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Preface 

Climate change is a big challenge to water and food security in the twenty-first 
century. A notable increase in greenhouse gas emissions and the global surface 
temperature has led to modifications in the global and regional hydrological cycles. 
The changes in the hydrological cycle and intensification of climate extremes have 
exacerbated stresses on the water systems. In recent decades, a significant rise in 
climate-related disasters, such as heatwaves, floods, droughts, cyclones, has been 
noticed. Such events are likely to amplify in a warming climate. Rising sea levels 
and related extremes due to climate change make coastal communities more vulner-
able. The anthropogenic influences in the form of land use changes, river regulation, 
excessive groundwater extraction, and others have put additional stress on water 
availability. The Coupled Model Intercomparison Project phase 6 (CMIP6) models 
project a robust intensification of the Indian Summer Monsoon Rainfall (ISMR) 
under climate change. The ISMR is a major source of water supply for agricultural 
production in India, accounting for a 19.9% share of GDP. Thus, assessing the impact 
of climate change on water resources is vital for food and water security, affordable 
energy and sustainable living, and disaster mitigation and resilient communities. This 
book covers several aspects of climate change ranging from its detection, attribution, 
adaptation, and mitigation in different contexts through real-world case studies. 

This book covers the broader theme of the impact of climate change on water 
resources while dealing with several sub-topics such as downscaling techniques, 
assessment of global circulation models (GCMs), trends in hydroclimatic extremes, 
crop water requirements, and stationarity assessment. Several applications of down-
scaling of climate data are presented using statistical and machine learning tech-
niques such as artificial neural networks, deep learning, long short-term memory, 
kernel regression, and time-varying downscaling model for various river basins in 
India. The GCM datasets are adopted for analysing future projections of rainfall and 
temperature over the Western Ghats, the Godavari, and Tapi basins. The uncertainty 
due to climate change is also addressed in this study. Trend detection in several hydro-
climatic variables, viz., rainfall, temperature, streamflow, and groundwater levels, has 
also been reported. The historical and projected trends in precipitation over Northeast 
India, Rajasthan, Himachal Pradesh, Brahmaputra basin, Savitri basin, and Swarna
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vi Preface

basin have been discussed. The streamflow trends are reported for the Godavari, 
Mahanadi, Wainganga, and Cauvery River basins. The trends and variability in rain-
fall and temperature are detected in the Bardoli, Damoh, and Bharuch regions of 
Gujarat state in India. Lastly, the spatiotemporal changes in groundwater levels are 
assessed for Vishakhapatnam in Andhra Pradesh. The impact of climate change on 
crop water requirements is investigated for the Tapi basin, Seonath, Sehore, and 
Amreli districts of Gujarat state. A few studies dealing with stationarity assessment, 
development of fog index, hydrological resilience, extreme precipitation modelling, 
regionalization, and intensity–duration–frequency (IDF) curve development are also 
presented. In addition, two review studies focusing on climate change impact assess-
ment and adaptation are also included in this book. This book will help the readers to 
gain an overview of the regional variations due to climate change impacts and their 
statistical modelling through various case studies and review articles. 

Surat, India 
College Station, TX, USA 
Indore, India 
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Vijay P. Singh 

Priyank J. Sharma
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Temporal Networks: A New Approach 
to Model Non-stationary Hydroclimatic 
Processes with a Demonstration for Soil 
Moisture Prediction 

Riya Dutta and Rajib Maity 

Abstract Interactions between different components of the hydrologic cycle show 
a time-varying characteristic due to the impact of climate change that lead to the non-
stationarity in many hydroclimatic variables. In fact, a lack of stationarity in most of 
the hydroclimatic processes is realized in many cases. In such situation, alternative 
methodologies that can effectively learn (adapt) from the changing climate will help 
in development of effective and efficient hydroclimatic models. This study presents 
the potential of a recently developed approach, namely temporal networks. These 
time-varying network structures help in hydroclimatic modelling by (i) identifying 
the complex association (dependence structure) among the large pool of influencing 
variables and (ii) identifying the temporal variability of the dependence structure to 
capture the time-varying characteristics in the association among the hydroclimatic 
variables. The approach helps to improve the accuracy of the model performance 
under a changing climate. As a demonstration, we picked out the slowly changing soil 
moisture regime at a location and attempted to capture its time-varying characteristics 
through temporal networks based time-varying modelling framework. Our target is to 
predict the monthly soil moisture with one-month to one-season (three months) in 
advance. The performance of the temporal networks based model is contrasted with 
the time-invariant modelling philosophy. Towards this, (i) time-invariant network 
model, as the closest counterpart, and (ii) Support Vector Regression (SVR) based 
models, Machine Learning (ML) technique commonly implemented in the field of 
hydroclimatology, are used. We established that the temporal networks satisfactorily 
capture the soil moisture variability over time.
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2 R. Dutta and R. Maity

Keywords Temporal networks · Time-varying characteristics · Non-stationary 
processes · Soil moisture 

1 Introduction 

The spatio-temporal variation of hydrologic variables under climatic change is typi-
cally governed by multiple hydroclimatic processes. For any system, temporal change 
does not necessarily imply non-stationarity of the system and, on the other hand, 
stationarity does not always imply an unchanging process [28]. In hydroclimatic 
studies, the stationarity assumption has been compromised in many cases because 
substantial change has been noticed to alter the mean as well as extreme events of 
many hydrologic variables, like temperature, precipitation, evapotranspiration, soil 
moisture, and river discharge [2, 26, 33]. Milly et al. [26] stated that the “stationarity 
is dead”. While the need to deal with such issues related to underlying changes is 
not new to the hydrologic community, many approaches inherently assumes station-
arity in the underlying processes [26, 31]. However, such assumptions may not hold 
good in many cases under a changing climate since the dependence structure among 
the associated hydroclimatic variables within the system is no longer time-invariant 
[33]. In such non-stationary environments, a model trained under the false stationarity 
assumption may fail over time or give subpar performance [9]. 

Learning in non-stationary environments can be divided into two sub-categories, 
namely active and passive approach [9, 36], where the active approach identifies the 
change in dependence structure [4, 6, 11, 12, 17, 18, 25, 27]. The time-variability of 
such dependence structures, leading to a time-varying prediction model, is a major 
concern in the field of hydroclimatology. Many systems, including the hydroclimatic 
systems, composed of multiple interacting elements can be represented as condi-
tional independence structures. Different methods like Graphical Modelling (GM), 
Bayesian Networks (BNs), and Vine Copula can be effectively used to identify such 
network structures among the associated variables [20]. In general, considering the 
hydroclimatic system, multiple variables are associated with each other in complex 
ways, and GM helps to identify such associations [20, 22]. 

Another, important aspect is that most of the existing modelling frameworks focus 
on static networks, that is network structures with connections/edges that are perma-
nent in nature. However, considering a non-stationary environment, the association 
between two variables, and thereby, the dependence structure may also change over 
time. Here comes the concept of temporal networks, also known as time-varying 
networks, that are characterized by temporal links between variables that may change 
over time [3, 12, 13, 23]. 

The objective of this study is to present the potential of a recently developed 
temporal network-based approach for modelling time-varying hydroclimatic system. 
A detailed network structure among all the variables is identified in order to obtain the 
directly associated/influencing input variables and a parsimonious prediction model 
is developed using these inputs. The network structure and the parameters of the



Temporal Networks: A New Approach to Model Non-stationary … 3

model may reflect a slow change over time, and thus, are updated after a fixed time 
interval to capture the time variability in the association among the variables. As an 
illustrative application, the proposed model is applied for modelling the time-varying 
association between soil moisture and other influencing hydrologic variables in order 
to develop a predictive model for soil moisture at monthly scale. 

2 Methodological Approach in Temporal Networks 

The overall framework for development of the proposed model is given in Fig. 1. 
Firstly, a network structure (compete conditional independence structure) is identi-
fied using the GM-based approach that provides the association between the input 
variables and the target variable. The primary goal of GM is to describe the complex 
relationship and to explain the dependence structure by conditioning and controlling 
other factors. It is a probabilistic model that facilitates the identification of condi-
tional independence relations among the variables. Only the direct interactions, as 
identified from the network structure, are of interest to develop the conditional prob-
abilistic model for the target variable. Conditioning is the key theoretical concept 
that forms the foundation for GM and leads to an explicit set of rules for interpreting 
the conditional independence structure. GM approach uses the concept of graphs that 
can be defined as mathematical objects consisting of nodes/vertices (V ) and edges 
(E). The nodes represent the variables used in the analysis, and the edges repre-
sent the association between a pair of nodes. The edges can be shown as lines or 
directed arrows. Based on the type of edges, the graph structures are either directed, 
undirected, or bi-directed. Presence of an edge between two nodes shows that the 
variables are directly associated, and absence of an edge shows that the variables are 
either independent or conditionally dependent [34].

Secondly, the time-varying association between the input and target variables is 
identified using a series of such network structures [11, 23]. The input variables 
and model parameters are updated after a fixed time-interval, i.e., the model is re-
calibrated to capture the time-varying characteristics. A detailed description on the 
development of the model including the mathematical formulations is presented in 
Dutta and Maity [12] and Dutta et al. [14]. 

3 Application of the Temporal Network-Based Approach 

The potential of the TNTV model is demonstrated for modelling the slowly changing 
monthly soil moisture regime at a location to capture its time-varying characteris-
tics. It is well established that large number of input variables influence the variation 
in soil moisture to different extent. The role of these influencing variables varies 
with both space and time. In the recent decades, many regions have experienced
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Origin of analysis 
Time Period 

Development Period Testing Period 

Testing period Starts 

Input variables Target variable 

ORI of model 
recalibration 

Temporal Networks 

End of analysis 

Fig. 1 Methodological outline for the development of the Temporal Network based Time-Varying 
(TNTV) model, adapted from Dutta and Maity [12]

significant wetting or drying trends, triggering serious socio-economic and environ-
mental problems [5, 10, 16]. One of the important aspects for strategic management 
of water resources including possible change in future agricultural practices is devel-
opment of reliable models for prediction of soil moisture month(s) or season ahead. 
Plethora of models have been explored over the years for simulation/prediction of 
soil moisture at different spatio-temporal scale [7, 24, 29, 32, 35], and these models 
have their own merits and demerits. Most of the modelling frameworks establish 
the association between soil moisture and different influencing variables, such as 
rainfall, temperature, and evaporation, initial moisture content, to name a few, and 
develop the simulation/prediction model based on the identified association among 
the variables [1, 8, 15, 19, 21, 30]. However, not considering the time variability 
in the association among the variables is a major drawback. This study utilizes the 
TNTV model to study the temporal change in the association of soil moisture and 
the large pool of influencing variables. These temporal networks are utilized for soil 
moisture prediction at a location with a lead time one to three months. 

3.1 Study Area and Data Source 

The observed soil moisture datasets for six different depths and multiple stations 
located across entire Indian mainland are procured from India Meteorological Depart-
ment (IMD). The observed data is available once every week (every Wednesday) for 
the time period of 1991–2016, however, the data length varies from one station
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Fig. 2 Location of the soil moisture monitoring station at Kalyani 

to another. For the demonstration of the model efficacy, one such station, namely 
Kalyani (lying within the state of West Bengal) with a sufficiently long data length 
from September 1993 to December 2015 (including a few missing data) is selected 
for this study (Fig. 2). The geographical location of this station is 22°05’ N (latitude) 
and 88°20’ E (longitude). The station data is converted into monthly series by taking 
the average of all the weekly values for that particular month and used for validating 
the developed model. 

For development of the TNTV based model, current month’s volumetric soil 
moisture (0–7 cm) is used as the target variable and lagged information of different 
hydro-meteorological variables, namely Soil moisture layer 1 (s1), Skin reservoir 
content (wr), Total precipitation (tp), Evaporation (et), Potential evaporation (pe), 
Skin temperature (sk), Soil temperature layer 1 (t1), Soil temperature layer 2 (t2), 
Temperature (te), Dewpoint temperature (td), Surface pressure (sp), Zonal wind (uw), 
Meridional wind (vw), Leaf area index high (lh), and Leaf area index low (ll), are used 
as input variables. These data are obtained from ERA5-Land. Further details on the 
target and input variables used for the analysis is provided in [14]. The gridded data 
from ERA5-Land is available at a spatial resolution of 0.1° × 0.1°. In order to obtain 
the values of each variable at the station, Inverse Distance Weighting (IDW) method 
is utilized. Based on the availability of the reanalysis data the model is developed
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and tested for the period of 1981 to 2020 and validated over the period of 1993 to 
2015 based on the availability of the observed station data. 

3.2 Model Performance and Discussion 

Figure 3 shows the time-varying association between the hydroclimatic variables 
and the target variable considering the lead time of one-month for the two model 
development periods (1981–2010 and 1986–2015). The results clearly indicate a 
gradual change in the association between the surface soil moisture and the other 
influencing variables. 

Fig. 3 Time-varying association between the input variables (15 variables with one-month lag) 
and the target variable designated as Y. The details on the input variables are provided in Table 1
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Considering the first model development period (1981–2010), surface soil mois-
ture shows direct association with previous month’s skin water content (wr), poten-
tial evaporation (pe), dew point temperature (td), and surface pressure (sp). For 
the second model development period (1986–2015), the direct association between 
surface soil moisture and previous month’s skin water content becomes insignificant 
given other input variables. It is interesting to note that the strength of association 
between surface pressure and surface soil moisture increases over time. The overall 
network structure remains almost the same compared to the first and second model 
development period, however certain edges appear/disappear over the time. 

Next, the directly associated input variables are used to develop the prediction 
model. The different performance statistics obtained using the TNTV model, for the 
lead time of one-month, are as follows: R = 0.885, R2 = 0.788, RMSE = 4.056, NSE 
= 0.759, and Dr = 0.787 (Table 1). Given the complexity associated with surface soil 
moisture and the large pool of influencing variables, the model successfully predicts 
the surface soil moisture one-month in advance. It may be further noted that the model 
performance deteriorates considering a time-invariant network-based model. That is 
the model developed for the first model development period (1981–2010) is used 
for prediction considering the entire testing period (2011–2020). The performance 
statistics obtained using the time-varying SVR-based model, for the lead time of one-
month, are as follows: R= 0.751, R2 = 0.554, RMSE= 4.421, NSE= 0.684 and Dr= 
0.697. Similar results are observed for one-season ahead prediction of soil moisture. 
Overall, the ability of the TNTV model to capture the detailed dependence structure 
among a large pool of influencing variables and capture the time variability in the 
association among the variables helps to provide improved prediction performance 
for complex secondary hydrologic variables like soil moisture. 

Lastly, the model validation is carried out by comparing the reanalysis product 
with the station data obtained from IMD. The overlap period between the two data sets 
considering the entire time period of the study is from September 1993 to December 
2015. Figure 4 compares the observed soil moisture data as obtained from IMD with 
the reanalysis product and the modelled soil moisture data (lead time of one-month)

Table 1 Performance of the prediction models for the lead times of one-month and one-season 

Lead time Model Performance statistics 

R R2 RMSE NSE Dr 

1-month Temporal network 0.885 0.788 4.056 0.759 0.787 

Time-invariant network 0.674 0.472 5.146 0.533 0.556 

Time-varying SVR 0.751 0.554 4.421 0.684 0.697 

Time-invariant SVR 0.610 0.382 5.923 0.491 0.514 

1-season Temporal network 0.812 0.665 4.824 0.671 0.710 

Time-invariant network 0.598 0.384 6.186 0.537 0.618 

Time-varying SVR 0.704 0.462 5.391 0.590 0.624 

Time-invariant SVR 0.522 0.280 7.013 0.461 0.416
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during the first model development period and the following testing period. It is 
interesting to note that the reanalysis product very well agrees with the observed 
monthly soil moisture data at the selected location (Kalyani, West Bengal, India). 
Furthermore, comparison of the observed data (IMD) and predicted values obtained 
from the model developed using the reanalysis product shows that the proposed model 
very well captures the soil moisture values one-month and one-season in advance. 
The performance statistics obtained by comparing these two data sets, for the lead 
time of one-month, are as follows: R = 0.813, R2 = 0.651, RMSE = 5.321, NSE 
= 0.584, and Dr = 0.344. Thereby, as the soil moisture data obtained from ERA5-
Land shows good agreement with the IMD station data, the reanalysis product can be 
effectively utilized for modelling of soil moisture data for the entire Indian continent. 
Furthermore, the ability of the proposed model to capture the temporal variation in 
different hydroclimatic variables makes it an efficient approach for the prediction of 
such variables for different (long/short) lead times. 

4 Concluding Remarks 

The TNTV approach is highly potential in modelling under a changing climate. 
Considering the hydroclimatic processes to be stationary is an existing short-coming 
of many modelling approaches. The non-stationarity induced by changing climate 
and other dynamic factorscalls for exploration of alternative approaches that can 
perform efficiently in non-stationary environment. The proposed approach can be 
effectively utilized as one such alternative to capture the time-varying characteris-
tics of the hydrologic system. The network structures identified using GM-based 
approach are updated after a fixed time interval to capture the temporal change in the 
association among the variables. Thereby, the prediction model is re-calibrated, in 
terms of model inputs and parameters, in order to incorporate the time-varying char-
acteristics. As a demonstration, soil moisture prediction is carried out for a station at 
monthly scale. The results indicate a change in the network structures over time as 
the structure is updated after 5 years. The proposed model successfully captures the 
soil moisture values one-month to one-season in advance; however, while using its 
time-invariant counterpart, the model performance deteriorates. Advantage of identi-
fying the complete conditional independence structure is also observed on comparing 
the results of the network-based models with the SVR-based models. Finally, as a 
future scope, the potential of the temporal network based approach can be explored 
for other hydroclimatic variables that are influenced by many interacting variables 
in complex ways and exhibit a temporal change/variability under climate change. 
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Downscaling of GCM Output Using Deep 
Learning Techniques 

Chandra Prakash Tamang, Subir Paul, and Dasika Nagesh Kumar 

Abstract General circulation models (GCMs) provide the data to study climate 
change under different scenarios, but they operate on a coarse scale. Therefore, to 
assess the hydrological impacts of global climate change on a regional scale, the 
output from a GCM must be downscaled to finer resolution. Moreover, regional 
precipitation simulations can be improved by using physically relevant variables 
from GCMs at different pressure levels as predictors. In this study, we have explored 
different deep learning techniques for multi-site downscaling of daily precipita-
tion over the Mahanadi basin using large-scale hydroclimate variables as predic-
tors. Hydroclimatic variables from NCEP reanalysis data (available at 2.5° × 2.5° 
resolution) are used to downscale the daily precipitation product at observational 
grid-scale (i.e., 1° × 1° spatial resolution). Different deep learning architectures, 
viz., deep neural network (DNN), 2D- and 3D-convolutional neural network (CNN), 
and hybrid-DNN are trained on these spatio-temporal variables. The results show that 
deep learning models have the ability to use the spatial information from predictor 
variables over the Indian subcontinent to capture monsoon patterns and down-
scale daily precipitation. The 2D-CNN model is able to learn the spatial features 
from high-dimensional predictor variables over continental sized domains. 3D-CNN 
further reduces the number of parameters and is able to learn from the stacked 
high-dimensional spatio-temporal datasets at different vertical pressure levels with
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comparative ease. The hybrid-DNN is employed to make use of spatial structure of 
the predictor datasets as well as the information from the GCM precipitation outputs 
of neighboring grid points of the observation grids. The 2D-CNN, 3D-CNN, and 
hybrid-DNN perform better than the DNN showing the usefulness of exploiting the 
spatial gridded structure of the predictors. This study highlights the potential of deep 
learning techniques in learning precipitation patterns from coarse-resolution climate 
model outputs and in downscaling daily precipitation. 

Keywords Deep learning · Statistical downscaling · Daily precipitation ·
Convolution neural networks 

1 Introduction 

General circulation models (GCMs) simulate the Earth’s climate by mathematical 
equations that describe atmospheric and oceanic interactions and feedbacks. There 
are numerical atmospheric and oceanic models for climate and weather predictions 
based on solving time-dependent 3D geophysical fluid dynamics equations on the 
sphere including governing model physics (e.g., long-and short-wave atmospheric 
radiation, turbulence, convection and large-scale precipitation processes, clouds, 
interactions with land and ocean processes, etc.) and chemistry (constituency trans-
port, chemical reactions, etc.). They provide global-scale climate information and 
are used to understand present climate and future climate under different emission 
scenarios and increased greenhouse gas concentrations. But due to their coarse reso-
lution, they cannot account for fine-scale climate variability and are not suitable 
for hydrological impact assessments, as regional hydrological impact assessments 
depend on a much smaller scale data variability. The relevant regional scale vari-
ables are important for decision makers who require information about potential 
impacts on crop production, hydrology, species distribution, etc., at spatial scales of 
10–50 km. 

Downscaling techniques are applied to provide climate projections at higher reso-
lutions. Downscaling methods can be categorized into statistical and dynamical 
downscaling [1]. Dynamical downscaling relies on the use of a regional climate 
models (RCM), which are derived similar to a GCM in its principles but with 
high resolution. RCM’s high computational requirements limits its widespread use. 
The second approach, statistical downscaling aims to learn a statistical relation-
ship between coarse-scale climate variables and high-resolution observations. A key 
advantage of statistical downscaling is its computational efficiency. It involves the 
establishment of empirical relationships between historical and/or current large-scale 
atmospheric and local climate variables. Once a relationship has been determined and 
validated, future atmospheric variables that GCMs project are used to predict future 
local climate variables. Statistical downscaling can produce site-specific climate 
projections, as relationship is developed specific to the data of the given region. Statis-
tical downscaling has been performed by constructing a parametric/nonparametric
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and/or linear/nonlinear relationship between large-scale atmospheric predictor vari-
ables and the regional climate variable(s) of interest (predictand) in order to simulate 
future scenarios [2]. The idea is that there is a relation between large-scale climate 
phenomena and local climatic/meteorological conditions. 

Machine learning techniques are an increasingly popular way to automatically 
extract information without the need to construct explicit physical or statistical 
models. Support vector machine was used to downscale monthly precipitation from 
GCM [3]. Random forests have been used for rainfall downscaling [4, 5]. Dibike 
and Coulibaly [6] used temporal neural networks for extreme precipitation down-
scaling. The field of machine learning has further been boosted by the major deep 
learning (DL) breakthroughs in the field of neural networks. Conventional machine 
learning modeling process have a pre-engineered way to extract features, and hence 
captures little information beyond our prior knowledge. This issue is particularly 
severe for high-dimensional problems, where it is difficult to have much foresight 
in the data structures. The major advantage of deep neural networks (DNN) is that 
they offer an “end-to-end” modeling workflow: The feature extraction process is 
integrated into the modeling process, which allows the model to learn customized 
features rather than subject to the pre-engineered features. Recent advances in DL 
techniques and computational abilities have promoted their use in wide range of 
applications. Convolutional neural network (CNN) models, a type of DL model, 
were used to learn precipitation-related dynamical features from the simulated fields 
of geopotential heights [7, 8]. CNNs can better process structured high-dimensional 
data. 

The spatial structure along with very high dimensionality of climate data on a 
continental scale justifies downscaling with modern DL methods. This present study 
shows the applicability of different DL techniques in downscaling daily precipitation 
over Mahanadi basin with hydroclimatic predictor variables. 

2 Study Area and Datasets 

2.1 Mahanadi Basin 

The Mahanadi River basin, a major river basin with an area of 141,589 sq.km, is 
chosen as the study area for this work. Location of the Mahanadi basin is shown in 
Fig. 1. Eight grid points with spatial resolution of 1 degree are considered as obser-
vation data. These grid points are presented through a spatial map of the Mahanadi 
basin in Fig. 1.
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Fig. 1 Eight observation station grid points in Mahanadi Basin 

2.2 NCEP Reanalysis Datasets 

The predictors were obtained from the National Center for Environmental Prediction 
(NCEP) reanalysis dataset. The uncertainties and biases that occur in GCM datasets 
try to mitigate through data assimilation, and hence these reanalysis datasets are often 
used as proxies to GCMs for statistical downscaling. These datasets are assimilated 
with the help of comprehensive ocean–atmosphere datasets that comprise a collection 
of surface marine data, aircraft data, surface land synoptic data, satellite sounder data, 
special sensing microwave/imager surface wind speeds, and satellite cloud drift winds 
[9]. Based on the Indian summer monsoon activity and following the work by Kannan 
and Ghosh [10], a wide surrounding aerial region spanning latitudes of 7.5°–35.0° N 
and longitudes of 70.0°–97.5° E is selected (Fig. 2), which contains 144 reanalysis 
grid points, for downscaling. Daily climate data for the 144 grid points is extracted 
from the NCEP/NCAR datasets.
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Fig. 2 Extent of area under the region between latitudes 7.5° N–35° N and longitudes 70° E–97.5° 
E which consists of 144 grid points of predictor variables (following Kannan and Ghosh [10]) and 
the 8 stations to which the precipitation is downscaled 

2.3 Predictors Selection for Precipitation Prediction 

The assumptions made by statistical downscaling methods for selection of predictors 
are: (I) They assume that the chosen predictors credibly represent the variability in 
the predictands; (II) It requires the statistical attributes of predictands and predictors 
to be valid outside the data used for statistical modeling; and (III) The climate change 
signal must be incorporated in the predictors through GCMs. 

Because of these requirements, predictors must be carefully selected in order to 
obtain credible results. Same events can be driven by completely different physical 
processes depending on the region and many other factors. The predictor variables 
considered for trials and analysis in our study are presented in Table 1.

However, only nine variables (which are highlighted in Table 1) among these 
20 predictor variables are selected for further analysis. These nine predictors are
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Table 1 Predictor variables 
selected for analysis 

air500 Air temperature at 500 mb pressure level 

air700 Air temperature at 700 mb pressure level 

hgt1000 Geopotential height at 1000 mb pressure level 

hgt850 Geopotential height at 850 mb pressure 
level 

hgt500 Geopotential height at 500 mb pressure 
level 

hgt200 Geopotential height at 200 mb pressure level 

pr_wtr Total precipitable water 

shum925 Specific humidity at 925 mb pressure level 

shum850 Specific humidity at 850 mb pressure level 

shum500 Specific humidity at 500 mb pressure level 

Slp Mean sea level pressure 

uwnd850 Horizontal component of wind at 850 mb 
pressure level 

uwnd200 Horizontal component of wind at 200 mb 
pressure level 

vwnd850 Vertical component of wind at 850 mb 
pressure level 

vwnd200 Vertical component of wind at 200 mb 
pressure level 

prate Precipitation rate 

airsurface Mean daily air temperature at surface level 

rhumsurface Relative humidity at surface level 

uwndsurface Horizontal component of wind at surface level 

vwndsurface Vertical component of wind at surface level

shortlisted after performing numbers of trials with different combinations of all the 
predictors. 

2.4 APHRODITE Datasets 

The APHRODITE (Asian Precipitation-Highly-Resolved Observational Data Inte-
gration Towards Evaluation) daily gridded precipitation is a continental-scale daily 
product that contains a dense network of daily rain-gauge data for Asia. These datasets 
have been used in many studies in India [11].
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Fig. 3 A deep neural network (DNN) architecture 

3 Methodologies 

3.1 Deep Neural Network (DNN) 

Neural networks are biologically inspired programming paradigm which enables 
computer to learn from observational data. Modern DNNs involve numerous network 
architecture variations, training algorithms and tricks, and regularization methods. 

In case of DNN architecture used in this study (Fig. 3), the total dimension of 
the predictors is 144 × 9 = 1296. To reduce the dimension and remove multi-
collinearity from the data, a single hidden layer autoencoder is trained on the stan-
dardized predictor data in the training period. It has 500 nodes in the bottleneck layer. 
So, it reduced the dimension to 500. The inputs to the DNN network are the 500-
dimension encoded features for the present day and lag-1 day. The lag-1 day features 
are also included in order to incorporate the temporal evolution of the precipitation 
event. The outputs of the network have eight nodes, and the outputs are compared 
with the observed precipitations of the eight stations of the Basin via the loss function 
of mean squared error. 

3.2 Convolutional Neural Network (CNN) 

CNN is a special type of DNN. CNN architectures involve two special matrix 
operators, viz., a convolutional layer and a pooling layer in one or more layers, 
which is different from simple matrix multiplication of fully connected DNN [12]. 
Convolution operation improves statistical efficiency with three important ideas,
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Fig. 4 Architecture used for 2D convolutional neural network (2D CNN) network 

viz., sparse interactions, parameter sharing, and equivariant representations, and 
reduces the memory requirements of the machine learning system [12]. CNN models 
can be designed using one-dimensional (1D), 2D, and 3D CNN. If only spatial or 
temporal features are important then 2D or 1D CNN can be implemented, respec-
tively. However, in case of spatio-temporal feature extraction, 3D CNN is best suited, 
which performs convolution in both spatial and temporal dimension. Here, we have 
implemented both 2D and 3D CNN architectures for downscaling of precipitation. 

3.3 2D CNN 

Ten predictor variables of the current day and lag-1 day over the 12 × 12 grid points 
(i.e., total 144 grids) are utilized as input in the 2D CNN architecture. 12 × 12 grids 
are considered as a single image, and such 10 images are available for 10 predictors of 
current-day. Similarly, another ten images are available for the lag-1 day predictors. 
All these images are stacked in a data cube with dimension of 12 × 12 × 20, which 
is used as input data in the 2D CNN architecture. The 2D CNN architecture used in 
our work is presented in Fig. 4. 

3.4 3D CNN 

A 3D convolution performs convolution operation over a volume. A 3D CNN 
performed successfully in classification of hyperspectral images [13]. The temporal 
dimension can be taken into account easily as stacks of images of present-day vari-
ables and lag-1 day variables can be fed into the network as two volumes. The 
present-day and lag-1 day standardized 12 × 12 gridded predictor variables which 
were used in 2D CNN network are fed into the 3D CNN as two stacked volumes of
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Fig. 5 3D convolutional neural network (3D CNN) architecture used 

(12 × 12 × 10) size. The network specification used in our experiment is as shown 
in the Fig. 5. 

3.5 Hybrid Deep Neural Network (Hybrid-DNN) 

To use the information given by the precipitation rate (prate) variable from the NCEP 
Reanalysis Data, 3 × 3 nearest grid points surrounding the basin were used as inputs to 
the network as well. The 12×12 gridded inputs of the other predictor variables used in 
the CNN network earlier were fed into a CNN, while the eight grid points’ reanalysis 
precipitation rate variable was fed into a dense DNN. Both the networks were then 
concatenated as shown in the Fig. 6, and further two-layer dense network was added 
to the concatenated network. This technique allowed the network to learn spatial 
features from the predictor variables as well as the information of the reanalysis 
data of precipitation rates at the nearest grids. The network specification used in our 
experiment is as shown in the Fig. 6.

3.6 Performance Evaluation Metrics 

The Pearson correlation coefficient (r) between simulated and observed daily precip-
itation is used as supplementary skill metric for measuring model performance in 
this study. Normalized mean squared error (NMSE) is used as an error metric. 

NMSE = 
1 
N 

N∑

i=1

(
yi − ŷi

)2 

(Sobs)
2 ,



22 C. P. Tamang et al.

Fig. 6 Hybrid deep neural network (Hybrid-DNN) architecture used in this study

where (Sobs)
2 is the variance of the observed precipitation, and on the numerator is 

the mean squared error of the predicted values with respect to the observed. 

4 Results and Discussion 

The models are trained using 40 years of data from 1954 to 1994 and are tested on data 
from 1994 to 2004. Performance evaluation metrics are calculated with four different 
model predictions for the test datasets and presented in Tables 2, 3, 4, and 5. The  
mean rainfall values are predicted best by the Hybrid-DNN with least variance on the 
mean bias%. This result is with the use of the reanalysis precipitation outputs as well 
in the inputs to the model. The standard deviation (SD) of the predicted rainfall is 
lesser than the observed rainfall for all networks. The extremes are not fully captured 
by the models as there are more uncertainties around the extreme values. The daily 
rainfall correlations are better for the networks that used the spatial structure of the 
predictor data than the DNN. Monthly mean rainfall is very well simulated by all the 
networks.

On comparing the average NMSE over the eight stations of the different architec-
tures used, the 2D CNN performs slightly better than the rest and the 3D CNN and 
Hybrid-DNN have also performed quite well (Table 6). The DNN architecture, which 
did not use the spatial structure of the gridded predictor datasets, has not performed 
as well as the other networks. Thus, accounting for the spatial nature of the predictor 
data leads to better representation of the precipitation patterns.

A 2D CNN architecture is comparatively providing better performance. Hence, 
the time series plot of observed and predicted (from 2D CNN) rainfall and the scatter 
plot between them are presented for Station 1 data in Fig. 7. The precipitation patterns 
are well captured on the test set.
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Table 6 Average NMSE 
values over the 8 stations 

Network architectures NMSE values 

DNN 0.603 

2D CNN 0.503 

3D CNN 0.51 

Hybrid-DNN 0.53

Fig. 7 (Top) Time series plot of observed rainfall and predicted rainfall for 2004, and (Bottom) 
Scatter plot of daily observed rainfall and rainfall predicted by 2D CNN for 1994–2004 for Station 
1
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5 Conclusions 

In this study, we explored different DL approaches viz., DNN, 2D CNN, 3D CNN, 
and Hybrid-DNN to downscale daily precipitation for eight locations in the Mahanadi 
Basin. Our study shows the ability of DL models to process large continental scale 
datasets, learn features that can predict precipitation, and with consideration of the 
hydroclimatic variables as images we can further exploit the spatial structure of 
these datasets. These methods have an advantage over other statistical downscaling 
techniques as it solves the problem of high dimensionality by automatically selecting 
the features from the predictors by learning spatial information in the form of feature 
maps. The models performed well based on the statistics of normalized mean squared 
error, and the CNN network performed best. 

Our study shows promise for further study of deep learning models with GCM 
datasets to capture the precipitation trends in future scenarios over the Indian subcon-
tinent. Higher resolution predictor datasets can be used so that the potential of our 
models to learn spatial features can be better explored to simulate extreme scenarios 
in GCM datasets. 
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Abstract The benefit of the time-varying downscaling model (TVDM) in down-
scaling the historical precipitation (1951–2015) data is explored in this study. The 
Godavari River Basin (GRB) is considered for demonstrating the results. The General 
Circulation Model (GCM) outputs from Canadian Earth System Model, version-2 
(CanESM2) are considered for the analysis. The observed precipitation is obtained 
from India Meteorological Department (IMD), Pune. Firstly, the TVDM is calibrated 
using 40 years (1951–1990) of historical data and then validated for the remaining 
15 years (1991–2005) in the historical period. Secondly, the downscaled data are 
analyzed with the observed precipitation data using different statistical measures. The 
results have shown a good association between observed and downscaled precipita-
tion during both calibration and validation periods across the GRB. For instance, the 
correlation coefficient (R) ranges between 0.71 and 0.89 at various locations in the 
GRB. Further, the extreme events are also assessed using 90th and 95th percentiles 
and found a better match between the observed and TVDM downscaled data. Overall, 
the TVDM shows a promising result in modeling the precipitation. Hence, the TVDM 
can be used to downscale the future precipitation of GRB under the changing climate 
scenario, and the outputs can be used for many local-scale impact assessment studies. 
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1 Introduction 

Finer resolution products which are having spatial resolution below 20 km are 
not being presently provided by the general circulation models (GCMs) [1]. To 
assess the consequences of changing climate on a variety of human and natural 
systems, such as water resource management, agriculture, ecosystems, and so on, 
finer resolution representations of climate variables are necessary. As a result, down-
scaling GCM results to a finer spatial resolution that allows researchers to assess 
the regional-level consequences of future climate change [2]. Downscaling is a tech-
nique for transferring large-scale climate variables (causal variables) changes which 
are simulated by GCMs to regional meteorological records (target variable). There 
are different approaches for precipitation downscaling that have been widely used 
in various regions [3–5]. Dynamical downscaling [6–9] and statistical downscaling 
[10–14] are two types of downscaling methods. A nested regional climate model, 
finer resolution meteorological variables with coarse GCM data as the inceptive 
and boundary conditions, or a variable-resolution global model can also be used for 
dynamical downscaling [15, 16], but it needs a lot of computation and parameteri-
zation of the model. On the other hand, statistical downscaling is a computationally 
less demanding approach. It establishes statistical relationships, i.e., multiple linear 
regression analysis between predictor and predict and variables [17]. In this study, 
the time-varying downscaling model (TVDM) is employed for downscaling the rain-
fall data for Godavari River Basin (GRB). Further, the efficacy of the downscaling 
model in representing the observed data is also assessed. The model is calibrated 
and validated using the historical data (1951–2005). In this paper, the effectiveness 
of the TVDM is tested using various statistical parameters. 

2 Study Area and Data Source 

2.1 Godavari River Basin 

The Godavari River is the largest east-flowing river in peninsular India. The catch-
ment area of the basin is 312812 km2 and shares almost 10% of the Indian geograph-
ical area. It is extended over seven states in India. The average annual rainfall of the 
basin is about 1110 mm. The basin lies between latitudes of 16°16' 0'' N and 23°43'
0'' N and longitudes of 73°26' 0'' E and 83°07' 0'' E. The Pravara and Manjeera are 
the primary tributaries joining on the right side of bank of the river, while the Purna, 
Pranhita, Indravati, and Sabari are the primary tributaries joining on the left side of 
the river bank. The basin map and its position within India are presented in Fig. 1.

Godavari begins its ascent in the Sahyadris which is nearby Triambakeswar, about 
80 km from the Arabian Sea’s coast, in the Maharashtra (Nasik district), at a height of 
1067 m. Godavari enters the Bay of Bengal at Antarvedi after traveling approximately 
1465 km in a general south-eastern direction across Maharashtra and Andhra Pradesh.
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Fig. 1 Study area map

The efficacy of TVDM is tested at 10 key locations of GRB as shown in Fig. 1. 
These locations are well spread over the GRB and represent its characteristics. The 
first three locations (numbered 1, 2, and 3) are representing the Upper Godavari 
region, locations numbered 4 to 7 are falling under the Middle Godavari, and the 
locations 8, 9, 10 are falling in the Lower Godavari region. 

2.2 Data Used 

The daily rainfall data at 0.25° × 0.25° resolution for the Godavari basin is obtained 
from India Meteorological Department (IMD), Pune [18], and converted it into 
monthly data. Further, the data is divided into calibration period (40-years, i.e., 1951– 
1990) and validation period (15-years, i.e., 1991–2005. The World Meteorological 
Organization (WMO) recommended 30-years of data to effectively understand the 
anomalies of any meteorological variable due to climate change. Hence, 40-years of 
data is sufficient for the model development. 

The causals data from CanESM-2 GCM are downloaded from the Coupled Model 
Intercomparison Project—Phase5 (CMIP-5) web portal. The mean sea level pressure, 
surface specific humidity, meridional and zonal winds, and temperature are found 
to be the potential causal variables (based on their correlation) to downscale the 
precipitation in this study basin.
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2.3 Canadian Earth System Model–Version2 (CanESM2) 

The CanESM-2 model GCM outputs are considered as the large-scale atmospheric 
variables (causal data) for this study. The CanESM2 is developed by the Canadian 
Centre for Climate Modeling and Analysis (CCCMA). It is the advanced version 
to CanESM series [19]. It has a resolution of 2.81° × 2.81° and also has 22 pres-
sure levels in the atmosphere (altitude), i.e., vertical resolution. Further details of 
CanESM2 can be found from [20]. The causal data are downloaded from the CMIP5 
web portal available at http://www.ipcc-data.org/sim/gcm_monthly/AR5/Reference-
Archive.html, accessed in September 2021. 

3 Methodology 

3.1 Time-Varying Downscaling Model (TVDM) 

The Bayesian technique is used to update the parameters that were previously used 
in the Bayesian dynamic linear model to create TVDM [21]. Numerous hydrolog-
ical studies, including those that involve in quantifying uncertainty, water quality 
modeling, hydroclimatic analysis, etc., apply the Bayesian technique [22–28]. The 
goal of TVDM is to capture the dynamic relationship over time between pertinent 
(atmospheric) causative variables and the downscaled target variable. 

The first step in the TVDM is to standardize all the variables (Causal and target) 
involved in the process to transform them into a similar range. It is achieved by 
subtracting the mean (μ) and dividing the difference with the standard deviation (σ) of  
each variable. Next step is to set-up system equations for successive update. Further 
step is model initialization; the model is initialized using the assumed information 
for the first time-step, and the downscaled value is computed. After computing the 
downscaled value, the error is evaluated with respect to observed value, and then 
posterior and prior distributions are calculated using system equations. The detailed 
methodology of TVDM model can be found in [29]. The downscaling expression 
used in this study for the target variable (Yt) using the information of causal variables 
at tth time-step is expressed as 

Yt = FTΘt + vt 

where 
FT is the transpose of the vector of the causal variables at the tth time-step;
Θt is the parameter vector at the tth time-step; 
vt is the difference or error between the target variable’s observed and the 

downscaled values.

http://www.ipcc-data.org/sim/gcm_monthly/AR5/Reference-Archive.html
http://www.ipcc-data.org/sim/gcm_monthly/AR5/Reference-Archive.html
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4 Results and Discussions 

The analysis has been carried out for the GRB using TVDM for the calibration 
period (1951–1990) and validation period (1991–2005) at each selected location in 
GRB. Several statistical parameters, i.e., correlation coefficient (R), unbiased Root 
Mean Square Error (uRMSE), and degree of agreement (Dr) are calculated to test the 
efficacy of the model in representing the observed rainfall for both the time periods. To 
understand the distribution and extremities of the rainfall, mean, standard deviation, 
90th percentile, and 95th percentiles are computed. 

The ability of TVDM in simulating the observed data is checked using the mean 
and standard deviation values shown in Table 1. The mean is well modeled by TVDM 
in almost all the key locations used in this study. For instance, the observed mean 
corresponding to the low rainfall location (location 2) is 53.50 mm, and the corre-
sponding value of TVDM is 54.70 mm during the calibration period. The maximum 
observed (TVDM) mean is noticed as 137.4 mm (148.0 mm) at location 1. The 
standard deviation is also better modeled by TVDM. For instance, the observed and 
TVDM modeled standard deviation values at location 6 are 143.4 mm and 134.7 
mm, respectively. The similar kind of results are found during the validation period 
(see Table 1). Further, the ability of TVDM in identifying the extreme values is 
assessed using the 90th and 95th percentile values as parameters. The good associ-
ation between observed and TVDM is detected in this aspect also. For instance, the 
observed (TVDM modeled) 90th and 95th percentile values (in mm) during the cali-
bration period at the upper GRB location (location 1) are noted as 451.90 (505.40) 
and 608.50 (628.60), respectively. The same values (in mm) at the lower GRB loca-
tion (Location 10) are spotted as 278.60 (280.10) and 341.40 (322.30), respectively. 
More or less similar observations are noted during the validation period (refer to 
Table 1).

Furthermore, the effectiveness of TVDM is also tested using three vital statistical 
parameters (R, uRMSE and Dr), and the results are shown in Table 2. It is observed 
that the R value is ranging between 0.71 (location 2) and 0.86 (location 1) during the 
calibration period and the same is noticed as 0.72 and 0.75 during the validation period 
corresponding to the same locations. These results imply the good performance of 
TVDM in simulating the observed data over GRB. The degree of agreement (Dr) 
values ranges between 0.72 and 0.82 (see Table 2) during the calibration period, and 
the same is ranges between 0.68 and 0.79 during the validation period.

The visual variation of the observed and TVDM downscaled data is shown as 
scatter plot in Fig. 2. In this figure, the 45° line is represented with blue line, and the 
least square (best fit) line is identified with a red line. A 45° line or reference line is 
used to observe the correlation of the data; the nearer the points are to the reference 
line, the higher the correlation between the observed and the modeled data. A least 
square regression line or best fit line is the line that represents the best fit of the 
linear relationship between the variables. This line decreases the remoteness of the 
data from the regression line. The good association between observed and TVDM 
downscaled precipitation can be depicted in Fig. 2. The left panel is corresponding
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Table 2 Performance measures during Calibration (1951–1990) and Validation (1991–2005) 
periods over the GRB 

Location no. R uRMSE Dr 

Calibration Validation Calibration Validation Calibration Validation 

1 0.86 0.75 120.23 119.06 0.82 0.79 

2 0.71 0.72 54.28 76.34 0.72 0.75 

3 0.74 0.69 56.38 52.13 0.72 0.68 

4 0.78 0.80 74.21 69.33 0.76 0.76 

5 0.79 0.73 70.59 64.37 0.78 0.72 

6 0.84 0.85 78.12 59.76 0.80 0.74 

7 0.86 0.73 83.00 94.41 0.80 0.75 

8 0.80 0.70 73.96 73.13 0.77 0.69 

9 0.78 0.74 118.11 122.16 0.79 0.75 

10 0.81 0.71 68.24 66.53 0.77 0.74

to the calibration period, and the right panel is a representation of the validation 
period. It is visually clear that the lower rainfall values have been overestimated 
by the TVDM and the higher values are slightly underestimated. A better version 
of these results can be expected after applying the bias correction. Overall, a good 
association between observed and TVDM downscaled precipitation is identified for 
the selected study area. 

Fig. 2 Scatter plot between observed and TVDM downscaled precipitation during calibration and 
validation periods at location 4 in the study area map
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5 Conclusions 

The following conclusions are derived from this study-

(i) It is concluded that the Time-Varying Downscaling Model (TVDM) was found 
beneficial in downscaling the rainfall over the Godavari River Basin (GRB). It 
is confirmed through rigorous statistical checks. 

(ii) The efficacy of TVDM in simulating the extreme events (90th and 95th 
percentiles are used in this study) is also demonstrated. 

(iii) The ability of the model is tested using various statistical parameters, e.g., the 
R value ranges between 0.71 and 0.86. 

(iv) The developed model can be used for downscaling the future precipitation, and 
the outputs can be used as an input in any rainfall-runoff model for modelling 
the future runoff/streamflow. 

(v) The methodology of this study is general enough and can be applied for any 
other basin/region in the world for downscaling any hydroclimatic variable(s). 
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Assessment of Kernel Regression Based 
Statistically Downscaled Rainfall Over 
Tapi River Basin, India 

Lalit Kumar Gehlot, P. L. Patel, and P. V. Timbadiya 

Abstract The downscaling of coarser scale general circulation model (GCM) vari-
ables, preferably the rainfall and temperature, to finer resolution followed by esti-
mation of uncertainty/bias in the downscaled outcomes are essentially required prior 
to their application for hydrological assessments and decision-making. The kernel 
regression-based statistical downscaled (KRSD) rainfall data of five GCM models, 
from Coupled Model Intercomparison Project Phase-5 (CMIP-5), have been assessed 
to ascertain their ability to simulate the magnitude, variability, and extremes of Indian 
summer monsoon rainfall (ISMR) over the Tapi River basin (TRB) in India. The 
KRSD rainfall of GCMs is compared with gridded rainfall data obtained from India 
Meteorological Department-Pune (IMD) for the period 1951–2005 on annual and 
monsoon months (JJAS). The GCMs underestimate annual rainfall (PRCPTOT) on 
average by 21.7–28.4% over the TRB. Further, GCMs overestimate the number of 
rainy days (RD) and longest spell of consecutive rainy days (CWD) at an annual 
scale vis-à-vis IMD gridded rainfall dataset. The four-to seven-fold overestimation 
of CWD and RD is observed during September month compared to June, July, and 
August months. Also, one-day (Rx1D), five-day (Rx5D), and rainfall extremes above 
95th percentile value (R95) from GCMs observed underestimation of the parameters 
ranging from 46.4 to 52.7%, 41.4 to 44.1%, and 45.0 to 48.8%, respectively. The 
present investigation concludes that the GCM fails to account for the seasonality of
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ISMR over TRB. Overall, KRSD rainfall underestimates the PRCPTOT and rain-
fall extremes while overestimating the RD and CWD over the TRB. Thus, rainfall 
intensities are significantly underestimated for the historical period over TRB. 

Keywords General circulation models (GCMs) · CMIP-5 · Kernel regression 
based statistical downscaling (KRSD) · Rainfall-indices · Tapi Basin 

1 Introduction 

The increasing greenhouse gas emission and local-scale anthropogenic changes have 
altered hydroclimatic variability, in general, and rainfall patterns across India, in 
particular [1]. Also, their consequential effects on regional hydrology have drawn 
the attention of governments, academic/climate researchers, and field agencies [2]. 
The general circulation models (GCMs) are widely used to understand the effects 
of various forcing conditions on current and future climate; however, their appli-
cability is at the global scale. Therefore, they cannot be used directly for regional 
hydrologic estimations [3]. Downscaling, statistical or dynamic, is a technique by 
which the large-scale GCM predictors can be transformed to local-/regional-scale 
hydro-meteorological variables [2]. Statistical downscaling, being more accessible 
and computationally efficient, has been widely used by climate researchers. It is 
employed to establish a statistical relationship between large-scale climate vari-
ables/atmospheric patterns to the variable of interest at the local scale. These relation-
ships are assumed to be valid for downscaling of future rainfall data. This assumption 
is one of the limitations of statistical downscaling techniques [5]. Broadly, statis-
tical downscaling methods are classified as weather generator, weather typing, and 
regression or transfer function model [4, 5]. The details of various statistical down-
scaling techniques can be found in Lee and Singh [5]. The daily scale downscaling 
of rainfall at multiple sites is often very challenging. A rainfall event is a complex 
interaction of numerous climatic variables, oceanic circulation patterns, etc., and 
varies primarily over space. Kannan and Ghosh [2] developed a rainfall state-based 
method to overcome this problem, further extended by Salvi and Ghosh [4] for daily 
rainfall projections for seven meteorologically homogeneous regions of India using 
the kernel regression. Shashikant et al. [6] have emphasized on the downscaled rain-
fall extremes over India. The scientific advancements in atmospheric science help us 
understand the likely climate scenarios in the near future. The hydrologic response to 
these future climate scenarios is the fundamental interest of hydrologists for suitable 
measures/policies to be brought into practice. 

The Tapi River Basin (TRB) is the second-largest west-flowing river of India, 
with a basin area of approximately 2% of the geographical area of India. TRB is 
climatologically heterogeneous, and the monsoon season is the primary source of 
water availability in the basin. The decreasing annual total rainfall and rising rainfall 
extremes in TRB lead to increased water stress conditions, thus widely affecting the 
socio-economic and agricultural activities in the basin. An attempt to understand the
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climate scenarios over TRB is made in the present investigation; however, it is limited 
to ascertaining the efficacy of the kernel regression-based statistical downscaled 
(KRSD) rainfall over TRB. The outcomes of the present study will help to understand 
the accuracy of long-term historical predictions over TRB, and future estimates can 
be interpreted accordingly. 

2 Study Area and Data Source 

2.1 Tapi River Basin 

The Tapi River is the sixth-largest river of Peninsular India and the second-largest 
westward flowing river draining into the Arabian Sea. The TRB, in west-central 
India, has a drainage area of 65,145 km2, which is about 2% of the geographical 
area of India. The Tapi River originates at an elevation of 752 m near Multai in Betul 
district of Madhya Pradesh state and traverse a total distance of 724 km through three 
different states, viz, Madhya Pradesh (282 km), Maharashtra (228 km), and Gujarat 
(214 km), before falling into the Gulf of Khambhat near Surat city. The Tapi basin is 
subdivided into Upper Tapi basin (UTB ≈ 29,430 km2), Middle Tapi basin (MTB ≈ 
32,925 km2), and Lower Tapi basin (LTB ≈ 2,790 km2), wherein UTB, MTB, and 
LTB extend from the origin of Tapi River to the Hatnur dam, from the Hatnur dam 
to the Ukai dam, and from the Ukai dam to the Arabian sea, respectively (Fig. 1).

The average rainfall of the Tapi basin has been reported to be 815.7 mm, while 
corresponding values for UTB, MTB, and LTB are 839.2 mm, 742.9 mm, and 
1284.6 mm, respectively. The Indian Summer Monsoon Rainfall (ISMR) primarily 
governs the availability of freshwater in TRB and the significant portion of India. The 
ISMR has been classified into four different seasons, viz. monsoon (Jun–Sept), post-
monsoon (Oct–Nov), winter (Dec–Feb), and pre-monsoon (Mar–May). The south-
west monsoon in the basin, on average, onsets by mid-June and withdraws by the 
first week of October. The Tapi basin receives approximately 90% of annual rainfall 
during the monsoon season, followed by post-monsoon (7.0%), pre-monsoon (1.6%), 
and winter (1.4%) seasons. The rainfall during June, July, August, and September 
months is 16.4%, 29.0%, 26.5%, and 18.1%, respectively of annual rainfall. From 
the global maps of the Köppen-Geiger climate classification, at spatial resolution of 
0.5° for the period 1951–2000, it is found out that nearly 48.5% of the basin area 
is classified as semi-arid region (BSh), while remaining 51.5% region experiences 
sub-humid climate (tropical dry savannah-As, and tropical wet savannah-Aw).



42 L. K. Gehlot et al.

Fig. 1 Index map of Tapi basin showing rainfall grids at 0.25º resolution

2.2 Data Used 

The rainfall of five GCM models (see Table 1) statistically downscaled using the 
kernel regression method [5, 7] has been used in the present study. The downscaled 
data at the spatial resolution of 0.25° has been obtained from the research project 
“Statistical Downscaling for Hydroclimatic projections with CMIP5 simulations to 
assess Impact of Climate Change” funded by the Indian National Committee on 
Climate Change (INCCC), Ministry of Jal Shakti, Department of Water Resources, 
River Development & Ganga Rejuvenation, Government of India. The gridded rain-
fall data of India Meteorological Department (IMD), Pune, at a similar spatial resolu-
tion, has been used as a reference dataset for statistical comparison of the downscaled 
data. The rainfall data of IMD and GCM historical period is analyzed from 1951 to 
2005.
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Table 1 Global climate models used in the present analysis 

GCM model Details 

BMU ESM Beijing Normal University Earth System Model, China 

CCCma-CanESM2 Canadian Centre for Climate Modelling and Analysis-Second generation 
Canadian Earth System Model 

CNRM CM5 Centre National de Recherches Meteorologiques, France 

MPI ESM LR Max Planck Institute for Meteorology (Germany) Earth System Model 
running on low resolution grid 

MPI ESM MR MPI ESM running on mixed resolution grid 

The GCM models are denoted/cited/named as BNU, CCCma, CM5, MPI-LR and MPI-MR 
respectively 

3 Results and Discussions 

3.1 Rainfall Characteristics 

The coarser scale GCM data for the five GCM models statistically downscaled using 
kernel regression is used for its performance assessment in representing the Indian 
Summer Monsoon Rainfall (ISMR) over the TRB. The various characteristics of 
ISMR, i.e., magnitude, duration, frequency, and extremes, have been used to quantify 
the performance of KRSD rainfall data w.r.t. IMD gridded rainfall data. The six 
indices representing different characteristics of ISMR and used in the present study 
are tabulated in Table 2. The percentage deviations in the index obtained from GCM 
data have been estimated as IIMD−IGCM 

IIMD 
∗ 100 where IIMD and IGCM represents the 

index value calculated using IMD data and KRSD rainfall data, respectively. Since 
the water availability in TRB is monsoon driven, the percentage deviations in the 
aforesaid rainfall characteristics have been estimated for June, July, August, and 
September months along with annual estimates.

The normal PRCPTOT of TRB ranges from 519.0 to 1460.0 mm with large scale 
spatial variability. The headwater region of Tapi River and LTB usually receives 
more rainfall than the basin mean rainfall of 796.5 mm indicating non-homogeneity 
of ISMR over TRB. The historical simulations of rainfall obtained from five GCM 
models, downscaled to 0.25° spatial resolution are analyzed, and their percentage 
deviations are shown in Fig. 2. From Fig.  2, it is apparent that the PRCPTOT for 
June month is underestimated by all the GCM models. The average (and variability 
range) error (in %) over TRB for June month is 18.8 (40.2–19.2) for BNU ESM, 
47.1 (64.7–17.7) for CanESM2, 55.7 (78.9–24) for CNRM CM5, 18.7 (45.5–12.9) for 
MPI ESM LR, and 33.3 (53.6–4.7) for MPI ESM MR GCM models. The respective 
error (in %) estimates for July, August, and September month are 19.6 (41.5–9.7), 
41.6 (73–23.4), 33.0 (54.5–2.6), 19.4 (45.3–0.1) and 19.8 (41.9–6.8); 21.0 (51.3– 
17.8), 14.6 (35.7–18.4), 28 (61.4–44.9), 24.7 (43.0–10.5) and 20.6 (37.8–25.0); and
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Table 2 Rainfall indices used in present study 

Indicator Indicator name Indicator definitions Units 

PRCPTOT Total annual rainfall Annual rainfall from days ≥ 2.5 mm mm 

RD Rainy days Number of days when rainfall ≥ 2.5 mm days 

Rx1D Maximum 1-day rainfall Annual maximum 1-day rainfall mm 

Rx5D Maximum 5-day rainfall Annual maximum consecutive 5-day 
rainfall 

mm 

R95 Very wet days Annual total rainfall from days > 95th 

percentile 
mm 

CWD Consecutive wet days Maximum number of consecutive days 
when rainfall ≥ 2.5 mm 

days 

The 95th percentile threshold at individual grid point is calculated using monsoon rainfall for the 
period 1951–2005

31.2 (61.9–6.0), −4.8 (49.3–64.2), −5.5 (35.7–65.2), 17.6 (57.6–9.3), and 9.1 (52.3– 
42.7), respectively. However, on annual scale the percentage error (%) estimates for 
aforesaid GCM models are 23.1 (44.3–0.9); 23.1 (50.8–33.1), 28.4 (50.5–12.9), 21.7 
(37.6–7.8), and 22.7 (38.5–3.5), respectively. It can also be seen that the GCM rainfall 
estimates are more in LTB particularly during August and September months. From 
the error estimates during monsoon months and annual time scale, it can be stated that 
the monsoonal rainfall has been underestimated while the non-monsoonal rainfall 
has been overestimated. In other words, the monsoon/seasonal cycles of ISMR over 
TRB have not been simulated well. Overall, based on the error estimates, the MPI 
ESM LR model can be considered better that the remaining GCM models. 

The number of days having rainfall more than 2.5 mm, defined as a rainy day (RD), 
may be considered important from the hydrological perspective in conjunction to the 
prevailing wet soil conditions in the area. The number of RDs obtained from KRSD 
rainfall data and their relative deviations w.r.t. IMD data are shown in Fig. 3. The  
mean (variability range) RDs for TRB ranges from 36 to 74.5 days (8.0–14.6 days)

Fig. 2 Percentage error in PRCPTOT derived from KRSD-Historical period rainfall 
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Fig. 3 Percentage error in RD derived from KRSD-Historical period rainfall 

with maximum RDs in headwater regions of TRB. The error estimates for GCM RDs 
with reference to IMD (see Fig. 3) show that all the GCMs have overestimated the 
RD for the historical period, except a few instances in the leeward side of the Western 
Ghats in MTB, where underestimation is observed during June and July months. The 
mean percentage deviations (%) in RD during the monsoon months (JJAS) for BNU 
ESM, CanESM2, CNRM CM5, MPI ESM LR, and MPI ESM MR models are − 
57.4, −33.0, −36.5 and −62.5; −8.8, −3.5, −46.3 and −130.0; 0.4, −12.1, −20.2 
and −99.6; −46.1, −25.1, −21.8 and −82.3; and −20.0, −25.1, −29.8 and −99.8 
respectively. The mean (and variability range) percentage deviation at annual scale for 
aforesaid GCM models are −41.5 (−14.7 to −76.0), −42.2 (−11.3 to −85.5), −28.5 
(4.1 to −70.3), −36.8 (−15.9 to −65.9) and −36.9 (−17.1 to −67.1) respectively. 
The RD in September month is poorly simulated by all the GCM models with many 
fold overestimation. The CNRM CM5 model seems to simulate RDs fairly with the 
least mean error, probably due to simultaneous over/underestimation at various grids. 
The overestimation of the RDs and underestimated PRCPTOT, in general, suppress 
the expected simple daily intensity of the rainfall. 

The one-day and five-day maximum rainfall (Rx1D and Rx5D) are significantly 
important for pluvial flooding and erosion point of view. The mean Rx1D and Rx5D 
over TRB range from 57.0 to 159.3 mm and 113.0 to 348.8 mm, respectively. The 
estimated errors in Rx1D show that the GCM simulated one-day maximum rain-
fall during monsoon months (JJAS) is underestimated by 50% (on average). The 
percentage deviation (%) range during JJAS for BNU ESM, CanESM2, CNRM 
CM5, MPI ESM LR and MPI ESM MR models is 45.5–57.2, 48.1–58.6, 39.9–64.1, 
41.6–51.6 and 40.5–51.8 respectively, while their respective mean (and variability 
range) percentage deviations at annual scale are 52.7 (64.1–29.2), 50.0 (64.3 to − 
23.8), 46.4 (62.4–16.4), 47.8 (62.4–25.5) and 48.6 (62.8–21.2) (see Fig. 4). Simi-
larly, the corresponding results for Rx5D during JJAS months for aforesaid GCM 
models are 35.0–46.3, 34.6–51.8, 27.1–57.4, 31.2–39.9 and 30.8–39.6 respectively 
with their annual estimates of mean percentage deviation (variability range) by 44.1
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(56.4–23.3), 41.4 (54.5 to −73.6), 41.5 (55.9–7.1), 41.6 (53.7–27.2) and 41.8 (54.3– 
27.6) respectively (see Fig. 5). The MPI ESM LR can be considered to outperform 
remaining models for June, July, and August months while CNRM CMS has consid-
erably performed better for September month with minor overestimation of Rx1D 
and Rx5D for the LTB region. The annual estimates show that MPI ESM LR and 
CNRM CM5 have shown relatively better estimation of Rx5D and Rx1D across 
the Tapi basin for the historic period. The underestimation of such extreme events 
by GCM models might lead to a false representation of reduced chances of pluvial 
flooding, erosion, and other damages in the study region. 

The rainfall amount of more than 95% threshold (R95) plays a crucial role in 
hydrologic assessments and designs. The mean (spatial variability range) R95 for 
TRB ranges from 245.0 to 646.9 mm (103.0–458.6 mm). The estimated errors in 
R95 show that the GCM simulated very wet days during monsoon months (JJAS) are 
underestimated by 48.1% (on average). The percentage deviation (%) range during 
JJAS for BNU ESM, CanESM2, CNRM CM5, MPI ESM LR, and MPI ESM MR

Fig. 4 Percentage error in Rx1D derived from KRSD-Historical period rainfall 

Fig. 5 Percentage error in Rx5D derived from KRSD-Historical period rainfall 
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models is 37.5–71.6, 34.5–59.1, 29.9–73.6, 34.1–63.0, and 33.4–63.6, respectively, 
while their respective mean (and spatial variability range) percentage deviations 
are 48.8 (59.7–33.5), 45.0 (60.8–71.1), 45.2 (61.5–15.7), 45.2 (57.2–32.6), and 46.8 
(59.5–26.3) (see Fig. 6). MPI ESM LR, MPI ESM MR, CanESM2, and CNRM CM5 
reasonably simulated R95 for June and Annual scale, July, August, and September, 
respectively, during the historical period. 

The consecutive spell of rainy days (CWD) significantly affects predicting hydro-
logical variables in a river basin. The mean (variation) RD for the Tapi basin ranges 
from 5.0 to 19.7 days (1.0–9.7 days). The large-scale overestimation of the CWD 
has been seen during the monsoon months with mean overestimation of 75.6% and 
ranging from 13.8 to 238.3% (see Fig. 7). The percentage overestimation during 
September month is four to seven-fold larger than June, July, and August months. 
The MPI ESM LR has been found to reasonably simulate the longest consecutive 
spells over the Tapi basin. 

Fig. 6 Percentage error in R95 derived from KRSD-Historical period rainfall 

Fig. 7 Percentage error in CWD derived from KRSD-Historical period rainfall
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3.2 Sub-Basin Wise Rainfall Distribution 

The spatial distribution of rainfall varies significantly due to its geographical setting, 
i.e., the Western Ghats and the large water mass (the Arabian Sea) is the reason for 
the highest magnitude of rainfall in LTB. On the other hand, the region on the leeward 
side of the Western Ghats receives the least rainfall in the basin. The narrow valley 
of UTB, i.e., Burhanpur sub-catchment between Satpura hills and Gwaligarh hills, 
also receives rainfall above the average rainfall of TRB. The empirical cumulative 
distribution functions (eCDF) of observed daily rainfall over three sub-basins of TRB 
are compared with KRSD rainfall data. The rainfall events are further sub-divided 
into three categories, i.e., high, medium, and low rainfall depths with their respective 
exceedance probability ranging above 95%, between 95 and 70%, and below 70%, 
as shown in Fig. 8. The low rainfall depths are generally overestimated by all the 
GCM models, particularly for LTB. For UTB and MTB, the low rainfall depths are 
reasonably overestimated due to mixed behavior. Similar patterns are also evidenced 
in the simulation of RD in TRB. The large-scale overestimation of RD is mainly due 
to poor simulation of the low rainfall depth over TRB.

Similarly, the KRSD rainfall underestimates moderate and large rainfall depths, 
as seen from Fig. 8. However, the deviation in medium rainfall depths is highest in 
UTB, while the MTB received the least one-day maximum rainfall from KRSD data. 
Similar evidence can be seen in the spatial variation of the one-day maximum rainfall 
depth simulation over TRB see Fig. 4. The overall underestimation of the Rx1D 
rainfall seems to be the primary factor responsible for the general underestimation of 
mean/total rainfall in TRB. The variation in the simulation of various rainfall depths 
over TRB, in general, and three sub-basins, in particular, are the indicators that the 
GCM models and, thus, KRSD models are not able to account for the seasonality 
of the ISMR, and therefore, the future simulations are required to be interpreted 
accordingly. 

4 Conclusions 

The following conclusions are derived from the foregoing study:

• The annual rainfall (PRCPTOT) estimated by the GCM is found to be underes-
timated by 21.7−28.4% (on average) on annual scale with random over/under 
estimations. The MPI ESM LR is found to outperform other GCM models in case 
of PRCPTOT. 

• Large-scale overestimations have been observed in the number of rainy days 
(RD) and maximum spell of consecutive rainy days (CWD) annually, while the 
overestimation for September months is four-to seven-fold as compared to June, 
July, and August. The mean overestimation for both the indices ranges from 28.5% 
to 42.2% and 77.2% to 128.4% wherein CNRM CM5 and MPI ESM LR simulated 
well these two rainfall indices, respectively.
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Fig. 8 Empirical cumulative distribution function of daily rainfall for LTB, MTB, and UTB; (a– 
d–g, b–e–h, and c–f–i show the different segments of eCDF representing extremes, moderate, and 
low rainfall depths)

• The extreme indices Rx1D, Rx5D, and R95, on annual scale, showed the 
percentage errors ranging from 46.4% to 52.7%, 41.4% to 44.1% and 45.0% 
to 48.8%, respectively. MPI ESM LR and CNRM CM5 have been found to fairly 
simulate Rx5D, R95, and Rx1D during the historical period at annual scale. 
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Analysis of Uncertainty Due to Climate 
Change Using REA Approach 
in Different Regions of Western Ghats, 
South India 

Navya Chandu and T. I. Eldho 

Abstract The evaluation of climate change impacts on hydrology using Global 
Climate Models (GCM) and emission scenarios is incomplete, without quantifying 
the uncertainty associated with it. As the uncertainties play a significant role in such 
analysis, it is important to quantify them in order to develop productive management 
and decision-making capabilities. The objective of the present study is to model 
the GCM and scenario uncertainty in the Western Ghats (WG) region of South 
India using Reliability Ensemble Average (REA) for the estimation of stream flows. 
The analysis is carried out grid-wise, for monsoon (JJAS) rainfall in near future 
(2011–2040). The statistically downscaled (kernel regression) rainfall data at 0.25° 
resolution for 5 CMIP-5 GCMs CNRM, CCCMA, MPIMR, MPILR, and BNU for 
RCP 4.5 and 8.5 are used in the present study. The upper-middle and lower regions 
along with the elevation profile (lowland, midland, and ghats) of WG are chosen as a 
criterion for quantifying the uncertainty associated with GCM models and emission 
scenarios. Irrespective of the topography criteria, the uncertainty associated with 
GCM is found to be more significant than the scenario uncertainty. The GCM model 
shows a good correlation with the latitude profile in WG. The GCM MPILR and 
CCCMA have higher weightage in lower and middle regions as compared to the 
others while the GCM CNRM is less pronounced in the high elevation zones along 
the basin. 

Keywords Climate change · Uncertainty · REA approach

Disclaimer: The presentation of material and details in maps used in this chapter does not imply 
the expression of any opinion whatsoever on the part of the Publisher or Author concerning the 
legal status of any country, area or territory or of its authorities, or concerning the delimitation of its 
borders. The depiction and use of boundaries, geographic names and related data shown on maps 
and included in lists, tables, documents, and databases in this chapter are not warranted to be error 
free nor do they necessarily imply official endorsement or acceptance by the Publisher or Author. 

N. Chandu (B) · T. I. Eldho 
Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai, India 
e-mail: nav.nav93@gmail.com 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 
P. V. Timbadiya et al. (eds.), Climate Change Impact on Water Resources, Lecture Notes 
in Civil Engineering 313, https://doi.org/10.1007/978-981-19-8524-9_5 

51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-8524-9_5&domain=pdf
mailto:nav.nav93@gmail.com
https://doi.org/10.1007/978-981-19-8524-9_5


52 N. Chandu and T. I. Eldho

1 Introduction 

As the hydrological cycle is severely affected by climate change, the available water 
resources in a region are dependent on climate change and its impacts. Generally, the 
climate change projections are carried out based on Global Climate Models (GCM) 
models. Such models are characterized by lower confidence levels and higher uncer-
tainty levels [2]. Atmosphere–Ocean General Circulation Models (AOGCMs) are 
capable of showing differences in climate variables under the same forcing scenarios, 
which thereby results in uncertainty and it is also difficult to identify the most reliable 
GCMs. Therefore, it is better to create an ensemble product based on the collective 
information from available GCM simulations. 

In the recent past, multi-model averaging techniques have become one of the most 
common approaches to identify the performance of a model as well as to create a large 
ensemble of simulations corresponding to climate change [1] and the rainfall-runoff 
process [3]. The simplest method of taking arithmetic means to a probability-based 
approach such as Bayesian [6] can be used for the estimation. 

With climate change posing the biggest threat to our planet and hydrological 
cycle, quantitative assessment and possible reduction of the contribution of uncer-
tainty in future climate predictions is very important. In this study, the uncertainty of 
a few selected GCMs for a hydrological impact study of the Western Ghats region in 
South India is considered. We consider five CMIP-5 GCMs and introduce the Relia-
bility Ensemble Averaging (REA) method for quantification of uncertainty and reli-
ability associated with climate model projections of JJAS Indian summer monsoon 
climate. Correlating the uncertainty and performance of GCMs region-wise and 
understanding their significance is the major scope of this study. 

2 Study Area 

West flowing rivers from Tadri to Kanyakumari which are classified as West Flowing 
River Basin -2 (WFRB-2) by Central Water Commission (CWC) is shown in Fig. 1. 
Basin is geographically located in the south-western corner of peninsular India, and 
lies between 8° 0’ 00” and 14° 24' 00'' N latitudes and 74° 25' 00”–77° 36' 00” 
E longitudes (www.india-wris.nrsc.gov.in). The whole basin consists of 43 small 
and medium river systems. In the basin terrain, with an average elevation greater 
than 600 m are Western Ghats hills which act as boundaries for the basin. Figure 1a 
shows the Tadri to Kanyakumari basin and Fig. 1b represents the different elevation 
zones in the region. The elevation of the major part of the basin area varies from 
10–50 m (www.india-wris.nrsc.gov.in). Most of the area receives an average rainfall 
of about 2500 mm and the temperature in the basin varies with an average minimum 
temperature of 17.9 °C to average maximum temperature of 33.04 °C (1979–2015).

http://www.india-wris.nrsc.gov.in
http://www.india-wris.nrsc.gov.in
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Fig. 1 a West flowing river basins from Tadri to Kanyakumari (WFRB-2). Source www.india-wris. 
nrsc.gov.in b elevation zones of WFRB-2 

3 Material and Methods 

In this study, an attempt has been made to estimate the GCM model and scenario 
uncertainty in projecting the monsoon precipitation for WFRB-2 and correlating the 
performance of the model in the upper, middle, and lower parts of the basin with 
varying landform changes. In the present study, only monsoon rainfall (JJAS) for near 
future (2011–2040) is being used. The performance of GCMs is evaluated based on 
its ability to capture the monsoon mean precipitation. Six individual river basins are 
also selected such as Netravathi and Valapattanam from the upper region, Chaliyar 
and Kadalundi from the middle region, and Meenachil and Maninala from lower part 
of WFRB-2 to make a comparison of the uncertainty rage (Fig. 1). 

GCM Models Used 

The future kernel regression-based statistically downscaled [4] precipitation data 
are procured through INCCC project for five CMIP-5 GCM’s (General Circulation 
Model) in daily time steps for RCP scenarios 4.5 and 8.5. The selection of these five 
GCMs (CCCMA CanESM2; CNRM CM5; MPI ESM MR; MPI ESM LR and; BNU 
ESM) is done based on the ability to capture the Indian monsoon rainfall and data 
available for the region. Descriptions of the GCM models are given in Table 1.

http://www.india-wris.nrsc.gov.in
http://www.india-wris.nrsc.gov.in
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Table 1 GCM models from CMIP-5 experiment 

Modelling centre Model Institution Spatial resolution 

CCCMA CanESM2 Canadian Centre for 
Climate Modelling and 
Analysis 

2.8° × 2.8° 

BNU BNU-ESM (BNU) “Beijing Climate Centre, 
China Meteorological 
Administration” 

2.8° × 2.8° 

CNRM-CERFACS CNRM-CM5 “Centre National de 
Recherches 
Meteorologiques/Centre 
Europeen de Recherche et 
Formation Avancees en 
Calcul Scientifique” 

1.4° × 1.4° 

MPI-LR MPI-ESM-LR “Max Planck Institute for 
Meteorology (MPI-M)” 

1.8° × 1.8° 

MPI-MR MPI-ESM-MR (MPI-MR) Max-Planck-Inst. for 
Meteorology 

1.87 × 1.87 

REA Methodology 

In this study, we focus on Reliability Ensemble Average (REA) technique in detail. 
REA is an averaging technique, which can be also used for estimating the uncertainty 
range and reliability range of climate change simulations. REA method helps in 
assigning weights to different GCM models based on the bias and convergence crite-
rions. Multi-model bias is calculated based on the present climate; model convergence 
captures the deviation of individual model projections with respect to the central 
tendency of the ensemble [7]. Therefore, models with less bias are high performance 
models and whose projections agree are highly converging models, which thereby 
receives the higher weights. Therefore, RB,i measure the model performance and 
RD,i measure the model convergence, which are the governing criteria for REA 
method. 

The stepwise procedure for REA, taking JJAS precipitation as the sample 
parameters is as follows [5]: 

Step 1: Estimate precipitation change (~△P) using weighted average of the individual 
GCMs. 

∼ △P = ∼  A(△P) = 

N∑

i=1 
Ri△Pi 

N∑

i=1 
Ri 

(1)
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where ~A represents averaging using REA and Ri denotes individual reliability factor 
for each GCMs. 

Step 2: For each 0.25 grid, the overall GCM reliability factor Ri for each model 
projection i of 5 GCM model can be defined as: 

Ri = [(RB,i )
m × (RD,i )

n][ 1 mn ] 

=
{[

εp 

abs
(
Bp,i

) ]m×
[

εp 

abs
(
Dp,i

) ]n
}[ 1 mn ] 

(2) 

where RB,i is a function of model bias
(
Bp,i

)
in simulating historical precipitation 

(JJAS for recent past (1979–2005). RB,i ranges from 0, for least performing model to 
1 for  if  Bp,i is less than natural variance εp. For 5 GCM simulations, the Performance 
factor, Bi is estimated for each grid as: 

[Bi ] =
[
Precipi − Precipobs

]
. 

where Precipobs is the mean annual monsoon (JJAS) precipitation over each grid 
and Precipi is the mean annual monsoon precipitation predicted by model i during 
historic time scale (1976–2005). 

Step 3: In the similar way, the convergence coefficient RD,i takes values from 0 
for outlier projections to 1, where difference between REA mean and projection is 
smaller than εp. For each GCM, Dp,i is calculated for each grid as the difference 
between the predicted and REA average. 

Di = 

⎡ 

⎢ 
⎢ 
⎢ 
⎣

△Precipi − 

N∑

i=1 
Ri△Precipi 

N∑

i=1 
Ri 

⎤ 

⎥ 
⎥ 
⎥ 
⎦ 
. (3)  

where △Precipi is the change in mean precipitation in the 30 years near future of 
RCP 4.5 and 8.5 compared to the historic 30 years simulation predicted by the GCM 
i. In the present study we have only considered the near future precipitation (2011– 
2040). An iterative procedure is developed to find the distance Dp,i . The first value 
of Dp,i is estimated using the equation [Dp,i ]1 = [△Pi − ∼ △P]. This first value 
in future is substituted in Eqs. 3 and 4 to obtain [∼ △P]1, first order REA average 
change. This value is further used in the iteration procedure to calculate [Dp,i ]2 = 
[△Pi − [ ∼ △P]1]. The distance is only a measure of model convergence criterion 
given that future conditions are unknown. 

Step 4: The parameters m and n used to weigh both the criterions in estimating the 
weights. It is assumed as one, (equal weightage for both parameters) in the present 
study. Similarly, RB,i and RD,i are set to 1 when εp exceeds B and D. GCM projections
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are reliable when both its bias and distance from the ensemble average are within 
its natural variability, so that Ri = 1 in Eq.  3. As the bias /distance grows, the GCM 
reliability factor reduces. 

