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1 Introduction 

Conventional alloys made from iron, aluminium, titanium, magnesium, and many 
others are prepared by mixing one or sometimes two principal elements with some 
secondary alloying elements in small proportions. Cantor alloys also recognized 
now as high-entropy alloys shows a unique characteristic that by mixing at least five 
metallic elements such that when the mixing percentage vary from 5 to 35% in an 
equimolar composition produces a single solid-solution phase which is crystalline 
in nature [1]. By virtue of this, HEAs offer high specific strength [2, 3], excellent 
stability at high temperatures, exceptional ductility [4], and high corrosion resistance 
and others [5]. Unlike conventional alloys, HEAs possess a trend of ‘stronger being 
more ductile’ [6, 7]. 

Cantor suggests that as many as ~ 108 varieties of HEAs can be developed 
using 44–64 elements from the chemical periodic table [8]. Many of these HEAs 
are yet to be synthesized in the lab and Yeh [9] suggests that “still a lot more 
treasure exist in non-equimolar HEAs”. In developing an alloy, a considerable
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Fig. 1 a Illustrative architecture of ML, b classification of ML algorithms on the basis of supervised, 
unsupervised, and reinforcement learning [12–14]. Circle on Random forest is done to highlight 
that this method was used in this paper to present a case study 

number of input parameters such as its composition, synthesis route, processing 
window, temperature, heating/cooling rate are required to obtain its crystallographic 
information and mechanical, electrical and functional properties of interest. Thus, 
relying on traditional laboratory experiments for novel material discovery can be 
very time-intensive. 

Machine learning (ML) has emerged as a sophisticated and reliable technique 
in replacing repetitive laboratory experiments and computational simulations such 
as Density Functional Theory (DFT) and Molecular Dynamics (MD) [10]. DFT 
method predicts material properties using quantum mechanics and can at times be 
erroneous [11]. MD on the other hand analyse atoms by numerically solving Newton’s 
equations of motion [12]. MD continues to suffer from the drawback on having 
reliable interatomic potential functions. Thus, ML provides a robust alternative tool 
based on the reliance of historical data and a mathematic way by pattern recognition 
technique. This in turn enhances our ability to extract salient features from within 
the data which are otherwise not readily visible even to an experienced researcher. A 
summary of various ML algorithms currently being used is shown in Fig. 1a which 
formed the core of this paper. 

1.1 ML Algorithms 

ML algorithms are broadly classified into three categories based on their type of 
learning, namely supervised, unsupervised, and reinforcement learning shown in 
Fig. 1b [13, 14].
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1.1.1 Supervised Learning 

As the name suggests, supervised ML algorithms are taught by providing a labelled 
dataset that includes input and output variables. The objective of supervised learning 
is to map input (x) and output (y), using a linear or nonlinear function, for instance, 
y = f (x) [14]. 

1.1.2 Unsupervised Learning 

In unsupervised ML algorithms, unlabelled dataset is used to train an algorithm, 
where inputs are not labelled with the correct outputs. The goal is to model the 
underlying structure or to discover the patterns in the data. The unlabelled data in 
the unsupervised learning is used to train algorithms for clustering and association 
problems. 

1.1.3 Reinforcement Learning 

Reinforcement learning is based on reward or punishment methods, where an agent 
learns to perceive and interpret its complex environment; it takes actions and learns 
through the trial-and-error method. It is devised to reward the desired behaviour 
by assigning a positive value to encourage the agent and punishing the undesirable 
behaviour by assigning negative values to penalize the agent. An agent either gets 
an award or a penalty based on the actions it performs, and the ultimate goal is to 
maximize the total reward. Over time, the agent learns to avoid the negative and seek 
the positive, thus learns the ideal behaviour to optimize its performance. 

Current study focuses on a supervised ML algorithm, as the labelled data is 
employed for phase prediction of HEAs. A detailed description of all supervised 
ML algorithms has been discussed in Table 1.

1.2 Literature Review 

Recently, there has been a surge in the number of publications on phase predic-
tion of HEAs using various ML techniques. Islam et al. [15], Huang et al. [16] and 
Nassar et al. [17] employed neural networks in their study for phase prediction of 
HEAs and observed an average accuracy of 83%, 74.3%, and 90%, respectively, by 
using a relatively smaller number of datasets. These models considered five physical 
parameters namely mixing entropy (ΔSmix), valence electron concentration (VEC), 
atomic size difference (δ), mixing enthalpy (ΔHmix), and electronegativity differ-
ence (Δχ ). Choudhury et al. [18], used a random forest regression algorithm for the 
classification of different phases and crystal structures and obtained an accuracy of



46 S. Singh et al.

91.66% for the classification of phases and 93.10% for the classification of different 
crystal structures, respectively. 

