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Abstract The paper addresses a novel approach to position control of a robot arm
by utilizing three important brain signals, acquired with the help of an EEG inter-
face. First, motor imagery signal is employed to activate the motion of a robotic
link. Second, the error-related potential signal is acquired from the brain to stop the
motion of the robotic link, when it crosses a predefined target position. Third, the
approximate magnitude of the positional error is determined by steady-state visual
evoked potential signal, acquired by noting the nearest flickering lamp that the robotic
link has just crossed. The novelty of the present research is to decode the approxi-
mate magnitude of the positional error. Once the approximate magnitude and sign
of the positional errors are obtained from the mental assessment of the experimental
subject, the above two parameters are fed to a fuzzy position controller to gener-
ate necessary control commands to control the position of the end-effector of the
robotic link around the predefined target position. Experiments undertaken confirm
a low percentage of overshoot and small settling time of the proposed controller in
comparison to those published in the current literature.

Keywords EEG · Robotic arm · ERD/ERS · ErrP · SSVEP · Fuzzy control

1 Introduction

Brain–computer interface (BCI) is currently gaining increasing potential for its
widespread applications in rehabilitative robotics. Peoplewith neuro-motor disability
such as Amyotrophic Lateral Sclerosis (ALS), partial paralysis, and the like require
assistive support to perform their regular day-to-day works, such as delivery of food
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[1], medicines [2], etc. by an artificial robotic device, where the patients themselves
can control the movements of the robot arm, their pick-up, placements, etc. by mind-
generated control commands. Neuro-prosthesis is one of themost active areas of BCI
research for its inherent advantage to rehabilitate people with degenerative neuro-
motor diseases. Early research on neuro-prosthetics began with the pioneering con-
tribution of Pfurtscheller [3, 4], who experimentally could first demonstrate the scope
of one fundamental brain signal, called Motor Imagery, technically titled as Event-
RelatedDesynchronization followedbyEvent-RelatedSynchronization (ERD/ERS).
This signal appears in the motor cortex region of a person, when he/she thinks of
moving his/her arms/legs or any voluntarily movable organs. Several researchers
have utilized this signal for mind-driven motion-setting to a mobile robot [5], local
navigating device [6, 7], artificial robotic arm [8–10], and many others. However,
using ERD/ERS signal alone can switch on or switch off a device, and thus can only
be used for open-loop applications.

In order to utilize the ERD/ERS in closed-loop position control applications, we
need additional brain signals. Several research groups [11–13] have taken initiatives
to utilize the benefits of Error-Related Potential (ErrP) and/or P300 signals to develop
a generic platform for closed-loop position control applications. It is important to
mention here that the ErrP signal is liberated from the z-electrodes, located at the
midline of our scalp, when a subject himself commits anymotion-related error and/or
finds a second person or a machine to commit similar errors. The ERD/ERS and ErrP
signals have been employed in a number of robot position control systems to set in
motion of the robotic motor on emergence of the MI (ERD/ERS signal) and switch
off the motor of the robot arm, when the robotic link crosses a fixed target position.
However, the primary limitation of such position control schemes is on–off control
strategy, which according to classical control theory results in large steady-state error
[14].

To overcome this problem, several extensions to the basic control strategies have
been proposed in the recent past [13, 15]. In [15], the authors developed a new strategy
to reduce large steady-state error by commanding the robot to turn in reverse direction
at a relatively lower speed than its current speed and also sensing the second, third
P300, when the target is crossed several times by the end-effector. Such scheme can
result in reduced steady-state error but at the cost of extra settling time.

The present research can reduce both steady-state error and settling time as it
happens to be in case of classical control strategy by assessing the sign andmagnitude
of positional error from the subject’s brain. However, as the magnitude of error is
approximate, a fuzzy controller is amore appropriate option in contrast to a traditional
controller. A set of fuzzy rules are proposed to infer the position of the end-effector
from the approximate magnitude and sign of positional errors. Traditional Mamdani-
type fuzzy reasoning is employed to yield the fuzzified end-effector positions. In case
a number of fuzzy rules fire synchronously, the union of the inferences is considered.
Finally, a defuzzifier is used to get back the controlled position of the end-effector.
The proposed approach thus is unique and remained unknown to the BCI research
community.
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The paper is divided into five sections. In Sect. 2,we provide the principles adopted
for position control using magnitude and sign of error, captured from the acquired
ErrP and SSVEP signals. Section3 deals with a discussion on processing of the
acquired brain signals tomake them free from noise and extraction of certain features
from the pre-processed signals for classification. Section4 dealswith fuzzy controller
design. Section5 covers the experimental issues and also narrates the main results
justifying the claims. A list of conclusions is included in Sect. 6.