Step 5: εp is a parameter which measures the natural variability in 30 year average 
JJAS regional precipitation. For this, we compute the time series of observed, gridded 
precipitation for JJAS series for IMD data for 1901–2005. A 30 year moving average 
for the de-trended series is calculated and εp is estimated as the difference between 
maximum and minimum values from this 30 year moving average series. 

Step 6: Uncertainty range of each GCM can be further estimated using REA 
technique. The root mean-square difference (rmsd) of the changes δ̃△p:

δ̃△p = 

⎡ 

⎢ 
⎢ 
⎢ 
⎣ 

N∑

i=1 
Ri

(
△Pi − △˜PREA

)2 

N∑

i=1 
Ri 

⎤ 

⎥ 
⎥ 
⎥ 
⎦ 

[ 1 2 ] 

(4) 

4 Results and Discussion 

In this study, we consider the model uncertainty by combination of model outputs 
which provides confidence to decision-makers in formulating policies for climate 
change impact assessment. The performances of all the 5 GCMs and the proposed 
REA methodology in terms of reliability measures, namely model bias reliability 
factor (RB,i), model convergence reliability factor (RD,i) and collective model relia-
bility factor (Ri), are estimated for precipitations during 2011–2040 under both RCP 
4.5 and 8.5, respectively. 

4.1 REA Weighted Ensemble and Uncertainty Estimation 
Grid Wise 

Figure 2 shows the grid-wise reliability estimates of monsoon rainfall for the entire 
Western Ghat region. It is being observed that CCCMA GCM performs better in 
most of the grids in the lower part of WFRB-2, with a weightage of more than 0.4 in 
most of the grids. MPIMR also performs better in the lower region. MPIMR is giving 
better performance in the middle region also compared to other GCMs. CNRM shows 
weightage less than 0.1 in most part of Kerala region. GCMs BNU and CNRM are 
performing better in the upper regions of WFRB-2. Overall performance of MPIMR 
in the Western Ghats region is better given by the REA approach.
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Fig. 2 Grid wise REA weightage factor for all the five GCMs for a RCP 4.5 and b RCP 8.5 

4.2 River Basin Scale REA 

River basin wise analysis shows similar results as well. REA weightage of individual 
GCMs for 6 river basins in WG for both RCP scenarios are given in Table 2.MPIMR  is  
found to be the GCM with highest weightage in Meenachil (0.88), Manimala (0.46), 
Chaliyar (0.23), and Kadalundi (0.27) river basins. For Netravathi river, GCM CNRM 
performs better. This analysis helps to choose GCMs for a particular river basin, for 
climate change impact assessment.

Overall analysis shows, the ability of CMIP-5 GCMs to capture the Western 
Ghats monsoon rainfall is just average. Also, from the available five GCMs, MPIMR 
predicts better results in WFRB-2. For all the six river basins, uncertainty range of 
near future (2011–2040) rainfall is estimated using REA approach and plotted in 
Fig. 3. Also, the uncertainty ranges of five GCMs, when simple arithmetic mean is 
considered are also made to compare and validate the REA approach. It is observed 
that the REA approach brings reduction in uncertainty range to a great extent in 
all the six river basins. And the impact is more in upper region (Netravathi and 
Valapattanam) as compared to other regions of WFRB-2.
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Table 2 Performance evaluation and ranking of CMIP5 GCM in terms of overall collective model 
reliability for Near Future Rainfall 

Overall collective model reliability (Ri) BNU CNRM CCCMA MPILR MPIMR 

RCP 8.5 

Meenachil 0.031 0.022 0.036 0.019 0.88 

Manimala 0.103 0.104 0.237 0.086 0.46 

Netravathi 0.22 0.302 0.143 0.156 0.177 

Valapattanam 0.225 0.1617 0.196 0.218 0.197 

Chaliyar 0.186 0.23 0.162 0.189 0.23 

Kadalundi 0.216 0.149 0.15 0.21 0.27 

RCP 4.5 

Meenachil 0.031 0.022 0.036 0.018 0.89 

Manimala 0.103 0.107 0.24 0.083 0.46 

Netravathi 0.216 0.302 0.14 0.16 0.17 

Valapattanam 0.22 0.17 0.19 0.21 0.18 

Chaliyar 0.19 0.23 0.15 0.18 0.23 

Kadalundi 0.22 0.15 0.14 0.2 0.27
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Fig. 3 Comparison of uncertainty range of near future (2012–2040) estimated using REA approach 
and simple arithmetic mean of GCMs for RCP 8.5
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5 Conclusions 

In this study, the GCM and scenario uncertainty in Western Ghats (WG) region of 
South India is attempted for monsoon rainfall using Reliability Ensemble Average 
(REA) for 5 GCMS and RCP 4.5 and RCP 8.5 scenarios. The following are the 
conclusions from the present study: 

• Reliability Ensemble Approach (REA) is found to be a simple yet powerful tech-
nique to estimate the performance and uncertainty associated with multi-model 
data sets. 

• Heterogeneity in the performance of GCMs are observed which coincides with 
the heterogeneity in WFRB-2 in terms of rainfall patterns, elevation, temperature 
variation, land use pattern, etc. 

• GCM CCMA shows relatively better results in less rainfall region, river basins 
lying in the lower elevation. 

• MPIMR shows better performance in all over WFRB-2, which concludes that it 
can capture the Indian summer monsoon in Western Ghats. 
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Assessment of Temperature for Future 
Time Series Over Lower Godavari 
Sub-Basin, Maharashtra State, India 

Y. J. Barokar and D. G. Regulwar 

Abstract Climate change can cause various negative impacts on water resources 
system, ecosystem, etc. To deal with these effects, it is necessary to study the climate 
change. There are various ways to study climate change in which one of the way 
is the study of downscaling. Downscaling is the procedure in which prediction of 
information is done for local scale area from the available information of a large scale 
area. In the downscaling of climatic variables, General Circulation Model (GCM) 
plays an important role. GCM gives larger scale climatic variables. With the help 
of this downscaling, we can predict different climatic variables such as tempera-
ture, precipitation for future time period over the selected area. To perform this 
downscaling there are different ways, we can classify it as statistical downscaling 
and dynamical downscaling. In statistical downscaling, we can find relation between 
predictant and predictors and this statistical relation we use for the future prediction of 
the selected climatic variable. In dynamical downscaling, we use Regional Climatic 
Model (RCM), and with the help of this, we carry out downscaling procedure. In 
this study, statistical downscaling has studied for temperature parameter (Tmax and 
Tmin) by considering the basic equation given by Wilby in (Inter-research 10:163– 
178 [1]). The study area selected for this study is lower Godavari Sub-basin, Maha-
rashtra State, India (Latitude: 19° 11', Longitude: 76° 33'). In this study, in the first 
step, statistical downscaling has been done with the help of statistical downscaling 
model (SDSM) software by using HadCM3 GCM with A2a and B2a scenarios for 
temperature parameter for the future time period up to 2099. In second step, the
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statistical downscaling again performed by using basic equation given by Wilby 
(Inter-research 10:163–178 [1]) in excel which is named as “Excel Model.” Temper-
ature values predicted up to 2099. These results are considered with three different 
series such as 2020s, 2050s, and 2080s. Downscaled results of temperature param-
eter by “SDSM” model and “Excel Model” were compared for future series. After 
study of these results, it is concluded that SDSM gives higher value of change in 
mean monthly daily value of Tmax and Tmin than that of “Excel Model.” 

Keywords SDSM · Excel model · HadCM3 · A2a · B2a · Tmax · Tmin 

1 Introduction 

Climate change is [1] the major issue faced by many sectors; there are different causes 
of changing climate in which one of the major cause is increase in the greenhouse 
gases. Disturbance in the climate is caused by increase in CO2 and other greenhouse 
gases [2]. Global warming causes change in the climatic parameters which affects 
on the weather patterns [3]. To study these effects, downscaling is the more suit-
able way in which we can forecast the future climatic variables with the help of 
General Circulation Models (GCMs) [4]. Downscaling can be carried out with the 
help of dynamical or statistical methods, but statistical downscaling is preferable 
than dynamical downscaling [5]. Dynamical downscaling can be carried out with 
the help of Regional Circulation Model (RCM), whereas statistical downscaling is 
based on statistical relation between predictor and predictant [5]. Statistical down-
scaling model is the tool in which we can form statistical relation between predictor 
and predictant [6]. Such relation we can execute for the future forecasting of the 
climatic parameters. In the study of the Mahmood and Babel [2], authors have used 
statistical downscaling model (SDSM) and downscaled the climatic variables with 
application of bias correction over the trans-boundary region of Jhelum River. In the 
present study, SDSM has been used for predicting the future values of temperature 
parameter (Tmax, Tmin) over Lower Godavari Sub-basin, Maharashtra State, India. 
In addition to this, basic equation of downscaling given by Wilby [1] which is the 
base for SDSM has been executed in the excel tool, and temperature values for future 
series have been found out. These results were compared with the SDSM results. 
For Indian region, various GCMs give better results in which one of the GCM is 
HadCM3 [7], because of this HadCM3 GCM has been selected for this study with 
A2a and B2a scenarios.
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Fig. 1 Map of Lower Godavari Sub-basin 

2 Materials and Method 

2.1 Downscaling 

Downscaling means converting high scale resolution data into finer scale resolution. 
In this study, statistical downscaling has been used to forecast the future series values 
of temperature parameter (Tmax, Tmin). In statistical downscaling, statistical rela-
tion developed between predictor and predictant. Such statistical relation helps to 
downscale the climatic variables for future series [2]. 

2.2 Study Area and Data Source 

2.2.1 Lower Godavari Sub-basin, Maharashtra State, India 

The study area is Lower Godavari Sub-basin (area≈17,850km2). Lower basin of 
Godavari river in Maharashtra lies between 18° 42' 49'' N to 19° 40' 27'' N and 75° 
12' 12'' E to 77° 55' 59'' E. The mean monthly Tmax changes from 29.63 to 38.50 
°C over the basin. Map of study area is shown in Fig. 1 

2.2.2 Data Collection 

For the execution of present study, daily temperature (Tmax and Tmin) values have 
been obtained from Indian Meteorological Department (IMD), Pune for the period



64 Y. J. Barokar and D. G. Regulwar

Fig. 2 Flowchart for statistical downscaling method given by Wilby 

1961–2000. GCM data of HadCM3 under A2a and B2a scenarios have been obtained 
from Canadian Climate Impact Scenarios (CCIS) site for the area Lower Godavari 
Sub-basin, Maharashtra State, India (Latitude: 19° 11', Longitude: 76° 33'). 

Selection of Input Parameters 

The flowchart and basic equation for downscaling given by Wilby [5] is as shown  in  
Fig. 2. 

Working of statistical downscaling model (SDSM) which is developed by Wilby 
[5] and Dawson is divided into below steps: 

(a) Quality Control, (b) Transforming Predictor data, (c) Screen Variables, (d) 
Model Calibration, (e) Weather Generator, (f) Finding statistics of the data, and (g) 
Compare results. 

Quality control helps to detect the missing values in our observed data, whereas in 
Transform data we can apply suitable transformation to the data so that it will be well 
distributed. Screen variables helps to decide the suitable predictors over the selected 
region. Model Calibration and Weather Generator helps to develop statistical model 
and compare it with the observed data. In last step, we can find different statistical 
values and compare the results. 

The basic equation for finding amount of temperature by Wilby [5] is as given  
below. 

Amount of total Temp. (t) downscaled on day “i” is given by
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Table 1 List of NCEP predictors 

Sr. no Predictor name Sr. no Predictor name 

1 p_f-Airfloe strength at surface 14 p8_z-850 hPa vorticity 

2 p_u-Zonal velocity at surface 15 p8th-850 hPa wind direction 

3 p_v-Meridional velocity at surface 16 p8zh-divergence of 850 hPa 

4 p_z-Surface velocity 17 r850-Relative humidity of 850 hPa 

5 p_th-Surface wind direction 18 p500-00 hPa geopotential height 

6 p_zh-Divergence at surface 19 p5_v-500 hPa meridional velocity 

7 rhum-Relative humidity at surface 20 p5_z-500 hPa vorticity 

8 p5_f-500 hPa airflow strength 21 p5th-500 hPa wind direction 

9 p5_u-500 hPa velocity of zonal 22 p5zh-500 hPa divergence 

10 r500-relative humidity of 500 hPa 23 r850-Relative humidity 850 hPa 

11 p8_f-850 hPa airflow strength 24 Temp-Mean temperature at a height of 
2 m  

12 p8_u-Zonal velocity of 850 hPa 25 Shum-Surface-specific humidity 

13 p8_v-meridional velocity of 850 hPa 26 mslp Pressure at Mean Sea Level 

Ui = γ0 + 
n∑

i=1 

γ j Xi j  + ei (1) 

where γ0 = Intercept between predictor and predictant, 
Xi j  = Predictor values for selected predictors. 
ei = Bias correction value. 
The list of NCEP predictors used for downscaling purpose is given in Table 1. 

3 Results and Discussions 

Results for this study are as given below for the downscaling of temperature (Tmax 
and Tmin) over Lower Godavari Sub-basin for future series. 

3.1 Calibration and Validation of the Model 

In this study, calibration has been done over a period of 1960 to 1980. Observed 
monthly mean daily temperature data (Tmax and Tmin) and downscaled monthly 
mean daily temperature data (Tmax and Tmin) over this selected period have been 
compared graphically. Graphical comparison for Tmax and Tmin is as given in 
Figs. 3 and 4.
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Fig. 3 Graphical representation for calibrated model of Tmax 

Fig. 4 Graphical representation for calibrated model of Tmin 

Graphical results indicate that observed and downscaled values of Tmax and Tmin 
over a selected period are matching with each other it means our model calibrated 
successfully. 

After successful calibration of the model, we tested this model over next time 
period. For this, the time period of 1981–2000 have been selected. Observed monthly 
mean daily temperature data of Tmax and Tmin were compared with downscaled 
monthly mean daily temperature data of Tmax and Tmin over this period. For this 
statistical comparison, the coefficient of determination has been used. Results are as 
shown below (Tables 2). 

Table 2 Coefficient of determination between observed and downscaled data over a period of 
1981–2000 

Model name GCM Temperature parameter R2 value between observed and 
downscaled parameter over 
1981–2000 

SDSM HadCM3 Tmax 0.99 

HadCM3 Tmin 0.99
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The statistical results indicate the downscaled values of monthly mean daily 
temperature (Tmax and Tmin) are matching with observed monthly mean daily 
temperature (Tmax and Tmin). So with the help of this selected model, we tried to 
find out future series values of mean daily temperature (Tmax and Tmin). With the 
help of this model, temperature values have been downscaled up to 2099 with the help 
of SDSM under A2a and B2a scenarios. These downscaling results of monthly mean 
daily temperatures (Tmax and Tmin) have been compared with observed monthly 
mean daily temperature (Tmax and Tmin) over a base line period of 1961–2000. 
Statistical comparison has been studied with the help of coefficient of determination 
as shown (Table 3). 

In this statistical comparison, coefficient of determination gives better values over 
the base line period under both the scenarios. 

The same predictors we have selected to perform downscaling with the help 
of basic equations given by Wilby [5] in Excel. Downscaled temperature values 
have been compared with the observed temperature values over a base line period 
(1961–2000) (Table 4). 

The above result indicates the good correlation between observed monthly mean 
daily temperature and downscaled monthly mean daily temperature. 

We can find the range of R2 between observed monthly mean daily temperature 
and downscaled monthly mean daily temperature (Tmax and Tmin) by using SDSM 
is in between 0.97 and 0.99 and by using Excel Model it is in between 0.63 and 
0.80. Downscaling results with the help of SDSM model and Excel Model are found

Table 3 Coefficient of determination between observed and downscaled data over period 1961– 
2000 

Model name GCM Temperature parameter R2 value between observed and 
downscaled parameter over 
1961–2000 

SDSM HadCM3 A2a Tmax 0.97 

HadCM3 A2a Tmin 0.99 

HadCM3 B2a Tmax 0.96 

HadCM3 B2a Tmin 0.99 

Table 4 Coefficient of determination between observed and downscaled data over period 1961– 
2000 

Model name GCM Temperature parameter R2 value between observed and 
downscaled parameter over 
1916–2000 

Excel model HadCM3 A2a Tmax 0.80 

HadCM3 A2a Tmin 0.63 

HadCM3 B2a Tmax 0.78 

HadCM3 B2a Tmin 0.63 
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Table 5 Future change in monthly mean daily Tmax and Tmin under different scenarios with 
respect to base line period 1961–2000 

Model GCM Series Tmax (°C) Tmin (°C) 

SDSM HadCM3 A2a 2020s (2011–2040) 0.92 0.26 

2050s (2041–2070) 1.96 0.82 

2080s (2071–2099) 3.17 1.56 

HadCM3 B2a 2020s (2011–2040) 0.97 0.33 

2050s (2041–2070) 1.6 0.64 

2080s (2071–2099) 2.39 1.07 

Excel model HadCM3 A2a 2020s (2011–2040) 0.16 0.86 

2050s (2041–2070) 0.42 0.86 

2080s (2071–2099) 0.72 0.91 

HadCM3 B2a 2020s (2011–2040) 0.18 0.83 

2050s (2041–2070) 0.33 1.04 

2080s (2071–2099) 0.52 1.07 

out for three future series (2020s, 2050s, and 2080s) as given below. The results 
are shown in terms of future change in monthly mean daily Tmax and Tmin under 
different scenarios with respect to base line period 1961–2000 (Table 5). 

In prediction for these three future series, we identified that SDSM model is 
giving more change in monthly mean daily temperature values (Tmax and Tmin) 
in 2080s (2071–2099) under A2a and B2a scenarios. According to the results, there 
will also be increase in monthly mean daily temperature values (Tmax and Tmin) for 
the series 2020s (2011–2040) and 2050s (2041–2070), but it will be less in amount 
compared to 2080s series. The same reflection we identified in the results of Excel 
model just the change is whatever predicted values are given by Excel model are 
smaller in amount compared to SDSM results, but the pattern of results with excel 
is also says that there will be more change in temperature values (Tmax and Tmin) 
over the series 2080s (2071–2099) compared to the series 2020s (2011–2040) and 
2050s (2041–2070). 

4 Conclusions 

The following conclusions are derived from the foregoing study: 

1. In calibration and validation, both the models (SDSM and Excel) give satisfactory 
results; SDSM is giving more appropriate results compared to excel. It may be 
because of the bias correction which we apply in SDSM at the start of execution. 
It means if we change bias correction value in excel, then we may get some more 
accurate results and also we can predict future climatic values for our region in 
a better way.
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2. SDSM and Excel Model both give increasing trends in the value of Tmax and 
Tmin in the near future with respect to the baseline period 1961–2000. According 
to IPCC reports, the amount of greenhouse gases may increase in the future which 
will lead to an increase in temperature, so these results satisfy the prediction of 
IPCC. 
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Projection of Daily Rainfall States Over 
Tapi Basin Using CMIP5 
and CMIP6-Based Global Climate Model 

Aarti S. Ghate and P. V. Timbadiya 

Abstract The daily rainfall projections derived using global climate model (GCMs) 
plays important role in assessment of the future climate over the study area. The 
current study represents the future daily rainfall states over Tapi basin using k-means 
clustering and Classification and Regression Tree (CART) modelling. The Tapi basin 
spreaded over 65,145 km2 and represented by 351 grids of 0.25º resolution. The rain-
fall data collected from India Meteorological Department (IMD) and General Circu-
lation Model (GCM) outputs (i.e., CanESM2, CNRM-CM5, CanESM5, CNRM-
CM6) of Coupled Model Intercomparison Project phase 6 CMIP6 (SSP245), and 5 
CMIP5 (RCP4.5) and used in the projection of future daily rainfall states over study 
area. The projected daily rainfall states from CMIP5 and CMIP6 were compared for 
both aforementioned GCMs. The results based on the CMIP-5 model indicated that 
the almost dry rainfall state is increasing over the Tapi basin while results based on 
CMIP-6 model revealed increase in the medium rainfall state. Overall, the almost 
dry days are decreasing and high and medium state daily rainfall is increasing over 
the study area under CMIP6. 
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1 Introduction 

The intergovernmental panel on climate change (IPCC) in assessment report (AR6) 
projected the extreme precipitation has increased and will increase in future for South 
Asia [1]. The world-wide mean temperature may increase up to 4 °C by 2100, and 
will severely affect the accessibility of water resources and the water requirement 
around the globe and it will lead to be a task for water management [2]. As per 
the India Meteorological Department (IMD), the most of the parts of India receives 
the rainfall of its summer monsoon period from June to September (JJAS) and few 
regions receives from October to December (OND) as winter monsoon which mainly 
covers the peninsular Indian region. The boreal summer monsoon season receives 
around 78% of the annual rainfall and 12% during winter monsoon [3]. The statistical 
downscaling of daily precipitation under RCP 4.5 and RCP 8.5 for different GCM 
output for Tapi basin shown the extreme events are decreasing with increase in the 
medium rainfall events over the basin under CMIP5 [4]. 

The study using 20 coupled models of CMIP5 for RCP8.5 scenario revealed, 
projected Indian Monsoon Rainfall (ISMR) magnitude will increase in future climate 
over core monsoon zone, along with late withdrawal and stretching of the monsoon 
season [5]. In past there have been studies carried out using CMIP5 model output in 
simulating the ISMR under various future scenarios [4, 6–10]. Each GCM simulates 
the ISMR differently, as past studies have shown the performance of different GCM 
in projecting the ISMR and its ranking in simulating the climate variables [5, 11]. The 
3–5 °C warmer and 13–30% wetter climate over South Asia in twenty-first century is 
projected using 13 GCMs of CMIP6 [12]. Hence, it is important to compare the daily 
rainfall state over the Tapi Basin using CMIP-5 and CMIP-6-based global climate 
model to evaluate the water availability in the future. 

The present study includes the comparative analysis of CMIP5 and CMIP6 models 
output under RCP 4.5 and SSP245 scenario for CCCma and CNRM-CERFACS GCM 
Model for daily rainfall state. Future rainfall states are projected for the duration of 
2011–2040, 2041–2070, and 2071–2100 under CMIP5 and 2015–2040, 2041–2070, 
and 2071–2100 under CMIP6. The comparison between the daily rainfall states over 
the Tapi basin is also made at the end. 

2 Material and Methods 

2.1 Study Area 

The part of state of Madhya Pradesh, Maharashtra and Gujarat together constitutes 
the Tapi basin of an area of 65,145 km2. The basin is bounded between 72°33’ E to 
78°17’ E longitudes and 20°9’ N to 21°50’ N latitudes. The basin is located in the 
Deccan plateau, the spread of Tapi River is vast along with its branches over the lands
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Fig. 1 Index map of Tapi Basin 

of Vidharbha, Khandesh, and Gujarat with large part over Maharashtra and minor 
area over Madhya Pradesh. The index map of the study area is shown in Fig. 1. 

The annual rainfall recorded over the basin as the upper basin receives 935.5 mm, 
middle part receives 631.5 mm, and lower part receives 1042.3 mm [13]. 

2.2 Data Used 

2.2.1 Predictor and Predictand Data 

The NCEP/NCAR reanalysis data and GCM data used for RCP4.5 scenario from 
CMIP5 and SSP245 scenario from CMIP6 used as predictor data and tabulated in 
Tables 1 and 2 respectively. The daily rainfall data at a grid spacing of 0.25° × 0.25° 
from IMD is used as predict and variable for present study.
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Table 1 Predictor data used 
from NCEP/NCAR 

Heights: surface/250hpa/500hpa/850hpa/1000hpa 

Predictor variables used: air temperature (ta), V-wind (va), 
U-wind (ua), specific humidity (hus), geopotential height (Zg), 
mean sea level pressure (mslp) 

Sources Spatial resolution Temporal resolution 

NCEP/NCAR 
reanalysis project 

2.5° × 2.5° Daily 

GCM output Varying Daily 

Table 2 Predictor data used from GCM for CMIP5 and CMIP6 

Modelling centre Model Institution Spatial resolution Scenario 

CCCma CanESM2 
(CMIP5) 

Canadian Centre for 
Climate Modelling and 
Analysis 

2.8° × 2.8° aRCP 4.5 

CanESM5 
(CMIP6) 

2.8° × 2.8° SSP245 

CNRM-CERFACS CNRM-
CM5 
(CMIP5) 

Centre National de 
Recherches 
Meteorologiques/Centre 
Europeen de Recherche et 
Formation Avancees en 
Calcul Scientifique 

1.4° × 1.4° RCP 4.5 

CNRM-
CM6 
(CMIP6) 

1.4° × 1.4° SSP245 

a RCP—Representative Concentration Pathways 
SSP245—update of RCP4.5 based on Shared Socioeconomic Pathways (SSP2) 

2.3 Methodology 

The methodology adopted to carry out the comparative analysis of projection of future 
rainfall states using climate models under CMIP5 and CMIP6 project is shown in 
Fig. 2.

2.3.1 Selection of Spatial Extent 

It is observed that the correlation between large scale atmospheric variables and 
mean rainfall is high for areal domain around the Tapi basin. The predictor variables 
such as mean sea level pressure, air temperature, zonal and meridional wind, specific 
humidity and geopotential height at various levels are used for in the current study. In 
this study the spatial extent from the contour plots is taken as longitude 10° N—35° 
N and latitude 65° E–95° E. Figure 3 represents the plots of contour by using Pearson 
correlation coefficient between rainfall and predictor variables at 250 hpa.
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IMD Rainfall 

Observed Rainfall 
States 

NCEP/NCAR 
reanalysis data 

GCM 
Output 

Dimensionally Reduced 
PCA output 

Dimensionally Reduced 
PCA output 

Training of data using 
CART model 

Trained CART Model 

Future Rainfall States 

PCA Bias Correction PCA Bias Correctionk-means  

Fig. 2 Methodology adopted in projection of future rainfall states

2.3.2 Principal Component Analysis 

The principal component analysis (PCA) is implemented to reduce the multi-
dimension and multi-collinearity of the NCEP/NCAR predictor [4]. After PCA the 
output showed that the original data set comprising of 715 variables can be explained 
by newly derived 100 dimensions without changing the importance of the data with 
98% of the variability. The PCA output on grouped variables as well as combination 
of variables at different levels for rainfall and predictor data is presented in Table 3.

2.3.3 Identification Rainfall States 

The separation of data into groups whose identities are unknown is the process 
of cluster analysis, and it is categorized under the unsupervised data classification 
technique. The clustering is helpful in understanding the structure of the data which 
can be supportive in understanding the pattern of the data. The k-means clustering 
method is implemented in this study to recognize the rainfall states for the study 
area. The identification of clusters in data is achieved with k-means clustering [9]. 
The Dunn’s index, The Davies-Bouldin index, and Silhouette index are computed
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Fig. 3 Plots of contour by using Pearson correlation coefficient between rainfall and predictor 
variables (air temperature, specific humidity, geopotential height, V wind, and U wind) at 250 hpa
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to validate clusters. For finding the optimal number of clusters, the total number of 
clusters is taken in range of 2–10. From the results obtained from cluster validity 
measures it can be concluded that optimal number of clusters is three for the current 
study. The three rainfall states are named as ‘Almost Dry’, ‘Medium’ and ‘High’ on 
the basis of rainfall magnitude present in cluster centroids. 

2.3.4 Modelling Rainfall Occurrence with CART 

The relationship among the atmospheric variables and rainfall state is modelled 
by using classification and regression tree (CART). The advantage of the CART 
modelling is that it chooses the suitable tree structure. For the current study, total 
three models are selected for training and validation purpose. 

R(t) = {m(t), m(t − 1), R(t − 1)}, (1) 

R(t) = {m(t), m(t − 1), R(t − 1), R(t − 2)}, (2) 

R(t) = {m(t), m(t − 1), R(t − 1), R(t − 2), R(t − 3)}, (3) 

where R (t), R (t–1), R (t–2) and R (t–3) are the rainfall occurrence on the tth, (t– 
1)th, (t–2)th and (t–3)th day, respectively. m(t) and m (t–1) are the set of atmospheric 
variables on the tth and (t–1)th day, respectively. Equations (1), (2), and (3) are used 
for training and validation of CART model. Dimensionally reduced and standardized 
data of NCEP/NCAR and rainfall states derived are used for development of CART 
model in the current study. 

The data from 1981 to 1995 (a period of 15 years) are used as the training set for 
building of the classification tree, while the remaining data for a period of 10 years 
(from 1995 to 2005) are used for validation of the CART model under CMIP5 project. 
The data from 1981 to 2000 (a period of 20 years) are used as the training set for 
building of the classification tree, while the remaining data for a period of 14 years 
(from 2001 to 2014) are used for validation of the CART model under CMIP6 
project. The consistency of the model for future uses is evaluated by using three skill 
score measures given by SRMP (success rate of model prediction), HSS (Heidke 
skill score) and χ 2 goodness-of-fit statistic of the model for future uses. The detail 
calculations of skill scores can be found in [14]. The results of skill scores indicate 
that CART model 3 is giving the good results in comparison with Models 1 and 2. 
For evaluation of future rainfall states over the Tapi basin, Model 3 as mentioned 
above is selected.
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3 Results and Analysis 

The projection of future rainfall states under CMIP5 and CMIP6 project is evalu-
ated using NCEP/NCAR reanalysis data. Under CMIP5, for projection of historical 
states, the training and validation period of rainfall considered were 1981–1995 and 
1996–2005, respectively. In CMIP6, this time period is 1981–2000 and 2001–2014 
for training and testing respectively. Tables 4, 5, and 6 represents the observed rainfall 
states under CMIP5 and CMIP6 for k-means clustering and CCCma model, CNRM-
CERFACS GCM Model output respectively. Under CMIP5 and CMIP6, observed 
historical rainfall states are not showing significant changes in results. Table 4 repre-
sents the breakup of number of rainy days observed in training and validation period of 
historical states of rainfall using k-means clustering. Figure 4 indicates the observed 
rainfall states as ‘Almost Dry’, ‘High’, and ‘Medium’ under CMIP5 and CMIP6. 

The breakup of number of rainy days observed in training and validation period 
of historical states of rainfall for CCCma model under CMIP5 and CMIP6 Project 
shown in Table 5. Figure 5 illustrates that, under CMIP5, there is increase in ‘Almost 
Dry’ state of rainfall while in CMIP6 the model is showing the decrease in the ‘Almost 
Dry’ state and increase in the ‘Medium’ state of rainfall.

The results of CNRM-CERFACS model are shown in Table 6, under CMIP5 the 
model is showing increase in the ‘Almost dry’ state and decrease in the ‘Medium’ 
state of the rainfall. For the same model under CMIP6, the results are showing the 
decrease in the ‘Almost dry’ state and increase in the ‘Medium’ state. Figure 6 
represents the observed rainfall states of CNRM-CM5 and CNRM-CM6 model.

The results of CCCma model are tabulated in Table 7 represents the RCP4.5 
and SSP245 scenarios for the CMIP5 and CMIP6 model outputs, respectively. The 
graphical presentation of projected rainfall states is shown in Fig. 7.

Table 4 Breakup of number of rainy days observed in training and validation period of historical 
states of Rainfall using k-means clustering for CMIP5 and CMIP6 

Rainfall states observations under CMIP5 

Model Rainfall states Observations for the period 

1981–1995 1996–2005 

Number of days Percentage Number of days Percentage 

k-means Almost dry 1261 68.91 878 71.96 

High 101 5.52 77 6.31 

Medium 468 25.57 265 21.73 

Rainfall states observations under CMIP6 

Model Rainfall states 1981–2000 2001–2014 

Number of days Percentage Number of days Percentage 

k-means Almost dry 1709 70.04 1188 69.55 

High 126 5.16 113 6.62 

Medium 605 24.80 407 23.83
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Table 5 Breakup of number of rainy days observed in training and validation period of historical 
states of rainfall using CCCma model for CMIP5 and CMIP6 

Rainfall states observations under CMIP5 

Model Rainfall states Observations for the period 

1981–1995 1996–2005 

Number of days Percentage Number of days Percentage 

CanESM2 Almost dry 1161 63.44 770 63.12 

High 150 8.20 106 8.68 

Medium 519 28.36 344 28.20 

Rainfall states observations under CMIP6 

Model Rainfall states 1981–2000 2001–2014 

Number of days Percentage Number of days Percentage 

CanESM5 Almost dry 1476 60.49 929 54.40 

High 319 13.08 232 13.58 

Medium 645 26.43 547 32.02 

Table 6 Breakup of number of rainy days observed in training and validation period of historical 
states of rainfall for CNRM-CERFACS model under CMIP5 and CMIP6 project 

Rainfall states observations under CMIP5 

Model Rainfall states Observations for the period 

1981–1995 1996–2005 

Number of days Percentage Number of days Percentage 

CNRM-CM5 Almost dry 1148 62.73 798 65.40 

High 147 8.04 101 8.28 

Medium 535 29.23 321 26.32 

Rainfall states observations under CMIP6 

Model Rainfall states 1981–2000 2001–2014 

Number of days Percentage Number of days Percentage 

CNRM-CM6 Almost dry 1278 52.38 760 44.50 

High 334 13.68 267 15.63 

Medium 828 33.94 681 39.87

Under CMIP5, for the period 2011–2040, 2041–2070, and 2071–2100 the Almost 
Dry state is decreasing slowly and gradual increase in the medium state of rainfall. For 
the same model under CMIP6, for the period 2015–2040, 2041–2070, and 2071–2100 
there is significant decrease in the ‘Almost Dry’ state and increase in the ‘Medium’ 
state of rainfall whereas ‘High’ state of rainfall is increasingly slightly. Under CMIP5 
project, for RCP 4.5 scenarios, CNRM-CERFACS model showing the slight increase 
in the ‘Almost Dry’ state and decrease in the ‘Medium’ state of the rainfall. In CMIP6,
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1. Almost Dry 2. High 3. Medium 

Fig. 4 Observed rainfall states almost dry, high and medium for calibration and validation period

Fig. 5 Observed rainfall states of CanESM2 and CanESM5 model almost dry, high, and medium

the model is showing significant decrease in the ‘Almost dry’ state and increase in 
the ‘Medium’ state of the rainfall while ‘High’ state is also showing increasing trend. 

The results of CNRM-CERFACS model are tabulated in Table 8 represents the 
RCP4.5/SSP245 scenarios for the CMIP5 and CMIP6 model outputs respectively. 
The graphical presentation of projected rainfall states is shown in Fig. 8.

4 Conclusions 

The daily rainfall states are projected over the Tapi basin using CNRM-CERFACS 
and CCCma model output for RCP4.5/SSP245 scenario. The results revealed that
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Fig. 6 Observed rainfall states of CNRM-CM5 and CNRM-CM6 model almost dry, high, and 
medium

Table 7 Breakup of number of rainy days projected for RCP4.5 scenarios for CCCma model under 
CMIP5 and CMIP6 project 

Rainfall states projected using CMIP5 model output 

Model Rainfall 
states 

Forecast for the period 

2011–2040 2041–2070 2071–2100 

Number 
of days 

Percentage Number 
of days 

Percentage Number 
of days 

Percentage 

CNRM-CM5 Almost 
Dry 

2056 56.17 2083 56.91 2110 57.65 

High 667 18.22 691 18.88 713 19.48 

Medium 937 25.61 886 24.21 837 22.87 

Rainfall states projected using CMIP6 model output 

Model Rainfall 
states 

Forecast for the period 

2015–2040 2041–2070 2071–2100 

Number 
of days 

Percentage Number 
of days 

Percentage 

CNRM-CM6 Almost 
dry 

1283 40.45 1146 31.31 1076 29.40 

High 519 16.36 754 20.60 771 21.06 

Medium 1370 43.19 1760 48.09 1813 49.54

under CMIP5 the model showing almost dry rainfall state was increasing over 
the study area, the same model was showing the medium and high rainfall states 
increasing under CMIP6 output. The current study is limited to two GCM models 
and one future scenario (RCP4.5/SSP245). The inclusion of more GCM models and 
future scenario for projection of daily rainfall states over the Tapi basin can be treated 
as future scope of the current study.
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Fig. 7 Projected rainfall states of CNRM-CM5 and CNRM-CM6 model almost dry, high, and 
medium

Table 8 Breakup of number of rainy days projected for RCP4.5 scenarios for CNRM-CERFACS 
model under CMIP5 and CMIP6 project 

Rainfall states projected using CMIP5 model output 

Model Rainfall 
states 

Forecast for the period 

2011–2040 2041–2070 2071–2100 

Number 
of days 

Percentage Number 
of days 

Percentage Number 
of days 

Percentage 

CanESM2 Almost 
dry 

2039 55.70 2019 55.17 1930 52.74 

High 682 18.64 671 18.33 715 19.53 

Medium 939 25.66 970 26.50 1015 27.73 

Rainfall states projected using CMIP6 model output 

Model Rainfall 
states 

Forecast for the Period 

2015–2040 2041–2070 2071–2100 

Number 
of days 

Percentage Number 
of days 

Percentage Number 
of days 

Percentage 

CanESM5 Almost 
dry 

1318 41.45 1192 32.57 1030 28.14 

High 560 17.75 770 21.04 774 21.15 

Medium 1294 40.80 1698 46.39 1856 50.71
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Fig. 8 Projected rainfall states of CanESM2 and CanESM5 model almost dry, high, and medium

Acknowledgements The authors would like to acknowledge the infrastructural support provided 
by the Centre of Excellence (CoE) on ‘Water Resources and Flood Management’, TEQIP-II, 
Ministry of Education (formerly, Human Resources Development (MHRD)), Government of India. 
The authors express their gratitude towards the India Meteorological Department (IMD), Pune, for 
the rainfall data used in the present study. 

References 

1. IPCC, Seneviratne SI, Zhang X, Adnan M, Badi W, Dereczynski C, Di Luca A, Ghosh S, 
Iskandar I, Kossin J, Lewis S, Otto F, Pinto I, Satoh M, Vicente-Serrano SM, Wehner M, Zhou 
B (2021) Weather and climate extreme events in a changing climate. In: MassonDelmotte V, 
Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, 
Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R, 
Zhou B (eds) Climate change 2021: the physical science basis. contribution of working group 
I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge 
University Press 

2. Kumar N, Tischbein B, Kusche J, Laux P, Beg MK, Bogardi JJ (2017) Impact of climate change 
on water resources of upper Kharun catchment in Chhattisgarh, India. J Hydrol: Regional Stud 
13:189–207 

3. Jena P, Azad S, Rajeevan MN (2015) CMIP5 projected changes in the annual cycle of Indian 
monsoon rainfall. Climate 4(1):14 

4. Singh S, Kannan S, Timbadiya PV (2016) Statistical downscaling of multisite daily precipita-
tion for Tapi basin using kernel regression model. Curr Sci 110(8):1468 

5. Sharmila S, Joseph S, Sahai AK, Abhilash S, Chattopadhyay R (2015) Future projection of 
Indian summer monsoon variability under climate change scenario: an assessment from CMIP5 
climate models. Global Planet Change 124:62–78 

6. Ghosh S, Mujumdar PP (2006) projections by statistical downscaling. Curr Sci 90(3):396–404 
7. Kannan S, Ghosh S (2013) A nonparametric kernel regression model for downscaling multisite 

daily precipitation in the Mahanadi basin. Water Resour Res 49(3):1360–1385



Projection of Daily Rainfall States Over Tapi Basin Using CMIP5 … 85

8. Menon A, Levermann A, Schewe J, Lehmann J, Frieler K (2013) Consistent increase in Indian 
monsoon rainfall and its variability across CMIP-5 models. Earth Syst Dynamics 4(2):287–300. 
https://doi.org/10.5194/esd-4-287-2013 

9. Salvi K, Ghosh S (2013) High-resolution multisite daily rainfall projections in India with 
statistical downscaling for climate change impacts assessment. J Geophys Res: Atmospheres 
118(9):3557–3578 

10. Shashikanth K, Salvi K, Ghosh S, Rajendran K (2014) Do CMIP5 simulations of Indian summer 
monsoon rainfall differ from those of CMIP3? Atmosph Sci Lett 15(2):79–85 

11. Raju KS, Sonali P, Kumar DN (2017) Ranking of CMIP5-based global climate models for 
India using compromise programming. Theoret Appl Climatol 128(3–4):563–574 

12. Mishra V, Bhatia U, Tiwari AD (2020). Bias-corrected climate projections from coupled model 
inter comparison project-6 (CMIP6) for South Asia. arXiv preprint arXiv:2006.12976 

13. SMC (2021) https://www.suratmunicipal.gov.in/TheCity/Weather (visited on 10-November 
2021) 

14. Kannan S, Ghosh S (2011) Prediction of daily rainfall state in a river basin using statistical 
downscaling from GCM output. Stoch Env Res Risk Assess 25(4):457–474

https://doi.org/10.5194/esd-4-287-2013
http://arxiv.org/abs/2006.12976
https://www.suratmunicipal.gov.in/TheCity/Weather


Assessment of Precipitation Extremes 
in Northeast India Under CMIP5 Models 

Jayshree Hazarika and Deepjyoti Phukan 

Abstract The northeastern region of India receives very high rainfall during the pre-
monsoon and summer monsoon season, causing flood events, landslides, damage of 
crops, etc. The magnitude of these extreme events is increasing day by day. Therefore, 
the study of extreme precipitation has become very critical in predicting its conse-
quences. Impacts of the changes in extreme events in the near as well as far future may 
be assessed by utilizing Intergovernmental Panel on Climate Change’s (IPCC) global 
climate models (GCMs). However, the applicability of these models varies from 
region to region and is highly dependent on the characteristics of the region. Hence, 
correlation amongst the datasets should be studied before utilizing these climate 
models in planning and management-related works. In the present work, an attempt 
is made to assess the suitability of three global climate model (GCM) data from the 
coupled model intercomparison project phase 5 (CMIP5) under the extreme carbon 
concentration scenario (RCP8.5) in capturing the extreme precipitations occurring 
in the northeastern region of India. For this purpose, 30-year observed precipitation 
data (1971–2000) of 2 different stations have been used. For assessing the extremes, 
2 extreme precipitation indices (EPIs) have been utilized, viz. mean precipitation 
(MP), cumulative wet days (CWD), cumulative dry days (CDD), annual maximum 
1-day precipitation (AMP1), annual maximum 5-day precipitation (AMP5), precipi-
tation less than 1 mm (P1), precipitation less than 3 mm (P3), and precipitation more 
than 40 mm (P40). The results indicate fair correlations between the observed and 
climate model datasets. However, coming to a definite conclusion still needs further
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research by including more GCMs, which may give better results. Studies on annual 
rainfall over the region have shown no significant trends. 

Keywords CMIP5 · GCM · RCP · ESM · Extreme precipitation indices (EPIs) 

1 Introduction 

Global warming is now becoming the most threatening issue for the today’s world. 
Because of this, it affects on the climate. As a result, rainfall pattern is now changed 
globally. The effect of this change in the rainfall pattern is greatly seen in [1, 
2] India and the northeastern region of India [3, 4]. Since this region mostly depends 
on the agriculture and flood, droughts occur very severely here, therefore, the trend 
analysis of the rainfall pattern is very important. 

In this study, assessment of extreme precipitation events is done to study the rain-
fall trend for the period of 30 years from 1971 to 2000. Two stations of northeastern 
Region are selected, viz. (1) Guwahati and (2) North Lakhimpur for this study, and 
GCM models, viz. ESM2G, ESM2M, and CM3 are used for analysis the trends. 

2 Study Area and Data Collection 

2.1 Study Area 

The topography and geographical position of the northeastern region is different 
from the rest of the states of India. This region consists of 8 states, namely Assam, 
Meghalaya, Manipur, Nagaland, Arunachal Pradesh, Mizoram, Tripura, and Sikkim. 
The 2nd longest river of India, the Brahmaputra, flows through this region (mainly 
Assam and Arunachal Pradesh) which predominantly affects the rainfall pattern of 
NER. Also large number of forest covers including the hills surrounding the region 
greatly affects the ecosystem of this region. 

2.2 Data Collection 

Observed daily precipitation data for the two stations were collected from Indian 
Meteorological Department (IMD), and the GCM data were downloaded from 
Intergovernmental Panel on Climate Change (IPCC). 

The present study considers total rainfall (in 0.1 mm) in 24 h for a period of 
30 years from 1971 to 2000. The EPIs considered are mean precipitation in mm,
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Fig. 1 Location of IMD stations 

CWD, CDD, annual maximum 1-day precipitation, annual maximum 5-days precip-
itation, precipitation < 1 mm, precipitation < 3 mm, and precipitation > 40 mm. The 
location of the two IMD stations is shown in Fig. 1. 

2.3 Calculated Values of EPIs 

See Tables 1, 2, and 3. 

Table 1 EPIs calculated from observed data of IMD for Guwahati and North Lakhimpur stations 

Station Mean ppt 
(in mm) 

CWD CDD ppt < 1 mm 
(in days) 

ppt < 3 mm 
(in days) 

ppt > 40 mm  
(in days) 

Annual 
max 
1-day 
ppt (in 
mm) 

Annual 
max 
5-day 
ppt (in 
mm) 

Guwahati 1723.86 136 229 255 279 9 101.21 199.28 

North 
Lakhimpur 

3189.047 170 195 219 243 24 101.21 312.15
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Table 2 EPIs calculated from historical data of ESM2M model for Guwahati and North Lakhimpur 
stations 

Station Mean ppt 
(in mm) 

CWD CDD ppt < 1 mm 
(in days) 

ppt < 3 mm 
(in days) 

ppt > 40 mm 
(in days) 

Annual 
max 
1-day 
ppt (in 
mm) 

Annual 
max 
5-day 
ppt (in 
mm) 

Guwahati 1723.7833 211 154 203 233 4 81.142 200.07 

North 
Lakhimpur 

3192.418 303 63 131 171 11 129.078 346.15 

Table 3 EPIs calculated from historical data of CM3 model for Guwahati and North Lakhimpur 
stations 

Station Mean ppt 
(in mm) 

CWD CDD ppt < 1 mm 
(in days) 

ppt < 3 mm 
(in days) 

ppt > 40 mm 
(in days) 

Annual 
max 
1-day 
ppt (in 
mm) 

Annual 
max 
5-day 
ppt (in 
mm) 

Guwahati 1723.85 333 33 158 202 1 61.053 141.678 

North 
Lakhimpur 

3192.414 335 30 126 169 8 89.054 246.67 

3 Results and Discussion 

Yearly variation of EPIs calculated from observed data and simulated climate model 
data over 30 years (1971–2000) for Guwahati and North Lakhimpur Stations are 
depicted in the following charts (Figs. 2, 3, 4, 5, 6, 7, 8, and 9). 

Fig. 2 Annual ppt graph 
between observed and GCM 
data for Guwahati station

0 
500 

1000 
1500 
2000 
2500 
3000 

19
71

 

19
74

 

19
77

 

19
80

 

19
83

 

19
86

 

19
89

 

19
92

 

19
95

 

19
98

 AN
N

U
AL

 P
PT

 IN
 M

M
 

YEAR 

Variation of annual ppt over 
guwahati station 

Guwahati GUWAHATI ESM2M 

GUWAHATI CM3 



Assessment of Precipitation Extremes in Northeast India Under CMIP5… 91

Fig. 3 No. of wet days 
graph between observed and 
GCM data for Guwahati 
station 
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Fig. 4 No. of dry days graph 
between observed and GCM 
data for Guwahati station
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4 Assessment of Simulated Historical Data 

4.1 For the Station Guwahati 

From the model ESM2M 

Mean precipitation (PR) of Guwahati Station from the period 1971 to 2000 calculated 
from simulated historical data is similar to observed data collected from IMD. The 
value of CWD calculated is slightly large as compared to observed data, whereas
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Fig. 5 No. of days having 
ppt < 1 mm graph between 
observed and GCM data for 
Guwahati station 
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Fig. 6 Annual max 1-day 
ppt graph between observed 
and GCM data for Guwahati 
station
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CDD value is less. Moreover, 1-day max precipitation value is more for observed 
data. 

From the model CM3 

Mean precipitation (PR) of Guwahati Station calculated from simulated historical 
data is similar to observed data collected from IMD. The value of CWD calculated 
is very large as compared to observed data, whereas CDD value stands at very low 
value. Moreover, no. of days having ppt value is only 1 obtained from CM3 against 
9 from observed value.
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Fig. 7 No. of days having 
ppt > 40 graph between 
observed and GCM data for 
Guwahati station 
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Fig. 8 Annual ppt graph 
between observed & GCM 
data for North Lakhimpur 
station
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4.2 For the Station North Lakhimpur 

From the model ESM2M 

Mean precipitation (PR) of North Lakhimpur Station from the period 1971 to 2000 
calculated from simulated historical data is similar to observed data collected from 
IMD. The value of CWD calculated is slightly large as compared to observed data, 
whereas CDD value is less. Moreover, 1-day max precipitation value is more for 
observed data.
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Fig. 9 No. of wet days 
graph between observed and 
GCM data for North 
Lakhimpur station
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From the model CM3 

Mean precipitation (PR) of North Lakhimpur Station calculated from simulated 
historical data is similar to observed data collected from IMD. The value of CWD 
calculated is very large as compared to observed data, whereas CDD value stands at 
very low value. Moreover, no. of days having ppt value is only 8 obtained from CM3 
against 24 from observed value. 

Similar kind of trend has been observed for the model ESM2G for both the stations. 

5 Comparison with the Previous Studies 

A similar study was carried out by Jain et al. [5] to analyze the annual rainfall trends 
for the northeastern region. From the year 1871 to 2008, they divided the timescale 
into smaller scales to detect local trends for rainfall, i.e. 1871–1950 and 1951–2008. 
In their study, they found no clear cut trend for the rainfall data series from 1871 
to 2008 for the North Eastern Region, and hence, they also could not reach at the 
finding final trend of the rainfall pattern for the NER. 

6 Conclusions 

From the results, it is seen that mean precipitation value obtained from the models 
ESM2M and CM3 for the Stations Guwahati and North Lakhimpur is same with the 
observed value obtained from IMD. The value of other indices, viz. CDD, CWD, 
ppt < 1 mm, ppt > 40 mm obtained from the models varies greatly with the observed 
values.
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The analysis of the rainfall data for the stations revealed that there is no significant 
trend of the precipitation indices except mean precipitation value which has almost 
similar value for both observed and historical data. 

Also, the rainfall data are varied from model to model. Datasets, we have obtained 
from ESM2M and ESM2G models, have almost similar values but it varies for CM3 
model which showed relatively greater values than these two. Therefore, from the 
analysis, we can conclude that historical values highly differed from the observed 
values of IMD. In predicting future scenarios, to obtain better results, we need to 
enhance these models by further research and including more GCMs. 
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Impact of Climate Change 
on Precipitation Extremes in Northeast 
India Under CMIP5 Models 

Jayshree Hazarika and Mridusmita Boro 

Abstract The increase in greenhouse gases has triggered substantial changes in the 
precipitation patterns and extremes both at local as well as global scale. Hence, a 
great interest has emerged in society for assessing the impacts of climate change 
under various plausible future scenarios. The north-eastern region of India receives a 
high amount of rainfall during the monsoon season which brings heavy floods to the 
region every year. The devastation caused by these annual flood events is of very high 
magnitude. Therefore, assessment of occurrences of these events in the coming years 
has become very crucial for proper water resources planning and management. In 
this study, an attempt is made for assessing the impact of climate change on precip-
itation extremes in the north-eastern region of India in future from 2006 to 2100. 
For this purpose, 30-year observed precipitation data (1971–2000) and three Global 
Climate Models (GCMs)–GFDL-CM3, GFDL-ESM2G and GFDL-ESM2M data 
from the Coupled Model Intercomparison Project Phase 5 (CMIP5) under the extreme 
carbon concentration scenario (RCP8.5) has been used. For assessing the extremes, 8 
extreme precipitation indices (EPIs) have been utilized, viz. mean precipitation (MP), 
cumulative wet days (CWD), cumulative dry days (CDD), annual maximum 1-day 
precipitation (AMP1), annual maximum 5-day precipitation (AMP5), precipitation 
less than 1 mm (P1), precipitation less than 3 mm (P3) and precipitation more than 
40 mm (P40). The results have shown significant increase in the case of indices like 
MP, CWD and AMP1. These changes indicate the possibility of increase in extreme 
flood events and subsequently points towards future risks associated with them.
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1 Introduction 

The present population of the world is 7.9 billion; by 2050 it will be 9 billion 
and by 2100 there will be 12 billion people in the world. So, increase in CO2 is 
inevitable in future; since more population indicates more consumption of energy. 
However, the percentage increase in CO2 can be controlled by adding wind and 
solar energy projects. Increase in CO2 content is a major factor of climate change. 
There is a great curiosity amongst climatologists and environmentalists for assessing 
the impacts of projected climate change in extreme events that could accompany 
global climate change predictions. North-East India exhibits the character of tropical 
climate, especially in the valleys. Very heavy rainfall occurs in this region confined 
within four months of summer from June to September. Therefore, assessment of 
impact of climate change on precipitation extremes is of utmost importance in the 
present day scenario for proper water resources planning and management. Studies 
on temporal and spatial variability of rainfall over India, highlighting the need for 
water resources planning and management has shown decreasing trend in monsoon 
rainfall and liability of flash flood [1–10]. 

In this study, assessment of impact of climate change on rainfall extremes is done 
for 8 IMD stations–Guwahati, Cherrapunji, Imphal, Mohanbari, North Lakhimpur, 
Passighat, Shillong and Tezpur located in North-Eastern region (NER) of India. 
For this purpose, 30-year observed precipitation data (1971–2000) and three Global 
Climate Models (GCMs)–GFDL-CM3, GFDL-ESM2G and GFDL-ESM2M data 
from the Coupled Model Intercomparison Project Phase 5 (CMIP5) under the extreme 
carbon concentration scenario (RCP8.5) is used. The GCM data is first bias-corrected 
using CMhyd tool, as GCM data are only available at grid points. The bias-corrected 
simulated historical and future data is then utilized for the calculation of Extreme 
Precipitation Indices (EPIs). 

2 Study Area and Data Source 

2.1 North-Eastern Region (NER) 

The climate of north-eastern region of India is influenced by its topography and 
the southwest and northeast monsoons (Fig. 1). NER has a tropical climate with 
heavy rainfall in summer. The Himalayas to the north, the Meghalaya plateau to 
the south and the hills of Nagaland, Mizoram and Manipur to the east influences the 
climate. Monsoon winds originating from the Bay of Bengal move towards northeast. 
After hitting the mountains, the moist winds move upwards, causing them to cool
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Fig. 1 Map of India showing NER

adiabatically and condense into clouds, resulting in orographic precipitation on these 
slopes. The locations of 8 IMD stations chosen in NER for this study are shown in 
Fig. 2 [11, 12]. 

2.2 Data Used 

Observed daily precipitation data of each station were collected from Indian Meteoro-
logical Department (IMD) and Global Climate Models (GCM) data were downloaded 
from Intergovernmental Panel on Climate Change (IPCC) (Table 1).

3 Results and Discussion 

See Tables 2, 3, and 4.
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Fig. 2 Location of IMD station

Table 1 Definition and units of EPIs considered 

Index Indicator name Definition Unit 

MP Mean precipitation Total Precipitation amount in a year mm 

CWD Cumulative wet days Total Number of days Precipitation is > 
0 mm  

Days 

CDD Cumulative dry days Total number of days precipitation is 
0 mm  

Days 

AMP1 Maximum 1-day Precipitation Highest precipitation in a year in a single 
day 

mm 

AMP5 Maximum 5-days precipitation Highest cumulative 5-days precipitation 
in a year 

mm 

P1 Precipitation < 1 mm Total number of days precipitation is < 
1 mm  

Days 

P3 Precipitation < 3 mm Total number of days precipitation is < 
3 mm  

Days 

P40 Precipitation > 40 mm Total number of days precipitation is > 
40 mm 

Days
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Table 2 EPIs calculated from observed, simulated historical and simulated future data of CM3 
model 

Sl. no Indices Station Observed Historical Future 

1971–2000 1971–2000 2006–2040 2041–2070 2071–2100 

1 MP Cherrapunji 11,514 11,513 12,028 12,817 12,786 

Guwahati 1724 1724 1850 1942 2113 

Imphal 1386 1248 1261 1311 1191 

Mohanbari 2607 2607 2454 2544 2635 

N. 
Lakhimpur 

3189 3192 3174 3246 3321 

Passighat 4598 4598 4426 4949 5284 

Shillong 2160 2160 2438 2498 2405 

Tezpur 1821 1831 1810 1865 1930 

2 CWD Cherrapunji 172 256 251 253 246 

Guwahati 136 333 282 291 289 

Imphal 148 267 236 234 222 

Mohanbari 174 328 293 286 277 

N. 
Lakhimpur 

170 335 317 317 312 

Passighat 196 358 344 348 343 

Shillong 172 272 241 243 237 

Tezpur 133 331 304 304 299 

3 CDD Cherrapunji 193 109 114 112 119 

Guwahati 229 33 83 74 76 

Imphal 218 98 129 131 143 

Mohanbari 191 37 72 79 88 

N. 
Lakhimpur 

195 30 48 48 53 

Passighat 169 7 21 17 22 

Shillong 193 94 124 122 128 

Tezpur 232 35 61 61 66 

4 AMP1 Cherrapunji 605 369 386 395 374 

Guwahati 101 61 67 77 75 

Imphal 91 57 72 48 47 

Mohanbari 135 74 65 66 76 

N. 
Lakhimpur 

156 89 88 97 96 

Passighat 250 132 132 162 165 

Shillong 145 101 123 105 96

(continued)
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Table 2 (continued)

Sl. no Indices Station Observed Historical Future

1971–2000 1971–2000 2006–2040 2041–2070 2071–2100

Tezpur 104 49 53 55 58 

5 AMP5 Cherrapunji 1558 933 1009 1088 1007 

Guwahati 199 142 168 185 198 

Imphal 160 118 129 121 101 

Mohanbari 457 218 180 184 215 

N. 
Lakhimpur 

312 247 239 257 273 

Passighat 633 406 396 477 490 

Shillong 493 208 275 251 221 

Tezpur 191 135 140 148 167 

6 P1 Cherrapunji 200 180 146 141 145 

Guwahati 255 158 163 155 153 

Imphal 246 172 174 177 188 

Mohanbari 217 133 139 141 147 

N. 
Lakhimpur 

219 126 120 120 125 

Passighat 211 54 79 76 80 

Shillong 224 161 165 162 164 

Tezpur 250 134 146 145 148 

7 P3 Cherrapunji 216 194 163 158 159 

Guwahati 279 202 201 197 192 

Imphal 275 222 225 224 235 

Mohanbari 237 179 188 186 187 

N. 
Lakhimpur 

243 169 175 170 170 

Passighat 238 148 144 140 137 

Shillong 259 196 193 194 196 

Tezpur 273 196 202 202 196 

8 P40 Cherrapunji 72 95 118 116 115 

Guwahati 9 1 2 3 4 

Imphal 4 1 1 1 1 

Mohanbari 16 5 3 4 5 

N. 
Lakhimpur 

24 8 8 8 11

(continued)
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Table 2 (continued)

Sl. no Indices Station Observed Historical Future

1971–2000 1971–2000 2006–2040 2041–2070 2071–2100

Passighat 36 27 25 29 35 

Shillong 12 3 3 4 3 

Tezpur 11 1 1 2 3 

Table 3 EPIs calculated from observed, simulated historical and simulated future data of ESM2G 
model 

Sl. 
no. 

Indices Station Observed Historical Future 

1971–2000 1971–2000 2006–2040 2041–2070 2071–2100 

1 MP Cherrapunji 11,514 11,513 13,810 13,756 14,413 

Guwahati 1724 1723 2092 2032 2154 

Imphal 1386 1247 1470 1459 1525 

Mohanbari 2607 2606 2824 3060 3146 

N. 
Lakhimpur 

3189 3192 3684 3894 4110 

Passighat 4598 4583 5232 5389 5473 

Shillong 2160 2159 2862 2678 2717 

Tezpur 1821 1830 2106 2222 2346 

2 CWD Cherrapunji 172 198 209 204 211 

Guwahati 136 185 191 186 193 

Imphal 148 195 196 190 196 

Mohanbari 174 275 281 272 281 

N. 
Lakhimpur 

170 271 277 273 285 

Passighat 196 281 287 277 288 

Shillong 172 186 193 188 195 

Tezpur 133 265 269 266 278 

3 CDD Cherrapunji 193 167 156 161 154 

Guwahati 229 180 174 179 172 

Imphal 218 171 169 175 169 

Mohanbari 191 90 84 93 84 

N. 
Lakhimpur 

195 95 88 92 80 

Passighat 169 84 78 88 77

(continued)
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Table 3 (continued)

Sl.
no.

Indices Station Observed Historical Future

1971–2000 1971–2000 2006–2040 2041–2070 2071–2100

Shillong 193 179 172 177 170 

Tezpur 232 100 96 99 87 

4 AMP1 Cherrapunji 605 526 773 1009 1161 

Guwahati 101 82 138 154 164 

Imphal 91 71 83 105 120 

Mohanbari 135 82 107 127 152 

N. 
Lakhimpur 

156 128 159 198 230 

Passighat 250 157 214 240 299 

Shillong 145 115 223 226 219 

Tezpur 104 69 87 107 122 

5 AMP5 Cherrapunji 1558 1349 1956 2435 2439 

Guwahati 199 200 328 335 359 

Imphal 160 151 192 227 246 

Mohanbari 457 220 276 324 369 

N. 
Lakhimpur 

312 356 430 550 577 

Passighat 633 430 547 622 704 

Shillong 493 273 532 490 485 

Tezpur 191 192 236 300 311 

6 P1 Cherrapunji 200 187 184 188 181 

Guwahati 255 211 206 211 206 

Imphal 246 207 205 212 208 

Mohanbari 217 137 138 140 132 

N. 
Lakhimpur 

219 134 133 133 125 

Passighat 211 124 121 126 118 

Shillong 224 207 200 206 201 

Tezpur 250 151 151 150 143 

7 P3 Cherrapunji 216 202 197 202 196 

Guwahati 279 236 232 238 234 

Imphal 275 243 239 247 244 

Mohanbari 237 176 177 180 176

(continued)
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Table 3 (continued)

Sl.
no.

Indices Station Observed Historical Future

1971–2000 1971–2000 2006–2040 2041–2070 2071–2100

N. 
Lakhimpur 

243 173 171 173 165 

Passighat 238 158 159 160 154 

Shillong 259 231 224 230 228 

Tezpur 273 198 194 197 192 

8 P40 Cherrapunji 72 98 100 93 97 

Guwahati 9 3 5 7 7 

Imphal 4 1 3 4 4 

Mohanbari 16 5 8 10 11 

N. 
Lakhimpur 

24 10 13 15 18 

Passighat 36 24 32 33 34 

Shillong 12 6 10 11 11 

Tezpur 11 3 5 7 8 

Table 4 EPIs calculated from observed, simulated historical and simulated future data of ESM2M 
model 

Sl. 
no. 

Indices Station Observed Historical Future 

1971–2000 1971–2000 2006–2040 2041–2070 2071–2100 

1 MP Cherrapunji 11,514 11,514 12,689 13,938 14,329 

Guwahati 1724 1724 1876 2010 2041 

Imphal 1386 1248 1447 1397 1370 

Mohanbari 2607 2607 2843 2956 2857 

N. 
Lakhimpur 

3189 3192 3533 3859 3771 

Passighat 4598 4598 5017 5212 4988 

Shillong 2160 2160 2551 2633 2629 

Tezpur 1821 1830 2016 2180 2142 

2 CWD Cherrapunji 172 205 202 201 196 

Guwahati 136 211 191 189 184 

Imphal 148 222 197 197 189 

Mohanbari 174 306 283 281 273

(continued)
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Table 4 (continued)

Sl.
no.

Indices Station Observed Historical Future

1971–2000 1971–2000 2006–2040 2041–2070 2071–2100

N. 
Lakhimpur 

170 303 280 278 274 

Passighat 196 313 290 287 280 

Shillong 172 211 194 192 186 

Tezpur 133 297 272 271 266 

3 CDD Cherrapunji 193 160 163 164 169 

Guwahati 229 154 174 176 181 

Imphal 218 143 168 168 176 

Mohanbari 191 59 82 84 92 

N. 
Lakhimpur 

195 63 85 87 91 

Passighat 169 53 75 78 85 

Shillong 193 154 171 173 179 

Tezpur 232 68 93 94 99 

4 AMP1 Cherrapunji 605 548 837 1050 1383 

Guwahati 101 81 118 138 187 

Imphal 91 62 92 99 112 

Mohanbari 135 93 123 145 154 

N. 
Lakhimpur 

156 129 168 213 221 

Passighat 250 112 244 280 306 

Shillong 145 116 176 185 262 

Tezpur 104 112 90 112 120 

5 AMP5 Cherrapunji 1558 2179 1935 2410 3432 

Guwahati 199 200 270 318 457 

Imphal 160 138 219 205 245 

Mohanbari 457 234 315 373 367 

N. 
Lakhimpur 

312 346 419 574 594 

Passighat 633 430 621 725 727 

Shillong 493 271 405 418 640 

Tezpur 191 187 226 304 313 

6 P1 Cherrapunji 200 180 182 185 189 

Guwahati 255 203 206 210 214

(continued)
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Table 4 (continued)

Sl.
no.

Indices Station Observed Historical Future

1971–2000 1971–2000 2006–2040 2041–2070 2071–2100

Imphal 246 201 205 210 220 

Mohanbari 217 130 138 139 144 

N. 
Lakhimpur 

219 131 136 132 137 

Passighat 211 111 120 121 128 

Shillong 224 199 200 204 210 

Tezpur 250 147 155 151 143 

7 P3 Cherrapunji 216 194 197 200 204 

Guwahati 279 233 236 240 244 

Imphal 275 242 243 250 257 

Mohanbari 237 173 183 184 187 

N. 
Lakhimpur 

243 171 180 176 178 

Passighat 238 149 162 162 165 

Shillong 259 226 227 231 236 

Tezpur 273 199 202 202 205 

8 P40 Cherrapunji 72 95 95 93 87 

Guwahati 9 4 5 6 6 

Imphal 4 2 4 3 5 

Mohanbari 16 7 8 10 10 

N. 
Lakhimpur 

24 11 14 17 15 

Passighat 36 24 28 29 27 

Shillong 12 6 10 10 9 

Tezpur 11 4 5 8 8 

3.1 Assessment of Simulated Historical Data 

The Mean Precipitation (MP) calculated from simulated historical data of all the 
three models is similar to MP calculated from observed data collected from IMD 
(Fig. 3a). The values of CWD estimated by the climate models are seen to be very 
large as compared to observed data, whereas CDD values are comparatively very 
less (Fig. 3b, c). For CM3 model data, AMP1 and AMP5 values are very low; almost 
half the observed values whereas for the other two models ESM2G and ESM2M the 
values are almost similar with observed values. P1 and P3 values are underestimated 
as per these three models (Fig. 3f, g). Whereas P40 values are overestimated by the 
models (Fig. 3h).
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Fig. 3 Variation of EPIs calculated from observed data and simulated historical data over 30 years 
at Cherrapunji station for all the three climate models
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The yearly variation of EPIs calculated from observed data and simulated histor-
ical climate model data over 30 years (1971–2000) for Cherrapunji station are 
depicted in the following charts (Fig. 3a–h). 

3.2 Assessment of Simulated Future Data 

From the study it is seen that there will be an increase of 10–20% in MP value by 
2100. The simulated future data for all the three models are almost in the same range 
(Fig. 4a). The CWD estimated for future is showing large variation, CM3 model has 
overestimated the value largely (Fig. 4b). The CDD value predicted by the models 
is seen to be underestimated. ESM2G and ESM2M have predicted large values 
for AMP1, whereas CM3 on the other hand underestimated it (Fig. 4c). Similarly 
for AMP5, according to ESM2M and ESM2G the value will increase by 2100 but 
according to CM3’s estimation it will decrease (Fig. 4e). For P1 and P3, the variation 
is similar; it will have less value in future as compared to present day (Fig. 4f, g). 
P40 will have higher values compared to present observed data (Fig. 4h).

The yearly variation of EPIs over 95 years (2006–2100) calculated from simulated 
future data for all the three models at Cherrapunji station is shown in the following 
charts (Fig. 4a–h). 

4 Conclusions 

The variation of monthly precipitation extracted from the simulated historical data 
of the models is similar with observed monthly precipitation data. The mean precip-
itation value is almost alike with the mean precipitation calculated from observed 
data. The other EPIs calculated from simulated historical data for all the three models 
shows large variation with the ones calculated from observed values. 

Mean Precipitation (MP) is likely to increase in future considering RCP8.5 
scenario; all the models have yielded the same result although with varying increase 
in percentage for different stations. The peak increase is seen in the last half, i.e. 
2071–2100.CWD is also seen to increase with peak increase in 2nd half, i.e. 2041– 
2070. CDD will get decreased by 2100. AMP1 and AMP5 are seen to increase 
for all stations except Mohanbari, according to ESM2G and ESM2M simulated 
data. Whereas according to CM3 model, these two parameters will get decreased 
in future in all the stations. P1 & P3 will decrease in NER in future according to 
the models used. P40 is also seen to decrease; except at Cherrapunji station. The 
ultimate decrease in P40 value will be seen by the last half 2071–2100. Hence it can 
be concluded that climate change will have a great impact in rainfall patterns and 
subsequently on rainfall indices in the near future. Considering the increase in mean 
precipitation, the design of hydraulic structures for future should be such that it can 
accommodate sufficient flood water.
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Fig. 4 Variation of EPIs calculated from observed data over 30 years (1971–2000) and simulated 
future data over 95 years (2006–2100) at Cherrapunji station for all the three climate models

The results varied from model to model. Although ESM2G and ESM2M gener-
ated data was seen to yield similar results, CM3 generated data showed completely 
different results. Some unusual behaviour was also observed in the results, which 
might have resulted from worst case scenario considered, i.e. RCP8.5 or due to 
unusual distance between gauges (IMD stations) and the nearest climate model grid 
cell or non-overlapping time periods between observed and simulated climate data.
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Fig. 4 (continued)

Since GCM data is available only at grid points, so these data after being extracted 
are again downscaled to the gauge stations and then it is used for further analysis. 
So depending on Bias-correction method used, the results might show such unusual 
behaviour. 

Further studies can be done in this field using different climate models of CMIP5 
as well as CMIP6 and considering more IMD stations. The study area can also be 
expanded to other parts of India. Another study can be made on climate models; 
as to why different climate models yield different results for the same IMD station 
irrespective of the same observed precipitation data being used for analysis. 
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Climate Change Impact Assessment 
on Water Resources–A Review 

Prajakta Prabhakar Surkar and M. K. Choudhary 

Abstract Water been a spatio-temporal variable resource have various uncertainties 
affecting the hydrological cycle that should be properly understood for management 
of water resources. Hydro-meteorological events like floods, droughts, cyclones, 
glacier melting, etc. are occurring frequently nowadays and are of great concern to 
hydrologist and climate scientists. These events are ignited due to combined effect 
of climate change, land use and land cover (LULC) changes and anthropogenic 
activities in the watershed. Various researchers, scientists and organizations are now 
working on climate change impact along with its mitigation and adaptation strate-
gies to be adopted in regional and global level. This review paper aims in providing 
basic, essential and integrated information for hydrologist and beginners working 
in the field of climate change impact assessment on water resources. The terms 
such as emission scenarios, representative concentration pathways (RCPs), general 
circulation model (GCM), regional climate model (RCM), data downscaling, bias 
correction and uncertainties in climate modelling are discussed. The paper summa-
rizes past literature and concludes with appropriate and most frequently used models 
and methods adopted in each step of climate change impact assessment. This will 
help researchers to perform acceptable assessment and give rational results that can 
help policy makers to take appropriate decisions regarding adaptation and mitigation 
strategies. 
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1 Introduction 

Climate and weather are two terms that are often mistaken and misunderstood. 
Weather is a short-term phenomenon where one can observe changes in the tempera-
ture, cloud cover, precipitation, humidity and wind in a region within hours or days or 
months. Whereas, climate is a long-term phenomenon, that is, the average weather of 
a region over many years. These long-term changes in the average weather pattern at 
a local, regional and global level is called climate change. The increase in urbaniza-
tion and industrialization leads to an increase in greenhouse gases emissions causing 
global warming (rising in the earth’s average temperature) and climate change. This 
climate change affects the water budget of hydrology and is an increasing concern for 
climate scientists, hydrologists, environmentalists and policymakers. The increase in 
hydro-meteorological events such as floods, drought, cyclones, glacier melting, heat-
waves, sea-level rise, etc., are more frequently seen nowadays and are an alarming 
sign of degrading climate. 

The Intergovernmental Panel on Climate Change (IPCC is the UN organization 
that works to obtain the science associated with climate change. This body releases 
reports after certain years that give consolidated and integrated facts, statistics and 
guidelines. The recently released report by working group I for AR6 (AR6 Climate 
Change 2021: The Physical Science Basis) [25] clarifies that anthropogenic activ-
ities are causing climate change and this ultimately affects the atmosphere, ocean, 
cryosphere and biosphere, leading to an impact on the hydrological cycle and water 
resources locally, regionally and globally. In the same report of AR6, it is also stated 
that the damage caused to the climate is already irreversible and will lead to an 
increase in extreme events along with chances of compound extreme events in the 
future, at least till the end of the twenty-first century, even under lowest scenario 
consideration [25]. This leads to the seriousness of studying the impact of climate 
change on water resources, so that proper adaptation and mitigation strategies can 
be made. 

2 Climate Change Impact on Water Resources 

Hydrological cycle theoretically plays a vital role in studying climate change impact 
on water resources. Hydrological cycle is classified as natural hydrological cycle and 
binary hydrological cycle depending on the driving factors (natural factors or both 
natural and anthropogenic factors respectively). Due to the interference of human 
activities and climate change, the original natural hydrological cycle system is imbal-
anced and is now converted to the binary hydrological cycle [49]. Long-term variation 
studies or trend analysis of precipitation, temperature and evapotranspiration has been 
extensively given importance for studying the impact of climate change on hydro-
logical cycle and ultimately on water resources [21]. The hydrological responses to 
these variables (that are substantially studied to address water issues) are runoff and
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Fig. 1 Methodology for climate change impact assessment on water resources. Source [6, 8] 

river discharge, water availability, glacier melting, sea-level rise, mean and extreme 
precipitation variation, drought and flood analysis, evapotranspiration analysis, soil 
moisture analysis, groundwater analysis and water quality analysis. 

The climate change impact assessment of water resources is carried out with a 
proper methodology that has been addressed in several studies such as [7, 29, 46]. 
The basic and simple flow chart given by [6, 8] is shown in Fig. 1. This explains 
that the climate data or climate projections from GCMs or RCMs (historical data or 
future scenario data) are downscaled to the required scale and further bias correction 
is applied. This processed climate data along with other data (such as topographical 
data, land use land cover (LULC) data, soil data, catchment data.) is applied to the 
calibrated and validated hydrological model selected for the study. The hydrological 
model is chosen depending on the requirement of output or hydrological response to 
be studied. Further, analysis of the output obtained from the hydrological model is 
done to take appropriate adaptation and mitigation strategies. 

2.1 Climate Change Scenarios 

The future is always uncertain and it is highly difficult and challenging to exactly 
state the future conditions and happenings. So, to study the earth’s climate change 
and impact on various sectors, different scenarios are developed. These scenarios 
are alternate images of the future, with certain assumptions, answering how the 
future might be. In short, these are essential scientific tools or methods for exploring



116 P. P. Surkar and M. K. Choudhary

possible future in context of climate change and its impact. The development of 
scenarios started in 1990s with the IS92 scenarios (first developed set of long-term 
scenarios) [23] and most widely used the IPCC Special Report on Emission Scenarios 
(SRES) in 2000 [30]. The Four storylines A1, A2, B1 and B2 were developed and for 
each storyline separate scenarios were developed leading to a total of 40 scenarios, 
of which six were selected as demonstrative scenarios that can be widely used (one 
for each of the storylines in addition with high and low emissions variants of A1 
storyline) [9, 14]. 

With the emerging challenges and addressing uncertainties, the need for scenarios 
that are more detailed and used for comparing future changes with different climate 
policies instead of no climate policy (as SRES) was needed. To address this need, 
scientific communities working with earth/climate models (CM), Integrated assess-
ment models (IAM) and impact, adaptation and vulnerability (IAV) developed a 
new set of scenarios in three phases [14, 45]. Firstly, development of Representative 
Concentration Pathways (RCPs). Secondly, development of Shared Socioeconomic 
Pathways (SSPs). And lastly, a final integrated and disseminated scenario develop-
ment to be used by climate change science community. The road map of this three-
phase design is properly explained by [28]. Further, the use of RCPs along with SSPs 
for combining future socioeconomic conditions with possible mitigation and adapta-
tion policies, a conceptual framework approach or scenario matrix approach is being 
adopted. This is explained by [3, 14, 31, 44]. These scenarios and the framework or 
matrix approach are used depending upon the availability of data from GCM/RCM 
and the requirement of one’s study. 

The four Representative Concentration Pathways (RCP2.6, 4.5, 6.0 and 8.5), as 
its name explains, are trajectories of GHG concentrations with radiative forcing 
(in W/m2) along with mitigation actions in their formulation to stabilize the radia-
tive forcing at the end of twenty-first century. RCP2.6 is considered as the best-
case scenario whereas RCP8.5 is considered as worst-case scenario. The RCPs 
and its development are further elaborated by [45]. The five Shared Socioeconomic 
Pathways (SSP1, SSP2, SSP3, SSP4, SSP5) are development scenarios, each with 
different qualitative and quantitative characteristics that describes how the societal 
future might appear in terms of population growth, administrative effectiveness, 
inequality, socioeconomic developments, institutional elements, technological evolu-
tion and environmental conditions [3]. The characteristics of SSPs explained by [32] 
and extracted in short table format by [3] is shown in Table 1.