To significantly improve the phase prediction accuracy, Risal et al. [19], compared 
Support Vector Machine (SVM), K-Nearest Neighbour (KNN), Random Forest (RF) 
classifier, and Multi-layer perceptron (MLP). KNN and RF Classifiers performed 
most effectively and obtained the test accuracy of 92.31% and 91.21%, respectively,

Table 1 A list of important supervised ML algorithms 

Algorithms Category Description of the 
method 

Advantages Limitations 

Linear 
regression 

Regression It correlates one 
independent 
variable and one 
dependent 
variable using a 
straight line 

Easy to 
implement and 
understand, and it 
can extrapolate 
beyond a specific 
dataset 

Assumes that 
dependent 
variables and 
independent 
variables are 
linearly related. 
Highly prone to 
noise and sensitive 
to outliers 

Polynomial 
regression 

Regression Linear regression 
shows under 
fitting for 
nonlinear data, 
thus a new nth 
degree 
polynomial 
function is used 
to relate the 
independent and 
dependent 
variables 

Capable of 
accommodating a 
wide range of 
functions 

A correct 
polynomial 
function needs to 
be selected for 
better fitting of all 
the data points. It 
is more sensitive 
to outliers; even 
one or two outliers 
can significantly 
affect the outcome 

Support vector 
machine 

Regression and 
classification 

It selects a 
decision 
boundary that 
best separates two 
different groups 
and predicts 
whether a new 
data falls into one 
category or the 
other 

SVM performs 
well for high 
dimensional data 
as it provides 
various Kernels 
such as linear 
kernel, nonlinear 
kernel, 
polynomial 
kernel, Gaussian, 
radial basis 
function (RBF), 
and sigmoid 
kernel. It best 
suits binary 
classification 
problems 

Performs poorly 
for overlapped 
classes. The 
selection of an 
appropriate Kernel 
and 
hyper-parameter is 
complex and 
problematic. A 
large dataset 
requires a long 
time for training

(continued)
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Table 1 (continued)

Algorithms Category Description of the
method

Advantages Limitations

K-Nearest 
neighbour 

Classification Depending on the 
nearest 
neighbour, it 
classifies a new 
sample into one 
class out of 
several classes, 
separated 
depending on the 
type of data 

Simple and easily 
accommodates 
itself when 
exposed to new 
data. Multiclass 
classification can 
be easily solved 

It essentially 
requires feature 
scaling, performs 
poorly on 
imbalanced data, 
and cannot handle 
outliers and 
missing values 

Naïve Bayes Classification It is based on 
‘Bayes theorem’, 
assuming that no 
features are 
dependent and 
each feature is 
given the same 
weightage. It can 
classify data into 
several categories 
following the 
highest 
possibility 

Simple and useful 
for vast datasets. 
It is insensitive to 
irrelevant 
features. Very 
fast, scalable, and 
effective for 
multiclass 
classification 
problems 

Its application in 
the real world is 
limited because it 
assumes that all 
the features are 
independent and 
each feature 
makes an equal 
contribution 

Logistic 
regression 

Regression An efficient 
method for binary 
and linear 
classification 
problems, it 
calculates 
probability from 
logistic 
regression 
equation to 
calculate the 
relationship 
between input 
variable and one 
or more output 
variables 

It is simple, 
effective, and 
does not require 
feature scaling or 
hyper-parameter 
tuning 

It performs poorly 
for nonlinear, 
irrelevant, and 
highly-correlated 
data

(continued)
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Table 1 (continued)

Algorithms Category Description of the
method

Advantages Limitations

Decision tree Regression and 
classification 

Creates a tree-like 
structure 

It is easy to 
visualize and 
interpret the 
results 

It is data-sensitive, 
which means the 
outcome might 
change 
significantly on 
changing data 
slightly, and it is 
prone to 
overfitting 

Random forest Regression and 
classification 

It takes votes 
from various 
decision trees for 
classification, and 
the average of all 
votes for a 
regression task 

It can smoothly 
tackle the highly 
correlated 
features. It easily 
handles missing 
values, a large 
amount of data, or 
even imbalanced 
data and reduces 
the chances of 
overfitting, as the 
final decision 
depends on the 
decision of 
multiple trees 

It is difficult to 
interpret its inner 
working; appears 
as a black box 

Artificial neural 
network 

Regression and 
classification 

It is similar to 
human brain 
functioning and 
connects neurons 
to pass 
information 

Performs well 
even with 
incomplete data. It 
works efficiently 
in recognizing 
patterns 

Its functioning 
depends on the 
processing power. 
No specific rules 
are defined for 
selection of 
neurons or hidden 
layers. It is truly a 
black box 
algorithm

whilst SVM and MLP provided satisfactory performance with accuracies greater 
than 90%. Several similar studies have recently reported about the phase prediction 
and various mechanical properties which are summarized briefly in Table 2.