2 Principles Adopted in the Proposed Position Control
Scheme

This section provides the principles of position control using three brain signals: (i)
motor imagery to actuate the motion of a robotic link, (ii) stopping the robotic link by
sensing the ErrP signal, and (iii) assessing the magnitude of positional error from the
flickering Light Emitting Diode (LED) closest to the stopping position. It is indeed
important to mention here that assessment of the magnitude of error by SSVEP intro-
duced here is novel and primary contribution of the present research. The sign and the
magnitude of positional error together help in generating the accurate control action
for the position control application. The principles of the BCI-based position control
scheme are given in Fig. 1. It is noteworthy from Fig. 1 that the controller receives
both sign and magnitude of error to generate the control signal. However, the exact
measure of the magnitude of error cannot be performed easily for practical limitation
in placement of SSVEP sources continuously along the trajectory of motion of the
robotic end-effector. To overcome the present problem, an approximate assessment
of the positional error is evaluated in five scales: NEAR ZERO, SMALL POSITIVE,

LARGE POSITIVE, SMALL NEGATIVE and LARGE NEGATIVE using fuzzy membership
functions [16]. The control signal about position of the end-effector is also fuzzified
in the same five scales. Such assessment helps in generating fuzzy inferences about
the degree of memberships of control signals in multiple fuzzy sets. It is indeed
important to mention here that a fuzzy system usually is much robust in comparison
to traditional rule-based expert systems as it takes care of aggregation of the infer-
ences obtained from firing of multiple rules simultaneously by taking fuzzy union of
the generated inferences. The defuzzification of the overall inference returns the sig-
nal back in the real domain. There exist several defuzzification procedures. Here, the
center of gravity (CoG) defuzzification is used for its simplicity and wide popularity
in fuzzy research community [17].
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Fig. 1 Overview of BCI-based position control scheme

3 Signal Processing and Classification of Brain Signals

This section provides an overview of the basic signal processing, feature extraction,
and classifier design aspects for the proposed application.

3.1 ERD-ERS Feature Extraction and Classification

For ERD-ERS feature extraction, we need to take as many as 500 offline instances of
motor imagery (MI) signals acquired from the motor cortex regions of the subject.
These 500 instances of MI signals are examined manually to identify around 300
true positive (v-shaped) and around 200 false negative (non-V or V with inadequate
depth) instances. Both the true positive and false negative instances are then sampled
at a fixed interval of time, and the mean and variance of the signals at each sampled
point are evaluated. Let, at a given sample point si , we obtain 300 values from 300
true positive curves. Now a Gaussian model is constructed for each sample point
si , with mean = mi and standard deviation σi . The sample values that lie within
mi ± 3σi are used and the rest are discarded. Thus, for each time position in the
training samples,we accommodate selected values of the existing trials. Similarly,we
undertake selective sample values from a pool of 200 EEG false negative instances.
These true positive and false negative instances of the ERD/ERS signals are used
subsequently to train a classifier. In this paper, Common Spatial Pattern (CSP), which
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is widely used in BCI literature as an optimized spatial filter [18], is employed to
evaluate the data covariance matrices for the two classes to effectively project the
training samples into CSP features. These CSP features are then transferred to a two-
level classifier to recognize the positive and negative motor imagery (MI) signals.