2.2 Climate Models and Its Approach in Impact Assessment 

Climate models are basically quantitative methods or models that are used to stim-
ulate the interaction of climate drivers (atmosphere, ocean, land surface and ice) 
to study the dynamics of future projection [10]. In climate change impact assess-
ment for water resources, General Circulation Models also called as global climate 
models (GCMs) are the climate models that helps to simulate the climate response
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Table 1 Shared Socioeconomic Pathways (in context to mitigation and adaptation challenges level) 

SSP Path Challenges to mitigation and adaptation 

SSP1 Sustainability Low challenges to mitigation or adaptation 

SSP2 Middle of the road Intermediate challenges 

SSP3 Fragmentation High challenges to both mitigation and adaptation 

SSP4 Inequality Low challenges to mitigation, but high adaptation 
challenges 

SSP5 Conventional development Low challenges to adaptation, but high challenges to 
mitigation 

Source [3, 32]

for different scenarios. The scenarios are inputs for the GCMs and the “RUN” of 
GCMs are the outputs that are used for impact studies. The GCMs have evolved from 
Atmospheric GCMs (AGCM) to coupled Atmosphere–ocean GCMs (AOGCM) and 
further addition of various other components such as aerosols, carbon cycle, dynamic 
vegetation, atmospheric chemistry and land use leading to an integrated model called 
as Earth system models or GCMs [17]. Figure 2. shows this evolution of GCMs with 
time and IPCC reports [2]. 

Fig. 2 Evolution of GCMs used in IPCC assessment report with respect to time. Source [2]
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The most widely used GCMs are models under Coupled Model Intercomparison 
Project (CMIP) coordinated by the World Climate Research Programme (WCRP). 
These CMIP models are evolved into five phases and are used in IPCC assessment 
reports from time to time. The CMIP3 models run with SRES scenarios whereas 
CMIP5 run with RCP scenarios. The current and new CMIP6 models are in wide 
used and are appreciated for its improved climate sensitivity compared to previous 
CMIP models. These CMIP6 models runs with SSP-RCP framework leading to 
combined socioeconomic and radiative forcing scenario inputs. Figure 3 shows the 
progressive evolution of CMIP models [15]. 

These GCMs work at a courser level of resolution (typically 100–500 km) and 
therefore cannot be used for local or regional level of impact assessment studies. Due 
to this, a concept of Regional Climate Models (RCMs) was brought that works at 
high resolution (typically 10–50 km). These RCMs basically work with the principal 
of dynamic downscaling and with the primary assumption of working with set of 
boundary conditions provided by their host GCM. Various projects and groups have 
come up to work for RCM modelling like PRUDENCE (Europe), ENSEMBLES 
(Europe and Africa), NARCCAP (North America), CLARIS (Europe and South 
America) [2, 35]. To stabilize and have a single platform, the COordinated Regional 
climate Downscaling EXperiment (CORDEX) under the WCRP was formed. At 
present, CORDEX runs for total 14 domains (region for which downscaling is taking 
place) [11]. Further, more details regarding RCM models are properly put together 
by [2, 35, 40]. 

The climate model output data can be obtained from ESGF website (https://esgf-
data.dkrz.de/projects/esgf-dkrz/) and IPCC Data Distribution Centre (DCC) (https:// 
www.ipcc-data.org/). These files are in NetCDF format and require other data extrac-
tion tools to work with these data files. While using these climate models or their 
outputs in impact assessment studies, we can observe two types of approach as 
single model approach and multi-model ensemble (MME) approach [17]. These 
approaches as the name explains work with a single GCM/RCM output and a group 
of GCM/RCM outputs, respectively. With the improvement in impact studies, it is

Fig. 3 CMIP models evolution with time and IPCC reports. Source [15] 

https://esgf-data.dkrz.de/projects/esgf-dkrz/
https://esgf-data.dkrz.de/projects/esgf-dkrz/
https://www.ipcc-data.org/
https://www.ipcc-data.org/
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highly recommended to use multi-model ensemble approach as it helps in quan-
tifying the uncertainty associated with climate model [33, 40]. There is always a 
clash in opinion of researchers whether GCM or RCM is better for regional climate 
modelling [8, 22, 26, 47]. One always needs to evaluate the model performance in a 
region along with addressing the uncertainty associated with it. 

2.3 Downscaling and Bias Correction 

While studying the impact of climate change on water resources and hydrology, 
one serious limitation that need to be address is the scale mismatch due to gap 
between the scale of climate model output and the scale requirement of hydrological 
model. This gap and mismatching can be overcome by downscaling the GCM data or 
coarser resolution data. Downscaling is commonly divided into two types as dynamic 
and statistical downscaling. These methods are more elaborated by [1, 5, 18, 48]. 
Dynamic downscaling is basically use of RCM models by applying large scale and 
lateral boundary conditions and in addition parameterizing physical atmospheric 
processes. On the other hand, statistical downscaling is based on the hypothesis used 
to determine the relationship between coarse GCM data and fine scale observational 
data. Few methods under each of these two types, that are commonly used and known, 
are mentioned in Fig. 4. 

Due to lack of scientific knowledge or observational data, GCM obtain is said 
to have systematic and random model errors called as bias. So, after downscaling, 
RCM also tend to possess some bias in its output values. This bias should be properly 
handled (at least reduce if not completely eliminated). There are various methods of 
bias correction proposed and few of them are listed in Fig. 4. They aim to correct the 
mean, variance and quantile of the time series variable. Among all these methods,

Fig. 4 Methods of downscaling and bias correction 
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commonly adopted methods are linear scaling and delta change correction method. 
Whereas the one with comparatively better performance is distribution mapping or 
quantile mapping method [36, 41, 42]. For hydrological impact studies (precipitation 
and temperature data to be bias corrected), one must note that there are certain 
methods that could be applicable only to precipitation (LOCI method) or temperature 
(power transformation and variance scaling method) while some could be applied to 
both [16, 38]. 

2.4 Hydrological Modelling 

Discussing about hydrological models in climate change impact studies, they are 
computer-based model that represents the real-world catchment and hydrological 
processes. These hydrological models are primarily classified as deterministic and 
stochastic models and process-based models [13]. The deterministic models do not 
consider randomness and hence gives a single output with the particular set of input 
parameters. Whereas the stochastic models consider randomness and produces output 
depending upon uncertainties of input variables, boundary conditions and model 
parameter [20]. The deterministic models are further categorized as lumped models, 
semi-distributed models (like SWAT, HEC-HMS) and distributed models (like MIKE 
SHE). The lumped models usually consider entire catchment as a single unit with 
same hydrological characteristic unlike distributed model that divide catchment into 
uniform grid with varying catchment characteristics. Whereas the semi-distributed 
models divide the catchment into hydrological response units (HRUs) having same 
properties in each subunit/ HRU [20]. The process-based hydrological models are 
categorized into empirical, conceptual and physical hydrological models. Empirical 
models such as artificial neural networks (ANNs), fuzzy logic, genetic algorithm 
(GA) does not contain any physical process-based function and relationship. They are 
completely based on statistical hydro-meteorological data. The conceptual models 
work with the empirical equations that are based on certain physical and observational 
processes. Unlike the other two types, the physical models describe and considers 
the complete catchment characteristics with its spatial variability as well as climate 
parameters [13]. 

Figure 5 shows the types of hydrological models in the form of tree diagram. 
There are also global hydrological models (GHM) in use which try to stimulate 
global hydrology and its connected processes [39]. Table 2 shows review of few 
papers in tabular form that can give an outline for various types of methods and 
models used in different studies.

In climate change impact assessment studies, uncertainties associated with the 
hydrological models or due to climate models or the methods of downscaling and 
bias correction used plays a vital role. One must understand that the uncertainties 
can never be completely eliminated in climate change studies but can be reduced. 
Uncertainties itself being a vast and separate topic is studied by several researchers 
and few of such work and related paper are [6, 7, 12, 29].
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Fig. 5 Types of hydrological models. Source [13]

3 Summary 

The aim of this paper is to provide basic essential and integrated information for 
beginners in an abounding field of climate change impact assessment of water 
resources and hydrology. The basic outline of assessment methodology starting with 
climate change scenarios followed by climate models, modelling approach, down-
scaling methods, bias correction methods to hydrological models used in impact 
assessment are reviewed. It is concluded that the climate scenarios, climate models 
and modelling approach (single model or multi-model ensemble), downscaling 
methods and hydrological models should be chosen taking into consideration the 
model prediction capacity along with level of accuracy and certainty required in 
a study, limitations and uncertainties associated with it. Performance evaluation of 
models should also be given importance. It is recommended to use multi-model 
ensemble approach and using GCM along with proper downscaling and also apply 
bias correction or RCM along with bias correction to address the uncertainties. It 
is also recommended using distributed deterministic and integrated hydrological 
models, whereas using a semi-distributed deterministic models like SWAT is also 
used broadly and can be taken into consideration.
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Table 2 Tabular review of climate change impact assessment studies 

References Scenario used Climate models used Downscaling 
method used 

Bias correction 
method used 

Hydrological 
model used 

[19] GHG 
scenarios 

RCM: HadRM2 – – SWAT 

[29] (SRES 
scenario) A2, 
B2 

3 GCM: 
CCSR/NIES, 
HadCM3, CGCM2 

Statistical 
downscaling 
models 

– – 

[3] 4RCPs-5SSPs 19 GCME: 19  
CMIP5 models 

– – Global 
hydrological 
model 
MacPDM.09 

[27] RCP4.5, 
RCP8.5 

6 GCME: NorESM,  
MPI, CanESM, 
CNRM, IPSL, 
MIROC 

– Quantile 
mapping 

SWAT 

[24] RCP2.6, 
RCP4.5, 
RCP8.5 

GCME: CMIP5 Delta change, 
Advanced 
quantile 
Perturbation 

– MIKE-SHE, 
SWAT 

[43] RCP4.5 6 GCM: 
ACCESS1-0, 
CANESM2, 
GFDL-ESM2M, 
GISS-E2-R, 
IPSL-CM5A-MR, 
MIROC-ESM 

Statistical 
downscaling 
change factor 
method 

– VIC 

[36] Historical data 3 RCM: 
ACCESS1.0, 
CNRM-CM5, 
MPI-ESM-LR 

– Linear scaling, 
quantile 
mapping 

SWAT 

[12] RCP4.5, 
RCP8.5 

6 GCME: 
ACCESS1.0, 
CNRM-CM5, 
CCSM4, 
GFDL-CM3, 
MPI-ESM-LR, 
NorESM1-M 

Dynamically 
downscaled 
using RCM 
(CORDEX) 

Non-parametric 
quantile 
mapping 

VIC 

[22] RCP8.5 1 GCM: HadGEM  
2 RCM: RegCM,  
WRF 

Dynamic 
downscaling 
using RCM 

Quantile 
mapping 

SWAT 

[33] RCP4.5, 
RCP8.5 

2 GCME: 
CNRM-CM5.0, 
GFDL-CM3.0 

Statistical 
downscaling 
model 
(SDSM) 

Non-parametric 
quantile 
mapping 

SWAT 

[4] RCP4.5, 
RCP8.5 

4RCM: REMO,  
RCA4, MPI_CCAM, 
CNRM_CCAM 

Dynamic 
downscaling 
using RCM 

Distribution 
mapping 

HBV-light, 
HEC-HMS, 
SRM

(continued)
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Table 2 (continued)

References Scenario used Climate models used Downscaling
method used

Bias correction
method used

Hydrological
model used

[37] RCP4.5, 
RCP8.5 

1 RCM: RegCM4  
CSIRO-Mk3.6.0 

Dynamic 
downscaling 
using RCM 

Delta change SWAT 

[34] RCP4.5, 
RCP8.5 

1 RCM: RegCM4 – – MIKE-SHE 

[50] RCP4.5, 
RCP8.5 

1 GCM: BNU-ESM Statistical 
downscaling 

Quantile 
mapping 

MIKE-SHE 

XE means multi-model ensemble (MME) approach
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Trends in Extreme Streamflow Indices 
in the Godavari River Basin 

Aajaz Ahmad Padder and Priyank J. Sharma 

Abstract This study assesses the spatio-temporal changes in trends in extreme 
streamflow indices for nineteen stream gauging stations in the Godavari River basin 
(area ≈ 312,812 km2), India. The daily streamflow data were quality checked and 
thereafter adopted to derive the magnitude (total annual runoff, annual maximum 1-
day and 5-day streamflows) and threshold (total streamflow exceeding the threshold 
corresponding to 95th and 99th percentile discharge and mean annual flood discharge) 
based extreme streamflow indices for each station. The non-parametric Pettit’s test 
is adopted for change point detection, while the Spearman’s Rho and Modified 
Mann–Kendall tests are executed to detect the significance of trends in the extreme 
streamflow indices. Further, the changes in the distributional characteristics of mean 
and extreme flows are analyzed using a non-parametric kernel density estimate and 
Mann–Whitney test by dividing the entire duration into three sub-periods (i.e., before 
1980, during 1981–1995, and after 1995). The results indicated declining trends in 
total annual runoff and extreme streamflows at most stations across the basin. The 
significant changes in the distributional characteristics of streamflows are observed in 
the sub-period after 1995 compared to the other sub-periods. The reported decrease in 
total runoff would put additional stress on the freshwater ecosystem services, which 
are already stressed due to human interventions.
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1 Introduction 

Trend analysis of streamflow at the river basin scale provides valuable information for 
effective planning, designing, and management of freshwater resources. Assessing 
historical and future streamflow changes helps the water resources planners develop 
adaptive management plans while dealing with the likely adverse changes. A substan-
tial spatial and temporal heterogeneity was reported as one of the significant obstacles 
to trend attribution in the river flow regime in the United Kingdom [1]. Salarijazi 
et al. [2] analyzed the streamflow series of the annual maximum, minimum and 
mean values at the Ahvaz hydrometric station of the Karun watershed and reported an 
increasing trend in streamflows. Zhang et al. [3] analyzed the streamflow variations in 
the Heihe River Basin, northwest China and reported a slightly upward (downward) 
trend for the gauging stations located upgradient (downgradient) to the irrigation 
area. Abeysingha et al. [4] studied the relationship between trends in streamflow and 
rainfall of the Gomati River basin through correlation analysis, wherein a gradually 
decreasing trend in the streamflow was associated with increased water withdrawal, 
increase in air temperature, population escalation, and significant declining trend 
of post-monsoon rainfall. Drissia et al. [5] reported a significant decreasing trend 
in daily streamflow at 53% of stations on west flowing rivers of Kerala, while a 
significant increasing trend and no significant trend were found at 28% and 19% 
stations, respectively. Sharma et al. [6] reported that the anthropogenic changes were 
prominently responsible for the decline in streamflows in the Tapi basin compared 
to the rainfall variability. Kuriqui et al. [7] reported a significant decreasing trend 
in summer and autumn seasonal streamflows and annual peak flows at all stations 
analyzed in the Godavari basin. Das et al. [8] documented a significant decline in the 
water and sediment discharges in the Godavari River basin, particularly after 1990, 
which was attributed to extensive watershed development. The decrease in sediment 
discharge of the river would accelerate the coastal erosion process in the future owing 
to the sea level rise. However, the earlier studies on the Godavari basin did not focus 
on evaluating the changes in the extreme streamflow characteristics (viz., magnitude, 
frequency, and distribution) and their implications on water resources management. 
The present study is aimed to assess the changes in (gradual and abrupt) trends and 
distributional characteristics of extreme streamflow indices in the Godavari River 
basin.
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2 Study Area and Data Source 

The Godavari River is the largest river in peninsular India and the third-largest in 
India, draining nearly 10% of the total geographical area of India. The Godavari 
basin is spread across an area of 3,12,812 sq. km while covering the states of Maha-
rashtra (48.8%), Andhra Pradesh (3.7%), Telangana (20%), Madhya Pradesh (7.9%), 
Chhattisgarh (12.4%), Orissa (5.7%), and Karnataka (1.5%) [9]. The basin is situ-
ated between North latitudes 16° 16'–22° 36' and East longitudes 73° 26'–83° 07'
(Fig. 1). The Godavari River originates in the Western Ghats near Triambak Hills in 
Maharashtra’s Nasik district at an elevation of about 1067 m above mean sea level 
[8]. It flows for around 1465 km in the southeast direction before entering the Bay of 
Bengal. Right bank tributaries such as the Pravara, Manjira, and Maner Rivers cover 
about 16.14% of the total basin area, while left bank tributaries such as the Purna, 
Pranhita, Indravathi, and Sabari Rivers cover nearly 59.7% of the total basin area. 

The Godavari basin receives around 84% of its annual rainfall during the southwest 
monsoon, which sets in mid-June and withdraws by mid-October. The long-term 
annual average rainfall in the Godavari catchment is about 1100 mm, wherein the 
spatial variation in the average basin rainfall is observed in the range of 755–1531 mm 
[9]. A noticeable eastward declining rainfall gradient is noticed in the basin, wherein 
the regions closer to the Western Ghats receive rainfall in the range of 1000–3000 mm. 
In addition, the regions near the East coast receive around 900 mm of rainfall, and 
the leeward side of the Western Ghats receives scanty rainfall of about 600 mm. The 
mean annual temperature across the basin varies from 31 to 33.5 °C. The agricultural

Fig. 1 Index map of Godavari basin showing the location of stream gauging stations 
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lands are spread across the majority of the Godavari basin (i.e., 59.57% of the total 
basin area), followed by the forest area and water bodies which occupy about 29.78% 
and 2.06% of the total basin area, respectively [9]. 

The daily observed streamflow data of the stream gauging stations in the Godavari 
basin, marked in Fig. 1, is collected from the India Water Resources Informa-
tion System (WRIS) web portal (https://indiawris.gov.in/wris/) of the Central Water 
Commission (CWC), India. The data of sixty-nine stations was collected, and quality 
checked, wherein the stations having continuous data length lesser than 25 years were 
not included in the analysis. The description of nineteen stream gauging stations 
analyzed in the current study is included in Table 1. The streamflow data has been 
checked for consistency and homogeneity prior to its analysis. 

Table1 Details of stream gauging stations adopted in this study 

Stream 
gauging 
station 

River Latitude 
(North) 

Longitude 
(East) 

Catchment 
area (km2) 

Normal 
rainfall 
(mm) 

Data 
length 
(years) 

Ashti Wainganga 19.69 79.79 50,990 896.7 54 

Bamni Kathani Nadi 20.22 80.09 46,020 1251.5 53 

Bhatpalli Pedda Vagu 19.33 79.50 3100 1101.8 31 

Dhalegaon Godavari 19.20 76.37 30,840 744.1 49 

G.R. Bridge Godavari 19.02 76.72 33,934 892.0 38 

Ghugus Wardha 19.94 79.09 21,429 1172.3 38 

Keolari Wainganga 22.38 79.90 2970 1204.5 32 

Koida Godavari 17.49 81.39 305,460 1415.5 29 

Murtahandi Jouranala 19.06 82.27 N.A 1545.3 25 

Nandgaon Vena 20.53 78.83 4580 594.5 32 

Nowrangpur Indravati 19.23 82.54 3545 1497.4 48 

Pauni Wainganga 20.80 79.64 35,520 1345.3 42 

Perur Godavari 18.55 80.37 268,200 1522.0 42 

Polawaram Godavari 17.25 81.66 307,800 1178.8 48 

Ramakona Kanhan 21.72 78.82 2500 1024.5 31 

Saradaput Kolab 18.60 82.13 3047 1500.7 44 

Somanpally Maner 18.62 79.80 12,691 N.A 39 

Tekra Pranhitha 18.98 79.95 108,780 1377.7 50 

Yelli Godavari 19.04 77.47 53,630 977.1 31 

N.A. indicates data is not available

https://indiawris.gov.in/wris/
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3 Methodology 

The step-by-step procedure adopted to detect the change point and analyze trends 
and distributional changes in the extreme streamflow indices for the Godavari River 
basin is shown in Fig. 2. 

3.1 Streamflow Indices 

The streamflow indices, listed in Table 2, are derived from daily observed data on a 
water year basis (i.e., June–May) for each station. The total annual runoff (QTOT) 
is expressed as the cumulative volume of water collected at the catchment outlet 
(represented by a stream gauging station) each year. The maximum flow observed for

Input daily observed streamflow for the 
stream gauging stations in the Godavari basin 

Quality control of data and check for consistency 

Minimum data 
length  25 years 

Formulate the time series of daily streamflow at each sta-
tion in water year format (i.e., June – May) 

Discard the 
station 

Analyze the daily streamflow time series to derive ex-
treme streamflow indices representing the frequency and 

magnitude of total and peak flows  

Pettitt’s test for change point 
detection in annual runoff 

Spearman’s Rho and Modified Mann-
Kendall tests for trend detection  

Spatio-temporal changes of trends in extreme streamflow 
indices across the Godavari basin 

No 

Yes 

Assessment of changes in the distributional characteris-
tics of streamflows through kernel density estimate and 

Mann-Whitney test 

Fig. 2 Methodology adopted in the present study 
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Table 2 Description of the streamflow indices adopted in the study 

Streamflow index Notation Unit 

Total annual runoff QTOT Mm3 

Annual maximum 1-day discharge Qx1day m3/s 

Annual maximum 5-day discharge Qx5day m3/s 

Total streamflow exceeding the 95th percentile discharge Q95p m3/s 

Total streamflow exceeding the 99th percentile discharge Q99p m3/s 

Total streamflow exceeding the mean annual flood discharge QTMEAN m3/s 

Number of times the streamflow exceeds mean annual flood discharge QCMEAN m3/s 

1-day (Qx1day) and 5-day (Qx5day) duration represents the characteristics of short-
and long-duration floods at a station each year. An Empirical Cumulative Distribu-
tion Function (ECDF) is fitted to the daily streamflow time series (i.e., considering 
entire data) at each station to estimate the thresholds corresponding to 95th and 
99th percentile streamflows, and the total streamflow exceeding these thresholds are 
computed for each water year and denoted as Q95p and Q99p, respectively [6]. The 
mean annual flood discharge is computed by fitting Gumbel’s distribution to the 
Qx1day series at a station and estimating the value corresponding to a return period 
of 2.33 years [10]. Further, the time series of total streamflow exceeding the mean 
annual flood discharge is denoted as QTMEAN, whereas the number of instances of 
streamflow exceeding the mean annual flood discharge is denoted as QCMEAN for 
each year. 

3.2 Non-parametric Statistical Techniques 

Pettit’s test [11] is adopted to detect a change point wherein the null hypothesis, that 
there is no change in the mean value of the divided segments of a time series, which 
is tested against the alternate hypothesis that there is a significant change in the mean 
value at a given significance level (α). 

Di j  = 

⎧ 
⎨ 

⎩ 

−1
(
Xi − X j

)
< 0 

0
(
Xi − X j

) = 0 
+1

(
Xi − X j

)
> 0 

(1) 

where Xi and X j are the random variables, where Xi following X j in time. The test 
statistic Ut,T depend on Di j  is defined in Eq. (2). Ut,T is assessed for all random 
variables from 1 to T; then, the most significant change point is selected where the 
value of |Ut,T | is the largest.
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Ut,T = 
t∑

i=1 

T∑

j=t+1 

Di j (2) 

KT = max 
1≤t<T

|Ut,T | (3) 

A change point occurs at time t when the KT is significantly different from zero 
at a given α. 

A modified Mann–Kendall (MMK) test is adopted for trend detection. It over-
comes the drawback of the Mann–Kendall test in detecting trends within the time 
series that are serially correlated. The null hypothesis of the MMK test is that the 
data is independent and randomly ordered. The MMK test statistic Z is defined as 
[12]: 

z = 

s−1 √
Var(S) if S > 0 

0 if  S = 0 
s+1 √
Var(S) if S < 0 

(4) 

A positive (negative) value of Z indicates the presence of an increasing 
(decreasing) trend in the time series, wherein the test statistic is assessed at a 5% 
significance level (α). Further details about the MMK test can be found in Hamed 
and Rao [12]. 

Spearman’s Rho test, a rank-based test that assumes the time series as independent 
and identically distributed, is also used for trend detection. The null hypothesis in 
this test is that the association between the two ordered values is zero (i.e., no trend). 
The test statistic (ρ) is defined as: 

ρ = 1 − 
6∑di2 

n
(
n2 − 1

) (5) 

where di represents the difference in ranking for the observation i and n is the number 
of observations. 

Kernel density estimate [13] is adopted to evaluate and compare the probability 
densities of streamflow indices for different sub-periods (i.e., before 1980, during 
1981–1995, and after 1995). The statistically significant difference between the prob-
ability densities for various sub-periods is estimated using the Mann–Whitney test 
at a 5% significance level [13].
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4 Results and Discussion 

The statistical assessment of abrupt, gradual, and distributional changes in the mean 
and extreme streamflow characteristics and their spatial variation across the Godavari 
basin is presented using several non-parametric techniques. 

4.1 Change Point and Trends in Extreme Streamflow Indices 

The non-parametric Pettit’s test has been used for change point detection in QTOT 
series at each station. The results indicate insignificant change (at a 5% level of 
significance) in the total annual runoff at most gauging stations. However, three 
stations, viz., Dhalegaon (on Godavari River), Murtahandi (on Jouranala River), and 
Nowrangpur (on Indravati River) had shown significant change points resulting in an 
abrupt decrease in the runoff at these stations after the change point. The change point 
year for Dhalegaon, Murtahandi, and Nowrangpur stations are reported to be 1984, 
1995, and 1996, respectively. The assessment of changes in extreme streamflows in 
the Godavari basin is carried out by applying several non-parametric trend detection 
tests, viz., Spearman Rho (SR) and Modified Mann–Kendall (MMK) tests. The SR 
and MMK tests are carried out to determine the trend in streamflow indices (listed in 
Table 2) at nineteen gauging stations in the Godavari River basin, and their results are 
shown in Table 3. Further, the spatial variability of nature of trend (i.e., increasing, 
decreasing or no trend), derived from the MMK test, for all the streamflow indices 
are shown on the basin map with the help of a spatial analyst tool in a geographical 
interface system (GIS) interface.

The results indicate a declining trend in the total annual runoff (QTOT) is observed 
at sixteen stream gauging stations in the Godavari basin, while an increase in QTOT 
is noticed at three stations (see Fig. 3a). A significant decrease in QTOT is detected 
at Dhalegaon, Ghugus, Murtahandi, and Nowrangpur stations at a 5% significance 
level. The reduction in total annual runoff is plausibly linked with the decline in 
total precipitation across the Godavari [8, 14]. Such a decrease in runoff would put 
additional stress on the freshwater ecosystem services, such as water for drinking, 
municipal, industrial, and irrigation use; water for navigation, power generation, 
recreation, and spiritual needs of the residents in the basin. The decrease in fresh-
water availability and increase in water needs due to rapid population growth could 
exacerbate the water stress conditions in the basin.
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Fig. 3 Spatial variability of trends in streamflow indices across the Godavari River basin
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4.2 Changes in the Distributional Characteristics 
of Streamflows 

The changes in the distributional characteristics of mean and extreme flows are 
analyzed using a non-parametric kernel density estimate and Mann–Whitney test. 
The entire streamflow period is divided into three sub-periods, viz., before 1980, 
during 1981–1995 and after 1995 and analyzed further. The kernel density estimation 
is used to derive the distributional characteristics of the streamflows, and statistically 
significant changes in the distributions between the sub-periods mentioned above are 
evaluated using the Mann–Whitney test at a 5% significance level. From Fig. 4, a  
distinct shift in the location parameter for QTOT toward the origin (i.e., decrease in 
QTOT) is noticed for the stations G. R. Bridge and Nowrangpur in the sub-period 
after 1995 vis-à-vis the sub-period during 1981–1995. On the other hand, the shift 
in QTOT for Dhalegaon station is noticed during the sub-period 1981–1995 vis-à-
vis the sub-period before 1980. These shifts in the distributional characteristics are 
found to be statistically significant at a 5% significance level. 

Further, significant changes in the distributional characteristics of Qx1day (see 
Fig. 5), Qx5day (see Fig. 6), Q99p, and Q95p indices are observed for Dhalegaon, 
G. R. Bridge, and Nowrangpur stations like that of QTOT. However, the significant 
changes in characteristics of QTMEAN and QCMEAN are noted at G. R. Bridge and

Fig. 4 Changes in distributional characteristics of total annual runoff (QTOT) 
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Fig. 5 Changes in distributional characteristics of annual maximum 1-day streamflow (Qx1day)

Nowrangpur stations for the sub-period after 1995 vis-à-vis the sub-period during 
1981–1995. The analyses show that most changes are observed in the sub-period 
after 1995 compared to the other sub-periods. It is interesting to note that the Dhale-
gaon and G. R. Bridge stations located on the upper reaches of the Godavari River 
have shown significant shifts in the streamflow characteristics. In contrast, the Koida, 
Perur, and Polawaram stations situated in the lowermost reaches of the Godavari River 
do not exhibit substantial changes in the streamflow distributions. The Nowrangpur 
station on the Indravati River has consistently shown significant changes in stream-
flow characteristics across all sub-periods. The attributional analysis of such spatio-
temporal changes in the streamflow characteristics would provide deep insights about 
the hydroclimatological changes in the Godavari basin. 

5 Conclusions 

The present study analyzes the abrupt, gradual, and distributional changes in 
the streamflow indices representing mean, peak, and exceedance of mean annual 
flow conditions across the Godavari River basin. The conclusions drawn from the 
foregoing study are as follows:
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Fig. 6 Changes in distributional characteristics of annual maximum 5-day streamflow (Qx5day)

• A decrease in total annual streamflow is observed across the entire basin, indi-
cating a reduction in freshwater availability and a likely increase in the water 
stress condition. 

• The streamflow indices representing the peak flow (Qx1day, Qx5day, Q95th, 
Q99th, QCMEAN, QTMEAN) have also shown a decreasing trend across the 
basin, indicating the reduction of magnitude as well as the occurrence of floods 
in the entire basin. 

• The decrease in water availability is observed in the recent period (i.e., after 1995) 
as compared to the earlier periods, which would likely have severe implications 
on the freshwater ecosystem services and the morphodynamics of the Godavari 
River and its tributaries. 

• The attribution analysis of such streamflow decline to climate and/or human inter-
ventions would provide a better understanding of the dynamics of such change 
and help us make policy decisions in restoring the freshwater ecosystem services. 
Basin-level water management and conservation plans need to be formulated to 
avert a water scarcity crisis in the near future in the advent of changing climate. 
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Spatio-Temporal Changes 
in the Streamflow Regimes Across 
Mahanadi River Basin 

Ashutosh Sharma and Priyank J. Sharma 

Abstract The current study analyses the changes in streamflow regimes using daily 
observed streamflow data at sixteen stream gauging stations in the Mahanadi River 
basin. In this study, non-parametric Pettit’s test is used for detection of abrupt change, 
while Spearman’s Rho and modified Mann–Kendall tests are used for trend assess-
ment in annual total (QTOT) and maximum (Qx1day) streamflow series at a 5% 
significance level. Further, flow duration curves (FDCs) are derived at decadal time 
scales from daily streamflow data at each station to analyze the changes in streamflow 
regimes. The percentage change in the FDC quantiles representing low, moderate, 
high and peak flow conditions for the current period with respect to the baseline 
period are evaluated. The results indicate the presence of a significant change point 
in QTOT and Qx1day for the Bamnidhi and Kesinga stations. A contrasting pattern 
in the streamflow trends is evident between the northern (decreasing trend) and 
southern (increasing trend) parts of the Mahanadi basin, particularly upstream of the 
Hirakud reservoir. The changes in the decadal FDCs are classified into two broad 
categories based on the changes in magnitude and timing of streamflows; wherein 
seven stations have shown a notable transition from perennial to intermittent behavior. 
In contrast, no changes in the perennial nature of the stream were noticed at eight 
stations. The changes in the streamflow quantiles indicate an increase (decrease) 
in peak and high flow (dry and low flow) conditions in the region upstream of the
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Hirakud dam. Such contrasting changes in the streamflow characteristics would need 
careful consideration by the local authorities to resolve water management issues in 
the basin. 

Keywords Change point · Trend analysis · Streamflow regimes · Flow duration 
curves · Mahanadi river basin 

1 Introduction 

Managing hydro climatological extremes, viz., floods and droughts, has been a 
major concern since the beginning of human civilization. The freshwater scarcity 
is engulfing new geographical domains due to the rapid pace of population expan-
sion and development. On the one hand, water scarcity makes human settlements and 
ecosystems vulnerable to droughts, while the flood losses also continue to grow [1]. 
Thus, assessing changes in the magnitude and probability of occurrence of stream-
flow regimes is vital for the design of structural measures for flood protection, risk 
and vulnerability of water resources systems, operation of reservoirs, and develop-
ment of early warning systems [2]. The climate change impact assessment should 
consider the timing and magnitude of streamflows since these characteristics are 
essential for making operational decisions for water resources infrastructure [3]. 

Several studies (Silvestro et al. [2], Sharif and Burn [3], Jain et al. [4], and 
Gudmundsson et al. [5]) have analyzed the changes in extreme streamflow indices 
at regional and global scales. At the river basin scale, Panda et al. [6] assessed the 
trends in seasonal streamflow and rainfall, and showed considerable differences in 
the basin’s sub-seasonal streamflow and rainfall patterns. The coastal proximity of 
the basin and its complex physiographic settings were attributed to the contrasting 
pattern observed in the sub-seasonal streamflow and rainfall. Jena et al. [7] analyzed 
the trends in rainfall and streamflow indices across the Mahanadi River basin. The 
study revealed an increasing (discharge) trend in peak discharge at Naraj station 
(near Hirakud dam), thereby indicating an increase in the contribution from the 
middle reaches of Mahanadi River due to the rise in the incidences of extreme rain-
fall. Hu et al. [8] analyzed the changes in extreme streamflow indices, representing 
flood and drought conditions, across the Kamo River basin, Japan, from 1951 to 
2012. The flood indices, viz., daily peak flow and 5-day maximum flow, reported a 
decrease in 100-year flood during the period 1982–2012 vis-à-vis 1951–1981, while 
an increase in the 100-year drought index (i.e., the maximum number of consecutive 
low flow days) is also noticed across the basin. Goyal and Surampalli [9] reported a 
decrease in the drought severity in the lower Mahanadi basin, whereas an increase 
in the drought severity was noted in the upper Mahanadi basin. Sharma et al. [10] 
reported a decrease in the freshwater availability in the Tapi basin primarily driven 
by anthropogenic changes such as land use land cover change, streamflow regula-
tion, and population growth. On the other hand, the peak flows were observed to 
decline across the Tapi basin (except in the upper reaches of the Tapi River), while a
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significant increase in the low flow days was noted by Sharma et al. [11]. Thus, the 
studies point out different spatial and temporal variability in the streamflow charac-
teristics, which are driven by the rainfall variability, physiographic conditions, and 
demographic changes in the basin. 

The Mahanadi River basin, located in the proximity of the Bay of Bengal, 
receives frequent spells of extreme rainfall due to the landfall of tropical cyclones. 
Gudmundsson et al. [12] predicted that climate change would intensify the floods in 
the Mahanadi River basin in the near future, whereas Ghosh et al. [13] suggested a 
declining trend in the observed flow in the Mahanadi River at Hirakud dam in the 
near future. Such contrasting future streamflow behavior would result in complexi-
ties for water resources management in the basin. The present study aims to assess 
the changes in streamflow regimes through flow duration curves across the Mahanadi 
River basin. 

2 Materials and Methods 

2.1 Study Area and Data Source 

The Mahanadi River is one of the major east-flowing rivers in peninsular India. 
During its traverse, it drains an area of 141,600 km2, comprising fairly large areas of 
Chhattisgarh and Odisha and relatively smaller areas in Jharkhand, Maharashtra and 
Madhya Pradesh. The basin encompasses the area within geographical co-ordinates 
of 80° 28' and 86° 43' East longitudes and 19° 08' and 23° 32' North latitudes [14]. 
The Mahanadi River traverses a distance of 851 km before draining into the Bay 
of Bengal. During its traverse, six major tributaries join it upstream of the Hirakud 
reservoir, while two tributaries join it downstream of the Hirakud reservoir. The 
catchment area upstream and downstream of the Hirakud reservoir are 83,400 km2 

and 58,200 km2, respectively. The major tributaries in the upstream reach are Seonath, 
Ib, Pairi, Jonk, Hasdeo, and Mand, while Tel and Ong are the major tributaries in 
the downstream reach. Though the catchment area of the downstream portion is 
less than that of the catchment upstream of Hirakud reservoir, the contribution of 
the downstream area to the total flood in the Mahanadi River is equally significant 
[15]. The southwest monsoon (June–October) is the principal rainy season, wherein 
more than 90% of the total annual rainfall occurs. The average annual rainfall in the 
Mahanadi basin is around 1400 mm [14]. The Mahanadi basin exhibits wide spatial 
variation in hydro-meteorological characteristics due to its vast geographical extent. 
The mean daily temperature during the winter and summer seasons vary in the range 
of 13 °C–20 °C and 30 °C–37 °C, respectively. The Hirakud Dam is a prominent 
water storage structure in the basin, located at the outlet of the middle Mahanadi 
basin, having a gross storage capacity of 8136 Mm3. 

The daily observed streamflow data used for this study is downloaded from the 
India Water Resources Information System (WRIS) web portal of Central Water
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Table 1 Details of stream gauging stations located in Mahanadi Basin analyzed in this study 

S. No. Stream gauging 
station 

River Latitude 
(North) 

Longitude 
(East) 

Zero gauge 
(m) 

Data 
length 
(years) 

1 Andhiyar Khore Hanp 21.83 81.60 252 43 

2 Bamnidhi Hasdeo 21.91 82.71 223 50 

3 Basantpur Mahanadi 21.74 82.79 206 49 

4 Ghatora Arpa 22.05 82.22 246 41 

5 Jondhra Seonath 21.71 82.33 219 41 

6 Kantamal Tel 20.66 83.73 118 49 

7 Kesinga Tel 20.29 83.22 166 42 

8 Kotni Seonath 21.24 81.25 268 42 

9 Kurubhata Mand 21.98 83.21 215 43 

10 Manendragarh Hasdeo 23.21 82.22 411 31 

11 Pathardihi Kharun 21.34 81.59 271 32 

12 Rampur Matwali 21.73 84.02 219 50 

13 Salebhata Ong 20.98 83.54 130 49 

14 Seorinarayan Mahanadi 21.72 82.60 209.5 35 

15 Simga Seonath 21.63 81.68 244 49 

16 Sundergarh Ib 22.11 84.03 214 45

Commission (CWC) India, which can be accessed through website [16]. The details 
of stream gauging stations in the Mahanadi basin, analyzed in the present study, 
are included in Table 1. The Mahanadi basin’s digital elevation model (DEM) is 
derived from the USGS Earth Explorer [17] at 30 m resolution. The index map of the 
Mahanadi basin with locations of stream gauging stations, river network and DEM 
is shown in Fig. 1. The land use land cover LULC maps are derived from the Bhuvan 
portal [18] at the scale of 1:50,000 (see Fig. 2a), while the extent of soil erosion, slope 
classification and soil type in the basin are extracted from India WRIS portal (see 
Fig. 2b–d). The majority of the basin is covered with agricultural land, accounting 
for 54.27% of the total basin area, followed by forest land (i.e., 32.74%) [14]. 

2.2 Methodology 

The daily streamflow data is checked for homogeneity and continuity before analysis. 
The streamflow data is checked for outliers or missing data and converted to water 
year format after that. The data sufficiency ensures a minimum of 25–30 years of 
continuous data availability at a given station for further analysis. The statistical anal-
ysis of the data is carried out. The non-parametric change point and trend detection 
tests are applied on the total annual runoff (QTOT) time series and annual maximum



Spatio-Temporal Changes in the StreamflowRegimes AcrossMahanadi… 145

Fig. 1 Index map of Mahanadi River basin with locations of stream gauging stations, river network 
and digital elevation model

1-day streamflow (Qx1day) for each station. The trend analysis results derived from 
SR and MMK tests for QTOT and Qx1day are visualized on the basin map using 
QGIS. The FDCs are plotted on the decadal time scale and compared. Further, the 
percentage change in FDC flow quantiles (viz., Q0.01, Q0.25, Q0.50, and Q0.90) are  
estimated for the current decade (i.e., 2010s) with respect to the baseline period (i.e., 
1970s or 1980s) and visualized on the basin map. The flowchart of the methodology 
adopted in the present study is shown in Fig. 3.

Pettit’s Test 

Pettitt’s test [19] is a commonly applied non-parametric test to detect a change point 
in a continuous hydroclimatic time series X = {x1, x2, ..., xn}. . It tests  the null  
hypothesis (H0) that both the time series have the same location parameter (i.e., no 
change) against the alternative hypothesis (H1) that a change point exists. The test 
statistic is defined as: 

KT = max
(∣∣Ut,T

∣
∣) (1) 

where 

Ut,T = 
t∑

i=1 

T∑

j=t+1 

sgn
(
Xi − X j

)
(2)
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Fig. 2 a Land use land cover, b extent of soil erosion, c slope classification, and d soil type in the 
Mahanadi basin

The change point of the series is located at KT provided that the statistic is 
significant. The probability of KT is approximated as: 

p ≈ 2 exp
(−6K 2 

T /
(
T 3 + T 2

))
(3) 

Spearman’s Rho Test 

Consider two datasets X = {x1, x2, ..., xn} and Y = {y1, y2, ..., yn}, , to estimate the 
Spearman’s Rho (SR) test statistic as the sum of squares of the differences between 
the corresponding ranks of X and Y . The SR test statistic (r ) [20] is given as: 

r = 1 − 
6
∑n 

i=1[R(xi ) − R(yi )]
2 

n3 − n 
(4) 

where R(xi ) and R(yi ) denote the ranks of samples in the dataset X and Y, respec-
tively, while n denotes the sample size. A positive (negative) value of r indicates an 
increasing (decreasing) trend whose significance is determined at a 5% significance 
level.
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Fig. 3 Flowchart of the methodology adopted in the present study

Modified Mann–Kendall Test 

The modified Mann–Kendall (MMK) test was proposed by Hamed and Rao [21] to  
address serial autocorrelation issues in trend estimation. They suggested a variance 
correction approach to improve trend analysis which was used to compute the test. 
The details of this test can be found in [21]. 

2.3 Flow Duration Curve 

The flow duration curve (FDC) is a graphical representation of the percentage of 
time that flow in a stream is likely to equal or exceed some specified value. The 
FDC describes the ability of the basin to provide flows of various magnitudes. The 
shape of the flow duration curve evaluates the basin and stream characteristics in its
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Fig. 4 Visualization of streamflow regimes through a flow duration curve 

upper and lower regions. The shape of the curve in the high discharge region shows 
the type of flood regime, whereas the shape of the low-discharge region shows the 
ability of the basin to sustain low flows during dry seasons. A steep curve would be 
expected for floods caused by rain, whereas a flatter curve near the upper limit will 
result from snowmelt floods or regulation of floods with dam storage. In the low-
discharges region, intermittent streams would exhibit periods of no flow. In contrast, 
a flat curve indicates that moderate flows are sustained throughout the year, which 
may be due to natural or artificial streamflow regulation. 

The current study aggregates the daily streamflow values for a decade at a stream 
gauging station to derive FDC. Similarly, FDCs for other decades are derived and 
plotted on a single graph to analyze the changes in streamflow regimes at a stream 
gauging station. The FDC is used to analyze the temporal changes in the streamflow 
quantiles (viz., Q0.01, Q0.25, Q0.50, and Q0.90) on a decadal time scale. The stream-
flow regimes can be visualized as: peak flows for Q ≤ Q0.01, high flow and moist 
conditions for Q0.01 < Q ≤ Q0.25, mid-range flows for Q0.25 < Q ≤ Q0.50, dry  
conditions for Q0.50 < Q ≤ Q0.90, and low flows for Q > Q0.90 (see Fig. 4). 

3 Results and Discussion 

The daily streamflow data is analyzed to derive each station’s total annual streamflow 
(QTOT) and annual maximum 1-day streamflow (Qx1day) time series. The change 
point in QTOT and Qx1day series are assessed using non-parametric Pettit’s test,
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while their trend analysis is carried out using Spearman’s rho and Modified Mann– 
Kendall tests. The changes in streamflow quantiles, derived from FDC, are estimated 
for the present decade (2010s) as compared to the baseline period (1970s or 1980s, 
whichever is available). 

3.1 Change Point Detection 

The analysis of the change point in annual total runoff (QTOT) and annual maximum 
1-day streamflow (Qx1day) indicated the presence of a significant change point (at 
α = 0.05) only for two stations (see Table 2). The change point year for QTOT 
and Qx1day at Bamnidhi station was estimated to be 2007 and 1989, respectively, 
whereas the corresponding change point years at Kesinga station were 2001 and 
2006. The remaining stations did not exhibit any significant change point. For 
Bamnidhi and Kesinga stations, a decrease in mean flow was observed after the 
change point. However, this assessment cannot infer the changes in other streamflow 
characteristics. 

Table 2 Change point assessment in annual total and maximum 1-day streamflows 

Stream gauging 
station 

QTOT Qx1day 

Change point year Pettitt’s U 
statistic 

Change point year Pettitt’s U 
statistic 

Andhiyar Khore 2006 165 2000 119 

Bamnidhi 2007 340 1989 324 

Basantpur 2016 138 1987 128 

Ghatora 2000 179 2001 130 

Jondhra 2015 112 1990 116 

Kantamal 1990 211 2005 88 

Kesinga 2001 234 2006 219 

Kotni 1990 80 1986 162 

Kurubhata 2005 163 2004 115 

Manendragarh 2006 125 1982 174 

Pathardihi 1991 54 1991 56 

Rampur 1996 120 2010 146 

Salebhata 1980 121 2001 122 

Seorinarayan 2015 84 1990 111 

Simga 1987 92 2015 118 

Sundergarh 2001 161 2002 102 

Note Bold values indicate that the change point is statistically significant at a 5% significance level
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3.2 Trend Detection 

The trend analysis of QTOT and Qx1day is performed using MMK and SR tests for 
each station. The results from both these tests are found to agree with each other. From 
Table 3, decreasing and increasing trends in QTOT (Qx1day) are reported for ten 
(eight) and six (eight) stations, respectively. However, a significant decreasing trend 
in QTOT is noted for Bamnidhi and Manendragarh stations located on the Hasdeo 
tributary, whereas a significant increasing trend in QTOT is observed at Kesinga 
station located on the Tel tributary. The spatial distribution of trend characteristics of 
QTOT and Qx1day are shown in Fig. 5. FromFig.  5, an increase in total and peak flows 
are noticeable in the region downstream of the Hirakud reservoir. A clear contrasting 
pattern in the streamflow trends is evident between the northern (decreasing trend) 
and southern (increasing trend) part of the Mahanadi basin, particularly upstream of 
Hirakud reservoir, see Fig. 5. 

Table 3 Results of trend detection in annual total and maximum 1-day streamflows 

Stream gauging station QTOT Qx1day 

SR r statistic MMK Z statistic SR r statistic MMK Z statistic 

Andhiyar Khore – 0.15 – 0.93 – 0.03 – 1.37  

Bamnidhi – 0.44 – 3.41 – 0.44 – 3.39 

Basantpur – 0.14 – 1.42 – 0.22 – 1.04  

Ghatora – 0.23 – 1.66 0.05 – 0.11  

Jondhra – 0.07 – 0.27 0.08 – 1.43  

Kantamal 0.25 1.54 0.05 0.68 

Kesinga 0.40 2.92 – 0.22 0.43 

Kotni 0.10 0.48 0.16 0.17 

Kurubhata – 0.11 – 0.43 – 0.28 0.95 

Manendragarh – 0.38 – 4.14 – 0.15 – 1.57  

Pathardihi 0.03 0.14 0.05 0.17 

Rampur – 0.12 – 0.95 – 0.12 – 0.73  

Salebhata 0.07 0.47 0.08 0.58 

Seorinarayan 0.03 0.12 0.18 0.89 

Simga – 0.02 – 0.06 – 0.09 – 1.08  

Sundergarh – 0.15 – 0.89 – 0.01 0.04 

Note Bold values indicate that the trend is statistically significant at a 5% significance level
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Fig. 5 Spatial variability of trends in a QTOT and b Qx1day across Mahanadi basin 

3.3 Changes in Streamflow Characteristics Through Flow 
Duration Curve 

The decadal FDCs are derived for each station and compared to visualize the changes 
in streamflow characteristics at each station, as shown in Fig. 6. The FDCs of only 
eight stations are shown in Fig. 6 due to the paucity of space. On investigation 
of changes in the decadal FDCs, the stations can be classified into two broad cate-
gories, viz., (i) unchanged streamflow characteristics (i.e., a perennial stream remains 
perennial with nominal changes in streamflow magnitude and timing), (ii) consid-
erable changes in streamflow characteristics (i.e., a perennial stream exhibits inter-
mittent nature with significant changes in the streamflow magnitude and timing). 
The Basantpur (see Fig. 6e) and Seorinarayan (see Fig. 6g) stations on the Mahanadi 
River; Kantamal and Kesinga (see Fig. 6b) stations on the Tel River; while Bamnidhi 
(see Fig. 6a), Kurubhata, Salebhata, and Sundergarh (see Fig. 6h) stations on the 
Hasdeo, Mand, Ong, and Ib Rivers, respectively, have shown perennial characteristics 
throughout the decades the 1970s–2010s.

On the other hand, the Jondhra and Simga stations on the Seonath River; the 
Andhiyar Khore (see Fig. 6d), Ghatora, Manendragarh (see Fig. 6c), Pathardihi, 
and Rampur stations on the Hanp, Arpa, Hasdeo, Kharun, and Matwali Rivers have 
undergone a transformation from perennial to intermittent nature with significant 
changes in the streamflow characteristics. The Kotni (see Fig. 6f) station on the 
Seonath River has shown ephemeral nature wherein the streamflow was recorded 
lesser than 20% of the time in the decade 2010s. The changes in the streamflow 
characteristics from perennial to intermittent could plausibly be due to changes in 
climatic and/or anthropogenic conditions, which needs further investigation.
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3.4 Changes in Streamflow Quantiles 

The percentage change in the streamflow quantiles are computed for the current 
period (2010s) with respect to the baseline period (1970s or 1980s). The spatial 
variability of percentage changes in the streamflow quantiles is shown in Fig. 7. An  
increase (decrease) in the peak flow quantile, i.e., Q0.01, is observed at seven (nine) 
stations, wherein a considerable increase in the same is noticed at the Ghatora, 
Jondhra, Kurubhata, and Pathardihi stations (see Fig. 7a). The streamflow quantile 
representing high flows and moist conditions (i.e., Q0.25) is found to increase at 
thirteen out of sixteen sites in the Mahanadi basin. However, this increase in moist 
flow conditions could augment the storage in the Hirakud dam, which will benefit 
irrigation and hydropower generation. The moist flow conditions are also increasing 
in the region downstream of the Hirakud dam also (see Fig. 7b). On the other hand, 
the moderate, dry, and low flow conditions are found to decrease across most parts of 
the basin, particularly upstream of the Hirakud dam (see Fig. 7c, d). Such a decrease 
in the low flow conditions upstream of the Hirakud dam is attributed to extensive 
watershed development in terms of the construction of several minor and medium 
storage structures. 

Fig. 7 Percentage change in the FDC characteristics of streamflow quantiles a Q0.01, b Q0.25, c 
Q0.50, and d Q0.90, for the present decade (2010s) with respect to the baseline decade (1970s or 
1980s)
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Thus, the assessment of changes in streamflow quantiles provides a comprehensive 
assessment of the fluctuations in the streamflow characteristics. However, a detailed 
attribution of climatic and anthropogenic conditions for the detected streamflow 
changes needs to be undertaken for a better understanding of the catchment dynamics. 
The water resources planners and managers can utilize this information to formulate 
policies for flood and drought mitigation in the Mahanadi basin. 

4 Conclusions 

The current study examined the spatio-temporal changes in the streamflow char-
acteristics through non-parametric statistical tests and flow duration curves for the 
Mahanadi River basin. The following key conclusions are derived from the foregoing 
study: 

• A statistically significant change point is noted across two stations in the basin, 
while the rest of the stations do not exhibit significant changes in the mean stream-
flows. The trend analysis results highlight an increase in total and peak flows in 
the region downstream of the Hirakud reservoir. Thus, a clear contrasting pattern 
in the streamflow trends is evidently noticed between the northern (decreasing 
trend) and southern (increasing trend) part of the Mahanadi basin, particularly 
upstream of Hirakud reservoir. 

• The decadal flow duration curves indicate that the stations located across the 
Mahanadi, Tel, Hasdeo, Mand, Ong, and Ib Rivers do not exhibit significant 
changes in their characteristics and show perennial nature from the period 1970-
2010. On the other hand, the stations located across the Seonath, Hanp, Arpa, 
Hasdeo, Kharun, and Matwali Rivers exhibit a gradual transformation from peren-
nial to intermittent streamflow behavior, wherein the streamflows are recorded 
around 40–65% of the times in the river in the current period (2010s) as compared 
to the baseline period (1970s). 

• The spatial variation of changes in the streamflow quantiles indicates an increase 
(decrease) in peak and high flow (dry and low flow) conditions in the region 
upstream of the Hirakud dam. Such contrasting changes in the streamflow char-
acteristics could lead to water management issues in the basin and need careful 
consideration of the local authorities for their resolution. 
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Assessment of Temporal Changes 
in Streamflow Characteristics Across 
Cauvery River Basin 
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Abstract Changes in freshwater water availability have been noticed across several 
river basins over the years due to climatic and anthropogenic influences. The current 
study investigates the changes in streamflow characteristics over a semi-arid river 
basin in South India, viz., Cauvery River basin (area ≈ 81,155 km2), using daily 
streamflow data. The data has been thoroughly checked for consistency and complete-
ness. Several streamflow indices representing the magnitude, frequency, and duration 
of peak and low flow conditions are derived from the daily data at fourteen stream 
gauging stations in the Cauvery basin. The change point and trend in the streamflow 
indices are analyzed by non-parametric Pettitt’s and Modified Mann–Kendall and 
Spearman’s rho tests, respectively. A significant change point in total annual runoff 
was reported for three stations, while the extreme flows did not exhibit any change 
point. The results indicated a decrease in the water availability, peak as well as low 
flows in the basin across most stations. Such a decrease in water availability and 
low flows would aggravate the water stress conditions in the basin and have adverse 
impacts on the stream ecology. 
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1 Introduction 

India’s current population (1.39 billion) is around 17.7% of the world’s total popu-
lation, which is expected to reach 1.6 billion by 2050 [1]. The timely and adequate 
availability of necessities such as food and water are vital for sustainable living, 
especially in developing and highly populated countries. The freshwater resources 
are non-uniformly distributed throughout India, wherein water availability and water 
use patterns show wide variability across different river basins. Hence, it is impor-
tant to assess the spatio-temporal changes in streamflow characteristics at the river 
basin scale for sustainable water resources management. Gosain et al. [2] assessed 
the impact of climate change on the hydrological cycle of various Indian river basins 
using a semi-distributed hydrologic model. The results highlighted the susceptibility 
of droughts and flash floods in regions across twelve Indian river basins, specifically 
the Krishna and Mahanadi basins, which would experience severe drought and flood 
conditions, respectively. Pathak et al. [3] evaluated the impacts of the availability 
of water and climate change on Indian agriculture. The study reported a projected 
increase in the water requirement of around 3.5–5% and 6–8% by the years 2025 and 
2075, respectively, particularly for irrigation purposes. Several adaptation measures 
were suggested to cope with such demand increase, viz., building micro-storage facil-
ities in watersheds, implementing rainwater harvesting techniques, and recharging 
groundwater aquifers. Various strategies were also proposed to mitigate water stress 
due to climate change by increasing the availability of usable water, improving water 
efficiency, altering agronomic crops and interlinking rivers, and practicing integrated 
water resources management. 

As compared to regional or continental-scale studies, the basin-scale studies 
provide specific insights into the hydroclimatological changes due to the influence of 
local factors for deriving efficient water resources management policies. Abeysingha 
et al. [4] investigated trends in hydro-climatic parameters such as temperature, rain-
fall, and streamflow of four stations in the Gomti River basin from 1982 to 2012, using 
Sen’s slope and Mann–Kendall trend detection tests. The results indicated a gradual 
decrease in trends of annual, winter, and monsoon streamflows in the midstream 
to downstream reaches of the Gomti River. Jain et al. [5] examined the peak flows 
and rainfall trends in seven major river basins of India. A decrease (increase) in the 
extreme rainfall was reported in the upstream (plain) areas of major river basins. 
The east-flowing rivers exhibit a higher number of rainy days than the west-flowing 
rivers. A decreasing trend in the smaller magnitude floods is evident across most 
river basins (viz., Cauvery, Godavari, Krishna, Narmada), plausibly due to higher 
upstream water utilization and watershed development. In contrast, the high magni-
tude floods do not exhibit appreciable changes across all major river basins. Sharma 
et al. [6] analyzed the changes in extreme rainfall and streamflow indices across the 
Tapi River basin in western India. The drier (wetter) conditions were observed in the 
Tapi basin’s upper and eastern middle (western middle and lower) parts. The total 
and extreme streamflows were found to decrease (except in the upper reaches of Tapi 
River), while a significant increase in the low flow days was reported.
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The studies are scarce in the literature, which has reported extensive analysis of 
the temporal changes in streamflow regimes at the river basin scale, particularly for 
the Cauvery River basin. Sreelash et al. [7] analyzed the hydrologic behavior of rivers 
flowing through the southern Western Ghats due to rainfall variability using Sen’s 
slope estimator and Mann–Kendall tests. Decreasing (increasing) trend in rainfall 
in the southwest (northeast) monsoon is noticed. A significant decrease in annual 
discharge noted in the east-flowing rivers is attributable to a reduction of southwest 
monsoon rainfall, while an increasing trend is detected in the Cauvery River. Sreelash 
et al. [8] evaluated streamflow trends at twenty stream gauging stations in the Cauvery 
basin and linked them to the changes in hydrological parameters. A decline in the 
annual and seasonal streamflows observed in the basin was linked to a decrease 
in total rainfall and rainy days while an increase in evapotranspiration (ET) in the 
region. Further, a significant negative association was observed between ET and 
groundwater levels. 

The Cauvery River basin (area ≈ 81,155 km2) shows wide spatial and temporal 
heterogeneity in the physiography and rainfall occurrence. It receives rainfall during 
both southwest and northeast monsoon seasons, whereas higher rainfall is recorded in 
the middle and lower regions of the basin, which are closer to the Western Ghats [8]. 
Moreover, the Cauvery basin exhibits a semi-arid tropical climate and is considered 
a water-scarce region. Thus analyzing the changes in freshwater availability across 
the basin is of prime importance for sustainable living and the environment. The 
present study aims to assess the temporal changes in streamflow indices representing 
the magnitude, frequency, and duration of peak and low flow conditions across the 
Cauvery River basin. 

2 Materials and Methods 

2.1 Study Area: Cauvery Basin 

The Cauvery River originates from Talakaveri in the Brahmagiri Range of the Western 
Ghats in Kodagu district, Karnataka (India) [5]. It is the fourth largest peninsular river 
and flows eastwards, passing through three Indian states, viz., Tamil Nadu, Karnataka, 
Kerala, and one Union Territory (i.e., Puducherry). The Cauvery River drains a total 
area of 81,155 km2, which comprises 2.7% of the total geographical area of India 
[9]. It covers about 800 km before draining into the Bay of Bengal in Tamil Nadu. 
The Cauvery River basin lies between 75° 27' and 79° 54' east longitudes and 10° 
09'–13° 30' north latitudes (Fig. 1). The locations of the stream gauging stations 
analyzed in the present study are marked in Fig. 1, along with the stream network. 
The major tributaries of the Cauvery River are the Hemavati, Harangi, Arkavathy, 
Shimsha, Kabini, Lakshmana Tirtha, Bhavani, Amravati, Moyar, and Noyyal.

The Cauvery basin is bounded by the Western Ghats to its west while the Bay of 
Bengal to its east. The Cauvery basin receives about 50% (33%) of rainfall during
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Fig. 1 Index map of Cauvery River basin

the southwest (northeast) monsoon season, while the remaining rainfall is received 
during winter and pre-monsoon seasons [8]. The annual rainfall in the basin varies 
from 630 to 2430 mm, while the number of rainy days varies from 40 to 115. The 
mean annual rainfall in the Cauvery basin is about 1075.2 mm [9]. Due to thick forest 
cover and higher rainfall in the Western Ghats region, the evapotranspiration losses
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are higher in many parts of the basin than rainfall, thus characterizing the climate of 
the Cauvery basin as semi-arid. The mean maximum and minimum temperatures in 
the basin are 34.3 °C and 17.1 °C, respectively [9]. 

2.2 Methodology 

The stepwise procedure adopted to ascertain the changes and trends in streamflow 
indices across the Cauvery River basin is shown in Fig. 2. In the present study, the 
daily streamflow data measured by the Central Water Commission (CWC), India, has 
been downloaded from the India WRIS web portal (https://indiawris.gov.in/wris). 
The data has been collected for 47 stream gauging stations in the basin that have 
been quality checked and the stations with a continuous data length of 30 years have 
been selected. After a quality check, 14 stream gauging stations (shown in Table 
1) are selected for further analysis. The missing data, wherever applicable, have 
been filled using the moving average method. The data is converted into water year 
(June–May) format for further analyses. In this study, eight streamflow indices are 
derived using each station’s daily streamflow time series and analyzed (shown in 
Table 2). In Table 2, QTOT represents the total volume collected at a stream gauging 
station in a water year. The indices representing extreme (or peak) flow variability 
are classified as absolute (Qx1day and Qx5day) and percentile-based (Q95p and 
Q99p). The percentile-based indices are derived by fitting an Empirical Cumulative 
Distribution Function (ECDF) to the entire data at a given stream gauging station, 
and thresholds corresponding to 95th and 99th percentile streamflow are estimated 
from ECDF [6]. The streamflow total exceeding or equalling these thresholds is 
estimated for deriving their respective time series of Q959 and Q99p. The indices 
Q7min, Q30min, and LFD, represent the changes in frequency and magnitude of low 
flows. Q7min and Q30min refer to the average flow over a 7-day (weekly) and 30-day 
(monthly) moving average window for each water year, while LFD is estimated by 
computing the maximum number of consecutive days with flows less than or equal 
to 10th percentile streamflow at a given station.

The streamflow indices (listed in Table 2) are estimated for each stream gauging 
station. The non-parametric Pettit’s test is applied to the time series of total annual 
runoff (QTOT) and annual maximum 1-day streamflow (Qx1day) to determine the 
presence of a statistically significant change point. Further non-parametric tests, 
viz., Spearman’s rho (SR) and Modified Mann–Kendall (MMK) tests, are adopted 
for trend detection in all streamflow indices. Meanwhile, preliminary analysis of 
streamflow data, viz., data filtering and cleaning, is performed using a spreadsheet 
application, while Spyder (Python 3.8) and MATLAB software are used to implement 
code for Pettitt’s, SR, and MMK tests. The spatial variation of trends is thereafter 
represented in a geographic information system environment.

https://indiawris.gov.in/wris
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Input daily streamflow data of stream 
gauging stations in Cauvery basin 

Derive time series of streamflow indices, such as, 
QTOT, Qx1day, Qx5day, Q95p, Q99p, Q7min, 

Q30min, LFD, at all stations 

Analyse the change point and trends in streamflow 
indices using non-parametric tests, viz., Pettitt's, 

Modified Mann-Kendall and Spearman's Rho tests  

Check for data consistency 
and completeness (if data 

length ≥ 30 years) 

Spatial representation of trends in 
streamflow indices over Cauvery basin 

using ArcGIS 

Station 
Rejected 

YES 

NO 

Fig. 2 Methodology adopted in the present study

3 Results and Discussion 

3.1 Change Point Detection 

The non-parametric Pettitt’s test has been applied to QTOT and Qx1day series at 
each station. The Pettitt’s test is interpreted with the null hypothesis that there is 
no change point in the time series against the alternative hypothesis that there is a 
statistically significant change point in the time series at 5% significance level. The 
results indicate that only three out of fourteen stations, i.e., M. K. Halli, Biligundulu, 
and Kodumudi, have shown significant change points in QTOT in the years 1994, 
1984, and 1981, respectively (Fig. 3). On the other hand, no significant change point 
is detected for Qx1day at all the stations.
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Table 1 Details of stream gauging stations adopted in the present study 

Stream gauging 
station 

Latitude (N) Longitude (E) Sub-basin Data availability 

Start date End date 

Biligundulu 12.18 77.72 Cauvery middle Aug-71 Mar-19 

K. M. Vadi 12.35 76.29 Cauvery upper Jun-79 Jan-19 

Kodumudi 11.08 77.89 Cauvery middle Jun-71 Mar-19 

Kollegal 12.19 77.10 Cauvery middle Feb-71 Dec-18 

Kudige 12.50 75.96 Cauvery upper Nov-73 Jan-19 

M. H. Halli 12.82 76.13 Cauvery upper Oct-78 Jan-19 

Musiri 10.94 78.44 Cauvery lower Jun-72 Mar-19 

Muthankera 11.81 76.08 Cauvery middle Jun-73 Jan-19 

Nallamaranpatty 10.88 77.98 Cauvery middle Dec-77 Dec-17 

Nellithurai 11.29 76.89 Cauvery middle Jun-79 Jul-17 

Savandapur 11.52 77.51 Cauvery middle Jun-78 Feb-19 

T. Narasipur 12.23 76.89 Cauvery middle Mar-71 Jan-19 

T. K. Halli 12.42 77.19 Cauvery middle Jun-78 Dec-17 

Urachikottai 11.48 77.70 Cauvery middle Jun-79 Jan-19 

Table 2 Description of streamflow indices adopted in the present study 

Streamflow index description Abbreviation Unit 

Total annual runoff QTOT MCM 

Annual maximum 1-day streamflow Qx1day m3/s 

Annual maximum 5-day streamflow Qx5day m3/s 

95th percentile streamflow total Q95p m3/s 

99th percentile streamflow total Q99p m3/s 

Mean weekly minimum streamflow Q7min m3/s 

Mean monthly minimum streamflow Q30min m3/s 

Maximum consecutive low flow days (days with flows less than or equal 
to 10th percentile streamflow) 

LFD days 

Note MCM denotes million cubic meter (106 m3)

3.2 Trends in Streamflow Indices 

The trends in streamflow indices (listed in Table 2) are evaluated using non-
parametric statistical tests. The MMK test evaluates the null hypothesis that there 
is no trend in the time series against the alternate hypothesis of the presence of 
an increasing or decreasing trend in the time series at a 5% significance level. The 
Spearman’s rho test establishes the statistical significance of the degree of associa-
tion of hydrologic variables with time. The results of trend detection in streamflow
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Fig. 3 Change point detection in total annual runoff for a M. H. Halli, b Biligundulu, and c 
Kodumudi stations
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indices using both the non-parametric tests are shown in Table 3. The spatial vari-
ability of nature of trend (i.e., increasing, decreasing or no trend), derived from the 
MMK test, for all the streamflow indices are shown on the basin map with the help 
of the spatial analyst tool in ArcGIS and shown in Fig. 4. For the spatial analysis, the 
shapefile of the Cauvery basin was downloaded from HydroSHEDS (https://www. 
hydrosheds.org/).

From Fig. 4 and Table 3, twelve out of fourteen stations have shown decreasing 
trend in QTOT, while increasing trends are noticed at the remaining two stations (i.e., 
K. M. Vadi and T. K. Halli). Also, four stations have shown significant decreasing 
trends: Biligundulu, Kodumudi, M. H. Halli, and Savandapur. Thus, a decrease in 
freshwater availability in the basin is reported, which could further exacerbate the 
water-scarce conditions. The extreme streamflows represented by Qx1day, Qx5day, 
Q95p, and Q99p have also shown decreasing trend across most stations, while an 
increasing trend is noted only at a couple of stations (i.e., Nellithurai and T. K. 
Halli (except Qx1day and Q99p)) (see Table 3; Fig.  4). Significant decreasing trends 
in peak flows are observed at Biligundulu and Savandapur (Qx1day, Qx5day, and 
Q95p). Thus, the peak or extreme flows in the basin are found to decrease over time 
which indicates reduction in the magnitude and occurrence of floods in the basin. 

The magnitude of short-term and medium-term low flows, represented by Q7min 
and Q30min, have shown decreasing trend at eleven out of fourteen stations, while 
two (Musiri and Nellithurai) and three (Kodumudi, Musiri, and Nellithurai) stations 
have shown an increasing trend for Q7min and Q30min, respectively (see Fig. 4; Table 
3). The low flow days have shown increasing trends at twelve stations, out of which six 
stations, namely, Biligundulu, M. H. Halli, Nallamaranpatty, T. Narasipur, T. K. Halli, 
and Urachikottai, have exhibited significant increasing trends. The Nellithurai station 
has shown a decreasing trend in LFD. Hence, it is evident that a considerable decrease 
in the low flows is noticed in the Cauvery basin. Overall, the water availability as 
well as the peak and low flows have shown a consistent decrease in the Cauvery 
River basin except for one or two stations. Thus, the reduction in water availability 
would imply aggravating water-scarce conditions, while the decline in low flows 
would make the river dry and reduce the groundwater contribution as well as could 
create an ecological imbalance. Therefore, strategies and mitigation measures need 
to be formulated to avert severe water scarcity conditions in the basin. 

4 Conclusions 

The present study analyzed the abrupt and gradual changes in the streamflow indices 
representing mean, peak, and low flow conditions across the Cauvery basin. The 
conclusions drawn from the foregoing study are as follows:

• A decrease in the total annual runoff is observed coherently across the entire basin, 
implying a reduction in freshwater availability and likely aggravating the water 
stress conditions.

https://www.hydrosheds.org/
https://www.hydrosheds.org/
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Fig. 4 Spatio-temporal variability of trends in streamflow indices
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• The streamflow indices representing the peak flow (viz., Qx1day, Qx5day, Q95p, 
and Q99p) have shown a declining trend across the basin, indicative of infrequent 
flood occurrences and a reduction in their magnitude as well. 

• The magnitude and frequency of low flows in the Cauvery River and its tributaries 
have also shown a persistent decrease across the basin. Such a decrease in low 
flows would impact the navigability of the river and stream ecology and reduce 
the streamflow contribution to the local groundwater table. 

• Thus, the water managers and concerned authorities should reinforce efforts to 
undertake effective water conservation and management practices to avert drought 
and water-scarce conditions in the basin in the near future. 
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Comparison of Three Trend Detection 
Methods for Hydrological Parameters 
of Wainganga Basin, India 
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Abstract Based on daily streamflow and suspended sediment load data from five 
gauging stations located on Wainganga basin, spatial and temporal variations in 
seasonal streamflow and suspended sediment load from 1969 to 2018 are investigated. 
The Mann–Kendall (MK) test, Spearman’s rank correlation and Innovative trend 
technique (ITA) are applied to detect the trend in seasonal streamflow and suspended 
sediment load. The Sen’s slope test is used to find the trend magnitude. MK test 
indicates increasing trend in streamflow at Kumhari and Rajegaon stations, whereas 
Spearman’s rank correlation test and Innovative trend techniques report decreasing 
trend for both the stations. Similarly, MK test reported increasing trend in suspended 
sediment load at Rajegaon and Satrapur stations. But, Spearman’s rank correlation 
test and Innovative trend techniques report decreasing trend for both the stations. 
Compared to MK trend test, ITA technique showed good agreement with Spearman’s 
rank correlation. 
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1 Introduction 

River systems are very important and serve as a life line to many sectors such as 
agriculture, domestic and industrial. The likelihood of the majority of the people 
are predominantly depended on the income from the agriculture sectors, especially 
for the developing countries like India. Rivers carry water as well as large quantity 
of sediment load along with it. The transportation of sediments from the land to 
the ocean is also a vital feature of global biological, geological and chemical cycle 
[8]. Several factors such as climate change and anthropogenic actions have direct 
impact on hydrological cycles which can be seen in the form of rainfall intensity and 
duration in the form of extreme rainfall which occurred within short duration of time. 
The effect of changing climate with intensified human activities is also visible on the 
streamflow and sediment transport [3, 10]. Scientists are trying to recognize the river 
system behavior toward the changing climatic and increasing human activities [9]. 
Many researchers have accessed the trends and patterns in streamflow and sediment 
yield [2, 5]. The discharge and sediment load of tributaries of Yangtze River, China, 
was analyzed and testified significant change in the hydrological parameters [13]. 
Also, significant decline in sediment load is noticed for rivers in Central Japan for the 
past decades, though streamflow did not show significant trend [21]. The tributaries 
of Ganga River also deliberate the temporal variation in sediment load and huge 
variation in suspended sediment load which is observed during the monsoon and 
non-monsoon seasons [4]. 

The hydroclimatic parameters’ trend analysis gives an understanding about the 
stationarity of hydrological cycle in a specific river basin. The gradual or abrupt 
(shift) change may affect the statistical parameters such as mean, median, variance 
[1, 12]. Many researchers have examined trend in climatic parameters (precipitation, 
temperature, evaporation), hydrological parameters (streamflow, suspended sediment 
load), environmental field (water quality) of the river basin using parametric and 
non-parametric tests [11, 15–17]. The difference between these two tests lies in the 
distribution of the dataset. The parametric tests assume the normal distribution of 
the data, and non-parametric tests are applicable for data which is distribution free. 
The Mann–Kendall [7, 14] test and Spearman’s rho test are most frequently used 
trend tests. The Mann–Kendall test does not require normality assumption, but the 
time series should be free from serial correlation. The presence of positive autocor-
relation rises the possibility that test identifies certain trend when essentially there is 
absence of trend in time series [23]. The Innovative trend analysis (ITA) technique 
presented by Sen [19, 20] is used to check the monotonic and non-monotonic trends 
in environmental, meteorological and hydrological variables, regardless of any prior 
conditions regarding distributions and serial correlation, seasonal period and time 
series size [19, 22]. 

In the current research, streamflow and sediment load for the period of 1969– 
2019 for the Wainganga River Basin is considered. The Wainganga River Basin is an 
important sub-basin of Godavari Basin, India. The temporal and spatial variation is



Comparison of Three Trend Detection Methods for Hydrological … 171

observed in streamflow and sediment load across the main stream as well as in the sub-
basins. In past studies, several applications of parametric and non-parametric tests are 
available on the Godavari as whole. But, no references are available on comparison 
of trend analysis technique of streamflow and sediment load using statistical method 
and graphical method. The aim of study is (1) to determine trend in annual streamflow 
and sediment load using three different methods and (2) comparison of ITA technique 
with MK and Spearman’s correlation method. 

2 Study Area and Data Used 

2.1 Study Area 

Wainganga basin is a largest sub-basin of Godavari basin located at the Northern part. 
The Wainganga basin lies in longitude 77° E to 82° 53' E and Latitude 20° 48' to 22° 
30' N (Fig. 1). The catchment area of the basin is 51,421 km2 which covers main parts 
of the Maharashtra (27,350 km2), Madhya Pradesh (23,109 km2) and fewer portions 
of Chhattisgarh states (962 km2). The Wainganga has three principal tributaries, 
viz., Penganga, Wainganga and Wardha. On the right bank, five tributaries, viz., 
Bawanthari, Peddavagu, Andhari, Kanhan, and Wardha connect to the Wainganga. 
And, on the left bank, five tributaries, viz., Kathani, Chulband, Garhvi, Kobragarhi 
and Bagh drain in the main channel. The maximum rainfall is received during the 
June–October, i.e., Southwest monsoon. The maximum temperature varies from 39 
to 47 °C, and in winter, the minimum temperature ranges from 7 to 13 °C. May and 
December are the hottest and coldest months, respectively.

2.2 Data Used 

Five gauging stations, namely, Kumhari, Rajegaon, Satrapur, Pauni and Ashti are 
located on the whole Wainganga basin as shown in Fig. 1. The daily data of streamflow 
and suspended sediment concentration are collected from the water and sediment 
year book published by Central Water Commission (CWC) of India. For different 
stations, data period is varied in between 1969 and 2018 (49 years), according to 
availability of records (Table 1). The suspended sediment load at a specific station is 
calculated by multiplying the water discharge (m3/s) by the sediment concentration 
of the identical day.
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Fig. 1 Index map of Wainganga basin

Table 1 Description of hydrological stations in the study area 

S. No. Hydrological 
station 

Longitude Latitude Drainage area 
(km2) 

Time series No. of years 

1 Kumhari 80° 10' 36'' 21° 53' 03'' 8070 1988–2018 30 

2 Rajegaon 80° 15' 14'' 21° 37' 32'' 5380 1990–2018 28 

3 Satrapur 79° 13' 59'' 21° 13' 00'' 11,100 1988–2018 30 

4 Pauni 79° 38' 40'' 20° 47' 45'' 35,520 1969–2005 36 

5 Ashti 79° 47' 13'' 19° 41' 12'' 50,990 1969–2015 46 

3 Methodology 

Annual time series is prepared for each station from the daily observations of 
streamflow and sediment load. Following steps were used to carry out trend analysis. 

(1) The presence of serial correlation or autocorrelation was checked using method 
suggested by Salas [18], Gucic and Trajkovik [6]. 

(2) Pre-whitening of the time series is done by method suggested by Von Storch 
[23]. 

(3) Mann–Kendall test and Spearman’s rank correlation test were used to check the 
trend in annual streamflow and sediment load. 

(4) Theil and Sen’s slope estimator test was used to find the magnitude of trend. 
(5) The percentage change in magnitude was calculated over a period of 49 years.
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(6) The Innovative tend analysis technique is applied to detect the trend in annual 
time series. 

