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Abstract. Since the beginning of the 21st century, modern information technol-
ogy and electronic integrated circuit technology have developed rapidly. In the
chip industry, the ability to resist side-channel attacks has become an important
indicator for international mainstream evaluation agencies to evaluate chip secu-
rity. This paper proposes an improved method for side channel analysis based
on the CNN p,,; model, incorporating a lightweight combined channel and space
convolutional attention module, optimising the position of the attention module,
improving the learning efficiency of key features of the power consumption curve,
and effectively reducing the number of traces used by the attack model. The addi-
tion of dropout layer network structure solves the problem that the model is prone
to rapid overfitting. The optimal value of drop rate is sought through comparative
experiments to speed up the convergence of the model and reduce the number
of traces required for a successful attack. The experimental results show that the
number of traces required by the method in this paper for side-channel attacks is
reduced by 88% compared with the original model, which significantly improves
the attack performance and can meet the requirements of side-channel modeling
and analysis.

Keywords: Side channel analysis - Power consumption attacks - Deep learning -
Attention mechanisms

1 Introduction

With the development of cryptography and information technology, the current crypto-
graphic algorithm itself is strong enough. People cannot live without embedded devices,
such as smart cards, routers for door locks, etc. A large part of the security of embedded
devices relies on cryptographic algorithms to protect them, and mature cryptographic
algorithms have been mathematically proven, so brute force attacks are unlikely to break
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them with current levels of computing power, but side channel attacks target the device,
focusing on using physical information leaked during device operation to bypass cryp-
tographic algorithms. This is often an easily overlooked security risk, and research into
side channeling can help to remedy these security risks and strengthen device security.
Due to the process characteristics of the device itself, the device will leak side channel
information such as power consumption, electromagnetism and time during operation,
as shown in Fig. 1. If an attacker is able to obtain data on the changes in the energy
consumption of the circuit operation, using certain methods to analyse this data, he will
be able to obtain some information on the key. The leaked information is directly related
to the key or a part of the subkey, and the operations related to this information are
called sensitive operations, and the operation obtained is called a sensitive intermediate
value. Thereby, the intermediate value leakage model portrays the mapping relationship
between the intermediate value of the cryptographic algorithm to the actual leaked value
and is an assumption made by the attacker against the cryptographic device [1].
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Fig. 1. Side channel information leakage.

Side channel analysis (SCA) can be divided into two categories according to different
methods. The first category is the Non-Profiling SCA analysis method, and the second
category is the Profiling SCA analysis method. The Non-Profiling SCA analysis method
does not require additional equipment, directly collects power consumption on the target
chip, and recovers the key by means of statistical analysis. Common Non-Profiling
SCA analysis methods include Differential Power Analysis (DPA) [2], Correlated Power
Analysis (CPA) [3] and Mutual Information Analysis [4]. In contrast, the Profiling SCA
analysis method uses a large number of tagged (plaintext and key) power consumption
profiles on a target device that is fully consistent with the target device and then models
the power consumption before the key, using this model to attack the target device.
Common modeling and analysis methods include Template Attack (TA) [5] and linear
regression analysis models [6, 7]. The modeling attack capability of the side channel
combined with deep learning is relatively strong. In the attack scenario, if the deep
learning technique trains lightweight and easily trained models with good performance,
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it is even greatly enhanced the comprehensive attack capability of this technique, which
can effectively improve the security testing capability in terms of side channels.