For classification of MI and resting conditions (also called NO motor imageries),
the following steps are followed. Let X1 and X2 be m × n matrices, where m and n,
respectively, denote number of EEG channels and number of time samples. Let C1
and C2 be the spatial covariance matrices given by C1 = X1XT

1 and C2 = X2XT
2

for positive (MI) and false negative classes. The motivation of CSP is to obtain
filter vector w, such that the scalar wC1wT/wC2wT is maximized. Once optimal
value of vector w is evaluated, the variances of CSP projections wX1 and wX2 are
utilized asCSP features of two classes.Any traditional linear classifier, such as Linear
Discriminant Analysis (LDA) or Linear Support Vector Machine (LSVM), and the
like can be used for classification of the MI signals from the resting states. Here,
the authors employed Kernelized Support Vector Machine (KSVM) with Radial
Basis Function (RBF) kernel for its proven accuracy in high-dimensional non-linear
classification [19].

3.2 ErrP Feature Extraction and Classification

Previous research on ErrP feature extraction reveals that the characteristics of ErrP
signal can be better captured by time-domain parameters, such as Adaptive Autore-
gressive (AAR) coefficients [13]. This inspired the authors to utilize AAR features
for the detection of ErrP. In the present research, AAR parameters are extracted from
approximately 500 ErrP instances and 500 resting states in offline training phase. A
q-order AAR expresses each EEG sample as a linear combination of past q sam-
ples along with an error term characterized by zero mean Gaussian process. AAR
coefficients are estimated using Least Mean Square (LMS) algorithm with an update
parameter of 0.0006. For an EEG signal of 1s duration (200 samples), a 6th-order
AAR generates 6 × 200 = 1200 AAR parameters which are used as the feature vec-
tor of the EEG trial. An LSVM classifier is then developed to determine the unique
set of weights of the classifier to classify the ErrP and non-ErrP instances in real
time.

3.3 SSVEP Detection

For detection of SSVEP, the occurrence of the peak power at the flickering frequency
of the stimulus is checked. To test this, the maximum power in the PSD is searched
over the frequency spectrum. If there is a single peak power occurring at the flickering
frequency, then SSVEP is confirmed. In this study, we estimated the spectral power
density through Welch’s modified periodogram method [20]. Power spectral density



168 A. Rakshit and A. Konar

is obtained for each stimulus frequency and their first two harmonics. We considered
an interval 1Hz below and above the stimulus frequency to obtain the PSD. Once the
PSD values associated to each SSVEP stimulus frequency are obtained, we search
for the frequency that has highest PSD value. The frequency having the highest
frequency value is considered as the target stimulus.

4 Fuzzy Controller Design

The novelty of the current paper is to determine the controller response from the
approximate measure of magnitude of error. Here, the occurrence of the error signal
is determined from the occurrence of ErrP signal. Now, to measure the magnitude
of the error signal, a set of flickering light sources are placed at regular intervals. All
these sources flicker at disjoint frequencies. When the subject observes the robotic
arm crossing the target position, he is supposed to yield an ErrP signal from the
z-electrodes. Almost simultaneously, he is supposed to release an SSVEP signal.
Generally, people suffering from neuro-motor diseases have relatively poor reflex,
and so they take longer time to respond to flickering visual signals. In order to
alleviate this problem, light sources flickering at different frequencies are placed
around their trajectory of the end-effector. Here, the subject has to pay attention
to the nearest flickering source, close enough to the terminal position of the end-
effector. Here, the flickering signal of the sources has frequencies in the ascending
order of their distances from the predefined target position. This makes sense in
the way that larger is the distance of the flickering source from the target position,
the larger is the frequency of the source. A set of fuzzy quantifiers is employed
to quantify the measure of the positional error in five grades: NEAR ZERO(NZ),
SMALL POSITIVE(SP), LARGE POSITIVE(LP), SMALL NEGATIVE(SN) and
LARGE NEGATIVE(LN). A knowledge base comprising a set of rules that map the
fuzzified errors into fuzzy control signals is then utilized to derive the control signals
for each fired rule. The union of the fuzzy control signals is taken, and the result is
defuzzified to get back the actual value of the control signal.

4.1 Fuzzy Reasoning in the Control Problem

Consider the fuzzy production rules:

Rule 1: If x is A1 then y is B1

Rule 2: If x is A2 then y is B2
...