(7) Comparison of nature of trend obtained from statistical method and graphical 
method is carried out. 

3.1 Mann–Kendall Test 

The Mann–Kendall was used to check the gradual trend in the annual time series. 
Mann was the first used test; later, the statistical distribution is determined by Kendall 
[7, 14]. Owing to simple technique, it is strong against outliers, can consider missing 
values and does not need to assume normality. For a given time series X (x1, x2 …, 
xn), the null hypothesis (Ho) shows absence of trend and alternative hypothesis (Ha) 
signifies the either gradual increasing or decreasing trend. 

The Mann–Kendall trend analysis method is given below. 
The standardized test statistics, i.e., Z is calculated as 

Z = 

⎧ 
⎨ 

⎩ 

S − 1/
√
Var S S  > 0 

0 S = 0 
S + 1/

√
Var S S  < 0 

(1) 

The positive and negative Z values specify an upward and downward trends, 
respectively. The test is carried out at 5% significance level, 

where 

S = 
n−1∑

j=1 

n∑

j=i+1 

sgn(x j  − xi  ), (2) 

sin(x j  − xi) = 

⎧ 
⎨ 

⎩ 

+1 x j  > xi  
0 if x j  = xi  
−1 x j  < xi  

, (3) 

Var(S) =
{

n (n − 1) (2n + 5) − 
n∑

i=1 

ti  (i − 1)(2i + 5)

}

/18. (4) 

3.2 Sen’s Slope Estimator 

This is the non-parametric test used to check the trend in the hydrologic time series 
and is proposed by Hirsch et al. 

The equation is given as
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β = Median

(
x j  − xi  
j − i

)

for j > i, (5) 

where β = slope in data points xi and xj, xi = values at time i, xj = values at time j. 
A positive value of β agrees an ‘increasing trend in the time series’, and the negative 
value agrees a ‘decreasing trend in the time series’. 

3.3 Innovative Trend Analysis 

A new method for finding the trend in the time series is proposed by Sen. It consists of 
1:1 (45°) as the straight line on the Cartesian coordinate system. And, the hydrological 
time series is divided into two equal sub-series, and then, both the sub-series are 
organized according to ascending order. Then, the first sub-series series is plotted as 
abscissa against the second sub-series as ordinate based on the Cartesian coordinate 
system. If the plotted points are appearing on the 1:1 (45°) line, this specifies no 
trend in the time series. And, if the data points are collected in the lower triangular 
part of 1:1 line, it signifies a negative trend, whereas if the data points are collected 
in the upper triangular part of 1:1 line, it signifies the positive trend. This method 
also permits finding the trends in low, medium and high hydrologic regimes. 

4 Results 

4.1 Preliminary Analysis 

The preliminary investigation of streamflow shows that daily mean streamflow varies 
from 161 m3/s at Satrapur station to 1802 m3/s at Ashti station, and the standard devi-
ation varies from 457 m3/s to 2917 m3/s at Satrapur and Ashti stations, respectively 
(Table 2) The minimum values of streamflow are observed 0 m3/s at Kumhari, Raje-
gaon and Ashti, whereas at Satrapur and Pauni stations, the minimum values of 
streamflow are 0.137 m3/s and 0.115 m3/s, respectively. And, the maximum values 
of streamflow vary from 9682 to 28,200 m3/s. The primary analysis of sediment load 
shows that daily mean sediment load varies from 12,037 to 104,407 t/d (Table 3). 
And, the standard deviation varies from 58,624 to 370,398 t/d. At all five gauging 
stations, the minimum value of daily sediment load is zero, whereas maximum value 
of sediment load varies from 1,326,865 t/d at Kumhari station to 12,034,915 t/d 
at Ashti station. Preliminary analysis concluded that large variation is observed in 
streamflow and sediment load of Wainganga basin.
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Table 2 Statistics of streamflow 

Station No. of 
observations 

Minimum 
(m3/s) 

Maximum 
(m3/s) 

Mean (m3/s) St. deviation 
(m3/s) 

Kumhari 3782 0 16,747 270 638 

Rajegaon 3533 0 9682 247 590 

Satrapur 3783 0.137 14,161 161 457 

Pauni 4514 0.115 27,124 1012 1792 

Ashti 5978 0 28,200 1802 2917 

Table 3 Statistics of sediment load 

Station No. of 
observations 

Minimum (t/d) Maximum (t/d) Mean (t/d) St. deviation (t/d) 

Kumhari 3782 0 1,326,865 12,037 58,624 

Rajegaon 3533 0 2,686,963 18,757 106,401 

Satrapur 3783 0 2,265,861 14,944 80,722 

Pauni 4514 0 8,564,227 104,407 370,398 

Ashti 5978 0 12,034,915 102,312 363,495 

4.2 Trend Analysis Using Statistical Methods 

The trend analysis of annual mean streamflow and sediment load is carried out by 
using Mann–Kendall test and Spearman’s rank correlation test. And, the magnitude 
of the trend is estimated by using Sen’s slope method. The MK test is carried out 
at 5% significance level. Prior to the use of MK test, the time series is checked 
for autocorrelation by using method stated in methodology. The effect of positive 
correlation is removed by pre-whitening of the time series. The MK test statistics 
of annual streamflow are summarized in Table 4. The Kumhari, Satrapur, Pauni and 
Ashti stations show significant decreasing trend in the streamflow with Zmk values 
as − 3.91, − 5.84, − 2.86 and − -0.97, respectively, whereas the Rajegaon station 
detects increasing trend in annual streamflow with Zmk value 0.45. The Sen’s slope 
results are in agreement with the MK trend test. 

Table 4 Mann–Kendall test results of streamflow 

Station Kendall’s tau S Var (S) P-value 
(two-tailed) 

Zmk Sen’s slope 
(m3/s) 

Kumhari − 0.050 − 359,311 8,438,792,865 < 0.0001 − 3.91 − 0.004 
Rajegaon 0.008 51,338 12,861,636,767 0.651 0.45 0.000 

Satrapur − 0.066 − 468,328 6,439,322,839 < 0.0001 − 5.84 − 0.005 
Pauni − 0.062 − 632,110 48,772,733,358 0.004 − 2.86 − 0.031 
Ashti − 0.008 − 134,641 19,098,736,522 0.330 − 0.97 − 0.001
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The variation of annual streamflow at five gauging stations is shown in Fig. 2. 
The linear trend line is plotted to show the decreasing or increasing trend. Ashti, 
Kumhari, Rajegaon, Satrapur and Pauni stations show decreasing trend in annual 
steam flow. 

The MK test statistics of annual sediment load are summarized in Table 5. The  
Kumhari, Satrapur, Pauni and Ashti stations show decreasing trend in the sediment 
load with Zmk values as − 3.76, − 7.69, − 2.79 and − 2.38, respectively, whereas 
the Rajegaon station detects increasing trend in annual sediment load with Zmk value 
3.80. The Sen’s slope results are in agreement with the MK trend test.
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Fig. 2 Variation in annual discharge at a Ashti, b Kumhari, c Pauni, d Rajegaon, e Satrapur gauging 
stations 
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Table 5 Mann–Kendall test results of sediment load 

Station Kendall’s 
tau 

S Var (S) P-value 
(two-tailed) 

Zmk Sen’s slope 
(t/year) 

Kumhari − 0.052 − 372,644 9,808,661,923 0.000 − 3.76 − 0.015 
Rajegaon 0.033 203,181 2,860,469,901 0.000 3.80 0.004 

Satrapur − 0.082 − 587,281 5,831,992,739 < 0.0001 − 7.69 − 0.061 
Pauni − 0.082 − 838,538 90,289,985,375 0.005 − 2.79 − 0.640 
Ashti − 0.081 − 1,454,729 372,497,145,443 0.017 − 2.38 − 0.487 

The variation of annual streamflow at five gauging stations is shown in Fig. 3. 
The linear trend line is plotted to show the decreasing or increasing trend. Ashti, 
Kumhari, Rajegaon, Satrapur and Pauni stations show decreasing trend in annual 
steam flow.

Spearman’s rank correlation test was also performed to find the trend in annual 
streamflow and sediment load at all five gauging stations located on Wainganga River 
Basin. The Spearman’s test statistics are summarized in Tables 6 and 7. The  test  was  
carried out at 5% significance level. Decreasing trend in streamflow is observed at 
Kumhari, Rajegaon, Satrapur, Pauni and Ashti gauging stations. The coefficient of 
correlation is obtained as − 0.14, − 0.12, − 0.29, − 0.16 and − 0.12, respectively, 
at Kumhari, Rajegaon, Satrapur, Pauni and Ashti gauging stations.

Similarly, for the annual sediment load, the Spearman’s rank correlation results 
show decreasing trend at all five gauging stations (Table 7), whereas significant 
decreasing trend is observed at Satrapur (p = 0.00003) and Ashti (p = 0.00021) 
stations. The coefficient of correlation values is obtained as − 0.19, − 0.09, − 
0.17, − 0.36 and − 0.52 at Kumhari, Rajegaon, Satrapur, Pauni and Ashti stations, 
respectively. 

4.3 Trend Analysis Using ITA Technique 

The Innovative trend analysis technique was applied on annual streamflow and sedi-
ment load of Wainganga basin. In ITA analysis, the time series was separated into 
equivalent portions as shown in Figs. 4 and 5.

The Innovative trend analysis technique was effective and potential in trend detec-
tion without considering some assumptions of length of data, serial correlation and 
distribution free. The data points were randomly appeared parallel to trend line. In the 
ITA technique, whole area of plot is categorized as low, medium and high zones, in 
which the data points may be scattered. All the plots from ‘a’ to ‘e’ (Fig. 4) represent 
non-monotonic trend in annual streamflow. Plots ‘a’ and ‘c’ showed increasing trend 
in the high magnitude region. And, plots ‘b’, ‘d’ and ‘e’ are displayed decreasing 
trend in the high magnitude region.
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Fig. 3 Variation in annual sediment load at a Ashti, b Kumhari, c Pauni, d Satrapur, e Rajegaon 
gauging stations

Table 6 Spearman’s rank correlation test results of water discharge 

Station Coefficient (rs) N T statistics DF P-value 

Kumhari − 0.14 31 0.76 30.24 0.45 

Rajegaon − 0.12 29 0.63 28.37 0.54 

Satrapur − 0.29 31 1.61 29.39 0.12 

Pauni − 0.16 26 0.79 25.21 0.44 

Ashti − 0.12 46 0.77 45.23 0.44
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Table 7 Spearman’s rank correlation test results of sediment load 

Station Coefficient (rs) N T statistics DF P-value 

Kumhari − 0.19 31 1.037 29.96 0.308 

Rajegaon − 0.09 29 0.444 28.55 0.660 

Satrapur − 0.17 31 5.146 25.85 0.00003 

Pauni − 0.36 26 1.907 24.09 0.069 

Ashti − 0.52 46 4.066 42 0.00021
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Fig. 4 Innovative trend analysis plots of annual streamflow time series at a Ashti, b Kumhari, c 
Pauni, d Rajegaon, e Satrapur gauging stations
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Fig. 5 Innovative trend analysis plots of suspended sediment load at a Ashti, b Kumhari, c 
Rajegaon, d Satrapur, e Pauni gauging stations

Similarly, ITA plots for annual sediment load at five gauging stations are displayed 
in Fig. 5a–e. Data points were randomly appeared parallel to trend line. The ITA plots 
for stations Ashti, Kumhari, Rajegaon, Pauni and Satrapur represent non-monotonic 
trend in annual sediment load. Monotonic trend is observed in the magnitude of low 
region for all the plots. All the plots from ‘a’ to ‘d’ are displayed decreasing trend 
in the high magnitude region. For the plot ‘e’ (Pauni station), the increasing trend is 
detected in the high region. Since graphical representation displays hidden sub-trends
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in time series that overcomes the assumptions of length of dataset, dependence of 
dataset and normality distribution the Innovative trend analysis technique demon-
strated good tendency in detecting trend as compared with non-parametric trend 
tests. An agreement and disagreement between the applied trend detection methods 
have been observed in the current study. On the basis of discrepancy among different 
methods, it is essential to adopt more than one technique to check the trend. In the 
current study, Mann–Kendall and Spearman’s rank correlation tests exhibited equal 
capability in trend detection in case of streamflow and sediment load at Satrapur, 
Kumhari, Pauni and Ashti stations. 

5 Conclusion 

Five stations located at different parts of Wainganga River Basin were considered to 
detect the annual streamflow and sediment load trend. Statistical methods, i.e., Mann– 
Kendall trend test, Spearman’s rank correlation tests and graphical method, i.e., Inno-
vative trend analysis technique were used for trend detection. Sen’s slope estimator 
method is applied to measure magnitude of trend. The following conclusions were 
made from the study: 

(i) Mann–Kendall trend test reported significant decreasing trend in streamflow at 
three out of five stations, namely, Kumhari, Satrapur and Pauni stations. Non-
significant increasing trend is observed at Rajegaon station, while all the five 
stations reported significant decreasing trend in sediment load. 

(ii) Spearman’s rank correlation test reported non-significant decreasing trend in 
streamflow for all the five stations. Satrapur and Ashti stations reported signif-
icant decreasing trend in sediment load. And, non-significant decreasing trend 
is observed at Kumhari, Rajegaon and Pauni stations. 

(iii) Innovative trend analysis technique reported non-monotonic trend for stream-
flow and sediment load at all the five stations. Out of five stations, three stations, 
namely, Kumhari, Rajegaon and Satrapur stations indicate decreasing trend 
in the streamflow and increasing trend at Ashti and Pauni stations, whereas 
ITA results indicates decreasing trend in sediment load at four stations (Ashti, 
Rajegaon, Satrapur and Kumhari) and increasing trend is observed at Pauni 
station. 

(iv) Both the agreement and disagreement were observed in between statistical 
and graphical trend tests. It is also observed that Mann–Kendall trend test and 
Spearman’s rank correlation test exhibited a good agreement as compared to 
Innovative trend analysis technique. It is suggested to apply more than one 
detection methods to handle the irregularity of assumption in trend analysis.
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Trend Analysis of Groundwater Levels 
in Visakhapatnam Coastal Aquifer 

V. M. Priyanka, M. Ramesh, and Y. Srinivas 

Abstract Groundwater exploitation has been increasing day by day due to the popu-
lation increase, and overexploitation advances to severe groundwater depletion. This 
paper examines the trend analysis and spatiotemporal disparity for groundwater levels 
(GWL) in three Mandals, i.e., Bheemunipatnam, Visakhapatnam rural, and Visakha-
patnam urban areas in Visakhapatnam district for the period from 2008 to 2020. 
The data of GWL in piezometric wells and open wells are used to predict the GWL 
trend present in the study area. For spatial analysis, the interpolation technique of 
inverse distance weighted is applied to develop the GWL maps. Mann–Kendall test 
and Sen’s slope estimator were considered to predict the trend present in the GWL. 
From the exploration of the analysis, it is reflected that there is an increasing trend 
in GWL in some locations in the study area. Bheemunipatnam, Venkatapuram, Siva-
jipalem, Madhuravada, Chukkavanipalem, and YSR park are the significant places 
where groundwater is declining. Increasing depth trends to GWL, especially near 
the coast, can cause a decline in water quality and may lead to seawater intrusion. 

Keywords Groundwater levels · Spatio-temporal variability · Trend analysis ·
Mann–Kendall test
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1 Introduction 

Groundwater plays an important role in freshwater resources to meet domestic, agri-
cultural, and industrial water needs. For sustainable management of natural resources, 
it is essential to a statistical assessment of GWL, especially in coastal regions where 
groundwater dependence is increasing. A study on GWL trend analysis is an impor-
tant element of groundwater management. Trend analysis gives major knowledge 
about the characteristics of the groundwater direction, trend, and causes of decline 
in groundwater [1–3]. 

Mann–Kendall (MK) test is the most predominant technique for action informa-
tion to analyze the different types of temporal datasets. In trend analysis, the MK test 
is a test without distribution based on statistics [4, 5]. Many researchers have been 
applied to groundwater-related applications [6, 7]. Different authors have used the 
MK test analysis to explore the various seasonal data for different scenarios. [8]. 

This study endeavors to provide the trend analysis and behavior of the seasonal 
GWL in the Visakhapatnam coastal aquifer over the past ten years. This study is 
significant in increasing the climate change impacts and overexploitation of the 
groundwater for efficient management of the resources. 

2 Approach 

2.1 Study Area 

The study area is Visakhapatnam, which is positioned along the east coast of Andhra 
Pradesh in India at latitude 17° 451 North and longitude 83° 161 Eashe. Figure 1 
shows the study area and locations of the groundwater wells. The rapid growth of 
population, industry, and agricultural practice has increased the significant diversion 
of surface water. To meet the requirements, dependence on groundwater is increasing. 
Overexploitation of groundwater leads to scarcity, resulting in the deterioration of 
water quality. Total eight groundwater wells data in three Mandals, i.e., Bheemu-
nipatnam, Visakhapatnam rural, and Visakhapatnam urban areas in Visakhapatnam 
district, are considered for this study.

3 Data Collection 

From the State Groundwater Department and Central Groundwater Department, the 
monthly GWL data of piezometric wells and observation wells were gathered. The 
data used in this study include the depth (d) of groundwater each month, which is 
“d” in meter below the ground level from 2008 to 2020 in these three Mandals and 
locations of the wells. In this study, total of eight wells are randomly picked to cover
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Fig. 1 Study area location map

the whole study area. The 12 years dataset of eight wells was considered to assess 
the spatial and temporal trend analysis. The GWL data are organized to signify the 
pre-monsoon (PRMS) and post-monsoon (POMS) seasons. 

3.1 Spatial Variation of Groundwater Level 

In the present study, the spatial analysis is aimed to understand the changes in the 
groundwater level over space. For reasonable management of natural water resources, 
spatial analysis is one of the vital techniques. The present work is to study the spatial 
analysis of GWL, and total of 12 years, i.e., from 2008 to 2020, were considered. 
Geographical information system has been used for spatial analysis [9]. The inverse 
distance weighted (IDW) method [10, 11] is applied to develop the seasonal depth 
to groundwater level variations maps from eight wells monthly GWL data, i.e., for 
PRMS and POMS seasons.
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3.2 Mann-Kendall (MK) Test 

In this study, MK test is employed for trend analysis of the GWL in the study area. 
Many researchers widely used this MK test to analyze different time-series data 
like temperature, rainfall, and groundwater level [12, 13]. The null hypothesis H0 

describes the n-quantity of data points, and xj signifies the data points at time j and 
investigates depersonalized data, i.e., x1, x2, …  xn. Thus, MK statistic (S) specified 
[4] as follows: 

S =
∑n−1 

k=1

∑n 

j=k+1 
sgn(x j − xk) (1) 

where “n” is the dataset length, xj and xk are the consecutive series of data. 

sgn(x j − xk) = 

⎧ 
⎨ 

⎩ 

+1 i f x  j − xk > 0 
+0 i f x  j − xk = 0 
−1 i f x  j − xk < 0 

⎫ 
⎬ 

⎭ (2) 

Var(S) =
[
n(n − 1)(2n + 5) − ∑

t t(t − 1)(2t + 5)
]

18 
(3) 

where “t” is the array of any expected tie of sample points.
∑

t implies the summation 
of all the ties. Here, the trial size is n > 10, and the regular standard input “Z” value 
can be assessed by Eq. 4. 

z = 

s−1 √
Var(S) 

if S > 0 

0 if  S = 0 
s+1 √
Var(S) 

if S < 0 
(4) 

Here, the positive values of the normal standard input “Z” show an ascendant or 
rising trend, while the negative value of the normal standard input “Z” indicates a 
descendant or declining trend. 

4 Sen’s Slope Test 

This Sen’s slope test is used to deal with a balanced trend estimator, wherever the 
data are very biased [14]. In this paper, GWL fluctuations are uneven over a period of 
12 years. When the GWL trends are linear, the calculated variation of the measure-
ment slope over time was calculated by a modest non-parametric technique [15]. 
Equation (5) depicts the equation for Sen’s slope. 

Q = 
x j − xk 
j − k 

(5)
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where “Q” denotes the Sen’s slope of the data points between xj and xk . While xj 
denotes the dimension of the data in a certain time period of j, and xk indicates the 
volume of data in the time period of k. 

5 Summarizations 

5.1 Spatial Analysis of GWL 

The IDW method was applied to create depth to groundwater level spatial maps for 
two seasons. The water levels of PRMS in 2008 and 2020 vary from 1.08 to 7.39 m 
and 1.89 to 16.01 m, respectively. Similarly, the water levels of POMS in 2008 and 
2020 range from 0.12 to 4.56 m and 1.06 to 12.69 m, respectively. 

From the Fig. 2, it is observed that GWL is declining from 2008 to 2020. For 
PRMS, the maximum groundwater level depth from 2008 to 2020 is increased from 
8 m to 18, similarly for POMS 6–14 m. 

Fig. 2 Spatial variation of groundwater levels
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Table 1 Results of MK “Z” statistics and Sen’s slope “Q” 

S. No. Location of well PRMS POMS 

Z Sen’s slope 
Q 

Trend Z Sen’s 
slope Q 

Trend 

1 Bheemunipatnam 3.11 0.711 ↑ 2.01 0.499 ↑ 
2 Rajapulova − 2.75 − 0.608 ↓ − 2.50 − 0.298 ↓ 
3 Venkatapuram 2.26 0.087 ↑ 1.90 0.072 ↑ 
4 Sivajipalem 1.61 0.300 ↑ 0.23 0.100 ↑ 
5 Madhuravada 1.79 0.348 ↑ – – → 
6 Paradesipalem − 0.54 − 0.078 ↓ – – → 
7 Chukkavanipalem 1.47 0.048 ↑ 0.43 0.003 ↑ 
8 YSR park 2.75 0.688 ↑ 2.26 0.623 ↑ 

5.2 Mann–Kendall (MK) Test of Groundwater Level 

In the field of study, trends have been identified through MK test, and the results 
are presented in Table 1. The trend was detected using a 99% significance of level. 
To find the trend line slope for PRMS and POMS seasons, Sen’s slope method was 
used; PRMS values vary from − 0.608 to 0.711, and POMS varies from − 0.298 to 
0.623. 

The above results showed an increasing trend observed for PRMS in well 1, 3, 4, 
5, 7, and 8; a decrease was observed in wells 2 and 6. An increase in trend means that 
the depth to water levels is increasing, i.e., water is declining in 75% of wells and 
rising in 25% of the wells in PRMS. Similarly, for POMS, there was an increasing 
trend in well 1, 3, 4, 7, and 8, a decreasing trend in well 2, and there is no trend 
observed in well 5 and 6. Water is declining in 62.5% of wells, increasing in 12.5% 
of the wells, and no trend was identified in 37.5% of wells in POMS. 

6 Conclusions 

The groundwater trend analysis is evaluated using MK test statistics in three Mandals, 
i.e., Bheemunipatnam, Visakhapatnam rural, and Visakhapatnam urban areas in 
Visakhapatnam district for the period of 12 years, from 2008 to 2020. The ground-
water level of eight wells was employed in the study area to analyze and understand 
groundwater level fluctuations over time and space. According to the spatial interpo-
lation, it is observed that there has been a decline in groundwater depths from 2008 
to 2020. 

From the MK trend analysis, an increase in trend means that the depth to water 
levels is increasing, i.e., water is declining in 75% of wells and rising in 25% of 
the wells in PRMS. Bheemunipatnam, Venkatapuram, Sivajipalem, Madhuravada,
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Chukkavanipalem, and YSR park are the significant places where groundwater is 
declining. GWL is reducing in 62.5% of wells, increasing in 12.5% of the wells, 
and no trend was identified in 37.5% of wells in POMS. Decreasing trends of GWL, 
especially near the coast, can cause a decline in water quality and lead to seawater 
intrusion. It is mandatory to take measures to improve the GWL. 
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Spatiotemporal Analysis of Rainfall 
and Temperature Over Pennar River 
Basin, India 

G. Roshan Chand Naik and Ashwini B. Mirajkar 

Abstract The purpose of the current study is to identify the temporal trends in rain-
fall and temperature trends in Peninsular India’s Pennar Basin. Rainfall data were 
taken for a period of 1971–2020 (50 years) at 0.25º × 0.25º and temperature data 
were taken for a period of 1996–2020 (25 years) at 1º × 1º resolution, respectively, 
from IMD, Pune, and are analyzed at annual, monsoon seasonal and daily peak time 
scales. Trends in the rainfall and temperature are detected by non-parametric modi-
fied Mann–Kendall (MMK) and Spearman’s correlation ratio (SCR) tests, and their 
change in magnitude with time is reported using Sen’s slope estimator. A graphical 
method ‘Innovative Trend analysis’ is also used to obtain the nature of the pattern for 
the respective time series data at different time scales. The annual rainfall data have 
shown a significantly positive trend across most of the grids. The monsoon seasonal 
rainfall data have shown a mix of both positive and negative trends, while the daily 
peak rainfall data have shown more of a negative trend. The maximum and minimum 
temperature data in all the time scales show either negative trend or no trend. These 
trends have been confirmed by non-parametric tests and a graphical method used in 
the study. 

Keywords Non-parametric tests · Pennar Basin · Modified Mann–Kendall · Sen’s 
slope estimator test · Innovative trend analysis
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1 Introduction 

One of the elements of the hydrological cycle, precipitation typically changes in both 
time and space as a result of anthropogenic influences and global warming. This in 
turn would modify the frequency of droughts and floods as well as the distribution of 
runoff, soil moisture and groundwater reserves. According to the Intergovernmental 
Panel on Climate Change report, the Earth’s average temperature climbed by 0.6 °C 
in the twentieth century, while other climate prediction models estimate that temper-
ature changes will range from 1.4 to 5.4 °C [1, 2]. Thus, to effectively implement 
any water resources management plan and know its spatiotemporal trends, it is a 
must to study the influence of climatic variables on rainfall and temperature patterns. 
The objectives of this study include trend detection using MMK test: to know the 
magnitude of change in slope using Sen’s slope test, to know the change in trend 
of both rainfall and temperature using ITA method, to also know maximum rainfall 
and temperature values over the time period for Pennar basin. Time series analysis, 
which employs a variety of non-parametric techniques such as the modified Mann– 
Kendall test, Spearman’s correlation test and Sen’s slope estimator, is a technique for 
comprehending systematic fluctuations [3]. Under a variety of climatic situations, 
time series analysis has proven to be the most effective at identifying hydrological 
and meteorological trends. Innovative trend analysis, a graphical method developed 
by Şen, has also been used for trend detection studies. 

2 Study Area and Data Source 

2.1 Pennar River Basin 

The Pennar basin, which is in Peninsular India, spans the states of Andhra Pradesh and 
Karnataka and has a maximum length and width of 433 km and 266 km, respectively. 
Only 4.97% of the fan-shaped basin is covered by water bodies, with agricultural 
covering the majority of its 58.64% total area. The basin is regularly affected by 
famine because it is located in an area with little rainfall. The basin’s boundaries are 
13° 18'–15° 49' N latitude and 77° 1'–80° 10' E longitude. The river is 597 km long 
and has a catchment area of 55,213 km2 (Fig. 1).

2.2 Data Used 

High-resolution daily gridded rainfall dataset obtained from IMD, Pune, at 0.25° × 
0.25° frequency for period of 50 years (1971–2020) and daily gridded temperature 
data at 1° × 1° frequency for period of 25 years (1996–2020) have been analyzed at 
annual, daily and monsoon seasonal scale. The data series downloaded was complete
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Fig. 1 Gridded map showing Pennar River Basin

and homogenous; hence, no missing data estimation was required for the study area, 
i.e., Pennar River basin. 

2.3 Methodology Adopted 

2.3.1 Modified Mann–Kendall Test 

Long-term data were subjected to the rank-based non-parametric Mann–Kendall test 
in order to identify statistically significant patterns. The mathematical equations for 
calculating Mann–Kendall Statistics are as follows: 

Sp = 
n−1∑

i=1 

n∑

j=i+1 

jsgn(X j  − Xi) 

Sgn(X j j  − Xi  ) = 

⎧ 
⎨ 

⎩ 

⎧ 
⎨ 

⎩ 

+1, if (X j  − Xi  ) > 0 
0, if (X j  p  − Xi) = 0 
−1 if  (X j4 − Xi  ) < 0 

⎫ 
⎬ 

⎭ . (1) 

The mean of S is E[S] = 0, and the variance σ 2 is given by
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σ 2 =
{
n(n − 1)(2n + 5) − ∑

tp(tp  − 1)(2tp  + 5), ( p = 1 to  q) 
18 

, (2) 

Z = 

⎧ 
⎪⎨ 

⎪⎩ 

S−1 √
σ 2 , If S > 0 

0, If S = 0 
S+1 √

σ 2 , If S < 0 
(3) 

where Xj and Xi are the annual values in years’ j and i, j > I, respectively, and n is the 
number of data points ink Eq. (2). q is the numberpof tied (zero difference between 
compared values) groups, and tp is the number of data values in the pth group. 

2.3.2 Sen’s Slope Estimator 

Sen’s slope technique is a non-parametric approach that uses slope calculation to 
anticipate trend at 95% significance level. The details of the calculation of Sen’s 
slope are given by: 

S = 
x j  − xk  
j − k 

for i = l 1, 2, 3, . . .  n, (4) 

where xj and xk are the values at respective times of j and k. 
If there isponly a single data point forlthe given time period, then N = n × (n − 

1)/2, p and for multiple data points, pNj < n × (n − 1) 2, where n is the total number 
of observations. A positive value of Sen’s estimator (Q) indicates increase in trend, 
while the negative value of Q represents a downward trend of data series. 

2.3.3 Spearman’s Correlation Test 

Spearman’s correlation test is a rank-based non-parametric test used for trend anal-
ysis. The alternative hypothesis (Ha) suggests that a trend exists and that the data rise 
or decrease with I, whereas the null hypothesis (Ho) shows that there is no trend over 
time. The test statistics rsrc and standardized statistics tsrc are defined as follows: 

rSRC = 1 −
{
6
∑n 

i=1[di ]
2 

n
(
n2 − 1

)
}

, (5) 

tSRC = rsRC 
/

(n − 2) 
1 − r2sRC 

. (6) 

In these equations, di is the rank of ith observation, i is the order number, n is the 
total length of timekseries data and tSRC is the Student’s t-distribution with (n − 2) 
degree of freedom. The positive value of tSRC represents an upward trend across the
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time series data; negative value represents the downward trends at 5% significance 
level of t’s distribution table. 

2.3.4 Innovative Trend Analysis 

This method divides the hydrometeorological time series into two equal sections and 
then calculates the arithmetic averages of each segment (y1 and y2), independently. 
The trend slope (s) is calculated as shown below: 

E(s) = 
2 

n

[
E

(
y2

) − E
(
y1

)]
, (7) 

σ 2 s = 
8 

n2
[
E

(
y2 2

) − E
(
y2 y1

)]
, (8) 

ρy2 y1 = 
E

(
y2 y1

) − E
(
y2

) − E
(
y1

)

σy2 σy1 

, (9) 

σ 2 S = 
8 

n2 
σ 2 

n

(
1 − ρy2 y1

)
, (10) 

σ 2 S = 
2 
√
2 

n 
√
n 

√
(1 − ρ y2 y1

)
. (11) 

The first-order moment of the slope, n, the length of the data, the cross-correlation 
coefficient between two portions, s2, the variance of the trend slope and s, the standard 
deviation of the trend slope are all included in these equations. 

3 Results and Discussions 

3.1 Preliminary Statistical Analysis 

The annual mean value and standard deviation value of annual rainfall for Pennar 
basin area are 961 mm and 191.186, respectively, and the obtained maximum and 
minimal rainfall values are 1453 and 577 mm. For monsoon season, the mean annual 
rainfall is 455 mm, its standard deviation is 121.799, and the highest and minimal 
rainfall values are 769 and 289 mm. For daily peak rainfall, mean is 58 mm, standard 
deviation is 23.63, and its largest and smallest daily rainfall values are 118 and 
23 mm. The average temperature varies from 24 ˚C to 34 ºC every year, while the 
highest and smallest temperatures recorded are from May and January months with 
40 ºC and 19 ºC, respectively. In monsoon season, the temperature ranges from 27
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to 35 ºC, whereas the daily temperature ranges from 15 to 41 ºC over the period of 
25 years (1996–2020). 

The non-parametric tests such as MMK, Spearman’s correlation test and Sen’s 
slope estimator tests have been applied on annual rainfall and temperature, monsoon 
season rainfall and temperature, daily peak rainfall and daily peak temperature for 
a period of 50 years (1971–2020) along with Innovative trend analysis, which is a 
graphical method. 

3.2 Trends in Annual Rainfall and Temperature Time Series 

The MK statistics (p-value) for annual rainfall is 0.707 at 5% significance, which 
indicates significant upward (positive) trend as the value is above 0.5 in the trend 
detection of null hypothesis. The p-value for annual maximum temperature is 0.164, 
which indicates significant downward (negative) trend, and for annual minimum 
temperature is 0.409, which indicates significant downward trend as the p-values lies 
below 0.5 in the trend detection of null hypothesis, see Table 1. The Sen’s slope value 
is 0.75 at 95% significance which shows an increasing trend in the annual rainfall 
pattern for a period of 50 years, while the Sen’s slope value for both maximum 
and minimum annual temperatures is 0 indicating no trend in the time series data, 
see Table 1. The Spearman’s correlation test gives the correlation value as 0.037, 
indicating no trend (correlation) across the annual rainfall time scale, while annual 
maximum and minimum temperatures have shown a mild correlation with values 
0.291 and 0.206, respectively, see Table 1. The Innovative trend analysis, a graphical 
method, tells that 11 observations of annual rainfall show an increasing trend and 
five observations show a decreasing trend, while the rest eight observations show no 
trend. In case of annual maximum and annual minimum temperatures, 95% of the 
temperature values show absolutely no trend, see Figs. 2, 3 and 4. Also, the results 
indicated an upward trend in 44% (44 grids), while 40% (40 grids) showed downward 
trend and the remaining 16% (16 grids) out of all 100 grids showed no trend. The 
minimum and maximum average temperatures are found to be 22 ºC at grids 1, 2, 3 
and 35 ºC at grids 11 and 12, respectively.

3.3 Trends in Rainfall and Temperature for Monsoon Season 
Time Series 

The MK statistics (p-value) for monsoon season rainfall series is 0.169 at 5% signifi-
cance level, which indicates significant downward (negative trend) trend as the value 
lies below 0.5. The p-values in monsoon season for maximum and minimum temper-
atures are 0.928 and 0.755, respectively, where both indicate a significant upward 
trend in the trend detection, see Table 1. The Sen’s slope value for monsoon season
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Table 1 Test results of annual and monsoon time-scale series 

Annual 
rainfall 

Annual 
maximum 
temperature 

Annual 
minimum 
temperature 

Monsoon 
rainfall 

Monsoon 
season max 
temperature 

Monsoon 
season min 
temperature 

MK 
(p-value) 

0.707 0.164 0.409 0.169 0.928 0.755 

Trend Positive Negative No trend Negative Positive Positive 

Sen’s slope 
value 

0.75 0.0 0.0 1.313 0.0 0.0 

Trend Positive No trend No trend Positive No trend No trend 

Spearman’s 
correlation 

0.037 0.291 0.206 0.150 0.027 0.082 

Trend No 
correlation 
observed 

Mild 
positive 
correlation 
observed 

Mild 
positive 
correlation 
observed 

No 
correlation 
observed 

No 
correlation 
observed 

No 
correlation 
observed 

Fig. 2 ITA graph of annual 
rainfall series for a period of 
50 years (1971–2020) at 
Pennar River Basin
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rainfall series is 1.313 at 95% significance level which indicates an increasing trend, 
whereas Sen’s slope value for both maximum and minimum temperatures in monsoon 
season is 0, indicating no trend in the time series data, see Table 1. The Spearman’s 
correlation test gives the correlation value as 0.150 at 5% significance level, indi-
cating that no trend is observed for the monsoon seasonal rainfall time series; also, 
maximum and minimum temperature values in monsoon period exhibit no correla-
tion in the trend, see Table 1. The Innovative trend analysis tells that all observations 
of monsoon rainfall show an increasing trend except for the five observations which
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Fig. 3 ITA graph of annual 
maximum temperature series 
for a period of 24 years 
(1997–2020) at Pennar River 
Basin 
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Fig. 4 ITA graph of annual 
minimum temperature series 
for a period of 24 years 
(1997–2020) at Pennar River 
Basin
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show no trend. In case of monsoon seasonal maximum and minimum temperatures, 
all the temperature values show absolutely no trend, see Figs. 5, 6 and 7.

3.4 Trends in Daily Peak Rainfall and Daily Peak 
Temperature Time Series 

The MK statistics (p-value) for daily peak rainfall time series is 0.642 at 5% signifi-
cance level, which shows significant upward trend in the trend detection. The p-values 
in daily peak of maximum temperature and daily peak of minimum temperature time 
series are 0.158 and 0.941, which show downward and upward trends, respectively, 
see Table 2. The Sen’s slope value for daily peak rainfall time series is − 0.114 
at 95% significance level, which shows a significantly decreasing trend, while in 
both daily peak of maximum temperature and daily peak of minimum temperature 
time series, there is no trend observed, see Table 2. In Spearman’s correlation test
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Fig. 5 ITA graph of 
monsoon rainfall series for a 
period of 50 years 
(1971–2020) at Pennar River 
Basin 
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First half of the series (1971-1996) 

Fig. 6 Trend analysis of 
monsoon seasonal maximum 
temperature series for a 
period of 24 years 
(1997–2020) at Pennar River 
Basin 
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Fig. 7 ITA graph of 
monsoon seasonal minimum 
temperature series for a 
period of 24 years 
(1997–2020) at Pennar River 
Basin
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Table 2 Test results of daily peak time scale series 

Daily peak rainfall Daily peak of maximum 
temperature 

Daily peak of minimum 
temperature 

MK (p-value) 0.642 0.158 0.941 

Trend Positive Negative Positive 

Sen’s slope value − 0.114 0.0 0.0 

Trend Negative No trend No trend 

Spearman’s − 0.071 − 0.267 − 0.035 
Trend Negative correlation 

observed 
Negative correlation 
observed 

Negative correlation 
observed 

y = 1.2466x - 16.211 
R² = 0.9682 
P = 0.642 
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Fig. 8 Trend analysis of daily peak rainfall series for a period of 50 years (1971–2020) at Pennar 
River Basin

for daily peak rainfall, daily peak maximum temperature and daily peak minimum 
temperature, the correlation observed is negative, i.e., decreasing trend is obtained, 
see Table 2. The Innovative trend analysis tells that 13 observations of daily peak 
rainfall show a decreasing trend. Other five observations show an increasing trend, 
while the rest six observations show no trend. In case of daily peak maximum and 
minimum temperatures, all the temperature values mostly show a decreasing (nega-
tive) trend, see Figs. 8, 9 and 10. From the return period calculations, we infer that 
the lowest annual rainfall 577 mm is occurring every year. 

3.5 Conclusions 

Spatiotemporal analysis of rainfall and temperature data for a period of 50 years 
(1971–2020) and 25 years (1996–2020) in the annual, monsoon seasonal and daily 
peak time scales, respectively, revealed the following related to Pennar river basin:
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Fig. 9 Trend analysis of daily peak maximum temperature series for a period of 24 years (1997– 
2020) at Pennar River Basin 

13 13 
14 
15 16 

0 

17 

y = 1.7143x - 11.536 
R² = 0.7515 
P = 0.941 

0 
2 
4 
6 
8 

10 
12 
14 
16 
18 

0 2 4 6 8  10  12  14  16  18  

Da
ily

 p
ea

k-
Tm

in
(ºC

)-
(2

00
9-

20
20

) 

Daily peak-Tmin(ºC)-(1997-2008) 

Daily min T 
trendline 
Linear (Daily min T) 
Linear (trendline) 

Fig. 10 Trend analysis of daily peak minimum temperature series for a period of 24 years (1997– 
2020) at Pennar River Basin

• In annual time scale, the annual rainfall series data have shown a significantly 
positive trend. 

• For annual maximum and annual minimum temperature series data, a mix of 
negative trends and no trends is observed. 

• In monsoon seasonal time scale, the monsoon rainfall series data have shown a 
mix a negative and positive trend. 

• For monsoon season—maximum and minimum temperature series data, a mix of 
positive trends and no is are observed. 

• In daily peak time scale, the daily peak rainfall data series shows a persistent 
negative trend with a mix of positive trend as well. 

• For daily peak maximum and minimum temperature series data, a mix of positive 
trend and no trends is observed.
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• Annual average rainfall for a period of 50 years is 962 mm, and annual average of 
maximum temperature and annual average of minimum temperature for a period 
of 25 years are 35 and 25 ºC. 

• Monsoon seasonal average rainfall for a period of 50 years is 456 mm, and 
seasonal average of maximum temperature and minimum temperature for a period 
of 25 years is 35 and 27 ºC. 

• According to grid-wise data series, peak rainfall obtained is 1963 mm at grids 8, 
9, 10 and 11 and peak average rainfall obtained is 1083 mm at grids 9, 10, 11 and 
12. 

• The peak maximum and peak minimum temperatures are 35 ºC at grids 3, 4 and 
5 and 22 ºC at grids 1, 2 and 3, respectively. 
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Trend Analysis of Rainfall 
and Temperature in the Damoh District, 
Central India 

Amit Jain, V. L. Manekar, and J. N. Patel 

Abstract Trend detection of hydroclimatic variables has a significant impact in the 
context of climate change. Rainfall and temperature are the major factors that affect 
the entire hydrological cycle. This study has been carried out to find the trend of 
rainfall and temperature in the Damoh District of Madhya Pradesh. Trend analysis 
is carried out in this study from 1984 to 2012 for monthly, seasonal, and yearly time 
series. Mann–Kendall and Sen’s slope tests were carried out to find the trend of both 
rainfall and temperature over the study area. There is falling trend in Pre-Monsoon 
rainfall (Z = −  0.26 and S = −  0.104) and Monsoon rainfall (Z = −  0.61 and 
S = −  5.404) and slightly rising trend in Post-Monsoon rainfall (Z = 0.04 and S 
= 0.000). There is a significant falling trend in the annual rainfall (Z = −  1.36 
and S = −  12.124). There is a steep fall in the trend of annual rainfall after 1994. 
All three seasons show the falling trend for seasonal temperature: Pre-Monsoon 
temperature (Z = −  0.18 and S = −  0.007), Monsoon temperature (Z = −  1.44 
and S = −  0.028), and Post-Monsoon temperature (Z = −  0.81 and S = −  0.018). 
The results of this study indicate that there is a significant impact of temperature on 
rainfall. 

Keywords Trend analysis · Rainfall · Temperature · Mann–Kendall test · Sen’s 
slope
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1 Introduction 

Any future planning and development have the effect of its water resources on it 
including drainage system, watershed management, and flood mitigation [9]. The 
precipitation in any area is a vital factor for ascertaining the accessibility of water 
to satisfy the different requirements mainly domestic, agriculture, and industrial. 
The convenient accessibility of water impacts the irrigation system and hydropower 
generation. This study is an attempt toward gaining knowledge and building a deep 
understanding of the variation and trend in rainfall and temperature in the study area 
on a monthly, seasonal, and yearly basis. All the activities in the hydrological cycle 
are affected by temperature. Any temperature variation will result in changes in the 
hydrological cycle. 

Numerous methods are available for identifying hydrometeorological time series. 
After analyzing various studies, it can be concluded that the non-parametric methods 
are normally used in trend analysis of hydrometeorological variables [6]. Non-
parametric tests do not assume about the parameters of the population and hence 
do not use the parameters of the distribution [3]. One major advantage of using 
non-parametric methods is that they did not assume that the data are following any 
particular distribution. 

The main object of this work is to get familiar with the recent trend of different 
metrological factors and to get familiar with different methods to analyze these trends. 
With the help of this study, the trend of runoff for the study can also be found out 
and change in the metrological parameters of the study area and their impact on the 
hydrological cycle can be find out. 

2 Study Area and Data Source 

2.1 Damoh District 

Damoh is a district of the state of Madhya Pradesh situated in Central India. The city 
of Damoh is a district headquarter. The district is the part of Sagar Division. Damoh 
is located at 23.080° N–24.280° N and 79  ̊ E–79.52° E, with an average elevation of 
595 m (1952 ft). The total population of Damoh District is 1,264,219; out of this, rural 
population is 1,013,668 and urban population is 250,551. The district of Damoh has 
an area of 7306 km2. The Tropic of Cancer passes through the southern part of the 
study area. The topography of Damoh District is of very undulating type with low-
rising hills scattered all around. Damoh District is located in the southeastern part 
of the huge Vindhya plateau. This plateau is irregularly spread in the district and 
divided between sonar valley and forms northeastern chain of mountain. Average 
rainfall in this area is 117 cm. Due to hilly terrain, major part of rainfall is converted 
into runoff and drains off into the streams. There is no perineal river or any major 
surface water reservoir in this area (Fig. 1).



Trend Analysis of Rainfall and Temperature in the Damoh District, … 209

Fig. 1 Index map of the study area 

2.2 Data Used 

Rainfall data of rain gauge stations for monthly rainfall were collected from the 
land record section of the Collectorate Office of Damoh District for the duration of 
1984–2012. The data for temperature are downloaded from the website https://power. 
larc.nasa.gov/data-access-viewer for the duration of 1984–2012. All the data were 
checked for consistency in data, and pre-whitening of data was performed wherever 
it is necessary. 

3 Methodology 

All the data used in this study are checked for autocorrelation first, and pre-whitening 
of data is performed. For trend analysis of rainfall and temperature, Mann–Kendall 
and Sen’s slope methods are being used in this study. 

3.1 Mann–Kendall (MK) Test 

For analyzing patterns, the non-parametric Mann–Kendall test is used [2, 7]. The 
Mann–Kendall test is used to identify statistically significant trends in variables 
such as streamflow, temperature, and precipitation [11, 10]. Recognizing mono-
tonic (linear/nonlinear) trends in hydroclimatological time series has generally been

https://power.larc.nasa.gov/data-access-viewer
https://power.larc.nasa.gov/data-access-viewer
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done using the non-parametric position-based Mann–Kendall technique. This test 
compares an elective hypothesis with a significant increasing or decreasing trend 
versus an invalid theory with no pattern. The evaluating parameter (S) is  

S = 
n−1∑

i=1 

n∑

j=i+1 

sgn
(
x j − xi

)
. 

Here, xi and xj are the sequent data values, n is the number of the data set, and 

sgn(t) = 

⎧ 
⎨ 

⎩ 

1, for t > 0 
0, for t = 0 

−1, for t < 0 
, 

S denotes the trend’s direction in this instance. A positive sign indicates a posi-
tive trend, whereas a negative sign indicates a negative trend. According to Mann– 
Kendall’s recommendations, the test statistic S is approximately normally distributed 
with the following mean and variance when n ≥ 8E(S) = 0, 

Var(S) = 
n(n − 1)(2n + 5) − ∑m 

i=1 ti (ti − 1)(2ti + 5) 
18 

. 

The standardized test statistics Z is calculated as follows: 

ZMK  = 

⎧ 
⎪⎨ 

⎪⎩ 

S−1 √
Var(S) 

, for S > 0 

0, for S = 0 
S+1 √
Var(S) 

, for S < 0 

where ti is the size of the ith couple group and m is the total number of couple 
groups. Similar to how ZMK follows the normal distribution, a positive ZMK shows 
an upward trend during the time, and a negative ZMK shows a downward trend. At 
the ZMK Z/2 level of significance, the data are deemed to have a significant trend. 
The Mann–Kendall test compares an alternate hypothesis with a trend in the data 
against the null hypothesis, which has no trend, in the data. When there are more 
than ten observations, the aforementioned formula can be applied. 

3.2 Sen’s Slope Test 

QSen from the non-parametric Sen’s slope (SS) approach stated both the direction 
and magnitude of trend in the time series, just like the parametric linear regression 
technique. The following equation can be used to determine the slope’s magnitude:
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Qsen = Median

[
Yi − Y j 

(i − j )

]
for all j < i, 

where the values at time points I and j, respectively, are Yi and Yj. The total number 
of slope estimates will be (n(n − 1))/2 if there are n total data points in the series. The 
average of all the slope estimates is the test statistic QSen. The test result’s positive 
indication denotes an upward trend, and vice versa. 

4 Result and Analysis 

For sessional analysis, year is divided into three sessions as follows: 

(I) Pre-Monsoon (February–May), 
(II) Monsoon (June–Sep), 
(III) Post-Monsoon (October–January). 

4.1 Trend Analysis of Rainfall 

Preliminary data examination has been performed to find out the mean and standard 
deviation of rainfall for the time period of 1984–2012. Yearly rainfall in the study 
area ranges between 1146.19 mm (2007) and 2589.07 mm (1994). The test results 
of Mann–Kendall and Sen’s slope are shown in Table 1.

The results shown in Table 1 indicated a rising trend in the month of April, May, 
September, and November with a maximum Z = +  1.24 in the month of September, 
while there is a falling trend in the remaining months with a maximum Z = −  2.27 
in the month of August. There is a falling trend in annual rainfall with Z = −  1.36. 
In the seasonal analysis, there is a falling trend in Pre-Monsoon (Z = −  0.26) and 
Monsoon (Z = −  0.61), while a rising trend in Post-Monsoon (Z = +  0.04) (Figs. 2, 
3, 4 and 5).

4.2 Trend Analysis of Temperature 

Preliminary data examination has been performed to find out the mean and standard 
deviation of temperature for the time period of 1984–2012. The average monthly 
temperature in the study area ranges between 21.22 ˚C (1997) and 45.06 ˚C (1988). 
The test results of Mann–Kendall and Sen’s slope are shown in Table 2.

The results shown in Table 2 indicated a rising trend in the month of February 
and October with a maximum Z = +  0.005 in the month of October, while there is a 
falling trend in the remaining months with a maximum Z = −  0.048 in the month of 
June. There is a falling trend in average annual temperature with Z = −  0.014. In the
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Table 1 Results of trend analysis of rainfall using MK test and Sen’s slope 

Time series Kendall’s tau p-value Z Sen’s slope 

January − 0.026 0.860 − 0.15 0.000 

February − 0.178 0.210 − 1.23 0.000 

March − 0.060 0.685 − 0.38 0.000 

April 0.026 0.857 0.16 0.000 

May 0.006 0.967 0.02 0.000 

June − 0.058 0.664 − 0.41 − 1.148 
July − 0.053 0.693 − 0.38 − 1.844 
August − 0.307 0.022 − 2.27 − 8.902 
September 0.169 0.206 1.24 3.240 

October − 0.116 0.415 − 0.79 0.000 

November 0.132 0.396 0.82 0.000 

December − 0.097 0.518 − 0.62 0.000 

Annual rainfall − 0.185 0.167 − 1.36 − 12.124 
Pre-monsoon − 0.037 0.782 − 0.26 − 0.104 
Monsoon − 0.085 0.527 − 0.61 − 5.404 
Post-monsoon 0.008 0.953 0.04 0.000

Fig. 2 Variation in annual 
rainfall 
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Fig. 4 Variation in rainfall 
for monsoon season 
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Fig. 5 Variation in rainfall 
for post-monsoon season
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Table 2 Results of trend analysis of temperature using MK test and Sen’s slope 

Time series Kendall’s tau p-value Z Sen’s slope 

January − 0.074 0.574 − 0.54 − 0.020 
February 0.025 0.851 0.17 0.003 

March − 0.005 0.970 − 0.02 − 0.001 
April − 0.138 0.294 − 1.03 − 0.019 
May − 0.197 0.133 − 1.48 − 0.041 
June − 0.153 0.245 − 1.14 − 0.048 
July − 0.187 0.154 − 1.41 − 0.045 
August − 0.015 0.910 − 0.09 − 0.002 
September − 0.069 0.599 − 0.51 − 0.007 
October 0.025 0.851 0.17 0.005 

November − 0.074 0.574 − 0.54 − 0.019 
December − 0.054 0.680 − 0.39 − 0.011 
Annual temperature − 0.163 0.216 − 1.22 − 0.014 
Pre-monsoon temperature − 0.026 0.843 − 0.18 − 0.007 
Monsoon temperature − 0.192 0.143 − 1.44 − 0.028 
Post-monsoon temperature − 0.111 0.407 − 0.81 − 0.018
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Fig. 6 Variation in annual 
temperature 
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Fig. 7 Variation in 
temperature for pre-monsoon 
season 
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Fig. 8 Variation in 
temperature for monsoon 
season 
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seasonal analysis, there is falling trend in Pre-Monsoon (Z = −  0.007), Monsoon (Z 
= −  0.028), and Post-Monsoon (Z = −  0.018) (Figs. 6, 7, 8 and 9). 

5 Discussion 

The study area is unique in nature with an average elevation of 595 m and is of 
very undulating type with low-rising hills scattered all around. The study area is 
located in the southeastern part of the huge Vindhya plateau. The Tropic of Cancer
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Fig. 9 Variation in 
temperature for 
post-monsoon season
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passes through the southern part of the study area. The top surface of the study area 
mainly consists of sandstone, gravel, and yellow soil. There is significant variation 
in the data of each month of each year for both rainfall and temperature. The average 
monthly temperature varies from 21.22 ˚C (December 1997) to 45 ˚C (May 1988). 
The average annual rainfall for the time period of 1984–2012 is 1688.74 mm. 

There is a significant falling trend in annual rainfall by the Mann–Kendall test 
(Z = −  1.36) and Sen’s slope test (S = −  12.124). Annual rainfall varies from 
553.82 mm (2012) to 2579.01 mm (1994) with a mean of 1688.74 mm. There is a 
steep fall in the trend of annual rainfall after 1994. The mean annual rainfall from 
1984 to 1994 is 1847.55 mm (> 1688.74 mm), while the mean annual rainfall for the 
time duration of 1994–2012 is 1652.54 mm (< 1688.74 mm). 

There is also a falling trend in Pre-Monsoon and Monsoon rainfalls, while a very 
slightly rising trend in Post-Monsoon rainfall. For Pre-Monsoon season, Mann– 
Kendall (Z) = −  0.26 and Sen’s slope (S) = −  0.104. For Monsoon season, Mann– 
Kendall (Z) = − -0.61 and Sen’s slope (S) = −  5.404. For Post-Monsoon season, 
Mann–Kendall (Z) = 0.04 and Sen’s slope (S) = 0.000. Pre-Monsoon rainfall varies 
from 0 mm in 1997, 1998, 2000, and 2001 to 133 mm in 1985. Monsoon rainfall 
varies from 745.20 mm in 2009 to 2016.40 mm in 1994. Post-Monsoon rainfall varies 
from 0 mm in 1992, 1999, 2000, and 2010 to 277.20 mm in 1997. There is also a 
steeper change in the seasonal rainfall trend after 1994. Pre-Monsoon and Monsoon 
rainfalls show more steeper falling trend from 1994 to 2012 than 1984 to 1994, while 
there is a steeper rising trend in Post-Monsoon rainfall from 1994 to 2012 than 1984 
to 1994. 

Monthly rainfall trend for monsoon season is negative for June (Z = −  0.41 and 
S = −  1.148), July (Z = −  0.38 and S = −  1.844,) and August (Z = −  2.27 and S 
= −  8.902), while positive trend for month of September (Z = 1.24 and S = 3.240). 
Also, there is positive trend for Post-Monsoon rainfall. 

There is a falling trend in annual temperature by the Mann–Kendall test 
(Z = −  1.22) and Sen’s slope test (S = −  0.014). Annual temperature varies from 
31.17 ˚C (1997) to 33.91 ˚C (1988) with a mean of 32.65 ˚C. 

There is also a falling trend in seasonal temperature for all three seasons (Pre-
Monsoon, Monsoon, and Post-Monsoon). For Pre-Monsoon season, temperature 
varies from 36.18 ˚C (1997) to 38.97 ˚C (1988) with Mann–Kendall (Z) = −  0.18
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and Sen’s slope (S) = −  0.007. For Monsoon season, temperature varies from 30.8 
˚C (2008) to 34.82 ˚C (1987) with Mann–Kendall (Z) = −  1.44 and Sen’s slope (S) 
= −  0.028. For Post-Monsoon season, temperature varies from 21.19 ˚C (2012) to 
31.03 ˚C (1989) with Mann–Kendall (Z) = −  0.81 and Sen’s slope (S) = −  0.018. 

There is also falling trend for average monthly temperature of all months except 
February (Z = 0.17 and S = 0.007) and October (Z = 0.17 and S = 0.005). Average 
monthly temperature varies from 21.19 ˚C in December 2012 to 45.06 ˚C in May 
1988 with a mean monthly temperature of 32.65 ˚C for the duration of 1984–2012. 

From this study, we can conclude that there is a falling trend in rainfall and 
temperature. This falling trend is increasing more rapidly for rainfall, especially after 
1994. Rainfall is increasing in the last month of the Monsoon season (September) 
and Post-Monsoon season. 

6 Conclusions 

The following conclusions are derived from the foregoing study: 

I. Both the test results show that overall, there is a falling trend in rainfall and 
temperature on monthly, seasonal, and yearly time series. 

II. In the case of rainfall, this falling trend is increasing more rapidly, especially 
after 1994. 

III. Rainfall is increasing in the last month of the Monsoon season (September) and 
Post-Monsoon season. 
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A Trend Analysis of Rainfall 
and Temperature Pattern Using 
Non-parametric Tests of a Bharuch 
District, Gujarat, India 

K. A. Jariwala and P. Agnihotri 

Abstract Rapid urbanization is a factor in climate change, which has negative effects 
on the environment. Change must occur as much as feasible in order to lessen the 
effects. Understanding the climatic conditions over years, if not decades, is necessary 
to analyze the shift. The temperature and rainfall patterns for a certain site are the most 
frequently researched climate change factors; however, it differs from place to place. 
As a result, it is essential to understand the spatiotemporal dynamics of meteorolog-
ical variables in the context of a changing climate in order to identify effective adap-
tation strategies, particularly in nations where agriculture dominates the economy. 
As a result, this study looks at both long-term trends and short-term fluctuations in 
rainfall and temperature in the Gujarat city of Bharuch. Researchers examined data 
on precipitation and temperature from 1981 to 2020. The difficulties were looked 
at and analyzed using statistical trend analysis techniques like the Mann–Kendall 
test and Sen’s slope estimator. The annual maximum and minimum temperatures 
have showed a growing trend, whereas the monsoon’s maximum temperature has 
shown a falling trend, according to a thorough analysis of the statistics over the past 
39 years. Throughout the monsoon season, rainfall is gradually increasing (Sen’s 
slope = 0.76). The lowest temperature trend was modestly warming or growing over 
the study period, while the maximum temperature trend was declining (Sen’s slope 
= −  0.13). The lowest temperature trend analysis result, however, is statistically 
significant at the 95 percent level of confidence, but the highest temperature trend 
analysis result is not.
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1 Introduction 

The climate is a crucial component of the Earth’s system. Temperature, precipitation, 
air pressure, and humidity are only a few of the factors that affect the weather and 
climate. The term “climate” is frequently used to describe the weather on a specific 
day. It is, broadly speaking, the statistical evaluation of relevant features in terms 
of their mean and variability over time scales ranging from months to hundreds 
of millions of years [1]. Analyzing long-term changes in climatic variables is a 
fundamental challenge in the research of climate change detection. Several dataset 
extensions and improvements, as well as more difficult data analyses, have allowed 
for a greater understanding of past and present climate change throughout the world 
[2]. Global climate change may cause long-term rainfall patterns to change, depleting 
water supplies and increasing the danger of droughts and floods [2]. Rainfall and 
temperature are the two main physical aspects of a region’s climate that determine 
its environmental state, which has an impact on agricultural productivity [3, 4]. The 
timely availability of sufficient water supplies and a favorable environment in any 
location are requirements for the security of food, energy, and related industries. The 
amount of rainfall that an area receives impacts how much water is available to support 
a variety of needs, including those for agriculture, industry, home water supply, and 
hydroelectric power generation. Rainfall patterns and levels are among the most 
significant factors that affect agricultural production because agriculture is crucial to 
India’s economy and people’s livelihood [5]. Millions of India’s numerous citizens 
still rely on agricultural products for their livelihood despite recent technological 
improvements. For millions of people, agriculture provides their primary source of 
income, and the majority of their crops depend on seasonal rainfall. 

The temperature and rainfall, two essential climate study variables, are examined 
in depth in this article. Temperature and temperature variations have an effect on a 
number of hydrological processes, including rainfall [6]. These processes then influ-
ence temperature. Trend study of temperature, rainfall, and other climatic variables 
on various geographical scales can aid in the creation of future climate scenarios 
[2]. As a result, this study’s objective is to examine how frequently it rains and how 
hot it gets in Bharuch, one of Gujarat’s poorest districts. The seasonal trends of both 
parameters were looked at on an annual basis, and the monthly swings were gener-
ally predicted with the monsoon season (June–September) in mind. This requires an 
understanding of the local climate and rainfall patterns. Understanding the uncertain-
ties associated with rainfall and temperature patterns would help the targeted region 
manage agricultural, irrigation, and other water-related activities more effectively.



A Trend Analysis of Rainfall and Temperature Pattern Using … 221

2 Study Area and Data Source 

2.1 Bharuch District 

Bharuch is situated at 21.7° N 72.97 °E and is typically 15 m above sea level. Vadodara 
is located in the north, Narmada Vadodara is in the east, and Surat Vadodara is in the 
south. Its western border is formed by the Gulf of Khambhat. 

In Bharuch, which has a tropical savanna environment, the Arabian Sea has a 
significant role in controlling the weather. Early March through the end of June marks 
the start of the summer season. With maximum average temperatures of roughly 
40 °C, April and May are the warmest months. 

With an average rainfall of 800 mm, the monsoon season starts in late June and lasts 
until September (31 in.). During these months, the highest temperature is typically 
around 32 °C (90 °F). Up until late November, when winter officially starts, the 
temperature starts to rise again in October. December to late February is considered 
to be winter, when temperatures often hover around 23 °C (73 °F). 

2.2 Data Collection 

From 1980 to 2017, the India Meteorological Department in Pune provides monthly 
average observed station data for rainfall, maximum and lowest temperatures for the 
district of Bharuch (37 years). The missing values were imputed using the “Impu-
tation (most frequent)” approach, a statistical technique for replacing missing data 
with the most frequent values within each column. 

Trend is defined as a series’ overall movement over a lengthy period of time 
or a long-term change in the dependent variable [7]. The temporal resolution of 
rainfall and how it relates to temperature have an impact on trend. To evaluate the 
importance of temperature and rainfall patterns, statistical techniques like regression 
analysis and the coefficient of determination R2 are applied. The Mann–Kendall 
(M–K) trend test was used to identify and assess the trend, and the least squares 
approach was used to determine the slope of the regression line. To analyze the 
link, the average, standard deviation, and coefficient of variation (CV) of rainfall and 
temperatures were calculated (Fig. 1).

2.3 Mann–Kendall’s Test 

A non-parametric statistical test called the M–K test is used to analyze trends in time 
series data from climatology and hydrology. Since Mann first established the test 
in 1945, environmental time series have routinely employed it. The decision to take 
this test has two benefits. The data do not have to be evenly distributed because it is
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Fig. 1 Bharuch district index map

a non-parametric test. Due to inhomogeneous time series, the test is less sensitive to 
unexpected breakdowns. The null hypothesis H0 states that there is no trend in this 
test (the data are independent and randomly ordered). Comparing this to alternative 
hypothesis H1, which asserts that a trend exists, the M–K statistic is calculated using 
the formula shown below: 

S = 
n−1∑

k=1 

n∑

j=k+1 

sgn(x j  − xk). 

The trend test is performed on a time series Xk, which is ranked from k = 1, 2, 3, 
…, n1 and j = I + 1, i + 2, i + 3 …  n. As a reference point, each of the data points 
xj is used. 

sgn(x j  − xk) = 1 if  x j  − xk  > 0 

= 0 if  x j  − xk  = 0 
= −1 if  x j  − xk  < 0. 

This particular test was computed using the XLSTAT 2017 application. Indicating 
an upward tendency is a very high positive S number, while a very low negative value
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suggests a downward trend. In order to establish if a trend is statistically significant, 
the Z value is utilized. 

2.4 Sen’s Slope Estimator Test 

A non-parametric technique for determining the size of a time series trend is Sen’s 
estimate. Sen’s non-parametric method was used in the test to establish the true slope 
of an existing trend, such as the rate of change over time, using the XLSTAT 2017 
program. A positive Sen’s slope value denotes an upward or developing trend in the 
time series, whereas a negative value denotes a downward or declining trend. 

3 Results and Discussions 

3.1 Results 

According to a trend analysis of numerous studies, non-parametric [1] approaches are 
widely employed, with the M–K test [8] being one of the best among them and favored 
by many researchers [3]. Table 1 discusses the descriptive statistics for rainfall, such 
as mean, SD, coefficient of variation, kurtosis, and skewness. The gathered data show 
that the coefficient of variation (CV) of the monthly average rainfall ranges from 55 
to 358%. February was the month with the highest kurtosis coefficient at 29.47 and 
the highest skewness at 5.45. The research area has the maximum rain during the 
monsoon season, which lasts from June to September, as seen by the monthly rainfall 
pattern shown in Figs. 2 and 3.

Tables 2 and 3 contain the recorded temperature data as well as descriptive statis-
tics for the highest and lowest temperatures, including mean, standard deviation, and 
coefficient of variation, skewness, and kurtosis, respectively. Even while the CV for 
the highest and lowest temperatures is less than that for rainfall, the skewness and 
kurtosis values show more extreme variation. The findings from the analysis of the 
observed data for the years 1981–2020 are displayed in Figs. 4 and 5. Both of these 
numbers unequivocally demonstrate that the highest and lowest temperatures are 
greater in the months preceding monsoons and lower during monsoon seasons. The 
maximum and lowest temperature data from 1981 to 2020 were analyzed for seasonal 
changes, although these trends are not very important in terms of temperature. The 
examination of the highest and lowest temperature trends is shown in Figs. 6 and 7, 
respectively.

The M–K test is also used in trend analysis. The M–K test is a non-parametric tech-
nique for determining if a variable displays a monotonic upward or decreasing trend 
over time. The statistics (Table 1) show that there is no trend in any of the research 
areas’ seasonal rainfall patterns. Over the period 1981–2019, rainfall patterns are not
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Fig. 2 Box and whisker plot of monthly rainfall data (mm) 

Fig. 3 Trend analysis of rainfall data
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Fig. 4 Box and whisker plot of monthly maximum temperature (°C) 
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Fig. 5 Trend analysis of monthly maximum temperature (°C)

statistically significant, and the finding is not significant at the 95% confidence level. 
Averaged over all of the recorded periods, the greatest temperature trend demon-
strated a slight warming or increasing tendency (Sen’s slope = −  1.621), while 
the lowest temperature trend showed a cooling tendency (Sen’s slope = 0.1498). 
However, the lowest temperature trend analysis result, as opposed to the highest 
temperature trend analysis result, is not statistically significant at the 95% level of 
confidence.
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Fig. 6 Box and whisker plot of monthly minimum temperature (°C) 

Fig. 7 Trend analysis of monthly minimum temperature (°C)

3.2 Discussion 

Researchers and policymakers must take into account the erratic nature of meteo-
rological conditions when making decisions because rainfall has such a significant 
impact on how water is used in various locations. The earliest method for displaying 
changes in monthly rainfall was box and whisker graphs. Contrary to more exhaus-
tive representations like the histogram, box and whisker plots [9] feature a compact 
structure that enables side-by-side comparisons of different datasets [6]. These graphs 
provide an easily understandable visual representation of the statistical distribution. 
A horizontal line represents the box and whisker figure’s median, and top and bottom 
horizontal lines represent the interquartile range (shown by the box). The 25th and 
75th percentiles are shown by the horizontal lines at the bottom and top of the 
boxes, respectively. Vertical lines display outside ranges [7]. The distribution may
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be skewed if the median line is greatly deviated from the center. The length of each 
whisker, which reflects the dataset’s outer range (10th–25th percentiles and 75th– 
90th percentiles), displays the interquartile range (box), which denotes the dataset’s 
middle 50% relative dispersion. It is clear that the dataset is not normally distributed 
because the vast majority of the values is in the top whisker, or fourth quartile. 

Low (CV < 20%), moderate (20% < CV < 30%), high (CV > 30%), extremely 
high (CV > 40%), and CV > 70% are the categories used to categorize the degree of 
variability. CV > 70% indicates exceptionally high interannual variability of rainfall. 
According to the data, it was discovered that every month had a CV of at least 
30%, emphasizing the region’s substantial precipitation variability. According to the 
statistics, the amount of rainfall in the area varies greatly. 

Since the kurtosis values and the skewness value are lower in the monsoon months, 
it is evident from the kurtosis values’ analysis that the dataset is light tailed and 
exhibits a symmetric pattern (July, August, and September). In other words, the 
area under investigation experiences symmetrical patterns of rainfall throughout 
the monsoon season. The post- and pre-monsoon months, however, exhibit a high 
kurtosis value in the dataset, showing that rainfall during these months is strongly 
tailed, reflecting the occurrence of outliers or extreme values. The studied area’s rain-
fall is fundamentally uneven before and after the monsoon season. Understanding the 
behavior of surface air temperature, which can change geographically and temporally 
on local, regional, and global scales, is essential for understanding climatic variability. 
One of the most crucial variables in forecasting weather and climate is surface air 
temperature [10]. Despite the plethora of evidence for rising global temperatures, 
precise temporal trend forecasting remains difficult [8]. Similar to how air temper-
ature impacts the water cycle in the research area, a thorough investigation of the 
nature of its occurrence is necessary. The monthly maximum and lowest tempera-
tures show a falling tendency even though the study region experiences its highest 
rainfall in July, August, and September. Additionally, the temperature rises both 
before and after the monsoon season. Figure 6 displays the seasonal mean maximum 
temperature and its trend over the time period under consideration. 

4 Conclusions 

Gujarat has a long history of climatic change and unpredictability, and the Bharuch 
region is no exception. In the study locations, there are frequent climatic variations or 
shifts. Climate change exacerbates already existing social and economic problems 
in this region since communities there rely mostly on resources that are climate-
sensitive, particularly, wet agriculture. Reduced societal, economic, and personal 
losses may result from improved ability to adjust to severe future climatic unpre-
dictability. Since more than 80% of agriculture depends on rain, rainfall and temper-
ature are the two primary climatic variables in the area. The current study looked at 
weather data for the Gujarati city of Bharuch. The time series was examined using 
Sen’s slope estimator and the non-parametric M–K test, two well-known methods



A Trend Analysis of Rainfall and Temperature Pattern Using … 231

for trend analysis. The variability analysis, monthly rainfall, maximum temperature, 
and minimum temperature are all represented using box and whisker graphs. 

The plots show that the monsoonal months, from June through September, receive 
the most rainfall, despite the fact that the variation in maximum and minimum temper-
atures is roughly the same for all months. To suggest that because rainfall is the main 
factor driving agricultural growth in the studied region, its extreme occurrence during 
monsoon, as well as post- and pre-monsoon months, is crucial to growth. An under-
developed region, such as Bharuch district, is particularly vulnerable to significant 
influences of climate variability, particularly rainfall variability. 

The inquiry has shown that the maximum and lowest temperatures in the research 
region do not vary much over the course of the year, and as a result, temperature 
variations are not anticipated to have an impact on agricultural output. The parties 
involved should consider rainfall variability and general temperature variance in 
order to plan for climate change. 
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Abstract Study on extremes of climate is necessary as they impact distressingly 
on life and economy. A necessity exists to know effect of change in climate on 
temperature for a proposed city. Thus, in the present study, the climate change impacts 
on temperature are assessed for the proposed Amaravati city, Andhra Pradesh state, 
India. Trends of temperature variations during the time period, 1981–2021, are found 
by considering temperature time series as daily data from POWER LaRC NASA 
portal. Mann–Kendall [M–K] test and Sen’s slope estimator are applied to perform 
trend analysis of temperature because of climate change. Various revised versions 
of Mann–Kendall (M–K) test and R are applied to analyze trend as the temperature 
time series is significantly autocorrelated. The trend analysis shows that the result 
of climate change on minimum temperature in the considered study area is about 
1.12e − 02 °C/year with increasing trend and is about 8.38e − 03 °C/year with 
increasing trend for maximum temperature. The findings from the present study may 
aid to find temperature impacts because of climate change for any existing and/or 
proposed city for transforming as a smart city.

Disclaimer: The presentation of material and details in maps used in this chapter does not imply 
the expression of any opinion whatsoever on the part of the Publisher or Author concerning the 
legal status of any country, area or territory or of its authorities, or concerning the delimitation of its 
borders. The depiction and use of boundaries, geographic names and related data shown on maps 
and included in lists, tables, documents, and databases in this chapter are not warranted to be error 
free nor do they necessarily imply official endorsement or acceptance by the Publisher or Author. 

L. R. N. P. Rentachintala (B) 
Department of Civil Engineering, Bapatla Engineering College, GBC Road, Mahatmajipuram, 
Bapatla 522102, Andhra Pradesh, India 
e-mail: lrnagendraprasad.rentachintala@becbapatla.ac.in 

M. R. M. Gangireddy 
Department of Civil Engineering, A.U. College of Engineering (A), Andhra University, 
Visakhapatnam 530003, Andhra Pradesh, India 
e-mail: dr.mgmreddy@andhrauniversity.edu.in 

P. K. Mohapatra 
Department of Civil Engineering, Indian Institute of Technology Gandhinagar, Palaj, 
Gandhinagar 382355, Gujarat, India 
e-mail: pranabm@iitgn.ac.in 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 
P. V. Timbadiya et al. (eds.), Climate Change Impact on Water Resources, Lecture Notes 
in Civil Engineering 313, https://doi.org/10.1007/978-981-19-8524-9_19 

233

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-8524-9_19&domain=pdf
mailto:lrnagendraprasad.rentachintala@becbapatla.ac.in
mailto:dr.mgmreddy@andhrauniversity.edu.in
mailto:pranabm@iitgn.ac.in
https://doi.org/10.1007/978-981-19-8524-9_19


234 L. R. N. P. Rentachintala et al.

Keywords Climate change · Temperature · Mann–Kendall test · Sen’s slope · R 
programming 

1 Introduction 

There is a continuously increasing insight on the consequences of climate change on 
diverse parameters which can affect hydrologic cycle. Also, there is a need to deter-
mine the impacts of different parameters caused by climate change. Extreme climatic 
conditions such as heat waves and rise of global mean surface temperature are owing 
to climate change effect on well-being of community [12]. A requirement exists to 
know impact from climate change occurring to temperature variation, especially on 
urban areas with more population. 

Thus, the current study is intended to study outcomes of climate change affecting 
temperature for the study area, proposed Amaravati city, India. 

2 Climate Change Effect Evaluation Studies 

The climate change effects on spread of Himalayan pheasants were investigated 
[5]. It was observed that Himalayan pheasants shifting would occur under climate 
scenarios in the future [5]. The climate change impacts which are significant in 
urban regions and strategies of adaptation were reviewed for climate change to build 
further robust urban environments [19]. Aparicio et al. [2] assessed that the annual 
average temperatures projected showed a projected rise of 1.5–3.3 °C as climate 
change impact. Dhar and Mazumdar [7] found that parameters considered illustrate 
an increasing trend over time period under various climate change scenarios. Wang 
et al. [22] studied on hydrologic behavior of a river basin in various climate change 
and land-use scenarios and determined that the runoff reduces with increase of mean 
temperature. Fontaine et al. [8] observed that increase of CO2 in atmosphere dampens 
loss of water yield because of rise in temperature. Larbi et al. [12] found that various 
indices of temperature indicate an increasing trend. Mohammad and Goswami [15] 
assessed that temperature trend was in a decreasing trend for northwestern part cities 
and with rising trend for southeastern part cities in India. 

Yue and Pilon [25] used Monte Carlo simulation to weigh against various 
statistical tests’ power, i.e., the parametric t-test, the Mann–Kendall (M–K), 
bootstrap-based slope (BS-slope), and bootstrap-based M–K (BS-M–K) tests. 

3 Objectives of the Present Study 

The current study is determined to find climate change effects acting on temperature 
for the study area. Also, the considered study is set an objective to determine effect 
of climate change on maximum and minimum temperatures for the considered study 
area.
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4 Study Area 

Amaravati city is situated on the Krishna River bank, district Guntur. Proposed Amar-
avati city is of 217.50 km2 area and it is positioned at 16.51°N latitude and 80.52°E 
longitude (Figs. 1 and 2). 

SCALE: 1:30000 

Fig. 1 Amaravati city in detail master plan (source AP CRDA/AMRDA)
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Proposed Amaravati City 

Fig. 2 Index map 

5 Methodology 

Mann–Kendall test [10, 14] and Sen’s slope estimator [20] are being commonly 
applied for analysis of trend of a parameter due to change in climate. 

5.1 Mann–Kendall Test 

This test is for testing S statistic which is defined by 

S = 
n−1∑

i=1 

n∑

j=i+1 

sgn(x j − xi ), (1) 

where 

x1, x2 … xn are n dataset,
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xi and xj are data values at time, i and j, respectively. 

sgn
(
xj− xi

) = 

⎧ 
⎨ 

⎩ 

−1 if
(
x j − xi

)
< 0 

0 if
(
x j − xi

) = 0 
1 if

(
x j − xi

)
> 0 

⎫ 
⎬ 

⎭, (2) 

Var(S) = 
n(n − 1)(2n + 5) − 

m∑
i=1 

ti (ti − 1)(2ti + 5) 

18 
, (3) 

where, n is data points number, m is the groups tied number, and ti indicates ties 
number of extent i. 

M–K statistic standard Z is defined below: 

Z = 

⎧ 
⎪⎨ 

⎪⎩ 

S−1 √
Var(S) if S > 0 
0 if  S = 0 
S+1 √
Var(S) if S < 0 

⎫ 
⎪⎬ 

⎪⎭ 
. (4) 

If Z is positive, then trend is an upward trend, and if Z is negative, then it signifies 
a downward trend. 