In recent years an increasing number of scholars have concluded that the use of deep
learning for side channel modelling is effective, as the greatest advantage of deep learning
is that it can learn the feature extraction process to a certain extent and can extract more
complex and high-level abstract features. In recent years, the current state of research
in the modelling class of side channel analysis using deep learning can be divided into
four parts: improved network design or training methods, optimised loss functions, data
augmentation and other research directions. With regard to improving network design, in
2020, Ryad et al. used VGG-16 as a starting point to give the effect of hyperparameters on
the modelling and attack process, and proposed the CNN p; architecture, which provided
a great help for further extensive research in this field [8]. In 2021, Lu et al. proposed
a neural network architecture that can get rid of the manual extraction of traces on the
mask-protected original feature point step and obtain intermediate values by directly
analyzing the raw power consumption curve end-to-end [9]. In 2022, Wu et al. proposed
a deep learning-assisted template attack, based on a similarity learning approach, using
a triadic model for implementation [10]. The evaluation metrics of deep learning models
and side-channel attack models are not consistent, with deep learning using accuracy
and precision, while side-channel analysis is most commonly used for guessing entropy
and success rate. Thus, in 2020, Zhang et al. proposed an evaluation metric CER for the
side-channel attack scenario applicable to deep learning, where minimizing Losscgg is
equivalent to simultaneously maximizing the score corresponding to the correct key and
minimizing the score of the incorrect key [11]. In 2021, Zaid et al. proposed Ranking
Loss, where the evaluator uses a prediction function to estimate which intermediate
value is processed and uses the power consumption curve to calculate the score, thus
computing Lggy [12]. Regarding data augmentation, in 2019, Picek et al. use the data
balancing technique SMOTE to analyse minority class samples and manually synthesise
new samples to add to the dataset based on minority class samples, reducing the low
performance associated with data imbalance [13]. In 2022, Perin et al. investigate the
importance of different feature selection, where optimising points of interest leads to
better attacks and greater workload [14].

The main contributions of this paper:

(1) Integrate the Convolutional Block Attention Module (CBAM) into the CNN peg:
model, and conduct five insertion position experiments so that to get the optimal
insertion position. At the meatime, we modify the feature extraction part, and assign
greater weights to the feature points of the power consumption traces, so that the
network can learn better Features in the power traces that have strong operational
dependencies and strong data dependencies with the encryption step;

(2) A dropout layer is added to our modified CBAM model, and three sets of parameter
optimization experiments are carried out to seek the optimal parameter of the drop
probability, which solves the problem of rapid over-fitting that is prone to occur in
the model, significantly accelerates the speed of model convergence, and effectively
improves the accuracy of guessing the correct key.
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2 Background Knowledge

2.1 Convolutional Neural Network

Convolutional neural network (CNN) is a variant of MLP. CNN was proposed by Yann
Lecun [15], and its essence is an MLP. Each layer in the convolutional neural network
has multiple feature maps, each feature map extracts a feature of the input through a
convolution filter, and each feature map has multiple neurons, as shown in Fig. 2. The
convolutional layer and the pooling layer of the hidden layer are the core modules to
realize the feature extraction function of the convolutional neural network. The network
model uses the gradient descent method to minimize the loss function to reversely adjust
the weight parameters in the network layer by layer, and improve the accuracy of the
network through frequent iterative training. The input of the first fully connected layer
is the feature image obtained by feature extraction by the convolutional layer and the
subsampling layer. The last output layer is a classifier that can use logistic regression,
Softmax regression or even a support vector machine to classify the input image.

Convolution Pooling Convolution Pooling Fully
Connected
Fully

Connected O",‘pfn
- Predictions

Fig. 2. CNN structure.

2.2 Side Channel Attack Principle

After modeling, the analyst obtains a model F(-) : X — P(Y), which can be assim-
ilated into a probability function (possibly normalized). In the attack phase, the ana-
lyst tries to recover a fixed k* and the power consumption profile measured from
the target device as D = {(x/)}!_; can calculate the log-likelihood function score
dlkl = > °i_ log(F (xi)[f i, k)] for all attack power consumption profiles for each
k € K. The analyst then selects the key kgyess that leads to the highest score in the
log-likelihood function, kgyess = argmaxiexd[k]. If kgyess = k*, the attack succeeds.

