀k 	= 1, K ,

∑

r∈r K ur (Y
(K ,t)
ro )

U
α +

∑

d∈dk ẑ
(K ,t)
do

∑

i∈i K vi (X
(K ,t)
io )

L

α
+

∑

l∈lK ĉ(K−1,t)
lo +

∑

d∈d(K )
Ẑ K (t−1)
do

≤ 1; k = K ,
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∑

r∈r K ur (Y
(K ,t)
ro )

L
α +

∑

d∈dk ẑ
(K ,t)
do

∑

i∈i K vi (X
(K ,t)
io )

U

α
+

∑

l∈lK ĉ(K−1,t)
lo +

∑

d∈d(K )
Ẑ K (t−1)
do

≤ 1 ∀ j 	= o; k = K ,

wl (C
(k,t)
l j )

L

α
≤ ĉ(k,t)

l j ≤ wl (C
(k,t)
l j )

U

α
; ∀k; ∀t

fd (Z
(k,t)
d j )

L

α
≤ ẑ(k,t)d j ≤ fd (Z

(k,t)
d j )

U

α
; ∀k; ∀t

vi ≥ ε ∀i; ur ≥ ε ∀r; fd ≥ ε ∀d; wl ≥ ε ∀l.

Upper bounds of system and process efficiencies in each α-cut by using optimal
weights derived from Model-4(a) are defined as follows:

(ES
o )

U
α

=
∑s

r=1
u∗
r (Yro)

U
α +

∑K

k=1

∑D

d=1
ẑ(k,p)
do

∑m

i=1
v∗
i (Xio)

L
α +

∑K

k=1

∑D

d=1
ẑ(k,t0)
do

(ES(t)
o )

U
α

=
∑K

k=1

∑s

r=1
u∗
r (Y

(k,t)
ro )

U
α

+
∑K

k=1

∑D

d=1
ẑ(k,t)
do

∑K

k=1

∑m

i=1
v∗
i (X

(k,t)
io )

L

α
+

∑K

k=1

∑D

d=1
ẑ(k,t−1)
do

(E (1,t)
o )

U
α

=
∑

r∈r1 u
∗
r (Y

(1,t)
ro )

U
α

+
∑

l∈l1 ĉ
(1,t)
lo +

∑

d∈d1
ẑ(1,t)
do

∑

i∈i1 v∗
i (X

(1,t)
io )

L

α
+

∑

d∈d1
Ẑ (1,t−1)
do

(E (k,t)
o )

U
α

=
∑

r∈rk u
∗
r (Y

(k,t)
ro )

U
α

+
∑

l∈lk ĉ
(k,t)
lo +

∑

d∈dk
ẑ(k,t)
do

∑

i∈i k v∗
i (X

(k,t)
io )

L

α
+

∑

d∈dk
Ẑ (k,t−1)
do

; k = 2, . . . , K − 1

(E (K ,t)
o )

U
α

=
∑

r∈r K u
∗
r (Y

(K ,t)
ro )

L
α

+
∑

d∈dk
ẑ(K ,t)
do

∑

i∈i K v∗
i (X

(K ,t)
io )

U

α
+

∑

l∈l K ĉ
(K−1,t)
lo +

∑

d∈dK
Ẑ K (t−1)
do

Model-4(b)

(Es
o)

L
α = min θ − ε

⎛

⎝
m∑

i=1

s−i +
s∑

r=1

s+r +
L∑

l=1

K∑

k=1

slk +
D∑

d=1

K∑

k=1

sdk

⎞

⎠

s.t.
p∑

t=1

K∑

k=1

⎛

⎝λ
(k,t)
o · (X (k,t)

io )
U

α
+

n∑

j=1, j 	=k

λ
(k,t)
j · (X (k,t)

i j )
L

α

⎞

⎠ + s−i = θ(Xio)
U
α ; ∀i,

p∑

t=1

K∑

k=1

⎛

⎝λ
(k,t)
o · (Y (k,t)

ro )
L
α +

n∑

j=1, j 	=k

λ
(k,t)
j · (Y (k,t)

r j )
U

α

⎞

⎠ − s+r = (Yro)
L
α ; ∀r,

p∑

t=1

n∑

j=1

λ
(k,t)
j · c(k,t)l j −

p∑

t=1

n∑

j=1

λ
k+(1,t)
j · c(k,t)l j − slk = 0; ∀k; l ∈ lk ,
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p∑

t=1

n∑

j=1

λ
(k,t)
j ·

(
z(k,t)d j − z(k,t−1)

d j

)
+ z(1,p)do − sdk = θ z(1,1)do ; ∀k; d ∈ dk ,

(Cl j )
L
α

≤ cl j ≤ (Cl j )
U
α

; l = 1, . . . , L ,

(Zd j )
L
α

≤ zd j ≤ (Zd j )
U
α

; d = 1, . . . , D,

λ
(k,t)
j , s−i , s+r , slk , sdk ≥ 0, θ is free; ∀ j; ∀k; ∀t.

By using optimal weights derived from Model-4(b), lower bounds of system and
process efficiencies in each α-cut are defined as follows:

(ES
o )

L
α =

∑s

r=1
u∗
r (Yro)

L
α +

∑K

k=1

∑D

d=1
f ∗
d ẑ

(k,p)∗
do

∑m

i=1
v∗
i (Xio)

U
α +

∑K

k=1

∑D

d=1
f ∗
d ẑ

(k,t0)∗
do

(ES(t)
o )

L
α =

∑K

k=1

∑s

r=1
u∗
r (Y

(k,t)
ro )

L
α +

∑K

k=1

∑D

d=1
f ∗
d ẑ

(k,t)∗
do

∑K

k=1

∑m

i=1
v∗
i (X

(k,t)
io )

U

α
+

∑K

k=1

∑D

d=1
f ∗
d ẑ

(k,t−1)∗
do

(E (1,t)
o )

L
α =

∑

r∈r1 u
∗
r (Y

(1,t)
ro )

L
α +

∑

l∈l1 w∗
l c

(1,t)
lo +

∑

d∈d1 f ∗
d z

(1,t)∗
do

∑

i∈i1 v∗
i (X

(1,t)
io )

U

α
+

∑

d∈d1 f ∗
d z

(1,t−1)∗
do

(E (k,t)
o )

L
α =

∑

r∈rk u
∗
r (Y

(k,t)
ro )

L
α +

∑

l∈lk w∗
l c

(k,t)∗
lo +

∑

d∈dk f ∗
d z

(k,t)∗
do

∑

i∈i k v∗
i (X

(k,t)
io )

U

α
+

∑

d∈dk f ∗
d z

(k,t−1)∗
do

; k = 2, . . . , K − 1

(E (K ,t)
o )

L
α =

∑

r∈r K u∗
r (Y

(K ,t)
ro )

L
α +

∑

d∈dk f ∗
d z

(K ,t)∗
do

∑

i∈i K v∗
i (X

(K ,t)
io )

U

α
+

∑

l∈lK w∗
l c

(K−1,t)∗
lo +

∑

d∈dK
zK (t−1)∗
do

Olfat et al. [50] presented an interval type-2 fuzzy dynamic DEA model to deal
with uncertainties andmeasure the performance of DMUs in a dynamic environment.
Ebrahimi et al. [41] developed a slacks-based DNDEA model in which different
weights are assigned to different divisions, and the divisions are linked through four
types of links, namely input link, output link, free link, and fixed or non-discretionary
link. All the inputs, outputs, and links are in the form of interval numbers.

10.4.3 Applications of FDDEA

Jafarian-Moghaddam andGhoseiri [21, 51] proposed fuzzy dynamicDEA in amulti-
objective framework and evaluated the performance of 49 railways from all over the
world with fuzzy data in a dynamic environment. Kordrostami et al. [31] assessed
the efficiency of ten bank areas in Iran by proposing a DNDEA model. Each area
comprises three bank branches considered as subunits for three (six-month) periods



10 Recent Developments in Fuzzy Dynamic Data Envelopment 199

with interval data for inputs and outputs. Keikha-Javan et al. [32] also used the
same data as in Kordrostami et al. [31] to present an application of their model and
provided better results thanKordrostami et al. [31].Yaghoubi et al. [37] andYaghoubi
and Amiri [38] applied a dynamic random fuzzy DEA model on Iranian petroleum
company and evaluated the efficiency of five gas stations over two financial periods
using theDRF-DEAmodel andmulti-objective stochastic fuzzyDEA (MOFS-DEA)
model, respectively. The data used for inputs–outputs were in the form of random
triangular fuzzy number with normal distribution, and the efficiency results from
both the above-mentioned approaches turned out to be better than the hybrid genetic
algorithm proposed by Qin and Liu [52] to deal with fuzzy random inputs–outputs.

Considering the importance of sustainable development,Olfat et al. [26] suggested
an extension of DNSBM to calculate the sustainable performance of 28 airports in
Iran over two periods. The whole structure is divided into three nodes: (i) airport
node, (ii) community node, and (iii) passenger node, and the efficiency is evaluated
for each node in different periods as well as the system efficiency in the presence of
interval type-2 fuzzy data for inputs and outputs when some of the inputs–outputs
are undesirable. Olfat and Pishdar [48] investigated the efficiency of same 28 Iranian
airports with the same structure as studied in Olfat et al. [26], but by using both the
efficient and inefficient production frontiers, i.e., evaluated the efficiencies from both
optimistic and pessimistic viewpoints, whereas, in Olfat et al. [26], efficiencies were
evaluated using only optimistic viewpoint and revealed that the former approach
exhibits more discrimination power.

Soltanzadeh and Omrani [49] presented a DNDEA model to calculate the effi-
ciency of seven Iranian airlines for the period 2010–12. The network structure of
airlines consists of two stages, namely production and consumption, and the data for
inputs–outputs belong to the set of triangular fuzzy numbers. In the same manner,
Olfat et al. [50] introduced a DNDEA model to assess the performance of the 20
most popular passenger airports in Iran from the viewpoint of sustainability while
using interval type-2 fuzzy data for inputs–outputs.

Based on the ideas of Tone and Tsutsui [45] and Wang and Chin [53], Zhou et al.
[54] developed a double frontier dynamic network DEA approach for performance
evaluation of sustainable supply chains (SSCs) with a network structure of three
stages: (i) supplier stage, (ii) manufacturer stage, and (iii) distributor stage. Twenty
SSCs are considered for efficiency evaluation (system and period efficiencies) over
three periods with interval type-2 fuzzy data for customer satisfaction (desirable
output) and environmental pollution (undesirable output). Ebrahimi et al. [41] also
evaluated the efficiency of supply chains by using a slacks-based DNDEA model.
Thirty Iranian printing supply chains with three divisions (production, assembly,
and distribution) for three consecutive periods (2015–2017) are chosen for the case
study. The interval overall and period divisional efficiencies are evaluated along with
projected values for all the divisions of inefficient DMUs. Hasani and Mokhtari [55]
proposed a hybrid fuzzy multi-criteria decision-making (DEA-MCDM) model to
evaluate the efficiency of 11 Iranian hospitals with three nodes, namely hospital,
community, and patient node. Torabandeh et al. [56] presented a dynamic network
DEA model to evaluate and compare the performance of Iran with other countries.
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Zhou et al. [25] assessed the efficiency of 20 suppliers for three periods and also set
the practical goals (targets) for suppliers by using a goal sequence based on a dynamic
DEA model in an uncertain environment. Bansal and Mehra [42] investigated the
interval efficiency of 11 Indian airlines over three consecutive periods in the presence
of integer and negative data by using dynamic intervalDEA. Table 10.1 represents the
categorization of publications on applications of FDDEA studies which depicts its
implementation in sectors like airlines, supply chains, gas stations, banks, and various
other sectors, including railways, oil refineries, bus companies, and hospitals.

10.4.4 Integration of FDDEA with Other Techniques

Khodaparasti and Maleki [57] proposed an integrated approach in a dynamic fuzzy
environment by combining a dynamic location model and fuzzy simultaneous DEA
model for emergency medical services (EMS). Yaghoubi et al. [37] presented a
DRF-DEA model with fuzzy data, which is further converted to a multi-objective
programming problem and later on to a single-objective programming problem for
performance evaluation. Further, an integrated Monte Carlo simulation and genetic
algorithm have been designed to solve the single-objective programming.

Yaghoubi and Amiri [38] proposed a multi-objective stochastic fuzzy DEA
(MOFS-DEA)model to evaluate performance in adynamic environment anddesigned
an integrated meta-heuristic algorithm using imperialist competitive algorithm and
Monte Carlo simulation to solve the one objective stochastic model obtained from
the initial MOFS-DEA model by using infinite norm approach.
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Fig. 10.4 Year-wise publications of fuzzy dynamic data envelopment analysis
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Hasani and Mokhtari [55] developed a hybrid fuzzy DEA-MCDM model incor-
porating fuzzy decision-making trial and evaluation laboratory (DEMATEL) and
best-worst method (BWM) to evaluate the system and period efficiencies from inter-
val type-2 fuzzy data. To measure the future as well as past efficiency of suppli-
ers, Nikabadi and Moghaddam [58] developed a hybrid approach by combining an
adaptive neuro-fuzzy inference system and dynamic DEA. Figure 10.4 depicts the
year-wise publications of FDDEA studies for the periods 2011–2021, from which it
can be seen that each year has at least one publication, and the current year 2021 has
the highest number of publications on FDDEA in the last decade.

Table 10.1 Publications based on applied study and their characteristics
Area Study DMUs Inputs/outputs/links Citations

Airports Olfat et al. [26] 28 Inputs: budget, policy
making based on
sustainable
development concept
Outputs: non-aviation
income, level of
pollution, satisfaction
Links: number of
aircrafts (takeoff and
landing), service
quality
Carryovers: corporate
reputation

63

Olfat and Pishdar
[48]

28 Inputs: policy making
based on sustainable
development concept,
budget
Outputs: non-aviation
income, pollution
levels, satisfaction
Links: number of
aircrafts (takeoff and
landing), service
quality, perceived
social responsibility
Carryovers: corporate
reputation

8

Soltanzadeh and
Omrani [49]

7 Inputs: number of
employees
Outputs:
passenger-kilometer
performed, passenger
ton-kilometer
performed
Link: number of
scheduled flights,
available
ton-kilometer,
available
seat-kilometer

25

(continued)
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Table 10.1 (continued)
Area Study DMUs Inputs/outputs/links Citations

Olfat et al. [50] 20 – –

Bansal and Mehra
[42]

11 Inputs: operating
expenses
Outputs: operating
revenue, passengers
carried per month,
pax load factor per
month, cargo carried
per month
Carryovers: losses
carried forward after
tax, fleet size

–

Supply chains Zhou et al. [54] 20 Inputs: cost of labor
safety, other costs
Outputs: degree of
environmental
pollution
Links: value of raw
material, value of
finished products
Carryovers:
unrecovered revenue,
unpaid cost

24

Zhou et al. [25] 20 Inputs: technical and
financial capability,
cost of work safety
Outputs: value of raw
material,
environmental
pollution, degree of
customer satisfaction
Carryovers: accounts
receivable, accounts
payable

2

Ebrahimi et al. [41] 30 Inputs: production
capacity, planning
cost, cardboard and
ink cost, electricity
cost, machinery cost,
labor cost,
transportation cost,
environmental cost
Outputs: label and
catalog income,
income
Links: finished
goods, wasted
product, recycled
waste
Carryover:
depreciation

–

(continued)
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Table 10.1 (continued)
Area Study DMUs Inputs/outputs/links Citations

Gas stations Yaghoubi et al. [37] 5 Inputs: employees
salaries, operation
costs, net profit
Outputs: gasoline, net
profit
Carryover: net profit

3

Yaghoubi and Amiri
[38]

5 Inputs: employees
salaries, operation
costs, net profit
Outputs: gasoline, net
profit
Carryover: net profit

1

Banks Kordrostami et al.
[31]

30 Inputs: personnel
Outputs: usage
Carryover: resources

6

Keikha-Javan et al.
[32]

30 Inputs: personnel
Outputs: usage
Carryover: resources

2

Railways Jafarian-Moghaddam
and Ghoseiri [21]

49 Inputs: length of
single, double and
electrify track,
number of state and
private own wagons,
fleet size of
locomotives, coaches
and railcars, and
employees
Outputs: total train
kilometers, gross
train tonne
kilometers, gross
tonne kilometers,
gross tonne carried,
passengers, passenger
kilometers
Carryovers: gross
tonne kilometers and
passenger kilometers

38

Oil refineries Tavana et al. [59] 9 Inputs: feed, energy
consumption, fuel,
personal staff, degree
of complexity, API
Outputs: ratio of light
to heavy product,
waste
(non-permissible
CO2), permissible
CO2

17

(continued)
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Table 10.1 (continued)
Area Study DMUs Inputs/outputs/links Citations

Bus companies Yen and Chiou [39] 10 Inputs: operating
network, number of
buses
Outputs: operating
revenue, number of
bus runs, passenger
kilometers, passenger
satisfaction
Carryover: number of
buses

1

Hospitals Hasani and Mokhtari
[55]

11 Inputs: policy making
based on sustainable
concept, budget
Outputs:
non-healthcare
service income,
hospital waste,
satisfaction
Links: social
responsibility,
population coverage,
total bed number,
service quality
Carryover: hospital
reputation

1

10.5 Conclusion

Dynamic DEAwith fuzzy set theory is used to measure the inter-temporal efficiency
of similar DMUs in an uncertain environment. This study launches a taxonomy and
review of recent developments in FDDEA studies in the last decade, and it has been
found that FDDEA is still in its initial stage of development. Based on the types of
publications used in this paper, FDDEA studies are grouped into four categories, (i)
theoretical development of FDDEA models with different fuzzy sets, (ii) FDDEA
with network structure, (iii) application of FDDEA, and (iv) integration of FDDEA
with other techniques. Figure 10.4 and Table 10.1 clearly depict that FDDEA has
been emerging over the years with its concrete applications in various sectors.
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Chapter 11
Role of Centrality Measures in Link
Prediction on Fuzzy Social Networks

Shashank Sheshar Singh, Madhushi Verma, Samya Muhuri,
and Divya Srivastava

11.1 Introduction

The rapid growth of online social networks leads to immense application potential
such as outbreak detection, viral marketing, information sharing and dissemination,
link prediction, and rumor control. The social network analysis becomes a hot topic
in the research to tackle these real-world applications by analyzing the relationship
between user’s [1–3], user’s relative importance [4, 5], and investigating network
sub-structures [6]. The link prediction is the application of analyzing users and their
relationships in the network. Link prediction is the problemof identifying themissing
links and future links in the growing networks [1]. Therefore, the centrality measures
can be best suited for link prediction by analyzing node and their relationship. In
general, social network considers the connection strength based on their direct con-
nections and ignores the indirect impact of users on each other. Although, some
studies like the three-degree theory and the six-degree separation suggest that users’
impact is limited to their local regions rather than global. However, these studies also
consider users’ impact on three hops and six hop counts. Fuzzy theory can be more
suitable in these scenarios to incorporate imprecision and uncertainty of the user’s
impact on the network. We have utilized the six-degree separation to investigate an
individual influence locally and include the six hop distance between individuals.