From the aforementioned literature, the random forest algorithm was observed to 
be the most prominently used algorithm in phase prediction studies, due to its high 
predictive performance. Therefore, the present study used random forest algorithm 
with the motive of correctly classifying each phase of HEAs for an imbalanced 
dataset. Scarce studies on the interpretation of the inner-working of an algorithm have 
been found in the literature. Thus, an additional attempt to decipher the black-box 
nature of the employed random forest algorithm has also been made using SHapely 
Additive exPlanation (SHAP) technique.
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1.3 Data Source 

A dataset of 1360 HEA samples was used to classify different phases of HEAs [30]. 
This dataset was observed to be highly imbalanced, as it contained 463 Intermetallic 
(IM), 441 BCC solid-solution (BCC_SS), 354 FCC solid-solution (FCC_SS), and

Table 2 Application of various ML algorithms in material science 

Reference Supervised ML method Brief description Success rate/Accuracy 

Tancret et al. [20] Gaussian processes (GP) 
+ CALPHAD 

Study on formation of 
single-phase 
solid-solution by 
considering the 
previously proposed 
empirical rules such as 
Hume-Rothery rules, 
basic thermodynamic 
concepts, and 
CALPHAD 

63–80% 

Islam et al. [15] Neural network Classification of 
solid-solution, 
intermetallic, and 
amorphous phase 

83% 

Huang et al. [16] Comparison of k-nearest 
neighbour (KNN), 
support vector machine 
(SVM), and artificial 
neural network (ANN) 

Solid-solution, 
intermetallic or mixed 
solid-solution and 
intermetallic phase 
formation study 

SVM—64.3%, 
KNN—68.6%, 
ANN—74.3% 

Choudhury et al. 
[18] 

Random forest Phase selection and 
crystal structure 
prediction study 

91.66% for phase and 
93.10% for crystal 
structure prediction 

Li et al. [21] Support vector machine 
(SVM) 

Classification of BCC, 
FCC, and other phases 
not forming single phase 
solid-solution in 
CoCrFeMnNi HEA 

96.55% training 
accuracy and 90.69% 
validation accuracy 

Qi et al. [22] Random forest A phenomenological 
method to predict phases 
of high-entropy alloys 
using phase diagram 
data 

> 80% 

Zhou et al. [23] Comparison of artificial 
neural network (ANN), 
convolutional neural 
network (CNN), and 
support vector machine 
(SVM) 

Design rules for 
different phases 
(solid-solution (SS), 
amorphous (AM), and 
intermetallic (IM)) of 
high-entropy alloys 

Accuracy of ANN 
model—98.9% for 
AM phase, 97.8% for 
SS phase, and 95.6% 
for IM phase

(continued)
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Table 2 (continued)

Reference Supervised ML method Brief description Success rate/Accuracy

Agrawal et al.  
[24] 

ANFIS—Adaptive neuro 
fuzzy interface system 

Classification of 
different phases of 
HEAs, using two 
approaches, one 
considering composition 
(composition-based 
model) as the inputs, 
whilst the other 
considering a set of six 
crucial parameters 
(parametric based 
model) in the formation 
of HEAs 

84.21% for 
composition-based 
model, 80% for 
parametric-based 
model 

Abdoon et al. 
[25] 

Deep neural networks 
(DNNs) 

Phase prediction of 
HEAs to design alloys 

90% 

Dai et al. [26] Logistic regression Phase prediction study 
on 407 data of 
high-entropy alloys 
using feature 
engineering 

86% accurate with 9 
descriptors 

Kaufmann and 
Vecchio [27] 

Random forest High-throughput 
“ML-HEA” prediction 
of solid-solution 
forming-ability for 
HEAs by coupling 
thermodynamic and 
chemical features 

(94% for binary) and 
(82.1% for ternary), 
when compared to the 
predictions from 
CALPHAD 