Significance Level, p = 0.5 − ϕ|Z | (5) 

where, φ() specifies CDF, the cumulative distribution function of a standard normal 
variate. At 0.1 value significance level, if p ≤ 0.1, the trend is viewed as statistically 
significant [6]. 

5.2 Sen’s Slope Estimator [20] 

Method of Sen’s slope estimate is a non-parametric method to find the magnitude of 
trend as trend slope. In a time series given, xi = x1, x2 … xn, with N pairs data, the 
slope is found as 

β j = 
x j − xk 
j − k 

, ∀k ≤ j, i = 1, 2 . . .  N (6) 

Median of values N of β i gives Sen’s slope estimator, β. 

β = 

⎧ 
⎨ 

⎩ 

β N+1 
2 

if N is odd 

1 
2

[
β N 

2 
+ β N+2 

2

]
if N is even 

⎫ 
⎬ 

⎭ (7)
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5.3 Autocorrelation 

When a time series is serially correlated or significantly autocorrelated, modified 
[revised] version(s) of Mann–Kendall test for trend need to be used. 

In a time series xi = x1, x2 … xn, lag-1 autocorrelation or serial correlation 
coefficient (r1) is found as [11, 18] 

r1 = 
1 

n−1

∑n−1 
i=1 (xi − E(xi )).(xi+1 − E(xi )) 

1 
n

∑n 
i=1 (xi − E(xi ))2 

, (8) 

where, E(xi) is sample average and n is sample size. 

E(xi ) = 
1 

n 

n∑

i=1 

xi . (9) 

The probability limits of r1 on the correlogram of a series independent are [1] 

r1 =
{ −1±1.645 

√
n−2 

n−1 for the one - tailed test 
−1±1.96 

√
n−2 

n−1 for the two - tailed test.

}
(10) 

6 R Programming 

RStudio has built up as Integrated Development Environment [IDE] of R, a 
programming tool to carry statistical analysis [16, 17, 23]. 

7 Considered Data 

Temperature time series based on satellite observations [½ × ½ degree datasets] is 
considered from POWER LaRC NASA portal for trend analysis [4, 12]. Temperature 
daily data from POWR LaRC NASA portal are obtained for the period from January 
3, 1981, to June 30, 2021, for the considered study area for trend analysis. 

8 Results and Discussion 

As time series of temperature for each time period related to the considered study 
area is significantly autocorrelated, hence, revised Mann–Kendall test is to be adapted
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for analysis of trend of this change in climate study. Different versions available are 
applied for Mann–Kendall test amended version (Table 1). 

Few of the trend results are insignificant and few are significant at 95% confidence 
level for temperature, minimum temperature, and maximum temperature time series 
(Tables 2, 3 and 4).

Average Sen’s slope for temperature trend = 6.31e − 06 °C per year with 
increasing trend. Sen’s slope value remains same from both the trend tests, i.e., 
amended Mann–Kendall test with the use of the Rao and Hamed [9] and Wang and 
Yue [24] variance correction approaches. Test static, Z, and correlation coefficient 
remain same for minimum and maximum temperatures. 

Average Sen’s slope for minimum temperature = 1.12e − 02 °C per year with 
increasing trend. 

Sen’s slope obtained for the period 1981–1990 remains same as − 3.20e − 05 
°C/year for all trend tests for minimum temperature (Table 3). Sen’s slope value 
remains same for all tests of trend except bootstrapped M–K test of trend with bias-
corrected pre-whitening (optional) for simulation periods, 1991–2000, 2001–2010, 
2011–2020, and 2020–2021. Sen’s slope varies from 1.93e− 06 °C/year to− 6.33e− 
06 °C/year for minimum temperature (Table 3). Spearman’s test static varies from 
− 0.64 to 11.54 for minimum temperature (Table 3). 

Average Sen’s slope for maximum temperature = 8.38e − 03 °C per year with 
increasing trend. 

Sen’s slope value remains same for all trend tests except for bootstrapped M–K 
test of trend with bias-corrected pre-whitening (optional) for each simulation period 
for maximum temperature (Table 4). Sen’s slope value varies from − 2.66e − 05 
°C/year for the period 2001–2010 to 5.71e − 02 °C/year for the period 2020–2021 
(Table 4). Test static of Spearman’s rank correlation test varies from − 7.53 to 7.08 
for maximum temperature (Table 4). 

Figure 3 shows variations of temperature, minimum temperature, and maximum 
temperature with time as time series plots for the considered time period January 3, 
1981, to June 20, 2021, within the study area. Maximum temperature varies from 
48.25 to 21.92 °C, while minimum temperature varies from 33.83 to 10.22 °C during 
1981–2021 period (Fig. 3). Temperature varies from 39.89 to 17.56 °C during 1981– 
2021 period (Fig. 3). Figures 4 and 5 present Sen’s slope profile within various 
time periods starting from 1981–1990 to 2011–2020 of extreme temperatures from

Table 1 Significant autocorrelation check 

Temperature 
type 

Higher limit Lag-1 
autocorrelation 
coefficient 

Lesser limit Occurrence of 
significant 
autocorrelation 

Temperature 0.06 0.98 − 0.06 True 

Minimum 
temperature 

0.06 0.97 − 0.06 True 

Maximum 
temperature 

0.06 0.95 − 0.06 True 
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Table 2 Temperature-wise trend results 

Type of 
temperature 

Time period Trend test Z Sen’s slope Correlation 
coefficient 

Temperature 1981–2021 Revised M–K test 
applying the Rao 
and Hamed [9] 
correction 
approach of 
variance 

5.36e − 01 6.31e − 06 

Revised M–K test 
applying the 
Wang and Yue 
[24] correction 
approach of 
variance 

8.63e − 01 6.31e − 06 

Spearman’s test 
[of rank 
correlation] 
[Spearman [21], 
Lehman [13]] 

1.09 0.009 

Minimum 
temperature 

1981–2021 Spearman’s test − 1.19 − 0.01 

Maximum 
temperature 

1981–2021 Spearman’s test − 1.19 − 0.01

trend analysis applying numerous modified versions of Mann–Kendall test of trend 
to find change in climate effects on temperature to the proposed city. Sen’s slope of 
temperature maximum trends varies from − 5.14e − 04 to − 2.66e − 05 of 2001– 
2010 time period (Fig. 4). Sen’s slope for minimum temperature trends varies from 
1.93e − 06 of time period 2011–2020 to − 6.33e − 06 of time period 2001–2010 
(Fig. 5). The obtained trend result for minimum temperature as 1.12e − 02 °C per 
year increasing trend is in excellent agreement with earlier studies on a regional basis 
for Southern India as 1.06e − 02 °C per year rising trend for temperature [3].

9 Conclusions 

In the current study, the climate change impacts on temperature for the study area are 
assessed for the time period 1981–2021. The trend analysis results indicate that the 
temperature is assessed as having a trend at 6.31e − 06 °C per year with increasing 
trend. Also, the minimum temperature is determined to have a trend of 1.12e − 02 
°C per year with increasing trend. Further, the maximum temperature is determined 
to have a trend of 8.38e − 03 °C per year with increasing trend. The findings from 
the present study can assist for assessment of climate change impacts on temperature 
for any existing and/or proposed city for longer duration.
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Table 3 Minimum temperature trend results 

Time period Test for trend Z Sen’s slope 

1981–1990 Mann–Kendall [M–K] test of trend without 
modifications 

− 6.13e − 01 − 3.20e − 05 

Bootstrapped M–K test of trend with 
bias-corrected pre-whitening (optional) 

− 6.13e − 01 − 3.20e − 05 

Revised M–K test applying the Rao and Hamed 
[9] correction approach of variance 

− 2.69e − 01 − 3.20e − 05 

Amended M–K test with the use of the Wang and 
Yue [24] correction approach of variance 

− 4.80e − 01 − 3.20e − 05 

Spearman’s test [of rank correlation] − 0.003 
1991–2000 M–K test of trend without modifications 4.88e − 01 2.67e − 05 

Bootstrapped M–K test of trend test with 
bias-corrected pre-whitening (optional) 

4.11e − 01 5.39e − 06 

Modified M–K test applying the Rao and Hamed 
[9] correction approach of variance 

1.93e − 01 2.67e − 05 

Amended M–K test with the use of the Wang and 
Yue [24] correction approach of variance 

3.37e − 01 2.67e − 05 

Spearman’s test 0.95 

2001–2010 M–K test of trend without modifications − 1.02 − 5.49e − 05 
Bootstrapped M–K test of trend with 
bias-corrected pre-whitening (optional) 

− 4.80e − 01 − 6.33e − 06 

Amended M–K test applying the Rao and Hamed 
[9] correction approach of variance 

− 4.09e − 01 − 5.49e − 05 

Modified M–K test with the use of the Wang and 
Yue [24] correction approach of variance 

− 6.87e − 01 − 5.49e − 05 

Spearman’s test − 0.64 
2011–2020 M–K test of trend without modifications 1.74e + 00 9.07e − 05 

Bootstrapped M–K trend test with bias-corrected 
pre-whitening (optional) 

1.45e − 01 1.93e − 06 

Revised M–K test applying the Rao and Hamed 
[9] correction approach of variance 

7.65e − 01 9.07e − 05 

Modified M–K test with the use of the Wang and 
Yue [24] correction approach of variance 

1.35e + 00 9.07e − 05 

Spearman’s test 2.23 

2020–2021 M–K test of trend without modifications 1.38e + 01 7.25e − 02 
Bootstrapped M–K trend test with bias-corrected 
pre-whitening (optional) 

5.11e + 00 7.26e − 03 

Modified M–K test applying the Rao and Hamed 
[9] correction approach of variance 

5.34e + 00 7.25e − 02 

Amended M–K test with the use of the Wang and 
Yue [24] correction approach of variance 

9.11e + 00 7.25e − 02 

Spearman’s test 11.54
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Table 4 Maximum temperature trend results 

Time period Test for trend Z Sen’s slope 

1981–1990 Mann–Kendall test of trend without 
modifications 

− 1.66e + 00 − 1.09e − 04 

Bootstrapped M–K test of trend with 
bias-corrected pre-whitening (optional) 

− 8.66e − 01 − 1.75e − 05 

Revised M–K test applying the Rao and Hamed 
[9] correction approach of variance 

− 5.45e − 01 − 1.09e − 04 

Amended M–K test with the use of the Wang and 
Yue [24] correction approach of variance 

− 9.86e − 01 − 1.09e − 04 

Spearman’s test [of rank correlation] − 1.88 
1991–2000 M–K trend test without modifications − 2.46e + 00 − 1.77e − 04 

Bootstrapped M–K test of trend with 
bias-corrected pre-whitening (optional) 

− 9.66e − 01 − 1.68e − 05 

Revised M–K test with the use of the Rao and 
Hamed [9] correction approach of variance 

− 8.02e − 01 − 1.77e − 04 

Amended M–K test applying the Wang and Yue 
[24] correction approach of variance 

− 1.49e + 00 − 1.77e − 04 

Spearman’s test − 2.29 
2001–2010 M–K Test of Trend without modifications − 7.53e + 00 − 5.14e − 04 

Bootstrapped M–K trend test with bias corrected 
pre-whitening (optional) 

− 1.40e + 00 − 2.66e − 05 

Amended M–K test applying the Rao and Hamed 
[9] correction approach of variance 

− 2.39e + 00 − 5.14e − 04 

Modified M–K test applying the Wang and Yue 
[24] correction approach of variance 

− 4.26e + 00 − 5.14e − 04 

Spearman’s test − 7.53 
2011–2020 M–K test of trend without modifications − 6.08e + 00 − 3.93e − 04 

Bootstrapped M–K trend test with bias-corrected 
pre-whitening (optional) 

− 1.40e + 00 − 2.56e − 05 

Revised M–K test applying the Rao and Hamed 
[9] correction approach of variance 

− 1.56e + 00 − 3.93e − 04 

Modified M–K test with the use of the Wang and 
Yue [24] correction approach of variance 

− 2.87e + 00 − 3.93e − 04 

Spearman’s test − 5.93 
2020–2021 M–K test of trend without modifications 7.92e + 00 5.71e − 02 

Bootstrapped M–K trend test with bias-corrected 
pre-whitening (optional) 

− 1.11e − 01 − 1.15e − 04 

Modified M–K test applying the Rao and Hamed 
[9] correction approach of variance 

1.88e + 00 5.71e − 02 

Amended Mann–Kendall test applying the Wang 
and Yue [24] correction approach of variance 

3.05e + 00 5.71e − 02 

Spearman’s test 7.08
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Analysis of Rainfall Variability 
and Drought Over Bardoli Region 

Priyank Patel, Darshan Mehta, Sahita Waikhom, and Kinjal Patel 

Abstract Both climatology and hydrology are involved in trend analysis to investi-
gate climate change scenarios and improve the efficiency of climate impact studies. 
The long-term variation in precipitation, temperature, humidity, evaporation, wind 
speed, and other meteorological factors is referred to as climatic variability for an 
area. The purpose of this study was to investigate and estimate the relevance of 
the possible trend of variables such as rainfall in the Mindhola River Basin in the 
Bardoli Taluka of Gujarat’s Surat District. The study’s objective is to look at rainfall 
variability in the Mindhola River Basin for the next 30 years, from 1990 to 2020. 
Innovative trend analysis (ITA) for rainfall variability in the Mindhola River Basin 
was used to conduct a rainfall trend analysis on a monthly, seasonal, and annual basis 
in this study. The ITA approach could discover some trends that the MK test would 
miss. This test was used to determine the magnitude and direction of a current trend 
over time. This will give an understanding about rainfall trends or changes. This 
study also includes the drought analysis of rainfall using the Standardized Precipita-
tion Index (SPI). In this study, SPI values and SPI plots are prepared in the RStudio 
software. The monthly, seasonal, and annual trends of precipitation for Bardoli region 
are in monotonic increasing trends or it is best fitted for the region. The drought study 
on the basis of rainfall suggests that at present, Bardoli region may not affected by the 
severe drought because it lies in near normal condition or moderately wet condition. 
This study helps policymakers, managers, and local authorities in taking protective 
measures for drought.
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1 Introduction 

Based on the Intergovernmental Panel on climate change, environment is mainly 
affected by the increasing population, increasing industrialization, usage of pesti-
cides and fertilizers in agricultural field, depletion of ozone layer, etc. So, the rainfall 
pattern and rainfall scenario may also be changed and affected largely. To avoid this 
thing, different studies and different measurements are required to study. For both 
climatology and hydrology, trend analysis is an essential area of research interest for 
examining climate change scenarios and improving the efficiency of current water 
resources and their influence on climate change. The long-term fluctuation in precip-
itation, temperature, humidity, evaporation, wind speed, and other meteorological 
factors is referred to as climatic variability for an area. Climate change can have 
a significant impact on hydrometeorological variables as rainfall, temperature, and 
evaporation variability. Many academics and organizations have researched trends in 
meteorological, hydrological, and climatological variables using various approaches 
[7–9, 12, 28]. 

Different parametric and non-parametric statistical methods have been used in 
many researches and studies to achieve daily, monthly, and annual trends of various 
parameters such as temperature, precipitation, dissolved oxygen, biological oxygen 
demand, and chemical oxygen demand [3, 10, 22, 23]. 

For trend detection of a precipitation variable, different methods and different 
methodologies are used in different countries. Basically, MK test, ITA method, and 
Sen’s slope method are very important techniques which are used for the trend anal-
ysis detection of precipitation. Turkes [28] used MK test for the monthly precipitation 
trend analysis in the Turkey. Partal and Kahya [18] used MK test and Sen’s slope 
test for the annual and monthly precipitation trend analysis in Nigeria. 

Sen introduced an innovative trend analysis (ITA) method in 2012–2014, which 
has been used for detecting trends in environmental, hydrological, and meteorological 
variables (e.g., Ay and Kisi [1]; Kisi [11]; Onyutha [17]; Tabari and Willems [26]). 
Martnez-Austria et al. [14] used data linear adjustment, Spearman’s test, and ITA to 
examine temperature and heat wave trends in Northwest Mexico, and all of the studies 
revealed the existence of a heating process with increasing maximum temperature. 
The Mann–Kendall test, linear regression model, and innovative trend analysis were 
also used by several researchers to investigate the change in monthly and annual river 
flows. The results were similar for all three ways. Furthermore, the study discovered 
a strong link between Mann–Kendall test markers and innovative trend analysis. The 
ITA approach was used to examine the temporal trend in seasonal and yearly rainfall 
time series data. In this study, a high-quality monthly dataset of one rain gauge with 
30 years of monitoring was used to investigate the temporal rainfall variability in the 
Mindhola River Basin. The purpose of this study was to analyze and determine the 
importance of a prospective trend of variables, such as rainfall, over the Mindhola
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River Basin in Gujarat’s Bardoli District. The study’s goal is to look into the rainfall 
variability in the Mindhola River Basin. The trend analysis for rainfall was done on 
a monthly, seasonal, and annual basis in this study, using data from 1990 to 2020. 
We employed innovative trend analysis (ITA) for rainfall variability in the Mindhola 
River Basin in this study. The ITA approach could discover some trends that the MK 
test would miss. This test was used to determine the magnitude and direction of a 
current trend over time [21]. The ITA technique allows for the detection of the impact 
of low, medium, and high values in detected trends while also overcoming several 
issues such as the time series’ independent structure, normalcy of the distribution, 
and data length. 

These changes in the climate variability may cause the changes in the flood and 
drought condition scenario. The present scenario due to uneven and non-uniform 
precipitation may cause flood and drought condition, so the analysis of this condi-
tion is required. Researchers commonly utilize the departure analysis of rainfall (D 
percent), Rainfall Anomaly Index (RAI), and Standardized Precipitation Index (SPI) 
are the well-known methodologies used for the study of drought using the rainfall 
patterns [27]. The Standardized Precipitation Index (SPI) offers various advantages 
over other indices, including its ease of use and adaptability. Positive SPI numbers 
imply a normal state to a wet state, while negative values suggest a normal state to 
a dry state. To calculate several drought parameters, SPI can be calculated across 
a wide range of time intervals and for a variety of water variables, including soil 
moisture, groundwater, and so on [25]. 

2 Study Area and Data Sources 

Bardoli is a part of the Surat District in the state of Gujarat. Bardoli is the historical 
city which is situated in the western part of the country in Gujarat State occupying 
the area of 196,024 km2. Bardoli is situated at latitudes 21.1255° N and longitudes 
73.1122° E. There is only one Mindhola River which is in the area. The Mindhola 
River’s origin is from Doswada (Songadh), and its length is about 105 km and flows 
into the Tokarva village in the Ground. The total catchment area of the Mindhola 
River is 1518 km2. Geographically, Bardoli is the urban area. The surface elevation 
of the Bardoli is about 22 m above the Mean Sea Level (MSL). Hydrologic data at 
gauging site of Mindhola River are procured by the Nasa Power Data Access. As 
the study includes only rainfall data from period of January 1, 1990, to January 1, 
2021 (30 years). Many researchers use time series (precipitation, temperature, etc.) of 
different record lengths (30, 40, 50, 75, 100, 135 years, etc.) to trend in the innovative 
trend analysis method. I analyzed it. Is it appropriate to use any length, and due to 
the unavailability of more data, only 30 years’ data are used for the research. In the 
state of Gujarat, there are 19 manual observatories, 33 automatic weather stations, 
66 automatic rain gauges, nine agro automatic weather stations, and four higher air 
observatories. The rain gauge station is located on the Mindhola River in the Bardoli 
area which is shown in Fig. 1.
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Fig. 1 Study area: rain gauge station. Source Google earth images 

3 Methodology 

3.1 Innovative Trend Analysis 

Annual and seasonal rainfall trends were studied using the ITA approach. In innova-
tive trend analysis approach, all the data are divided into two different time series, 
namely, first series and second series and then arrange into an ascending order. In 
a two-dimensional Cartesian coordinate system, the first sub-series is placed on the 
horizontal axis (x-axis) and the second sub-series is placed on the vertical axis (y-
axis). The points in the scatter plot are collected on the 1:1 line if the two sub-series 
are equal, indicating no trend. If the points are above the 1:1 line, then we can say 
that time series has an increasing trend, and if the points accumulate below the 1:1 
line, it is assumed that the time series has a falling trend. If the values of the time 
series are covered directly on the 1:1 line, then we can say that there is no trend and 
the data are best fit to the particular area. The horizontal or vertical distance from the 
1:1 line is the absolute value of the difference between a point’s y and x values. The 
magnitude of a rising or declining trend is indicated by the difference. As a result, it 
can be used to determine a trend, with average differences indicating a time series’ 
overall tendency. The average discrepancies between two time series that may have 
different magnitudes must be normalized before they can be compared. Because the 
first sub-series is used to detect change, the trend indicator is calculated by dividing
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Fig. 2 Graphical representation of innovative trend analysis. Source Zakwan and Ahmad [34] 

the average difference by the average of the first sub-series. The indicator is multi-
plied by ten to obtain the same scale as the Mann–Kendall test and linear regression 
analysis, allowing for direct comparison. The ITA indicator is then written as follows: 

D = 
1 

n 

n∑

i=1 

10(yi − xi ) 
x 

, 

where D is the trend indicator, with a positive value indicating an increasing trend 
and a negative value indicating a falling trend; n is the number of observations in each 
sub-series, and x is the first sub-series’ average. Innovative trend analysis gives the 
analysis of hydrological data in the magnitude manner whether other method cannot 
give the monotonic trend because sometimes hydrological events have different 
magnitude, so the trend may also differ due to the monotonic magnitude. So, it 
is helpful in trend analysis using the graphical manner. Figure 2 shows the graphical 
representation of the ITA. 

In this study, we apply this methodology in the RStudio software which gives 
the easy representation and speedy result. After getting the data, we are applying 
these data into the RStudio software, and then, we are applying different tasks they 
give the direct graphical representation of the daily, monthly, seasonal graphical 
representation of the different trend analysis. 

4 Drought Analysis Using Standardized Precipitation 
Index: 

The departure analysis of rainfall (D percent), Rainfall Anomaly Index (RAI), and 
Standardized Precipitation Index (SPI) approaches are among the most important and
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Table 1 SPI value 
classification 

SPI values Rainfall regime 

≥ 2.00 Extremely wet 

1.50–1.99 Very wet 

1.00–1.49 Moderately wet

-0.99–0.99 Near normal

-1.00 to − 1.49 Moderately dry

-1.50 to − 1.99 Severely dry 

≤ -2.00 Extremely dry 

Source Hayes et al. [6] 

extensively used tools for analyzing droughts based on rainfall. The Standardized 
Precipitation Index (SPI) approach was utilized to analyze the drought in this study. 
Among the different drought indices, the SPI is the most frequent meteorological 
drought index. Standardized Precipitation Index gives the long-term rainfall statistics 
to identify the drought condition in the respective area as three-month SPI, six-month 
SPI, nine-month SPI, and twelve-month SPI. Because of its statistical precision and 
intrinsic probabilistic character, the SPI approach is widely used to assess droughts 
around the world [16]. Drought is defined as a period in which the SPI value is 
constantly negative or less than (− 1) and ends when the SPI value is positive. The 
intensity of the drought is determined by the ratio of the magnitude of the drought to 
its duration, and the severity of the drought can be determined using Table 1 [6]. The 
SPI values are obtained using the RStudio software, and the drought idea is derived 
from the graphical depiction of the SPI numbers (see Table 1). SPI values can be 
obtained directly from the RStudio software, which is highly handy for obtaining 
SPI readings. Also, in RStudio, we can directly obtain the SPI values’ graphical 
representation so that it is very easy and simple method for the drought analysis. In 
RStudio software trend change SPEI index, these two are important packages which 
are widely used for the trend analysis and the graphical representation of the trend. 
SPI values are found out on the bases of the 3 months, 9 months and on the annual 
bases of 12 months. In this study, we are using the SPI 12 value for the drought 
analysis because drought is analyzed on a yearly basis of the precipitation. 

5 Results and Discussions 

5.1 Variation in the Precipitation 

5.1.1 Monthly Variation in Precipitation 

Figure 3 shows the monthly fluctuation in precipitation in the Bardoli region. June, 
July, August, and September are the months with the most precipitation. The results
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Fig. 3 Monthly variation in precipitation 

demonstrate that precipitation in the entire region is growing monotonically. The 
monthly precipitation statistics are the best fit for the Bardoli region, according to the 
trend line. The rise in light precipitation is most noticeable, whereas the decrease in 
heavy precipitation is most noticeable. As a result, the reduction in total precipitation 
is primarily due to a reduction in heavy precipitation. The rise in precipitation is due 
primarily to an increase in light and low precipitation or weak precipitation. 

5.2 Seasonal Variation in the Precipitation 

Figure 4 shows the seasonal variation in the precipitation in the Bardoli region. 
Precipitation is mainly concentrated in the monsoon period or we can say that in the 
month of the June, July, August, and September (spring). Also, the trend line shows 
that the seasonal precipitation values are best fit for the Bardoli region. According to 
the trend sometimes in the monsoon period, the precipitation concentration becomes 
very high because it is directly depending on the seasonal heavy precipitation or due 
to the flood condition in the river basin area. This trend is increasing trend or best 
fit to the seasonal precipitation values for the Bardoli region. During the monsoon 
season, the variation trend of the precipitation is similar to that of the annual trend.

5.3 Annual Variation in the Precipitation 

Figure 5 shows the annual variation in the precipitation in the Bardoli region. Precip-
itation is mainly concentrated due to the light and heavy precipitations. But, due to 
the present scenario, the heavy precipitation may decrease due to climate variability 
and increase in the light precipitation for longer time due to that in present scenario,
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Fig. 4 Seasonal variation in the precipitation

Fig. 5 Annual variation in the precipitation 

the trend is in monotonic increasing nature. The increase in regional annual precip-
itation is primarily due to an increase in light precipitation, whereas the decline in 
regional annual precipitation is primarily due to a decrease in heavy precipitation. 

5.4 Overall Trends in Precipitation 

As we know that the precipitation is directly depended on the various factors, among 
them climate is very important factor. Precipitation trend or variability is shown that 
for Bardoli region, the trend of precipitation is almost similar or fit to the annual 
average precipitation or it cannot generate the any drought conditions. Rainfall 
trend analysis is vital because it helps policymakers make decisions on agricultural 
patterns, displaying dates, road development, and providing drinking water to urban 
and rural areas. The annual fluctuation trend of total precipitation acquired using the
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Fig. 6 Drought analysis graph for SPI 12 

innovative trend analysis method is similar to that reported in prior research using 
other methodologies [30]. According to a study, the Bardoli region is not afflicted 
by severe drought in the current scenario or at this time. 

5.4.1 Drought Analysis Using SPI Values 

Figure 6 shows that in the earlier stage, the drought condition occurs in the Bardoli 
region after that the conditions may be improved and it shows that there is no drought 
condition in the present scenario. From result, we can say that up to 1995, the moder-
ately dry or severely dry conditions occur. After that, from 1996 to 1998, area is 
affected by the normal regime condition; after 1998, condition may change at some 
extent; and up to year 2000, region is stay in normal condition. After that, up to 
year 2004, the condition of drought is moderate. After 2005, the conditions of region 
are moderately wet up to year 2013. After 2013, the region may be affected by the 
normal drought condition up to year 2018. After year 2018, the graph shows that the 
condition may improve and region may lie in the moderately dry condition. Out of 
30 drought events, four years are recorded with the severely dry years, five years are 
recorded with moderately dry years, seven years are recorded near normal dry years, 
and remaining fourteen years are recorded as the moderately wet years, so there is 
no possibility of the drought (refer table of SPI value classification). 

6 Conclusions 

• In this study, we are carried out the analysis of the precipitation trend of Bardoli 
region precipitation between the year 1990 and 2020 (30 years) and analyze the 
drought condition using Standardized Precipitation Index of the twelve months
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or annual data based on the precipitation values which shows the following 
conclusion. 

• From the study, overall trends of the station are in monotonic increasing nature 
or somehow it is best fit for the Bardoli region conditions. 

• The trend of the annual precipitation in the Bardoli region may also in the 
monotonic increasing nature. The seasonal trends of precipitation show that the 
contributions of the different types of extreme precipitation vary by season. 

• The monthly trends of precipitation show that the contribution of the regional 
and weak precipitation is responsible for the increasing or decreasing trend of the 
precipitation. As per the study and analysis for the Bardoli region, the monthly 
trend of precipitation is increasing, and after the monsoon period, it shows the 
best fit to the trend line. 

• Results of Standardized Precipitation Index show that at present time, Bardoli 
region lies in the normal conditions or in the moderately wet condition. The 
study’s findings provide a thorough understanding of precipitation changes in the 
Bardoli region, which will aid policymakers and managers in managing water 
resources in the face of changing climatic circumstances. 

• Water resources’ managers should implement methods to adapt to different loca-
tions in the context of global warming because of the regional variability in precip-
itation trends. The result gained from this work may be very valuable for the 
management of water resources in designing the proposed mitigation strategies 
to minimize the consequences of drought. 
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Trend Analysis of Drought Events Over 
the Sirohi District in Western Rajasthan 
of India 

Darshan J. Mehta and S. M. Yadav 

Abstract The present study aims to assess the drought trends, seasonal and annual 
rainfall patterns at multiple time scales using Mann–Kendall and Sen’s slope esti-
mator over the Sirohi district of western Rajasthan, India, as this district is experi-
encing severe drought conditions due to a lack of annual rainfall and high variability. 
The Standardized Precipitation Index (SPI) is used to assess the drought pattern in 
the Sirohi district on monthly, seasonal, and annual time scales. The monthly time 
scales of SPI-3, SPI-6, SPI-9, and SPI-12, as well as the seasonal time scales of 
winter, pre-monsoon, southwest monsoon, and post-monsoon, are used to estimate 
drought using SPI for 102 years (1901–2002). The long-term series of monthly rain-
fall data from 33 stations from 1901 to 2021 (120 years) is used for this purpose. 
The spatial variation of positive and negative trends, as well as the findings of the 
trend analysis at different time scales, has been worked out. The drought pattern will 
be shown by analyzing SPI time series trends at each station in the study region. 
Drought trend analysis based on the SPI is proven to be more sensitive to different 
time scales. The findings show that rainfall in the study region is decreasing insignif-
icantly throughout the winter, pre-monsoon, and s-w monsoon seasons. In addition, 
the result shows that all the time scales are capable of detecting rainfall regimes in 
the study region. This sort of drought regional trend analysis might aid the Sirohi 
district administration’s decision-makers in planning and managing existing water
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resources to fulfill the demands of agricultural and drinking water for the people in 
the study area. 

Keywords Drought · Mann–Kendall test · Rainfall · Rajasthan · Sen’s slope 
estimator 

Rainfall is an important component of the hydrological cycle, and its variability 
on temporal and spatial scales is crucial from both scientific and socioeconomic 
perspectives [1, 2]. Long-term rainfall patterns are affected by global climate change, 
reducing water availability and increasing the risk of severe drought and flooding. 
During the monsoon season (June–August), high instantaneous rainfall may cause a 
water shortage during the non-monsoon season [3]. Trend analysis is a method for 
determining the spatial variation and temporal changes in various climate parameters. 
This is a critical issue for a country like India, which has an agro-based economy 
that is heavily reliant on rainfall due to the monsoon. As a result, any change in that 
phase of the year has the potential to devastate the country’s agricultural conditions 
and thereby the economy. In comparison to global climate variability, India’s climate 
change is too high. It has also emphasized the importance of determining whether 
the trend is rising or falling. Natural calamities such as drought and flooding may be 
caused by changes in the most important climatological parameter, rainfall [4, 5]. 

According to the Intergovernmental Panel on Climate Change (IPCC, 2007), 
studies to detect climate change and its impact on various sectors are urgently needed 
due to the impact of climate change on cropping patterns and also on land production 
which increases the risk of hunger and water scarcity, rapid melting of glaciers, and 
decreased river flows. Climate change is expected to reduce freshwater availability 
in many Indian river basins [6, 7]. The hydrological cycle and the pattern of stream 
flows will be affected by changes in rainfall as a result of global warming. 

Carbon dioxide, a greenhouse gas, reached a global atmospheric concentration of 
400 parts per million in 2014, up from 280 parts per million in pre-industrial times. 
In addition, the global atmospheric concentrations of methane and nitrogen oxides, 
two other important GHGs, have increased significantly. Increased anthropogenic 
activities are constantly affecting the earth’s climate system, resulting in increased 
greenhouse gas levels in the atmosphere and thus climate change. 

Climate changes have a significant effect on the magnitude and variability of 
rainfall as well as the temperature at various levels of spatial scale such as local, 
national, regional, continental, and global [8, 9]. The increasing trend of precipitation 
and temperature in the twentieth century is likely to continue in the twenty-first 
century. Global warming produces more evaporation from oceans (WMO, 2019) 
and intensifies the magnitude–frequency of extreme rainfall events [10]. 

The M–K test [11] is a recurrently and extensively applied non-parametric test 
for time series trend analysis. Recently, [12] suggested a new method (ITA) for the 
trend analysis of such variables across the globe. Several scholars have used together 
the M–K and ITA methods to examine the time series data of hydrometeorological
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variables. Although several studies were conducted on rainfall trends over the Indian 
region, none of them had shown a strong increase or decrease trend in any time scale 
of rainfall for the entire region [8, 13]. 

Droughts are environmental disasters that are very destructive, destroying a huge 
area of land and causings significant economic damages [14]. Droughts are deter-
mined by a shortfall in the supply of water for a long time period, owing to the 
region’s consistently below-average precipitation. These situations are compounded 
by meteorological factors such as increasing temperatures or high winds intensi-
fying [15]. Droughts are a regular occurrence in all climate systems and can happen 
anywhere in the world, including in the desert and the rainforest [16]. The most 
expensive environmental threat is drought, and it has significant and frequent effects 
on many different economic sectors and people [17]. The impact of drought is more 
severe on the food and agricultural sector. Drought is a severe natural occurrence 
that has far-reaching effects on the socioeconomic, agricultural, and environmental 
areas [18]. 

These extreme climate changes increase the intensity of rainfall within shorter 
periods, thereby promoting drought and excessive rainfall to occur simultaneously 
[17, 18]. Any change in annual rainfall in the area puts a strain on annual average 
streamflow, which has implications for water resource development project planning 
and design [19]. Droughts decrease the primary productivity [20], streamflow, runoff, 
surface and groundwater resources [9], electricity production [21] and increase the 
rate of tree mortality and wildfires [6]. The Standardized Precipitation Index (SPI) is 
the most widely accepted index that only uses precipitation as input data [20]. The 
reason for its wide range of acceptance is its simplicity. It is also used to evaluate 
the performances of new indices. In the end, large economical losses occur due 
to droughts in particular regions. In India, many regions are facing droughts due 
to climate change and other factors. Rajasthan is one of the highly drought-prone 
regions of India. The purpose of the study was to analyze the trend of rainfall and 
identify drought events using the SPI method on monthly time scales as well as on 
seasonal time scales in the Sirohi district of Rajasthan. 

1 Study Area and Data Source 

Sirohi district is selected as a study area. Sirohi district is located in the southern part 
of Rajasthan. It is bounded by Pali district in the North direction, Udaipur district 
in the East direction, Gujarat state in the South direction, and Jalor in the western 
border. Sirohi is located between 24° 19' 34.7'' to 25° 17' 21.54'' north latitude and 
72° 13' 52.86'' to 73° 10' 44.57'' seast longitude (See Fig. 1). It covers a 5139.1 km2 

area in Rajasthan. Sirohi district is made up of 467 towns and villages, of which 
five are block headquarters as well. The total population of the district as per Census 
2011 is 8,50,804. The overall climatic condition of the district is semi-arid which 
remains dry and is partially sub-humid for the most part of the year. The summer 
season is from March to June month. The maximum average temperature in the
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Fig. 1 Location of Sirohi district, Rajasthan 

summer season is more than 47 °C. The average rainfall of Sirohi is 741.1 mm. The 
winter season is very cold which extends from the month of November to February. 
The minimum average temperature in Sirohi during winter is 23 °C. There is a large 
temperature difference which is observed between day and night times as well as 
between two seasons. So, it needs to be in consideration for the study. The majorly 
affected meteorological parameter on drought events is precipitation. For this study, 
monthly precipitation data of the Sirohi district are collected for the years 1901– 
2021. These monthly precipitation data are collected from the India Water Portal 
website. One can also collect precipitation data in daily, monthly, and yearly format 
from India-Water Resources Information System (India-WRIS). 

2 Methodology 

The first part of this study focuses on rainfall trend analysis for 120 years (1901– 
2021), while the second part focuses on meteorological drought using SPI for 
102 years (1901–2002). Sirohi district is located in Rajasthan’s semi-arid region, 
where the monsoon is the only source of climatic seasonality. As a result, rainfall
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is used for climate change studies based on the hydrological year (June–May). As 
per Indian Metrological Department (IMD), there are four climatic seasons: south-
west (s-w) monsoon (June–September), post-monsoon (October–December), winter 
(January–February), and pre-monsoon (March–May). The gradual change in the 
pattern of precipitation time series is investigated using the M–K test (statistical 
non-parametric test), and Sen’s slope estimator is used to estimate the magnitude of 
the trend. 

2.1 Trend Analysis Using M–K Test 

This test is used to determine the seasonal and annual precipitation trends in the 
Sirohi district [11]. The rainfall trend analysis was carried out using Eqs. 1 and 2. 

S = 
n−1∑

i=1 

n∑

j=i+1 

sign
(
x j − xi

)
, (1) 

sign
(
xi − x j

) = 

⎧ 
⎨ 

⎩ 

−1; (
x j − xi

)
< 0 

1; (
x j − xi

)
> 0 

0; (
x j − xi

) = 0 
. (2) 

The mean of S is E[S] = 0, and Eq. 3 can be used to compute the variance ρ2. 
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The S (statistic) is closely related to Kendall’s τ as given in Eq. 5: 

τ = 
S 

D 
, (5) 

where D is the number of possible pairs of observations from a total of n observations 
and Z is the standard normal variate; increasing (decreasing) Z values indicate rising 
(falling) trends. When |Z| >  Z1-/2 and a significant trend in the time series occurs, 
the null hypothesis is rejected. All of the results are evaluated at a significance level 
of = 0.05. 

In this study, hypothesis testing was performed at a significance level of 5%, and 
in a two-tailed test, with the null hypothesis being that there is no trend in the time
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series. The alternative hypothesis states that the time series reveals a significantly 
increasing/decreasing trend. The level of significance selected includes effective of 
rejecting the null hypothesis when it is true. As a result, five data points are likely to 
be rejected at a 5% significance level for a dataset of 100. 

2.2 Sen’s Slope Estimator Method 

The slope estimator developed by [12] is a method for calculating change per unit 
of time. This is a non-parametric robust tool for determining monotonic trends in 
hydrologic time series [22, 23]. The Sen’s slope estimator, which is carried out by 
Eq. 6, was used to estimate the slope of n pairs of data points: 

Sen'ss Slope(β) = median

[
Xi − X j 
(i − j)

]
; j < i. (6) 

2.3 Drought Analysis Using SPI Method 

[20] created the SPI, where the probability of precipitation depends on the probability 
that the measured precipitation (x) will be translated into an index over a different 
time scale (3, 6, 12, 24, and 48 months). 

The long-term rainfall history for each area over the requested time is a key factor 
in the SPI estimate [1, 2]. The long-term precipitation data are transformed into a 
probability distribution, which is then normalized using a probability distribution 
function (i.e., a function that is converted into a normal distribution) so that the mean 
SPI for the position and desired time is zero [2]. A gamma probability density function 
for a specific precipitation frequency distribution for a single station is matched by the 
SPI model. The alpha and beta parameters of the gamma probability density function 
are calculated for each month of the year, each season, and each important time scale 
(3 months, 12 months, 48 months, etc.) [1]. Using the distributed parameters, the 
cumulative probability of a recorded precipitation event for the specified month and 
time scale for the particular station is then calculated. 

Drought is considered to have occurred when the SPI values are continually nega-
tive and reach (−1) or less, and it ends when the SPI becomes positive [20]. Drought 
magnitude is defined as the positive sum of the SPI for all months of drought events. 
Drought intensity is determined by the ratio of drought magnitude to duration, and 
severity of drought may be assessed using [1] classification (see Table 1). In this 
study, we have calculated SPI using the DrinC program for 102 years (1901–2002), 
which is a drought indices calculator.
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Table 1 Rainfall regime 
classification based on SPI 
standard ranges 

Value of SPI Rainfall regime classifications 

≥ 2.00 Extremely wet 

1.50–1.99 Very wet 

1.00–1.49 Moderately wet 

−0.99–0.99 Near normal 

−1.00–−1.49 Moderately dry 

−1.50–−1.99 Severely dry 

≤ −2.00 Extremely dry 

Source Hayes et al. [3] 

3 Results and Discussions 

3.1 Rainfall Trend Analysis 

Precipitation time series is analyzed for trends on a monthly, seasonal, and annual 
scale. The Mann–Kendall test was used to carry out a detailed trend analysis of the 
average (winter, pre-monsoon, s-w monsoon, and post-monsoon) and extreme annual 
daily precipitation for the Sirohi district from 1901 to 2021. Sen’s slope estimator 
was also estimated. Identification of precipitation trends for various groups with 
significant effects: High precipitation causes flooding, whereas low precipitation 
causes drought. 

Trend analysis of the Sirohi district was detected and revealed that a positive 
trend of rainfall was observed only for post-monsoon with the value of Zmk is 0.002, 
whereas negative trend was reported for winter, pre-monsoon, S-W monsoon, and 
annual with Zmk values being −0.131, −0.065, −0.037, and −0.036, respectively. 
A significant decreasing trend is reported for winter at a 5% significance level. It is 
observed that there is no trend in some of the months. Sen’s slope results are also in 
agreement with the M–K test results. The summary of both tests is shown in Table 2. 
Figures 2 and 3 show an annual and seasonal graphical representations of long-term 
M–K test results.

3.2 Standardized Precipitation Index 

To calculate 3-month SPI, months of January–March, months of April–June, months 
of July–September, and months of October–December were considered. A time series 
is plotted in Fig. 4 for all four time frames of 3-month SPI. The calculated values of 
SPI for the study time span reveal 82 drought conditions among all four time frames of 
3 months (October–December, January–March, April–June, and July–September). 
Out of these 82 drought conditions, nine events were found to be extremely dry and



264 D. J. Mehta and S. M. Yadav

Table 2 Results of the M–K test for rainfall trend data 1901–2021 

Rainfall period Kendall’s tau Trend 
interpretation 

Mann–Kendall 
test P-value 

Sen’s slope Test 
interpretation 

January −0.080 Decreasing 
trend 

0.218 0 There is no 
trend 

February −0.136 Decreasing 
trend 

0.039 0 There is no 
trend 

March −0.040 Decreasing 
trend 

0.553 0 There is no 
trend 

April 0.101 Increasing 
trend 

0.118 0 There is no 
trend 

May −0.056 Decreasing 
trend 

0.370 −0.003 Insignificant 
decreasing 
trend 

June 0.062 Increasing 
trend 

0.314 0.112 Insignificant 
increasing 
trend 

July −0.013 Decreasing 
trend 

0.828 −0.083 Insignificant 
decreasing 
trend 

August −0.054 Decreasing 
trend 

0.381 −0.405 Insignificant 
decreasing 
trend 

September 0.037 Increasing 
trend 

0.554 0.091 Insignificant 
increasing 
trend 

October −0.012 Decreasing 
trend 

0.844 0 There is no 
trend 

November −0.007 Decreasing 
trend 

0.921 0 There is no 
trend 

December −0.107 Decreasing 
trend 

0.111 0 There is no 
trend 

Winter −0.131 Decreasing 
trend 

0.036 −0.01 Significant 
decreasing 
trend 

Pre-monsoon −0.065 Decreasing 
trend 

0.292 −0.019 Insignificant 
decreasing 
trend 

S-W monsoon −0.037 Decreasing 
trend 

0.544 −0.444 Insignificant 
decreasing 
trend 

Post-monsoon 0.002 Increasing 
trend 

0.971 0 There is no 
trend 

Annual −0.036 Decreasing 
trend 

0.563 −0.477 Insignificant 
decreasing 
trend
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Fig. 2 Long-term trend of annual rainfall (1901–2021) over Sirohi district 
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Fig. 3 Long-term trend of rainfall during a winter, b pre-monsoon, c southwest monsoon, and d 
post-monsoon for 1901–2021 over the Sirohi district

the other nine scenarios were found to be severely dry, while remaining 69 drought 
events were found moderately dry. The same analogy was employed to analyze 
intermediate drought events for 6-month and 9-month SPI. For the calculation of 
6-month SPI, the months of October–March and months of April–September were 
considered. A time series is plotted in Fig. 5 for two time frames of 6-month SPI. A 
rainfall regime classification based on the value of SPI is shown in Table 1. According 
to the classification, 56 drought events were observed during the study time span. Out
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Fig. 4 Standardized Precipitation Index (SPI) of 3-month time frame for a October–December, b 
January–March, c April–June, and d July–September over Sirohi district

of these 56 drought conditions, 16 events were found extremely dry, other 16 events 
found to be severely dry, and remaining 24 events were found moderately dry. To 
determine 9-month SPI, months of October–June were considered and a time series 
is plotted in Fig. 6. According to the rainfall regime classification, 28 drought events 
were observed, out of which nine events were found extremely dry, seven events 
found severely dry, and 12 events found moderately dry. Figure 7 shows a time 
series plot and its drought characteristics for long-term drought events for 12-month 
SPI (October–September). From the value of 12-month SPI, 24 drought events were 
found, out of which six events were extremely dry, eight events were severely dry, 
and ten events were moderately dry.

4 Conclusions 

Temporal variation analysis results show drought events in the Sirohi district. The 
results reveal that maximum stations are showing mild drought conditions and very 
few severe and extreme drought events. Rainfall data statistics also revealed that there 
were only seasonal variations of time series patterns, but no long-term drought trend 
was observed. During the observed 24 years, 12 drought years have been observed 
in the district. There were eight severe drought years, namely, 1986, 1987, 1989, 
1991, 1995, 1996, 1998, and 1999, with average annual rainfalls 66.8%, 87.0%,
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Fig. 5 Standardized Precipitation Index (SPI) of 6-month time frame for a October–March, b 
April–September over Sirohi district

Fig. 6 Standardized 
Precipitation Index (SPI) for 
9-month time frame for 
October–June over Sirohi 
district
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Fig. 7 Standardized 
Precipitation Index (SPI) for 
12-month time frame for 
October–September over 
Sirohi district
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58.7%, 67.4%, 64.2%, 60.9%, 65.4%, and 69.7% below average, respectively. 1990, 
1993, 1997, and 2002 were the four moderate drought years, with an average annual 
rainfall below average by 44.3, 27.5, 45.7, and 28.3%, respectively. The findings of 
the present study can be very beneficial in designing the drought mitigation strategies 
that have been recommended.



268 D. J. Mehta and S. M. Yadav

References 

1. Mehta D, Yadav SM (2021) An analysis of rainfall variability and drought over Barmer District 
of Rajasthan, Northwest India. Water Supply 21(5):2505–2517. https://doi.org/10.2166/ws.202 
1.053 

2. Mehta D, Yadav SM (2022) Temporal analysis of rainfall and drought characteristics over 
Jalore District of S-W Rajasthan. Water Pract Technol 17(1):254–267. https://doi.org/10.2166/ 
wpt.2021.114 

3. Hayes MJ, Svoboda MD, Wiihite DA, Vanyarkho OV (1999) Monitoring the 1996 drought 
using the standardized precipitation index. Bull Am Meteor Soc 80(3):429–438 

4. Abramowitz M, Stegun IA, Miller D (1965) Handbook of mathematical functions with 
formulas, graphs and mathematical tables (National Bureau of Standards Applied Mathematics 
Series No. 55) 

5. Chelu A (2019) A typology of indices for drought assessment. Air and Water—Components 
of the Environment. Cluj-Napoca, Romania, pp 77–90 

6. Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Cobb N 
(2010) A global overview of drought and heat-induced tree mortality reveals emerging climate 
change risks for forests. Forest Ecol Manage 259(4, SI):660–684. https://doi.org/10.1016/j.for 
eco.2009.09.001 

7. Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Valentini R (2005) Europe-
wide reduction in primary productivity caused by the heat and drought in 2003. Nature 
437(7058):529–533. https://doi.org/10.1038/nature03972 

8. Perera A, Mudannayake SD, Azamathulla HM, Rathnayake U (2020) Recent climatic trends 
in Trinidad and Tobago, West Indies. Asia-Pacific J Sci Technol 25(02):1–11 

9. Smakhtin VU (2001) Low flow hydrology: a review. J Hydrol 240(3–4):147–186. https://doi. 
org/10.1016/S0022-1694(00)00340-1 

10. Heim RR (2002) A review of twentieth-century drought indices used in the United States. Bull 
Am Meteor Soc 83(8):1149–1165 

11. Mann HB (1945) Nonparametric tests against trend. Econometrica: J Econom Soc 2(3):245– 
259 

12. Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 
63(324):1379–1389 

13. Perera A, Rathnayake US, Azamathulla HM (2020) Comparison of different artificial neural 
network (ANN) training algorithms to predict atmospheric temperature in Tabuk, Saudi Arabia. 
MAUSAM: Quart J Meteorol Hydrol Geophys 71(2):551–560 

14. Mehta D, Yadav SM (2020) Long-term trend analysis of climate variables for arid and semi-
arid regions of an Indian State Rajasthan. Int J Hydrol Sci Technol Indersci Publ. https://doi. 
org/10.1504/IJHST.2020.10033400 

15. Mishra AK, Singh VP (2010) A review of drought concepts. J Hydrol 391(1–2):204–216. 
https://doi.org/10.1016/j.jhydrol.2010.07.012 

16. Katz RW, Glantz MH (1986) Anatomy of a rainfall index. Monthly Weather Rev. https://doi. 
org/10.1175/1520-0493(1986)114<0764:AOARI>2.0.CO;2 

17. Kallis G (2008) Droughts. Annu Rev Environ Resour 33:85–118. https://doi.org/10.1146/ann 
urev.environ.33.081307.123117 

18. Mehta D, Yadav SM (2021) Analysis of long-term rainfall trends in Rajasthan, India. In: Jha R, 
Singh VP, Singh V, Roy LB, Thendiyath R (eds) Climate change impacts on water resources. 
Water Science and Technology Library, vol 98. Springer, Cham. https://doi.org/10.1007/978-
3-030-64202-0_26 

19. Khaniya B, Priyantha HG, Baduge N, Azamathulla HM, Rathnayake U (2020) Impact of 
climate variability on hydropower generation: a case study from Sri Lanka. ISH J Hydraulic 
Eng 26(3):301–309 

20. McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration 
to time scales. In: Proceedings of the 8th conference on applied climatology, pp 179–184. 
citeulike-article-id:10490403

https://doi.org/10.2166/ws.2021.053
https://doi.org/10.2166/ws.2021.053
https://doi.org/10.2166/wpt.2021.114
https://doi.org/10.2166/wpt.2021.114
https://doi.org/10.1016/j.foreco.2009.09.001
https://doi.org/10.1016/j.foreco.2009.09.001
https://doi.org/10.1038/nature03972
https://doi.org/10.1016/S0022-1694(00)00340-1
https://doi.org/10.1016/S0022-1694(00)00340-1
https://doi.org/10.1504/IJHST.2020.10033400
https://doi.org/10.1504/IJHST.2020.10033400
https://doi.org/10.1016/j.jhydrol.2010.07.012
https://doi.org/10.1175/1520-0493(1986)114&lt;0764:AOARI&gt;2.0.CO;2
https://doi.org/10.1175/1520-0493(1986)114&lt;0764:AOARI&gt;2.0.CO;2
https://doi.org/10.1146/annurev.environ.33.081307.123117
https://doi.org/10.1146/annurev.environ.33.081307.123117
https://doi.org/10.1007/978-3-030-64202-0_26
https://doi.org/10.1007/978-3-030-64202-0_26


Trend Analysis of Drought Events Over the Sirohi District in Western … 269

21. Van Vliet MTH, Sheffield J, Wiberg D, Wood EF (2016) Impacts of recent drought and warm 
years on water resources and electricity supply worldwide. Environ Res Lett 11(12). https:// 
doi.org/10.1088/17489326/11/12/124021 

22. Mohammed S, Alsafadi K, Mohammad S, Mousavi N (2019) Drought trends in Syria from 1900 
to 2015. In: Proceedings of the 4th international congress of developing agriculture, natural 
resources, environment and tourism of Iran, Tabriz Islamic Art University In cooperation with 
Shiraz University and Yasouj University, Tabriz, Iran, vol 14 

23. Mokhtarzad M, Eskandari F, Vanjani NJ, Arabasadi A (2017) Drought forecasting by ANN, 
ANFIS, and SVM and comparison of the models. Environ Earth Sci 76(21):1–10 

24. Shah R, Bharadiya N, Manekar V (2015) Drought index computation using standardized 
precipitation index (SPI) method for Surat District, Gujarat. Aquatic Proc 4:1243–1249

https://doi.org/10.1088/17489326/11/12/124021
https://doi.org/10.1088/17489326/11/12/124021


Statistical Analysis of Precipitation Over 
Kota (India) from 1981 to 2020 

Kuldeep, Sohil Sisodiya, and Anil. K. Mathur 

Abstract Variation in precipitation amounts and distribution patterns leads to 
changes in general atmospheric circulation, cloud cover, surface albedo, and concen-
trations of air pollutants in the context of climatic variability. Industrial, residen-
tial, and agricultural water demands largely depend on rainfall. Even rainfall vari-
ability significantly affects people’s livelihood. This study evaluates the temporal 
variation in rainfall for the Kota district of Rajasthan state in India. Eight rainfall 
monitoring stations were utilised to collect precipitation data for 40 years (1981– 
2020). Trend analysis has been performed for monthly, seasonal, and annual rainfall 
series with the help of Mann–Kendall (non-parametric) and linear regression (para-
metric) trend tests. Standardised rainfall anomaly and wetness index were estimated 
to determine the excess in total annual rainfall. The monthly distribution of precip-
itation is contrasted with the help of the precipitation concentration index. Both 
non-parametric and parametric trend tests estimate an increasing trend in precipita-
tion for February, March, June, July, August, and September months, reflecting an 
increase in the total annual precipitation for the research area. The analysis of precip-
itation data shows a very high inter and intra variability in annual rainfall (C.V. = 
169.45). A very high non-uniformity of rain is observed from the analysis of PCI. The 
maximum concentration of precipitation (~84.50) took place in monsoon months. 
Annual rainfall has significantly increased over the last four decades, indicating
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the need for proper rainwater management and utilisation plans to take maximum 
benefits shortly. 

Keywords Trend analysis · Mann–Kendall trend test · Standardised rainfall 
anomaly · Wetness index · Precipitation concentration index 

1 Introduction 

The biggest challenge facing humanity in the twenty-first century is worldwide 
climate change and its severe consequences on the environment. Climate change 
is directly linked with variations in rainfall patterns, hydrological cycle, moisture 
content, melting of ice, extreme conditions, and the frequency and intensity of 
extreme events [1]. 

Increased emission of greenhouse gases (CO2, CH4, N2O, and halocarbons) 
has been the leading cause of global warming since the 1950s. Global warming 
is responsible for the rise in the mean temperature of the earth’s surface, leading 
to climate change [2]. All the important sectors, such as ecological, biological, 
meteorological, and socio-economic, are directly or indirectly affected by global 
climate change [3]. Hence, it is a point of attention in research worldwide. The 
long-term variation in rainfall trends is analysed regularly to estimate the significant 
impact of climate change. Quantitative analysis of temporal rainfall distribution for 
a region is crucial for hydraulic structure modelling, hydrological modelling, surface 
water modelling, flood forecasting, agriculture modelling, groundwater modelling, 
evaporation modelling, crops scheduling, etc. [4, 5]. 

India is situated in a tropical monsoon zone and receives almost 80% of annual 
rainfall in June, July, August, and September due to the Southwest monsoon 
with more significant spatiotemporal variability [6, 7]. Several studies have been 
conducted in different parts of the world on rainfall variability for various purposes 
in the literature, but almost negligible studies have been available for Kota. 

This paper examines the trends for annual, seasonal, and monthly rainfall series 
for Rajasthan (India) Kota district (1981–2020) using the Mann–Kendall (non-
parametric) trend test and linear regression (parametric) trend test. Standardised 
rainfall anomaly and wetness index are estimated to determine the excess in total 
annual rainfall. The monthly distribution of precipitation is contrasted with the help 
of the precipitation concentration index (PCI). The coefficient of variation measures 
the dispersion of rains. 

2 Study Area and Data Source 

Kota is the south-eastern district of Rajasthan state, India, and its geographical area 
lies between 75º 37' and 77º 26' longitude and 24º 25' and 25º 51' latitude. The
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maximum width and length of Kota are 54 km (east to west) and 153 km (north to 
south), respectively. The geographical area of the Kota district is 5217 km2 and has 
shaped like Dumber [8]. The population of Kota district as per the census of 2011 
was 1,951,014 [9]. The total number of registered vehicles was 885,737 in 2020 as 
per the Rajasthan Transport department [10]. The total number of industrial areas 
and industrial units were 19 and 12,908, respectively, as per the MSME report, 2015 
[11]. 

Rainfall data were collected for 40 years (1981–2020) from eight rainfall moni-
toring stations daily, and these monitoring stations, along with the study area, are 
shown in Fig. 1. The GPS coordinates of each monitoring station are tabulated in 
Table 1. The total rainfalls reading during the observation period for all the moni-
toring stations was 116,880, i.e., 14,610 readings for each sampling location. Each 
year is categorised into three seasons: Summer (March, April, May, and June), rainy 
(July, August, September, and October), and Winter (January, February, November, 
and December) [12]. 

Fig. 1 Area of interest for study along with rainfall monitoring station
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Table 1 GPS coordinates for 
precipitation monitoring 
station at Kota district, 
Rajasthan 

Code Station Longitude Latitude 

MS-1 Digod 76.075 25.220 

MS-2 Ladpura 75.844 25.188 

MS-3 Pipalda 76.457 25.556 

MS-4 Ramganjmandi 75.943 24.649 

MS-5 Sangod 76.285 24.925 

MS-6 Mandana 75.944 24.945 

MS-7 Kanwas 76.124 24.868 

MS-8 Chechat 75.888 24.765 

3 Trend Analysis and Precipitation Indices 

3.1 Trend Analysis 

It has been performed for annual, seasonal, and monthly rainfall series using the linear 
regression trend test (parametric) and the non-parametric trend test (Mann–Kendall 
test). 

3.1.1 Linear Regression Trend Analysis 

Linear regression trend test is computed to define the extent of the linear relation-
ship between precipitation (dependent variable) and time (independent variable). It 
predicts the value of rainfall concerning time. The regression equation is as follows 
[13]: 

Y = ax + b (1) 

where a is the slope of the line and b is the intercept. 

3.1.2 Mann–Kendall Trend Analysis 

The null hypothesis and alternative hypothesis are tested against each other in Mann– 
Kendall test. The null hypothesis supposes no trend in precipitation-time data series, 
while the alternative hypothesis assumes a trend. The following equations govern 
Mann–Kendall test [14]: 

R = 
n−1∑

K=1 

n∑

L=K +1 

sign(XL − XK ) (2)
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sign(TL − TK ) = 

⎧ 
⎨ 

⎩ 

1 if  XL − XK > 0 
0 if  XL − XK = 0 
−1 if  XL − XK < 0 

⎫ 
⎬ 

⎭ (3) 

The variance for the R-statistic can be calculated through Shreepada Devi et al. 
[16]: 

σ 2 = 
[(2n + 5)(n − 1)n) 

18 
(4) 

The standard test is defined by Kumar et al. [15]: 

Z R = 

⎧ 
⎨ 

⎩ 

R−1 
σ

for R > 0 
0 for  R = 0 
R+1 
σ

forR < 0 

⎫ 
⎬ 

⎭ (5) 

3.2 Normal Annual Rainfall (NAR) 

The 30-year consecutive rainfall series average is termed as normal annual rainfall. 
The rainfall series for the present study is categorised into monthly, seasonal, and 
yearly precipitation-time data series. The up-gradation of normal annual rainfall 
takes place after every 10 years, and its trend was predicted. Normal annual rainfall 
is calculated through the following equation [14]: 

NAR =
∑30 

i=1 Pi 
30 

(6) 

where Pi Denotes the rainfall that occurred in the ith year. 

3.3 Precipitation Concentration Index (PCI) 

It defines the non-uniformity and uniformity of precipitation over a given period. 
The highest PCI’s value denotes a more significant non-uniformity of precipitation. 
The following equation is used to calculate PCI’s value: 

PCI =
∑12 

i=1 P
2 
i(∑12 

i=1 Pi
)2 ∗ 100 (7)
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Table 2 Categorisation of PCI and SRA values 

PCI Rainfall category SRA Drought severity 

< 10 Uniform precipitation distribution < −1.65 Extreme 

11–15 Moderate precipitation concentration −1.65 to −1.28 Severe 

16–20 High precipitation concentration −1.28 to −0.84 Moderate 

> 20 Very high precipitation concentration > −0.84 No drought 

The PCI values are characterised into the following categories, as shown in Table 
2. 

3.4 Standardised Rainfall Anomaly (SRA) 

Drought severity is expressed through standardised rainfall anomalies. The most 
negligible SRA’s value denotes the maximum possibility of draught. The following 
equation is used to calculate SRA’s values: 

SRA =
(
Pi − Pi

)

S 
(8) 

where S = standard deviation of rainfall time series and Pi = the rainfall in the ith 
year. 

The SRA’s values are characterised into the following categories, as shown in 
Table 2. 

3.5 Wetness Index ( Wi) 

The precipitation ratio for a given year over the mean annual precipitation is the 
index of wetness and expressed on a percentage basis. 

Wi (% ) = 
Precipitation in a particular year at a place 

Normal Annual precipitation
∗ 100 (9) 

A value less than 100 of the wetness index denotes a rainfall deficiency equivalent 
to the deficit from 100, i.e., Rainfall Deficiency = 100 – Wetness Index. Rainfall 
deficiency is categorised into large deficiency (30–45%), serious deficiency (45– 
60%), and the disastrous deficiency (> 60%).
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3.6 Coefficient of Variation (C.V.) 

The coefficient of variation measures the dispersion of precipitation. It is used 
to determine the reliability of an average and provide a basis for controlling the 
variability. It can be calculated through the following equation: 

C.V.(% ) = 
The standard deviation of precipitation 

Average Precipitation
∗ 100 (10) 

3.7 Dependable Rainfall 

The data of rainfall-time series should be arranged in descending order and then 
ranked accordingly to determine dependable rainfall. The dependable rainfall is 
calculated for 50, 75, and 90% dependency in this research work. It can be calculated 
through the following equation: 

Precipitation Occurrence (% ) =
(

Rank 

Total number of observations

)
∗ 100 (11) 

4 Results and Discussions 

The maximum, minimum, and average precipitation on a monthly, seasonal and 
annual basis, along with standard deviation, is shown in Table 3. The intra-annual 
rainfall variability (PCI) is evaluated for the entire data set (1981–2020). PCI lies 
between 22.97 and 52.15, indicating a very high non-uniformity of rainfall in each 
year, i.e., a very high concentration of rainfall in a particular part of a year. Monsoon 
average and percentage are computed to identify the reason behind more significant 
non-uniformity.

Precipitation indices are tabulated in Table 4. It is found that the southeast 
monsoon, which takes place in the rainy season (July, August, September, and 
October) every year responsible for 62.50–97.37% of the total rainfall of a year. 
On average, monsoon rainfall contributed nearly 84.50% of the total rainfall and 
explained the large PCI values.

Significant monthly rainfall variability has been observed. The average coefficient 
of variation was 169.45, while maximum variability in precipitation was seen in 
December (285.51) and minimum variability in precipitation was obtained for August 
(47.62). The overall coefficient of variation and PCI values are very high and indicate 
significant inter- and intra-annual variations in the precipitation.
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Table 3 The maximum, minimum, and average precipitation in millimetres along with standard 
deviation 

Sr. No. Period Average Maximum Minimum Standard deviation 

1 January 4.76 32.38 0.00 8.45 

2 February 5.45 39.04 0.00 10.56 

3 March 3.30 46.00 0.00 8.31 

4 April 4.20 38.25 0.00 8.15 

5 May 8.37 82.20 0.00 18.52 

6 June 83.17 475.50 2.09 81.80 

7 July 257.43 653.12 18.53 123.73 

8 August 273.72 636.54 49.59 130.36 

9 September 98.08 308.25 6.75 68.02 

10 October 20.26 161.56 0.00 38.85 

11 November 6.00 72.60 0.00 15.28 

12 December 3.19 50.14 0.00 9.11 

13 Winter 4.85 25.96 0.00 5.69 

14 Summer 24.76 119.25 3.54 20.27 

15 Rainy 162.37 312.31 64.84 48.53 

16 Annual 63.99 112.98 32.47 18.14

Table 4 Precipitation Indices 
along with annual total and 
average rainfall 

Precipitation indices Average Maximum Minimum 

Total 767.94 1355.76 389.6 

Average 63.99 112.98 32.46667 

PCI 31.96 52.15 22.96774 

Monsoon average 649.49 1249.26 259.36 

Monsoon percentage 84.50 97.37 62.50 

Coefficient of variation 169.45 285.51 47.62 

SRA 2.65 7.82 −0.57 

Wetness index 102.13 180.31 51.81

Normal annual rainfall based on the average of 30 consecutive years was 60.68 mm 
and 64.64 mm for 1981–2010 and 1991–2020, respectively. Standardised rainfall 
anomaly was calculated to determine interannual variability of rainfall. The SAR 
value ranged from −0.57 (2002, the driest year) to 7.81 (2008, the Wettest year). 
The average value of SRA is greater than −0.84, avoiding any possibility of drought. 

Analysis of the wetness index revealed that 2019 was the wettest year (Wi = 
180.31), while 2002 was the driest year (Wi = 51.81) due to the amount of rainfall 
that took place in these years. The rainfall observed in 2002 and 2019 were 389.6 
(Lowest) and 1355.76 (Highest) mm, respectively. Rainfall dependability is critical
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Table 5 Trend test statistics along with rainfall dependability 

Time Kendall’s tau Slope Rainfall dependability 

50% 75% 90% 

January −0.127 −0.089 0.125 0 0 

February 0.060 0.047 0 0 0 

March 0.040 0.166 0 0 0 

April −0.080 0.010 0.66 0 0 

May −0.072 −0.027 1.42 0.42 0 

June 0.162 1.658 63.25 35.1 19.31 

July 0.124 0.61 244.88 190.04 123.18 

August 0.034 0.97 256.75 180.85 134.23 

September 0.006 0.41 87.85 48.34 15.52 

October −0.247 −1.06 3 0 0 

November 0.018 −0.257 0 0 0 

December 0.071 −0.103 0 0 0 

Total 0.032 0.194 751.35 652.55 545,375 

to maintaining sustainable use of water. Hence, dependable rainfall (90, 75, and 50%) 
for other months has been calculated and shown in Table 5. June, July, August, and 
September are the southwest monsoon months when maximum precipitation occurs 
and is available to complete water demands in the remaining months. An inspection 
of Table 5 reveals significant positive trends exist for precipitation over the previous 
four decades (1981–2020). A substantial increase in monsoon rainfall reflects the 
possible impact of climate change. 

The slope of regression analysis for precipitation illustrates the falling and rising 
trends of precipitation at different time intervals; rising and falling values specify the 
trends of increased and decreased rainfall, respectively. In January, May, October, 
November, and December, the slope of the precipitation data series is falling, i.e., a 
reduction in the monthly rainfall in respective months. The most negative slope, − 
1.06, was obtained for August. The slope of precipitation for the remaining months 
shows rising trends; the rising slope had the highest value of 1.65 in June. Rainfall 
trends (1981–2020) are tabulated in Table 6 and graphically presented in Figs. 2 and 
3.
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Table 6 Precipitation trends analysis obtained through linear regression over four decades 

Month 1981–90 1991–00 2001–10 2011–20 

January Decremental Decremental Decremental Decremental 

February Incremental Incremental Decremental Decremental 

March Decremental Decremental Incremental Incremental 

April Decremental Decremental Incremental Incremental 

May Decremental Incremental Decremental Decremental 

June Incremental Incremental Incremental Decremental 

July Decremental Incremental Incremental Decremental 

August Decremental Decremental Decremental Decremental 

September Decremental Incremental Incremental Incremental 

October Incremental Decremental Incremental Decremental 

November Decremental Decremental Incremental Incremental 

December Incremental Incremental Incremental Decremental

5 Conclusions 

The following conclusions are derived from this study: 

• Different aspects of water resources planning and management rely on the rainfall 
occurring in a given region. This study has been made to determine the variation 
in temporal presentation for the Kota district in Rajasthan, India. 

• Rainfall trend analysis has been performed for monthly, seasonal, and annual 
precipitation using linear regression (parametric) and Mann–Kendall (non-
parametric) trend test for the duration of 1981–2020. For a particular year, exces-
sive rainfall in the research area was determined using a wetness index and 
standardised rainfall anomaly. 

• The monthly distribution of precipitation was calculated through the precipitation 
concentration index. A very high non-uniformity has been observed in rainfall 
distribution. Almost 85% of total annual rainfall is contributed through a southeast 
monsoon in the rainy season. 

• Mann–Kendall and regression analyses test predict increasing trends for February, 
March, June, July, August, and September. As an outcome, total annual precipi-
tation exhibits a positive trend. 

• Over the last four decades (1981–2020), a significant increase in total precipita-
tion was observed, highlighting greater water availability in the Kota that needs 
development and restoration of water reservoirs, proper rainwater harvesting, and 
a drainage management program to avoid the risk of flood.
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Fig. 3 Seasonal and annual rainfall trends from 1981 to 2020
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Trend Analysis of Long-Term Rainfall 
Data Series 

Sharad K. Jain 

Abstract This paper presents some interesting results of trend analysis of long-term 
rainfall data series. The long-term precipitation data series for India the period 1871– 
2016, published in 2017 by Kothawale and Rajeevan, were used. Mann–Kendall, 
Sen’s Innovative Trend Analysis Method and Wavelet Decomposition were used to 
analyze the data. While MK test showed no trend in any of the series used, (Sen in 
J Hydrol Eng, 2012) method revealed trends in different ranges of the data. Further, 
the wavelet decomposed series helped identify the periods of high variabilities in the 
various components of data series. Additional insights provided by these methods 
could be of immense value in identifying the likely future behavior of the data and 
the implications for water management. 

Keywords Trend analysis · Rainfall · Mann–Kendall test · Innovative method ·
Wavelet decomposition 

1 Introduction 

Recent times have seen significant warming of atmosphere. Intergovernmental Panel 
on Climate Change (IPCC) has recently released the Report of Working Group I 
covering the physical science basis for the 6th Assessment Report (AR6). This report 
categorically states that the atmosphere, ocean, and land have warmed up. As per 
IPCC, the human-caused increase in global surface temperature from 1850–1900 to 
2010–2019 is about 1.07 °C [8].
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In the fourth assessment report, [15] had noted that there is a ‘notable lack of 
geographical balance in the data and literature on observed changes, with marked 
scarcity in developing countries’. Although data availability has improved in various 
parts of the world over time since better instruments are being deployed and advanced 
techniques including remote sensing are being used to collect data. Further, more 
efforts are underway to analyze the data and share the outcome. Nevertheless, much 
more progress is still needed on both the fronts to overcome the lack of data and 
comprehensive analysis. 

Among the different climatic variables, precipitation is perhaps the most important 
for hydrologists and water managers and it directly influences almost all the water 
related processes in a catchment. Therefore, analysis of trends in rainfall data is of 
immense interest to hydrologists, meteorologists, and all those whose interest lies in 
climate change and its impacts. With this background, the aim of the current paper is 
to analyze trends in observed long-term rainfall data series for India by using a range 
of conventional and new methods. Utility of new insights, revealed by the advanced, 
for water resources management has also been discussed. 

2 Trend Analysis of Hydrologic Data 

Trend analysis of a hydrologic time series involves finding two things: the magnitude 
of trend and how significant it is statistically. In view of the importance of the topic, 
it has attracted attention of a large number of researchers, as evidenced by numerous 
publications, including reviews, emerging from numerous studies. Kundzewicz [11] 
and Sonali and Nagesh Kumar [27] have provided detailed discussion on the trend 
detection methods for hydro-meteorological data. Some of the noteworthy studies 
on rainfall (RF) trends in India include. 

Some past studies had found no clear trend in average annual RF over India [12, 26] 
although the regions of significant long-term rainfall changes were reported by Kumar 
et al. [4], Dash et al. [12] and Kumar and Jain (2010) [13]. Ramesh and Goswami 
[23] found falling trends in early and late monsoon RF and the number of rainy days 
over India for the period 1951–2003. Kumar et al. [12] did not detect significant trend 
for annual, seasonal, and monthly rainfalls on All India scale for RF data for 1871– 
2005. Guhathakurta and Rajeevan [14] analyzed a RF series created by using data of 
1476 rain gauge stations for the period 1901–2003 and found significant falling and 
increasing trend for different sub-divisions. Pal and Al-Tabbaa [17] reported falling 
trends in the monsoon and spring RF and increasing trends in winter and autumn RFs 
over the country for the period 1954–2003. Kumar and Jain [13] examined trends 
seasonal RF over various river basins of India. 

Broadly, two methods are used to calculate the magnitude of trend in a time series: 
regression analysis which is a parametric method or the Sen’s estimator method [24] 
which is a non-parametric method. Both these methods assume that the time series 
of (hydrologic) data has a linear trend. In regression analysis, time is the independent 
variable and the hydrologic data is the dependent variable. In some studies, in place
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of the hydrologic data, anomalies or the series of deviations from the mean, are used. 
In regression, the following a linear equation is fitted to the data: 

y = at + b (1) 

where b is the intercept and a is a coefficient representing trend or slope. The param-
eters a and b are determined by method of least-squares. Note that slope of the line 
provides the rate of change (rise/fall) in the values of the variable. 

Sen’s estimator has been used extensively to compute the magnitude of trend in 
hydro-meteorological time series [9, 19]. In Sen’s method, first slopes (Ti) of all data 
pairs are calculated by 

Ti = 
x j − xk 
j − k 

for i = 1, 2, . . . ,  N (2) 

where xj and xk are the values of variable at time j and k, respectively, such that j > 
k. The median value of the N values of Ti is the Sen’s slope, computed as 

β =
{
T N+1 

2 
N is odd 

1 
2

(
T N 

2 
+ T N+2 

2

)
N is even 

(3) 

A positive value of β indicates a rising trend whereas negative value is an indicator 
of falling trend in the data series. 

3 Significance of Trend 

To find out the statistical significance of trend in the data series, Mann–Kendall (MK) 
test is employed [3, 6]. MK test is a non-parametric test. It checks the validity of 
the null hypothesis of no trend against the alternative hypothesis that an increasing 
or decreasing trend exists. MK test is helpful in detecting deterministic trends. We 
note that the MK test makes only very few assumptions: the potential trend in the 
data may be linear or nonlinear. The test does not make any assumption about the 
underlying statistical distribution. 

It is known that the MK test is not robust when the series has high autocorrelation 
and in such cases, false positive trend is likely to be identified. If a series is positively 
autocorrelated, it is quite likely that the series may be detected as having a trend 
while it may not be present. Conversely, in a negatively autocorrelated series, the 
trend may remain undetected. This performance also depends on the length of the 
sample and also on the magnitude of the trend to be identified. In autocorrelated 
series, pre-whitening is applied to remove autocorrelation but, of course, it may also 
bias the Mann–Kendall test result.
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4 Sen’s Innovative Trend Analysis Method 

This method uses the concept that if two time series, having similar statistical prop-
erties are plotted against each other, they will follow a straight line with 45° slope or 
1:1 line irrespective of their underlying distributions, length, and serial correlation 
[25]. If all the data from the two series fall on the 45° line, it means that the time series 
do not have any trend. An important feature of such graphs is that data get sorted 
in order of magnitude along the 45° line. This idea can be implemented for trend 
detection by diving a long time series in two equal parts and plotting the first half 
against the second half. Scatter of the data points about the 1:1 or 45° line indicates 
rising or falling monotonic trends, respectively [27]. If the points are scattered on 
either side of the 45° line, it indicates the presence of non-monotonic rising or falling 
trend in time series at different temporal scales. 

[25] also reported that if the cluster of the points is closer to the 1:1 line, it shows 
the presence of weaker trend magnitude. If the plot of data points appears along a 
straight line which is parallel to 1:1 line, the time series is likely to have a monotonic 
trend. 

4.1 Wavelet Decomposition Method 

Wavelets are becoming an increasingly useful and popular tool for analysis of time 
series data. A wave is a real-valued function, defined over the entire real axis. Value 
of a wave function oscillates about zero and the amplitude of the oscillations are 
nearly the same over the entire range. A wavelet is ‘smaller’ than a wave in the sense 
that a wavelet has a finite magnitude over some finite interval and is zero or close to 
zero beyond this interval. 

For a function ψ(.) to be called a wavelet, it should satisfy three conditions: (a) ψ(.) 
must integrate to 0; (b) ψ2(.) must integrate to 1; and (c) ψ(.) must be ‘admissible’ 
[20]. 

Wavelet transform (WT) is a technique for analysis of time–frequency characteris-
tics of a time series. WT can be classified in two main groups–continuous (CWT) and 
discrete (DWT). Compared to CWT, DWT is a simpler process that provides useful 
outputs. DWT commonly uses dyadic calculations where the wavelet coefficients 
can be calculated by Eq. (4) [19, 22]: 

Wψ (a, b) = 
1 

2α/2 

N−1∑
t=0 

x(t)ψ

(
t 

2a 
− b

)
(4) 

where ψ is the mother wavelet, a and b represent the amount of dilation (scale factor) 
and translation of the wavelet, respectively. 