The fuzzy social networks consider the fuzzy membership value for each non-
existing link along with existing connections by utilizing connectedness and their
path [7]. The connectedness measures the affinity of belongingness or closeness to
others. We have utilized connectedness with small-world phenomena to explore the
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closeness or possibility of knowing each other for predicting future links. Therefore,
this chapter utilizes centrality measures and fuzzy theory to predict future links on
social networks. The main contribution of the work is as follows.

• The real-worldweighted social networksmodeled into fuzzy social networks based
on six-degree separation and fuzzy theory. The membership function is defined to
estimate fuzzy connection strength by associating small-world phenomena.

• The likelihood score computation function is defined based on features like com-
mon neighbors, clustering coefficient, and preferential attachments. The node and
edge centrality measures are used for similarity index computation.

• The experiments are performed on real-world social networks. The performance of
different centrality measures is compared to various link prediction performance
matrices on fuzzy social networks. The experimental results validate the utility of
centrality measures for the link prediction problem.

The remainder of the chapter is distributed as follows. Section11.2 elaborates
basic concepts like network model, the taxonomy of centrality measures, etc. It
also presents an overview of various centrality measures used in this chapter for
link prediction. Section11.3 describes fuzzy social networks along with the link
prediction approach using centrality measures. Section11.4 presents an empirical
analysis of various centrality measures corresponding to the link prediction problem.
Finally, Sect. 11.5 presents concluding remarks of the chapter along with future
possibilities.

11.2 Preliminaries

11.2.1 Social Network

A social network can be represented through an undirected graph G(V, E) where
V signifies the set of vertices which in a social network implies people, enterprises,
organizations, groups, etc., and E denotes the set of edges. The edges depict the asso-
ciations, connection, relation, and flows between the nodes. These social networks
can also be presented using adjacency matrix which provides an insight about the
links between the nodes of the graph by just looking at the matrix. This mathematical
representation of social networks is easy to interpret and analyze as the associations
between the nodes become clearly visible. The adjacency matrix can be denoted as
M consisting of element mu,v ∈ (0, 1), where

mu,v =
{
1, if (u, v) ∈ E

0, otherwise

The degree of each node in a social network is computed by summing up the number
of edges incident on a node and can be denoted as D(u). An alternating sequence of
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Fig. 11.1 Centrality measures taxonomy [8]

nodes and links where each link lying between two nodes represents the association
between them is called a walk. Nodes may be repeated in a walk but a walk with
unique representation of nodes and edges is called a path. In a social network, if there
is a path between every pair of entities denoted by the nodes, then the network is
referred to as connected. The edges in the network can also haveweights representing
various parameters. Such a network is called weighted. If the edges in the network
have direction associated with it describing the direction of flow, then the network
is called connected. Neighbors of the node u, represented as N (u) is a set of nodes
adjacent to u i.e., mu,v = 1.

11.2.2 Centrality Measures

Figure11.1 presents the taxonomy of the centrality measures [9]. These centrality
measures can be node as well as edge centrality.

• Degree Centrality. It is a score assigned to the nodes based on the number of
edges incident on it. It is easy to compute and is equal to the degree of each node.
Degree centrality simply denotes howmany connections an entity or component of
the network have and higher the score, the more centrally located is the component
in the network. In a social network, if a node has 10 connections, then the degree
centrality would be 10. Similarly, if the vertex has only one edge incident on it,
then the degree centrality would be 1. In this centrality measure, the focus is on
the local structure rather than the global perspective and hence the complexity is
less. This measure is apt for fast processing applications.

• Edge Betweenness Centrality. This type of centrality helps in determining how
much a particular link (u, v) exists in-between of a path for a pair of nodes on
the network. It is computed by finding out the number of shortest paths in a
network between any pair of nodes that cross or pass through this link (u, v)
under consideration. A high value of betweenness indicates that the selected link
sufficiently influences the flow of information happening in the network as most
of exchange that takes places within two nodes passes through (u, v).
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• Closeness Centrality. Closeness is a measure which is computed by determining
the average shortest distance of each node in the network to all other nodes. A high
closeness value indicates that the node has large number of close associations, and a
small closeness value indicates a more central/important location in the network.
It finds application in identifying location for imparting services like shopping
complex.

• Betweenness Centrality. This type of centrality helps in determining howmuch a
particular node u exists in-between two other nodes of the network. It is computed
by finding out the number of shortest paths in a network between any pair of
nodes that cross or pass through this node u under consideration. A high value
of betweenness indicates that the selected node sufficiently influences the flow of
information happening in the network as most of exchange that takes places within
two nodes passes through u.

• PageRank Centrality. This type of centrality accounts for the direction of the
links. A vertex in the network is allotted a score based on the incoming links which
also carryweights based on the relative scores of their corresponding source nodes.
Hence, a higher PageRank score indicates that the node u under consideration is
quite influential in the network and the same is propagated to the other nodes
which are connected to u. The importance of a node is computed based on its
neighborhood instead of any sort of distance.

• Harmonic Centrality. This is a variant of closeness centrality. It can be used in
applications where the objective is to decide where the upcoming public services
should be located or positioned in the city so that it remains accessible to most
of the residents in the city. If the goal is to spread some important message in the
social networks, then this method can be used to select the influencing entities
which can help in achieving the goal of spreading the information. For a given
node u, harmonic centrality is computed as the sum of the inverse of shortest-path
distances between all other nodes in the network and u.

• Load Centrality. This is an edge-based centrality measure. It is computed as
the fraction of all the paths that pass through the edge under consideration (u, v)
and have a length less than a defined cut-off value. This centrality can be used
for analyzing the flow networks which are functioning well below their capacity
constraints.

11.2.3 Link Prediction

In today’s era, social networks have become very popular and play an important role
in representing the association between the entities or components. The links in the
network also signify the behavior of the relationship between the components and on
analyzing this behavior of interaction between the components, some useful insights
can be generated regarding the properties of the underlying network. Study of the
existing connections may also lead to prediction of new linkages whichmay possibly
exist, and this process is defined as link prediction. In link prediction, the task is to
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analyze the structure and behavior of the existing connections at a particular instant
of time and based on that determine the possibility of having links between some
other two nodes. Solutions designed for this purpose may lead to a better interpre-
tation of the overall network architecture and behavior, assessment and modeling
of the network and classification of the components which are unclassified. In the
recent past, this problem has gained a lot of attention from the researchers [10–12].
Initially, link prediction problem was applied in the academic citation networks and
social networks by Newman [1] and Liben-Nowell et al. [11], respectively. Few other
link prediction approaches include similarity-basedmethodswhich gained popularity
because of the low computational cost for complex graphs and easier implementation
of the algorithms. Out of the several similarity-based methods, in structural similar-
ities, the levels of the structure that include both local and global structures existing
in the network are used to calculate the probability score of those links which are not
currently existing in the network [13, 14]. Quasi-local similarity method combines
the advantages and important aspects of both, i.e., the local and the global indices.
In another strategy called the centrality-based link prediction, the likelihood score of
those links which may be non-existent at a particular instant is predicted using the
centrality index of the existing ones. It includes node as well as edge centrality [9].
The authors of [15] presented a link prediction algorithm considering node and edge
relevance on the multiplex social network by exploring distinct relationships. The
authors applied network aggregation to capture different relationships. Therefore,
single network algorithms can be easily applied to the proposed model. Samanta
et al. [16] presented a notion of influence under fuzzy settings. They have devel-
oped fuzzy parameters to capture real-world characteristics to measure individual
influence.

11.3 Centrality-Based Link Prediction

The growth and development of online social networks lead to the prediction of
new nodes and future links. Most of the existing work focuses on analyzing social
relationships and topological information to predict future links. This work divides
into three steps: (1) fuzzy social networkmodeling, (2) similarity index computation,
and (3) likelihood score computation.

11.3.1 Fuzzy Social Network Modeling

In general, social networks have been considered as a binary relation, i.e., a pair
of individuals are either connected or not. The binary relation only focuses on the
direct connections and ignores the connection strength. Sometimes, users are not
directly connected to each other, but they have some influence on each other based
on their similarity and closeness. However, the relationship among the user’s in
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the social network is vague in nature and associated with some terminology such
as weakly, strongly, moderately, equally, and extremely connected. Therefore, the
fuzzy set theory presented by Zadeh [17, 18] is best suited to incorporate connection
strength and dealing imprecision on social networks. There are some studies that
incorporate fuzzy theory with social networks to form fuzzy social networks [19]. A
fuzzy social network corresponding to a social network G(V, E) can be represented
as G̃FSN = (Ṽ , Ẽ), where Ṽ = V denotes the user’s in the network and Ẽ �= E
is the fuzzy relationship between individual’s which uses membership function to
assign relationship strength. If the network is an undirected fuzzy network, then
ẽuv = ẽvu , otherwise ẽuv �= ẽvu in case of directed fuzzy networks. The membership
function of connection strength is defined as µ(eu,v) = ∏i= j

i=1 w(evi ,vi+1) if there is
a path u − v1 − v2 − · · · − v j exists. Similarly, if there are l paths between u to
v then fuzzy connection strength can be computed as µ(eu,v) = ∑i=l

i=1 µ(e
i
u,v) and

µ(eu,v) = 0 when no path exists between u and v.
Some of the studies suggest that an individual influence is limited to its local

regions, such as three-degree theory and small-world phenomena. This chapter uti-
lizes a six-degree separation to compute the membership score for a pair of individu-
als in the fuzzy social network. For example, Table11.1 presents an influence graph
with edge weights are associated to its direct paths, i.e., path length l = 1. Then
using fuzzy modeling, the social network is converted to fuzzy social networks by
considering the indirect path for information spreading and communication. First,
the fuzzy strength of each pair is calculated corresponding to path length l, then a
cumulative fuzzy strength is calculated by incorporating all the paths less than l. This
is because all the paths are independent of each other in information sharing.

11.3.2 Similarity Index Computation

The centrality measures have been used to estimate similarity index between a pair of
nodes on fuzzy social networks. We have utilized seven centrality measures for both
node and edge similarity in this chapter. The similarity index IS(u, v) corresponding
to an edge (u, v) using edge centrality can be computed as IS(u, v) ← IC(u, v),
where IC(u, v) denotes edge centrality index for edge (u, v). Similarly, the similarity
index IS(u, v) [9] corresponding to an edge (u, v) using node centrality can be
computed as IS(u, v) ← IC (u)+IC (v)

2 , where IC(u) is node centrality for node u.

11.3.3 Likelihood Index Computation

Finally, the likelihood score for each non-existing edge (u, v) will be computed
to predict missing and future links [9]. The likelihood score IL(x, y) for a pair of
individuals (x, y) can be computed using feature set z as follows.
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Table 11.2 Dataset information

Dataset Nodes Edges Avd
degree

Radius Diameter Density ASPL ACC

LESMIS 77 254 6.597 3.000 5.000 0.087 2.607 0.573

CONTACT_
DIARY

123 597 9.707 2.000 4.000 0.080 2.047 0.542

FOOTBALL 35 118 6.743 3.000 5.000 0.198 2.062 0.339

WORLD_
TRADE

80 875 21.875 2.000 3.000 0.277 1.703 0.752

STARLINKS 113 607 10.743 −1.000 −1.000 0.096 2.127 0.677

SOCIALWORKJ 36 99 5.500 3.000 6.000 0.157 2.389 0.000

IL(x, y) ←
∑
z

IS(u, z) + IS(z, v)∑
w∈N out(z) IS(z, w)

where, z can be computed using common neighbors, clustering coefficient, prefer-
ential attachment, etc., feature sets.

11.4 Performance Analysis

This section has performed experiments on six real-world social networks over seven
centrality measures to analyze the link prediction performance. Table11.2 presents
the dataset information like size, average degree, radius, diameter, and density. We
have evaluated each centralitymeasure for link prediction on the fuzzy social network
over three performancemetrics area under the receiver operating characteristics curve
(AUC), Balanced Accuracy, and F1-Score [12, 20].

11.4.1 AUC

Table11.3 presents the comparison of different centrality measures performance in
terms of AUC metrics over six real-world social networks. The PageRank centrality
index performs best among all centrality measures in all the datasets except Starlinks
and World_trade datasets. The degree and closeness centrality perform best in Star-
links and World_trad datasets, respectively. The PageRank centrality is approximate
to other centrality measures on SocialWorkJ network dataset. The Load centrality
performs worst in Lesmis and Contact_diary datasets. The Edge Betweenness cen-
trality performs worst in Football, World_trade, and Starlinks datasets. The degree
centrality performs worst in SocialWorkJ dataset.
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Table 11.3 AUC results
Dataset Ratio Edge

betweenness
Closeness Betweenness Degree Load Harmonic PageRank

Lesmis 0.1 0.86166 0.91318 0.89102 0.90829 0.88947 0.89051 0.9135

0.2 0.84341 0.89639 0.88052 0.89103 0.87803 0.89596 0.90494

0.3 0.82694 0.88606 0.86139 0.87824 0.85575 0.87602 0.87029

0.4 0.80967 0.85118 0.83806 0.84812 0.83685 0.85048 0.84939

0.5 0.77652 0.80707 0.80494 0.81114 0.80363 0.81109 0.80799

Contact_
diary

0.1 0.88355 0.90382 0.88671 0.90321 0.8766 0.91414 0.90769

0.2 0.85586 0.87719 0.86337 0.88155 0.85606 0.87915 0.87413

0.3 0.82168 0.8417 0.82683 0.83868 0.82611 0.84608 0.84367

0.4 0.78173 0.79079 0.78343 0.79158 0.77508 0.79591 0.79755

0.5 0.72549 0.73546 0.73152 0.73474 0.72625 0.73092 0.73901

FootbalL 0.1 0.6226 0.65395 0.65352 0.66311 0.63973 0.63681 0.66347

0.2 0.61788 0.63089 0.64875 0.64633 0.63425 0.63381 0.64089

0.3 0.59977 0.61508 0.63906 0.64033 0.63499 0.62576 0.63009

0.4 0.59973 0.60918 0.60945 0.62282 0.61088 0.60769 0.61967

0.5 0.57193 0.592 0.59599 0.59277 0.58988 0.5915 0.59713

World_
trade

0.1 0.65015 0.89814 0.77364 0.7504 0.77022 0.82977 0.85136

0.2 0.63868 0.88158 0.77426 0.78085 0.77655 0.78379 0.84527

0.3 0.62725 0.86241 0.76874 0.74408 0.7729 0.74805 0.83465

0.4 0.62062 0.83214 0.77357 0.73559 0.76646 0.71378 0.81829

0.5 0.60478 0.8014 0.75605 0.73047 0.75147 0.70638 0.79511

Starlinks 0.1 0.87157 0.90925 0.90636 0.91264 0.90061 0.9178 0.90965

0.2 0.8575 0.89195 0.89135 0.89556 0.88933 0.88993 0.89266

0.3 0.83613 0.86714 0.86958 0.87401 0.87244 0.86557 0.87348

0.4 0.80544 0.83528 0.83657 0.84397 0.84175 0.83702 0.84262

0.5 0.76367 0.79251 0.79443 0.8032 0.80131 0.79372 0.80311

SocialWorkJ 0.1 0.28479 0.28389 0.28513 0.28285 0.28411 0.28208 0.28097

0.2 0.30186 0.30056 0.29938 0.30014 0.29901 0.29865 0.30211

0.3 0.32689 0.32325 0.32403 0.32274 0.32481 0.32087 0.32416

0.4 0.35217 0.34876 0.34806 0.34692 0.34893 0.35212 0.34908

0.5 0.37974 0.37858 0.37853 0.37734 0.3778 0.37875 0.37835

11.4.2 Balanced Accuracy

Table11.4 compares different centrality measures performance in terms of Balanced
Accuracymetrics over six real-world social networks. The PageRank centrality index
performs best among all centrality measures in all the datasets except Football and
Starlinks datasets. The degree centrality performs best among all centrality measures
in Football and Starlinks datasets. The Edge Betweenness centrality performs worst
among all centrality measures in all the datasets except Contact_diary dataset. The
Load centrality performs worst in Contact_diary dataset with respect to Balanced
Accuracy metrics.
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Table 11.4 Balanced accuracy results
Dataset Ratio Edge