Rule n: If x is An then y is Bn
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Fig. 2 Architecture of the proposed fuzzy controller and schematic overview ofmembership curves

Here x ,y are linguistic variables in the universes X and Y , respectively. A1, A2,

. . . , An are fuzzy sets under the universe X and B1, B2, . . . , Bn are fuzzy sets under
the universe Y . Let x = x ′ be a measurement. We compute the fuzzy inference for
the given measurement x = x ′ by the following steps:
Step 1: Compute: α1 = Min(μA1(x

′), μB1(y)), α2 = Min(μA2(x
′), μB2(y)),…,

αn = Min(μAn (x
′), μBn (y)).

Step 2: Evaluate the overall fuzzy inference μB ′(y) = Max(α1, α2, . . . , αn). After
the fuzzy inference μB ′(y) is evaluated, we compute the centroid of it by “center of
gravity” method [21].

In the present control problem, x is error and y is displacement of the end-effector.
The fuzzy rules constructed for the position control systemare triggered appropriately
depending on magnitude and sign of error signal and the selected rules on firing
generate inferences, the union of which is the resulting control signal, representing
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displacement of the end-effector. The fuzzy membership functions involving error
are SMALL POSITIVE, etc. and angular displacement are SMALL NEGATIVE,
etc. which are given in Fig. 2a, b and architecture of the proposed fuzzy controller is
given in Fig. 2c. The list of fuzzy rules used for the generation of control signals is
given below:

Rule 1: If error is SMALL POSITIVE then angular displacement is SMALL NEG-
ATIVE.

Rule 2: If error is SMALLNEGATIVE then angular displacement is SMALL POS-
ITIVE.

Rule 3: If error is NEAR ZERO then angular displacement is NEAR ZERO.
Rule 4: If error is LARGE NEGATIVE then angular displacement is LARGE POS-

ITIVE.
Rule 5: If error is LARGE POSITIVE then angular displacement is LARGE NEG-

ATIVE.

5 Experiments and Results

This section first describes the experimental protocol in a detailed way and repre-
sents the major outcomes of the experiment in subsequent stages. Key details of the
experiment are highlighted below.

5.1 Subjects

Twelve people within a age group of 18–40 years (mean age 32) voluntarily partici-
pated in the study. None of them had any prior experience with BCI training. Out of
the twelve volunteers, 6 were male, 6 were female, and 2 of them were differently
abled (Sub11 and Sub12). The objective and procedure of experiment were made
clear to the volunteers before conducting the experiment and a consent form stating
their willingness to participate in the study was duly signed by them. The experiment
was conducted in adherence to the Helsinki Declaration 1970 later revised in 2000
[22].

5.2 EEG System

EEGdatawere acquired from the volunteers using a 19 channel EEG amplifier device
made by the company Nihon-Kohden. The EEG system has sampling rate 200Hz
and comes with built-in notch filter 50Hz frequency. EEG electrodes were placed
over the scalp by following the international 10–20 electrode placement convention
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[23]. Out of the total 19 electrodes, we used six electrode positions (C3,C4,Cz over
the motor cortex and P3, P4, Pz over the parietal lobe) to acquire the Motor Imagery
brain signals. For the SSVEP andErrP brain signals, we used {O1, O2} and {Fz, Pz}
electrode positions, respectively.

5.3 Training Session

We conducted the training session throughout the 15d with a repetitions of 3 sessions
in a day for each subject. Inter-session gap of 10min was provided. Each session
consists of 50 trials, resulting 150 trials for a subject in a day. Each trial contains the
visual instruction to be followed by the participating subjects.

Visual instructions are presented before the subject through a robotic simula-
tor. The robotic simulator virtually represents a robotic limb capable of producing
clock/anti-clockwise movement around a specially designed fixed frame. The frame
has markings of various positions over it along with the target position and LEDs are
mounted near the frame against each positional markings. The LEDs flicker with a
constant frequency but are different from each other.

A trial starts with a fixation cross that appears as a visual cue and asks the subject
to remain alert for the upcoming visual cues. It stays on the screen for 2s duration.
The next visual cue contains an instruction to perform either LEFT or RIGHT arm
motor imagery for clockwise/anti-clockwise movement of the robotic limb. The next
visual cue contains a scenario where the moving link commits an error by crossing
the target location, hence the subject develops ErrP brain pattern by observing the
error. The next scenario illustrates a condition where the end-effector of the moving
link crossed the target position. Now, Subjects are instructed to focus their gaze on
the flickering LED nearest to the present position of robot end-effector, focusing
on the flickering source which generates an SSVEP signal modulated by the source
frequency in the subjects’ brain. Timing diagram of stimulus presentation is depicted
in Fig. 3.