Zhang et al. [28] Support vector machine 
(SVM) model using four 
feature variables and 
Kernel principal 
component analysis 
(4 V-KPCA) 

Phase prediction using 
relationship between 
phases and nine 
thermodynamics 
properties of 
high-entropy alloys 

Testing 
accuracy—0.9743 

Buranich et al. 
[29] 

Linear regression (LR), 
Random forest (RF), and 
Gradient boosting 
regression (GBR) 

Designing and screening 
of new HEAs for 
application in 
mechatronics industry 

Highest accuracy 
(above 91%) for GBR 

Risal et al. [19] SVM, KNN, RF 
Classifiers, and ANN 

Phase prediction of 
HEAs with an aim to 
significantly improve 
the phase prediction 
accuracy 

KNN—92.31%, 
RF—91.21%, SVM 
and ANN—90%

(continued)
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Table 2 (continued)

Reference Supervised ML method Brief description Success rate/Accuracy

Nassar et al. [17] Two neural networks: 
NN1 (considering only 
the compositional data), 
and NN2 (considering 
Hume-Rothery (HR) 
features along with the 
compositional data) 

Phase prediction of 
HEAs 

NN1—92%, 
NN2—90% 

Machaka et al. 
[30] 

Decision tree (DT) 
classifier, and Random 
forest (RF) classifier 

Phase prediction of 
high-entropy alloys 

DT—73%, RF—85% 

Bhandari et al. 
[31] 

Random forest Yield strength prediction 
at the desired 
temperature for HEAs 

93–97%, when 
compared with the 
experimental report for 
validation 

Lee et. al. [32] Regularized deep neural 
network (DNN) model 

Identification of the key 
design parameters for 
enhancing the 
performance of phase 
prediction of HEAs. 
Furthermore, to 
overcome the problem 
of data shortage, a 
conditional generative 
adversarial network 
(GAN) was employed to 
generate more data 

84.75%, 93.17% 
(when augmented by 
GAN) 

Zeng et al. [33] eXtreme Gradient 
Boosting (XGBoost) 
method 

Phase selection rules for 
identification of single 
and mixed-phase 

> 90% 

Krishna et al. 
[34] 

Performance comparison 
of logistic regression 
(LR), decision tree (DT), 
support vector machine 
(SVM), random forest 
(RF), gradient boosting 
classifier (GB), and 
artificial neural network 
(ANN) 

Phase prediction in 
multiphase alloy system 

LR—62.89%, 
SVM—83.02%, 
DT—77.99%, 
RF—82.39%, GB 
Classifier—81.13%, 
ANN—80.50%

102 mixed (FCC + BCC) phase. Five crucial features such as valence electron 
concentration (VEC), electronegativity difference (Δχ ), atomic size difference (δ), 
mixing enthalpy (dHmix), and mixing entropy (ΔSmix) calculated by Miedema’s 
model were used as input parameters in the dataset. The ML modelling frame-
work for the classification of four different phases of HEAs are demonstrated in 
Fig. 2, where data preprocessing is performed to detect outliers and missing values, 
and then feature scaling was performed to scale down the data into a finite range.
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Fig. 2 ML modelling framework for phase classification of high-entropy alloys (HEAs) 

The data was then divided into training and test sets (80:20) for the training (1088 
HEA samples) and testing (272 HEA samples) purpose of the model. Random forest 
classifier (RFC) was employed using the scikit-learn library in Python, and further 
training and testing was performed to evaluate the performance of the RFC model. 

1.4 RFC Model Performance 

RF is an ensemble of various decision trees (tree-like structures) based on various 
subsets of the given dataset. For a classification task, it takes votes from various deci-
sion trees and makes a final prediction on the basis of majority votes. It is more accu-
rate compared to a single decision tree algorithm, as a large number of trees improve 
its performance and makes the prediction more stable. The performance of RFC 
model has been evaluated using a confusion matrix and classification report. Confu-
sion matrix provides the number of correctly predicted and incorrectly predicted 
classes for each phase [35]. Classification report on the other hand provides preci-
sion, recall, f1-score, average classification accuracy, and weighted average accuracy. 
Out of 272 HEA samples from the test data, 93 samples belong to class 0, i.e. IM 
phase, 88 samples belong to class 1, i.e. BCC phase, 71 samples belong to class 2, i.e. 
FCC phase, 20 samples belong to class 3, i.e. FCC + BCC mixed phase, as shown 
in classification report in Fig. 3a. The confusion matrix in Fig. 3b demonstrates the 
correctly and incorrectly classified phases, for example out of a total of 93 samples 
of IM phase, only 72 samples were correctly classified as IM phase, remaining 13 
samples were misclassified as BCC phase, 5 samples were misclassified as FCC 
phase and 2 samples were misclassified as FCC + BCC phase. Similarly, the classi-
fication of each phase can be observed. Apart from an average classification accuracy 
of 86%, the precision, recall, and f1-score for all four phases were investigated in 
the classification report.
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Classification report 
(a) (b) 