betweenness
Closeness Betweenness Degree Load Harmonic PageRank

Lesmis 0.1 0.8111 0.84533 0.83854 0.85086 0.84272 0.83206 0.85443

0.2 0.79012 0.83755 0.83143 0.84093 0.83087 0.83874 0.85041

0.3 0.78406 0.83411 0.81257 0.83158 0.81032 0.82633 0.82579

0.4 0.76778 0.80863 0.79541 0.81094 0.79306 0.80648 0.80955

0.5 0.74858 0.78126 0.7722 0.78384 0.77391 0.78461 0.78076

Contact_
diary

0.1 0.84621 0.86896 0.82113 0.86676 0.81821 0.87922 0.86983

0.2 0.82093 0.85351 0.8113 0.85281 0.80452 0.85605 0.84853

0.3 0.78783 0.8188 0.78379 0.81007 0.78688 0.82383 0.81643

0.4 0.74839 0.77292 0.75433 0.77388 0.7489 0.77553 0.77924

0.5 0.70262 0.7178 0.70938 0.71985 0.70624 0.71521 0.72117

FootbalL 0.1 0.5898 0.62446 0.61502 0.64163 0.59195 0.61055 0.63208

0.2 0.58254 0.61526 0.61159 0.62479 0.60947 0.60748 0.62281

0.3 0.57246 0.58964 0.60608 0.61371 0.60617 0.60306 0.60004

0.4 0.5745 0.59125 0.58404 0.60644 0.58779 0.58779 0.59588

0.5 0.55287 0.58212 0.58099 0.58757 0.58291 0.57748 0.58762

World_
trade

0.1 0.59008 0.80486 0.69138 0.64987 0.68574 0.75672 0.76035

0.2 0.58461 0.80277 0.69087 0.69504 0.68968 0.69518 0.74716

0.3 0.58449 0.79074 0.68893 0.67237 0.69059 0.65258 0.73767

0.4 0.58833 0.76373 0.69277 0.66038 0.68773 0.61692 0.72855

0.5 0.5786 0.73881 0.68644 0.6575 0.68163 0.61446 0.7177

Starlinks 0.1 0.78696 0.82017 0.82759 0.82897 0.82173 0.82883 0.82981

0.2 0.77426 0.81366 0.81813 0.82381 0.82042 0.81125 0.81993

0.3 0.75774 0.79602 0.80289 0.80613 0.8068 0.79259 0.80498

0.4 0.7349 0.77368 0.77834 0.78205 0.78222 0.77544 0.78471

0.5 0.70428 0.74713 0.75363 0.76078 0.75776 0.74783 0.7614

SocialWorkJ 0.1 0.35684 0.36306 0.37939 0.38882 0.37753 0.36334 0.37732

0.2 0.35909 0.36527 0.38113 0.3831 0.38142 0.36586 0.36911

0.3 0.3672 0.36974 0.37897 0.38665 0.38134 0.37018 0.37879

0.4 0.37553 0.36432 0.37736 0.38673 0.37629 0.36645 0.37511

0.5 0.39301 0.37942 0.38337 0.38633 0.38322 0.379 0.38102

11.4.3 F1-Score

Table11.5 compares different centrality measures performance in terms of F1-Score
metrics over six real-world social networks. The Betweenness centrality performs
best among all centrality measures in Contact_diary and Starlinks datasets. The
Load centrality performs best in the Lesmis dataset with respect to F1-Score met-
rics. The PageRank centrality index performs best among all centrality measures in
Contact_diary dataset. The Edge Betweenness centrality performs worst among all
centrality measures in all the datasets except Lesmis and Contact_diary datasets.
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Table 11.5 F1-score results
Dataset Ratio Edge

betweenness
Closeness Betweenness Degree Load Harmonic PageRank

Lesmis 0.1 0.09351 0.08035 0.09586 0.08797 0.09722 0.07997 0.08842

0.2 0.16613 0.15711 0.17016 0.16403 0.17167 0.15628 0.16624

0.3 0.23396 0.22658 0.22489 0.2392 0.22632 0.21847 0.22434

0.4 0.28577 0.25998 0.25645 0.28296 0.25485 0.26073 0.26481

0.5 0.33848 0.31873 0.3104 0.32916 0.31277 0.31828 0.31105

Contact_
diary

0.1 0.09206 0.09007 0.10495 0.09102 0.10364 0.09158 0.08973

0.2 0.15971 0.173 0.18131 0.17442 0.17889 0.17385 0.17024

0.3 0.19742 0.22632 0.22476 0.21573 0.22994 0.22788 0.21861

0.4 0.22328 0.25143 0.24944 0.25075 0.2431 0.25226 0.25429

0.5 0.22888 0.24135 0.24237 0.24638 0.24343 0.23789 0.24399

FootbalL 0.1 0.06891 0.07969 0.07925 0.08779 0.07227 0.07543 0.08404

0.2 0.12123 0.13995 0.14123 0.14924 0.14036 0.13599 0.14752

0.3 0.16052 0.17297 0.18949 0.19416 0.18976 0.18351 0.18291

0.4 0.19925 0.21601 0.21193 0.23363 0.21471 0.21259 0.22152

0.5 0.20566 0.23518 0.23585 0.24167 0.2376 0.23048 0.24194

World_
trade

0.1 0.11471 0.18751 0.16825 0.16453 0.1649 0.20593 0.21883

0.2 0.18239 0.32934 0.28151 0.30719 0.27933 0.29781 0.34552

0.3 0.23361 0.42666 0.35712 0.36303 0.35978 0.33009 0.43226

0.4 0.27673 0.4714 0.41787 0.39515 0.40944 0.33005 0.4776

0.5 0.29675 0.49515 0.44806 0.42381 0.44164 0.35403 0.50107

Starlinks 0.1 0.06294 0.06914 0.07786 0.07574 0.0765 0.0706 0.07499

0.2 0.11819 0.13376 0.1469 0.14919 0.14807 0.13287 0.1457

0.3 0.16475 0.18771 0.20622 0.20209 0.20574 0.18502 0.19852

0.4 0.20119 0.22633 0.24311 0.24863 0.24627 0.22691 0.2461

0.5 0.22546 0.25758 0.27438 0.28571 0.27803 0.25833 0.27788

SocialWorkJ 0.1 0.11418 0.16322 0.1651 0.17954 0.15493 0.17253 0.17624

0.2 0.18563 0.23695 0.24948 0.26 0.24824 0.23877 0.24704

0.3 0.21859 0.2858 0.30321 0.30405 0.30334 0.27501 0.29962

0.4 0.23041 0.29035 0.31039 0.32152 0.31105 0.292 0.31374

0.5 0.23091 0.27878 0.30443 0.30886 0.30543 0.28098 0.30879

Some conclusions can also be made from the experiments about the correlation
between network properties and the performance of centrality measures correspond-
ing to link prediction. Datasets with clustering coefficient andGini Coefficient have a
positive relationship with performance, while average shortest path (ASP) and diam-
eter negatively correlate with performance. This is because diameter and ASP reflect
how easy to communicate with each other, while the clustering coefficient explores
the mutual connectedness between individuals.



220 S. S. Singh et al.

11.5 Conclusion and Future Directions

This chapter presents the study of link prediction over various centrality measures
on fuzzy social networks. Firstly, we model online social networks into the fuzzy
system based on path information and connectedness, such as three-degree theory
and six-degree separation phenomena. Then similarity indices of all the existing
connections have been computed. Next, the likelihood index of each non-existing
relationship has been estimated based on some feature sets such as common neigh-
bors, preferential attachment, and clustering coefficient. Finally, missing links are
predicted using supervised learning. The experimental results are obtained on real-
world social networks to analyze the performance of different centrality measures
over link prediction problems under fuzzy settings. This work only considers the
fuzzy connection strength between peers as it only considers centrality measures.
New fuzzy parameters, such as incorporating properties of the associated network,
the weighting factor of different relationships, structure-specific, etc., and centrality
indices, can effectively solve real-world problems. Many future directions can be
possible with the incorporation of information dissemination, contextual features,
multiple and dynamic networks, rough set theory and granular computing, game
theory, etc., to simulate more realistic settings.
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Chapter 12
Interval Solutions of Fractional
Integro-differential Equations by Using
Modified Adomian Decomposition
Method

Kasimala Narasimha Rao and S. Chakraverty

12.1 Introduction

In this chapter, we consider CFVFIDE as [1–3]:

cDαv(x) = a(x)v(x) + g(x) +
x∫

0

K1(x, s)M1(v(s))ds +
1∫

0

K2(x, s)M2(v(s))ds

(12.1.1)

with the initial condition,

v(0) = v0, (12.1.2)

where cDα is Caputo’s fractional derivatives (CFD), 0 < α ≤ 1, and v : J → R,

where J = [0, 1] is the continuous function (CF) which has to be determined,
g : J → R and Ki : J × J → R, i = 1, 2 are CF’s Mi : R → R, i = 1, 2 are
Lipchitz continuous functions. In Eqs. (12.1.1) and (12.1.2), to prove existence and
uniqueness result proved [3].
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The great mathematician Abel was the first person to give an application of frac-
tional derivatives (FD) in 1823 [4], who applied fractional calculus (FC) in the
solutions of an IE that arises in the formulations of the Tautochrone problem. The
fractional integro-differential equations have attractedmuchmore interest frommath-
ematicians and physicists, which provides efficiency for the description of many
practical dynamical problems arising in engineering and scientific disciplines such
as physics, biology, electrochemistry, chemistry, economy, electromagnetic, control
theory, and viscoelasticity [1, 5–12].

The idea of ADM is originally emerged in a pioneering paper by Adomian [13].
Researchers who made the most significant contributions in the applications and
developments of ADM are Rach [14], Wazwaz [15], Abbaoui [16], among others.
The MADM was introduced by Wazwaz [15].

The main objective of this chapter is to obtain the approximate solution of the
CFVFIDE in an uncertain environment by using the MADM. The uncertainty has
been taken here as an interval in the initial condition which is transformed to
parametric form to solve the CFVFIDE in different cases.

The structure of this chapter is divided into few sections, starting with an intro-
duction in Sect. 12.1, followed by some preliminaries related to basic definitions of
FC as Riemann–Liouville fractional derivatives (RLFD’s), CD’s, some basic interval
arithmetic, and integro-differential equation in Sect. 12.2. MADM is constructed for
solving the CFVFIDE in Sect. 12.3. Examples are illustrated in Sect. 12.4. Lastly,
the conclusion is drawn in Sect. 12.5.

12.2 Preliminaries

Some of the needful basic definitions are as follows:

Definition 2.1 (Riemann–Liouville Fractional Integral (RLFI) [17, 18]) The RLFI
of an order α > 0 of a function f is defined as

Jα f (X) = 1

�(α)

x∫

0

(x − s)α−1 f (s)ds, x > 0, α ∈ R+,

J 0 f (X) = f (x),

Here, R+ is called positive real numbers.

Definition 2.2 (Caputo Fractional Derivative (CFD) [17]) The CFD of f (x) is
defined as

cDα
x f (x) = Jm−αDm f (x)
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=
⎧⎨
⎩

1

�(m − α)

x∫

0

(x − s)m−α−1 d
m f (s)

dsm
ds, m − 1 < α < m

⎫⎬
⎭

= dm f (x)

dxm
, α = m, m ∈ N ,

where, α is called the parameter and order of the FD.
In the present chapter, α is considered as real and positive.
Some of the needful axioms are [3]:

I. Jα J v f = Jα+v f, α, v > 0.
II. Jαxβ = �(β+1)

�(β+α+1) x
β+α

III. Dαxβ = �(β+1)
�(β−α+1) x

β−α, α > 0, β > −1, x > 0.

IV. JαDv f (x) = f (x) −∑m−1
k=0 f (k)(0+) x

k

k! , x > 0, m − 1 < α ≤ m.

Definition 2.3 (Riemann–Liouville Fractional Derivative (RLFD) [17]) The RLFD
of order α > 0 is defined as

Dα f (x) = Dm Jm−α f (x), m − 1 < α ≤ m, m ∈ N

Definition 2.4 (Interval Arithmetic (IA) [19]) Usually, an interval is defined as δ̃ =[
δ, δ

]
, where δ, δ ∈ δ̃ which are the lower and upper bounds of the interval δ̃. Any

two intervals δ̃ and η̃ are considered to be equal if their corresponding bounds are
equal.

r -cut [19].
In interval analysis, interval uncertainty expresses uncertain data in terms of closed

intervals in the real line R such that

δ̃ = [
δ, δ

] = {
δ ∈ R/δ ≤ δ ≤ δ

}
,

where δ, δ ∈ R are the lower and upper bounds of δ̃, respectively.
Now r-cut is defined as

δ̃ = δ + (
δ − δ

)
r, where r is any parameter and r ∈ [0, 1].

Definition 2.5 (Integro-Differential Equations (IDE) [20]) An IE equation which
involves both integrals and derivatives then it is called an IDE. For example,

ψ
′
(x) +

x∫

x0

f (t, ψ(s))ds = g(x, ψ(x)), ψ(x0) = ψ0, x0 ≥ 0
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12.3 Modified Adomian Decomposition Method
(MADM) [3]

Let us consider the CFVFIDE as

cDαv(x) = a(x)v(x) + g(x) +
x∫

0

K1(x, s)M1(v(s))ds +
1∫

0

K2(x, s)M2(v(s))ds.

(12.3.1)

Applying J
α

on both sides of Eq. (12.3.1), we have

v(x) = v0 + Jα(a(x)v(x) + g(x) +
1∫

0

K1(x, s)M1(v(s)ds

+
1∫

0

K2(x, s)M2(v(s))ds

Adomain’s method v(x) is described in the series form

v =
∞∑
n=0

vn (12.3.2)

and the nonlinear function M decomposed as

M1 =
∞∑
n=0

Dn , M2 =
∞∑
n=0

En (12.3.3)

where Dn, En are called Adomian polynomial’s given by

Dn = 1

n!

[
dn

dϕn

(
M1

n∑
i=0

ϕivi

)]

ϕ=0

En = 1

n!

[
dn

dϕn

(
M2

n∑
i=0

ϕivi

)]

ϕ=0

The Adomian polynomials are written as,

D0 = M1(v0),

D1 = v1M
′
1(v0),
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D2 = v2M
′
1(v0) + 1

2
v2
1M

′′
1 (v0),

D3 = v3M
′
1(v0) + v1v2M

′′
1 (v0) + 1

3
v3
1M

′′′
1 (v0),

:
:

and

E0 = M2(v0),

E1 = v1M
′
2(v0),

E2 = v2M
′
2(v0) + 1

2
v2
1M

′′
2 (v0),

E3 = v3M
′
2(v0) + v1v2M

′′
2 (v0) + 1

3
v3
1M

′′′
2 (v0),

:
:

The components v0, v1, v2 . . . are determined recursively by

v0(x) = v(0) + Jα(g(x)),

:

vk+1(x) = Jα(a(x)vk(x)) + Jα

⎛
⎝

x∫

0

K1(x, s)Dkds +
∫ 1

0
K2(x, s)Ekds

⎞
⎠.

Having defined the components v0, v1, v2, . . .. the solution ‘v’ in a series form
defined by (12.3.2) follows immediately. It is important to note that the MADM
proposes that v0 is defined by the initial conditions and the function g(x) is
as described above. The other approximations, namely v1, v2, . . . , are derived
recurrently.

In MADM method, we assume the function Jαg(x) = W (x) can be divided into
two parts, namely W1(x) and W2(x). That is,

W (x) = W1(x) + W2(x). (12.3.4)

We apply this decomposition when the functionW (x) consists of many parts that can
be decomposed into two different parts [8, 13, 15, 16]. In this case,W (x) is usually a
summation of a polynomial and trigonometric or transcendental functions. A proper
choice for the part W1(x) is important and W2(x) consists of the remaining terms of
W (x). In comparison standard decomposition method, the MADM minimizes the
size of calculations and the cost of computational operations in the algorithm.
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Now, MADM procedure is,

v0(x) = v(0) + W1(x) (12.3.5)

v1(x) = W2(x) + Jα(a(x)v0(x)) + Jα

⎛
⎝

x∫

0

K1(x, s)D0ds +
1∫

0

K2(x, s)E0ds

⎞
⎠

: (12.3.6)

vk+1(x) = Jα(a(x)vk(x)) + Jα

⎛
⎝

x∫

0

K1(x, s)Dkds +
1∫

0

K2(x, s)Ekds

⎞
⎠, k ≥ 1

(12.3.7)

12.4 Illustrative Examples

In this section,we present the analytical technique based onMADMto solveCFVFID
equations.