In the wavelet method, first, the decomposition level is determined. If data are 
decomposed in unnecessary details, lots of data are generated which may not help
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with analysis. The level to which data decomposed also depends upon the mother 
wavelet used. The following equation to compute the maximum decomposition level, 
L, was suggested by de Artigas et al. [5]: 

L = log2[n/(2v − 1)] (5) 

where n is the number of data points and v represents the number of vanishing 
moments of a Daubechies (db) wavelet. Studies suggest that for annual and seasonal 
data series, 3 levels of decomposition are adequate [18] for the commonly used 
wavelets (db6–db10). For trend analysis, smoother db wavelets (db5–db10) are 
commonly applied on the annual and seasonal time series [18]. Smoother wavelets 
are also preferred in the present study because the trends in hydro-meteorological 
data are likely to be gradual due to slowly changing nature of the deriving processes. 
de Artigas et al. [5] used the mean relative error (MRE) to identify the smooth mother 
wavelet and the extension mode of db wavelets. MRE can be computed as: 

MRE = 
1 

n 

n∑
j=1

∣∣a j − x j
∣∣∣∣x j ∣∣ (6) 

where xj is the original variable, and aj is the approximate value of xj. 

5 Data Used 

This study has used long-term precipitation data for India. These data were published 
in a report by Kothawale and Rajeevan [10]. This report had compiled area weighted 
rainfall time series for the whole India and 5 homogeneous regions. The data series 
were constructed from the data of fixed and a network of 306 rain gauge stations, the 
stations were well-distributed over India and covered the period 1871–2016. 

Here, I am reporting the results of analysis carried out on the All India annual and 
seasonal data. 

6 Preliminary Data Processing 

Precipitation data series for 146 years (1871–2016) for the whole India as well as four 
seasons, Winter (JF), Summer (MAM), Monsoon (JJAS), and Post-monsoon (OND) 
were analyzed to detect trends. Figure 1 shows the time series of annual rainfall. The 
series shows a very slow falling trend which is not statistically significant.

Summary statistical properties of the data are shown in Table 1. Among the 
seasons, monsoon season accounts for about 78% of the annual rainfall whereas 
only about 2% of the annual rainfall occurs in the winters. Interestingly, the monsoon
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Fig. 1 Time series of All India annual and monsoon season rainfall

season rainfall has the smallest variability and the winters the highest, as evidenced 
by the coefficient of variation. 

Next, autocorrelations were computed for each of the four seasonal and annual 
precipitation data series. Autocorrelations were computed for lag-1 to lag-12 and the 
correlograms for the annual RF has been plotted in Fig. 2. To determine whether the

Table 1 Summary statistical properties of the data used 

Parameter Winters (JF) Summer 
(MAM) 

Monsoon 
(JJAS) 

Post-monsoon 
(OND) 

Annual 

Average rainfall 
(10th of mm) 

232.04 943.95 8481.62 1201.45 10,859.09 

Standard 
deviation (10th of 
mm) 

116.25 205.47 834.52 345.61 1013.68 

Coeff. of 
variation 

0.501 0.218 0.098 0.288 0.093 

Minimum value 
(10th of mm) 

30 552 6040 501 8109 

Maximum value 
(10th of mm) 

611 1665 10,202 2099 13,470 

Correlation at 
lag-1 

0.025 −0.077 −0.091 0.132 −0.009 



Trend Analysis of Long-Term Rainfall Data Series 291

-0.2

-0.1 

0 

0.1 

0.2 

1 2 3 4 5 6 7 8 9  10 11 12AC
F 

Lag 

All India Annual Rainfall 

Fig. 2 Autocorrelation plot for All India annual rainfall for lag-1 to lag-12

autocorrelation coefficients are significant or not, the limits are computed by Eq. (7) 
[1]:

{−1 − 1.645 
√

(n − 2)
}

n − 1
≤ R ≤

{−1 + 1.645 
√

(n − 2)
}

n − 1 
(7) 

If the autocorrelation coefficients are within the interval computed by Eq. (7), 
one can assume that the series does not display a significant autocorrelation. It is 
noticed that for the annual rainfall, all the autocorrelations are well within the limits 
(−0.1430 to 0.1292) given by Eq. 7. Hence, we can assume that the data series do 
not have a significant autocorrelation. 

6.1 Mann–Kendall Test and Sen’s Slope Estimation 

The MK test was performed on the annual series and the data series of three seasons. 
Trends were examined at 5% significance level in a two-tailed test for which the 
standard value of Z is ±1.96. No trend was found in the data of All India and in any 
of the seasons and the Z values were all within the interval −1.96 to +1.96. Further, 
the Sen’s slope was also computed as shown in Table 2. 

Table 2 Trend, MK Z-value, and Sen’s slope for All India–Annual and seasonal rainfall series 

Time scale Trend and Z-value Sen’s slope 

Trend Z-value 

All India–Annual No trend −0.5755 34.8750 

All India—March, April, May No trend 0.7526 6.6389 

All India—June, July, August, September No trend −1.2854 8.300 

All India—October, November, December No trend 0.5714 33.333
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6.2 Sen’s [25] Innovative Trend Analysis Method 

The innovative trend analysis method developed by Sen [25] and described earlier 
was used to find trend in the All India rainfall data series. In Fig. 3, RF data for 
All India have been partitioned in two parts and plotted as scatter diagram: X-axis 
has data series from 1871 to 1943 and data series for 1944–2016 is plotted on Y-
axis. To interpret and understand the trend, data have been qualitatively divided in 
three segments–low, medium, and high. The limits of the ranges are varying with the 
season since the magnitude of rainfalls are different in different seasons. 

Four graphs have been presented here: All India–annual rainfall; seasonal rainfalls 
for March, April, and May (MAM); June, July, August, and September (JJAS); 
and October, November, and December (OND). The interpretation of the graphs is 
summarized in Table 3. Broadly, in each case, three distinct trends are seen in three 
ranges of data, demarcated by rectangular boxes.

For All India RF, in the lower ranges (8000–10,000 mm), all the data fall above 
the 45° line implying that in the second half (1944–2016), RF show strong increasing 
trend compared to the first half. In higher range (12,000–14,000 mm), all the data fall 
below the 45° line showing a declining trend in this range. In the mid-range, data are

Fig. 3 Identification of trend in annual and seasonal series by use of [25] innovative trend analysis 
method 
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Table 3 Trends in All India and seasonal rainfalls 

Time scale Trend in 

Lower range Mid-range High range 

All India—Annual Strong increasing trend Mixed trend with bias 
toward increase 

Falling trend 

All India—March, 
April, May 

Strong increasing trend Falling trend Falling trend 

All India—June, July, 
August, September 

Strong increasing trend Mixed trend with bias 
toward increase 

Falling trend 

All India—October, 
November, December 

Strong increasing trend Mixed trend Falling trend

nearly evenly distributed around the 45° line. When the data points are away from 
the 45° line, it indicates stronger trends [25]. Interpretation on similar lines were 
made for the data of seasonal RFs and the outcomes are summarized in Table 3. 

As seen from the Table 3, in the lower ranges of RF values, strong increasing trend 
was noticed in the data for All India and the three seasons. Conversely, the data for All 
India and the three seasons show a falling trend. In the mid-range, mixed or falling 
trends were observed. One can conclude form this table that at the national scale, 
RFs in India will have lesser variability in future if the observed trends continue. It 
is also likely that in future, at the All India scale, lower values of RFs will likely 
increase and the higher values will fall. Note that this interpretation is not applicable 
to RF intensities which are expected to increase. 

A comparison of these results with the MK test brings out the utility of [25] 
innovative Trend Analysis Method. While the MK method did not detect any trend 
in the RF data series, the [25] method was able to reveal trends in various ranges of the 
data series. However, Serinaldi et al. [29] have raised concerns about this method, 
noting that this method suffers from many theoretical inconsistencies. Hence, the 
outcomes of this method should be viewed with caution. 

6.3 Results of Wavelet Decomposition for Trend Analysis 

A variety of wavelet forms have been developed and are used in studies, e.g., the Haar 
wavelet, the Daubechies wavelet. Here, the Daubechies (db) wavelet was employed 
since it is one of the most commonly used mother wavelets for analysis of hydro-
meteorological data [18] and is said to be ‘smooth’. Smooth wavelets were employed 
here since the trends in rainfall series are expected to be slow. Among the different 
forms of the Daubechies wavelet, db5 to db10 [18] were used in this study. The 
annual and seasonal time series were decomposed into approximate and detailed 
components. Each series was decomposed in one approximate (A3) and three detailed 
components (D1, D2, D3). A detailed component represents dyadic fluctuations at 2n 

level; here n is the level of the detailed component. For annual or seasonal series, D1,
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Fig. 4 Plot of original All India RF series and its components 

D2 and D3 represent 21 year (or 2 year), 22 year (or 4 year), and 23 year (or 8 year) 
period, respectively. Further, as evident from Fig. 4, the approximate component of 
transformation (A3 in this case) is a slowly varying component of the time series. 

To select among the best Daubechies wavelet from the group db5 to db10, the 
mean relative error (MRE) criterion was employed. The computed values of MRE 
are given in Table 4; minimum values of MRE for a particular data set are shown in 
bold numbers. 

The results of MRE calculations show that the db9 wavelet had the lowest value 
of MRE for All India annual RF whereas the db5, db7, and db9 had the lowest MRE 
values for data of pre-monsoon, monsoon, and post-monsoon seasons. 

Figure 4 shows the results of multi-resolution analysis (MRA) for time series 
of RF following the Daubechies wavelet transform. The top-most curve shows the 
original RF data series while the other four curves show the approximate and detailed 
components. The second graph in Fig. 4 shows the approximate component of the

Table 4 Computed values of MRE for All India and seasonal data series 

Time scale MRE for 

db5 db6 db7 db8 db9 db10 

All India—Annual 0.0685 0.0693 0.0680 0.0695 0.0675 0.0695 

All India—March, April, May 0.1721 0.1728 0.1725 0.1723 0.1730 0.1723 

All India—June, July, August, 
September 

0.0771 9.0780 0.0769 0.0777 0.0771 0.0776 

All India—October, November, 
December 

0.2323 0.2321 0.2321 0.2325 0.2318 0.2333 
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series, which is the portion of RF that is attributable to averages on a scale of 16 years. 
Very slow variation over a rather narrow range is seen for this component. Next 
three graphs are the detailed series, D1, D2, and D3. Since an MRA is an additive 
decomposition, the sum of the components will yield the exact values of the original 
data. 

Examination of the wavelet components helps in better appreciation of variabil-
ities. For example, the periods of high variabilities can be easily demarcated in the 
approximate series A3: between years 40 to 75 and between years 102 till the end. 
The MRA enables to identify some localized features of data that are of interest. 
For example, in the plot of the original RF data series (Fig. 4), short stretches of 
decreased variability can be identified: between years 18 to 32 and years 73 to 100. 
At shorter time scales, detailed D1 series shows high variabilities around year 50 
and year 100; detailed D2 series shows high variabilities around year 20 and year 
100; and detailed D3 series shows high variabilities around year 80 to 85. Of course, 
some of these variabilities can be seen in the original time series but the MRA has 
vividly highlighted these features. 

In addition to the results presented in Table 4, MK test was performed and Z value 
was computed for A3, A3 + D1 and A3 + D1 + D2 series. Based on Z values, A3 
series for monsoon season, and all the three series for post-monsoon seasons had 
statistically significant trend. 

7 Conclusions 

This paper presents results of trend analysis of observed long-term rainfall data series 
for India. Results of MK test showed no trend in the series of All India RF and RF 
for three seasons–pre-monsoon, monsoon, and post-monsoon. However, [25] innova-
tive trend analysis method revealed trends in various ranges of the data series. Lastly, 
multi-resolution analysis of the wavelet decomposed series highlighted periods of 
high variabilities in the approximate and detailed series. It also showed that some 
of the decomposed data series had statistically significant trend whereas the orig-
inal data did not show such trends in MK test. In the series generated by wavelet 
decomposition, the approximate series may be considered to represent ‘climate’ and 
the detailed ‘weather’. More research is needed to understand the implications of 
these findings and how these can be harnessed for better water management. Since 
the approximate component of All India monsoon series has a declining trend, there 
is good possibility that the entire series may show similar trend in future. Impact of 
falling rainfalls on the GDP of India and livelihood would be significant and would 
be important for planners. 

Changes in precipitation features, its average levels and ranges are important in 
planning adaptation programs and associated challenges. Precipitation trends are 
indicators of forthcoming changes in the hydrologic cycle in terms of variabilities 
and uncertainties and are helpful in preparing future projections. They also influence
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availability of surface and ground water, and probabilities of floods and droughts in 
future. 
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Spatio-Temporal Variability and Trend 
Analysis of Changing Rainfall Patterns 
Over Upper Bhima Sub-Basin, 
Maharashtra, India 

D. S. Londhe, Y. B. Katpatal, and M. S. Mukesh 

Abstract The objective of the research is to use spatio-temporal variability and trend 
analysis to examine how the rainfall pattern is changing in the Upper Bhima Sub-
basin of Maharashtra, India. To achieve this objective, rainfall data was analyzed for 
monsoon and annual timescale using CHRS precipitation data. The study considered 
five agro-climatic zones viz. Western ghat zone, Transition zone I, Transition zone 
II, Water scarcity zone and Assured rainfall zone within the watershed. This work 
analyses the pattern, distribution and trend behavior of rainfall for the period from 
1983 to 2018. Since more than 85% of precipitation occurs during monsoon, the 
analysis has been performed for monsoon season and annual average precipitation 
data. Statistical summary like the mean, standard deviation and coefficient of vari-
ation and inferential statistics like linear regression and standardized anomaly were 
utilized for the analysis. The Mann–Kendall non-parametric test is used to analyze 
the trend of precipitation in different agro-climatic zones and the Sen’s slope esti-
mator is used to analyze magnitude of the trend. Spatial variation of the rainfall is 
analyzed and studied in geographical information system (GIS) environment. The 
effect of changing climate and regional environment on the spatial and temporal vari-
ation of rainfall is clearly noticeable in this study. Climate change strongly affects 
the agriculture activities where irrigation mainly depends on monsoon precipitation. 
Hence, policymakers and stakeholders should give importance to proper design and 
adopting area specific approaches to reduce the adverse effects on crop production 
at regional level. Rainwater harvesting and advancement in present irrigation facil-
ities could be taken as best possible options in the areas having scarce and more 
inconsistent rainfall.
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1 Introduction 

Precipitation has a significant impact on economic development of the regional 
environment by maintaining physical sustainability in hydrological cycle and water 
resource. Precipitation is a variable climatic parameter in hydrological cycle. Spatial 
and temporal changes and long term fluctuations in precipitation affects the water 
storage of the region [1, 2]. Hydrological cycle is affected due to rise in anthropogenic 
activities in the natural environment. 

In recent years, agricultural growth and patterns is severely affected due to 
decrease in precipitation and its irregular behavior. Many research studies have been 
done to investigate the variability, distribution and trend behavior of rainfall at global, 
regional and at watershed level [3–8]. Amount of precipitation controls the ground-
water availability and surface soil moisture which plays a significant role in many 
agricultural activities [9]. Pattern behavior of the rainfall has been interconnected to 
physical climatology. 

Crop selection is primarily depends upon the total rainfall occurred in that area. 
Crop production also affects due to the uneven cropping patterns and farmer’s lack of 
knowledge in the field of meteorological parameters and climatology. Precipitation 
trend analysis particularly at regional level will be beneficial to farmers as well as 
commercial and physical planners and policy makers. The possible future hydro-
climatic changes at regional level can be predicted by analyzing the past trends. 

In this study, the changing characteristics of rainfall using spatio-temporal vari-
ability and trend behavior over Upper Bhima Sub-basin, Maharashtra, India has 
been analyzed. The study considered five agro-climatic zones viz. Western ghat 
zone (WGZ), Transition zone I (TR1), Transition zone II (TR2), Water scarcity zone 
(WSZ) and Assured rainfall zone (ARZ) within the sub-basin. The analysis has been 
done for monsoon season and annual average precipitation data since more than 85% 
of precipitation occurs during monsoon. 

2 Materials and Methods 

2.1 Study Area: Upper Bhima Sub-Basin 

The Upper Bhima sub-basin is situated between latitude 17.18 N to 19.24 N and 
longitude 73.20 E to 76.15 E (Fig. 1). Total area of the Upper Bhima sub-basin is 
46,066 km2. Elevation in the Western ghat zone reaches up to 1472 m from 160 m 
in the eastern parts of sub-basin [10]. The study area includes five agro-climatic
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Fig. 1 Location map of study area 

zones namely Western ghat zone (WGZ), Transition zone I (TR1), Transition zone 
II (TR2), Water scarcity zone (WSZ) and Assured rainfall zone (ARZ) within the 
sub-basin. Location map of the Upper Bhima sub-basin and its agro-climatic zones 
are shown in Fig. 1. 

2.2 Precipitation Data 

Precipitation data is obtained from Climate Forecast System Reanalysis (CFSR) 
developed at NOAA-NCEP [11] and Center for Hydrometeorology and Remote 
Sensing (CHRS). The spatial resolution of CFSR data is 0.350 and available from
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1979 to present. CHRS rainfall data is available from 1983 to present. Also, the 
Global Precipitation Climatology Project (GPCP) precipitation data product is used. 
GPCP Version 3 (GPCP V3.1) product is homogeneous precipitation data extracted 
using advanced merging techniques. 

The statistical summary for the region was calculated using precipitation data. 
Based on the obtained daily precipitation data, annual average and monsoon rainfall, 
standard deviation and coefficient of variation (CV) were calculated. The CV of 
yearly rainfall data indicates the climate risk which signifies potential fluctuations in 
crop production [12]. 

2.3 Mann–Kendall Test (MK) and Sen’s Slope Estimator 

The non-parametric Mann–Kendall (MK) test [13, 14] is used to study the precipita-
tion trends and the Sen’s slope estimator [15] is used to study the magnitude of that 
trend. The MK test is used to analyze the annual rainfall and monsoon rainfall. Tests 
have been considered at 5% significance level, i.e., significance levels at α = 0.05 is 
considered for which Z = 1.96. MK test is applied to identify the trend in different 
climatological and hydrological time series. The MK test statistic S and standard 
normal test statistic Z were calculated as: 

S = 
N−1∑

i=1 

N∑

j=i+1 

sgn
(
X j − Xi

)
(1) 

where N is total number of data samples; 
Xi and Xj are time series observed data. 
The σ statistic is approximately normally distributed which is calculated using 

mean and variance as: 

σ 2 = n(n − 1)(2n + 5) 
18 

(2) 

The standardized normal deviate Z statistics is calculated as: 

Z = 
⎧ 
⎨ 

⎩ 

s−1 
σ

if s > 0; 
0 if  s = 0;
s+1 
σ

if s < 0 
(3) 

The positive Z value indicates increasing trends and negative Z value indicates 
decreasing trends. It is important to analyze the results of MK trend test and quantify 
the magnitude of the trend of time series data. Magnitude of the trend has been 
quantified by using the Sen’s slope estimator [15]. In the present study, the annual 
and monsoon rainfall data time series was analyzed.
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Ti = X j − Xk 

j − k for i = 1, 2, . . .  N ( j > k) (4) 

where Ti is Sen’s Slope, Xj and Xk are observational at time j and k, respectively, 
and the median of observation values of Ti is represented as Sen’s estimator of slope 
given as: 

Qmedian =
{
T (N+1) 

2 
if N is odd; 

T N 
2 
+T (N+2) 

2 
2 if N is even 

(5) 

The value of Qmedian replicates the data trend direction and its value indicates the 
magnitude of slope of the trend. 

2.4 Standard Deviation (S) and Coefficient of Variation (CV) 

Standard Deviation, S =
/∑n 

i=1(x − x) 
n 

(6) 

where S is standard deviation and n is total number of variables. 
The Coefficient of Variation (CV) is an expression used to convert the standard 

deviation into % of the mean. CV shows the rainfall variation for annual and monsoon 
rainfall in study area. 

Coefficient of Variation, CV = S 
x 
× 100 (7) 

3 Results and Discussion 

3.1 Long Term Mean Monthly Rainfall Distribution 

On the basis of 35 years average monthly, monsoon and annual rainfall has been 
estimated for all the five agro-climatic zones. Long term mean monthly and annual 
rainfall distribution from 1983 to 2018 is summarized in Table 1. Upper Bhima sub-
basin receives maximum amount of rainfall in June, July, August and September, 
i.e., in monsoon period. The maximum average annual rainfall occurs in WGZ and 
TR1 which is 1380.12 mm and 1359.97 mm, respectively, while minimum rainfall 
occurs in ARZ and WSZ which is 1204.41 mm and 974.47 mm, respectively. The 
location of WSZ and ARZ in study area is located as rainfall shadow area of WGZ 
and TR1. June, July, August and September months are considered for the Monsoon 
period.
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Table 1 Long term mean monthly and annual rainfall (mm) distribution in Agro-climatic zones 
(1983–2018) 

Jan. Feb. Mar. Apr. May Jun. Jul. 

WGZ 2.48 1.89 8.00 5.95 29.76 256.37 418.58 

TR1 2.89 2.37 8.40 5.39 27.98 254.37 414.40 

TR2 2.32 1.91 10.14 7.36 27.32 224.67 402.02 

WSZ 2.89 2.53 10.86 14.60 35.84 191.39 337.61 

ARZ 2.34 2.69 10.08 16.12 36.86 155.58 232.54 

Aug. Sept. Oct. Nov. Dec. Annual 

WGZ 293.28 229.92 103.00 25.38 5.51 1380.12 

TR1 287.99 226.04 100.50 24.16 5.48 1359.97 

TR2 293.82 232.64 95.54 22.05 5.33 1325.11 

WSZ 276.00 217.49 92.01 17.87 5.32 1204.41 

ARZ 216.49 192.65 89.09 14.44 5.59 974.47 

3.2 Temporal Variation and Trends of Rainfall 

Temporal variation of the annual rainfall for the period from 1983 to 2018 is shown 
in Fig. 2. The lowest average annual rainfall was recorded in WGZ (870.31 mm) 
and TR1 (868.69 mm) in 2012 and for TR2 (820.69 mm), WSZ (748.15) and 
ARZ (654.61) lowest rainfall occurred in 2018. The highest average annual rain-
fall was recorded in WGZ (1856.55 mm) and TR1 (1846.78 mm) in 2006 and TR2 
(1780.51 mm) and WSZ (1618.51 mm) in 2016 and ARZ (1396.47 mm) in 1988. 
The line chart shown in Fig. 2 also reveals that WSZ and ARZ receive lowest rainfall 
and WSZ and TR1 receives highest rainfall in the study area. 

The linear regression analysis indicate the decreasing trend at the rate of − 
7.0793 mm/year, −4.9842 mm/year, −7.0336 mm/year, −8.7423 mm/year and − 
4.6402 mm/year for WGZ, TR1, TR2, WSZ and ARZ, respectively.

Fig. 2 Temporal variation of rainfall (1983–2018) 
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Table 2 Standard deviation, coefficient of variation, MK Test Statistic and Sen’s slope analysis of 
monsoon and annual rainfall (at 5% significance level) 

Agro-climatic zones Monsoon rainfall 

Standard deviation Coefficient of 
variation (%) 

MK test statistic Sen’s slope 

WGZ 210.577 21.7 −2.25 −7.937 

TR1 201.687 21.1 −1.95 −6.595 

TR2 190.431 20.7 −2.27 −7.447 

WSZ 157.5 19.6 −2.85 −7.912 

ARZ 134.557 22.3 −1.81 −4.045 

Annual rainfall 

WGZ 256.4355 18.6 −1.39 −6.888 

TR1 244.2656 18.0 −1.11 −4.624 

TR2 254.4257 19.2 −1.33 −7.16 

WSZ 227.5544 18.9 −2.55 −9.89 

ARZ 196.2324 20.1 −1.51 −5.323 

Bold values in table indicate statistically significant values 

The statistical parameters like standard deviation, coefficient of variation, MK 
test statistics and Sen’s slope are illustrated in Table 2. From the results shown in 
Table 2, the results of MK test showed a statistically significant downward trend in 
annual and monsoon rainfall. The results also revealed a significant downward trend 
in WGZ, TR1 and TR2 zones and non-significant downward trend in WSZ and ARZ 
at 95% significant level for annual rainfall over the years. 

The results of Sen’s slope estimator identifies the maximum rate of average 
decrease is in WGZ for monsoon rainfall (−7.937 mm/year) and WSZ for annual 
rainfall (−9.89 mm/year) in the study area. 

The higher CV value indicates higher variability of the sample data. The results 
indicate that CV is higher in ARZ as compared to other zones for both monsoon and 
annual rainfall which are 22.3% and 20.1%, respectively. The higher CV value in 
this zone denotes the region’s irregular and inter-annual changing rainfall patterns. 
Lowest CV for monsoon rainfall is in WSZ (19.6%) and for annual rainfall is in TR1 
(18.0%). 

3.3 Spatial Variation of Rainfall 

The regional level climatic parameters affect the global climatic conditions. Unique 
geographical features that control regional level environment are locations and prox-
imity to water bodies, arid and semi-arid areas, forests, land use land cover classes, 
lakes, rivers, urban heat islands, etc.
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Fig. 3 Spatial variation of rainfall (mm/year) over Upper Bhima Sub-basin for a 1983–1990; b 
1991–1995; c 1996–2000; d 2001–2005; e 2006–2010; f 2011–2018 

Spatial variation of rainfall (mm/year) over Upper Bhima Sub-basin is shown in 
Fig. 3. The average annual rainfall values are divided into sub-periods from 1983 to 
1990, 1991–1995, 1996–2000, 2001–2005, 2006–2010 and 2011 to 2018. The year 
2001 to 2005 and 2010 to 2018 are received lowest rainfall while 1983–1990, 1991– 
1995 and 2006–2010 received higher rainfall. Spatial distribution clearly indicates 
that the WGZ, TR1 and TR2 receive higher rainfall as compared to WSZ and ARZ 
which are rainfall shadow zone. 

3.4 Deviation in Rainfall from Mean 

It is said to be inadequate or excessive rainfall for the year when annual rainfall 
deviates from the average rainfall of the tested years. The deviation of rainfall from 
average rainfall over the study area for annual timescale and for monsoon rainfall 
is shown in Fig. 4a and Fig. 4b, respectively. During the study period of 35 years 
(1983–2018), 17 years recorded below average annual rainfall (Fig. 4a) and 19 years 
recorded below average monsoon rainfall (Fig. 4b). The study of deviation of rainfall 
from mean is analyzed for annual timescale and also for monsoon rainfall only.

There are irregular short periods of dry phases at the initial study period. Regular 
negative deviation from mean, i.e., deficient rainfall has been observed from 2000. 
First dry period is during 1985 and 1986 which receives 45.188 mm and 82.432 mm 
deficit rainfall than mean rainfall, respectively. The major continuous dry period is 
during 2000 to 2005 and 2011 to 2015. This is also ascertained by the results shown 
in spatial variation of the annual average rainfall for 2001–2005 (Fig. 3d) and 2011– 
2018 (Fig. 3f) as it evident. Deficit rainfall value during 2000 to 2005 reaches up to 
392.818 mm and during 2011 to 2015, deficit rainfall reaches up to 403.118 mm. The
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Fig. 4 Rainfall deviation from mean over the study area for a annual average rainfall and b monsoon 
rainfall

maximum negative deviation occurs in 2018 which is 424.314 mm and maximum 
positive deviation occurs in 2016 which is 376.412 mm. 

The results of the deviation of rainfall from mean during years 1986, 1987, 1992, 
1993, 1999, 2009 and 2013 for monsoon and annual period showing contrasting 
results which indicates that the amount and period of rainfall is altered in these years. 
The average negative deviation is of −177.459 mm and average positive deviation is 
177.458 mm for annual rainfall while average negative deviation is of −190.561 mm 
and average positive deviation is 212.981 mm for monsoon rainfall. 

4 Conclusions 

The analysis was carried out to study the rainfall distribution, variation and trend 
of rainfall over five agro-climatic zones in Upper Bhima sub-basin for 1983–2018 
(35 years). The MK non-parametric test was used to analyze the trend and Sen’s 
slope estimator was used to analyze the magnitude of the trend in rainfall data. A 
declining trend of rainfall was observed in all five zones for monsoon rainfall and
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annual rainfall data. The monsoon rainfall (June–September) contributes 85.50% 
in annual rainfall. The ARZ has highest coefficient of variation for both monsoon 
rainfall and annual rainfall which are 22.3% and 20.1%, respectively. WSZ and ARZ 
receive lowest rainfall (1204.41 mm/year and 974.47 mm/year) and WGZ and TR1 
receives highest rainfall (1380.12 mm/year and 1359.97 mm/year). 

MK non-parametric test and Sen’s slope estimator also identifies the decreasing 
trend in monsoon and annual rainfall. Deviation from the mean rainfall results are 
also showing the major dry phases in the rainfall are occurred in period 2000–2004 
and 2011–2018. These distractions and change in patterns and irregularities in the 
rainfall are due to changes in the weather and climate at regional level. 

The areas having high CV must balance it by developing new dams, reservoirs 
and other irrigation facilities which will improve crop production in that area. The 
research studies on rainfall trend analysis and its spatio-temporal variation at regional 
level can be beneficial for the planning of agricultural activities and management of 
water resources available. 
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A Non-parametric Study 
on the Precipitation Trend in the Upper 
Brahmaputra River Basin, India 

Shehnaj Ahmed Pathan, Subhrajyoti Deb, and Briti Sundar Sil 

Abstract The Majuli Island, due to its geographical location and topography, is 
under constant risk of rainfall-driven flash floods in the Brahmaputra River, which 
cause colossal damages to life and properties almost yearly. In this view, a study on 
the temporal variations in precipitation at the local scale is necessary for mitigating 
such flood hazards. The annual and seasonal rainfall trends in the region of the upper 
Brahmaputra River basin up to Majuli River Island, India, are investigated in this 
study using a 0.25° × 0.25° resolution gridded precipitation dataset for the period 
1979–2014 obtained from Climate Forecast System Reanalysis (CFSR) database. 
This study aims to find out the precipitation trend’s direction and magnitude and 
the precipitation time series trend using the non-parametric Mann–Kendall trend 
test and Sen’s slope estimator. The annual precipitation trend shows no negative or 
positive statistically significant trend in the study area. In contrast, the winter season 
has shown an increasing trend (which is not statistically significant at a 0.05 level of 
significance. Interestingly the monsoon season revealed a significant trend with Sen’s 
slope values of 1.78 mm/year from 1998 to 2014. This study’s findings may benefit 
other researchers and play a significant role in flood control and flood management 
in this area. 

Keywords Precipitation · Brahmaputra basin · Mann–Kendell test · Sen’s 
estimator test · Majuli River Island
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1 Introduction 

Hydrologists say flood occurs due to a stationary, independent, and identically 
distributed random process [1]. However, growing evidence of trends and long-term 
variability in the stream flow can be seen at several timescales [2]. Porporato and 
Ridolfi [3] showed that a weak trend might strongly influence the probability of 
flood exceedance. Precipitation is one of the essential hydro-meteorological factors. 
Changes in rainfall can cause a flood, drought, stream flow, agricultural productivity, 
soil erosion, etc. These spatial and temporal precipitation trends are essential for 
watershed management planners. The rainfall received in a watershed is crucial in 
calculating stream flow, soil erosion, and floods. Global climate change can affect 
long-term precipitation variability, water availability, and water scarcity occurrences 
of droughts and floods. In India, the increase in annual floods in the upper Brahma-
putra River basin provides a key example of such a concern. The dynamics of the river 
Brahmaputra and the extreme floods are due to the snowmelts during the summer and 
spring seasons and the large-scale climate patterns [4]. Some scholars researched the 
variations and trends in temperature and rainfall around the world [5–11]. Using 75 
rain gauge sites in North Carolina, Boyles and Raman [12] forecasted precipitation 
and temperature trends on seasonal and yearly scales from 1949 to 1998. Raziei 
et al. [13] looked at the temporal changes in yearly rainfall in central and east Iran 
from 1965 to 2000 and found no evidence of climate change throughout that period. 
Kumar et al. [14] utilized the modified Mann–Kendall (MK) test and Sen’s slope 
(SS) to observe annual precipitation spatial and temporal changes in 78 sub-districts 
(Tehsils) over 30 years from 1981 to 2020. Annual and southwest monsoon rainfalls 
show an upward tendency over time. Annual and southwest monsoon rains are found 
increasing in all of the tehsils. Numerous statistical approaches have been developed 
and deployed to detect trends and shifts in hydro-meteorological variables [15–18]. 
There are two numerous statistical methods (parametric and non-parametric) gener-
ally used by researchers. Out of these two methods, the non-parametric method is 
preferred over parametric methods [19]. 

The significance of trends in precipitation time series is quantified by using the 
most commonly used non-parametric Mann–Kendall (MK) statistical test [20, 21]. 
The MK test cannot determine the quantity of the trend’s magnitude. For this purpose, 
the researchers use another non-parametric approach referred to as Sen’s slope (SS) 
to compute the slope or magnitude of the trend [22]. Due to its geo-ecological insta-
bility, tactical position in the southern Himalayan land and international borders, 
transboundary water bodies, and fragile social economy, the Indian part of the upper 
Brahmaputra River basin is highly vulnerable to climate change. The research area 
is sub-tropical, and the terrain pattern and geomorphology change fast from one 
location to the next. As a result, a trend analysis study for the upper Brahmaputra 
River basin in India, up to Majuli Island, is taken, using precipitation as a meteo-
rological variable for ten gauging stations scattered throughout the watershed. The 
primary goal of this study is to estimate the trend of a meteorological variable using 
the Mann–Kendall (MK) statistical test and Sen’s slope (SS) estimator and identify



A Non-parametric Study on the Precipitation Trend in the Upper … 313

possible changes on an annual and seasonal basis. The study’s findings will contribute 
to a better understanding of regional hydrologic behavior in the study area over the 
last several decades. 

2 Study Area and Data Source 

2.1 Upper Brahmaputra River Basin 

This study has been conducted in the upper Brahmaputra River basin, India, down-
stream of Majuli River Island. The study area lies between 25° N to 30° N and 
92°30' E to 97°30' E in northeastern India (Fig. 1). This study area covers Nagaland, 
Arunachal Pradesh, and Assam, India. The total area of the study area is approx-
imately 103,459 km2. The Brahmaputra River rises in the Himalayan Mountains 
and flows east through southern China into eastern India [23]. The upper part of 
the watershed receives snowmelt discharge before it enters India [24]. The land 
slopes are towards the downward direction from the north to the south, containing 
the Himalayan region on the north side. High seasonal flow, sediment transport, and 
channel configuration characterize the basin [25]. The geography of the watershed 
is characterized by the alpine mountain system of the Himalayas and the tropical 
monsoon climate. The southwest monsoon is responsible for causing the bulk of 
rainfall, which is heavy annual rainfall over the plain areas, followed by moderate 
rain in hilly regions [26]. Variation of rainfall is seasonal. This study area has a wide 
spatial variation of temperatures that range from negative values as a minimum in 
the Himalayan region to a maximum of 35–39 °C during summer in the plain areas. 
Figure 1 depicts a map of the study area’s location.

2.2 Data Used 

The precipitation datasets of ten stations across the study area are analyzed from 
1979 to 2014. Daily precipitation data for 36 years is collected from the Climate 
Forecast System Reanalysis (CFSR) database. The stations are S-1, S-2, S-3, S-4, 
S-5, S-6, S-7, S-8, S-9, and S-10. Figure 2 shows all rain gauge stations, including 
Brahmaputra River streams. Each station’s precipitation on a seasonal and annual 
scale is calculated by averaging the daily values. Table 1 shows the details of all the 
stations within the study area.
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Fig. 1 Location map of the study area

3 Methodology 

Trend analysis provides information on the weather variables that can be used for 
future forecasting. Many techniques for analyzing heterogeneous data series have 
been developed by researchers and can be used appropriately to analyze weather 
data [27, 28]. Generally, there are two types of trend analysis for hydrologic time 
series, i.e., parametric and non-parametric methods. The data in the non-parametric 
method is independent of its distribution, whereas the data in the parametric method 
must be dependent and normally distributed.
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Fig. 2 Rain gauge station map showing Brahmaputra River streams 

Table 1 Physical overview of the rainfall stations 

Sl. No. State Station Latitude Longitude Altitude (m) 

1 Nagaland S-1 25.76 93.75 560 

2 Nagaland S-2 25.76 94.06 958 

3 Assam S-3 26.38 94.06 194 

4 Assam S-4 27.00 94.38 78 

5 Arunachal Pradesh S-5 27.32 93.44 1620 

6 Arunachal Pradesh S-6 27.63 95.94 156 

7 Arunachal Pradesh S-7 28.26 93.44 3213 

8 Arunachal Pradesh S-8 28.26 96.88 3996 

9 Arunachal Pradesh S-9 28.88 94.38 3347 

10 Arunachal Pradesh S-10 28.88 96.25 3795
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3.1 Selection of Input Parameters 

Mann–Kendall [20, 21] and Sen’s slope estimator are two popular non-parametric 
methods discussed in this paper [22]. The MK test is a non-parametric test for 
detecting trend in a time series. The MK test can detect trend in a time series in 
such a way that the distribution of the time series has no effect on the results. Before 
applying this test, one has to make sure that the data series is free of any kind of 
serial correlation. The test statistics is calculated as 

S = 
n−1∑

i=1 

n∑

j+1 

sign
(
x j − xi

)
(1) 

where n denotes the number of records, xi and x j represent the data values in time 
series i and j(j > i), respectively, and in Eq. (2), sgn

(
x j − xi

)
denotes sign function 

as 

sign
(
x j − xi

) = 

⎧ 
⎨ 

⎩ 

+1, if
(
x j − xi

)
> 0 

0, if
(
x j − xi

) = 0 
−1, if

(
x j − xi

)
< 0 

(2) 

The variance is computed as 

VS = 
n(n − 1)(2n + 5)

∑m 
k=1 tk(tk − 1)(2tk + 5) 
18 

(3) 

In Eq. (3), n denotes the total number of data points, m the number of coupled 
groups, and tk denotes the number of ties of extent k. A tied group is a collection of 
sample data with the same value. When there are more than ten data points (n > 10), 
the standard normal test statistic ZS is calculated using Eq. (4): 

ZS = 

⎧ 
⎪⎨ 

⎪⎩ 

S−1 
V

√
S 
, if S > 0 

0, if S = 0 
S+1 
V

√
S 
, if S < 0 

(4) 

Positive ZS values indicate increasing trends, while negative ZS values indicate 
decreasing trends. Trends are tested at the α significance level. The null hypothesis 
is rejected when |ZS| > Z1− α 

2 
, and a significant trend exists in the time series Z1− α 

2 

is obtained from the standard normal distribution table. The MK test is used in this 
analysis to determine whether a trend in the precipitation time series is statistically 
significant at significance levels of α = 0.01 (or 99% confidence intervals) and α = 
0.05 (or 95% confidence intervals). The null hypothesis of no trend is rejected at the 
5 and 1% significance level if |ZS| > 1.96 and |ZS| > 2.576, respectively. 

The Sen’s slope (SS) test is non-parametric regression analysis and estimates 
whether y values increase or decrease over the period. This test is used to determine
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the magnitude of the trend in a hydro-meteorological time series. The test computes 
the difference in signs between observed and estimated data. Furthermore, it is used 
to determine whether or not a trend exists in the datasets. The test’s advantage is that 
missing values are allowed here, and the data do not fit into any specific distribution. 
It also allows a value to be less than, greater than, or equal to a new value, data 
independence, and the time series to remain constant in the original and transformed 
units. From Sen’s equation, a parameter called slope estimator Qi is also used [22]. 
Qi defines the median of all possible pair combinations for the entire set of data 
points. Positive values of Qi indicate ‘upward trend’ (increasing values with time), 
while negative values indicate ‘downward trend’ (decreasing value with time) [29]. 
Here, the slope of the trend (Qi) is calculated as 

Qi =
(
x j − xk

)

j − k 
(5) 

where i = 1, 2, …, N. The  terms  xj and xi indicate data values at time j and k(j > k), 
respectively. 

The median of these N values of Qi is represented as Sen’s estimator of the slope. 
Sen’s estimator is calculated as 

Qmed = 

⎧ 
⎨ 

⎩ 

Q N + 2/2 
If N appears to be odd 

Q N/2 
+ Q(N + 2)/2 

If N appears to be even 
(6) 

Qmed indicates the slope and gradient of the data trend. The significance level 
of Qmed should be chosen specifically to avoid zero median slopes, and then the 
non-parametric test can be used to obtain the true slope. When Qmed is positive, it 
indicates an upward or increasing trend and vice versa in the case of negative value 
[30]. 

4 Results and Discussions 

The precipitation data is derived from ten gauging stations located throughout the 
basin, each with a consistent dataset and a long enough time span. The Mann–Kendall 
test (MK) and Sen’s slope (SS) yield seasonal and annual trend analyses, shown in 
Tables 2, 3 and 4. Sen’s slope estimator value, denoted by a star (*) in their respective 
tables, indicates a significant trend. For the two-sided test, the level of significance 
is set at 0.05. Based on this significance level, normalized ZS statistic value greater 
than or less than 0 indicates an upward or downward trend, respectively.

First of all, MK and Sen’s slope (SS) tests are done for maximum precipitation 
in the time series 1979–2014 for both annual and seasonal cycles, along with the 
Z-statistics and magnitude of the trend (Table 2). All tests are considered at a 5% 
level of significance. The only positive significant trends are found in the annual
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Table 2 Mann–Kendall test and Sen’s Slope estimator test results for Pmax during 1979–2014 

Station Test 
statistics 

Trends 

Winter 
(Dec–Feb) 

Pre-monsoon 
(Mar–May) 

Monsoon 
(Jun–Aug) 

Post-monsoon 
(Sep–Nov) 

Annual 

S-1 ZS 1.78 1.43 3.19* 1.73 1.72 

Qmed 0.021 0.016 0.028* 0.005 0.003 

S-2 ZS 1.72 1.52 3.40* 3.62 1.07 

Qmed 0.015 0.012* 0.070* 0.028 0.001 

S-3 ZS 1.50 1.50 1.82* 2.68 0.90* 

Qmed 0.015 0.011 0.027* 0.024 0.046 

S-4 ZS 2.33 2.56 4.46* 2.79 1.01 

Qmed 0.031 0.043 0.036* 0.032 0.003 

S-5 ZS 1.74 1.65 2.89 1.96 1.01 

Qmed 0.011 0.017 0.074 0.072 0.007 

S-6 ZS 2.43 0.87 2.73 2.59 1.02 

Qmed 0.028 0.004 0.012 0.023 0.008 

S-7 ZS 2.46 1.63 3.38 3.12 1.46 

Qmed 0.031 0.017 0.052 0.028 0.009 

S-8 ZS 1.86 1.56 4.46* 3.45 0.19 

Qmed 0.063 0.017 0.087* 0.075 0.004 

S-9 ZS 1.60 1.20 3.02* 2.09 1.20* 

Qmed 0.035 0.001 0.080* 0.076 0.071* 

S-10 ZS 2.17* 1.56 3.38 1.14 0.31 

Qmed 0.023* 0.011 0.030 0.078 0.073 

ZS standard normal test statistics; Qmed SS estimator, (*) significant trend at 0.05 level of 
significance

and seasonal rainfall data. As seen in Table 3, the significant increasing trends are 
found in all seasons except the post-monsoon season. The monsoon time series for 
the entire study area shows significantly increasing trends except for S-5, S-6, S-7, 
and S-10, which exhibit no significant trend. The stations RS-3 and RS-9 show a 
slight change in trend with a magnitude of 0.90 mm/year and 0.071 mm/year in case 
of annual rainfall. Only S-10 shows a significant change of 0.023 mm/year in the 
winter season, whereas no negative trend is found in maximum precipitation (Pmax) 
at any station. 

The results of the MK and SS tests for minimum precipitation are presented in 
Table 3. The  Z-statistics for minimum precipitation (Pmin) in the time series for annual 
and seasonal cycles is done along with the magnitude of the trend. A positive trend is 
identified using the MK test in the annual and seasonal rainfall data. The results show 
significant increasing trends which are found in monsoon rainfall time series for the 
entire study area except for S-5, S-6, and S-7, which exhibit a significantly increasing
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Table 3 Mann–Kendall test and Sen’s Slope estimator test results for Pmin during 1979–2014 

Station Test 
statistics 

Trends 

Winter 
(Dec-Feb) 

Pre-monsoon 
(Mar-May) 

Monsoon 
(Jun-Aug) 

Post-monsoon 
(Sep-Nov) 

Annual 

S-1 ZS 1.48 1.56 3.45* 1.57 1.44 

Qmed 0.041 0.023 0.058* 0.005 0.045 

S-2 ZS 0.52 1.68 3.45* 3.65 1.02 

Qmed 0.025 0.036 0.056* 0.008 0.014 

S-3 ZS 2.50 1.63 4.78* 2.35 0.25 

Qmed 0.005 0.003 0.032* 0.008 0.074 

S-4 ZS 2.77 2.96 4.62* 2.74 1.73 

Qmed 0.042 0.055 0.086* 0.036 0.058 

S-5 ZS 0.44 1.60 3.35 1.95 2.44 

Qmed 0.002 0.005 0.005 0.014 0.033 

S-6 ZS 2.85* 0.56 2.53 2.35 1.65 

Qmed 0.054* 0.009 0.057 0.007 0.015 

S-7 ZS 2.45 1.53 3.33 3.74 1.35 

Qmed 0.022 0.036 0.038 0.045 0.052 

S-8 ZS 1.86 1.60 4.63* 3.02 0.02 

Qmed 0.034 0.070 0.089* 0.074 0.035 

S-9 ZS 1.63 1.41 3.97* 2.35 1.47 

Qmed 0.003 0.032 0.035* 0.025 0.023 

S-10 ZS 2.98* 1.75 3.74* 1.85 0.33 

Qmed 0.003* 0.005 0.002* 0.0052 0.025 

ZS standard normal test statistics; Qmed SS estimator, (*) significant trend at 0.05 level of 
significance

trend. In the winter season, only two stations S-6 and S-10 show a significant trend in 
minimum precipitation at 0.054 and 0.003 mm/year. In contrast, no negative trends 
are found in minimum precipitation (Pmin) at any station. 

In Table 4, the MK test and the Z-statistics results reveal the trend in the time series 
for annual and seasonal cycles for average precipitation (Pavg) with the magnitude of 
the trend (SS). Both positive and negative trends are found for average rainfall in the 
annual and seasonal rainfall data. A significant increase in trends is found in monsoon 
rainfall time series for the stations S-2, S-3, S-7, and S-9, which exhibit a significantly 
increasing trend with values of 1.048 mm/year, 0.912 mm/year, 1.114 mm/year, 
and 0.774 mm/year, respectively. Five stations, S-2, S-3, S-4, S-7, and S-9, show 
significant negative precipitation trends in the post-monsoon season with magnitudes 
of −0.932 mm/year, −0.874 mm/year, −0.702 mm/year, −0.896 mm/year, and − 
0.86 mm/year, respectively. The precipitation during the winter, pre-monsoon, and 
annual seasons shows no significant trend change in all stations.
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Table 4 Mann–Kendall test and Sen’s Slope test results for Pavg during 1979–2014 

Station Test 
statistics 

Trends 

Winter 
(Dec–Feb) 

Pre-monsoon 
(Mar–May) 

Monsoon 
(Jun–Aug) 

Post-monsoon 
(Sep–Nov) 

Annual 

S-1 ZS 0.56 0.15 3.36 1.02 1.53 

Qmed 0.035 0.033 1.255 0.841 0.325 

S-2 ZS 0.54 0.73 3.52* −1.35 1.53 

Qmed 0.014 0.168 1.048* −0.932 0.350 

S-3 ZS 0.36 0.26 4.67* −1.02 1.68 

Qmed 0.036 0.155 0.912* −0.874 0.850 

S-4 ZS 0.74 0.25 4.02 −0.75 1.58 

Qmed 0.098 0.192 1.73 −0.702 0.865 

S-5 ZS 0.73 0.89 3.15 0.56 0.53 

Qmed 0.041 0.328 1.165 0.530 0.587 

S-6 ZS 0.96 0.28 1.72 0.46 0.005 

Qmed 0.053 0.320 1.350 0.325 0.535 

S-7 ZS 0.25 0.015 3.45* −1.14 1.57 

Qmed 0.046 0.065 1.114* −0.896 0.74 

S-8 ZS 0.35 0.55 1.32 0.66 1.007 

Qmed 0.045 0.038 1.053 0.356 1.6 

S-9 ZS 0.75 0.97 4.35* −1.63 0.75 

Qmed 0.035 0.539 0.774* −0.86 0.002 

S-10 ZS 0.36 0.19 0.35 1.36 1.05 

Qmed 0.095 0.118 0.463 0.958 0.430 

ZS standard normal test statistics; Qmed SS estimator, (*) significant trend at 0.05 level of 
significance

5 Conclusions 

Precipitation trend analysis is a prerequisite for rainfall forecasting of any region, 
and the results of trend analysis are helpful in determining the probable maximum 
precipitation (PMP) maps. The annual and seasonal rainfall trends in 36 years of 
(1979–2014) data series in the region of the upper Brahmaputra River basin up to 
Majuli River Island, India, are investigated in this paper. Precipitation data totaling 
ten meteorological stations are applied to the non-parametric Mann–Kendall test, 
Sen’s slope test to analyze the precipitation trends. The major conclusions derived 
from the study are listed below: 

• MK and Sen’s slope tests are useful for significant trend detection and trend 
magnitude analysis, and these tests provided valuable results for the selected 
study area.
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• The monsoon precipitation series is found to be increasing trends in the majority 
of the stations. The majority of the stations have shown statistically significant 
trends in all the minimum, maximum, and average precipitation conditions. 

• The trend in the pre-monsoon season is showing no clear pattern in all the 
minimum, maximum, and average rainfall series. No variation in the rain is 
expected in hilly regions of the study area. 

• The bulk of the upper Brahmaputra area is identified as an increasing trend in the 
monsoon season for the period 1979–2014. 
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A Spatio-temporal Analysis of Rainfall 
Trends and Variability Due to Changing 
Climate in the Central Zone of Himachal 
Pradesh, India 

Suman Kumari and Vijay Shankar 

Abstract The drastic change in precipitation as a result of climate change is altering 
the pattern of stream flows and demands, as well as the spatial and temporal distribu-
tion of runoff, soil moisture, and groundwater reserves leading to hazardous events 
like landslides, floods, drought, etc. Trend analysis has proved to be a potential tool 
by providing useful information on the possibility of changes of rainfall trends in 
future. The current study uses the Statistical Downscaling Model-Decision Centric 
(SDSM-DC) and GIS to evaluate the imminent regional and temporal variations 
in rainfall caused by various climatic conditions. The study area considered for this 
study is central zone of Himachal Pradesh. To evaluate rainfall patterns and their reac-
tions to climate variability, seven rainfall stations in the study area were selected. 
The study concludes that the changing climate has resulted in a significant change 
in precipitation patterns when compared to previous climatic conditions. Numerous 
natural hazards, including floods, landslides, cloudbursts, etc., are occurring in the 
area as a result of the rate of change in seasonal and yearly precipitation over the 
years as indicated by precipitation trends. Changes in the pattern and an increase in 
pre-monsoon precipitation are additional significant impacts of climate change. 
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1 Introduction 

Precipitation is a vital part of the hydrologic cycle that gets altered considerably with 
the varying climatic conditions. Climate change has had a substantial impact on the 
frequency and intensity of precipitation across the globe [1–5]. The study of current 
susceptibility and current climate variability is the first step towards future climate 
change adaptation [6]. Spatial and temporal variability of rainfall is a significant factor 
in water resources planning and management, hydrological modelling, agriculture 
planning, forecasting, and mitigation of natural hazards such as floods, drought, 
landslides, and cloud burst. Several recent studies conducted to examine extreme 
rainfall patterns found significant variation in rainfall events throughout India [7–11]. 

Globally, it is common practice to utilise general circulation models (GCMs) to 
analyse how climate change may affect extreme precipitation situations in future. 
The GCMs, however, lack the resolution needed to provide accurate climatic projec-
tions at the temporal and spatial scales required for hydrological assessments [12]. 
Downscaling strategies can be used to bridge the gap between local and regional 
climates (predictor and predictand) [13]. There are numerous downscaling methods 
which are often categorised into statistical and dynamical approaches [14], and statis-
tical approaches are the least computationally demanding. GCMs and downscaling 
techniques have improved throughout time, increasing their usability for end users 
looking to study the effects of climate change. To find connections between meteoro-
logical variables and the outputs of large-scale GCMs, several statistical downscaling 
methods have been created, including transfer functions, weather typing approach, 
and SDSM. 

The Statistical Downscaling Model-Decision Centric (SDSM-DC) is a simple 
programme for constructing future climatic data sets from GCM data using statistical 
downscaling. It may also be used as a decision support system (DSS) to create believ-
able weather series. The SDSM-DC is a transfer function-based model that represents 
local weather through seven primary processes, including quality control and data 
processing, predictor variables screening, model calibration, weather creation, and 
statistic generation [15]. This software can also be used to complete data gaps in 
data-scarce locations to better understand regional climate systems [16]. 

As trend analysis aids in the investigation of the general pattern of change in 
rainfall, particularly at temporal and spatial scales; it is important to have detailed 
rainfall characteristics at the regional level for improved disaster management and 
water resource management planning. In the context of regional variations in rainfall, 
studies on the trend and variability at regional scale of different parts of Indian 
states are scarce, and Himachal Pradesh is no exception. Hence, an attempt has been 
made to investigate the present climate change scenario and its impact on extreme 
precipitation occurrences in the central zone of Himachal Pradesh. The first objective 
of present study is to assess the variation in the monthly and annual rainfall trends 
for the selected seven stations of the study area using SDSM-DC Model. The second 
objective of the study is to establish the influence of climate change on rainfall trends 
in the study area.
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Fig. 1 Location map of study area 

2 Data and Methodology 

2.1 Study Area and Data 

2.1.1 Study Area 

Himachal Pradesh is a hilly state that is located close to the Western Himalayan 
Region. The Western Himalayan Region is located in latitudes between 30°22'44''
and 33°12'40'' N and longitudes between 75° 45'55'' and 79°04'20'' E. The state is 
divided into four agro-climatic zones based on its elevation above mean sea level 
(msl), which ranges from 240 to 7000 m. For the purpose of the current investigations, 
the central portion of the state, which is comprised of both mid hills sub-humid and 
high hills temperate wet agro-climate zones, will serve as the study area. The study 
covers a total area of 13,881 km2, which is equivalent to 24.94% of the overall 
geographical area of the state (55,650 km2). Figure 1 presents a map illustrating the 
location of the research area. 

2.1.2 Data Collection 

Information on daily precipitation for the seven chosen stations in the study area 
was acquired from the Global Historical Climatology Network (GHCN) database



326 S. Kumari and V. Shankar

Table 1 Details of selected stations 

S. No. Station District Latitude (°N) Longitude (°E) Elevation (m) 

1 Arki Solan 31°09' 76°57' 1130 

2 Banjar Kullu 31°38' 77°20' 1520 

3 Chowari Chamba 32°27' 76°01' 716 

4 Karsog Mandi 31°23' 77°12' 1347 

5 Palampur Kangra 32°08' 76°32' 1217 

6 Renuka Sirmaur 30°40' 77°30' 690 

7 Shimla Shimla 31°06' 77°10' 2202 

and the Indian Meteorological Department (IMD), Pune. The stations were chosen 
to be evenly spread among the two zones, with each district encompassing at least 
one big precipitation station. The exact locations of the selected stations, as well as 
their elevations, are listed in Table 1. 

The time frame of the study is limited to the years 1951–2015, broken up into 
two segments of thirty years each (e.g. 1951–1980 and 1981–2015). The World 
Meteorological Organization recommends a normal baseline period of thirty years 
to examine climate change [17]. The global atmospheric variables from two grid 
boxes, i.e. BOX 30 N 77.5 E and BOX 32.5 N 77.5 E, were taken from the National 
Centre for Environmental Prediction (NCEP) data set. 

2.2 Downscaling Using SDSM-DC 

In statistical downscaling, links are formed and empirically quantified between 
small-scale observed predictands and large-scale atmospheric predictors [16]. Wilby 
et al. [18] created SDSM as a decision support tool for evaluating the impacts of 
local climate change through downscaling. The statistical downscaling method is a 
combination of SWG and MLR approaches [19] which has been used in the present 
study. 

In this study, climate data were downscaled and synthesised using Statistical 
Downscaling Model-Decision Centric (SDSM-DC) Model Version 5.3. The model’s 
four primary functions are predictor screening, model calibration, a weather-
generating function, and modelling of projections for future climatic scenarios. In 
addition, it has the ability to perform fundamental analytical tests, statistical analysis, 
and graphical depiction of climate data. We need two different kinds of daily time 
series data in order to create the SDSM model. The first is a daily time series of NCEP 
predictors, while the second is a daily collection of observed predictands. In both 
directions, the gridded NCEP reanalysis outputs had a 2.5° × 2.5° spatial resolution. 
As a result, the atmospheric domain was retained for downscaling, and stations were 
selected for the study to ensure that the station boundaries matched those of the 
NCEP reanalysis data [20]. To generate regression parameters, the calibration and
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screening processes of the NCEP predictors are followed by regression-based statis-
tical correlatives between them. The relationships between NCEP reanalysis data 
and observed precipitation are used to identify potential predictors in the research 
area. 

The most important phase of statistical downscaling is screening of global atmo-
spheric variables. For regression-based downscaling, it is essential to identify empir-
ical connections between gridded predictors like airflow velocity, mean sea level 
pressure, etc., and local scale predictands like precipitation [18, 21]. Using the SDSM 
“Screen Variables” operation, the potential predictors for each station were discov-
ered and downscaling models were created based on entire period consistency. These 
data were used to create a statistical connection between the observed station data 
and the significant atmospheric variables from the NCEP reanalysis. For the years 
1951 to 2015, a total of 32 distinct predictor variables were acquired from the SDSM 
website (https://www.sdsm.org.uk/). 

Following the selection of prospective predictors, numerous regression equations 
were generated by combining the predictand, predictor, and model calibration func-
tions to generate a transfer function file in the common parameter file format (*.PAR). 
For precipitation downscaling, the model type was changed to monthly in order to 
create regression equations. Either an unconditional process or a conditional process 
is used to describe the model structure. Precipitation was chosen as the dependent 
variable in this study because the model process relied on intermediates between 
regional forcing and local weather, such as the possibility of a rainy day. In accor-
dance with the data that were readily available, the observed historical data sets for 
the years 1951–1980 were split into two distinct groups: the calibration procedure 
used the data from the years 1951–1965, while the validation process used the data 
from the years 1966–1980. These divisions were made for the period of 1951–1980. 
The NCEP predictors and the calibrated model were used to generate twenty different 
precipitation ensembles, and the mean value of all of the precipitation ensembles was 
the one that was used for the study. 

The SDSM model was checked against the observed data for the years 1976– 
1980. Calibration of the variables at each of the stations was accomplished through 
the use of a consistent method. The standard error and variance percentages for 
each type of regression model that uses monthly, seasonal, or annual averages are 
addressed in order to assess the effectiveness of SDSM when calibrating. This is 
done so that annual, seasonal, and monthly averages can be differentiated [21]. A 
statistical metric called the percentage of explained variance shows how closely 
daily variations in the predictand are related to predictor variables. While explained 
variance for diverse variables, like precipitation, is typically less than 40%, it can 
exceed 70% for homogeneous variables like temperature [18]. The model is validated 
using statistical analysis.

https://www.sdsm.org.uk/
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Table 2 Performance 
indicators of SDSM model 
calibration 

Station Precipitation 

Explained variance (EV) Standard error (SE) 

Arki 21.8 0.34 

Banjar 9.4 0.41 

Chowari 25.8 0.35 

Karsog 16.7 0.34 

Palampur 17.6 0.41 

Renuka 28.83 0.32 

Shimla 30.8 0.37 

3 Results and Discussions 

3.1 Performance Evaluation of SDSM During Calibration 

To evaluate the outputs for each month and simulating daily data series, the monthly 
model was chosen. The data that were collected over the course of 30 years and 
the potential predictors were split into two time periods. Because of the significance 
of their relationships with the observed precipitation over the course of the full 
30-year period, the consistent prospective factors were chosen for consideration 
(1951–1980). The standard error (SE) and the proportional explained variance (EV) 
are performance indicators that are used during the calibration process to evaluate 
the model’s performance. When measured against the results of earlier research 
conducted by [18, 21], the mean percentage of EV ranged from 9 to 30%, which 
is an amount that may be regarded satisfactory. Table 2 shows that Shimla had the 
highest percentage EV (30.8%) and Banjar had the lowest percentage EV (9.4%), 
respectively, for precipitation. These results can be found in Shimla and Banjar. 

3.2 Comparison of Observed and Modelled Precipitation 

In order to develop and model daily synthetic data in compliance with the standards 
established by SDSM, the weather generator was utilised. The calibration output 
(*.PAR file) and available NCEP global atmospheric variables were used as inputs 
for the simulation. The “Weather Generator” function, which displays the connection 
between precipitation and important atmospheric factors, was employed for two 
things during the research. It was first utilised to enable output comparisons between 
observed and simulated models, as well as to evaluate a calibrated model (using 
observed data) by producing simulated data series for prior climatic periods (baseline 
period 1961–1990). Second, it was utilised to generate synthetic time series for the
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second climate period, which encompasses the current climatic state from 1988 to 
2018, and these time series were then statistically analysed. 

In order to assess the differences between the two climatic periods covered by the 
study, the projected changes in precipitation variables such as mean and cumulative 
monthly precipitation are compared to observed (1951–1980) and modelled (1986– 
2015) precipitation (Fig. 2). 

Fig. 2 Graphs comparing observed and predicted precipitation for a mean monthly rainfall and b 
cumulative monthly rainfall for all stations
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Fig. 3 Performance evaluation indicators of SDSM for model calibration (1951–1965) and 
validation (1966–1980) 

3.3 Validation of SDSM Model 

To validate SDSM, a set of synthetic meteorological data series for the testing period 
was constructed using NCEP predictors (1966–1980). The average of these ensem-
bles was used to calibrate the model using the observed weather data saved for training 
(1951–1965). In order to evaluate the quantitative performance of the downscaling 
model, the average monthly precipitation (Avg) and coefficient of determination (R2) 
of model simulations were compared to those of observations. Figure 3 depicts the 
evaluation results from the calibration and validation processes. The results show that 
the model performs well in Palampur and Shimla but poorly in Banjar and Karsog. 

3.4 Annual Trends of Projected Climatic Variables 

All of the stations’ climate trends from the past (1951–1980) and the present (1986– 
2015) were projected by comparing the yearly changes for the two, thirty-year time 
periods. The meteorological variable, i.e. precipitation, was divided into two time 
periods for analysis: 1951–1980 and 1986–2015, hereafter referred to as the 1970s 
and 2000s, respectively. The comparison between the climate factors of the past 
and those of the present may be seen in the analysis that was conducted for the 
baseline period of 1951–1980. Based on the fluctuating rate of growth or decrease in 
yearly monsoon rainfall over the two eras, the results are to be interpreted. Despite the 
fact that precipitation is a heterogeneous parameter and does not produce predictable
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effects. The analysis’s findings are depicted in Fig. 4 together with the unique shifting 
trends in each station’s rainfall during the annual monsoon. 

When the two climate periods are compared, it is clear that there is a downward 
tendency in the total annual rainfall for both times, with the exception of Chowari, 
which exhibits an upward trend in the total annual rainfall. The current climate 
period has seen a decrease in yearly rainfall for all of the stations; however, the 
rate of decrease in rainfall has varied quite a little from station to station. There 
is a discernible upward trend in Chowari’s average annual precipitation, and the 
current rate of growth is higher than it ever has been in the region’s history (Fig. 4c).

(a) Arki (b) Banjar 

(c) Chowari (d) Karsog 

Fig. 4 Annual rainfall trends for observed (1951–1980) and modelled (1986–2015) climatic periods
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(g) Shimla 

(e) Palampur (f) Renuka 

Fig. 4 (continued)

The model projections for Palampur and Renuka indicate that, despite the declining 
patterns of precipitation between the two time periods, the pace of decrease has 
moved to a rising or stable rate (Fig. 4e, f). As indicated by the trend lines, Shimla’s 
results are comparable, albeit the rate of decline has slowed in the light of current 
circumstances (Fig. 4g). Climate change may be responsible for a shift in annual 
precipitation rates in the 2000s compared to the 1970s. 

4 Conclusions 

The present study employs the Statistical Downscaling Model-Decision Centric 
(SDSM-DC) as the downscaling model and aims to simulate rainfall utilising weather
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generation in order to analyse rainfall trends in the central zone of Himachal Pradesh 
from 1980 to 2015. The following conclusions are derived from the study: 

• According to the results of downscaling and trend projections, climate change 
has resulted in a shift in precipitation patterns relative to historical climatic 
circumstances. 

• The peak monsoon rainfall for Palampur has increased, as evidenced by the 
station’s increasing cumulative rainfall. A large increase in the yearly precipita-
tion rate over time is indicative of an increased trend in the amount of precipitation 
at these stations. 

• Furthermore, pre-monsoon precipitation has increased, leading in extended wet 
periods at sites such as Arki, Chowari, Renuka, and Shimla. 

• A noteworthy observation based on the rate of change in annual precipitation 
throughout time is that precipitation trends are changing and, as a result, at a 
detectable rate. 

• A shift in pattern and greater pre-monsoon precipitation are two other prominent 
effects of climate change. 

• The investigation of precipitation trends over these years reveals that seasonal 
patterns have changed as a result of changes in climatic conditions, and maximum 
annual rainfall in the study area has increased. 
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Trend Analysis of Hourly Rainfall 
Indices in Savitri River Basin, India 

E. S. Namitha, V. Jothiprakash, and Bellie Sivakumar 

Abstract Adequate knowledge of the temporal variations of extreme rainfall events 
is key to modeling and forecasting extreme hydrologic events (e.g., floods) and for 
undertaking water-related emergency measures and management strategies. In this 
study, the temporal variations of extreme hourly rainfall events are examined using 
trend analysis on rainfall indices. The extreme indices are developed based on hourly 
monsoon (July to September) rainfall data (from 2000 to 2010) collected from five 
rain gauges in the Savitri River basin, Maharashtra, India. Commonly used Mann-
Kendall and Sen’s slope tests are employed in this study to identify the trends. The 
indices are representing the total rainy hours, the maximum value of 1-h rainfall, and 
the hourly distribution of rainfall in a day. To obtain the hourly distribution in a day, 
a day is divided into six time periods, each with a length of four hours (early morning 
from 02:00 a.m. to 06:00 a.m., morning from 06:00 a.m. to 10:00 a.m., afternoon 
from 10:00 a.m. to 02:00 p.m., evening from 02:00 p.m. to 06:00 p.m., late evening 
from 06:00 p.m. to 10:00 p.m., and night from 10:00 p.m. to 02:00 a.m.). The hourly 
rainfall trend analysis shows that the total rainy hours and the maximum hourly 
rainfall show an increasing trend during July and September. The trend of rainfall 
occurring from early morning to night increases during September. However, during 
July, rainfall occurring from morning to night shows an increasing trend for most of
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the stations. But during August, the hourly rainfall occurring in a day is showing no 
clear pattern in the basin. 

Keywords Hourly rainfall indices · Mann-Kendall test · Sen’s slope test · Savitri 
River basin 

1 Introduction 

Trend analysis is widely used to evaluate the variability of hydrometeorological 
variables, before more detailed modeling and prediction analyses are performed on 
them. The commonly used trend detection techniques are Sen’s slope test, Mann-
Kendall (MK) test, and Modified Mann-Kendall test [1–5]. Many studies have carried 
out trend analysis for hydrometeorological data observed in river basins in India. 
Such studies have addressed the long-term trend of rainfall, runoff, temperature, 
potential evapotranspiration, relative humidity, and sunshine duration, among others 
[6–11]. Some studies have used certain indices developed for the extreme conditions 
of hydrologic events and performed trend analysis on those indices to identify the 
nature of variability of the extreme hydrologic conditions [12–14]. The importance 
of temporal analysis of extreme hydrologic events is increasingly realized at the 
current time, because of climate change and its effect on water availability. 

In this study, temporal variation of hourly rainfall events from the Savitri River 
basin, India is analyzed using indices. The indices represent the total rainy hours, 
the maximum value of 1-h rainfall, and the hourly distribution of rainfall in a day. 
The rainfall observed during the monsoon season (July–September) over the period 
2000–2010 is used here for the temporal analysis. The temporal variation is examined 
using trend analysis. Two trend test are employed: MK test and Sen’s slope test. 

2 Study Area and Data Used 

2.1 Savitri River Basin 

The Savitri River basin is one of the west flowing river basins in India. It completely 
lies in the Raigad district of Maharashtra, India, within the global coordinates of 
17°50' N to 18°20' N and 73°07' E to 73°41' E (Fig. 1). The basin has a total area of 
2262.42 km2. In this study, the Shuttle Radar Topographic Mission (SRTM) Digital 
Elevation Model (DEM) is used for the delineation of the study area. The elevation 
varies from 0 to 1403 m above mean sea level. The Savitri River originates from the 
Mahabaleshwar plateau and flows down for a length of 95.1 km to join the Arabian 
Sea at Bankot Creek. In the downstream, the Kal River, the Ghandari River, and the 
Kundalika River join the Savitri River. These tributaries have a length of 45.5 km, 
20.9 km, and 58.7 km, respectively.
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Fig. 1 Savitri River basin location and the position of rain gauge stations 

The southwest monsoon (June–September) and orographic rainfall is the main 
source of the rivers in the study area [15]. The locations of the rain gauge stations 
namely Ambiwali, Kangule, Birwadi, Varandoli, and Waki (KD) in the basin are 
shown in Fig. 1. 

2.2 Data Used 

The hourly rainfall data available during the (Southwest) monsoon season over the 
period 2000–2010 for the study area are collected from the Hydrology Project, Nasik, 
India. The rain gauges in the study area are located at Ambiwali, Kangule, Birwadi, 
Varandoli, and Waki (KD). The rainfall data collected from these stations have few

Table 1 Details and statistics of rain gauges in Savitri River basin 

Station Elevation (m) μ (mm) σ (mm) α β Max (mm) Min (mm) 

Ambiwali 14 0.96 3.04 6.70 72.70 78.00 0.00 

Kangule 20 1.08 3.22 6.30 64.22 82.50 0.00 

Birwadi 33 1.19 3.28 6.39 85.66 112.80 0.00 

Varandoli 51 1.29 3.52 5.25 43.10 78.00 0.00 

Waki (KD) 103 1.28 3.23 4.90 35.99 60.00 0.00 

μ—mean, σ—standard deviation, α—skewness, β—kurtosis, Max—maximum, and Min— 
minimum
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missing points in the period, and these are filled with the inverse distance weighting 
(IDW) method [16]. Table 1 presents some basic statistics of the rainfall data from 
these stations. The rain gauges are not evenly distributed in the study area. They are 
more concentrated on the eastern side of the basin, and there are no gauges toward 
the western side.

As seen from Table 1, the mean value of the hourly rainfall series for the monsoon 
season varies from 0.96 mm (Ambiwali) to 1.29 mm (Waki (KD)) and the standard 
deviation varies from 3.04 mm (Ambiwali) to 3.52 mm (Varandoli). The hourly 
maximum value of rainfall in a day varies from 72.7 mm (Ambiwali) to 112.8 mm 
(Waki (KD)). The hourly monsoon rainfall series in all the stations is positively 
skewed and has high kurtosis. There is a large difference between the mean hourly 
rainfall value and the maximum amount of rainfall for all the stations. This shows 
the high variation in the amount of rainfall received in the study area. 

3 Methodology 

The methodology adopted for the temporal analysis of the rainfall data in this study 
is shown as a flow chart in Fig. 2. Trend analysis shows the general nature of the 
variation of the variable under consideration. In this study, the commonly used MK 
test and Sen’s slope test are used to analyze the trend. The trend analysis is performed 
at a significance level of 5%. The MK test gives the significance of trend, and this 
non-parametric test can be applied to non-homogeneous data as well. The test gives 
the significance of the trend by checking the null hypothesis that there is no trend in 
the series and the alternate hypothesis is taken as there is a trend in the series. The 
parameter, S, is calculated [17] using the following formula: 

S = 
N−1∑

n=1 

N∑

m=n+1 

sgn(xm − xn) (1) 

sgn(xm − xn) = 1 if  (xm − xn) > 0 
= 0 if  (xm − xn) = 0 
= −1 if  (xm − xn) < 0 (2)

where N is the total number of data points, xm and xn are the data points where m > 
n. 

When the data is independent and uniformly distributed, the average and variance 
of S is given as 

E(S) = 0 (3)  

var(S) = 
N (N − 1)(2N + 5) − ∑ j 

i=1 li (li − 1)(2li + 5) 
18 

(4)
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Fig. 2 Flow chart of the 
methodology adopted in this 
study

where j is the number of ties which resulted from similar consequent values in time 
series and li is the number of data points in the ith tied group. 

The test statistics (Z) is found as shown below 

Z = S − 1 √
var(S) 

if S > 0 

= 0 if  S = 0 

= S + 1 √
var(S) 

if S < 0 (5)  

The positive Z value indicates an increasing trend, whereas the negative Z indicates 
a decreasing trend. The magnitude of the trend is significant when the critical standard 
normal deviate value (1.96) is less than the test statistics (Z). As a prerequisite for the 
MK test, the series should be checked for the independency of values. Therefore, the 
serial correlation of each series is checked, and if it is correlated, prewhitening needs
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to be carried out to remove the correlation. The effectiveness of the prewhitening 
procedure in removing the correlation has been a topic of concern. In this study, the 
MK test is done by using effective sample size (ESS) approach [18] to reduce the 
effect of serial correlation. It begins with detrending the series as follows: 

x '
t = xt − β (6) 

where x '
t is the data point in detrended series at time t, xt is the data point in series 

at time t, and β is the trend identified by Sen’s slope test. 
The Sen’s slope test gives the direction of the trend. It identifies the direction of 

trend by using the slope of all the data point pairs in the time series [19] as shown  
below 

β = median

(
xm − xn 
m − n

)
(7) 

The positive β indicates increasing nature of trend, and negative β indicates 
decreasing nature of trend. After detrending using Sen’s slope value, ESS is identified. 
Then, the MK test is performed by using modified variance [18], which is estimated 
by using the following formula: 

var(S)∗ = var(S) 
N 

N ∗
(8) 

where N is the actual sample size and N ∗ is the ESS. 
The following section discusses the application of trend test on the indices for 

the hourly rainfall from study area and the results obtained. There are 8 indices in 
total, and definition of each index is presented in Table 2. The first index, PRCPHR 
indicates the total rainy hours in each month. Second index, R1HR represents the 
maximum value of 1-h rainfall during a month.

The next set of indices are formed to identify the hourly distribution of rainfall 
in a day. For this, a day is divided into six time periods with four hours each in it, 
like early morning from 02:00 a.m. to 06:00 a.m. (RELMG), morning from 06:00 
a.m. to 10:00 a.m. (RMRNG), afternoon from 10:00 a.m. to 02:00 p.m. (RAFNN), 
evening from 02:00 p.m. to 06:00 p.m. (REVNG), late evening from 06:00 p.m. to 
10:00 p.m. (RLTEV), and night from 10:00 p.m. to 02:00 a.m. (RNGHT). 

4 Results and Discussion 

The hourly rainfall data collected from the five rain gauges in the study area are used 
to develop the indices in order to understand the trend of hourly rainfall. The results 
of the trend analysis on the hourly rainfall indices are given in Fig. 3. The first index, 
PRCPHR indicates the total rainy hours in each month. On an average, Ambiwali, 
Kangule, Varandoli, Birwadi, and Waki (KD) are receiving rainfall for 310, 351,
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Table 2 List and definitions of indices used 

Indicator Indicator name Description Unit 

PRCPHR Total rainy hours Total rainy hours in a month h 

R1HR Maximum hourly rainfall Monthly 1-h maximum rainfall mm 

RELMG Rainfall amount during early morning Monthly total rainfall in a day from 
02:00 a.m. to 06:00 a.m 

mm 

RMRNG Rainfall amount during morning Monthly total rainfall in a day from 
06:00 a.m. to 10:00 a.m 

mm 

RAFNN Rainfall amount during afternoon Monthly total rainfall in a day from 
10:00 a.m. to 02:00 p.m 

mm 

REVNG Rainfall amount during evening Monthly total rainfall in a day from 
02:00 p.m. to 06:00 p.m 

mm 

RLTEV Rainfall amount during late evening Monthly total rainfall in a day from 
06:00 p.m. to 10:00 p.m 

mm 

RNGHT Rainfall amount during night Monthly total rainfall in a day from 
10:00 p.m. to 02:00 a.m 

mm

401, 376, and 433 h, respectively, during July, whereas during August, the total rainy 
hours is 291, 325, 367, 344, and 400 h at Ambiwali, Kangule, Varandoli, Birwadi, 
and Waki (KD), respectively. The rainy hours during September varies among the 
five stations from 138 to 169 h during September. More rainy hours is observed 
during July month and least during September month. The Waki (KD) and Varandoli 
stations which are lying at higher elevation and close to mountain area experiences 
more rainy hours than the low lying and far from mountain stations like Kangule 
and Birwadi. Because stations which are lying close to mountain region receives 
more orographic precipitation than the far away stations. All the stations show an 
increasing trend for PRCPHR during July and September. Among the increasing 
trends during September, the Varandoli (Z = 2), Birwadi (Z = 2.18), and Waki (KD) 
(Z = 2.08) stations are showing significant increase. The trend of PRCPHR during 
August month is decreasing for all stations except the Ambiwali station.