LHMI / RHMI Wait For ErrP
release ErrP SSVEP Release REST LHMI / RHMI

3s2s 3s 3s 3s 15s 2s 3s

Fig. 3 Stimuli diagram of training session



172 A. Rakshit and A. Konar

5.4 Testing Session

The major difference between training session and testing session lies in the medium
of operation. In contrast to the training session, which is conducted offline using
a robotic simulator, the testing session is performed in real time with the physical
robot. This session is more complex than training session as the subject participating
in this session does not receive any visual instruction to perform the required mental
task. Hence, the subjects need to plan the three steps of action (viz., link movement,
target selection, and gazing on the nearest flickering source) themselves without any
visual guidance.

A timing diagram presented in Fig. 4 shows the time taken by each module during
real-time operation. During the real-time operation, we used a window of 1s duration
to acquire the MI signal and SSVEP signal, whereas ErrP was acquired through the
windows of 250 ms.

5.5 Results and Discussions

The results of the current experiment are presented in three stages. First, we provide
a comparative analysis between the performance of the proposed feature extraction
and classifier combination and other widely used methods in BCI literature. The
performance is evaluated by averaging the performance of all the subjects over all
the sessions during the testing phase. In the second stage, we provide performance
analysis of all the subjects that participated in the testing session, and the performance
of the proposed fuzzy controller is presented in the third stage.

Performance of the brain signal detectionmethods is evaluated on the basis of four
metrics—Classification Accuracy (CA), True Positive Rate (TPR), False Positive
Rate (FPR), and Cohen’s kappa index (κ) as used in [15].

Performance of MI detection is presented in the first phase of Table1. Along with
the proposed Feature Extraction and Classifier combination (CSP + RBF SVM), we
considered six other combinations to compare the performance. It is evident from
the table that the proposed feature extraction+classifier combination worked best in
our case yielding an average accuracy of 91.31%with average TPR, FPR, and kappa
of 0.89, 0.04, and 0.84, respectively.

MI to move
the Robot

Link

ErrP
Detection Time to reach target

ERD/ERS Detection Check for the
occurrence of

error

Focusing on
nearest Flickering

LED

SSVEP
Detection

Posiional error
correction

1s 1s 900ms 1.5s 1s

Fig. 4 Timing diagram of testing session
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Table 1 Comparative study of different ERP detection methods

Brain
pattern
detection

Feature extraction + classifier Performance metrics

CA (%) TPR FPR kappa

MI
detection

CSP+KSVM-RBF 91.31 0.89 0.04 0.84

CSP+LSVM 90.11 0.89 0.05 0.83

CSP+QDA 87.19 0.85 0.06 0.79

DWT+KSVM-RBF 84.45 0.83 0.07 0.84

DWT+QDA 88.56 0.89 0.05 0.80

Hjorth+KSVM-RBF 82.38 0.81 0.09 0.75

Hjorth+QDA 80.62 0.80 0.09 0.72

ErrP
classifier

AAR+LSVM 92.71 0.91 0.04 0.82

AAR+LDA 90.18 0.85 0.06 0.80

Temporal Feature+ANN 83.13 0.82 0.07 0.76

Temporal Feature+LDA 80.52 0.79 0.08 0.74

SWLDA 91.23 0.90 0.04 0.81

SSVEP
classifier

PSD(Welch)+Threshold 92.89 0.92 0.04 0.86

PSD(Welch)+LSVM 93.80 0.93 0.03 0.85

FFT 88.81 0.87 0.05 0.78

CCA 94.96 0.94 0.02 0.88

CSP = Common Spatial Pattern
KSVM-RBF = Kernelized Support Vector Machine with Radial basis function kernel
LSVM = Linear Support Vector machine, DWT = Discrete Wavelet Transform
QDA = Quadratic Discriminant Analysis, LDA = Linear Discriminant analysis
ANN = Artificial Neural Network, CCA = Canonical Correlation Analysis

ErrP detection and SSVEP detection performances are compared with other rel-
evant methods and results are presented in the second and third phases of Table1.
It is observed that average ErrP detection accuracy is achieved as high as 92% fol-
lowed by the TPR, FPR, and kappa of 0.91, 0.04, and 0.82. Clearly, the present ErrP
detection scheme outperforms the other methods by a significant margin.