Example 4.1 Consider the CFVFIDE of the form [2]:

cD0.5[v(x)] = x0.5

�(1.5)
− x2

2
− x2v(x)

3
+

x∫

0

sv(s)ds +
1∫

0

x2v(s)ds (12.4.1.1)

with the initial condition

ṽ(0) = [0, 0.5] (12.4.1.2)

using the r-cut approach, the initial condition becomes

v(0) = a + (b − a)r, here a = 0, b = 0.5, and r = parameter

v(0) = 0.5r (12.4.1.3)

By using operator J 0.5 on Eq. (12.4.1.1), we have

v(x) = v(0) + J 0.5

⎡
⎣ x0.5

�(1.5)
− x2

2
− x2v(x)

3
+

x∫

0

sv(s)ds +
1∫

0

x2v(s)ds

⎤
⎦
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v(x) = 0.5r + J 0.5

[
x0.5

�(1.5)
− x2

2

]
+ J 0.5

[
− x2v(x)

3

]

+ J 0.5

⎡
⎣

x∫

0

sv(s)ds +
1∫

0

x2v(s)ds

⎤
⎦ (12.4.1.4)

from Eq. (12.4.1.1), we observe g(x) = x0.5

�(1.5) − x2

2 . SupposeW (x) = J 0.5g(x) from
Eq. (12.4.1.4), we have

W (x) = J 0.5g(x) = J 0.5

[
x0.5

�(1.5)
− x2

2

]

= 1

�(1.5)�(0.5)

x∫

0

s0.5

(x − s)1−0.5
ds− 1

2�(0.5)

x∫

0

s2

(x − s)1−0.5
ds

= 1

�(1.5)�(0.5)

x∫

0

s0.5

(x − s)0.5
ds− 1

2�(0.5)

x∫

0

s2

(x − s)0.5
ds

= 1

�(1.5)�(0.5)

1∫

0

τ 0.5(1 − τ)−0.5xdτ− 1

2�(0.5)

1∫

0

τ 2(1 − τ)−0.5x2.5dτ

= x

�(1.5)�(0.5)
β(0.5, 1.5) − x2.5

2�(0.5)
β(0.5, 3)

= x − x2.5

�(3.5)
(12.4.1.5)

By using MADM,

W (x) = W1(x) + W2(x) = J 0.5g(x) = J 0.5

[
x0.5

�(1.5)
− x2

2

]
= x − x2.5

�(3.5)
(12.4.1.6)

The MADM recursive relations are,
v0(x) = v(0) + W1(x), from Eqs. (12.4.1.3), (12.4.1.5) and (12.4.1.6), we get

v0(x) = 0.5r + x (12.4.1.7)

v1(x) = W2(x) + J 0.5( f (x)v0(x))

+ J 0.5

⎛
⎝

x∫

0

K1(x, s)D0(s)ds +
1∫

0

K2(x, s)E0(s)ds

⎞
⎠
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= − x2.5

�(3.5)
+ J 0.5

[
− x2v0(x)

3

]
+ J 0.5

⎡
⎣

x∫

0

sD0(s)ds +
1∫

0

x2E0(s)ds

⎤
⎦

= − x2.5

�(3.5)
+ J 0.5

(
− x2

3
(0.5r + x)

)

+ J 0.5

⎛
⎝

x∫

0

s(0.5r + s)ds

⎞
⎠+ J 0.5

⎛
⎝

1∫

0

x2(0.5r + s)ds

⎞
⎠

= − x2.5

�(3.5)
+ J 0.5

(
7(0.5r)x2

6
+ x2

2

)

v1(x) = 0.3510512964r x2.5 (12.4.1.8)

Substitute Eq. (12.4.1.8) in Eq. (12.3.7), then we get

v2(x) = −0.01701388888r x5 + 0.06036098582r x2.5 (12.4.1.9)

using Eqs. (12.4.1.9) and (12.3.7), we have

v3(x) = 0.001163806421r x7.5 − 0.002925427473r x5 + 0.008672179333r x2.5

:
: (12.4.1.10)

The solution is v(x) = v0(x) + v1(x) + v2(x) + v3(x) + · · ·
By using Eqs. (12.4.1.7)–(12.4.1.10), the obtained solution is

v(x) = 0.5r + x + 0.3510512964r x2.5 − 0.01701388888r x5

+ 0.06036098582r x2.5 + 0.001163806421r x7.5 − 0.002925427473r x5

+ 0.008672179333r x2.5 + · · ·
v(x) = 0.5r + x + 0.4200844615r x2.5 − 0.01993931635r x5

+ 0.001163806421r x7.5 + · · · (12.4.1.11)

From Eq. (12.4.1.11), if r = 1

v(x) = 0.5 + x + 0.4200844615x2.5 − 0.01993931635x5

+ 0.001163806421x7.5 + · · · (12.4.1.12)

By using Eq. (12.4.1.11), if r = 0

v(x) = x (12.4.1.13)
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Fig. 12.1 Lower, center, and upper bound solutions of Example 4.1

From Eq. (12.4.1.11), if r = 1
2 (Fig. 12.1)

v(x) = 0.2500000000 + x + 0.2100422308x2.5 − 0.009969658175x5

+ 0.0005819032105x7.5 + · · · (12.4.1.14)

Problem 4.2 Here, the following form of CFVFIDE is considered [2]:

cD0.75[v(x)] = x0.25

�(1.25)
− x2

2
− x2v(x)

3
+

x∫

0

sv(s)ds +
1∫

0

x2v(s)ds (12.4.2.1)

with the initial condition

ṽ(0) = [0, 0.5] (12.4.2.2)

using the r-cut approach, the initial condition becomes

v(0) = a + (b − a)r, here a = 0, b = 0.5, and r = parameter

v(0) = 0.5r (12.4.2.3)

Now, applying J 0.75 operator on Eq. (12.4.2.1), we have
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v(x) = v(0) + J 0.75

⎡
⎣ x0.75

�(1.25)
− x2

2
− x2v(x)

3
+

x∫

0

sv(s)ds +
1∫

0

x2v(s)ds

⎤
⎦

v(x) = 0.5r + J 0.75

[
x0.75

�(1.25)
− x2

2

]
+ J 0.75

[
− x2v(x)

3

]

+ J 0.75

⎡
⎣

x∫

0

sv(s)ds +
∫ 1

0
x2v(s)ds

⎤
⎦g(x)

= x0.75

�(1.25)
− x2

2
(12.4.2.4)

from Eq. (12.4.2.1) we observe g(x) = x0.5

�(1.5) − x2

2 . Suppose R(x) = J 0.75g(x) from
Eq. (12.4.2.4), we have

W (x) = J 0.75g(x) = J 0.75

[
x0.25

�(1.25)
− x2

2

]

= 1

�(1.25)�(0.75)

x∫

0

s0.25

(x − s)1−0.75
ds− 1

2�(0.75)

x∫

0

s2

(x − s)1−0.75
ds

= 1

�(1.25)�(0.75)

1∫

0

τ 0.25(1 − τ)−0.25xdτ

− 1

2�(0.75)

1∫

0

τ 2(1 − τ)−0.25x2.75dτ

= x

�(1.25)�(0.75)
β(0.75, 1.25) − x2.75

2�(0.75)
β(0.75, 3)

= x − x2.75

�(3.75)
(12.4.2.5)

Now using MADM is,

W (x) = W1(x) + W2(x) = J 0.75g(x) = J 0.75

[
x0.25

�(1.25)
− x2

2

]
= x − x2.75

�(3.75)
(12.4.2.6)

The MADM recursive relations are,
v0(x) = v(0) + W1(x), from Eqs. (12.4.2.3), (12.4.2.5), and (12.4.2.6), we have

v0(x) = 0.5r + x (12.4.2.7)
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v1(x) = W2(x) + J 0.75( f (x)v0(x))

+ J 0.75

⎛
⎝

x∫

0

K1(x, s)D0(s)ds +
1∫

0

K2(x, s)E0(s)ds

⎞
⎠

= − x2.75

�(3.75))
+ J 0.75

[
− x2v0(x)

3

]
+ J 0.75

⎡
⎣

x∫

0

sD0(s)ds +
1∫

0

x2E0(s)ds

⎤
⎦

= − x2.75

�(3.75))
+ J 0.75

(
− (0.5r)x2

3
− x3

3

)
+ J 0.75

(
(0.5r)x2

2
+ x3

3

)

+ J 0.75

(
(0.5r)x2 + x2

2

)

v1(x) = 0.2637733945r x2.75 (12.4.2.8)

Substitute Eq. (12.4.2.8) in Eq. (12.3.7), then we get

v2(x) = −0.008864931729r x5.50 + 0.03180635595r x2.75 (12.4.2.9)

From Eqs. (12.4.2.9) and (12.3.7), then we obtained

v3(x) = 0.0003600661419r x8.25 − 0.001068952290r x5.50 + 0.003218574687r x2.75

:
: (12.4.2.10)

The solution is v(x) = v0(x) + v1(x) + v2(x) + v3(x) + · · ·
By using Eqs. (12.4.2.7)–(12.4.2.10), then we obtained a solution that is

v(x) = 0.5r + x + 0.2637733945r x2.75 − 0.008864931729r x5.50

+ 0.03180635595r x2.75 + 0.0003600661419r x8.25 − 0.001068952290r x5.50

+ 0.003218574687r x2.75 + · · ·
v(x) = 0.5r + x + 0.2987983252r x2.75 − 0.009933884019r x5.50

+ 0.0003600661419r x8.25 + · · · (12.4.2.11)

From Eq. (12.4.2.11), if r = 1

v(x) = 0.5 + x + 0.2987983252x2.75 − 0.009933884019x5.50

+ 0.0003600661419x8.25 + · · · (12.4.2.12)

By using Eq. (12.4.2.11), if r = 0

v(x) = x (12.4.2.13)
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Fig. 12.2 Lower, center, and upper bound solutions of Example 4.2

From (12.4.2.11), if r = 1
2 (Fig. 12.2)

v(x) = 0.2500000000 + x + 0.1493991626x2.75

− 0.004966942010x5.50 + 0.0001800330710x8.25 + · · · (12.4.2.14)

12.5 Conclusions

The behavior of the approximate solution of the CFVFID equation in an uncertain
environment was successfully examined in this chapter usingMADM. This approach
converts the interval form of the initial condition to the parametric form, which is
then utilized to solve the integral problem. Corresponding results are presented, and
validation was accomplished by effectively comparing different cases.
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Chapter 13
Generalized Hukuhara
Subdifferentiability for Convex
Interval-Valued Functions
and Its Applications in Nonsmooth
Interval Optimization

Krishan Kumar, Anshika, and Debdas Ghosh

13.1 Introduction

Commonly, optimization problems are used to deal with deterministic values. So that
one can find precise solutions. However, there are many mathematical or computer
models of some deterministic real-world phenomena in which uncertainty appears.
We cannot handle this uncertainty with the exact solution. Therefore, to tackle this
kind of imprecise, interval analysiswas introduced.Keeping this practical importance
in mind, optimization problems having interval coefficient of objective functions,
namely interval optimization problems (IOPs), have been a significant research topic
in the past two decades. In 1966, Moore introduced interval arithmetic to deal with
intervals [1]. Subsequently, therewere few improvements on this arithmetic proposed
in [2]. However, H -difference in [2] was further found to be pretty much restrictive
[3]. Stefaninni and Bede [3] introduced a concept known as generalized Hukuhara
difference (gH -difference), which has been extensively used in interval analysis.

One can note that intervals are not linearly ordered. Therefore, the ordering of
intervals plays vital role in the study of interval arithmetic. Ishibuchi and Tanaka [4]
observed many partial ordering structures and their solutions for IOPs. After that,
many partial ordering relations are studied with their respective solutions concepts
for IOPs [5–8]. Recently, Ghosh et al. [9] studied the variable ordering relations for
intervals and their application to IOPs.
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Calculus plays a significant role to observe the characteristics of an IVF. Initially,
to develop the calculus for IVFs, the articles [10, 11] introduced the concept of
H -derivative for diverse mathematical analysis. However, this H -differentiability
was restrictive [8] because if T(x) = A � t (x), where A is a compact interval and
t (x) is a real-valued function, then T is not H -differentiable in case of t ′(x) < 0
[10]. To remove this deficiency, the concepts of gH -derivative for IVF have been
introduced by Stefanini and Bede [3]. After the definition of gH -derivative, Ghosh
[12] presented the notions of gH -partial derivative and gH -gradient for IVF. Ghosh
et al. [13] have proposed the concepts of gH -directional derivative, gH -Gâteaux
derivative, and gH -Fréchet derivative of IVFs. Also , in [14], a new concept of gH -
differentiability that is equipped with a linearity concept of IVFs has been illustrated.
After that, using the special product, the concept of gH -subdifferentiability for non
gH -differentiable IVF was introduced by Kumar et al. [15]. Many researchers have
extended this calculus of IVFs for instance [7, 15–18] and their reference in.

In the direction of solving IOPs, Wu [5] presented KKT optimality conditions
along with two solution concepts of IOPs. In the continuation, Bhurjee and Panda
[7] introduced efficient solution and a methodology to study the existence of solution
of an IOP. A linear bilevel program in which the coefficients of both the objective
functions are intervals is addressed by Calvate and Galê [19]. Subsequently, Chalco-
Cano et al. [8] considered two types of order relations and KKT conditions for
each relation as well. Also, Osuna-Gomez et al. [20] gave necessary and sufficient
conditions for gH -differentiable IVF. Ghosh et al. [21] using gH -differentiability
of IVFs, derived KKT conditions and duality theories for IOPs. Recently, Kumar
et al. [15] have given a new concept weak sharp minima to solve nonsmooth IOPs
using gH -subgradient of an IVF. Apart from this, many researchers have investigated
solution concepts of IOPs. They have developed the theories and techniques to find
efficient solutions to the IOPs (see [12, 16, 22, 23] and their references). From the
literature of IVFs and IOPs, it can be observed that the concept of gH -subgradient
and gH -subdifferential is recently introduced [15] but the compactness of the gH -
subdifferential set is not studied. For this chapter, we have two major contributions:
first, we show that if T is gH -continuous convex IVF, then its gH -subdifferential
set is compact on dom(T). Second, we present two optimality conditions using gH -
subgradient and gH -subdifferential in obtaining the efficient solution of nonsmooth
IOPs.

We have presented our work in the following manner. In Sect. 13.2, basic ter-
minologies and definition on intervals are provided. In the same section, several
important concepts such as special product, the dominance of intervals followed by
convexity and calculus of IVFs, are presented briefly. Next, the concept of the support
function of a subset of a set of intervals, the convex combination of intervals, and the
convex hull of a set of intervals are defined. In Sect. 13.3, the compactness of a gH -
subdifferential set of gH -continuous convex IVF is presented based on the notion
of gH -subdifferential set and on some of its properties. Thereafter, an interrelation
of the support function of a set of intervals is observed with the gH -subdifferential
set of convex IVF. Next, in the same section, we provide the supremum rule of gH -
subdifferential calculus for convex IVFs. Further, two optimality conditions to find
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an efficient point of IOPs are given in Sect. 13.4 along with an example that exem-
plify that the proposed conditions are necessary but not sufficient. Finally, the last
section is concerned with the conclusion and future scopes.

13.2 Preliminaries and Terminologies

In this section, we start with a few notations. After that, fundamental operations
of intervals are given. Subsequently, two important concepts special product and
dominance of intervals are illustrated that are used throughout the chapter. Next, we
present the necessary calculus of IVFs. Lastly, a convex combination of intervals and
a convex hull of a set of intervals are defined.

Following notations are used throughout the chapter:

• R and R+ denote the set of real numbers and the set of nonnegative real numbers,
respectively

• ‖·‖ denotes the Euclidean norm and 〈·, ·〉 denotes the standard inner product on
R

n

• I (R) represents the set of all closed and bounded intervals
• Bold capital letters refer to the elements of I (R)

• Bold capital letters with a cap refers to the elements of I (R)n

• I (R) = I (R) ∪ {−∞,+∞}
• B = {x ∈ R

n : ‖x‖ ≤ 1} denotes the closed unit ball in Rn

• 0 represents the interval [0, 0].

13.2.1 Fundamental Operations on Intervals

Consider two intervals P = [p, p] and Q =
[
q, q

]
. Then, the addition and the dif-

ference of two intervals are defined by

P ⊕ Q =
[
p + q, p + q

]
, P � Q =

[
p − q, p − q

]
,

respectively.
Similarly, the product of an interval P with a real number α is defined by

α � P = P � α =
{

[α p, α p], if α ≥ 0

[α p, α p], if α < 0.

The norm [1] of an interval P = [p, p] ∈ I (R) and an interval vector P̂ = (P1,P2,

. . . ,Pn)
� ∈ I (R)n is defined by
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‖P‖I (R) = max{|p|, |p|} and ‖P̂‖I (R)n =
n∑

i=1

‖Pi‖I (R),

respectively.
It is to note that a real number p, or more appropriately the singleton set {p},

can be represented by the interval [p, p]. In this case interval P = [p, p] is called
degenerate interval.