Fig. 3 a Confusion matrix, b classification report for RFC model in classification of IM, BCC, 
FCC, and FCC + BCC phase 

Training accuracy, test accuracy, ROC_AUC_Score, and tenfold cross-validation 
ROC_AUC_Score were evaluated and shown in Table 3. The Receiver Operating 
Characteristic_Area under Curve (ROC_AUC) score ensures better performance 
of model in predicting different classes of HEAs. tenfold cross-validation was 
performed to avoid overfitting, where the complete dataset is divided into ten equal 
folds. Each time, the model was trained with 9 of those folds and the remaining 
onefold was used for the testing purpose, and the procedure was repeated ten times, 
by reserving a different tenth fold each time for testing the model. This measure 
ensured the effectiveness of the model and that the RFC model was not overfitting. 
The reported training accuracy of 90.9% and testing accuracy of 85.23%, suggested 
that the model was successfully classifying different phases of HEAs. The differ-
ence in the training and test accuracy indicated that the data used to train and test 
the RFC model was slightly different, which means that the RFC model is capable 
of predicting phases successfully, even for the unseen data points that have not been 
used in the present study. 

Furthermore, the interpretation of RFC model was performed using SHAP tech-
nique, to understand which physical features were influential in governing phases 
of HEAs. SHapely Additive exPlanation (SHAP) technique has emerged as break-
through in the field of ML for easy interpretation and explanation of a complex 
model’s prediction; published by Lundberg and Lee in 2017 [36]. SHAP value aims 
to explain the prediction of an instance by considering the contribution of each feature

Table 3 Comparison of 
various ML algorithm 
performance 

S. No. Algorithm Accuracy 

1 Support vector machine 0.79 

2 Decision tree classifier 0.81 

3 Random forest classifier 0.86 

4 XGBoost classifier 0.83 
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Fig. 4 Feature importance plot for RFC model using SHAP 

Table 4 RFC model 
performance 

S. No. Evaluation Model performance 

1 Training accuracy 0.909672 

2 Test accuracy 0.856088 

3 ROC_AUC_Score 0.964626 

4 Tenfold cross-validation 
ROC_AUC_Score 

0.90311

in making a certain prediction at global as well as local levels. From this analysis, 
VEC was found to play most crucial role in determining FCC, BCC, and mixed FCC 
+ BCC solid-solution phases whilst mixing enthalpy (dHmix) was found important 
in determining the formation of solid-solution or an intermetallic phase, as shown in 
Fig. 4. Tables 4 and 5 show the RFC model performance and cross-validation score 
in each fold of tenfold cross-validation respectively. 

2 Conclusions 

The RFC model developed in this study had successfully and reliably predicted 
BCC, FCC, intermetallic, and FCC + BCC phases in high-entropy alloys. RFC 
model performance was evaluated using various evaluation metrics such as average 
classification accuracy, precision, recall, f1-score, ROC_AUC score, and tenfold 
cross validation ROC_AUC score.
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Table 5 Cross-validation 
score in each fold of tenfold 
cross-validation 

No. of folds Cross-validation score 

Fold 1 0.88633 

Fold 2 0.93082 

Fold 3 0.78310 

Fold 4 0.92372 

Fold 5 0.94252 

Fold 6 0.93863 

Fold 7 0.83451 

Fold 8 0.89151 

Fold 9 0.96391 

Fold 10 0.93750 

Mean value of tenfold cross-validation score: 0.9031 
Standard deviation: 0.0533

The RFC model showed that the two input parameters, namely valence electron 
concentration (VEC) and mixing enthalpies were most influential in determining the 
resulting phase of a given HEA composition. VEC contributed the most in predicting 
the crystal structure of solid solution phases (BCC, FCC, and FCC + BCC) whilst 
mixing enthalpy (ΔHmix) played important role in determining formation of solid-
solution or intermetallic. Thus, this present study leveraged the reliability of applying 
ML techniques in material science without any requirement of performing expensive 
experiments. 
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