We see a similar result in SSVEPperformance,where the present SSVEPdetection
method achieves a moderately high detection accuracy of 93% with the TPR=0.92,
FPR=0.04, and kappa=0.86. Although CCA here performs a little better than our pro-
posed detectionmethod, still we choose the proposedmethod for themajor advantage
of being computationally very inexpensive, hence most suitable for real-time oper-
ation.

Performances of all the subjects participated in the experiment are given in
Tables2, ,3, and 4. Each participant is evaluated through four metrics (CA, TPR,
FPR, and kappa(κ)) described earlier. Average classification time taken by the clas-
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Table 2 Subjectwise motor imagery detection result

Subject Performance metrics (MI Detection)

CA% ± std TPR FPR Kappa(κ) Time(s)

Sub1 92.82±2.39 0.92 0.03 0.86 0.602

Sub2 93.96±1.82 0.92 0.03 0.91 0.549

Sub3 94.39±1.06 0.93 0.02 0.92 0.553

Sub4 89.81±2.21 0.86 0.03 0.81 0.608

Sub5 87.84±1.89 0.86 0.06 0.84 0.574

Sub6 94.49±1.84 0.92 0.04 0.89 0.579

Sub7 92.16±1.95 0.91 0.03 0.81 0.601

Sub8 91.87±1.26 0.89 0.04 0.83 0.583

Sub9 94.23±1.93 0.93 0.03 0.81 0.559

Sub10 93.12±1.28 0.93 0.05 0.84 0.552

Sub11 86.82±4.28 0.87 0.08 0.78 0.548

Sub12 84.23±3.73 0.85 0.07 0.76 0.571

Table 3 Subjectwise ErrP detection result

Subject Performance metrics (ErrP detection)

CA% ±std TPR FPR Kappa(κ) Time(s)

Sub1 94.81± 1.05 0.93 0.03 0.82 0.109

Sub2 94.52±1.01 0.94 0.04 0.90 0.113

Sub3 91.86±2.09 0.90 0.03 0.79 0.108

Sub4 93.47±0.98 0.92 0.04 0.81 0.121

Sub5 94.31±0.77 0.95 0.04 0.78 0.111

Sub6 93.28±1.46 0.92 0.03 0.93 0.107

Sub7 90.63±2.58 0.91 0.03 0.81 0.118

Sub8 89.86±2.81 0.88 0.03 0.85 0.105

Sub9 92.19±1.63 0.90 0.02 0.86 0.118

Sub10 90.25±2.28 0.90 0.06 0.78 0.108

Sub11 89.11±3.13 0.90 0.06 0.79 0.113

Sub12 86.28±2.08 0.85 0.05 0.72 0.110

sifier during the testing time is also reported in the above tables. Table2 reveals that
the highest detection accuracy of MI brain pattern is achieved for the sixth subject
(CA=94.49%) while the third subject shows the highest kappa value of 0.92 indicat-
ing highest reliability. As revealed from Tables3 and 4, the other two brain patterns,
ErrP and SSVEP, were detected with maximum accuracy of 94.81% and 95.27%,
respectively. The highest ErrP accuracy is observed with the first subject while the
fifth subject shows the highest SSVEP accuracy. For the above two categories of
signal, the highest kappa values are achieved as 0.93 and 0.92.
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Table 4 Subjectwise SSVEP detection result

Subject Performance metrics(SSVEP detection)

CA% ± std TPR FPR Kappa(κ) Time(s)