Definition 1 (gH-difference of intervals [3]). Let P,Q ∈ I (R) such that P = [p, p]
andQ = [q, q]. Then, the gH -difference between P andQ, denoted by P �gH Q, is
defined by

P �gH Q =
[
min{p − q, p − q}, max{p − q, p − q}

]
.

It can be seen that if C ∈ I (R) is gH -difference between P and Q, then

P = Q ⊕ C or Q = P � C,

and P �gH P = 0.

Definition 2 (Special product [15]). For an x = (x1, x2, . . . , xn)� ∈ R
n and a vec-

tor of intervals P̂ = (P1,P2, . . . ,Pn)
� ∈ I (R)n with Pi = [p

i
, pi ] for each i =

1, 2, . . . , n, the special product between x and P̂, denoted by x� � P̂, is given by

x� � P̂ =
[
min

{
n∑

i=1

xi pi ,
n∑

i=1

xi pi

}
,max

{
n∑

i=1

xi pi ,
n∑

i=1

xi pi

}]
.

Remark 1 It is easy to see that if all the components of P̂ are degenerate intervals,
i.e., P̂ ∈ R

n , then the special product x� � P̂ reduces to the standard inner product
of x ∈ R

n and P̂.

Definition 3 (Dominance of intervals [6]). Let P = [p, p] and Q = [q, q] be two
elements in I (R).

(i) Q is said to be dominated by P if p ≤ q and p ≤ q , and denoted by P � Q;
(ii) Q is said to be strictly dominated by P if P � Q and P �= Q, and denoted by

P ≺ Q. Equivalently, P ≺ Q if and only if any of the following holds:
‘p < q and p ≤ q’ or ‘p ≤ q and p < q’ or ‘p < q and p < q’;

(iii) if neither P � Q norQ � P, we say that none of P andQ dominates the other,
or P and Q are not comparable. Equivalently, P and Q are not comparable if
either ‘p < q and p > q’ or ‘p > q and p < q’.

Lemma 1 (See [1]). For P,Q ∈ I (R) and x ∈ R,

x � (P ⊕ Q) = x � P ⊕ x � Q.
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13.2.2 IVF and Its Calculus

Throughout this chapter, X is nonempty and X ′ is nonempty convex subsets of Rn ,
unless mentioned otherwise.

Definition 4 (gH-continuous IVF [12]). Let T : X → I (R) be an IVF on X . Let
x̄ ∈ X , and h ∈ R

n such that x̄ + h ∈ X . The IVF T is said to be gH -continuous at
x̄ if

lim‖h‖→0

(
T(x̄ + h) �gH T(x̄)

) = 0.

Definition 5 (gH-derivative [3]). The gH -derivative of an IVF T : R → I (R) at
x̄ ∈ R is defined by

T′(x̄) = lim
h→0

1

h
� (T(x̄ + h) �gH T(x̄)), provided the limit exists.

Definition 6 (gH -partial derivative [12]). Let x̄ = (x̄1, x̄2, . . . , x̄n)� be a point of
X . For a given i ∈ {1, 2, . . . , n}, we define a function H j by

H j (x j ) = T(x̄1, x̄2, . . . , x̄ j−1, x j , x̄ j+1, . . . , x̄n).

If the generalized derivative ofH j exists at x̄ j , then the j th gH-partial derivative of
T at x̄, denoted as D jT(x̄), is defined as

D jT(x̄) = H′
j (x̄ j ) for all j = 1, 2, . . . , n.

Definition 7 (gH -gradient [12]). Let X be a subset of Rn , then the gH-gradient of
an IVF T at a point x̄ ∈ X , denoted by ∇T(x̄) ∈ I (R)n , defined by

∇T(x̄) = (D1T(x̄), D2T(x̄), . . . , DnT(x̄))�.

Definition 8 (Convex IVF [5]). Let T : X ′ → I (R) be an IVF. The IVF T is said to
be convex on X ′ if for any x1,x2 ∈ X ′,

T(λ1x1 + λ2x2) � λ1 � T(x1) ⊕ λ2 � T(x2) for all λ1, λ2 ∈ [0, 1] with λ1 + λ2 = 1.

Lemma 2 (See [5]). Let T : X ′ → I (R) be an IVF such that T(x) = [T (x), T (x)]
for all x ∈ X ′, where T and T are real-valued functions defined on X ′. Then, T is
convex on X ′ if and only if T and T are convex on X ′.

Definition 9 (gH-directional derivative [13]). Let T be an IVF on X . Let x̄ ∈ X
and d ∈ R

n . Then, T has gH -directional derivative at x̄ in the direction d, if the limit

lim
λ→0+

1

λ
� (T(x̄ + λd) �gH T(x̄)

)
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exists, and it is denoted by TD (x̄)(d).

Definition 10 (gH-differentiability [12]). An IVF T is said to be gH -differentiable
at x̄ ∈ X if there exist two IVFs E(T(x̄); h) and Lx̄ : Rn → I (R) such that

T(x̄ + h) �gH T(x̄) = Lx̄ (h) ⊕ ‖h‖ � E(T(x̄); h)

for ‖h‖ < δ for some δ > 0, where lim‖h‖→0
E(T(x̄); h) = 0 and Lx̄ is such a function

that satisfies

(i) Lx̄ (x + y) = Lx̄ (x) ⊕ Lx̄ (y) for all x, y ∈ X , and
(ii) Lx̄ (cx) = c � Lx̄ (x) for all c ∈ R and x ∈ X.

Remark 2 (See [8]). Let T : X → I (R) be an IVF such that T(x) = [T (x), T (x)]
for all x ∈ X , where T and T are real-valued functions defined on X . Then, the
gH -derivative of T at x̄ ∈ X exists if the derivatives of T and T at x̄ exist and

T′(x̄) =
[
min

{
T ′(x̄), T ′

(x̄)
}

,max
{
T ′(x̄), T ′

(x̄)
}]

.

Definition 11 (Proper IVF). An extended IVFT : X → I (R) is called a proper IVF
if there exists x̄ ∈ X such that T(x̄) ≺ [+∞,+∞] and [−∞,−∞] ≺ T(x) for all
x ∈ X.

Definition 12 (Effective domain of IVF). The effective domain of an extended IVF
T : X → I (R) is the collection of all such points at which T is finite. It is denoted
by dom(T), i.e.,

dom(T) =
{
x ∈ X : ‖T(x)‖I (R) < ∞

}
.

Definition 13 (Indicator IVF). Let S be a nonempty subset ofRn .Then, the indicator
function δS : Rn → I (R) of S is defined by

δS(s) =
{
0 if s ∈ S

+∞ if s /∈ S.

Definition 14 (Convex combination of intervals). Let P̂ be an interval in I (R)n .
Then, P̂ is said to be a convex combination of intervals P̂1, P̂2, . . . , P̂m ∈ I (R)n if

P̂ =
m⊕
i=1

λi � P̂i with λi ≥ 0 and
m∑
i=1

λi = 1.

Definition 15 (Convex hull of a set of intervals). Let S be a nonempty subset of
I (R)n . Then, the convex hull of S, denoted by co(S), is defined by
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co(S) =
{
P̂ ∈ I (R)n : P̂ =

m⊕
i=1

λi � P̂i , P̂i ∈ S with λi ≥ 0 and
m∑
i=1

λi = 1

}
.

Remark 3 It is to be noted that if P̂ =
m⊕
i=1

λi � P̂i , where P̂ = (P1,P2, . . . ,Pn)
� ∈

I (R)n and each P̂i = (Pi1,Pi2, . . . ,Pin)
� ∈ I (R)n , then

Pk = [p
k
, pk] = ⊕m

k=1λk � Pik =⇒ p
k

=
m∑

k=1

λk pik, pk =
m∑

k=1

λk pik .

Definition 16 (Supremum of a subset of I (R) [16]). Let S ⊆ I (R). If an interval
P̄ ∈ I (R) is satisfyingQ � P̄ for allQ inS. Then, P̄ is an upper bound ofS.Moreover,
if an upper bound P̄ of S satisfy P̄ � C for all upper bounds C of S in I (R), then P̄
is called the supremum of S. We denote the supremum of S by sup S.

Remark 4 (See [16]). Let�be an index set. For anyS =
{
[aα, bα] ∈ I (R) : α ∈ �

}
,

we have supS =
[
sup
α∈�

aα, sup
α∈�

bα

]
.

Definition 17 (Support function of a subset of I (R)n [15]). Let S be a nonempty
subset of I (R)n . Then, the support function of S at x ∈ R

n , denoted by ψ∗
S (x), is

defined by
ψ∗

S (x) = sup
P̂∈S

x� � P̂.

Definition 18 (Supremum of an IVF [16]). Let S be a nonempty subset of X and
T : S → I (R) be an extended IVF. Then, the supremum ofT denoted as supx∈S T(x)
is equal to the supremum of range set of T, i.e.,

sup
x∈S

T(x) = sup{T(x) : x ∈ S}.

Lemma 3 (See [16]). Let T1 and T2 be two proper extended IVFs, and S be a
nonempty subset of X. Then,

sup
x∈S

{T1(x) ⊕ T2(x)} � sup
x∈S

T1(x) ⊕ sup
x∈S

T2(x).

13.3 gH-Subdifferential for Convex IVFs

This section provides the notion of gH -subdifferential set of convex IVFs and its
properties. Closedness, convexity, nonemptyness, etc. are given in [15]. Using these
properties, we present compactness of gH -subdifferential set of gH -continuous



244 K. Kumar et al.

IVF. Few interrelations between support function of a set of intervals and gH -
subdifferential set of convex IVF are also established. At the end of this section,
the supremum rule of gH -subdifferential calculus for IVFs is presented.

Definition 19 (gH-subdifferentiability [15]). Let T : X ′ → I (R) be a proper con-
vex IVF. Then, gH -subdifferential ofT at x̄ ∈ dom(T), denoted by ∂T(x̄), is defined
by

∂T(x̄) = {Ĝ ∈ I (R)n : (x − x̄)� � Ĝ � T(x) �gH T(x̄) for all x ∈ R
n
}
. (13.1)

The elements of (13.1) are known as gH -subgradients of T at x̄ . Further, if ∂T(x̄) �=
∅, we say that T is gH -subdifferentiable at x̄ .

Example 1 Consider an IVF T : X → I (R) be defined by T(x) = δS(x), where
δS(x) is indicator IVF of S, defined in Definition 13. If Ĝ is a gH -subgradient of T
at any x̄ ∈ S, then for all x ∈ X , we have

(x − x̄)� � Ĝ � δS(x) �gH δS(x̄)

⇐⇒ (x − x̄)� � Ĝ � 0.

Hence, the gH -subdifferential set of δS(x) at x̄ is

{Ĝ ∈ I (R)n : (x − x̄)� � Ĝ � 0 for all x ∈ X}. (13.2)

Remark 5 It is noteworthy to see that if T(x) = δS(x) in Example 1 is real-valued,
then Ĝ ∈ R

n . In this case, the gH -subdifferential set of δS(x) at x̄ is normal cone of
S at x̄ .

Definition 20 (Non-decreasing IVF). Let T : X → I (R) be an IVF. Then, T is a
non-decreasing IVF if for any x, y ∈ R

n such that

xi ≤ yi , for each i = 1, 2, . . . , n

=⇒ T(x) � T(y).

Theorem 4 Let T : X ′ → I (R) be a proper non-decreasing convex IVF. Then, for
any x̄ ∈ int(dom(T)), ∂T(x̄) ⊆ I (R+)n.

Proof SinceT is a non-decreasing convex IVF.Therefore, for any ei = (0, . . . 0, 1, 0,
. . . , 0)� ∈ R

n with 1 at the i th place, we have

T(x̄ − ei ) � T(x̄)

=⇒ T(x̄ − ei ) �gH T(x̄) � 0.

From Remark 6, ∂T(x̄) is nonempty. Thus, there exists Ĝ ∈ ∂T(x̄) such that
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(−ei )
� � Ĝ � T(x̄ − ei ) �gH T(x̄) � 0

=⇒ (−ei )
� � Ĝ � 0

=⇒ 0 � Gi .

Since i is arbitrary, therefore 0 � Gi for each i = 1, 2, . . . , n. Thus, ∂T(x̄) ⊆
I (R+)n . ��
Theorem 5 Let T : X ′ → I (R) be a convex IVF. Then, for any x ∈ dom(T) and λ ≥
0,

∂(λ � T)(x) = λ � ∂T(x),

where dom(λ � T) = dom(T).

Proof Let Ĝ ∈ ∂T(x). Then, for any y ∈ dom(T),

(y − x)� � Ĝ � T(y) �gH T(x)

⇐⇒ λ � ((y − x)� � Ĝ) � λ � (T(y) �gH T(x)
)
for λ ≥ 0

⇐⇒ (y − x)� � (λ � Ĝ) � λ � (T(y) �gH T(x))

⇐⇒ (y − x)� � (λ � Ĝ) � (λ � T)(y) �gH (λ � T)(x)

⇐⇒ λ � Ĝ ∈ ∂(λ � T)(x).

Hence, the result follows. ��
Next, we introduce a lemma that is used to prove Theorem 9.

Lemma 6 Let x ∈ B and P̂ = (P1,P2, . . . ,Pn)
� ∈ I (R)n with Pi = [p

i
, pi ]. Sup-

pose there exists an M > 0 such that x� � P̂ � M. Then,

‖P̂‖I (R)n ≤ M ′, where M ′ = nM.

Proof We have

x� � P̂ =
[
min

{
n∑

i=1

xi pi ,
n∑

i=1

xi pi

}
,max

{
n∑

i=1

xi pi ,
n∑

i=1

xi pi

}]
� M

=⇒
n∑

i=1

xi pi ≤ M and
n∑

i=1

xi pi ≤ M.

Take
∑n

i=1 xi pi ≤ M . Then, by Remark 1, we have

〈x, p〉 ≤ M, where p = (p
1
, p

2
, . . . , p

n
)� ∈ R

n . (13.3)

If p �= 0, then choosing x = p

‖p‖ , (13.3) gives
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〈
p

‖p‖ , p

〉
≤ M

=⇒ ‖p‖ ≤ M, where p = (p
1
, p

2
, . . . , p

n
) ∈ R

n

=⇒ |p
i
| ≤ M for each i = 1, 2, . . . , n.

Similarly, when we take
n∑

i=1
xi pi ≤ M , we get |pi | ≤ M for each i = 1, 2, . . . , n.

Therefore, we have

‖Pi‖I (R) = max{|p
i
|, |pi |} ≤ M for each i = 1, 2, . . . , n

=⇒ ‖P̂‖I (R)n =
n∑

i=1

‖Pi‖I (R) ≤ M ′, where M ′ = nM.

��
Theorem 7 (See [15]). Let T : X ′ → I (R) be a proper convex IVF. Then, for any
x̄ ∈ dom(T), ∂T(x̄) is closed and convex.

Theorem 8 (See [15]). Let T : X ′ → I (R) be a proper convex IVF and x̄ ∈
int(dom(T)). Then, the gH-subdifferential set of T at x̄ is bounded.

By Theorems 7 and 8, it can be seen that for a proper convex IVF T, the gH -
subdifferential set ∂T(x̄) is compact for any x̄ ∈ int(dom(T)). However, if T is
gH -continuous on dom(T), then ∂T(x̄) is compact for any x̄ ∈ dom(T). In the next
result, we prove this fact.

Theorem 9 Let T : X ′ → I (R) be a proper convex IVF. Let T is gH-continuous on
dom(T). Then, for any x̄ ∈ dom(T), ∂T(x̄) is compact.

Proof Since T is gH -continuous at x̄ ∈ dom(T), it cannot be unbounded in the
neighborhood of x̄ . Thus, there exist ε > 0 and M ≥ 0 such that

T(x̄ + εz) � M for all z ∈ B. (13.4)

Let Ĝ ∈ ∂T(x̄). Then, by Definition 19, we have

(x − x̄)� � Ĝ � T(x) �gH T(x̄) for all x ∈ R
n. (13.5)

Take x = x̄ + εz, where z ∈ B in (13.5). Then,
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εz� � Ĝ � T(x̄ + εz) �gH T(x̄)

=⇒ εz� � Ĝ � M �gH T(x̄) using (13.4)

=⇒ εz� � Ĝ � M ⊕ T(x̄)

=⇒ z� � Ĝ � 1

ε
(M ⊕ N ), where ‖T(x̄)‖I (R) ≤ N

=⇒ z� � Ĝ � N ′, where N ′ = 1

ε
(M ⊕ N )

=⇒ ‖Ĝ‖I (R)n ≤ N ′′ using Lemma 6, where N ′′ = nN ′.

Since Ĝ ∈ ∂T(x̄) is arbitrary chosen, therefore ∂T(x̄) is bounded for any x̄ ∈
dom(T). Hence, along with Theorem 7, we have the required result. ��
Example 2 Consider F : R → I (R) be a convex IVF such that F(x) = |x | � A,

where 0 � A. Let us check gH -subdifferentiability of F at 0.

∂F(0) = {
G ∈ I (R) : (x − 0) � G � F(x) �gH F(0) for all x ∈ R

}

= {G ∈ I (R) : x � G � |x | � A for all x ∈ R} (13.6)

• Case 1. x ≤ 0. In this case, for all x ∈ R, (13.6) gives,

x � G � (−x) � A =⇒ (−1) � A � G.