The second index, maximum value of 1-h rainfall (R1HR) during July is 30 mm, 
30 mm, 30 mm, 32 mm, and 31 mm at Ambiwali, Kangule, Varandoli, Birwadi, 
and Waki (KD), respectively. But during August, the R1HR at Ambiwali, Kangule, 
Varandoli, Birwadi, and Waki (KD) is 27 mm, 28 mm, 24 mm, 29 mm, and 24 mm, 
respectively. During September month, the 1-h maximum rainfall value varies from 
33 mm (Birwadi) to 21 mm (Waki (KD)). The Birwadi station is experiencing more 
R1HR during the three months. The increased rainy hours and more magnitude of 
rainfall at Birwadi station might result in more flood events in the Kal River (where 
Birwadi station is located). During September, all the five stations are showing an 
increasing trend for R1HR. The majority of the stations (three out of five) show an 
increasing trend for R1HR during July and August. 

The amount of rainfall received during each period in a day and its trend over 
time are analyzed using the six indices. The trends of these indices are shown in
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Fig. 3 Trend analysis results for the hourly rainfall index: a–c PRCPHR, d–f R1HR, g–i RELMG, 
j–l RMRNG, m–o RAFNN, p–r REVNG, s–u RLTEV, and v–x RNGHT

Fig. 3. The total amount of rainfall received during early morning hours varies from 
144 mm (Ambiwali) to 217 mm (Waki (KD)), 117 mm (Ambiwali) to 185 mm 
(Waki (KD)), and 38 mm (Varandoli) to 50 mm (Waki (KD)) for July, August, and 
September month, respectively. The index, RELMG shows a decreasing trend for 
the majority of stations during July and August. During September, however, all the 
stations show an increasing trend. The Waki (KD) station shows a significant increase 
during September with a Z value of 2. 

During July, August, and September, the value of index RMRNG varies between 
stations from 152 mm (Ambiwali) to 235 mm (Birwadi), 100 mm (Ambiwali) to 
173 mm (Birwadi), and 29 mm (Ambiwali) to 53 mm (Varandoli), respectively. The 
total rainfall received in the morning shows an increasing trend for four stations 
during July and all the stations during September. But during August, Varandoli and 
Waki (KD) are only showing an increasing trend, remaining stations are showing 
decreasing trend. 

The total amount of rainfall received during afternoon hours varies from 225 mm 
(Waki (KD)) to 248 mm (Birwadi) during July, whereas during August and 
September, it varies from 145 mm (Ambiwali) to 234 mm (Birwadi), and 45 mm 
(Waki (KD)) to 61 mm (Birwadi), respectively. The RAFNN shows an increasing 
trend for all the stations except Ambiwali during July and September. The Ambi-
wali station is showing a decreasing trend for RAFNN during July and no trend 
during September. The increasing trend at Birwadi (Z = 2.14) is significant during 
September. But during August, RAFNN is showing no trend at Varandoli and Birwadi 
stations, increasing trend for Kangule and Waki (KD) stations and decreasing trend 
for Ambiwali station. 

The REVNG, which indicates the total amount of rainfall received during the 
evening time, varies from 217 mm (Ambiwali) to 289 mm (Birwadi), 153 mm (Ambi-
wali) to 263 mm (Waki (KD)), and 75 mm (Ambiwali) to 138 mm (Birwadi) during 
July, August, and September month, respectively. The REVNG shows an increasing 
trend for all the five stations during July and September. But during August, all 
stations except Kangule (decreasing trend) and Birwadi (no trend) are showing an
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increasing trend. Among these, there is a significant increase at Varandoli (Z = 2.09) 
during July and Birwadi (Z = 2.32) during September. 

During July, August, and September, the index RLTEV varies from 151 mm 
(Ambiwali) to 237 mm (Waki (KD)), 117 mm (Ambiwali) to 208 mm (Waki (KD)), 
and 47 mm (Ambiwali) to 106 mm (Waki (KD)), respectively. The amount of rain-
fall received during late evening hours has an increasing trend for all the stations 
during July and September. The Birwadi station shows a significant increase during 
September with a Z value of 1.97. But during August month, Ambiwali and Varandoli 
are showing a decreasing trend, Kangule and Waki (KD) are showing an increasing 
trend, and Birwadi is showing no trend. 

The total amount of rainfall received during night hours varies from 142 mm 
(Ambiwali) to 195 mm (Waki (KD)), 122 mm (Ambiwali) to 165 mm (Birwadi), 
and 33 mm (Ambiwali) to 58 mm (Waki (KD)), for July, August, and September, 
respectively. The RNGHT shows an increasing trend for all station except Varandoli 
(no trend) during July. All stations except Ambiwali (no trend) station are showing 
a decreasing trend for RNGHT during August. But during September, all the five 
stations show an increasing trend for RNGHT, with a significant trend shown by 
Kangule (Z = 2.18), Birwadi (Z = 2.83), Varandoli (Z = 2.38), and Waki (KD) (Z 
= 2.04). For all the five stations, rainfall received mainly during afternoon, evening, 
and late evening hours during the monsoon season. This may be due to the high 
temperature, high evaporation, and long sunshine duration during these hours in 
the basin. The trend analysis of hourly rainfall series for different periods in a day 
shows that the rainfall during the morning, afternoon, evening, late evening, and 
night hours shows an increasing trend for majority of stations during July, whereas 
during August, there is no clear pattern of trend for the hourly rainfall in the basin. 
All the stations in the area show an increasing trend for rainfall received from early 
morning to night during September. 

5 Conclusions 

This study performed trend analysis of the hourly rainfall in the Savitri River basin 
during the monsoon period. The trend analysis was done on the indices developed for 
the hourly rainfall series. The results show an increase in the number of rainy hours 
during July and September. The maximum value of 1-h rainfall shows an increasing 
trend during monsoon period. During July, most of the rainfall occurs from morning 
to night, during August there is no clear pattern, whereas during September, most 
rainfall occurs from early morning to night. These results are very much useful for 
the planning and management of water resource related problems in the area, such 
as irrigation, water distribution, water storage by dams, and disaster management, 
among others. The present study can serve as an important initial step for developing 
hydrological models for the study area, with elaborate studies for flood flow in the 
future.
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Precipitation and Stream flow Trends 
for Swarna River Watershed, Karnataka, 
India. 

K. T. Nagamani, S. S. Chethana, and T. N. Bhagwat 

Abstract Analysing the spatiotemporal distribution of precipitation patterns and 
their effects on flash floods in moist, humid environments is crucial for determining 
the situation and offering suitable adaptation strategies. In addition to trend anal-
ysis and homogeneity tests, the climate variability under expected flash floods was 
analysed using the coefficient of variation, number of wet days, precipitation concen-
tration index, and predicted maximum precipitation, while the flash flood magnitude 
index and flood magnitude ratio were used to determine streamflow episodes. A case 
study basin for humid climatic conditions has been proposed as the Swarna River 
basin in the western region of Udupi, which suffers high levels of climate fluctuation 
due to flash floods. Precipitation patterns were increasing from the headwaters of 
the Swarna River basin to the downstream. According to the findings of the homo-
geneity tests carried out by Pettitt, SNHT, Buishand, and Von Neumann, there is no 
appreciable variation between the pre- and post-alteration points in the mean of the 
precipitation. 

Keywords Precipitation trends · Flash floods · Mann-Kendall test · Flash flood 
magnitude index
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1 Introduction 

The identification and comprehension of changes in a rainfall-runoff process at the 
basin scale depend on trend analysis of hydro-meteorological data. Climate vari-
ability and their detection are expected to have an impact on ecological sustainability 
as well as land usage, land cover, and water resources [1, 2]. Flash flood frequency 
and severity changes in river flow with other hydro-meteorological phenomena that 
have a direct impact on the environment include an increase or decrease in precipita-
tion [3, 4]. One of the main indications of climate change is changes in rainfall pattern 
and intensity at very local levels [5]. Extreme precipitation and discharge patterns 
throughout time and space can have a negative impact on tropical river basins, where 
agriculture, the economy, and wildlife are all threatened by the significant spatiotem-
poral variability in the precipitation and any shift in the mean precipitation pattern 
[6]. In addition to altering the environment of Western Ghats ecosystems that are 
biodiversity hotspots, high intensity precipitation for extended periods of time and 
changes in land use/land cover also contribute to landslides because of frequent flash 
floods [7, 8]. The risk of frequent flash floods in low lying places is increased based on 
the spatial distribution of rainfall intensity and the geomorphological characteristics 
of the basin, as well as the precipitation in river basins with orographic intensification 
[5, 9]. Usually shorter than six hours, a flash flood occurs when there is heavy or 
severe rainfall for a short period of time [10]. 

Flash floods are excessive flows that overwhelm the water-carrying capacity of a 
river channel, lake, pond, reservoir, drainage system, dam, or any other water body 
and cause areas outside of the water body to get inundated. This runoff volume, if 
managed well, is anticipated to satisfy the basin’s water deficit and assist in preventing 
negative effects from intra-basin water transfers, particularly in coastal river basins 
of peninsular India [11, 12]. Flash floods are very brief-duration events in relation to 
the geomorphological aspects of the basin, involving the strengthening of orography 
and the dispersion of rainfall intensity events over space and time [13]. As a result, 
such basins present a challenge for mitigating efforts. Small streams are affected 
by flash floods, which are associated with brief but intense rainfall events and are 
particularly common in tropical river basins. With even modest rainfall posing a major 
risk of flooding in tropical river basins with high watershed gradient, the problem is 
only anticipated to get worse as a changing climate brings about more catastrophic 
rainfall events [14, 15]. Therefore, the current work’s goal is to research patterns in 
precipitation in river basins. 

The goals of this research are (1) analysis of the regional and temporal trends of 
rainfall during flash floods and (2) examine the tropical basin’s precipitation patterns 
and their relationship to the occurrence of flash floods.
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2 Study Area and Data Source 

2.1 Swarna River Basin (SRB) 

The Swarna River originates in Udupi, flows across western India at an elevation 
of 1100 m above mean sea level, then joins the Madisal River after travelling about 
80 km along the coast before emptying its water into the Arabian Sea. The tributaries 
of this river are situated between latitudes 13°13' and 13°48' north and 74°62' and 
75°19' east. The SRB has a total size of about 789.33 km2, and its height varies from 0 
to 1208 m above sea level. The river travels a distance of 61.05 km before meeting the 
sea. Mulikar, Ajekar, Karkala, Puttige, Kervashe, and Udupi are rain gauge stations 
that are situated in the basin. At Yennehole, river discharge is measured (Fig. 1 and 
Table 1). Red lateritic soil, gneiss, alluvium, and colluvium deposits can be found 
on the river banks and seashores of the basin. The humid subtropical climate of SRB 
spans a variety of ecological and climatic regions. River has a mean discharge of 
2516.98 m3/s and a maximum discharge of 1069.32 m3/s, respectively. The range 
of annual precipitation is 3465 mm to 7751 mm. The Swarna River flow regime 
has significant seasonal flow changes, with the highest discharge occurs during the 
monsoon season, which runs from June to September. In January, the temperature 
varies from 21.7 °C to 32.4 °C (April). The highest average monthly wind speed 
ranges from 7.2 to 9.6 km/h. 

Fig. 1 Location of the research area’s meteorological stations
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Table 1 Latitude, longitude, yearly daily rainfall, average annual rainfall, and distance from 
Kodibengre are included in the station addresses 

Rain gauge 
station 

Latitude Longitude Altitude 
(m) 

Average 
annual 
daily 
rainfall 
(mm) 

Average 
annual 
rainfall 
(mm) 

Distance 
from 
Kodibengre 
(km) 

Puttige 13°21'59.02''
N 

74°52'48.67''
E 

315 17 4175.165 67.9 

Udupi 13°20'31.75''
N 

74°45'19.94''
E 

380 15 3712.17 40 

Kervashe 13°19'22.38''
N 

74°59'55.38''
E 

700 22 5397.225 60.9 

Ajekar 13°15'9.98'' N 75° 4'23.83'' E 502 19 4788.62 50.3 

Mulikar 13° 9'47.75''
N 

75° 8'34.22'' E 970 23 5753.025 97 

Karkala 13°13'20.36''
N 

74°58'44.45''
E 

782 18 4421.23 50.5 

3 Data Used 

The daily precipitation totals from six meteorological stations and the daily discharge 
from one gauging station for the time periods of 1998–2017 and 1989–2017, respec-
tively, were collected as climate data for this study. The stations are dispersed both 
inside and outside the SRB and range in height from 0 to 1208 msl (Fig. 1 and 
Table 1). The directorate of statistics and economics as well as India WRIS has 
provided the data. From the USGS Earth Explorer, digital elevation models were 
acquired. ArcGIS 10.5 has been used for delineating the river and the basin, shaping 
the Thiessen network, and projecting rain gauge stations. For the homogeneity test, 
XLSTAT, a user-friendly statistical software add-in for Microsoft Excel, was utilised. 

3.1 Rainfall Analysis and Stream Flow Analysis 

Numerous techniques, which may typically be divided into variability and trend 
analysis, have been proposed to test meteorological data. The coefficient of variation 
(CV), number of rainy days, maximum precipitation that is likely to occur, and 
precipitation concentration index are the earlier tests that are used for the precipitation 
(PCI). R-Studio software has been used to conduct the latter, which is often done 
with non-parametric trend analysis for regular climate data [16, 17]. The discharge 
data, flash flood magnitude ratio, and flash flood magnitude index are used in the 
test.
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CV and PCI have been used to estimate the variability of precipitation. To evaluate 
the irregularity of precipitation, the CV has been taken into account. Great CV values 
suggest large variability and vice versa. Equation calculates the coefficient (1) 

CV = 
σ 
μ 

(1) 

The standard deviation, the average amount of precipitation, and the coefficient 
of variation are all written as CV. The amount of precipitation variability can be 
categorised as low (CV 20), moderate (20 CV 30), and high (CV > 30). PCI is 
employed to look into the seasonal (monsoon) and yearly variation of precipitation. 
Equation provides the formula for PCI annual in Eq. (2) [18]. 

PCI =
∑12 

i=1 p
2 
i 

(
∑12 

i=1 pi )
2 

∗ 100 (2) 

Pi denotes the month’s rainfall total. Low, moderate, and very high precipitation 
concentrations are the three categories under which the PCI is categorised. The 
following are the various PCI ranges: PCI < 10, 11 < PCI < 15, 16 < PCI < 20, and 
PCI > 21, respectively. To determine the initial moisture content of the impacted 
watershed, the number of wet days was employed, and it was influenced by rainfall 
characteristics, including spatial extent, length, and intensity, topography, land use, 
and soil types [15, 19]. 

In order to calculate the likely maximum flood, PMP was utilised. Uncertainty of 
the PMP values estimated by the Hershfield technique [20]. The link established by 
Eq. (3). 

XPMP = Ẍ + Km ∗ σn (3) 

The frequency factor is km. 
Equation shows how to compute the FFMI from annual peak discharge (4). 

FFMI = 
X2 

N − 1 
(4) 

where X = Xm − M, Xm = annual peak discharge, mean discharge on a yearly basis, 
and number of record years. The flood magnitude ratio has been used to estimate the 
annual peak discharge. Equation can be used to get it (5) 

M = 
Q p 
Qa 

(5) 

where Qa is the annualised discharge. The yearly maximum discharge is Qp. 
According to the respective ranges of Z > 0.84, Z > 1.65, 1.28 > Z > 1.65, and 0.84 

> Z > 1.28, the classifications of flash flood severity are extreme, severe, moderate,
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and no flash flood. To ascertain if the climatic time series had a monotonically 
dropping or growing trend, the non-parametric Mann-Kendall (MK) test was used. 
Though the trend may or may not be linear, a monotonic growing or decreasing trend 
depicts the variable as rising or falling steadily over the span of time. To examine the 
homogeneity of the climatic indices, the following tests were used: Pettitt’s, Standard 
Normal Homogeneity (SNHT), Buishand’s test, and von Neumann’s test [17, 21]. 
The SNHT, Pettitt, and Buishand tests look for to determine the breaking point, hop 
in the time series. The SNHT is sensitive to breaks at the beginning and end of 
the time series, whereas the Pettitt test and the Buishand test are more sensitive to 
detecting breaks in the time series’ middle. Recognising the differences between the 
upstream and downstream using a flash flood magnitude index parameter that relates 
annual peak discharge to mean annual flow. For long-term peak rainfall, the flood 
magnitude ratio has been used. 

4 Results and Discussions 

4.1 Homogeneity Test 

To assess the homogeneity of the annual precipitation data set, the Pettitt test, Stan-
dard Normal Homogeneity test (SNHT), and Buishand test were utilised. In each 
homogeneity test, the null hypothesis (H0) is accepted if the estimated p-value is 
larger than the value at the 5% level of significance, and it is rejected, otherwise, 
according to test statistics. 

Since the results from the annual series of six rain gauge locations are homoge-
neous and the estimated p-value is higher than the value at a threshold of significance 
of 5%, the null hypothesis (H0) is accepted (Table 2). 

Table 2 Results of 
homogeneity test in Swarna 
River basin for annual 
precipitation 

Rain gauge stations Petti’s test SNHT Buishand test 

Karkala 0.536 0.607 0.646 

Ajekar 0.267 0.221 0.431 

Mulikar 0.074 0.071 0.115 

Udupi 0.32 0.501 0.467 

Puttige 0.231 0.206 0.284 

Kervashe 0.511 0.326 0.544 

Homogeneous at 5% significance level
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Fig. 2 Spatial map depicting the number of wet days for the a first decade from June to September, 
b the second decade from June to September, c the first decade from October to January, and d the 
second decade from October to January 

4.2 Number of Rainy Days 

Because they occur farther away from the ocean and have a much higher moisture 
content in terms of quantity, extreme rainfall events cause more damage than early 
monsoon events. The total amount of rain that falls should be influenced by the 
increase in rainy days over the course of the year or a season. The goal of this 
analysis is related to climate change and the prevalence of flash floods. 

The results of the classified spatial maps of the number of rainy days from June to 
September of the first and second decades (Fig. 2a, b) demonstrate how many days it 
has rained increases as the volume of rain increases and vice versa in the first decade 
and second decade (Fig. 2c, d) from October to January. The number of rainy days 
has increased near Ajekar and Kervashe stations, which increases the probability of 
flooding. Submergence suggests that it is imminent, but there is also a greater chance 
that flash floods may occur. 

4.3 Coefficient of Variation 

The coefficient of variation is a statistical measure of how much the data points vary 
from the mean value. The coefficient of variation is calculated for six rain gauge
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Fig. 3 a Annual rainfall and b monsoon rainfall: spatial patterns of coefficient of variation 

stations for both the yearly and monsoon seasons in order to analyse the spatial 
pattern variability (fluctuation) of precipitation over the research area. 

The catchment scale has been used to evaluate the yearly and monsoon coefficient 
of variation. For annual and monsoon rainfall, ranges of coefficient of variations 
between 13% and > 17% are referred to as fairly variable (16–24%) (Fig. 3a, b). In this 
research area, where there has been a lot of rainfall, the highest and lowest coefficients 
of variation values have been recorded in Kervashe and Puttige, respectively. Due to 
the flash flood, extreme events are expected in Kervashe. 

4.4 Precipitation Concentration Index (PCI) 

For the purpose of measuring the relative distribution of precipitation over a research 
area, the precipitation concentration index is offered. Based on yearly (Jan to Dec) and 
monsoon (June to Sept) precipitation distributions, APCI and SPCI are distributed, 
respectively. 

The graph clearly highlights the variation of 1-day PMP values at different stations. 
The. 

maximum PMP is found in Bhola district and the maximum value is 811 mm. 
The second. 

highest PMP value is seen in Sandwip with a PMP value of 721 mm. Srimangal, 
the. 

wettest place in the country has a one-day PMP of 663 mm. On the other hand, 
Barishal, 

Bogra, Jessore, Rajshahi, Rangpur, and Madaripur have the PMP values below 
300 mm. 

and the lowest value 262 mm is observed in the Rajshahi. It should be noted that 
Rajshahi. 

is the driest region of Bangladesh. Therefore, a low value of mean annual 
maximum. 

rainfall might be contributed towards a lower PMP. It is observed that the 
maximum.
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PMP is found over the northeastern, parts of southern and the southeastern regions 
of. 

Bangladesh. Though Sylhet is situated near Cherapunji of Shillong plateau which. 
receives the highest rainfall in the world, it is interesting to note that the PMP 

obtained in. 
this location is only 386 mm. However, this may indicate that the intensity of 

1-day. 
rainfall is low but rather uniform here. 
Determine how daily precipitation in a location changes throughout the year 

and season using spatial maps for the precipitation concentration index (during 
the monsoon season) will vary, as these extremes will be close to flash flood 
events. Figure 4a, b, which illustrates the monsoon rainfall, shows the dominance of 
high irregularity in precipitation distribution in the first decade and second decade, 
according to assessments of the annual precipitation concentration index (Fig. 4c, 
d). 

Fig. 4 Seasonal precipitation concentration index for a first decade from June to September, b the 
second decade from June to September, c the first decade from October to January, and d the second 
decade from October to January
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Fig. 5 Spatial patterns for a first decade of 1 day PMP, b second decade of 1 day PMP, c first 
decade of 2 day PMP, and d second decade of 2 day PMP 

4.5 Probable Maximum Precipitation 

For high-hazard hydrological structures like flood control dams on the upstream 
side, estimates for the probable maximum flood (PMF) are utilised in the planning, 
design, and risk assessment. The PMF is the maximum depth of precipitation that is 
physically feasible across a given size storm region at a specific geographic location 
during a specific time of the year for a given period. 

Figure 5a, b shows the spatial distribution of 1 day PMP for the first decade 
and second decade, and Fig. 5, 5d shows the spatial distribution of 2 day PMP for 
the first decade and second decade. These findings demonstrate that the research 
area’s upstream region has higher elevations and more precipitation and indicated 
a substantial future increase of maximum flash flood occurred in comparison with 
downstream areas. 

4.6 Trend Analysis 

Statistics are utilised to determine using the Mann-Kendall (MK) test, whether 
interest variable has been increasing or decreasing over time between 1998 and 2017. 
Each 5-year average of the Sen’s slope, Mann-Kendall trend, and P-value listed in 
Table 3.
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Table 4 Statistical properties of the stream flow variables of MK test for 5-year average 

Year Annual Monsoon 

Z S P Z S P 

1989–1993 0.14 0.60 0.79 1.22 18.20 0.25 

1994–1998 −0.14 −0.80 0.89 0.87 13.60 0.39 

1999–2003 −0.27 −1.60 0.79 1.04 16.20 0.31 

2004–2008 −0.07 −0.40 0.95 1.09 16.80 0.29 

2009–2013 0.00 0.00 0.89 1.03 16.00 0.32 

2014–2020 0.00 0.00 0.87 1.10 16.75 0.30 

The precipitation trend of annual and monsoon precipitation series was examined 
using a Mann-Kendall (MK) and Sens slope test. Sen’s slope, the P-value, and the 
results of the MK test are shown in Table 3. A monsoon’s increasing tendency is 
shown by a positive value of “S” during the past 20 years, while a downward trend 
is indicated by a negative value (annual). On the other hand, the declining trend 
is not significant, while the increasing trend is significant at the monsoon level of 
significance (annually). The anticipated p-value at the 5% level of significance is 
higher than the value. Both annual and monsoon data are acceptable for the null 
hypothesis (H0). The monsoon season demonstrates that flash floods cause the areas 
to get swamped. 

With a Sen’s slope magnitude, the monsoon has a strong positive tendency that 
is significantly increasing. This upward trend is a result of the stream’s immediate 
reaction to the abrupt rise in water levels brought on by heavy rains at the start of 
the monsoon season. At a 5% threshold of significance, estimated p-value exceeds 
the α-value, accepts the null hypothesis (H0), because monsoon season’s climate 
variability and the drop in yearly (Table 4). 

4.7 Flash Flood Magnitude Index (FFMI) 

It shows that the Swarna River’s downstream region no longer has the ability to carry 
the former amount of monsoon flash flood surge. It is determined using the five-year 
average of the annual peak discharge. 

Average discharge to the highest value is Y = 0.039X1.8569, and it indicates high 
degree of deviation with a correlation coefficient of 0.99. Average FFMI for Swarna 
River is 0.335 which is substantially higher than the average worldwide 0.278 (Fig. 6).

4.8 Flash Flood Magnitude Ratio 

It is helpful to know the frequent flash flood events within the study area.
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Fig. 6 Graph of annual peak 
discharge versus flash 
magnitude index 0.3140.3130.3290.343 
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The association between flood magnitude ratio and year is used to observe and 
display (Fig. 7). In comparison with other years, the year 2009 had a high magnitude 
of flash flood. An increasing trend in the scatter plot of the annual peak rainfall versus 
flood magnitude ratio suggests for sure that there will be more flash floods in the 
coming years. 

5 Conclusions 

The following conclusions are derived from the foregoing study: 

• Homogeneity test analysis would provide a good picture of the long-term vari-
ations of the climate variables. At a significance level of 5%, the results of the 
experiments carried out by Pettitt, SNHT, Buishand, and von Neumann showed 
that there is no detectable fluctuation in the mean of the flash flood. 

• Compared to the yearly precipitation concentration index, the monsoon seasonal 
precipitation concentration index exhibits a more pronounced irregularity in the 
distribution of precipitation. The number of rainy days indicates that the monsoon 
season’s extremely saturated soil state.
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• The monsoon’s coefficient of variation fluctuates a lot. It suggests that the trends 
in monsoon precipitation are growing (positive). 

• A decade-scale upstream catchment (Kervashe) has increases in 1 and 2 day PMP, 
which enhances the likelihood of a flash flood. 

• In the monsoon season, six rain gauge stations were approved at the 5% level of 
significance and were statistically significant (p > 0.05). 

• Analyses of meteorological precipitation trends showed how the increasing 
frequency of flash floods is influenced by climate variability. Despite the lack 
of clear changing trends in the regional dispersion of the climatic data, the mean 
annual and monsoon seasonal precipitation reveal broad growing or decreasing 
patterns. 

• Climate change and precipitation fluctuation allowed for highly precise predic-
tions of annual, seasonal, and peak discharge characteristics. Additionally, the 
hydrological model’s improvement will undoubtedly increase the probability 
exceedance’s accuracy. 

• Rainfall rises as return periods lengthen and an anticipated flash flood upstream. 
Further supported by, flash flood magnitude index is 0.335 which is much greater 
than world average. 

• The likelihood of future flash floods is anticipated based on their magnitude ratio. 
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Assessment of Crop Water Requirement 
in the Context of Climate Change 

Jitendra Sharma, M. K. Choudhary, and R. K. Jaiswal 

Abstract Climate change is influencing and will continue to affect essential natural 
resources, such as water. Its effect on agriculture is usually considered as one of 
the most serious challenges in water resource management. In this study, the bias-
corrected future climate data from the global climate model (GCM), ACCESS-
ESM1.5, has been used to estimate the monthly crop water requirement for paddy 
in the Seonath sub-basin, Chhattisgarh State, India. The bias-corrected outputs of 
the ACCESS-ESM1.5 GCM model and projection of the future temperature and 
rainfall were done for two Shared Socioeconomic Pathway (SSP) scenarios, namely 
the SSP370 and SSP 585. Further, the future crop water requirement was calculated 
for the SSP370 and SSP585 scenarios using the CROPWAT model for the period of 
2015–2099 with three future periods (FP) 2015–2045, 2046–2075, and 2076–2099. 
The reference evapotranspiration ETo was calculated using ETo calculator given by 
FAO. The results indicate rising in temperature and rainfall over future periods when 
compared to the base period (1981–2014). The annual average temperature has been 
projected to increase by 2.07 °C and 2.61 °C from 2015 to 2099, when compared 
to the base period for the SSP 370 and SSP 585 scenarios, respectively. The annual 
average rainfall has been projected to increase from 1207.7 mm in the base period 
to 1441.1 mm and 1400.1 mm for SSP 370 and SSP 585 scenarios. The average 
reference evapotranspiration (ETo) values showed an increase from 4.54 mm/day to
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4.61 mm/day and 4.72 mm/day for SSP 370 and SSP 585 scenarios, respectively. 
The average annual crop water requirements (CWRs) showed an increase of 17.01% 
and 18.45% for the SSP 370 and SSP 585 scenarios. For optimal irrigation planning, 
projected deviation in required values can be used in the culturable command area 
of the Seonath sub-basin. 

Keywords Crop water requirements · Climate change · Reference 
evapotranspiration · Shared socioeconomic pathway · CROPWAT 

1 Introduction 

Climate change is affecting and will continue to affect important natural resources, 
such as water. It is widely believed that the impact of climate change on agriculture has 
become one of the major issues in water resources management. The available water 
resource would be altered by a change in rainfall pattern and rate of evaporation. 
Further, higher evapotranspiration would result in a greater amount of irrigation 
and crop water demand. The climate of a region has a strong influence on irrigation 
demand [1]. Climate change is expected to raise or decrease the demand for irrigation 
water on a regional and global scale in the future. Rainfall patterns, solar radiation, 
relative humidity, temperature, and wind speed are just a few of the climatic variables 
that influence a region’s irrigation water requirements and agricultural production 
[2]. Hence, there is a need to study the long-term change in the key climatic variables 
which affect the ET/crop water requirement. This study focuses on quantifying future 
crop water requirements using different scenarios and GCM on a long-term basis. 

In a nutshell, the climate is commonly referred to as average weather. To be more 
specific, the statistical definition of associated numbers in terms of mean and variation 
over time spans varies between months to thousands or millions of years. According 
to the World Meteorological Organization (WMO), the traditional duration for aver-
aging these parameters is 30 years. Temperature, precipitation, and wind are often 
significant surface variables. The climate system, including a statistical overview, is 
referred to as the climate in the broader context (IPCC). 

The IPCC requested that the scientific community establishes a new set of 
scenarios to aid future climate change assessments due to the need for fresh scenarios 
(IPCC, 2007). Time series of emissions and amounts of greenhouse gas emissions 
(GHGs), aerosol, and chemically active gases, as well as land use and land cover, are 
included in the scenarios. The term “representative” refers to the fact that each RCP 
shows only one of many possible scenarios for achieving the desired radiative forcing 
properties. The term “pathway” highlights the importance of long-term concentration 
levels as well as the path that leads to them throughout time. Climate projections are 
provided for four representative concentration pathways (RCPs), namely RCP 2.6, 
4.5, 6.0, and 8.5-W m−2, for the years up to 2100, as per the Intergovernmental Panel 
on Climate Change’s fifth edition (AR5). Any changes or uncertainties in long-term
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rainfall patterns have an impact on agriculture, as well as an increase in the frequency 
of floods and droughts on a regional scale [3]. 

Temperature fluctuations have a strong link to evapotranspiration (ET) losses, 
resulting in changes in irrigation requirements. Rising temperatures resulted in an 
increase in expected evapotranspiration in the future at Aleltu agriculture locations in 
Ethiopia, according to the outputs of various global climate model ensembles under 
the RCP 4.5 and RCP 8.5 emission scenarios [4]. The month-wise crop water require-
ment of the primary crops cultivated in the Jayakwadi command area was computed 
using downscaled (SDSM) future climate datasets from the general circulation model 
(GCM), CanESM2. The CanESM2 general circulation model was statistically down-
scaled to predict future temperature and rainfall for two representative concentra-
tion pathways (RCPs) scenarios, which are RCP 4.5 (low emission) and RCP 8.5 
(high emission). In addition, projected irrigation requirements for 2011–2100 were 
calculated using the RCP 4.5 and 8.5 scenarios [5]. 

A group of international climatologists, economists, and energy system modelers 
has recently released a series of new “pathways” that look at how world culture, 
demographics, and economics might change over the next century. They are known as 
“Shared Socioeconomic Pathways (SSP)” as a group. These SSPs are currently being 
used as an essential input for the most recent GCM and RCM models, including in 
the IPCC’s sixth assessment report scheduled in 2020–21. They are still being used to 
figure out how social decisions can influence greenhouse gas emissions. Researchers 
from various modeling groups around the world started designing new scenarios in the 
late 2000s to see how the world could adapt for the rest of the twenty-first century. A 
group was given the task of forecasting how socioeconomic conditions would change 
over the following century. The rate of technical innovation, population increase, 
economic development, education, and urbanization are all factors to consider. These 
“Shared Socioeconomic Pathways” (SSPs) analyze five distinct scenarios as to how 
the world can develop in the omission of climate change policy, as well as how 
varying levels of its mitigation might be obtained when RCP mitigation objectives 
are coupled with different SSPs. Estimating the water demand of crops is one of the 
most essential criteria for crop planning on the field and the design of any irrigation 
schemes [6]. Understanding how changes in climate affects crop water demand is 
critical for solving future food security and water resource sustainability concerns 
[7]. Water is the most valuable input and a primary factor of agricultural output. 
Irrigation water has supported farmers in increasing crop production by reducing 
their reliance on rainfall patterns, raising average crop production while lowering 
inter-annual variability since the start of plant cultivation over 10,000 years ago [8]. 
Increasing mean temperature above a threshold level will cause a reduction in the 
yield of various crops. The grain yield of rice is predicted to decrease by 10%, with 
each 1 °C increase in the temperature above 32 °C [9]. 

The IPCC’s fourth assessment report (AR4) states that direct observation of 
changes in sea level, snow cover, and temperature in the northern hemisphere from 
1850 to the present proves beyond a shadow of a doubt that global warming is occur-
ring. Since 1750, the concentration of CO2 in the atmosphere has risen by 31%.
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According to climate change scenarios, the impact of climate change on paddy irri-
gation demands in Sri Lanka revealed a 13–23% increase in rice irrigation water 
demand [10]. The regional circulation model research community is at a critical 
crossroads, transitioning from a period dominated through the usage of hydrostatic 
atmospheric model for specific engrossment problems to one dominated by the use 
of extremely high-resolution CPRCMs, possibly combined with another part of the 
climate change and simulated as part of a global climate model [11]. 

Numerous research has been done to investigate the effects of climate change 
on reference evapotranspiration (ETo) and crop water requirements at the local and 
basin levels, according to the literature. However, no extensive research addressing 
the calculation of future irrigation requirements at the command area level under SSP 
scenarios has been done in India. The current study explores the impact of climate 
change on future crop water requirements in the Seonath command area, situated in 
Chhattisgarh, India, utilizing bias-corrected GCM outputs for the SSP 370 and SSP 
585 scenarios. The demand variability assessments can be utilized to make irrigation 
planning and modeling strategies for the Seonath command area in the future. 

2 Materials and Methods 

2.1 Study Area 

Seonath River basin is the most extended tributary basin of the Mahanadi River 
basin of 30,860 km2 catchment area from which Seonath basin containing 25% of 
the Mahanadi basin’s area. For this study, 12,404 km2 area of Seonath basin have 
been considered. The river basin stretches over 380 km. It starts in the village of 
Panabaras in Rajanandgaon and flows three districts in Chhattisgarh: Rajanandgaon, 
Durg, and Bilaspur. The basin is located between 20°16 N and 22°41 N latitudes and 
80°25 E and 82°35 E longitudes. Arpa, Tandula, Kharun, Agar, Hamp, and Maniyari 
streams are its major tributaries. The basin is 329 m above sea level, with low and 
maximum elevations of 234 m and 887 m, respectively. This basin comes under the 
drought prone area. 

A sub-humid climate prevails throughout the river basin. The basin’s annual rain-
fall ranges from 1005 to 1255 mm. The majority of the rain falls within three months 
(July–September). During the monsoon season, there is a lot of humidity. For the 
hottest month of May, the average daily maximum temperature ranges from 42 to 
45 °C. During the winter, the temperature ranges from 10 to 25 °C. The predom-
inant occupation of the people in this area is agriculture. Approximately 76% of 
the basin area is under cultivation. The monsoon season (Kharif) lasts from mid-
June to October, while the post-monsoon (Rabi) season lasts from November to 
mid-April. The most important crop is rice, which accounts for 94% of the farmed 
basin. Wheat, summer paddy, pulses, and oilseeds are grown during the Rabi season. 
The primary crops are Kharif rice, summer paddy, and wheat, which cover an area
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of around 22,680 km2, or 98% of the basin. The basin’s soil types are sandy clay, 
which accounts for 72.2% of the basin’s surface area, followed by silt loam, 17.3% 
of the basin area. The major urban centers in the basin are Raipur and Durg. Seonath 
basin, because of its rich mineral reserve and adequate power resource, has a favor-
able industrialized ambiance. In the present study, the paddy crop considers for the 
estimation of CWR. 

2.2 Dataset 

Crop data for the paddy crop in the irrigated area and its growing pattern for the 
Seonath region were taken from the website of State Data Center (SDC), Depart-
ment of Water Resources, Raipur, Chhattisgarh. SDC, Raipur, and FAO Irrigation 
and Drainage Paper No. 56 defined crop data, including crop coefficient (Kc), devel-
opment stages, sowing, and harvesting dates, root zone depth (m), for the selected 
region [12]. For the period 1981–2014, the National Institute of Hydrology (NIH) 
regional center Bhopal provided daily gridded observed temperature and rainfall 
data with a 0.25° × 0.25° resolution. The data includes the minimum and maximum 
temperatures, as well as daily rainfall levels. Future climate change predictions were 
developed using the Australian Community Climate and Earth-System Simulator 
(ACCESS). The purpose of ACCESS-ESM1.5 was to allow Australia to partici-
pate in the Coupled Model Intercomparison Project Phase 6 (CMIP6) with an Earth 
System Model version. The approximate spatial resolution in latitude and longitude 
is 1.25° × 1.875°. The ACCESS-ESM-1.5 projection under the SSP 370 and 585 
scenarios for the period 2015–2099 was also obtained from the CMIP6-GCMs [13]. 
The bias-corrected GCM outputs are used in this study. For this study, a 34-year 
baseline period was considered, spanning the years from 1981 to 2014. The index 
map of the Seonath sub-basin is shown in Fig. 1.

2.3 CROPWAT Model 

In this study, the CROPWAT8.0 model was used to estimate the future crop water 
requirement of the Seonath sub-basin. The crop water requirements (CWR) of paddy 
in the research region were determined using the CROPWAT 8.0 software and the 
CLIMWAT 2.0 tool. The CROPWAT model is designed to provide a realistic tech-
nique for doing typical calculations for ETo, crop water requirements, agricultural 
irrigation requirements, and, more specifically, irrigation scheme design and manage-
ment [14]. The Penman-Monteith approach of the Food and Agriculture Organiza-
tion (FAO) and the United States Department of Agriculture soil conservation service 
method are mentioned in FAO Irrigation and Drainage Paper No. 56. The ETo was 
estimated using the Penman-Monteith equation for future climate conditions, as 
shown in Eq. 1.



366 J. Sharma et al.

Fig. 1 Index map of Seonath sub-basin

ETo = 0.408△(Rn − G) + (
γ 900 

T+273 u2(es − ea)
)

△ + γ (1 + .34u2) (1) 

where ETo is the reference evapotranspiration (mm/day), G is the soil heat flux 
density (MJ m−2 day−1), Rn is the net radiation at the surface (MJ m−2 day−1), γ is 
the psychrometric constant (kPa °C−1), T is the average daily air temperature at 2 m 
height (°C), u2 is the wind speed at 2 m height (m/s),△ is the slope of vapor pressure 
curve (kPa/C), es is the saturation vapor pressure, ea is the actual vapor pressure 
(kPa), and es − ea is the net vapor pressure (kPa). The reference evapotranspiration 
(ETo) was the important parameter used to measure crop evapotranspiration (ETc). 
Under normal circumstances, the ETc is estimated from ETo and the crop coefficient 
(Kc) using  Eq.  2. 

ETc = ETo × Kc (2) 

The seasonal CWR was estimated by combining the daily ETc values deter-
mined for several crop growth phases. For the SSP 370 and SSP 585 scenarios, 
the CROPWAT8.0 model was used to calculate the future CWR of the Paddy crop. 
Figure 2 shows a flow chart illustrating the process for estimating future CWR using 
the CROPWAT model. The projected climatic variables were utilized as input into the 
CROPWAT8.0 model to estimate future irrigation demand in this study. Wind speed, 
relative humidity, and daylight hours were supposed to be constant during the study 
period. The ETo calculator was used to calculate the reference evapotranspiration 
using simulated temperature and precipitation data.
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Model Output 

Modeled Temperature and 
Precipitation 

Soil data 

ETo Calculator 

CROPWAT8.0 Model 

CWR 

Paddy data (sowing 
and harvesting dates, 

Kc, and root zone 
depth) 

Fig. 2 Flow chart illustrating the process for estimating future CWR using CROPWAT model 

2.4 ETo Calculator 

In the ETo calculator program, the FAO Penman-Monteith equation is utilized to 
determine the ETo reference evapotranspiration from meteorological data. Climate 
data will be managed on a daily, 10 daily, and monthly basis by the software. The 
information can be provided in several units and analyzed using generally used 
climate parameters. As a result, ETo is a climatic variable that can be estimated with 
the help of weather data. ETo is a measurement of the atmosphere’s evaporation 
intensity at a specific place and time of year, taking into account crop character-
istics and soil conditions. The FAO Penman-Monteith equation is used to estimate 
the ETo reference evapotranspiration from meteorological data in the ETo calculator 
program. FAO picked this technique as the reference because it is physically orien-
tated, closely mimics grass ETo at the examined site and specifically includes both 
physiological and aerodynamic characteristics. The inputs of the ETo calculator are 
temperature, relative humidity, vapor pressure, sunshine duration, wind speed, and 
radiation. Suppose wind speed, humidity, or radiation data are not available for a 
specific day, ten-day, or month. In that case, the software will estimate the missing 
meteorological data using the information listed in the corresponding boxes (missing 
wind speed, air humidity, or radiation data). 

3 Results and Discussions 

In this study, the bias-corrected future climate data from the global climate model 
(GCM), ACCESS-ESM1.5, has been used to estimate the monthly CWR of the 
crop (paddy) in the Seonath sub-basin, Chhattisgarh State, India. The bias-corrected 
GCM outputs of the ACCESS-ESM1.5 and estimation of the future temperature and
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rainfall were done for two Shared Socioeconomic Pathway (SSP) scenarios, namely 
the SSP370 and SSP 585. Further, the future crop water requirement was calculated 
for the SSP370 and SSP585 scenarios using the CROPWAT model for the period of 
2015–2099 with three future periods (FP) 2015–2045, 2046–2075, and 2076–2099. 
The reference evapotranspiration ETo was estimated using ETo calculator given by 
FAO. The projected deviations in required values can be utilized to plan irrigation in 
the Seonath sub-culturable basin’s command area. 

3.1 Variation of Tmax and Tmin 

The model produced a future climatic scenario up to the year 2099 with three phases 
(2015–2045), (2046–2075), and (2076–2100). The differences in SSP scenarios were 
detected when the anticipated temperature and rainfall data were compared to the 
base period (1981–2014) data. 

Figure 3 shows the ACCESS-ESM1.5 predicted average monthly maximum 
(Tmax) and minimum temperature (Tmin) for the SSP370 and SSP585 scenarios from 
2015 to 2099. The estimated maximum temperature (Tmax) and minimum tempera-
ture (Tmin) for both scenarios also indicated an increasing trend, as shown in Fig. 3. 
The results showed that by the 2099s, the annual mean maximum temperature (Tmax) 
will have increased by 1.56 °C and 2.18 °C, respectively, for the SSP 370 and SSP 585 
scenarios. However, the forecasted rise in the annual minimum temperature (Tmin) 
for SSP 370 and SSP 585 scenarios was larger, with values of 2.56 °C and 3.22 °C, 
respectively. The average monthly temperature for both situations increased with 
time, as shown in the graph. Annual average temperatures are predicted to increase 
by 2.07 °C and 2.61 °C, for SSP 370 and SSP 585 scenarios, respectively, from 2015 
to 2099 when compared to the baseline period.

3.2 Simulation of Reference Evapotranspiration 

Using bias-corrected climatic parameters, the ETo calculator and the CROPWAT 
model were used to estimate reference evapotranspiration (ETo) fluctuations for 
future scenarios. Because of its extensive application for all crops, the FAO Penman-
Monteith equation is used in the ETo calculator and CROPWAT model for future ETo 
estimation [15]. Climatic parameters such as maximum and minimum temperatures 
define the ETo value unaffected by crop properties. Using the estimated monthly 
mean of the modeled daily data series of maximum temperature (Tmax), minimum 
temperature (Tmin), and rainfall, the CROPWAT model was utilized to forecast future 
demands [16]. The ETo calculator was updated with the simulated climatic data, and 
future ETo values were calculated for both the SSP 370 and SSP 585 scenarios. For 
both SSP scenarios, the variation in ETo from 2015 to 2099 is shown in Fig. 4.
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Fig. 3 Average monthly 
variation in the projected 
maximum (Tmax) and  
minimum (Tmin) temperature 
for SSP 370 and SSP 585 
scenarios
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Fig. 4 Average daily 
variation of reference 
evapotranspiration (ETo) 
under SSP 370 and SSP 585 
scenarios 
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For both SSP scenarios, the monthly reference evapotranspiration values revealed 
a rising tendency in the future, especially from April to October. For the SSP 370 
and SSP 585 scenarios, the highest increase in monthly ETo by 2099 was expected 
in May, with monthly increases of 0.57 mm/day and 0.78 mm/day, respectively. 
The highest ETo was recorded in May for all SSP scenarios, while the lowest ETo 

was recorded in December. The expected (Tmax) and (Tmin) values have increased, 
resulting in rising trend in the future ETo values as calculated by the model. This 
increasing trend in projected ETo may result in increased crop water requirements 
in the future. Using the climatic parameters acquired, the CROPWAT model was 
utilized to simulate crop water requirements for future situations. 

3.3 Variation of Rainfall 

The annual average precipitation increased in the SSP370 scenario, with the greatest 
value of 1734.58 mm over the period 2076–2099. For the SSP 370 and SSP585 
scenarios, the average rainfall is projected to increase by 19.41% and 15.92%, respec-
tively, from 2015 to 2099. The SSP 370 and SSP 585 scenarios, the annual average
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Fig. 5 Average monthly 
variation of rainfall under 
SSP 370 and SSP 585 
scenarios 
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precipitation is expected to rise from 1207.7 mm in the baseline period to 1441.1 mm 
and 1400.1 mm, respectively. The rate of evapotranspiration increases as the tempera-
ture rises, which can harm healthy vegetation. Under the SSP scenarios, both temper-
ature and rainfall are expected to increase in the Seonath sub-basin, as per the study. 
The variation in monthly rainfall is shown in Fig. 5. 

3.4 Simulation of Crop Water Requirement 

The CROPWAT 8.0 model was adopted to estimate crop water requirements (CWR) 
for paddy crops in the Seonath sub-basin, and the change in crop water demands 
for the SSP370 and 585 scenarios were studied. For the Kharif season, agricultural 
irrigation requirements were determined. The crop coefficient (Kc) determines crop 
evapotranspiration (ETc) at various stages of crop growth. For future crop water 
requirements estimation, the crop data were included in the CROPWAT8.0 model. 
Figure 6 shows the CWR for paddy crop with the SSP370 and SSP585 scenarios, 
respectively. As shown in the figures, the CWR for the paddy showed a consid-
erable increase during the entire base period. The annual CWR of paddy shows an
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Fig. 6 Crop water 
requirement of paddy crop in 
the Seonath sub-basin for the 
SSP 370 and 585 scenarios 
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increase of 17.01% and 18.45% by the 2100s for the SSP 370 and SSP 585 scenarios, 
respectively. 

The rise in irrigation water requirement is due to an uneven tendency in the 
expected precipitation (this is one of the reasons) for the Kharif season’s future 
scenarios. The findings show that, despite an increasing variation in projected annual 
rainfall, rainfall during the Kharif season will not be sufficient to meet crop water 
demands due to increased evaporation and transpiration losses. Figure 6 represents 
the monthly deviation in total crop water requirements for the various SSP scenarios. 
The projected irrigation demand values for the Kharif months (June to October) 
indicate a significant rise. 

4 Conclusions 

This research predicts the future crop water requirement for the Seonath sub-
basin, Chhattisgarh, India, under different climate scenarios (SSP). The future bias-
corrected GCM outputs were used as an input for the ETo calculator for the calcula-
tion of reference evapotranspiration (ETo), and the outputs were utilized as an input
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for the CROPWAT8.0 model. The results showed that for the various IPCC SSP 
scenarios, there would be a rise in temperature and rainfall. The reference evapotran-
spiration, which was simulated for the years 2015–2099, also revealed a rise in the 
future. May was the month with the highest forecasted temperature and reference 
evapotranspiration. The paddy crop’s future crop water demands have been shown to 
be significantly increased. The crop water demands for the paddy crop in the SSP 580 
scenarios were higher than the demands in the SSP 370 scenario from 2076 to 2099. 
In this study, the reference evapotranspiration showed a rising trend under the SSP 
370 and 585 scenarios. For the forecasted future scenarios, the precipitation in the 
Seonath sub-basin area is not expected to decrease due to rising temperatures. As the 
temperature rises, the reference evapotranspiration values rise as well, resulting in a 
large demand for water will require in the future. The future crop water requirements 
(CWRs) for the paddy crop have been examined in this study. 
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Climate Change Impact on Future 
Reference Evapotranspiration and Crop 
Evapotranspiration for Maize in Sehore 
District of Madhya Pradesh 

A. Balvanshi and H. L. Tiwari 

Abstract The FAO CROPWAT tool was utilised to estimate the future reference 
evapotranspiration and maize crop evapotranspiration for years 2030, 2060 and 2090 
under RCP scenarios 2.6 and 8.5 for Sehore district of Madhya Pradesh, India. The 
statistically downscaled GCM CanESM2 climate model projections were used as 
input to the CROPWAT for prediction of future reference and crop evapotranspiration 
data. The values of constants viz. Kcinitial, Kcmid and Kcend were fixed to 0.5, 1.15 
and 0.6, respectively, as per the FAO-56 for maize crop. In the Sehore region, the 
ET0 and ETc values for RCP 2.6 were calculated to be in range of (400.5–512) mm 
and (430.5–448.4) mm, respectively, during years 2030, 2060 and 2090, while the 
ET0 and ETc values for RCP 8.5 were found out to be (466–740.5) mm and (440.5– 
492.5) mm, respectively, during years 2030, 2060 and 2090, respectively. The RCP 
scenario 8.5 is the worst case scenario in which the reference evapotranspiration as 
well as crop water requirement for maize crop has been showing high demands of 
water. The results of this work can be utilised for proper irrigation scheduling for the 
maize crop and thereby reducing the agricultural risks due to climate change. 
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1 Introduction 

Maize is one of the major crops grown at a large scale in Central India with high 
yield production [1]. Based on the yield and productivity of maize at a large scale in 
Madhya Pradesh, it is therefore important to conduct climate change studies to avoid 
agriculture crisis in future. 

The GCMs serve as a simplified representation of the climate system and are 
effective tools for identifying climate change’s effects [2]. Climatic projections are 
to be considered as competent technique to put up the possible future situations under 
specified emission scenarios [3, 4]. 

There are several applications for the reference evapotranspiration (ET0) which 
is a significant agrometeorological parameter. Extensive research has been looked 
at how reference evapotranspiration may be affected by climate change (ET0) [5]. 
The term “reference evapotranspiration” (ET0) refers to the water that is lost to the 
atmosphere by evaporation and transpiration from a surface covered in green grass 
that is 8–12 cm tall, actively developing and totally shading the ground. This ETo 
can be used to calculate the crop evapotranspiration by using a crop coefficient (Kc) 
value (ETc) [6]. 

Scheduling irrigations to fulfil the crop’s water use requirements and for best 
crop production requires the adoption of an exact or precise volume of water and 
the proper timing of application [7, 8]. Estimation of crop water requirements (ETc) 
is one of the main components used in irrigation planning, design and operation [9, 
10]. Using nine years of climate data (2005–2013) from the Halali dam command 
area in Vidisha district of Madhya Pradesh state, India, [11] did a case study on 
assessing the irrigation water requirements and irrigation scheduling of wheat crop 
for Rabi season. Reference crop evaporation was computed using meteorological 
data, including temperature, relative humidity and sunshine hours, which were gath-
ered from the Vidisha district meteorological station. The FAO Technical Paper “Irri-
gation and Drainage Paper No. 24” provided the crop coefficient Kc value according 
to the stages of crop growth. Due to the recurrence of rainfall, it was discovered that 
the overall crop water need for wheat was 209.7 mm. The ET0 and ETc of wheat and 
maize for 16 locations were determined by [10] using identical methods. A study to 
ascertain the ET0 and ETc of wheat and maize for 16 sites in Gujarat was carried 
out by [10] using identical methods. The findings showed that the mean daily (ETo) 
fluctuates between 4.2 and 7.6 mm/day over the winter season (Nov 15 to March 13). 

Keeping in view the economic importance of maize production in Central 
India, the present study was conducted employing the FAO—CROPWAT tool and 
CANESM2 climate model to determine the impact of climate change on evapotran-
spiration of maize crop for the Sehore district of Madhya Pradesh. The per cent 
change in ET0 and ETc values of maize was calculated and depicted in Tables 1 and 
2 ahead.
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Table 1 Change in reference evapotranspiration (mm) 

Region/district Average ET0 
(2000–2015) 

ET0 year 2030 ET0 year 2060 ET0 year 2090 

RCP 
2.6 

RCP 8.5 RCP 2.6 RCP 8.5 RCP 2.6 RCP 8.5 

Sehore 400.5 466 428 596.5 512 740.5 

% change in 
future ET0 
compared to 
average ET0 
(2000–15) 

396.14 1.1 17.63 8.04 50.57 29.24 86.92 

Table 2 Change in crop evapotranspiration—maize crop (mm) 

Region/district Average ETc 
(2000–2015) 

ETc year 2030 ETc year 2060 ETc year 2090 

RCP 
2.6 

RCP 
8.5 

RCP 
2.6 

RCP 
8.5 

RCP 
2.6 

RCP 
8.5 

Sehore 430.5 440.5 440.5 475 448.4 492.5 

% change in 
future ETc 
compared to 
average ETc 
(2000–15) 

430 0.11 2.44 2.44 10.46 4.27 14.53 

2 Material and Methods 

The present study has been carried out for one of the highly agricultural rich district 
of Madhya Pradesh, namely Sehore. The study region (Fig. 1) is the Sehore district 
located at 23.2050° N latitudes 77.085° E longitudes in Madhya Pradesh which 
comes under Vindhyachal Range in the middle of Malwa region.

Geographically, the district has been separated into the Narmada basin, Chambal 
basin and Betwa basin based on the valleys produced by the major rivers. The district 
encompasses an area of 6578 km2 having average precipitation of 1217.7 mm. The 
area has coverage of black cotton soil under hydrologic soil group D that exhibits 
high potential runoff. The principal crops sown in the Sehore district are Wheat, 
Rice, Jawar, Maize and Soyabean. 

In this research work, FAO CROPWAT model was employed to estimate the 
reference evapotranspiration and the maize crop evapotranspiration. The Penman-
Monteith equation [12] was adopted to calculate reference crop evapotranspiration in 
the CROPWAT tool. CROPWAT 8.0 was developed by Food and Agriculture Organi-
zation (FAO), Italy. This support system (model) works out the reference evapotran-
spiration, crop water requirement and irrigation requirement. CROPWAT 8.0 uses the 
FAO Penman-Monteith method for calculation of reference crop evapotranspiration 
[12].
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Fig. 1 Index map of study area

A Windows-based computer programme called CROPWAT 8.0 is used to deter-
mine how much irrigation and water crops need based on information about the 
soil, the environment and the crops themselves. The application also enables the 
creation of irrigation schedules for various management scenarios and the estima-
tion of scheme water supply for various crop configurations. The CROPWAT 8.0 can 
be used to gauge crop performance under both irrigated and rainfed situations, as well 
as to assess farmers’ irrigation methods. The two FAO papers from the Irrigation and 
Drainage Series, No. 56, “Crop Evapotranspiration—Guidelines for computing crop 
water requirements,” and No. 33, “Yield response to water,” served as the foundation 
for the calculation methods utilised in CROPWAT 8.0. The CROPWAT uses FAO 
Penman-Monteith formula for computation of evapotranspiration for reference crop. 

The Kcinitial, Kcmid and Kcend were fixed to 0.50, 1.15 and 0.60, respectively, 
as per FAO-56 for maize crop in the CROPWAT tool. The sowing date was kept 
constant to be 24 June with total crop period of 125 days. The historic meteorolog-
ical data was used from year 2000 to 2015 to calculate ETo and ETc. The historic 
ETo and ETc was averaged and was used in comparison with the future ETo and 
ETc. For computing future values of ETo and ETc data from the CROPWAT model, 
statistically downscaled GCM CanESM2 (grid size 2.790 × 2.812, Canadian Centre 
for Environment and Climate change, Canada) was employed with future projections 
RCP 2.6 and RCP 8.5 for the years 2030, 2060 and 2090. One major impact of future 
climate change is variation in demand of region’s ET0 and ETc. The increase in the 
demands of water required makes it necessary to conduct a prior study so that proper 
planning and adaptation policies can be made for the farmers which will help to 
reduce the agricultural risks.
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Fig. 2 Comparison of average historic ET0 with future ET0 for Sehore district 

3 Results and Discussions 

The future ET0 and ETc values for the years 2030, 2060 and 2090 under emission 
scenarios RCP 2.6 and 8.5 were estimated using FAO CROPWAT and CANESM2 
climate model. The future ET0 and ETc maize for Sehore district was compared to 
the average ET0 and ETc during the period (2000–15 years) (Refer Tables 1 and 2). 

Figure 2 and Table 1 showcase the clear increase in the reference evapotranspi-
ration values from the historic to the future periods. The ET0 values for RCP 2.6 
showed a small increase of 1.1% for the year 2030, but for years 2060 and 2090, 
ET0 value depicted an increase up to 29.24%. However, the ET0 values for RCP 8.5 
showed high increase up to 86.92%. 

Figure 3 and Table 2 portray the clear increase in the evapotranspiration values of 
maize crop from the historic to the future periods. In the Sehore district of Central 
India, the ETc values for RCP 2.6 showed a small increase of 0.11% for the year 
2030, but for years 2060 and 2090, ETc value depicted an increase up to 10.46%. 
However, the ETc values for RCP 8.5 showed highest increase up to 14.53%.

The negative effect of climate change was found on the Sehore district which is 
profound in the reference evapotranspiration and maize crop evapotranspiration. The 
year 2090 can be assumed to have the highest vulnerability for maize under RCP 8.5 
scenario. 

4 Conclusions 

It can be concluded that the future climate at Sehore region could lead to increase 
in the reference evapotranspiration and crop evapotranspiration of maize crop. The
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Fig. 3 Comparison of average historic ETc maize with future ETc maize for Sehore district

maximum increase in ETo and ETc values was found to be for the year 2090 under 
RCP scenario 8.5 for both regions indicating high demands of water. It was also 
concluded that the FAO CROPWAT model can be applied to other crops as well as in 
other regions to estimate the future changes in ETo and ETc and accordingly proper 
irrigation and cropping strategies can be formulated for the farmers that will help 
decrease the agricultural risks due to change in climate. 
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Impact of Climate Change on Crop 
Water Requirement: A Case Study 
of Amreli District 
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Abstract Climate can be demarcated as the weather condition, which has been 
measured over a long period of time. Climate change studies reveal that it will 
affect the water requirement of different crops. Consider this as a major effect on 
agriculture, a study was taken to know the climate change impact on the water 
requirement of crops cultivated in the area of Amreli district, Gujarat. For this study, 
meteorological data (maximum temperature, minimum temperature, precipitation, 
relative humidity, wind velocity, and solar radiation) of periods 2001–2020 are used. 
Future meteorological parameters were predicted for the period of 2031–2090 using 
a ClimGen weather generator. Results of generated future climatological data are 
showing increasing and decreasing trend, but overall climatic data shows increasing 
trend for the future years till 2090. These results show that climatological parameters 
are changing in upcoming years. Crop evapotranspiration (ETc) was determined 
with the help of CROPWAT 8.0 using daily climatological parameters for generated 
weather data, and then, the water requirement of different crops was determined. 
The clear effect of climatological parameters on the water requirement crops of Rabi 
and Kharif was identified in results. To meet the increasing demand of water, water 
resources should be increased by increase in water level and doing water conservation 
efficiently. Farmers should also be motivated to use different methods for irrigation 
as sprinkler and drip irrigation systems according to the requirement of crops instead 
of using flooding methods. 

Keywords Climate change · Crop water requirement · ClimGen · CROPWAT ·
Evapotranspiration
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1 Introduction 

Climate can be demarcated as the weather condition, which has been measured over 
a long period of time. In the world, India is the largest producer of jute and pulses 
and also the second-largest producer of sugarcane, rice, groundnut, wheat, cotton, 
vegetables, and fruit crops. The report of the IPCC of the Working Group II shows the 
effects of climate changes which is on key sectors as water, food, industry, settlement 
and society, and health. The effect of climate change on agriculture production will 
be one of the major factors which influence the future food security of human’s on 
the earth. 

By keeping in view the significance of climate change, a study is carried out to 
fulfill the following objectives:

. To make a definite examination of the fluctuation of different meteorological 
boundaries over the district dependent on long-term recorded data.

. To identify the month-to-month and occasional patterns of meteorological 
parameters.

. Generate the various meteorological parameters based on the historical available 
data.

. To study the effects of generated meteorological factors on the water requirement 
of different crops. 

Present study is conducted to know the effects of climate change on the crop water 
requirement in Amreli district. 

Gondaliya and Khasiya [1] conducted a study to evaluate the climate change 
over a period of time worked out at Amreli district and its impact on crop yield 
and crop water requirement. The Fourth Assessment Report (AR4) of the United 
Nations Intergovernmental Panel on Climate Change (IPCC) [2] was published in 
2007 and is the fourth in a series of reports intended to assess scientific, technical 
and socio-economic information concerning climate change, its potential effects, and 
options for adaptation and mitigation. Krishna Kumar et al. [3] presents an analysis 
of crop–climate relationships for India, using historic production statistics for major 
crops. Parekh and Prajapati [4] carried out the study to assess the impact of climate 
change on crop water requirement for the crops grown in the Sukhi command area 
of Vadodara district, Gujarat. All crops in study area show considerable increase in 
water requirement for future scenarios generated. Pathak et al. [5] concluded that 
most irrigated areas in India would require more water around 2025 and global 
net irrigation requirements would increase relative to the situation without climate 
change by 3.5–5% by 2025 and 6–8% by 2075. The effect of climate change on water 
resources may be mitigated through better water harvesting through the creation of 
micro-storage facilities in watersheds. Semenov et al. [6] presented paper to test and 
compare 2 commonly-used weather generators, namely WGEN and LARS-WG, at 
18 sites in the USA, Europe and Asia, chosen to represent a range of climates. Pandey 
et al. [7] analyzed climatic data of various stations of Gujarat to ascertain the climatic 
change/variability in the state and its likely impact on crop production using crop 
models.
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2 Study Area and Data Source 

Amreli lies at 21.603176° N and 71.222084° E in India at 119 m (391 ft) above 
sea level. The district conquers an area of around 6760 km2. Amreli district is allo-
cated into eleven tehsils known as Amreli, Dhari, Khamba, Rajula, Babra, Jagrabad, 
Kunkavav, Lathi, Lilia, and Kundla. It has 616 villages and as per census 2011, 
population in Amreli district is 1513614. It is bounded by the southwest Bhavnagar 
district in the east, Rajkot district in the north, the Junagarh district in the west, 
and the Arabian Sea in the south. Entire Gujarat is divided into the seven sub agro-
climatic zones like Southern Gujarat, Middle Gujarat, North Gujarat, Southern Hills, 
North-West Arid, North Saurashtra, and South Saurashtra in which Amreli is located 
in the North Gujarat agro-climatic zone of Gujarat state. 

In the district, as per the land use data available for 2006–07, the area under forest 
land is around 360 km. The land which is not available for cultivation is 70,300 ha 
and either uncultivated or excluding fallow land is 66,200 ha. The whole land is 
about 16,300 ha. The net area sown is 550,400 ha, the area shown more than once is 
45,100 ha. And the total area for cultivation is 595,500 ha. The cropping intensity in 
the Amreli district is 108.19%. The net area which is irrigated by canals is 7700 ha. 
The net area irrigated by different sources like surface water and groundwater is 
177,900 ha. The percentage of net area irrigated in the Amreli is 32.32%. Total gross 
cropped area in Amreli is around 595,500 ha. And the total gross irrigated area is 
211,300 ha. The net irrigated area is about 177,900 ha. And the irrigation intensity 
is 118.77%. The crops are cultivated in Kharif and Rabi in both seasons. The main 
Kharif crops are groundnut and sorghum. Wheat and pulses are Rabi crops. The 
main crop, cotton, is spread in different cropping seasons such as Kharif and Rabi 
seasons. Figure 1a shows index map of study area, and Fig. 1b shows index map of 
crops sown in Gujarat. 

Fig. 1 a Index map of study area. b Index map of crops sown in Gujarat
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2.1 Data Collection 

The basic data required to generate the future meteorological parameters like 
maximum and minimum temperature, relative humidity, precipitation, etc. Study 
involves different climatological parameters which were obtained from the State 
Water Data Center of Gujarat, Gandhinagar, which contain the information of 
climatological parameters for the period of 2001–2010. 

3 Methodology 

Methodology is divided in two parts to get desired results for crop water require-
ment. First part includes generation of future climate data, and second part includes 
calculation of crop water requirements for the generated future climatic data. 

Future meteorological parameters are generated using ClimGen weather gener-
ator. ClimGen is based on the apparently “design scaling” method of synthe-
sizing geographic environmental change data for a given global mean temperature 
change. ClimGen calculates meteorological parameters such as daily maximum and 
minimum temperatures, as well as precipitation, using either daily weather data or 
monthly summaries, if available. It uses a Weibull distribution to generate precipita-
tion The Weibull distribution is easier to parameterize, describes well the distribution 
of precipitation amounts and can be simplified for applications to conditions with 
minimum data. In ClimGen, all generation parameters are calculated for each site of 
interest. The advantage is that ClimGen can be applied to any world location with 
enough information to parameterize the program. ClimGen uses quadratic spline 
functions chosen to ensure that the average of the daily values is continuous across 
month boundaries, and that the first derivative of the function is continuous across 
month boundaries. 

To generate crop water requirement for generated climatological parameter, 
CROPWAT software is used. In order to calculate reference evapotranspiration (ETo), 
using the Penman-Monteith method, monthly mean data are required, including 
maximum and minimum temperatures (°C), sunshine hours (h), wind speed (m/s), 
and relative humidity (%). 

For calculation of crop water requirement, Kc values are used for all the crops. 
Crop coefficient for Kharif and Rabi crops is taken from FAO 56 and approximate 
planting date. Monthly Kc values are calculated for Rabi and Kharif crops. Finally, 
crop according ETc is estimated by multiplying Kc with ETo. 

ETc is measured crop evapotranspiration (mm/dec), Kc is crop coefficient, and 
ETo is reference evapotranspiration (mm/dec).
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3.1 Selection of Input Parameters 

Meteorological data like maximum temperature, minimum temperature, precipita-
tion, relative humidity, wind velocity, and solar radiation during the period of 2001– 
2010 are used for generation of future meteorological data. For calculation of C.W.R 
of Kharif and Rabi crops, Kc (crop coefficient) value is identified. 

4 Results and Discussions 

4.1 Trend of Climatological Parameters 

The maximum and minimum temperature is showing increasing trend till the year 
2090, and it is increasing at the rate of 0.0122 as shown in Figs. 2 and 3. Average 
precipitation of an area is increasing at the rate of 0.0054 as shown in Fig. 4. Average 
solar radiation is also increasing at the rate of 0.0022 as shown in Fig. 5. Results 
of wind velocity of Amreli district is decreasing in all decades. The wind velocity 
is decreasing at the rate of 0.0049 rate in all the decades as shown in Fig. 6. Wind  
velocity of Amreli is decreasing from 6.1 to 5.1 m/s till 2064, and then, it is again 
increasing from 5.2 to 5.4 m/s during the period of 2081–90. It is showing increasing 
and decreasing trend as shown in Fig. 2. 

Increase in temperature, evapotranspiration, variable rainfall patterns, increase in 
solar radiation and interaction of other meteorological parameters may have negative 
effects on crop water requirement.
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Fig. 2 Trend of average maximum temperature in Amreli district, Tmax (°C)
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Fig. 3 Trend of average minimum temperature in Amreli district Tmin (°C) 
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Fig. 4 Trend of average precipitation in Amreli district (mm) 
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Fig. 6 Trend of average wind velocity in Amreli district in (m/s)

4.2 Crop Water Requirement 

Effects show that the water requirement of cotton (Kharif) is increasing in all future 
years compare to the base year, whereas crop water requirement of cotton Rabi is 
decreasing in all future years compare to the base year. Crop water requirement for 
all other crops such as winter wheat, sorghum, pulses, and groundnut is increasing 
in the future decades compare to the year. Crop water requirement of vegetables 
(Rabi) is increasing in the future years compare to the base year (2001), whereas 
for vegetables (Kharif), it is increasing in all future years compare to the base year. 
Table 1 and Fig. 7 show crop water requirement of various crops grown in Amreli 
decade wise (mm/dec).

Percentage increment in CWR of different crops grown in Amreli district 
(mm/dec) is presented in Table 2. It is observed that maximum percentage incre-
ment is there in last decade (2081–90). Trend of percentage increment in crop 
water requirement is increasing trend for all crops accept cotton (Rabi). Percentage 
increment in CWR varies from 1.4 to 7.55%

5 Conclusions 

The above results for different crops in Amreli state that climate change is affecting 
to the water requirement of all Kharif crops and Rabi crops. Water requirement for 
cotton, winter wheat, pulses, groundnut, and vegetables is increasing from 0.1 to 2.5% 
for crops in Amreli district, which means water demand of the crops is increasing 
throughout the years from 2031 to 2090.
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Fig. 7 Crop water requirement of various crops grown in Amreli district (mm/dec)

To meet the need for increased water demand and yield, overall water resources 
should be increased, such as by increasing water levels in water resources, which can 
be done effectively through conservation practices and farmers, should be motivated 
as well. They can use various irrigation systems depending on the water needs of 
crops, such as sprinkler irrigation systems and drip irrigation systems instead of 
flooding methods. It needs to understand that water needs to be harvested in a manner 
that is used systematically and efficient manner to get optimum utilization. 

The flood water of monsoon needs to be stored and utilized during the period of its 
shortage for domestic purpose, industrial purpose, etc. To meet the future demand, 
various strategy and approaches should be used in industries and in irrigation systems.
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Development 
of Intensity–Duration–Frequency Curves 
for Surat City Incorporating Daily Data 

Pallavi Patarot and S. M. Yadav 

Abstract One of the most important hydrologic tools used in design of hydraulic 
and water resource projects and flood control structures in urban areas by hydraulic 
engineers is the intensity–duration–frequency (IDF). IDF curves are the represen-
tation of relationship between duration, intensity and return period (frequency) of 
rainfall, which are obtained from a series of analysis of observed rainfall data. In 
most part of India, short duration rainfall is scarce and only daily rainfall data are 
available. In such case, it is required to convert the daily rainfall data into hourly 
using India Metrological Department (IMD) formulas. Assessing the adverse effects 
of climate change and adapting to them is one way to reduce vulnerability caused, 
specifically confronting city floods. Since, the rainfall IDF curves are used in the 
design of water resources projects, in order to have safe and economically stable 
hydraulic structures. In the present study, the rainfall data of 119 years (1901–2020) 
were collected from IMD. The aim of this study is to obtain IDF curves having dura-
tions of 15 min, 30 min, 45 min, 1 h, 2 h and 3 h for the Surat city. The maximum 
rainfall intensity curves of different durations like 15 min, 30 min, 45 min, 1 h, 2 h 
and 3 h are derived from daily rainfall data using IMD formula. It was found that 
rainfall intensity of 60 mm/h can be used in the design of water resources project 
and an equation is obtained which can be used to compute daily maximum intensity 
at any given return period. The developed curves are useful for planning and design 
of urban storm water and water conservation measures for the Surat city.
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Keywords IMD formula · Short duration · Data scarcity 

1 Introduction 

The relationship between intensity, duration and frequency of rainfall obtained from 
rainfall depth data is nothing but intensity–duration–frequency curves (IDF). The two 
variables that define rainfall are magnitude and frequency, also known as precipitation 
regime. The extent of rain is the total precipitation that occurred in mm at a particular 
time. In contrast, the frequency of rainfall is associated with the probability articulated 
by the return period. And hence, rainfall intensity is directly proportional to the return 
period and inversely proportional to the rainfall duration. 

Zope et al. [1] developed IDF curves for Mumbai city by Kothyari and Garde’s 
method, IDF curves by probability distribution for annual maximum rainfall and 
modified Kothyari and Garde’s method had been observed that for the 100-year 
return period, it was found that the IDF curves developed by using equation given by 
Kothyari and Garde does not show the proper results in the recently changing hydro-
logic conditions for the Mumbai city. Sun et al. [2] developed IDF curves using 
remote sensed data and developed Bartlett-Lewis rectangular pulses (BLRP) model 
for Singapore and the results where validated using station data, a good correlation 
was found [3]. Indicated future warmer climate of world due to increasing trend in 
rainfall and intensity and also developed climate models, including global climate 
models (GCMs), regional climate models (RCMs) and convection-permitting models 
(CPMs) [4]. The average intensities of the annual largest storms and corresponding 
storm durations rather than obtaining the annual maximum average intensity for 
specific durations and thus the intensity-duration data do not comply with the defini-
tion of the IDF curves. Sherif et al. [5] the spatial and temporal rainfall characteristics 
of UAE were derived using IDF curves. The country was divided into four different 
climatic regions, and the IDF curves of these four regions were used for comparisons. 
The results obtained from the study was used in dam design and possible occurrence 
of flash flood. Wolcott et al. [6] rainfall data of 55 years were analyzed and IDF curves 
where developed to check whether it is required to update the existing IDF curves, but 
it was found the though there is increasing trend in the rainfall depth due to climate 
change and it was concluded that there is no need to update as the maximum rainfall 
intensity did not change for large scale. de Paola et al. [7] IDF curves for three cities 
of Africa were developed using Gumbel method of probability distribution which 
was used to estimate the contingent influence of climate change on the IDF curves. 
Mahdi and Mohamedmeki [8] developed an equation for IDF curve for Bagdad city, 
and the equation was derived using three statistical methods, those are Gumbel distri-
bution, log Person III and log normal distribution as the induvial equation derived 
from each of these statical method was not satisfactory. IDF curves for Canada was 
developed by Nguyen and Asce n.d. using three statistical models a spatial–temporal 
statistical downscaling, statistical downscaling method and multisite SD though the 
data scarcity was there the model gave satisfactory results. Gutierrez-Lopez et al. [9] 
used empirical approach to establish the IDF curves for the Mexico City for 50 years 
to observe the climate change effect.
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Various hydraulic engineers use IDF curves to analyze water resource projects; 
therefore, reviewing, updating and analyzing rainfall characteristics is one of the 
essential aspects. One of the first steps in designing a drainage system is determining 
the duration and intensity of a rainfall event. IDF curve is used for this process. It is 
computed by considering the average rainfall intensity for a given area over a given 
period. They help assess the potential duration of an event. 

2 Study Area and Data Collection 

2.1 Surat City 

Surat city, (21°10' N 72°50' E) in the western state of Gujarat, is located at the mouth 
of the Tapi River close to Arabian Sea (Fig. 1) with a total area of 474.2 km2 and of 
13 m elevation from MSL. The climate in the city of Surat is tropical, and in monsoon 
season, the rainfall is abundant about 1100–1200 mm per year. The monsoon season 
begins late in June, and it falls under seismic III zone. 

Fig. 1 Index map Surat city (source Created in Arc-GIS)



398 P. Patarot and S. M. Yadav

2.2 Data Collection 

The daily cumulative rainfall using IMD grid data of size 0.25° × 0.25° of Surat city 
for 119 years, i.e., from 1991 to 2020 for the entire year (Jan to Dec) from India water 
resources information system (https://indiawris.gov.in/wris/#/rainfall) was obtained. 

3 Methodology 

After collection of annual rainfall data, the maximum rainfall in a year was selected. 
The 24-h rainfall depth was converted to 15-min, 30-min, 45-min, 1-h, 2-h and 3-h 
rainfall depth using IMD equation (Table 1) 

Rt = R24(t/24)
n (1) 

I = Rt /t (2) 

where

Rt required rainfall depth in mm for duration 
R24 daily rainfall depth (mm) 
t required duration (h) 
n exponential constant = 1/3 
I intensity of rainfall in mm/h. 