Sub1 93.88±0.89 0.92 0.02 0.91 0.091

Sub2 91.49±0.96 0.92 0.03 0.88 0.082

Sub3 91.90±0.93 0.90 0.04 0.82 0.095

Sub4 95.06±0.18 0.95 0.03 0.91 0.090

Sub5 95.27±0.27 0.94 0.02 0.92 0.086

Sub6 89.26±2.65 0.90 0.03 0.86 0.097

Sub7 92.43±1.03 0.91 0.03 0.87 0.092

Sub8 90.79±1.88 0.89 0.05 0.82 0.089

Sub9 93.72±0.98 0.94 0.05 0.81 0.103

Sub10 90.93±2.15 0.90 0.05 0.81 0.098

Sub11 85.89±5.05 0.84 0.08 0.72 0.089

Sub12 88.21±4.29 0.89 0.05 0.80 0.085

5.6 Comparison of System Performance

The overall position control performance of the system is evaluated using fewpopular
metrics taken from control system literature. The metrics are success rate, steady-
state error (SS error), peak overshoot, and settling time [14, 15].

Overall performance of the system is presented in Table5. Results are averaged
over all the subjects over all the testing sessions. Performance result is compared
with five other relevant strategies. First the result is compared with the open-loop
control strategy solely based on Motor Imagery [24]. Success rate obtained in this
case found to be (76.2%). Next, the proposed method is compared with four hybrid
BCI control strategies, where researchers, instead of relying on a single brain pat-
tern, used multiple brain signals to design a robust interface for mentally controlling
a robot arm. We considered four different control strategies that used four differ-
ent combinations of brain signals (MI+SSVEP [25], MI+P300 [26], MI+ErrP [13],
and MI+SSVEP+P300 [15]). Comparison results are obtained by implementing the
control strategies in our own BCI setup.

It is evident from Table5 that our proposed method achieves highest success
rate (92.1%) among all the control strategies. It also ensured the lowest settling
time (6s), steady-state error (0.15%), and peak overshoot (4.1%) among strategies
under comparison. Although the present scheme shows improvement over all the
fields considered in Table 5, the major improvement is considered to be the drastic
reduction of settling time with simultaneous reduction of steady-state error and peak
overshoot. Hence, the proposed fuzzy BCI controller outperforms the rest of the
control strategies by a significant margin.
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Table 5 Relative performance analysis

Strategies Performance metrics

Success SS Peak Settling

Rate Error(%) Overshoot(%) Time(s)

MI [24] 76.2 6.22 6.2 18

MI+SSVEP [25] 88.5 6.09 5.9 15

MI+P300 [26] 84.3 3.21 4.5 13

MI+ErrP [13] 85.8 2.1 4.9 16

MI+P300+SSVEP
[15]

90.2 0.31 4.2 20

Proposed method 92.1 0.15 4.1 6

6 Conclusion

This paper claims to have utilized mentally generated sign and magnitude of posi-
tional error for automatic control of artificial robotic limb. The principles and real-
ization of the above idea being novel in the realm of BCI are expected to open up new
direction of control strategies, parallel to traditional controllers, as both the (approx-
imate) magnitude and sign of positional error are known beforehand. Because of
approximate estimation of positional errors, the logic of fuzzy sets has been incor-
porated that could handle the approximations and yields good control accuracy with
small peak overshoot below 4.1% and settling time around 6s.

References

1. Ha J, Kim L (2021) A brain-computer interface-based meal-assist robot control system. In:
2021 9th international winter conference on brain- computer interface (BCI). IEEE. 2021, pp
1–3

2. Ha J et al (2021) A hybrid brain-computer interface for real-life meal-assist robot control.
Sensors 21(13):4578

3. Pfurtscheller G et al (2003) Graz-BCI: state of the art and clinical applications. IEEE Trans
Neural Syst Rehabil Eng 11(2):1–4

4. Pfurtscheller G et al (2000) Current trends in Graz brain-computer interface (BCI) research.
IEEE Trans Rehabil Eng 8(2):216–219

5. Liu Y et al (2018) Brain-robot interface-based navigation control of a mobile robot in corridor
environments. IEEE Trans Syst Man Cybern: Syst 50(8):3047–3058

6. Tonin L, Bauer FC, Millán JDR (2019) The role of the control framework for continuous
teleoperation of a brain-machine interface-driven mobile robot. IEEE Trans Robot 36(1):78–
91