• Case 2. x > 0. In this case, for all x ∈ R, (13.6) gives,

x � G � x � A =⇒ G � A.

Hence, from Case 1 and Case 2, we have ∂F(0) = {G ∈ I (R) : (−1) � A � G �
A}.

Theorem 10 (See [15]). Let T : X ′ → I (R) be a convex and gH-differentiable IVF
at x̄ ∈ X ′. Then, T has gH-directional derivative at x̄ for every direction h ∈ R

n

and
∂T(x̄) = {∇T(x̄)} ,

where ∇T(x̄) is gH-gradient of T.

Lemma 11 (See [15]). Let T : X ′ → I (R) be a proper convex IVF with T(x) =
[T (x), T (x)], where T , T : X ′ → R are extended real-valued functions. Then, the
subdifferential set of T at x̄ ∈ int(dom(T)) can be obtained by the subdifferential
sets of T and T at x̄ and vice-versa.

Remark 6 (See [15]). By Lemma 11, it is easy to note that for any proper convex
IVF T(x) = [T (x), T (x)] and x̄ ∈ int(dom(T)), ∂T(x̄) is nonempty.

Lemma 12 (See [15]). Let S1 and S2 be two nonempty subsets of I (R)n such that
S1 ⊆ S2. Then, for any x ∈ X,
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ψ∗
S1(x) � ψ∗

S2(x).

Theorem 13 Let S be a nonempty subset of I (R)n. Then, for any x ∈ X,

ψ∗
S(x) = ψ∗

co(S)(x),

where co(S) is the convex hull of S.

Proof Since for any set S, S ⊆ co(S). Thus, from Lemma 12, we have

ψ∗
S(x) � ψ∗

co(S)(x). (13.7)

Now to prove the reverse inequality, assume any Ẑ ∈ co(S). Then, from Definition
15, it can be written in the convex combination of elements of S:

Ẑ =
m⊕
i=1

λi � Ĝi , Ĝi ∈ S, λi ≥ 0 with
m∑
i=1

λi = 1.

From the above relation, we see that for any x ∈ X ,

x� � Ẑ = x� �
m⊕
i=1

λi � Ĝi

=⇒ sup
Ẑ∈coS

x� � Ẑ = sup
Ẑ∈co(S)

(
x� �

m⊕
i=1

λi � Ĝi

)
.

From Lemmas 1 and 3, we have

sup
Ẑ∈co(S)

x� � Ẑ

� sup
Ĝ1∈S

x� � λ1 � Ĝ1 ⊕ sup
Ĝ2∈S

x� � λ2 � Ĝ2 ⊕ · · · ⊕ sup
Ĝm∈S

x� � λm � Ĝm

= λ1 � sup
Ĝ1∈S

x� � Ĝ1 ⊕ λ2 � sup
Ĝ2∈S

x� � Ĝ2 ⊕ · · · ⊕ λm � sup
Ĝm∈S

x� � Ĝm

= λ1 � ψ∗
S(x) ⊕ λ2 � ψ∗

S(x) ⊕ · · · ⊕ λm � ψ∗
S(x)

=
m⊕
i=1

λi � ψ∗
S(x)

= ψ∗
S(x).

As Ẑ is arbitrary, this will hold for every Ẑ ∈ co(S). Hence,

ψ∗
co(S)(x) � ψ∗

S(x). (13.8)
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In view of (13.7) and (13.8), we have

ψ∗
S(x) = ψ∗

co(S)(x).

��
Theorem 14 (See [15]). Let T : X ′ → I (R) be a proper convex IVF with T(x) =
[T (x), T (x)], where T , T : X ′ → R are extended real-valued functions. Then, at
any x̄ ∈ int(domT),

TD (x̄)(h) = ψ∗
∂T(x̄)(h) for all h ∈ R

n such that x̄ + h ∈ X ′,

where TD (x̄)(h) is the gH-directional derivative of T at x̄ in the direction of h.

Remark 7 From Theorem 10, for a gH -differentiable IVF, one can see how the
gH -subgradient and the gH -gradient are related to each other. Similarly, a relation
between gH -directional derivative and gH -gradient for a gH -differentiable IVF can
be establish by Theorems 10 and 14 which is TD (x̄)(h) = h� � ∇T(x̄).

Theorem 15 (See [17]) Let � be any finite set of indices. For each i ∈ �, let
Ti : X ′ → I (R) be convex and gH-continuous IVF such that TiD (x̄)(d) exists for
any x̄ ∈ X ′. Define

T(x) = sup
i∈�

Ti (x).

Then, for any x̄ ∈ X ′ and h ∈ R
n such that x̄ + h ∈ X ′,

TD (x̄)(h) = sup
i∈I (x̄)

TiD (x̄)(h), where I (x̄) = {i ∈ � : Ti (x̄) = T(x̄)}.

Theorem 16 (Supremum rule for gH-subdifferential calculus of IVFs) Let � be
any finite set of indices. For each i ∈ �, let Ti : X ′ → I (R) be a proper convex IVF
which is gH-continuous on X ′. Define

T(x) = sup
i∈�

Ti (x).

Then, for any x̄ ∈⋂i∈� int(dom(Ti )), and h ∈ R
n such that x̄ + h ∈ X ′,

ψ∗
∂T(x̄)(h) = ψ∗

S (h),

where S = co
(⋃

i∈I (x̄) ∂Ti
)
and I (x̄) = {i ∈ � : Ti (x̄) = T(x̄)}.

Proof From Theorem 15, the gH -directional derivative of supremum of convex
IVFs is given by

TD (x̄)(h) = sup
i∈I (x̄)

TiD (x̄)(h). (13.9)
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For simplicity, assume that� = {1, 2, . . . ,m} and I (x̄) = {1, 2, . . . , k} for some k ∈
{1, 2, . . . ,m}.Now inviewofTheorem14,we see that for any x̄ ∈⋂m

i=1 int(dom(Ti ))

and h ∈ R
n such that x̄ + h ∈ X ′,

TD (x̄)(h) = ψ∗
∂T(x̄)(h) = sup

{
h� � Ĝ : Ĝ ∈ ∂T(x̄)

}
. (13.10)

From (13.10), we observe that for each i = 1, 2, . . . ,m and corresponding to each
Ti there exists Ĝi = (Gi1,Gi2, . . . ,Gin)

� ∈ I (R)n with Gi j = [g
i j
, gi j ] such that

TiD (x̄)(h)

= sup
Ĝi∈∂Ti (x̄)

{
h� � Ĝi

}

= sup
g
i
∈∂T i

gi∈∂T i

⎡
⎣min

⎧
⎨
⎩

n∑
j=1

h j gi j ,
n∑
j=1

h j gi j

⎫
⎬
⎭ ,max

⎧
⎨
⎩

n∑
j=1

h j gi j ,
n∑
j=1

h j gi j

⎫
⎬
⎭

⎤
⎦ , (13.11)

where g
i
= (g

i1
, g

i2
, . . . , g

in
)�, gi = (g

i1
, g

i2
, . . . , g

in
)� ∈ R

n . We now consider
the following two cases.

• Case 1. Let min
{∑n

j=1 h j gi j ,
∑n

j=1 h j gi j
}

=∑n
j=1 h j gi j and

max
{∑n

j=1 h j gi j ,
∑n

j=1 h j gi j
}

=∑n
j=1 h j gi j . Therefore, from (13.9) and

(13.11), we get

TD (x̄)(h) = sup
i∈I (x̄)

⎡
⎣ sup

g
i
∈∂Ti

⎛
⎝

n∑
j=1

h j gi j

⎞
⎠ , sup

gi∈∂T i

⎛
⎝

n∑
j=1

h j gi j

⎞
⎠
⎤
⎦

= sup
i∈I (x̄)

[
sup

g
i
∈∂T i

〈g
i
, h〉, sup

gi∈∂T i

〈gi , h〉
]
Remark 1

=
[
sup
i∈I (x̄)

(
sup

g
i
∈∂Ti

〈g
i
, h〉
)

, sup
i∈I (x̄)

(
sup

gi∈∂T i

〈gi , h〉
)]

. (13.12)

Using the fact that for any finite numbers a1, a2, . . . , ak ∈ R,

sup{a1, a2, . . . , ak} = sup
λ∈�k

k∑
i=1

λi ai .

On applying above relation in (13.12), we get

TD (x̄)(h)
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=
[
sup
i∈I (x̄)

(
sup

g
i
∈∂T i

〈g
i
, h〉
)

, sup
i∈I (x̄)

(
sup

gi∈∂T i

〈gi , h〉
)]

=
[
sup
λ∈�k

(
k∑

i=1

λi

(
sup

g
i
∈∂T i

〈g
i
, h〉
))

, sup
λ∈�k

(
k∑

i=1

(
sup

gi∈∂T i

〈gi , h〉
))]

=
⎡
⎢⎣ sup

g
i
∈∂T i

λ∈�k

〈
k∑

i=1

λi gi , h

〉
, sup
gi∈∂T i
λ∈�k

〈
k∑

i=1

λi gi , h

〉⎤
⎥⎦

= sup
g
i
∈∂T i

gi∈∂T i

[〈
k∑

i=1

λi gi , h

〉
,

〈
k∑

i=1

λi gi , h

〉]
, λ ∈ �k .

Therefore, from Definition 15 and Remark 3, we get

TD (x̄)(h) = sup

{
h� � Ĝ : Ĝ ∈ co

(
k⋃

i=1

∂Ti

)}

=ψ∗
S (h), where S = co

(
k⋃

i=1

∂Ti

)
. (13.13)

Thus, using (13.13) and (13.10), we get

ψ∗
∂T(x̄)(h) = ψ∗

S (h), where S = co

(
k⋃

i=1

∂Ti

)
.

• Case 2. Let min
{∑n

j=1 h j gi j ,
∑n

j=1 h j gi j
}

=∑n
j=1 h j gi j and

max
{∑n

j=1 h j gi j ,
∑n

j=1 h j gi j
}

=∑n
j=1 h j gi j . Proof contains similar steps as in

Case 1.

From Case 1 and Case 2, it is clear that for any x̄ ∈⋂m
i=1 int(dom(Ti )) and h ∈ R

n

such that x̄ + h ∈ X ′,

ψ∗
∂T(x̄)(h) = ψ∗

S (h), where S = co

(
k⋃

i=1

∂Ti

)
.

��
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Fig. 13.1 IVF T and efficient solution of IOP (13.15)

13.4 Application on Nonsmooth Interval Optimization

This section has two optimality conditions (Theorems 17 and 18) to find the efficient
point of IOP (13.14) and an example that illustrates these conditions are necessary
but not sufficient.

Definition 21 (Efficient solution (ES) [7]). Let T : X → I (R) be an IVF. A point
x̄ ∈ X is called an ES of the IOP

min
x∈X T(x), (13.14)

if there does not exist any x ∈ X such that T(x) ≺ T(x̄).

Definition 22 (Weak efficient solution (WES) [17]). A point x̄ ∈ X is said to be a
WES of the IOP (13.14), if T(x̄) � T(x) for all x ∈ X.

Theorem 17 Let T : X ′ → I (R) be a convex IVF. If 0̄ ∈ ∂T(x̄) for some x̄ ∈ X ′,
where 0̄ = (0, 0, . . . , 0)� ∈ I (R)n, then x̄ is an ES of (13.14).

Proof Let 0̄ ∈ ∂T(x̄). Thus, by Definition 19, we have

(x − x̄)� � 0̄ � T(x) �gH T(x̄) for all x ∈ X ′

=⇒ 0 � T(x) �gH T(x̄)

=⇒ T(x̄) � T(x) for all x ∈ X ′.

Hence, x̄ is an ES of (13.14). ��

Remark 8 The converse of Theorem 17 is not true. For instance, consider the fol-
lowing IOP:
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min
x∈X T(x) = [1, 2] � x2 ⊕ [−2, 0] � x ⊕ [2, 5], (13.15)

where X = [0, 2]. Note here that T (x) = x2 − 2x + 2 and T (x) = 2x2 + 5 are the
lower and upper functions of T, for all x ∈ X . Clearly, T and T are convex and
differentiable real-valued functions. Therefore, due to Lemma 2 and Remark 2, T is
also convex and gH -differentiable. Hence,

∂T(x) = {∇T(x)} for all x ∈ X by Theorem 10

= [2, 4] � x ⊕ [−2, 0] for all x ∈ X.

We draw the graph of IVF T, which is shown by the gray region in Fig. 13.1. It is
easy to observe that x̄ ∈ [0, 1] is an ES of (13.15), which is shown by red bold line
on x-axis.

Note that for each x̄ ∈ [0, 1],

∇T(x) = [2x − 2, 4x] �= 0.

Hence, 0 /∈ ∂T(x̄).

Remark 9 In Remark 8, we have seen that the converse of Theorem 17 is not true in
general. However, the converse can bemade true ifwe takeWESdefined inDefinition
22 instead of ES of IOP (13.14). The reason is as follows.

Let x̄ be a WES of IOP (13.14). Then, for all x ∈ X ′

T(x̄) � T(x)

⇐⇒ 0 � T(x) �gH T(x̄)

⇐⇒ (x − x̄)� � 0̄ � T(x) �gH T(x̄) where 0̄ = (0, 0, . . . , 0)� ∈ I (R)n

⇐⇒ 0̄ ∈ ∂T(x̄).

Theorem 18 Let T : X ′ → I (R) be a convex IVF. Let there exists Ĝ ∈ ∂T(x̄) for
some x̄ ∈ X ′, for which there does not exist any x ∈ X ′, such that

(x − x̄)� � Ĝ ≺ 0. (13.16)

Then, x̄ is an ES of the IOP (13.14).

Proof Let Ĝ ∈ ∂T(x̄) for some x̄ ∈ X ′, which satisfies (13.16). Therefore, there
does not exist any x ∈ X ′ such that

(x − x̄)� � Ĝ ≺ 0.

Thus, due to Definition 19, there does not exist any x ∈ X ′ for which

T(x) �gH T(x̄) ≺ 0.
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Hence, there does not exist any x ∈ X ′ such that T(x) ≺ T(x̄), and therefore, x̄ is
an ES of (13.14), by Definition 21. ��
Remark 10 The converse of the Theorem 18 is not true. For instance, consider IOP
(13.15) of Remark 8, for which x̄ ∈ [0, 1] is the ES. Thus, at x̄ = 0, we have

(x − x̄)� � Ĝ = (x − x̄) � ∇T(x̄) = x � [−2, 0].

Therefore, (x − x̄)� � Ĝ = x � [−2, 0] ≺ 0 for all x ∈ (0, 2] ⊆ X .

13.5 Conclusion and Future Scopes

In this chapter, calculus of gH -subdifferential set of convex IVFs has been extended.
With the help of existing properties of gH -subdifferential set, compactness of gH -
subdifferential set of gH -continuous IVF (Theorem 9) and supremum rule for IVFs
(Theorem 16) have been found. To prove these two theorems, related concepts are
also given (Definitions 14, 15 and Lemma 6). Thereafter, two necessary optimality
conditions (Theorems 17 and 18) are given with appropriate example (Remark 8).

In future, we have a few following directions to work on.

Problem 1. Although we have studied many properties and characterizations of
the gH -subdifferential set, we could not provide gH -subdifferential sum rule for
convex IVFs. We shall try to make a conclusion on it. Because once we get this
sum rule, we can use the proposed study of gH -subdifferential set and optimality
conditions to solve constrained IOPs. The reason is as follows.
Let T : X ′ → I (R) be a proper convex IVF. Let S be a nonempty subset of X ′.
Consider a constrained IOP

min
x∈S T(x). (13.17)

Note that IOP (13.17) can be converted into unconstrained IOP

min
x∈X ′ To(x), (13.18)

where To : X ′ → I (R) such that

To(x) = T(x) ⊕ δS(x) for all x ∈ X ′.

Therefore, we have
∂To(x) = ∂(T(x) ⊕ δS(x)).

Thus, optimality conditions given in Theorems 17 and 18 can be applied on To

to find the efficient point of IOP (13.17) with the help of gH -subdifferential sum
rule.
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Problem 2. In future, we shall also try to solve the following IOP (13.19) using
the Sup-IVF approach, in which we shall use presented Supremum rule for IVF
Theorem 16. The idea is as follows. Let T andHi be convex IVFs on X ′. Consider
an IOP

min
x∈S T(x), (13.19)

where S = {x ∈ X ′ : Hi (x) � 0}. We say x̄ ∈ S is an ES of (13.19), if it is an ES
of the following IOP (13.20) as well.

min
x∈X To(x), (13.20)

whereTo(x) = sup{T(x) �gH T(x̄),H1(x),H2(x), . . . ,Hn(x)}.Nowwecanfind
the gH -subdifferential set of To at x̄ using supremum rule for IVF Theorem 16.
Thereafter, we can use our optimality condition Theorem 17, i.e.,

0 ∈ ∂To(x̄)

to investigate ES of IOP (13.20). Using this idea, we shall try also to give an
attempt to derive KKT conditions for IOP (13.19).

Another future direction is to propose a gH -subgradient method and its conver-
gence to solve the unconstrained IOPs. We further plan to use the gH -subgradient
method formaximummargin structured learning [24] under interval data uncertainty.