Gumbel [10] introduced the theory of extremes by looking at the distribution of the 
greatest and smallest values in repeated samples. Due to its suitability for modeling 
maximum data, the Gumbel theory is the most often utilized distribution for IDF 
analysis. It is simple and should only be used in dire circumstances (maximum data 
or peak rainfalls). The following equation can be used to calculate the design rainfall 
depth for a particular period [11] 

Kt = (Yt − Yn)/Sn (3) 

Yt = Ln(Ln(T/T − 1)) (4) 

Xt = mean + (STD ∗ Kt ) (5) 

where

STD standard deviation, 
Kt frequency factor, 
Yn reduced mean in Gumbel extreme value distribution,

https://indiawris.gov.in/wris/#/rainfall
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Table 1 Maximum rainfall depth calculated from the year 1901 to 2020 

Year Max 
rainfall 

Year Max 
rainfall 

Year Max 
rainfall 

Year Max 
rainfall 

Year Max 
rainfall 

1901 68.2 1925 113.82 1949 69.99 1973 123.72 1997 90.69 

1902 205.44 1926 124.5 1950 92.4 1974 31.19 1998 213.96 

1903 119.96 1927 55.57 1951 69.76 1975 88.41 1999 117.8 

1904 150.2 1928 57.29 1952 73.35 1976 174.95 2000 62.74 

1905 143.65 1929 215.64 1953 116.52 1977 128.39 2001 130.13 

1906 83.74 1930 121.09 1954 143.55 1978 84.3 2002 117.97 

1907 95.39 1931 149.65 1955 62.74 1979 112.48 2003 103.15 

1908 198.13 1932 114.83 1956 116.4 1980 48.69 2004 242.91 

1909 198.13 1933 128.26 1957 73.81 1981 120.27 2005 142.11 

1910 76.15 1934 128.26 1958 131 1982 112.6 2006 190.78 

1911 95.56 1935 79.1 1959 95.2 1983 100.49 2007 190.05 

1912 101.96 1936 59.91 1960 54.78 1984 122.59 2008 116.23 

1913 116.59 1937 164.92 1961 73.7 1985 110.13 2009 93.65 

1914 114.15 1938 113.92 1962 51.41 1986 92.15 2010 73.18 

1915 83.74 1939 159.09 1963 141.6 1987 48.69 2011 64.83 

1916 87.63 1940 133.47 1964 152.59 1988 168.04 2012 104.54 

1917 108.57 1941 315.86 1965 152.59 1989 56.21 2013 121.44 

1918 66.31 1942 173.76 1966 120.51 1990 132.31 2014 104.79 

1919 118.37 1943 70.53 1967 92.8 1991 69.77 2015 82.05 

1920 96.76 1944 113.46 1968 210.56 1992 185.36 2016 82.16 

1921 131.5 1945 349.15 1969 102.41 1993 113.85 2017 72.08 

1922 94.21 1946 172.5 1970 247.15 1994 149.3 2018 89.64 

1923 168.25 1947 100.59 1971 74.32 1995 125.96 2019 178.34 

1924 140.72 1948 42.22 1972 76.14 1996 125.96 2020 111.61

Sn reduced standard deviation in Gumbel extreme value distribution = mean in 
Gumbel extreme value distribution, 

T return period. 

The above obtained rainfall depth data are arranged from highest to lowest to 
assign rank, and the exceedance probability is calculated (Appendix 1). 

P = 1/T = Rank/m + 1 (6)  

where 

P exceedance probability 
T time period 
m total number of observation.
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Meanwhile the rainfall intensities for the time period obtained are calculated by 
dividing the rainfall depth by time in hours. Intensity in arithmetic scale is plotted 
against return period in the log scale. 

4 Results and Discussion 

A detailed investigation of rainfall intensity curve was carried out for Surat city, and 
succeeding results were obtained (Figs. 1 and 2). The maximum rainfall occurred in 
a particular year for 24 h was selected. The same was converted to different duration 
depth using Eq. (1), and the corresponding intensity was found and plotted against the 
return period. The maximum rainfall intensity observed for 1 in 100 return period for 
15 min, 30 min, 45 min, 1 h, 2 h ad 3 h duration is 240.2 mm, 173.24 mm, 132.105 mm, 
109.97 mm, 69.28 mm and 52.86 mm per hour. These values of intensity are obtained 
from the IDF curves of respective duration (Figs. 3 and 4; Tables 2 and 3). 

5 Conclusions 

The following conclusions are derived from the preceding study. Equa-
tion 54.787 * LN(x)+ 64.93 obtained from the plot can be used to compute maximum 
daily intensity at any given return period. This equation obtains maximum intensity 
rainfall for various return periods (x). The maximum rainfall intensity observed for 
1 in 100 return period for 15 min, 30 min, 45 min, 1 h, 2 h and 3 h duration is

y = 41.838ln(x) + 49.581 
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Fig. 2 Resultant IDF curves for Surat city plotted as return period versus maximum intensity
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240.2 mm, 173.24 mm, 132.105 mm, 109.97 mm, 69.28 mm and 52.86 mm per 
hour. These values of intensity are obtained from the IDF curves of respective dura-
tion. The empirical formula slightly overestimated the value of maximum intensity 
rainfall compared to the Gumbel distribution.
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Table 2 Calculated rainfall values with respect to duration and return period in terms of empirical 
formula 

Time (min) 10 years (mm/h) 25 years (mm/h) 50 years (mm/h) 100 years (mm/h) 

15 145.9166 184.2523 213.2522 242.2521 

30 105.1529 132.7791 153.6775 174.5759 

45 80.24718 101.3301 117.2787 133.2274 

60 66.2443 83.64833 96.81396 109.9796 

120 41.73043 52.69385 60.98736 69.28086 

180 31.8459 40.21256 46.54168 52.87081 

1440 191.0777 241.2785 279.254 317.2295 

Table 3 Calculated rainfall values with respect to duration and return period in terms of Gumbel 
distribution 

Time (T ) (min) 10 years (mm/h) 25 years (mm/h) 50 years (mm/h) 100 years (mm/h) 

0.25 146.2927 177.5259 200.6964 223.6958 

0.5 105.4251 127.9331 144.6308 161.2052 

0.75 80.4544 97.6312 110.3739 123.0226 

1 66.41364 80.59278 91.11167 101.5529 

2 41.83797 50.77027 57.39676 63.97432 

3 31.92835 38.74497 43.80192 48.82154 

24 7.982087 9.686242 10.95048 12.20539

Acknowledgements I express my sincere gratitude to co-author Dr. Sanjay Yadav for his constant 
guidance and support. The authors are grateful to IMD and India WRIS for providing required data 
for the present analysis. 

Appendix 1: Intensities Corresponding to Time and Return 
Period 

S. No. Return period 15 min 30 min 45 min 1 h 2 h 3 h 24 h 

1 121.0 266.6 192.1 146.6 121.0 76.3 58.2 349.2 

2 60.5 241.2 173.8 132.7 109.5 69.0 52.6 315.9 

3 40.3 188.7 136.0 103.8 85.7 54.0 41.2 247.2 

4 30.3 185.5 133.7 102.0 84.2 53.1 40.5 242.9 

5 24.2 164.7 118.7 90.6 74.8 47.1 35.9 215.6 

6 20.2 163.4 117.7 89.9 74.2 46.7 35.7 214.0

(continued)
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(continued)

S. No. Return period 15 min 30 min 45 min 1 h 2 h 3 h 24 h

7 17.3 160.8 115.9 88.4 73.0 46.0 35.1 210.6 

8 15.1 156.9 113.1 86.3 71.2 44.9 34.2 205.4 

9 13.4 151.3 109.0 83.2 68.7 43.3 33.0 198.1 

10 12.1 151.3 109.0 83.2 68.7 43.3 33.0 198.1 

11 11.0 145.7 105.0 80.1 66.1 41.7 31.8 190.8 

12 10.1 145.1 104.6 79.8 65.9 41.5 31.7 190.1 

13 9.3 141.6 102.0 77.8 64.3 40.5 30.9 185.4 

14 8.6 136.2 98.1 74.9 61.8 38.9 29.7 178.3 

15 8.1 133.6 96.3 73.5 60.7 38.2 29.2 175.0 

16 7.6 132.7 95.6 73.0 60.2 37.9 29.0 173.8 

17 7.1 131.7 94.9 72.4 59.8 37.7 28.8 172.5 

18 6.7 128.5 92.6 70.7 58.3 36.7 28.0 168.3 

19 6.4 128.3 92.5 70.6 58.3 36.7 28.0 168.0 

20 6.1 125.9 90.8 69.3 57.2 36.0 27.5 164.9 

21 5.8 121.5 87.6 66.8 55.2 34.7 26.5 159.1 

22 5.5 116.5 84.0 64.1 52.9 33.3 25.4 152.6 

23 5.3 116.5 84.0 64.1 52.9 33.3 25.4 152.6 

24 5.0 114.7 82.7 63.1 52.1 32.8 25.0 150.2 

25 4.8 114.3 82.4 62.8 51.9 32.7 24.9 149.7 

26 4.7 114.0 82.2 62.7 51.8 32.6 24.9 149.3 

27 4.5 109.7 79.1 60.3 49.8 31.4 23.9 143.7 

28 4.3 109.6 79.0 60.3 49.8 31.4 23.9 143.6 

29 4.2 108.5 78.2 59.7 49.3 31.0 23.7 142.1 

30 4.0 108.1 77.9 59.5 49.1 30.9 23.6 141.6 

31 3.9 107.5 77.4 59.1 48.8 30.7 23.5 140.7 

32 3.8 101.9 73.5 56.1 46.3 29.1 22.2 133.5 

33 3.7 101.0 72.8 55.6 45.9 28.9 22.1 132.3 

34 3.6 100.4 72.4 55.2 45.6 28.7 21.9 131.5 

35 3.5 100.0 72.1 55.0 45.4 28.6 21.8 131.0 

36 3.4 99.4 71.6 54.7 45.1 28.4 21.7 130.1 

37 3.3 98.0 70.7 53.9 44.5 28.0 21.4 128.4 

38 3.2 97.9 70.6 53.9 44.5 28.0 21.4 128.3 

39 3.1 97.9 70.6 53.9 44.5 28.0 21.4 128.3 

40 3.03 96.19 69.32 52.90 43.67 27.51 20.99 125.96 

41 2.95 96.19 69.32 52.90 43.67 27.51 20.99 125.96 

42 2.88 95.07 68.51 52.29 43.16 27.19 20.75 124.50 

43 2.81 94.48 68.09 51.96 42.89 27.02 20.62 123.72

(continued)
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(continued)

S. No. Return period 15 min 30 min 45 min 1 h 2 h 3 h 24 h

44 2.75 93.62 67.46 51.48 42.50 26.77 20.43 122.59 

45 2.69 92.74 66.83 51.00 42.10 26.52 20.24 121.44 

46 2.63 92.47 66.64 50.85 41.98 26.45 20.18 121.09 

47 2.57 92.03 66.32 50.61 41.78 26.32 20.09 120.51 

48 2.52 91.84 66.19 50.51 41.70 26.27 20.05 120.27 

49 2.47 91.61 66.02 50.38 41.59 26.20 19.99 119.96 

50 2.42 90.39 65.14 49.71 41.04 25.85 19.73 118.37 

51 2.37 90.09 64.92 49.54 40.90 25.76 19.66 117.97 

52 2.33 89.96 64.83 49.47 40.84 25.73 19.63 117.80 

53 2.28 89.03 64.16 48.96 40.42 25.46 19.43 116.59 

54 2.24 88.98 64.12 48.94 40.40 25.45 19.42 116.52 

55 2.20 88.89 64.06 48.88 40.35 25.42 19.40 116.40 

56 2.16 88.76 63.96 48.81 40.29 25.38 19.37 116.23 

57 2.12 87.69 63.19 48.23 39.81 25.08 19.14 114.83 

58 2.09 87.17 62.82 47.94 39.57 24.93 19.03 114.15 

59 2.05 87.00 62.69 47.84 39.49 24.88 18.99 113.92 

60 2.02 86.94 62.65 47.81 39.47 24.86 18.98 113.85 

61 1.98 86.92 62.64 47.80 39.46 24.86 18.97 113.82 

62 1.95 86.64 62.44 47.65 39.33 24.78 18.91 113.46 

63 1.92 85.99 61.97 47.29 39.04 24.59 18.77 112.60 

64 1.89 85.90 61.90 47.24 38.99 24.57 18.75 112.48 

65 1.86 85.23 61.42 46.87 38.69 24.38 18.60 111.61 

66 1.83 84.10 60.61 46.25 38.18 24.05 18.36 110.13 

67 1.81 82.91 59.75 45.60 37.64 23.71 18.10 108.57 

68 1.78 80.02 57.67 44.01 36.33 22.89 17.47 104.79 

69 1.75 79.83 57.53 43.90 36.24 22.83 17.42 104.54 

70 1.73 78.77 56.77 43.32 35.76 22.53 17.19 103.15 

71 1.70 78.21 56.36 43.01 35.50 22.37 17.07 102.41 

72 1.56 79.96 57.62 43.97 36.30 22.87 17.45 104.71 

73 1.52 79.46 57.26 43.70 36.07 22.72 17.34 104.05 

74 1.48 78.95 56.89 43.42 35.84 22.58 17.23 103.38 

75 1.44 78.44 56.53 43.14 35.61 22.43 17.12 102.72 

76 1.40 77.94 56.17 42.86 35.38 22.29 17.01 102.06 

77 1.35 77.43 55.80 42.58 35.15 22.15 16.90 101.40 

78 1.31 76.93 55.44 42.31 34.92 22.00 16.79 100.74 

79 1.27 76.42 55.07 42.03 34.69 21.86 16.68 100.08 

80 1.23 75.92 54.71 41.75 34.46 21.71 16.57 99.41

(continued)
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(continued)

S. No. Return period 15 min 30 min 45 min 1 h 2 h 3 h 24 h

81 1.19 75.41 54.34 41.47 34.24 21.57 16.46 98.75 

82 1.15 74.91 53.98 41.19 34.01 21.42 16.35 98.09 

83 1.5 70.4 50.7 38.7 31.9 20.1 15.4 92.2 

84 1.4 69.3 49.9 38.1 31.4 19.8 15.1 90.7 

85 1.4 68.5 49.3 37.6 31.1 19.6 14.9 89.6 

86 1.4 67.5 48.7 37.1 30.7 19.3 14.7 88.4 

87 1.4 66.9 48.2 36.8 30.4 19.1 14.6 87.6 

88 1.4 64.4 46.4 35.4 29.2 18.4 14.1 84.3 

89 1.4 63.9 46.1 35.2 29.0 18.3 14.0 83.7 

90 1.3 63.9 46.1 35.2 29.0 18.3 14.0 83.7 

91 1.3 62.7 45.2 34.5 28.5 17.9 13.7 82.2 

92 1.3 62.7 45.2 34.5 28.4 17.9 13.7 82.1 

93 1.3 60.4 43.5 33.2 27.4 17.3 13.2 79.1 

94 1.3 58.2 41.9 32.0 26.4 16.6 12.7 76.2 

95 1.3 58.1 41.9 32.0 26.4 16.6 12.7 76.1 

96 1.3 56.8 40.9 31.2 25.8 16.2 12.4 74.3 

97 1.2 56.4 40.6 31.0 25.6 16.1 12.3 73.8 

98 1.2 56.3 40.6 31.0 25.6 16.1 12.3 73.7 

99 1.2 56.0 40.4 30.8 25.4 16.0 12.2 73.4 

100 1.2 55.9 40.3 30.7 25.4 16.0 12.2 73.2 

101 1.2 55.0 39.7 30.3 25.0 15.7 12.0 72.1 

102 1.2 53.9 38.8 29.6 24.5 15.4 11.8 70.5 

103 1.2 53.4 38.5 29.4 24.3 15.3 11.7 70.0 

104 1.2 53.3 38.4 29.3 24.2 15.2 11.6 69.8 

105 1.2 53.3 38.4 29.3 24.2 15.2 11.6 69.8 

106 1.1 52.1 37.5 28.6 23.6 14.9 11.4 68.2 

107 1.1 50.6 36.5 27.8 23.0 14.5 11.1 66.3 

108 1.1 49.5 35.7 27.2 22.5 14.2 10.8 64.8 

109 1.1 47.9 34.5 26.3 21.8 13.7 10.5 62.7 

110 1.1 47.9 34.5 26.3 21.8 13.7 10.5 62.7 

111 1.1 45.8 33.0 25.2 20.8 13.1 10.0 59.9 

112 1.1 43.7 31.5 24.1 19.9 12.5 9.5 57.3 

113 1.1 42.9 30.9 23.6 19.5 12.3 9.4 56.2 

114 1.1 42.4 30.6 23.3 19.3 12.1 9.3 55.6 

115 1.1 41.8 30.1 23.0 19.0 12.0 9.1 54.8 

116 1.0 39.3 28.3 21.6 17.8 11.2 8.6 51.4 

117 1.0 37.2 26.8 20.4 16.9 10.6 8.1 48.7

(continued)



406 P. Patarot and S. M. Yadav

(continued)

S. No. Return period 15 min 30 min 45 min 1 h 2 h 3 h 24 h

118 1.0 37.2 26.8 20.4 16.9 10.6 8.1 48.7 

119 1.0 32.2 23.2 17.7 14.6 9.2 7.0 42.2 

120 1.0 23.8 17.2 13.1 10.8 6.8 5.2 31.2 
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Generation 
of Intensity–Duration–Frequency Curve 
for Tezpur, Assam 

Priyanshu Kashyap Hazarika, Ananya Swargiary, Gautam Sonowal, 
and Anurag Sharma 

Abstract Calculating rainfall intensity–duration–frequency curve (IDF curve) is a 
pre-requisite in water resource engineering for the development, management and 
planning of hydraulic infrastructures such as barrages, spillways and for various 
engineering projects against design floods. The objective of this study is to develop 
an IDF curve relationship for Tezpur, Assam for a short duration of 15 years which 
will be helpful for the design of drainage work like storm sewers, culverts, etc. In this 
study, the rainfall data of 15 years, i.e., from 2007 to 2021 has been collected from 
the Water Resource Department of Tezpur. Firstly, the peak annual daily rainfall was 
found out and then, Gumbel, log-normal and normal distributions have been used to 
calculate probable maximum rainfall intensity for a return period of 2, 10, 25, 50, 75 
and 100 years from the maximum annual rainfall. The other objective of this study 
is to compare the IDF curves derive from these three distributions and is to find the 
best IDF curve for Tezpur. For Gumbel’s analysis, the value of reduced mean and 
reduced standard deviation has been taken as 0.5128 and 1.0206, respectively, for 
15 numbers of sample sizes. The data trend illustrates that as duration increases,
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the intensity value declines and that rainfall increases with length for a particular 
duration as return period increases, intensity tends to increase. It is also observed 
that log-normal distribution gives the lowest variation for different return periods. 
The derived IDF curve model can be further used for flood forecasting. 

Keywords Intensity–duration–frequency curve · Gumbel distribution · Normal 
distribution function · Log-normal distribution 

1 Introduction 

The amount of rainfall received by an area impacts its weather conditions which 
is responsible for causing floods as well as droughts. Correct characterization of 
magnitude and frequency of rainfall may be helpful to control such extreme weather 
conditions. This may also help with disaster management. Calculating rainfall inten-
sity–duration–frequency curve (IDF curve) is useful in the field of water resource 
engineering, public safety, various civil engineering projects against design floods, 
drainage design and operation, river discharge studies, etc. The magnitude of severe 
rainfall occurrences for specific return periods (e.g., 2-to 100-year) and storm dura-
tions are also summarized by intensity–duration–frequency (IDF) curves (e.g., 5 min 
to 24 h), which a common component of hydrological infrastructure designs and 
other engineering applications [1]. The amount of historical rainfall data collected 
is directly proportional to the accuracy of the curve derived. 

Intensity–duration–frequency curves give the relationship between the intensity 
of precipitation and the duration of storm for a given return period. The IDF curves 
are created for a certain location and return period. It is a curve in which return 
period serves as the third parameter while duration, intensity and ordinate serve as 
the abscissa [2]. The likelihood that a certain average rainfall intensity will occur 
within a specific time period is shown graphically by the rainfall intensity–duration– 
frequency (IDF) curve [3]. Intensity–duration–frequency (IDF) curves need to be 
reviewed and updated for future climatic scenarios since rainfall characteristics are 
frequently utilized to build water infrastructure [4]. Climate change has affected 
rainfall pattern of areas to a great extent. Therefore, unless the IDFs are revised 
to reflect future climatic trends, those IDFs produced in accordance with historical 
climatic circumstances are not applicable to future climatic conditions [5, 6]. A 
Mediterranean area study showed that studies on extreme rainfall of shorter duration 
will increase in the future in spite of changes in increment of precipitation [7]. This 
may help to track the changes in climatic conditions for a short duration and its impact 
on rainfall. Information about rainfall intensity, duration and return periods—the 
inverse of the chance of exceeding—is crucial in the field of hydrology. The ability 
to predict significant precipitation occurrences of varying intensities is also of great 
importance since it is necessary for the construction of many hydraulic facilities, 
such as flood detention reservoirs and sewage systems, which control storm runoff. 
[8].
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Precipitation magnitude is different for various locations. Numerous research [9, 
10] have been conducted to identify relationships between various regions of the 
world so that IDF curve applications can be used in a variety of fields. In a country 
like India, precipitation mostly occurs in the form of rain. So, it is very much essential 
to study the pattern of rainfall to interpret floods and droughts. But, in developing 
countries like India, IDF curve relationships have not been derived accurately for 
many regions or have not developed at all. The reasons may be lack of proper rainfall 
data, fund or exposure. 

2 Study Area and Data Source 

2.1 Tezpur 

Tezpur is called the cultural capital of Assam. It is the sub-division of Sonitpur 
district which is known for its mythical history. This city is located on the northern 
bank of the mighty Brahmaputra river; 180 km from Guwahati, Assam. This city 
is related to so much ancient history, for example, there was a great mythical war 
which happened in Tezpur between the lord Shiva and Krishna. Tezpur is situated 
between 26.6528° to 26.691° N and 92.725° to 92.860° E, of the eastern longitudes 
with the GPS coordinates 26°39'4.3848'' N and 92°47'1.7268'' E with an area of 
40 km2 and bounded by Rangapara in the north, Jamugurihat in the east, Dhekiajuli 
in the west and Nagaon in the south. We have seen that the Tezpur area climatically 
comes under sub-tropical monsoon. The average temperature of this area is 21 °C 
in summer and 10 °C in winter. The Tezpur is situated on the northern bank of 
Brahmaputra which is dotted with a range of lower hills and hillocks like Agnigarh, 
Auguri, Bamuni hills with the semi-deciduous forests. Along with these lower hills 
and hillocks, Tezpur city is also decorated with some different geometric shapes in 
low-lying areas which are abandoned channels of the River Jia Bharali. With the 
density of 2600 persons/km2, the total population of this beautiful city is 1.03 lakhs 
as per the 2011 census. 

The Water Resource Department in Tezpur provided daily rainfall data for the 
study’s purposes from the period 2007–2021, which were used to create the intensity– 
duration–frequency curve (Fig. 1).

2.2 Data Used 

For this study, daily rainfall data of Tezpur was collected from Tezpur Water Resource 
Department from the year 2007 to 2021. The daily rainfall data was analyzed to find 
the maximum daily rainfall data for every month. To reduce the variability in the 
daily rainfall data, it was measured daily at exactly 08:30 a.m. With the help of this 
data, intensity–duration–frequency curves were generated for our study area.
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Fig. 1 Index map of study area

2.3 Methods Used 

2.3.1 Estimation of Short-Duration Rainfall 

In order to estimate rainfall values for various durations, such as 5 min, 10 min, 
15 min, 30 min, 60 min, 120 min, 720 min and 1440 min, the Indian Meteorological 
Department (IMD) utilizes an empirical reduction formula (1). Using daily rainfall 
data of Tezpur city and the IMD empirical reduction formula, it was discovered that 
this formula provides the most accurate short-duration rainfall estimation. 

Pt = P24 3
/

t 

24 
(1)
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where Pt is the required rainfall depth in mm at t hour duration, P24 is the daily 
rainfall in mm and t is the duration of rainfall for which the rainfall depth is required 
in minute. 

Now by using the following three theoretical probability distribution functions, 
i.e., Gumbel’s extreme value distribution, normal distribution, log-normal distri-
bution rainfall (mm) and then rainfall intensity (mm/h) of different return period 
(2 years, 10 years, 25 years, 50 years, 75 years and 100 years) is found out. These 
three are the most commonly used distribution functions to develop the IDF curves 
from the data of rainfall of the study area. 

2.3.2 Gumbel’s Extreme Value Distribution (GEV) 

The most popular frequency or probability distribution function that may be used to 
various hydrological investigations is known as the general equation of hydrologic 
frequency analysis (GEV), and it can be expressed as (2). 

The magnitude (XT ) of a hydrological event can be represented as the arithmetic 
mean (x) plus frequency factor (Kt) into standard deviation (σ n − 1) 

XT = x + Kt σn−1 (2) 

where 

XT value of variate X of a random hydrological series with return period 
Kt frequency factor expressed as YT −YN 

SN 
. 

n – 1  standard deviation of sample size N =
[

1 
N−1 

N∑
i=1 

(xi − x)2
]1/2 

. 

YT reduced variate which is a function of return period T and is given by YT = 
− [

ln
{
ln T 

T−1

}]
YN reduced mean, a function of sample size N and equal to 0.5424 for sample 

size 15. 
SN reduced standard deviation, a function of sample size N and equal to 1.1363 

for sample size 15. 

2.3.3 Normal Distribution Function 

Normal (Gaussian) distribution is one of the most prominent continuous probability 
distribution functions in statistics. For obtaining the rainfall intensities for specified 
return period (2, 10, 25, 50, 75 and 100 years) and numerous calculations must be 
made for each storm period, e.g., this approach also calculates rainfall intensities like 
other methods. Following is the equation to determine PT (in mm) using a specified 
time period T (in years) and specified duration (t): 

PT = P + KT S (3)
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Here, KT is the frequency factor and is equal to z for both log-normal and normal 
distributions. z can be calculated by 

z = w − 2.515517 + 0.802853w + 0.010328w2 

1 + 1.432788w + 0.189269w2 + 0.001308w3 
(4) 

Here, w is given as 

w = ln
(

1 

p2

) 1 
2 

(5) 

In the above equation, p is the probability of occurrence in a specified return 
period and is given as 

p = 
1 

T 
(6) 

For the case p > 0.5, the value of p is substituted by 1 − p in Eq. (5) and z gives 
a negative value. In the Eq. (3), 

P arithmetic average of rainfall records obtained for a single time period. 
S standard deviation. 

After calculating the precipitation, the rainfall intensities I (in mm/h) corre-
sponding to a particular return period T are calculated which is necessarily developing 
IDF: 

It = 
PT 
t 

Here, t represents the duration in hour. 
The above procedure was followed and uses to calculate the rainfall intensities 

for eight durations and six return periods. 

2.3.4 Log-Normal Distribution 

Similar to the normal method, the log-normal method with the interference of loga-
rithm variables can be used to calculate the frequency of precipitation. The logarith-
mically converted data is used to calculate the average precipitation and the standard 
deviation. 

P∗ = log(Pi ) 

P
∗ = 

1 

n 

n∑
i=1 

P∗ 
i
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S∗ =
[

1 

n − 1 

n∑
i=1

(
P∗ − P∗)2

]1/2 

The frequency precipitation is calculated as 

P∗ 
T = P∗ + KT S

∗ 

The intensity can be calculated by 

It = 
PT 
t 

Here, PT is the antilogarithm of P* calculated by equation. 

3 Results and Discussions 

There are three different methods used to obtain the IDF curves which link the 
relationship between duration of rainfall (in min.), intensity (in mm/h) and return 
period (in years). The deductions made were summarized in Tables 2, 3 and 4. 
In Table 1, the return intervals are described as frequency factor KT for different 
probability distribution functions. 

The intensity of rainfall and the return durations are directly proportional to each 
other as seen in Figs. 2, 3, 4, 5, 6 and 7, which represents the IDF curves that is the 
summation of all the three methods, if the return period increases, the intensity was 
also seen increasing for a particular duration of storm. It is observed from the graph 
that intensity of rainfall and the duration of storm are inversely proportional to each 
other in every three cases. The intensity–duration–frequency curve is a graphical 
representation of the connection between rainfall intensity and duration. The flood 
hydrographs for various design floods may be calculated using the rainfall intensity 
measured for various periods. The intensity duration curve shows that Gumbel distri-
bution gives highest rainfall intensity values for higher return periods between the

Table 1 Value of frequency factor for different return periods 

Probability 
distribution function 

Frequency factor, KT 

Return period (years) 

2 10 25 50 75 100 

Gumbel distribution −0.154 1.503 2.337 2.956 3.316 3.571 

Normal distribution 0.000199 1.282059 1.751386 2.054509 2.217132 2.327114 

Log-normal 
distribution 

0.000199 1.282059 1.751386 2.054509 2.217132 2.327114
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Fig. 2 IDF curve in arithmetic scale using Gumbel’s distribution 

Fig. 3 IDF curve in log 
scale using Gumbel’s 
distribution 
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three and the values deduced from the other two methods are nearly close to each 
other. The frequency precipitation value was also found higher in Gumbel’s method. 
As the sample size is small, so the log-normal distribution gives the least variation 
in the IDF curve. The graphs of Gumbel’s distribution, log-normal distribution and 
normal distribution were plotted in both arithmetic and logarithmic scale. The esti-
mated IDF relationships may also be utilized as useful information for the region’s 
development and maintenance of hydraulic infrastructures. By assessing extreme 
weather scenarios like floods, these statistical approaches play a significant role in 
enabling the adoption of appropriate mitigation measures to reduce the risk of loss 
of life and property. Therefore, the evaluation of the heaviest precipitation occur-
rences provides guidance for a variety of civil engineering tasks, such as reservoir 
management, flood forecasts and hydraulic structure designs. 

4 Conclusions 

The aim of the study is to develop the IDF curve of Tezpur to calculate the intensity 
of rainfall using the specific storm duration and return period by using the daily



420 P. K. Hazarika et al.

0 

50 

100 

150 

200 

250 

300 

0 5 10 15 20 25 30 

in
te

ns
ity

(m
m

/h
r) 

time(hour) 

2yrs 

10yrs 

25yrs 

50yrs 

75yrs 

100yrs 

Fig. 4 IDF curve in arithmetic scale using normal distribution 
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Fig. 5 IDF curve in log scale using normal distribution 
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Fig. 7 IDF curve in log scale using log-normal distribution

rainfall data from Tezpur Water Resource Department till August 2021. The following 
conclusions have been derived from this study. 

• Out of the three distribution methods, the Gumbel distribution method gives the 
highest rainfall intensity values for high return periods among the three. 

• The rainfall intensity value obtained from normal and log-normal distributions 
are nearly close to each other. 

• The floods with higher return period were severe when compared to that of lower 
return period. 

• The graphs would be more appropriate and distinct if more than 30 years data are 
used. 

• The rainfall intensities obtained for different durations can be used to calculate 
the flood hydrographs for different design floods. 
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Intercomparison of MoM, MLM 
and LMO Estimators of Probability 
Distributions for Assessment of Extreme 
Rainfall 

N. Vivekanandan, C. Srishailam, and R. G. Patil 

Abstract Assessment of extreme rainfall is needed to be carried out to prevent floods 
and droughts and applied to the studies on water resources projects. This can be done 
by extreme value analysis (EVA) that consists of fitting probability distributions to the 
annual 1-day maximum rainfall (AMR) series. This paper presents a study on EVA 
of rainfall for Pune and Vadgaon Maval sites using method of moments, maximum 
likelihood method and L-moments (LMO) estimators of log normal, extreme value 
type-1 (EV1), generalized extreme value (GEV) and generalized Pareto distributions. 
The evaluation of probability distributions adopted in EVA is made by goodness-of-
fit (viz., Chi-square and Kolmogorov–Smirnov) tests, D-index and fitted curves of 
the estimated rainfall. On the basis of the results obtained from the study, it is found 
that EV1 (LMO) is better suited for rainfall estimation for Pune whereas GEV (LMO) 
for Vadgaon Maval. 

Keywords Chi-square · D-index · Extreme value type-1 · Generalized extreme 
value · Kolmogorov–Smirnov · L-moments · Rainfall 

1 Introduction 

Rainfall is one of the most important parameters in hydrological studies, and its 
occurrence and distribution is erratic, temporal and spatial variations in nature. Deter-
mination of annual 1-day maximum rainfall for a given return period would enhance 
the management of water resources applications as well as the effective utilization
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of water resources. Probability and frequency analysis of rainfall data enables us 
to determine the expected rainfall at various chances. Such information can also be 
used to prevent floods and droughts and applied to planning and designing of water 
resources related to engineering such as reservoir design, flood control work and soil 
and water conservation planning. Depending on design-life of structure, extreme (i.e. 
1-day maximum) rainfall with a given return period is used [15]. This can be carried 
out by extreme value analysis (EVA) that involves fitting probability distribution to 
the annual 1-day maximum rainfall (AMR) series. 

Out of number of available probability distributions, the 2-parameter log normal 
(LN2), extreme value type-1 (EV1), generalized extreme value (GEV) and general-
ized Pareto (GP) distributions are widely applied in EVA [11–13] and hence used in 
this paper. The parameters of the distributions are determined by method of moments 
(MoM), maximum likelihood method (MLM) and L-moments (LMO) and also used 
for estimation of rainfall. 

Esteves [6] applied EV1 for estimation of extreme rainfall for different rain-gauge 
stations in southeast UK. Rasel and Hossain [10] estimated the rainfall intensities 
at seven divisions in Bangladesh using EV1 and developed the intensity–duration– 
frequency curves. By using EV1 distribution, the maximum rainfall at Bamenda 
mountain region, Cameroon was estimated by Afungang and Bateira [1]. Study by 
Arvind et al. [2] indicated that EV1 is better suited for analysing the annual and 
monthly rainfall for Musiri region, Tiruchirappalli. Esberto [5] determined the best 
fit frequency distribution of rainfall patterns for event forecasting in order to address 
potential disasters. Baghel et al. [3] stated that LN2 and EV1 are the best fit distri-
butions to estimate the rainfall for Udaipur district. Vivekanandan and Srishailam 
[15] compared the EVA results of rainfall of Anakapalli, Kasimkota, Parvada and 
Atchutapuram by adopting EV1, LN2 and log Pearson type-3 distributions. However, 
it is very difficult to evaluate the best fit distribution when number of distributions 
adopted in EVA. This can be done by using goodness-of-fit (GoF) (viz., Chi-square 
(χ 2) and Kolmogorov–Smirnov (KS)) tests, D-index and fitted curves of the estimated 
rainfall [14]. The procedures adopted in EVA of rainfall, evaluation of EVA results 
using GoF and diagnostic tests, and discussion on the results is briefly described with 
an illustrative example in the following sections. 

2 Methodology 

The cumulative distribution function (CDF) and quantile estimator of probability 
distributions adopted in EVA are presented in Table 1. The empirical equations used 
in determining the parameters of the distributions are presented in Table 2 [9]. The 
terms λ1, λ2 and λ3 [7, 8] are defined as first, second and third LMOs that can be 
determined Eq. (1) and are given by 

λ1 = b0, λ2 = 2b1 − b0 and λ3 = 6b2 − 6b1 + b0 (1)
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wherein λr+1 is the r + 1th LMO, which is defined by 

λr+1 = 
r∑

k=0 

(−1)r−k (r + k)! 
(k!)2(r − k)! bk (2) 

wherein bk is an unbiased estimator and given by 

bk = N −1 
N∑

i=k+1 

(i − 1)(i − 2) . . . (i − k) 
(N − 1)(N − 2) . . . (N − k) 

x(i ) (3) 

where x(i) is the observed data of ith sample and N the total number of samples.

Table 1 CDF and quantile estimator of LN2, EV1, GEV and GP distributions 

Distribution CDF Quantile estimator (x(T )) 

LN2 
(μ(y), σ (y)) 

F(y) = ϕ
(
y−μ(y) 
σ(y)

)
and y = ln(x) x(T ) = exp(μ(y) + K (T )σ (y)) 

EV1 
(ξ, α) 

F(x) = e−e
−

(
x−ξ 
α

)

, α  >  0 x(T ) = ξ + α[− ln(− ln(1 − (1/T )))] 

GEV 
(ξ, α, β) 

F(x) = e−
(
1− β(x−ξ)  

α

)1/β 

, α  >  
0, β  >  0 

x(T ) = ξ + α[1−(− ln(1−(1/T )))β ] 
β 

GP 
(ξ, α, β) 

F(x) = 1 −
(
1 − β(x−ξ)  

α

)1/β 
, α  >  

0, β  >  0 
x(T ) = ξ + α(1−(1−(1/T )))β ) 

β 

Wherein 

ξ Location parameter 

α Scale parameter 

β Shape parameter 

τ 3 L-skewness (λ3/λ2) 

T Return period (in year) 

F(x) CDF of a variable x 

F(y) CDF of a variable y = ln(x) 
K(T ) Frequency factor (K) of a return period (T ) corresponding to coefficient of 

skewness (CS), say CS = 0.0 for LN2 
x(T ) Estimated rainfall (x) for a return period (T ) 

φ(…) CDF of standard normal distribution 

μ(x) Average (μ) of observed data (x) 

σ (x) Standard deviation (σ ) of observed data (x) 
μ(y) Average (μ) of logarithmic series (y = ln(x)) of observed data 
σ (y) Standard deviation (σ ) of logarithmic series of observed data 

A relation between F and T is given by F (or F(x)) = 1 − 1/T
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2.1 Goodness-of-Fit Tests 

In this paper, the probability distributions adopted in EVA are evaluated by using 
GoF tests (viz., χ 2 and KS). The mathematical expressions of GoF tests [16] are  as  
follows: 

χ 2 statistic is defined by 

χ 2 = 
NC∑

j=1

(
O j (x) − E j (x)

)2 

E j (x) 
(4) 

where Oj(x) is the observed frequency value (x) for  jth class, Ej(x) the expected 
frequency value (x) for  jth class and NC the number of frequency classes [4]. The 
acceptance region of χ 2 statistic at the desired significance level (η) is given  by  
χ 2 C ≤ χ 2 1−η, NC−m−1. Here, m denotes the number of parameters of distribution and 
χ 2 C is the computed value of χ 2 statistic by the distribution. 

KS statistic is defined by 

K S  = 
N 

Max 
i=1 

|Fe(x(i )) − Fc(x(i ))| (5) 

where x(i) is the observed data (x) for  ith sample, Fe(x(i)) = r/(N + 1) the empirical 
CDF of x(i) of  ith sample, ‘r’ the rank assigned to a sample values arranged in 
ascending order (x(1) < x(2) < …..x(N)) and Fc(x(i)) the computed CDF of x(i) of  
ith sample. 

Test criteria: If the GoF tests statistic values computed by the distribution are 
not greater than its theoretical values at the desired level of significance, then the 
distribution is acceptable for EVA at that level. 

2.2 Diagnostic Test 

In addition to GoF tests, D-index test is applied for the selection of most suitable 
distribution [14] for rainfall estimation, which is given by 

D-index  = (1/μ(x)) 
6∑

i=1

||x(i ) − x(i )∗
|| (6) 

Here, x(i) (i = 1 to 6) and  x(i)* are the six highest observed and the corresponding 
estimated values of ith sample. The distribution with least D-index is considered as 
better suited for rainfall estimation.
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3 Application 

This paper details a study on comparison of four probability distributions (viz., LN2, 
EV1, GEV and GP) applied in EVA of rainfall for Pune and Vadgaon Maval sites. The 
index map of the study area with locations of the rain-gauge stations is presented 
in Fig. 1. The AMR series of Pune and Vadgaon Maval was extracted from the 
daily rainfall data observed at the respective sites during the period 1901 to 2017 
and also used for EVA. From the scrutiny of the daily rainfall data of Pune, it is 
observed that there is no missing data and hence, the entire data series is used in 
EVA. For Vadgaon Maval, it is found that the data for the intermittent period during 
the years 1966, 1967 and 1972 are found to be missing. However, by considering the 
importance on hydrological aspects of the study region, the data for the missing years 
are ignored and also not considered in EVA. Table 3 gives the descriptive statistics 
of AMR. 

From Table 3, it is observed that the higher moments (CS and CK) of AMR series 
have different behaviours for Pune when compared to Vadgaon Maval. Also, from 
Table 3, it is found that the CV of the AMR series of Pune and Vadgaon Maval is 
noted to be about 35.2% and 41.9%, respectively.

Fig. 1 Index map of the study area with locations of rain-gauge stations
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Table 3 Descriptive statistics of AMR series 

Site Average 
(mm) 

Standard 
deviation 
(mm) 

Coefficient of 
skewness 
(CS) 

Coefficient 
of Kurtosis 
(CK) 

Minimum 
(mm) 

Maximum 
(mm) 

Pune 74.2 
(4.249) 

26.1 
(0.343) 

1.010 
(−0.042) 

1.694 
(−0.014) 

28.5 
(3.350) 

181.1 
(5.199) 

Vadgaon 
Maval 

102.5 
(4.556) 

42.9 
(0.377) 

1.420 
(0.472) 

2.143 
(−0.188) 

47.2 
(3.854) 

253.0 
(5.533) 

Number given within brackets indicates a descriptive statistic of logarithmic value of AMR

4 Results and Discussions 

By applying the EVA procedures, as described above, a computer code was developed 
and used for rainfall estimation. The EVA results of rainfall obtained from four 
probability distributions (viz., LN2, EV1, GEV and GP) for Pune and Vadgaon 
Maval sites are presented in the following sections. 

4.1 Extreme Value Analysis of Rainfall 

The estimators of the parameters of LN2, EV1, GEV and GP distributions were 
determined by MoM, MLM and LMO and are further used for rainfall estimation. 
Tables 4 and 5 present the 1-day maximum rainfall estimates for different return 
periods for Pune and Vadgaon Maval, respectively, whereas the EVA plots are shown 
in Fig. 2a, b.

The EVA results of rainfall showed that the estimated rainfall by EV1 (LMO) 
for Pune and GEV (LMO) for Vadgaon Maval are higher than those values of other 
distributions for return periods above 200-year. Also, the EVA results showed that no 
appreciable difference between the estimated rainfall using EV1 (MLM) and EV1 
(LMO). From Fig. 2a, b, it is noticed that the fitted lines using LN2 and EV1 are 
linear, while GEV curves are exponentially upward and GP curves are exponentially 
downward. 

4.2 Analysis of Results Based on GoF Tests 

In the present study, the number of frequency classes (NC) is considered as thirteen 
and accordingly the degree of freedom (NC – m  − 1) is considered as ten for GEV 
and GP whereas eleven for LN2 and EV1 while computing the χ 2 statistic values. 
By using the information, the GoF tests statistic values were computed for Pune and 
Vadgaon Maval and are given in Table 6. The theoretical values of χ 2 statistic at 5%
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Table 4 1-day maximum rainfall given by LN2, EV1, GEV and GP for Pune 

Distribution Method 1-day maximum rainfall (mm) for a return period (in year) 

2 5 10 20 25 50 100 200 500 1000 

LN2 MoM 70.0 93.3 108.4 122.7 127.2 141.1 154.8 168.5 186.8 200.8 

MLM 70.0 93.4 108.6 123.0 127.5 141.5 155.3 169.2 187.7 201.8 

LMO 70.0 93.6 109.0 123.5 128.1 142.3 156.3 170.3 189.1 203.4 

EV1 MoM 70.0 93.0 108.2 122.9 127.5 141.8 156.0 170.1 188.8 202.9 

MLM 70.0 93.2 108.6 123.4 128.1 142.5 156.9 171.2 190.0 204.2 

LMO 69.9 93.2 108.7 123.5 128.2 142.6 157.0 171.3 190.2 204.4 

GEV MoM 70.3 93.5 108.5 122.7 127.1 140.7 154.0 167.0 183.8 196.3 

MLM 70.1 93.2 108.3 122.6 127.2 141.0 154.6 168.1 185.7 198.8 

LMO 70.1 93.4 108.6 123.2 127.8 141.8 155.6 169.3 187.2 200.6 

GP MoM 67.8 95.4 112.3 126.3 130.3 141.3 150.4 158.0 166.1 171.0 

MLM 71.2 100.2 117.9 132.6 136.8 148.3 157.9 165.9 174.4 179.6 

LMO 69.4 97.2 112.0 122.8 125.7 132.9 138.3 142.2 145.9 147.8 

Table 5 1-day maximum rainfall given by LN2, EV1, GEV and GP for Vadgaon Maval 

Distribution Method 1-day maximum rainfall (mm) for a return period (in year) 

2 5 10 20 25 50 100 200 500 1000 

LN2 MoM 94.6 132.6 158.3 183.1 191.1 215.8 240.8 266.2 300.5 327.3 

MLM 95.2 130.6 154.0 176.5 183.7 205.9 228.1 250.5 280.6 303.8 

LMO 95.2 130.8 154.5 177.3 184.5 207.0 229.4 252.1 282.7 306.3 

EV1 MoM 95.5 133.4 158.5 182.6 190.2 213.8 237.2 260.4 291.1 314.4 

MLM 94.9 128.1 150.1 171.2 177.8 198.4 218.9 239.2 266.1 286.4 

LMO 95.7 132.6 157.1 180.5 188.0 210.9 233.6 256.3 286.2 308.8 

GEV MoM 94.6 131.8 157.4 182.8 191.0 216.8 243.2 270.3 307.3 336.3 

MLM 93.0 126.9 151.2 176.0 184.2 210.5 238.2 267.5 309.0 342.5 

LMO 92.0 128.3 156.0 185.8 196.0 229.7 266.9 308.2 370.0 422.9 

GP MoM 90.4 133.3 162.6 189.4 197.6 221.5 243.4 263.5 287.4 303.8 

MLM 101.7 149.9 182.9 213.1 222.2 249.1 273.8 296.4 323.4 341.8 

LMO 90.6 133.6 162.7 189.0 196.9 220.0 240.9 259.9 282.2 297.3

significance level with reference to the degree of freedom are observed as 18.307 
for GEV and GP whereas 19.675 for LN2 and EV1. Likewise, the theoretical values 
of KS statistic at 5% level of significance with reference to the number of samples 
considered in EVA are observed as 0.126 for Pune and 0.127 for Vadgaon Maval.

Based on GoF tests results, the observations drawn from the study were 
summarized and are given as below.
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Fig. 2 Observed and estimated 1-day maximum rainfall for different return periods for Pune and 
Vadgaon Maval
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Table 6 Computed values of GoF and diagnostic tests statistic by LN2, EV1, GEV and GP 

Distribution Method Computed values of GoF and diagnostic tests 

Pune Vadgaon Maval 

χ 2 KS D-index χ 2 KS D-index 

LN2 MoM 7.555 0.038 0.490 19.421 0.070 0.980 

MLM 7.555 0.038 0.481 19.421 0.070 1.509 

LMO 7.558 0.039 0.465 19.427 0.071 1.448 

EV1 MoM 6.222 0.039 0.481 20.789 0.079 1.079 

MLM 7.010 0.039 0.465 19.235 0.080 1.911 

LMO 7.778 0.040 0.464 17.368 0.082 1.235 

GEV MoM 8.444 0.036 0.497 18.965 0.071 0.941 

MLM 8.013 0.036 0.494 12.807 0.057 1.309 

LMO 7.556 0.037 0.477 6.649 0.043 0.745 

GP MoM 10.222 0.381 0.554 16.000 0.152 0.696 

MLM 9.778 0.311 0.872 15.545 0.147 0.884 

LMO 9.333 0.240 0.824 15.089 0.141 0.755

• χ 2 test results supported the LN2, EV1, GEV and GP distributions for rainfall 
estimation for Pune. 

• χ 2 test results did not support the EV1 (MoM) and GEV (MoM) for estimation 
of rainfall for Vadgaon Maval. 

• KS test results did not support the use of GP for EVA of rainfall for Pune and 
Vadgaon Maval. 

4.3 Analysis of Results Based on Diagnostic Test 

In addition to GoF tests, a diagnostic test using D-index is applied for identifying the 
best suitable distribution for rainfall estimation. Table 6 presents the D-index values 
of LN2, EV1, GEV and GP for Pune and Vadgaon Maval. From Table 6, it is noted 
that EV1 (LMO) for Pune and GP (MoM) for Vadgaon Maval are having minimum 
D-index when compared with those values of other distributions adopted in EVA. 

4.4 Selection of Probability Distribution 

The best fit for estimation of rainfall was re-assessed by using the fitted lines of the 
estimated rainfall together with D-index values. 

• D-index values showed that EV1 (LMO) for Pune and GP (MoM) for Vadgaon 
Maval could be used for rainfall estimation.



434 N. Vivekanandan et al.

• As described earlier, the MoM estimators provide less accurate results when 
compared with those values of MLM and LMO. Moreover, KS test results did 
not support the applicability of GP (MoM) for estimation of rainfall for Vadgaon 
Maval. By considering these facts, for Vadgaon Maval, the D-index value obtained 
from GP is not considered in selection of best fit distribution. 

• In the light of the above, it is identified that D-index of GEV (LMO) is the second 
minimum next to GP (MoM) for Vadgaon Maval. 

• However, on the basis of qualitative assessment on EVA plots of rainfall together 
with D-index values, it is identified that EV1 (LMO) is better suited for rainfall 
estimation for Pune while GEV (LMO) for Vadgaon Maval. The plots of observed 
and estimated 1-day maximum rainfall with 95% confidence limits by the selected 
distribution for Pune and Vadgaon Maval sites are presented in Fig. 3a, b.

• From Fig. 3a, it is noted that the AMR varies between 70.0 and 150.0 mm observed 
at Pune during the period 1901 to 2017 is falling within confidence limits of the 
rainfall given by EV1 (LMO). 

• From Fig. 3b, it can be seen that the AMR varies from 85.0 to 260.0 mm observed 
at Vadgaon Maval during the period 1901 to 2017 (except for the years 1966, 
1967 and 1972 that are found to be missing) is falling within confidence limits of 
the rainfall given by GEV (LMO). 

5 Conclusions 

The paper presented a study on comparison of EVA results of rainfall given by MoM, 
MLM and LMO estimators of LN2, EV1, GEV and GP distributions for Pune and 
Vadgaon. The selection of best fit distribution for estimation of rainfall was made 
through GoF tests, D-index and fitted curves of the estimated rainfall. Based on EVA 
results, the following conclusions were drawn from the study: 

• χ 2 test results supported the LN2, EV1, GEV and GP distributions adopted in 
EVA of rainfall for Pune. 

• χ 2 test results did not accept the use of EV1 (MoM) and GEV (MoM) for EVA 
of rainfall for Vadgaon Maval. 

• The KS test results did not support the use of GP for EVA of rainfall for Pune and 
Vadgaon Maval. 

• The qualitative assessment of EVA results with D-index indicated the EV1 (LMO) 
is better suited for rainfall estimation for Pune while GEV (LMO) for Vadgaon 
Maval. 

The study suggested that the estimated rainfall for return period beyond 500-year 
may be cautiously used due to uncertainty in the higher order return periods while 
designing the hydraulic structures in the respective sites.
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for Pune and Vadgaon Maval
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Development of a Fog Index to Study 
Relationships Between Fog and Climate 
Variables 

Rakshit Paurwal, Shivam Tripathi, and Arnab Bhattacharya 

Abstract Most of the existing studies on the long-term correlation between fog and 
climate variables have considered fog visibility and fog duration data for analysis. 
The use of fog duration in terms of number of fog days has suffered from the lack 
of a universally accepted definition of a fog day. Additionally, fog duration fails to 
quantify fog intensity. While fog visibility data can be used to quantify fog intensity 
for short-term analysis, their non-additive nature and high variability over a short 
period of time render them unsuitable for long-term analysis. In this study, a fog 
index based on the extinction of light intensity governed by Beer’s Law is developed. 
The index is defined as the ratio of the energy attenuated by a fog event with a given 
visibility to the energy attenuated by the same fog event with the visibility assumed 
to be zero. The additive nature of the index allows quantification of the fog intensity 
over any time window. The index was found to be bounded and independent of the 
choice of unit systems. Furthermore, the index can be employed for studying the 
relationship between long-term fog conditions and climate variables such as soil 
moisture, sea-level and surface pressure, near surface and sea-surface temperature. 
The developed index is applied to understand fog phenomenon in north India and 
explore its linkages with local meteorological parameters at seasonal scale.
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1 Introduction 

Fog is characterised by the suspension of extremely small droplets of water and 
occasionally ice which results in the reduction of horizontal visibility to less than 
1000 m [1]. Since fog plays a disruptive role in aviation and transport sectors [2], it has 
become a topic of scientific interest. Fog is affected by a number of variables such as 
local air temperature, humidity and atmospheric stability [3]; hence, it is imperative 
to understand the impact that such variables might have on fog occurrence. 

Visibility serves as an indicator of fog [4] and has been used in several studies 
to study fog occurrence. However, the non-additive nature and high variability of 
visibility make it unfit as an indicator of fog intensity for long-term analysis. Fog 
duration in terms of the number of fog days has also suffered from the lack of a 
standardised definition of a fog day. Hu et al. [5] considered a day to be a fog day 
if fog was observed at any of the four times (02:00, 08:00, 14:00, 20:00 local time), 
whereas Kutty et al. [2] considered the same if fog was observed at any point of time 
and for any duration during the day. The objectives of the present study are to (1) 
develop a fog index that could provide a quantitative estimate of fog and (2) analyse 
the relationship between local meteorological parameters and fog. 

2 Study Area and Data 

2.1 Study Area 

Lucknow city located in the state of Uttar Pradesh, India has been considered in the 
study. The collected data pertains to the data recorded at Chaudhary Charan Singh 
International Airport weather station (Lat: 26.7606 N; Lon: 80.8893 E). 

2.2 Data 

Half-hourly METAR reports corresponding to a period of 27 years (1995–2021) were 
obtained from the India Automated Surface Observing Systems (ASOSs) Network 
dataset hosted on Iowa Environmental Mesonet (IEM) server. The variables for which 
the records were obtained are 2 m air temperature, 2 m dew-point temperature, relative 
humidity and visibility. The data from 2 January 2011 to 22 August 2011 (233 days) 
were missing from the records. Rainfall values for the same period were obtained
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from IMD, which maintains rainfall records over the Indian landmass at a spatial 
resolution of 0.25° × 0.25° and a temporal resolution of 1 day [6]. 

3 Methodology 

3.1 Development of Fog Index 

The fog index is based on Beer’s Law for atmosphere. Beer’s Law for atmosphere is 
defined as 

T (x) = P(x) 
P(0) 

= e−σ x (1) 

where T (x) is the transmittance at a distance ‘x’ from the light source, P(x) is the  
power at a distance ‘x’, P(0) is the power of the light source and σ is the extinc-
tion coefficient. The relationship between extinction coefficient and visual range 
(visibility) is based on Koschmieder’s Law [7] which is given as 

Visibility = 
− ln ε 

σ 
(2) 

where ε represents the pilot contrast threshold fixed at 0.05 [7]. An integral compo-
nent of the fog index is the fog event which is defined as the duration during which 
the visibility remains below 1 km. The fog index of an event is defined as the ratio of 
the energy attenuated by the fog event with a given visibility to the energy attenuated 
by the same fog event with the visibility assumed to be zero. Mathematically, it can 
be represented as 

Fog Index =
∑n 

i=1{P(0)}{1 − e−σi xi
}{ti }

∑n 
i=1{P(0)}{1 − e−σ1i xi }{ti } =

∑n 
i=1{1 − e−σi xi }{ti }

∑n 
i=1{1 − e−σ1i xi }{ti } (3) 

where i is the ith sub-duration in a fog event, n is the number of sub-durations in the 
fog event, P(0) is the power of the light source, σi is the average extinction coefficient 
existing during the ith sub-duration of the fog event obtained by using the average 
visibility during the same period, σ1i is the average extinction coefficient existing 
during the ith sub-duration of the fog event obtained by assuming zero visibility 
during the same period and xi is the distance over which the energy extinction 
occurs (extinction length). For calculation purposes, the value of σ1i was obtained 
by assuming visibility to be very close to zero in Eq. (2). An attempt was made to 
constrain the value of extinction length (xi ) so as to eliminate user subjectivity in 
selecting the value of extinction length for the calculation of the index. Thus, a new 
parameter known as apparent extinction length was formulated to be used in place 
of extinction length. Apparent extinction length was defined as the length in a 1 km
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long horizontal column over which apparent attenuation of light energy takes place. 
The column length was taken as 1 km to conform to the standard definition of fog in 
terms of visibility given by WMO. Mathematically, it can be represented as 

Apparent extinction length (km) = 1 km  − Visibility (km) (4a) 

or 

Apparent extinction length (m) = 1000 m − Visibility (m) (4b) 

depending on the choice of unit system. For example, if for a given fog event or a sub-
duration of a fog event, the average visibility is observed to be 0.350 km, the apparent 
extinction length for the fog event would be 1 km − 0.350 km = 0.650 km. For time 
windows with visibility > 1 km, no energy was assumed to be attenuated; thus, they 
were not considered for fog index. The calculation of fog index for a fog event 
is illustrated below. Table 1 shows hypothetical half-hourly visibility observations 
recorded at a station. It can be seen that a fog event begins at 07:30 local time (LT) 
on 1 Jan 2019 when the visibility is first recorded to be below 1 km and ends at 08:30 
LT on 1 Jan 2019 when the visibility is last recorded to be below 1 km. Thus, the fog 
event occurs for 1 h between 07:30 LT and 08:30 LT, since it is during this period that 
the visibility remains below 1 km. Table 2 shows calculations of average visibility, 
average extinction coefficient and apparent extinction length for each sub-duration 
of the fog event. The fog index for the fog event has been calculated using Eq. (3). 

Using Eq. (3), fog index was obtained as 0.68.

Table 1 Visibility observations 

Date and (local) time of observation Visibility (in km) 

01/01/2019 07:00 1.2 

01/01/2019 07:30 0.8 

01/01/2019 08:00 0.6 

01/01/2019 08:30 0.9 

01/01/2019 09:00 1.1 

Table 2 Components of fog index 

Sub-duration Avg. visibility (km) Avg. extinction coefficient 
(km−1) 

Apparent extinction length 
(km) 

07:30–08:00 0.7 4.28 0.3 

08:00–08:30 0.75 4 0.25 
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3.2 Analysis of the Relationship Between Climate Variables 
and Fog 

For each year, the winter season consists of November and December months of 
the same year and January and February months of the succeeding year. Thus, the 
winter season of 2018 would include November and December of 2018 and January 
and February of 2019. The monsoon season for the year is defined as June, July, 
August, September (JJAS) months of the year. The fog index was calculated for each 
year using the visibility data pertaining to the winter months of the year. Thus, a 
single value of the fog index was obtained for the winter season (NDJF) of each year. 
Average daily air temperature, average daily maximum and minimum air tempera-
ture, average dew-point temperature, average daily maximum and minimum dew-
point temperature, average daily relative humidity and average daily maximum and 
minimum relative humidity were obtained for the monsoon months (JJAS) and winter 
months (NDJF). The seasonal rainfall during a season was obtained by calculating 
the cumulative rainfall during the season. Since the visibility and meteorological data 
for 233 days in 2011 (2 January 2011 to 22 Aug 2011) were missing, the analysis 
could not be performed for 2010 and 2011. There were no missing values for any 
other years. Correlation between fog index and the climate variables was calculated 
using the Pearson correlation coefficient. A separate analysis was conducted using 
the number of fog days in the winter season. The definition for fog day was derived 
from the study conducted by Kutty et al. [2], which mentions that a day is considered 
to be a fog day if fog is observed at any point of time and for any duration during 
the day. Visibility threshold of 1 km as per WMO was used to indicate fog. 

4 Results 

Figure 1 shows the fog index values for the winter months (NDJF) from 1995 to 2020. 
A substantial number of years (14) exhibit a high fog index (> 0.75), indicating that 
the winter months in Lucknow exhibit intense fog, which is in agreement with the 
fact that the North Indian states experience thick and widespread fog during winter 
months [8]. Furthermore, the index values follow an overall decreasing trend with 
occasional peaks indicating that the fog intensity in Lucknow has been decreasing 
on an annual basis. Figure 2 shows the number of fog days during the winter months 
(NDJF) in Lucknow. A decreasing trend with lower values was observed up to 2007, 
however, relatively higher number of fog days were observed from 2008 onwards. 
An increasing trend for the same was observed from 2017 onwards.

Table 3 shows the Pearson correlation coefficient values of fog index for NDJF 
(winter) season and the climate variables for two different seasons, JJAS (A) and 
NDJF (B). It is observed that variables such as average daily maximum air tempera-
ture, average daily minimum air temperature, average daily dew point temperature, 
average daily minimum dew point temperature, average daily maximum relative
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Fig. 1 Fog index values for winter season (NDJF) at Lucknow 

Fig. 2 Plot of fog days for winter season (NDJF) at Lucknow

humidity and rainfall show positive and negative correlation with fog index depending 
on the season over which they are considered.

Since the magnitudes of correlation values were less than 0.1 for most of the 
variables for NDJF, only the variables corresponding to JJAS were used for further 
analysis. Scatter plots with regression lines were plotted for fog index values over 
NDJF against average daily minimum air temperature, average daily maximum dew 
point temperature, average daily minimum relative humidity and rainfall over JJAS.
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Table 3 Correlation of fog index for NDJF with variables for (A) JJAS and (B) NDJF 

Variable A B 

Average daily air temperature (in °C) −0.39 −0.01 

Average daily maximum air temperature (in °C) −0.34 0.05 

Average daily minimum air temperature (in °C) −0.48* 0.17 

Average daily dew point temperature (in °C) −0.18 0.03 

Average daily maximum dew point temperature (in °C) −0.32 −0.07 

Average daily minimum dew point temperature (in °C) −0.10 0.08 

Average daily relative humidity (in %) 0.19 0.06 

Average daily maximum relative humidity (in %) 0.12 −0.13 

Average daily minimum relative humidity (in %) 0.25 0.14 

Rainfall (in mm) −0.15 0.05 

* Denotes statistically significant correlation at 5% significance level

Figures 3, 4, 5 and 6 show the scatter plots of fog index against the variables 
average daily minimum air temperature, average daily maximum dew point temper-
ature, average daily minimum relative humidity and rainfall, respectively. Out of the 
four variables, fog index shows the maximum magnitude of correlation with average 
daily minimum air temperature. The variation of fog index with rainfall shows no 
clear trend and is clustered.
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Fig. 3 Fog index versus avg. daily min. air temp. (correlation = −0.48) 

Fig. 4 Fog index versus avg. daily max. dew point temp. (correlation = −0.32)



Development of a Fog Index to Study Relationships Between Fog … 445

Fig. 5 Fog index versus avg. daily min. rel. humidity (correlation = 0.25) 

Fig. 6 Fog index versus rainfall (correlation = −0.15)
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5 Conclusions 

The additive nature of the fog index allowed for the quantification of fog intensity 
over a seasonal scale. Analysis of the fog index values showed that although most of 
the years prior to 2012 exhibited a high fog index value of at least 0.75, in the recent 
years (2012 onwards), the fog index has been decreasing for Lucknow. Furthermore, 
correlation analysis indicated that the climate variables during JJAS were correlated 
to a higher degree (in terms of magnitude) with the fog index than the climate variables 
during NDJF. Amongst the variables pertaining to JJAS, the average daily minimum 
air temperature had the highest negative correlation (−0.48) and the average daily 
minimum relative humidity had the highest positive correlation (0.25) with fog index. 
The fog index quantifies fog intensity and does not consider fog duration; thus, addi-
tional work is required to make the fog index inclusive of fog duration. Further study 
is required to explore the linkages of fog index with large-scale climate variables 
such as soil moisture, sea-level pressure and sea-surface temperature. 
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Regionalization of Multiplicative 
Random Cascade Model Parameter 
for Awash River Basin, Ethiopia 

Ashenafi Dabesa and Shivam Tripathi 

Abstract Data on fine-resolution precipitation are necessary for the design of 
hydraulic structures, the estimation of rainfall erosivity, and the assessment of urban 
hydrological climate change. In Ethiopia, precipitation data are typically available 
on a daily or monthly basis. The number of weather stations equipped with automatic 
gauges for measuring precipitation rates is small. Therefore, a scientific approach is 
required to disaggregate existing coarser resolution rainfall data to finer resolution. It 
is also necessary to regionalize the developed disaggregation models to simulate sub-
hourly rainfall data across a wide region. The multiplicative cascade models appear 
to be interesting instruments for simulating fine-resolution rainfall because of its 
connection to the multifractal theory. Thus, the study aims to regionalize random 
cascade model (RCM) parameters and analyze their potential and limitations. The 
newly developed regional models are tested on rainfall data of Awash River Basin in 
Ethiopia. The models demonstrated acceptable accuracy in simulating the sub-hourly 
rainfall, demonstrating the potential of parameter regionalization. 

Keywords Parameter regionalization · Rainfall disaggregation · Random cascade 
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1 Introduction 

A high resolution of precipitation time series data is essential for the design of 
hydraulic structures, the estimation of rainfall erosivity, and the assessment of urban 
hydrological climate change. To efficiently design hydrological structures such as 
dams, bridges, and culverts, water resources engineers need to use high temporal 
resolution data to assess the frequency and magnitude of extreme hydrological events. 
Rainfall data at a high level of resolution can be obtained from satellite products or 
from automatic gauges, which can measure precipitation rate at a high temporal 
resolution. While satellite products provide high-resolution rainfall data, they are 
not easy to obtain anywhere and anytime for a low price [1]. A modest number 
of automated gauges for measuring high-resolution precipitation rates are available 
at meteorological stations. A scientific technique is thus required to obtain fine-
resolution data by employing already-existing coarse-resolution information. 

Disaggregating rainfall data from coarser temporal scales into smaller temporal 
scales may be done in a number of different ways, and the literature provides a 
variety of these approaches. The uniform model [2] and point process stochastic 
models such as Neyman-Scott or Bartlett-Lewis [3] can be mentioned. Both have their 
own drawbacks. Uniform model has limitation to represent rainfall variability [2], 
whereas Neyman-Scott or Bartlett-Lewis [3] has limitations in reproducing extreme 
value distributions and preserving correlation structures of rainfall sequences [4, 5]. 

The multiplicative cascade models introduced first by Yaglom [6], is one of the 
most promising of the various modeling approaches. Based on their ability to preserve 
mass in disaggregation, these models are divided into two types. A canonical model 
which preserves mass on the average, and a microcanonical model preserves mass 
exactly in disaggregation. Until the desired time resolution is achieved, the model 
iteratively fragments the rainfall volume in a coarser time scale into smaller discrete 
time intervals of rainfall volumes. The model was tested both for spatial and temporal 
rainfall disaggregation [7, 8]. 

The process of estimating the parameters for the RMC models requires fine-
resolution rainfall data. In order to evaluate the scale-invariance theory and develop 
a disaggregation model, we also need rainfall data with a high resolution. The param-
eters of canonical models, for instance, are determined by fitting the Mandelbrot-
Kahane-Peyriere (MKP) function to the sample moment scaling relationship, which 
requires high-resolution rainfall data. For the microcanonical model (e.g., beta 
model), which is based on the distribution of the breakdown coefficients, fine-
resolution data on rainfall are required. The model parameter can be obtained from 
the coarse-resolution data, which can then be extrapolated to a fine-resolution scale 
assuming scale invariance. But in the study, the scale showed a break as we moved 
from a very coarse scale to a very fine scale [9]. This makes applying the RMC model 
in areas lacking fine-resolution data very difficult. Our study proposes regionaliza-
tion of model parameters based on climate similarities so that the model can be used 
in areas lacking fine-resolution rainfall data. In areas with similar climates, rainfall 
distributions are also expected to be similar [10], indicating that the scale characteris-
tics of rainfall at stations in similar climate regions are likely to be similar. Therefore, 
this study aims to evaluate the performance of both RMC models, the canonical and
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microcanonical models, when the parameters calibrated at other station in similar 
regions are used to disaggregate rainfall at a different stations in similar region. 

2 Methodology 

2.1 Study Area (Awash River Basin) 

The study area covers an area of 110,000 km [11], which is located between latitudes 
8°30' N and 12°00' N, and longitudes 38°05' E and 43°25' E (Fig. 1). Climate condi-
tions over most of the study area are characterized by arid and semi-arid conditions, 
with average annual precipitation ranging from 160 to 1600 mm and average annual 
temperature ranging from 20.8 to 29 °C. The elevation of the basin may be seen in 
Fig. 1, which shows that it ranges from 259 to 4055 m. It is anticipated that the basin 
has a total flow capacity of 4.9 billion cubic meters [12]. The multiplicative discrete 
random cascade (MDRC) model parameter was validated and calibrated using the 13 
class 1 stations that are located inside the basin. Each of these stations has a record 
resolution of 15 min. 

Fig. 1 Awash River Basin’s location and digital elevation model
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2.2 Multiplicative Random Cascade Model 

The multifractal theory, which states that the structure of an entity may be deduced 
from its component pieces, serves as the foundation for the multiple random cascade 
disaggregation approaches. According to the scale-invariance hypothesis [13], two 
things are considered to be self-similar if it is possible to break them up into smaller 
versions of themselves. The cascade model falls within the umbrella of the stochastic 
model’s group [14]. 

2.2.1 The Canonical Model 

Through an iterative segmentation technique, the intensity of the rainfall at a coarse 
time scale is broken down into two or more sub-intervals. These sub-intervals are 
determined by the branching number b. A method of partitioning that may be used to 
fragment data is specified by a set of weights that is referred to as a cascade generator 
[15]. When the level n of the cascade is taken into consideration, together with the 
fact that the number of accessible sub-intervals is bn , the equivalent dimensionless 
temporal duration scale for the cascade may be defined as λn = b−n . 

According to the Molnar and Burlando’s [16], the corresponding mass μn(△i ) 
for an integer in the range of 1 to n in the subdivided interval △i in the cascade level 
n is given by 

μn(△i ) = m0 × λn × 
n∏

j−1 

W j (i ) (1) 

where 
m0: is the initial volume of the rainfall at coarser time scale. 

2.3 Moment Scaling 

The estimate of sample moments is required in order to calculate W given a set of 
rainfall data. The following is a description of the moments of the order q: 

Mn(q) = 
bn∑

i=1 

μq 
n

(
△i 

n

)
(2) 

where q is the moment order (q ≥ 0). It is reasonable to anticipate that the sample 
moments will eventually converge to the ensemble moments as the value of n 
continues to rise. The MKP function is used to show how the scaling behavior follows 
a log–log-linear function [13, 17].
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Table 1 Canonical models 
and associated MKP function 

Canonical models χ (q) MKP function 

Log-Poisson beta model 
W = B × Z 
P(B = 0) = 1 − b−β 

& P
(
B = bβ

) = b−β 

Z = Aβ N 

P(N = M) = cm e−c 

m! 

χ (q) = (β − 1) × (1 − q) + 
c×(q×(1−β)+)−(βq−1) 

ln b 

Log-Normal beta model 
W = B × Y 
P(B = 0) = 1 − b−β 

& P
(
B = bβ

) = b−β 

Y = bγ +σ X 

where X is normal N (0, 1) 

χ (q) = (β − 1) × (q − 1) + 
σ 2×ln b×(

q2−q
)

2 

χb(q) = 1 − q + logb E(W q ) (3) 

The scaling of the sample moments is obtained by calculating (q), and afterward, 
the parameters of the cascade model can be derived by assuming a distribution for 
the cascade generator W. The canonical models that were utilized in this research are 
presented in Table 1, and they are the log-Normal beta model and the log-Poisson 
beta model. The methods that are employed to estimate the probability distribution 
functions that represent W and the models’ approaches to the conservation of mass 
are different in each of these models [7]. 

2.3.1 Microcanonical Model 

The results of the MDRC model (microcanonical) validate the hypothesis that the 
mass of the disaggregated product does not change during the process of disaggre-
gation. It is possible to fit an independent probability distribution function to the 
weights of each successive level of the cascade [16]. The weights are summed up to 
one at the end of each stage of the disaggregation process to ensure that the mass is 
preserved throughout the whole procedure. The assumption is made that the weights 
are independent variables that all follow the same distribution. In order to ensure that 
the aforementioned criteria is met at level n throughout each and every subdivision 
into b sub-intervals, the following equation must be established. 

b∑

k=1 

Wn(b(i − 1) + k) = 1 for  i = 1, 2, . . . ,  bn−1 (4)
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The term “breakdown coefficients” can also be used to refer to these weights. The 
weights in the model are permitted to vary between 0 and 1, so that it may accurately 
represent the intermittent nature of rainfall. Calculations are performed to determine 
the corresponding rainfall quantities R1 and R2 at the lower level of disaggregation, 
along with their respective weights W1 and W2. These calculations are based on each 
level of disaggregation and each nonzero rainfall volume R. 

Wi = 
Rλ 

Rλ−1 
(5) 

The levels of the cascade are represented by the symbol λ. P01 and α are the names 
of two parameters that may be found in the microcanonical model. These parameters 
are associated with the intermittency and variability of the generator W, respectively. 
The chance that the disaggregated mass will fall within one of the sub-intervals is 
denoted by the variable P01, which has the following definition: 

P01 = p(W1 = 0) + p(W1 = 1) (6) 

Another possibility comes when the total amount of rainfall is broken up into its 
constituent sub-intervals. Within the confines of this situation, it is expected that the 
cascade generator would behave in accordance with a certain probability distribution 
function. In order to accurately portray the symmetric disaggregation of the weights, 
we made use of an asymmetric beta distribution function that consisted of a single 
parameter denoted by α [16]. 

f (w) = 1 

B(α) 
wα−1 (1 − w)α−1 (7) 

2.4 Regionalization 

In this study, the Awash River Basin was regionalized based on a study by Beyene 
et al. [10]. Climate proximity was used to group the stations in the basin. As a 
result, groups of sites that approximately satisfy the homogeneity condition were 
formed. Three variables that influence rainfall variability are selected for performing 
regionalization—elevation of the stations, geographical location, and mean monthly 
maximum rainfall depth derived from sub-hourly data. K-means clustering algorithm 
is used for finding homogenous regions in terms of three selected variables. For more 
details, readers are referred to Beyene et al. [10].
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Table 2 Chosen stations in each region 

Parameters Log-Poisson beta 

Region 1 Region 2 Region 3 

Addis Ababa Woliso Meiso Dallifage Elidar Dubuty 

c 0.67 0.67 0.82 0.82 0.5 0.5 

Beta (β) 0.6 0.6 0.67 0.67 0.68 0.68 

Parameters Log-Normal beta 

Region 1 Region 2 Region 3 

Addis Ababa Woliso Meiso Dallifage Elidar Dubuty 

c 0.2 0.2 0.14 0.14 0.12 0.12 

Beta (β) 0.6 0.6 0.68 0.68 0.66 0.66 

3 Result and Discussion 

3.1 Canonical Model 

Using the procedure mentioned in Ashenafi and Tripathi [18], the parameters of the 
model were estimated. Several canonical models have been compared in the previous 
work of Ashenafi and Tripathi [18], with the log-Normal beta and log-Poisson beta 
models showing promising results for the Awash River Basin. Consequently, these 
models are selected for regionalization. In each region, two stations are selected 
based on their equivalency and the availability of data. A parameter calibrated at one 
station is used at another station in the region to disaggregate the daily rainfall data. 
We then evaluate the model’s performance in the other station based on its ability 
to preserve the mean, standard deviation, and intermittency of the observed rainfall 
data. Table 2 shows the calibrated parameters and the selected stations. 

3.1.1 Rainfall Depth, Distributions, and Intermittency 

When generating rainfall data at 45-min intervals based on daily rainfall measure-
ments, the models must first be examined to see whether or not they are able to 
maintain the total rainfall depth throughout all time scales. This is solely a test for 
the canonical models since the microcanonical models, by virtue of their formu-
lation, perfectly retain the total rainfall depth in disaggregation. The results of the 
simulated mean, standard deviation, and intermittency for the log-Normal beta and 
log-Poisson beta model are presented in Figs. 2 and 3, respectively. These results are 
presented for each validation station in each region. The mean, intermittency, and 
standard deviations were determined from 100 realizations and compared with the 
observed 45-min mean and standard deviation and intermittency.
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Fig. 2 Simulated 45-min precipitation mean, standard deviation, and intermittency for log-Normal 
beta model 100 simulation

The regionalized log-Poisson beta and log-Normal beta models were able to accu-
rately replicate the depth (mean) variability and intermittency of the observed 45-
minute rainfall at all stations, with the exception of Dubuty. However, both models 
underestimated the intermittency at the Dubuty station in Region 3. The cause of 
this underestimation may be linked to rainfall mechanisms in the area, but additional 
investigation is necessary. The next study will explore this issue further and build 
upon this research’s findings. 

3.1.2 Microcanonical Model 

Similar procedure is followed here for the evaluation of model regionalization for 
the microcanonical model. To see the performance evaluation of the test station in 
the region, the parameters (P01 and α) obtained from the station mentioned in Table 
2 were applied. The result of standard deviation and intermittency of the 45-min 
simulated and observed data at station in each region is presented in Table 3.
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Fig. 3 Simulated 45-min precipitation mean, standard deviation, and intermittency for log-Poisson 
beta model 100 simulation

Table 3 Result of microcanonical model in the selected station in the region 

Performance parameter Region 1 Region 2 Region 3 

Woliso (using 
parameters of Addis 
Ababa) 

Dallifage (using 
parameters of Meiso) 

Duppty (using 
parameters of Elidar) 

Observed Simulated Observed Simulated Observed Simulated 

Standard deviation (STD) 
(mm) 

0.98 0.98 0.93 0.97 0.33 0.34 

Intermittency (%) 95 94 97.7 97.4 98.75 98.27 

4 Summary and Conclusion 

A regionalization analysis for the parameters of the random cascade models is 
presented. The regional models are applied to disaggregate daily rainfall to 45-min 
rainfall at gauging stations in Awash River Basin, Ethiopia. The basin is divided into 
three homogeneous regions. The performance of regionalization is tested by trans-
ferring the parameters of disaggregation models learned at one station to another 
(test) station in the same region. The beta distribution for the microcanonical model 
and the log-Normal beta and the log-Poisson beta distributions for the canonical
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model are studied. Both the microcanonical and canonical models using parameters 
acquired from a station in the same region represented both the variation in the sub-
hourly rainfall and the dry percentage of the observed 45-min rainfall, as shown by 
the results. 
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