7. Chen X et al (2022) Clinical validation of BCI-controlled wheelchairs in subjects with severe
spinal cord injury. IEEE Trans Neural Syst Rehabilitation Eng 30:579–589

8. Chen X et al (2019) Combination of high-frequency SSVEP-based BCI and computer vision
for controlling a robotic arm. J Neural Eng 16(2):026012



Brain–Computer Interface for Fuzzy Position Control of a Robot Arm by Mentally … 177

9. Casey A et al (2021) BCI controlled robotic arm as assistance to the rehabilitation of neuro-
logically disabled patients. Disabil Rehabil: Assist Technol 16(5):525–537

10. Vilela M, Hochberg LR (2020) Applications of brain-computer interfaces to the control of
robotic and prosthetic arms. Handb Clin Neurol 168:87–99

11. Wang X et al (2022) Implicit robot control using error-related potential-based brain-computer
interface. IEEE Trans Cogn Dev Syst

12. Iretiayo A et al (2020) Accelerated robot learning via human brain signals. In: IEEE interna-
tional conference on robotics and automation (ICRA). IEEE, pp 3799–3805

13. Bhattacharyya S, Konar A, Tibarewala DN (2017) Motor imagery and error related potential
induced position control of a robotic arm. IEEE/CAA J Autom Sin 4(4):639–650

14. Nagrath IJ, GopalM (2007) Control systems engineering. In: New age international publishers,
pp 193–268. ISBN: 81-224-2008-7

15. Rakshit A, Konar A, Nagar AK (2020) A hybrid brain-computer interface for closed-loop
position control of a robot arm. In: IEEE/CAA J Autom Sin 7(5):1344–1360

16. Starczewski JT (2012) Advanced concepts in fuzzy logic and systems with membership uncer-
tainty, Vol. 284. Springer, Berlin

17. Zimmermann H-J (2011) Fuzzy set theory-and its applications. Springer Science & Business
Media

18. Lotte F, Guan C (2010) Spatially regularized common spatial patterns for EEG classification.
In: 2010 20th international conference on pattern recognition. IEEE. 2010, pp 3712–3715

19. Bousseta R et al (2016) EEG efficient classification of imagined hand movement using RBF
kernel SVM. In: 2016 11th international conference on intelligent systems: theories and appli-
cations (SITA). IEEE, pp 1–6

20. Carvalho SN et al (2015) Comparative analysis of strategies for feature extraction and classi-
fication in SSVEP BCIs. Biomed Signal Process Control 21 :34–42

21. Konar A (2006) Computational intelligence: principles, techniques and applications. Springer
Science & Business Media

22. General Assembly of the World Medical Association et al (2014) World medical association
declaration of Helsinki: ethical principles for medical research involving human subjects. J Am
Coll Dent 81(3):14–18

23. Homan RW, Herman J, Purdy P (1987) Cerebral location of international 10–20 system elec-
trode placement. Electroencephalogr Clin Neurophysiol 66(4):376–382

24. Bousseta R et al (2018) EEG based brain computer interface for controlling a robot arm
movement through thought. Irbm 39(2):129–135

25. YanNet al (2019)Quadcopter control systemusing a hybridBCI based on off- line optimization
and enhanced human-machine interaction. IEEE Access 8:1160–1172

26. Yu Y et al (2017) Self-paced operation of a wheelchair based on a hybrid brain-computer
interface combining motor imagery and P300 potential. IEEE Trans Neural Syst Rehabil Eng
25(12):2516–2526


	 Brain–Computer Interface for Fuzzy Position Control of a Robot Arm by Mentally Detected Magnitude and Sign of Positional Error
	1 Introduction
	2 Principles Adopted in the Proposed Position Control Scheme
	3 Signal Processing and Classification of Brain Signals
	3.1 ERD-ERS Feature Extraction and Classification
	3.2 ErrP Feature Extraction and Classification
	3.3 SSVEP Detection

	4 Fuzzy Controller Design
	4.1 Fuzzy Reasoning in the Control Problem

	5 Experiments and Results
	5.1 Subjects
	5.2 EEG System
	5.3 Training Session
	5.4 Testing Session
	5.5 Results and Discussions
	5.6 Comparison of System Performance

	6 Conclusion
	References