References

1. Moore, R.E.: Interval Analysis. Prentice-Hall, Englewood Cliffs, EJ (1966)
2. Hukuhara, M.: Intégration des applications mesurables dont la valeur est un compact convexe.

Funkcialaj Ekvacioj 10(3), 205–223 (1967)
3. Stefanini, L., Bede, B.: Generalized Hukuhara differentiability of interval-valued functions

and interval differential equations. Nonlinear Anal. Theory Methods Appl. 71(3–4), 1311–
1328 (2009)

4. Ishibuchi, H., Tanaka, H.:Multiobjective programming in optimization of the interval objective
function. Eur. J. Oper. Res. 48(2), 219–225 (1990)

5. Wu, H.-C.: The Karush–Kuhn–Tucker optimality conditions in an optimization problem with
interval-valued objective function. Eur. J. Oper. Res. 176(1), 46–59 (2007)

6. Wu, H.-C.: Wolfe duality for interval-valued optimization. J. Optim. Theory Appl. 138(3),
497–509 (2008)

7. Bhurjee, A.K., Panda, G.: Efficient solution of interval optimization problem. Math. Methods
Oper. Res. 76(3), 273–288 (2012)

8. Chalco-Cano, Y., Lodwick, W.A., Rufián-Lizana, A.: Optimality conditions of type KKT for
optimization problemwith interval-valued objective function via generalized derivative. Fuzzy
Optim. Decis. Making 12(3), 305–322 (2013)

9. Ghosh, D., Debnath, A.K., Pedrycz, W.: A variable and a fixed ordering of intervals and their
application in optimization with interval-valued functions. Int. J. Approx. Reas. 121, 187–205
(2020)



256 K. Kumar et al.

10. Bede, B., Gal, S.G.: Generalizations of the differentiability of fuzzy-number-valued functions
with applications to fuzzy differential equations. Fuzzy Sets Syst. 151(3), 581–599 (2005)

11. Chalco-Cano, Y., Roman-Flores, H.: On new solutions of fuzzy differential equations. Chaos
Solitons Fractals 38(1), 112–119 (2008)

12. Ghosh, D.: Newton method to obtain efficient solutions of the optimization problems with
interval-valued objective functions. J. Appl. Math. Comput. 53(1–2), 709–731 (2017)

13. Ghosh, D., Chauhan, R.S., Mesiar, R., Debnath, A.K.: Generalized Hukuhara Gâteaux and
Fréchet derivatives of interval-valued functions and their application in optimization with
interval-valued functions. Inf. Sci. 510, 317–340 (2020)

14. Ghosh, D., Debnath, A.K., Chauhan, R.S., Castillo, O.: Generalized-Hukuhara-gradient
efficient-direction method to solve optimization problems with interval-valued functions and
its application in least-squares problems. Int. J. Fuzzy Syst. 1–26 (2021)

15. Kumar, K., Ghosh, D., Kumar, G.: Weak sharp minima for interval-valued functions and its
primal-dual characterizations using generalized Hukuhara subdifferentiability. Soft. Comput.
26(19), 10253-10273 (2021)

16. Kumar, G., Ghosh, D.: Ekeland’s variational principle for interval-valued functions. arXiv
preprint arXiv:2104.11167 (2021)

17. Ghosh, D., Chauhan, R.S., Mesiar, R.: Generalized-Hukuhara subdifferential analysis and its
application in nonconvex composite optimization problems with interval-valued functions.
arXiv preprint arXiv:2109.14586 (2021)

18. Chauhan, R.S., Ghosh, D., Ramik, J., Debnath, A.K.: Generalized Hukuhara-Clarke derivative
of interval-valued functions and its properties. Soft Comput. 25(23), 14629-14643 (2020).
arXiv preprint arXiv:2010.16182

19. Calvete, H.I., Galé, C.: Linear bilevel programmingwith interval coefficients. J. Comput. Appl.
Math. 236(15), 3751–3762 (2012)

20. Osuna-Gómez,R., Chalco-Cano,Y.,Hernández-Jiménez,B., Ruiz-Garzón,G.:Optimality con-
ditions for generalized differentiable interval-valued functions. Inf. Sci. 321, 136–146 (2015)

21. Ghosh, D., Singh, A., Shukla, K., Manchanda, K.: Extended Karush-Kuhn-Tucker condition
for constrained interval optimization problems and its application in support vector machines.
Inf. Sci. 504, 276–292 (2019)

22. Bhurjee, A.K., Padhan, S.K.: Optimality conditions and duality results for non-differentiable
interval optimization problems. J. Appl. Math. Comput. 50(1), 59–71 (2016)

23. Ghosh, D., Ghosh, D., Bhuiya, S.K., Patra, L.K.: A saddle point characterization of efficient
solutions for interval optimization problems. J. Appl. Math. Comput. 58(1), 193–217 (2018)

24. Ratliff, N., Bagnell, J.A., Zinkevich, M.: Subgradient methods for maximummargin structured
learning. In: ICMLWorkshop onLearning in StructuredOutput Spaces, vol. 46 (2006). Citeseer

http://arxiv.org/abs/2104.11167
http://arxiv.org/abs/2109.14586
http://arxiv.org/abs/2010.16182


Chapter 14
Rule-Based Classifiers for Identifying
Fake Reviews in E-commerce: A Deep
Learning System

Saleh Nagi Alsubari, Sachin N. Deshmukh, Theyazn H. H. Aldhyani,
Abdullah H. Al Nefaie, and Melfi Alrasheedi

14.1 Introduction

Opinionmining systems are broadly utilized in diverse e-commerce platforms, which
include Taobao, eBay, and Amazon. These sorts of systems gather personal feedback
from clients and provide reliable material regarding the vender to assist capability
purchasers create their buying decisions [10, 12, 34]. 91% of respondents specified
that they might consider customer critiques before buying online. Excellent critiques
and high product scores will convince purchasers to buy, whereas the poor ones will
decrease shoppers’ intention to purchase [7]. Further, poor opinions have a greater
impact on clients’ buy choices than positive evaluations [31].

The value of Internet customer feedback gives robust motivation for assessment
handling, which leads to large numbers of phony satisfactory evaluations [15]. These
overviews can benefit various accounts. For instance, vendors masked as purchasers
post online critiques. Internet-based company Amazon carelessly disclosed the iden-
tification of a reviewer who turned out to be the writer of the e-book [36]. Merchants
hire humanworkers to post fake positive assessments to inflate their shops’ standings
[39]. Subsequently, gathering dataset included 2.14 million reviewers and 58 million
reviews from Amazon’s website, and Jindal and Liu [16] introduced a study for
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opinion spam analysis for detecting manipulation of opinions. For example, reviews
of text that were posted by the same reviewer for exceptional goods are identical
or very similar to opinions that were written by different reviewers for the identical
product or exclusive merchandise. This leads to the assumption that an individual
reviewer has submittedmany evaluations of specific products. Both are considered as
single user or enumerated as different consumer’s names. Glaringly, those opinions
are fake [9, 37].

Online product feedback (reviews) can be defined as evaluations given by
customers after purchasing the products from e-commerce websites. The exis-
tence of manipulation of reviews in online purchasing websites will extend an
effect on the opinion mining systems performance. According to previous research,
80% of customers have the authenticity of online reviews [39]. Deceptive evalua-
tions substantially misguide online purchasers. Hence, the detection of fake online
reviews/opinions has been a hot challenge topic of theoretical and practical research.
The contributions of this research work are the following:

1. Analyzing and detecting online deceptive reviews in electronic product reviews
on Amazon and Yelp platforms.

2. Proposing an enhanced framework for online fake/deceptive feature reviews.
3. Proposing novel features such as authenticity and analytical thinking that are

used to differentiate between online fake and genuine reviews.
4. Proposing mathematical equations for some used feature.
5. Labeling the Amazon reviews dataset used, based on extracted linguistic features

from the review text.
6. Comparing and analyzing the performance of the Recurrent Neural Network

(Bidirectional Long Short Memory) model on Amazon and Yelp datasets.

14.2 Related Work

Previous research has attempted to figure out which online opinions in e-commerce
websites are fake or true, to identify fake online evaluations of products, searching
to learn the qualities of fake opinions or fraud reviewers after filtering them. Further-
more, there are ongoing attempts by fraudsters to find ways to prevent false evalu-
ations from being detected [21]. Previous research pointed out that language used
in the writing of fake opinions has simply been like that used in truthful opinions
[30]. Consequently, an identification and analysis of the fake reviews and decep-
tive reviewers is a challenging task. Therefore, this paper focuses on detecting such
reviews and reviewers and proposes a model based on deep learning, and comparing
it to a machine leaning model in order to observe which model can provide more
accuracy. Normally, purchasers do not liewithout a reason.As a result, the real source
of fake opinion is the sellers. This take seems to be the advice of the overview and the
reviewer and has initially evolved from the evaluate manipulators and dealers, to set
up a data miningmodel that can be used to analyze the intention of sellers’ evaluation
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manipulation and recognize whether or not sellers have an ability to control online
evaluation. Thiswill furnish a brand new standpoint for fake evaluation identification.

Prior researchers have suggested becoming aware of attributes to distinguish
between real and fake reviews.They encompass the textual content of the review, eval-
uation duration, rating, emotion, clarity, subjectivity, style of writing, and product-
rating characteristics [8, 30]. Other research work focused on the distinction between
a reviewer’s rating and the average rating of the product and the score differences
between reviews of numerous products written by identical reviewers [38]. Further,
Deng et al. suggested 11 linguistic fraud indications for fake reviews detection
and divided them into three categories: word occurrence, information richness, and
accounts integrity of the reviewer [35]. However, fake reviews posted by fraud indi-
viduals are designed to mimic authentic reviews to prevent them from being recog-
nized. Studies have shown that some fake remarks are similar in language to real
reviews [11]. Consequently, it is a challenging task to pick out fake reviews by
the customer manually. Every other indication for identifying fake reviews is based
entirely on the reviewers’ behavior traits, such as the number of reviews published by
the same reviewers every day, the time between the first and the last review from the
same reviewer, the share of the first reviewon themerchandisewebsite, all the reviews
published by means of a reviewer, the range of votes obtained, and the provision of
video facts [17, 29]. Zhang et al. have carried out research in figuring out fake evalua-
tions via combining statistics of overview textual content and reviewer activities [40].
However, there is difficulty detecting fake reviews using opinion mining system due
to the fact that evaluationmanipulation is covert and invisible, and only the evaluation
companies or the operators genuinely recognize whether an assessment is fake or real
[24]. So far, the problem of fake opinion on the Internet has still not been addressed
because there is no effective machine learning-based system providing great accu-
racy for detecting fake reviews. Most previous researchers created synthetic review
datasets to train a machine learning classifier [33].

Fake overview detection is much like crime detection. Similarly to amassing clues
on the scene of a criminal offense, police should additionally determine who has a
motive for the crime. Stimulated by this similarity, this paper focuses on analyzing
the sellers’ evaluation manipulation behavior to assist in fake reviews detection.
Few research works concentrated on reviewing manipulation behavior. It has been
identified that supplier reputation growth had been a worthwhile hidden commercial
enterprise. Mayzlin [25] mentioned that the cost of a review manipulation process
can determine the quantity of a manipulation system. As an example, branded chain
resorts are much less likely to engage in evaluation manipulation than premium
accommodations, because their name would be jeopardized if manipulation activity
was exposed publicly. Gao and Liu [18] advanced an evaluation manipulation proxy
to identify what type of dealers may also engage in evaluating manipulation based
on the discretionary accrual primarily based on earning of control framework. Most
marketplaces give preference to well-evaluated goods, potentially rewarding compa-
nies that pay for false reviews. Vast amounts of positive reviews motivate buyers to
make a purchase and boost manufacturers’ finances, while negative reviews allow
customers to search for alternatives, leading to financial losses. It can also be difficult
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to identify and differentiate fake reviews from trusted ones because of the number of
reviews released online and the skills of review fraudsters. Moreover, detecting and
removing such reviews from review websites and product recommendation systems
is important for businesses and consumers [26]. The increase of spam review threats
has actually accelerated, since anyone can just write and share spam reviews online
with no restrictions. Some manufactures may hire persons for their time and services
to compose fake reviews in order to popularize their products. These persons are
known as spammers. Fake reviews are usually published to earn profit, as well as
to promote online services or products. This case is called Spamming Review [3,
28]. According to the existing studies, there is no effective method of discriminating
between the features of truthful and false reviews. Getting a credible and compre-
hensive review website is the main objective of deceptive reviews detection methods
that filter the text content from deceptive and unwanted reviews. “Credibility” is of
great importance principally for applications of opinion mining. Credibility includes
how stable the credibility of the intended system is, so the deceptive reviews iden-
tification methods are important for deleting and filtering deceptive reviews in the
online e-commerce websites.

14.3 Materials and Methods

Materials and methods explain the details of the recommended methodology for
analyzing anddetectionof fakeopinions in product reviewsof e-commerceplatforms.
Figure 14.1 illustrates the steps which are applied in this methodology.

Our proposed methodology consists of eight phases, which are the e-commerce
website, dataset collection, dataset labeling, preprocessing, feature extraction (TF-
IDF/Word2Vec), supervised machine learning/deep learning hybrid neural network
methods, assessment metrics, and results. The steps of this methodology are
explained below.

Fig. 14.1 Framework for the used methodology
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Table 14.1 Distribution of
the used dataset

Product name Number of reviews

Phones 12,100

Batteries 8400

Chargers 5400

Headphones 4570

14.3.1 E-commerce Product Reviews

Recently, e-commerce businesses have increasingly sprung up all over the world.
Almost every business platform functions as an online marketplace in some way.
The demand for e-commerce has grown rapidly to new heights in recent years, due
to easy Internet access and available advanced technologies. There are variety of
elements to determine the popularity of e-commerce companies and their reputation
such as credibility, product quality, and easy access websites. Product reviews, on
the other hand, are a critical factor in improving an e-commerce store’s credibility,
standards, and assessment. Product reviews give an e-commerce business one of the
most useful resources for detecting issues with products and analyzing the feeling
of consumers 143 [1]. For example, customer reviews of the product represent the
satisfaction of customers when purchased.

14.3.2 Dataset Collection

This is the most important phase in our methodology. We have scrapped raw product
reviews of mobile phones and their accessories from Amazon.com, which is one of
the largest online e-commerce websites usually accessed for selling and purchasing
online consumer products. The scrapping process has been completed with the help
of aweb scrapper application that is programmed and developed using Python library
Scrapy [19]. The collected unlabeled reviews consist of 30,470 distributed over four
different categories of products collected to perform our experiments. The meta-
features of the dataset include reviewer ID, reviewer name, review title, product
name, rating value, verified purchase (TRUE or FALSE), and the review text. Table
14.1 shows the distribution reviews per product category.

14.3.3 Dataset Labeling

Data labeling can be defined as the process of identifying raw data samples by adding
one or more significant and useful labels for all samples of the dataset. Labels are
usually used to bring a context for machine learning models, which can have the
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ability to learn from them. The labels utilized to discriminate the features of the
dataset should be informative, distinguished, and distinct, to lead to the creation of
a sophisticated algorithm. A correctly labeled dataset usually presents ground truth
for a machine learning algorithm that can verify its forecasts for accuracy. As the
collected dataset is unlabeled reviews, we aim to abstract important features from
the text of the product review that has been given by the reviewer and combine these
features with meta-features for labeling the review as fake or truthful. This can be
obtained by extracting and computing various features from the dataset such as the
following.

A. The authenticity of a written review text

Authenticity is adopted to calculate andmeasure the personalized and trustworthiness
of the writer from his/her written text. Once individuals speak and write about their
experience, attitudes, and feeling authentically, they become more friendly, modest,
and vulnerable [32]. We have applied the authenticity feature which is one of the
LIWC outputs dimensions for computing and analyzing a score of truthfulness for
each review text that is given by the reviewer. Furthermore, it provides useful ideas
to discriminate between fake and truthful reviews. LIWC is Linguistic Inquiry and
Word Count, It is text exploration computerized software mostly implemented in the
field of natural language processing. However, it has 90 output dimensions. We have
selected an authenticity dimension of LIWC because it is appropriate to explore and
identify the deceptionmarkers in the text. The equation for calculation of authenticity
is given below.

A(s) =
∑

FPS + TPS + TPP + exclusive − Negemo − Motion (14.1)

where A(s) represents an authenticity score of a review text that is given by reviewer
(person, customer). FPS, TPS, and TPP denote a frequency and overall percentage
of First Person Singular, Third Person Singular, and Third Person Plural pronouns
as well as percentage of negative emotion, exclusive, differ, and motion words in the
text review. This feature has value in a range from 1 to 100.

Newman et al. [32] have used LIWC dictionary for predicting lying words and
deception from linguistic styles present in the text’s contents. They discovered that
the truthful content is described by the use of fewer self-references (pronouns),
fewer exclusive words (e.g., except, but, without), fewer negative words, and fewer
motion verbs,whereas the fake content is characterized by the utilization ofmore self-
references, more negative sentiment words (e.g., hate, anger, enemy), more exclusive
words, and more motion verbs (walk, move, go).

B. Verified purchasing

This feature is ameta-feature of dataset and indicates whether a person has purchased
the product or not from the targeted website. It has two parameters which are TRUE
(the product has indeed been bought by the customer and his/her review is verified)
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and FALSE (the product has not been purchased by the customer and his/her review
has not been verified).

C. Sentiment deviation

Sentiment analysis is extensively applied to analyze the individuals’ material like
reviews and survey answers, online and social media data, and healthcare resources,
for statements that vary from marketing to customer service to clinical medicine.
Sentiment analysis is also called opinionmining, a process of calculating a sentiment
score of awritten text. It is a subdivision of text categorization that is a type of research
applied to examine the feeling of customers, filtering the opinions of customers
toward products and exploring the thoughts of consumers and their emotions toward
specific entities along with their features conveyed in the given text [22]. In this
section, we calculate the sentiment scores for review text and its title using the
equation that is presented as follows:

S = P(ws) − N (ws)

P(ws) + N (ws)
(14.2)

where S is sentiment score of the review text,P(ws) denotes positive words score, and
N (ws) represents negative words score. With the help of the above equation, we can
calculate the polarity score of the reviewed text and its title and establish whether it
is positive or negative or neutral. As a reviewer always writes a review when buying
a product, he/she also gives for his/her review a title. Sentiment deviation can be
defined as the process of a sentiment score of the reviewed text alongside its title
not matching, meaning that the review text has positive polarity and its title has a
negative one. In other words, this review or opinion that is written by the reviewer is
not truthful and expresses a fake assessment of the product.

D. Rating value

This is also one of the meta-features of the dataset used. It is an evaluation value
given by the customer or shopper while purchasing the product from a specific e-
commerce website. The satisfaction of the consumer for the online product or service
is represented with this value which has a range from 1 (worst rating) to 5 (the best
rating).

14.3.3.1 Labeling Using Rules-Based Method

In this section,we label the reviews of dataset based onmentioned above features. The
approach used for labeling process is the rule-based approach. Here we have set of
features with their values, each feature should have parameters, and threshold values
will be used as a measurement to distinguish between fake reviews and truthful
ones. In the applied method, groups of rules that are based on the linguistic and
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behavioral features such as authenticity, verified purchasing percentage, sentiment
deviation, and rating value could be created. Furthermore, one threshold is assigned
for authenticity feature, and for rest features, different parameters are identified. For
each review, an authenticity is calculated and associated with the distinct threshold
value, which is X = 50. On the foundation of these assessments beside the sentiment
deviation, rating value, and verified purchasing, the review is classified as a fake
review or as a truthful one. Equation (14.3) displays how the review is labeled as
fake or a truthful.

RL =

⎧
⎪⎪⎨

⎪⎪⎩

Review Fake, if AU < X and VP = False and
SD = True and RV = 1 or 5

ReviewTruthful, if AU ≥ X and VP = True and
SD = false and RV = 2 or 3 or 4

(14.3)

where

RL: Review label
AU: Authenticity of review text
VP: Verified purchasing
SD: Sentiment deviation
R: Rating value.

14.3.4 Preprocessing

Before applying the representation and transformation methods on the dataset, the
preprocessing step is implemented for data cleaning and removing of noise. The key
point of text preprocessing is to convert and express the review text in an effective
form, to which text analysis methods can be applied. However, the dataset should be
subjected to certain cleansing steps such as the following:

• Removal of punctuation, which is a process of eliminating punctuation marks
from the review’s text like, ? !:;,”.

• Stop words removal, which refers to cleaning certain words from the dataset; for
example, “the”, “a”, “an”, “in” are removed from text.

• Stripping unnecessary words and characters from the whole data.
• Tokenization: It is the process of splitting each sentence of review text into

individual elements such as words, keywords, phrases, and pieces of information.
• Padding sequences:We implement deep learning neural network as one classifica-

tion method for identifying the fake and truthful reviews, so that all sequences of
reviews texts have to possess equal real-valued vectors. This has been completed
using post-padding sequence method.
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14.3.5 TF-IDF and Word to Vector Methods

This section presents two transformation methods which are used to map each word
of review text into machine-readable form. Particularly, these methods are adopted
to transform training and testing data into numerical form in order to be fed to
the machine learning algorithm. In this research work, hybrid deep learning neural
network and supervised machine learning techniques are implemented for analyzing
and classification of the fake reviews and truthful ones; therefore, two dissimilar
word representation approaches are utilized like TF-IDF and word to vector.

14.3.5.1 TF-IDF Method

The full form of TF-IDF is term frequency-inverse document frequency. It is a
word representation technique, which is widely used in natural language processing
domain for transforming a list of textual documents to a matrix conformation. Every
single document is then transformed to a row of the TF-IDF vector, and each word
can be represented in a real-valued vector [2]. Furthermore, unique words present
in a document can be observed as the number of nonzero values in the vector, and
similar words, as it is alsomeasured as a feature extractionmethod that can be applied
in the text mining systems. TF-IDF is a numerical method adopted to measure how
significant a term or word is to a single document. There are two parts contained in
TF-IDF that are term frequency; this is utilized to compute a recurrence of specified
words in the document to determine the similarity between documents. The equation
for TF is given below.

TF(w)d = nw(d)

|d| (14.4)

Set D point to a set of documents and d is a document where d ∈ D. A document
can be defined as a group of sentences which are contained sets of words w. Put
nw (d) to symbolize the numbers of recurrent words w obtainable in document d.
Consequently, the volume of document d can be expressed in anEq. (14.5) as follows.

|d| =
∑

w∈d
nw(d) (14.5)

The frequency with which a word is observed in a single document is computed
using Eq. (14.5). The second part of TF-IDF is inverse document frequency (IDF),
which is always adopted to calculate the total number of documents in the corpus
divided by the number of documents in which that specified word has appeared. The
equation for calculating the IDF is given below.

IDF(w)d = 1 + log

( |D|
|{d : D|w ∈ d}|

)
(14.6)
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Hence, figuring the TF-IDF for word w associated with document d and corpus
D can be achieved by the following equation.

TF.IDF = TF(w)d × IDF(w)D (14.7)

Generally, The TF-IDF method helps the classifier-based model determine which
keywords are more or less frequent in the document.

14.3.5.2 Word2Vect Method

TheWord2Vect is word embeddings technique [5], and it has capability of capturing
and understanding semantics, meaning, and context in vectors representations of
text data [27]. This technique was developed by Mikolov et al. [20] in 2013 for word
mapping comprising the implication and context of words in a document. There are
two types of methods of Word2Vec that are continuous, bag-of-word (CBOW), and
skip-gram. The similarity among words is computed through a cosine similarity of
word vectors. However, it is used to map each word of review text into n-dimensional
vector. Specifically, we utilized this method while applying hybrid deep learning
neural network for classification review text into fake or truthful review. For that
purpose, the word to vector method is adopted to convert the words of review text
into n-dimensional vectors of numerical values called word embeddings.

14.3.6 Classification Techniques

After conducting preprocess steps on whole dataset, the next step is the classification
of product reviews. For this purpose, we have implemented two different supervised
learning techniques that are Random Forest (RF) and Convolutional Neural Network
combined with Bidirectional Long Short-Term Memory (CNN-BiLSTM).

14.3.6.1 Fake Review Detection-Based Random Forest Model

Random Forest (RF) is one of the broadly applied techniques in supervised machine
learning applications [4, 6, 23]. RF, as the name suggests, contains a forest of
trees. While evaluating textual data using RF, numerous decision trees can aid in
constructing best decision for sample classification. After performing preprocess
steps on the reviews of the dataset and gained TF-IDF features, Random Forest clas-
sifier is applied to classify products reviews into fake and truthful reviews. Each tree
in the Random Forest algorithm works in the same policy of decision tree algorithm.
Taking a decision is based on polls of a minor decision tree that will decide a class
label bymainstream votes. RF is named the “divide and conquermethod”, and hence,
it utilizes a small number of the weak learners to make strong learner. Each single



14 Rule-Based Classifiers for Identifying Fake Reviews in E-commerce: … 267

tree in the RF classifier has a root node made of N data points or samples. Each node
t in the tree also comprisesNt dataset features and positioned a split St for generating
two sub-nodes that are tL (left node) and tR (right node). For computing and deciding
the best split of the dataset features which have the highest information, an impurity
measure is calculated using Gini index function that is given below in Eq. (14.8)

Gini = 1 −
C∑

i=1

(Pi )
2 (14.8)

where Pi is the likelihood of occurrence of the data features existing and perceived
in the dataset and C is the denoted number of classes in the dataset.

14.3.6.2 Fake Reviews Detection-Based CNN-BiLSTM Model

This proposed method applies and assists in an evaluation of hybrid convolution
neural network combined with Bidirectional Long Short-Term Memory (CNN-
BiLSTM) to distinguish and classify the review text containing content with fake
linguistic indications. In order to achieve robust performance, the deep learning-
based hybrid neural network model is implemented for detecting fake reviews
using Amazon reviews dataset. Figure 14.2 demonstrates the construction of the
CNN-BiLSTM model.

As shown in Fig. 14.2, the structure of CNN-BiLSTM consists of different
layers such as embedding layer, convolutional layer, bidirectional LSTM layers,
and sigmoid layer.

• Embedding Layer

The review text is comprised of sentences that contain a list of words and are labeled
as X1, X2, X3,…, Xt as cited in Fig. 14.2, and every single word is assigned a specific
index integer number. The function of this layer is to create word embeddings for
each word of review content included in the used dataset. However, Word2Vec, as
one of a word embeddings techniques, is implemented to map or transform each
word in training and testing data into real-valued vector. On the other hand, a group
of words are created as a features set of the dataset and converted into numerical
form. This task is termed word embeddings. In this model, an embedding layer is
structured through three modules: maximum features, embedding dimension, and
input sequence length. Maximum features are defined as the most recurrent words
present in review text. Embedding dimension determines the dimensions vector of
each word of the review text. Finally, the input sequence length is the extreme length
of the review text. Further, word embeddings as a matrix of sequences are input to
the succeeding layer. Equation (14.9) shows embedding matrix.

E(w) = RV×D (14.9)
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Fig. 14.2 Construction of CNN-BiLSTM model

where E(w) is output embedding matrix, R indicates real number system, V denotes
the vocabulary size (maximum features), and D points to the dimension of word
embeddings vector.

• Convolution Layer

Convolution layer is a main layer of Convolutional Neural Network technique,
conducting mathematical operation on input embeddings matrix delivered by the
preceding layer. In order to obtain a sequence information and decrease the dimen-
sions of the input sequence, the convolutional layer passes over input matrix using
filters. The convolution process in this layer is performed in one dimension. We
set 64 filters having windows size of 3 to operate on word-based representations
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to extract set of local features through sequences of words. A general equation for
convolutional operation can be introduced below.

ti, j =
n∑

l=1

m∑

w=1

fl,w ⊗ Pi + l − 1, j + w − 1 (14.10)

where ⊗ symbolizes element-wise cross production, ti, j ∈ Rl×d is demonstrating t
elements of output matrix, fl,w ∈ Rn×m represents the elements of the weight matrix,
and Pi + l − 1, j + w − 1 ∈ Rlxw is exemplified pth elements of the input matrix.

• Max Pooling Layer

This layer receives an input sequence from convolutional layer and executes down
sampling process as well as spatial dimensionality reduction for the given sequences.
It is utilized to choose a maximum value of features sequences from the pool of each
filter kernel.

• Bidirectional LSTM Layers

Bidirectional LSTM networks join two hidden layers of dissimilar directions to the
same output. Through this practice of reproductive deep learning, the production
layer in a network is capable of obtaining sequences knowledge from historical and
upcoming states instantaneously. Memory cells in the LSTM layer can eventually
transfer results from historical data features into the output. Moreover, the process
of features learning place in one direction, that means in a forward direction only;
this ignores the backward construction and thus reduces the performance of machine
learning system. For solving this weakness, processing of data in bidirectional recur-
rent network technique is accomplished in two directions: forward and backward.
Each LSTM memory has four gates which are input it , forget f t , cell state ct , and
output gate ot . The equations of these gates are presented as follows [14].

it = σ(Wix xt + Wihht−1 + bi ) (14.11)

ft = σ
(
W f x xt + W f hht−1 + b f

)
(14.12)

ot = σ(Wox xt + Wohht−1 + bo) (14.13)

ct = ft ct−1 + it ∗ tanh(Wcx xt + Wchht−1 + bc) (14.14)

−→
ht = ot ∗ tanh(ct ) (14.15)

←−
ht = ot ∗ tanh(ct ) (14.16)
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tanh(x) = 1 − e2x

1 − e2x
(14.17)

Ht =
(−→
ht : ←−

ht
)

(14.18)

where tanh and sig are tangent and sigmoid activation functions, respectively. x is the
input sequences. W and b indicate weight and bias factors. Ct is cell state, ht refers
to the output of the LSTM cell, and Ht is the output of bidirectional concatenation
of

−→
ht forward and

←−
ht backward LSTM layers at the current time t.

• Sigmoid activation layer: This is an activation function utilized for binary clas-
sification [13]. In this proposed CNN-BiLSTM model, the sigmoid layer, known
as output layer, has only one neuron or node for carrying out the classification of
an input data into fake or truthful. The equation of this function is given below.

σ = 1

1 − e2x
(14.19)

14.3.7 Evaluation Metrics

To measure the performance of RF and CNN-BiLSTM models applied for discrim-
inating between fake and truthful reviews, we have employed diverse assessment
metrics for estimating the proposed models with a number of false-positive as
well as false-negative samples. Evaluation measurements such as precision, recall,
specificity, accuracy, and F1-score can be calculated from

Accuracy = TP + TN

FP + FN + TP + TN
× 100 (14.20)

Precision = TP

TP + FP
× 100 (14.21)

Sensitivity = TP

TP + FN
× 100 (14.22)

specificity = TN

TN + FP
× 100 (14.23)

F1-score = 2 ∗ precision × Sensitivity

precision + Sensitivity
× 100 (14.24)

two confusion metrics depicted in Figs. 14.3 and 14.4. These measurements metrics
have the following equations.
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Fig. 14.3 Confusion matrix for RF

Fig. 14.4 Confusion matrix for CNN-BiLSTM

Where, true positive (TP) denotes the total numbers of the reviews texts that are
effectively classified as fake reviews. FP is the total number of the reviews texts,
which are imperfectly classified as truthful reviews. TN denotes the total number of
reviews texts that are correctly classified as truthful reviews. FN is the total number
of samples that are incorrectly classified as Fake reviews.
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14.4 Experimental Results

The dataset used in these experiments consists of 30,470Amazon product reviews for
phones and their accessories. In this section, the classification results of the machine
learning and deep learning based on Random Forest (RF) and CNN-BiLSTM algo-
rithms for detecting fake reviews are presented. The used dataset was split into 70%
training, 10% validation, and 20% testing. Experiments were carried out to evaluate
the performance of RF with TF-IDF features as well as the CNN-BiLSTM with
Word2Vec features. Dependent on these samples rates, assessment metrics which
are sensitivity, specificity, precision, F1-score, and accuracy are computed to eval-
uate the RF and CNN-BiLSTMmodels for predicting the fake product reviews using
a testing dataset. With comparing the results that were obtained from these exper-
iments, it was observed that the deep learning-based model provided promising
results and outperformed machine learning-based models. Figure 14.5 displays and
visualizes the classification results for RF and CNN-BiLSTMmodels. The accuracy
performance and loss of CNN-BiLSTM model are presented in Fig. 14.6.

14.4.1 Word Cloud

Word cloud is a technology always employed in natural language processing domain
to visualize the most significant and frequent used words in the given text. Here, we
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Fig. 14.6 Performance of the CNN-BiLSTM model

Fig. 14.7 Wordcloud for product reviews of the dataset

have used the wordcloud for visualizing the repeated words in products reviews of
the used dataset. Figure 14.7 shows wordcloud.

14.5 Conclusions and Future Research

Recently, the problem of fake reviews has not been tackled because there are no really
clear hints, indications which assist in detecting such reviews in online e-commerce
websites. These reviews have an influence on both customer’s decision purchasing
and e-businesses revenues. However, an identification of fake product reviews has
attracted the attention of academic research, and companies selling products online,
and encouraged them to develop applications that are capable of identifying fake
reviews. The present research work attempts to construct distinctive methodology
for finding solution for fake opinions contained in the Amazon product reviews. We
model semantic exemplification of reviews by combining words embeddings into
sentences level representation learning. This has been achieved using hybrid neural
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networks incorporated with Word2Vec word embedding technique that was used to
map each word of review text into real-valued vector. The findings of this research
work can be summarized in four points. Due to the sparsity of words in the review
text, an outstanding way of analyzing and extracting the features for fake reviews
is a Linguistic Inquiry and Word Count (LIWC) dictionary. Furthermore, the best
choice for labeling the reviews as fake and truthful is by using rule-based method.
A Word2Vec method can find the semantic between vectors representations of each
word of review, and thus, it outperformsTF-IDFmethod,which can only convert each
word to one-dimensional vector representations, and the similarity between words
is lost. Deep learning-based model provides better performance than the machine
learning-based model for fake reviews detection, particularly when a dataset is large.
This research has limitations such that the dataset used in the experiments is limited to
English language reviews and to Amazon based e-commerce company. For possible
future work, we will attempt to extract new features for fake reviews from online
product reviews to know fromwhere the reviews have been posted. Another possible
area of research is to developing multi-language deep learning model for detecting
Arabic and English spam reviews.
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