2.3 CNNpess

IN 2020, the Researchers Detail the Principles of Combining Deep Learning with Tem-
plate Attacks and How This Works in Practice, Using VGG-16 as a Starting Point, Giving
the Impact of Hyperparameters on the Modelling Process and the Attack Process, and
Proposing the CNN,s; Architecture [8]. The Model is Defined as a CNN Architecture
with 5 Blocks and 1 Block-By-Block Convolution, a Number of Filters Equal to 64, 128,
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256, 512 and 512, a Kernel Size of 11, and a Fill Method of Same-Using ReLU Activa-
tion Function and Average Pooling. Two Final Fully Connected Layers, Consisting of
4096 Units. By Using an RMSprop Optimiser with an Initial Learning Rate of 10. This
Network Structure is Shown in Fig. 3.
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Fig. 3. CNN ., structure.

2.4 Evaluation Indicators

Two different metrics were chosen to evaluate the performance of the model: the rank
function and the accuracy.

(1) The rank function
The key used during the acquisition of dataset D,fiiing Using k* € K. The rank
function corresponding to the model trained using dataset Dy, and tested using
dataset Dyey is defined as rank (g, Dyains Diest.n) = |{k € Kldugy > dupiee }|- If &
has the highest (lowest) score, its rank is O(|K| — 1).

(2) The accuracy
y; denotes |K| dimensional output g(/;, p;), Dyes; may be of unbounded size, as
defined in Eq. 1.

R (tis pis k*) € Dyest|k™ = argmax; cg yifi)
acc(g, Dlrainv Dtest) = H A ”ID | — }| (1)
test

3 Methodology

3.1 Convolutional Block Attention Mechanism

In order to improve CNN performance, in addition to studying depth, width and car-
dinality factors, researchers have also studied increasing the representational power of
the network by focusing on important features and suppressing unnecessary features
through the attention mechanism, which is one way to achieve adaptive attention in the



110 X. Liet al.

network. The data-dependent or operation-dependent time periods required for power
consumption curve analysis tend to be a relatively small portion of the entire power con-
sumption curve, meaning that there are small regions with physical information leakage,
so to improve the ultimate performance of the model, this paper hopes to give more use-
ful feature data regions greater weight in the useless feature data regions. Electronic
noise can affect the performance of the model, so smaller weights are given to the use-
less feature data regions. At the same time, the above operation may lead to overfitting
and slow convergence of the model, so a Dropout layer is added later to alleviate the
overfitting and speed up the convergence of the model. The Convolutional Block Atten-
tion Module (CBAM) is a lightweight attention module proposed by Woo et al. [16],
which combines channel and spatial attention mechanism modules, as shown in Fig. 4.
Firstly, the input feature F € RC*#*W is input, then the one-dimensional convolu-
tion of CAM M¢ e RE*'*! is performed, the result of the convolution is multiplied
with the original graph, and the output of CAM is used as the input of SAM, while the
two-dimensional convolution of SAM Mg € RIXH*W jg performed afterwards, and the
output is multiplied with the original graph. The procedure is as in Egs. 2 and 3.

F'=Mc(F)®F )

F'=Ms(F)®F 3)

Among them, F represents the input of the feature map (C x H x W), M¢ is the
one-dimensional (C x 1 x 1) channel attention map, My is the two-dimensional 1 x H x
W channel attention map, ® represents the multiplication operation, F / represents the
intermediate output (C x H x W), and F ! represents the final output (C x H x W).

y [ f

N\ x P ‘H N\

X)) ——

Spatial Attention Module
(SAM) o

Channel Attention Module
(CAM)

Fig. 4. CBAM structure.

CBAM is generally used for feature extraction of images with two-dimensional
convolution, but in this paper one-dimensional convolution is used, so the channel space
attention module in this paper is designed for one-dimensional data. And with different
insertion positions, the MLP hyperparameters in the channel attention module are slightly
different.

Firstly, the Channel Attention module, which uses a global one-dimensional max-
imum pooling operation and a global one-dimensional average pooling operation to
obtain two sets of data. Each channel in the two sets of data has now been compressed
into a number, and then two convolutional layers with kernel size = 1 are used to act as
the fully connected layer, the activation function is the ReL.U function. The last two sets
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of data are summed by the corresponding indexes and the final result is presented by the
Sigmoid activation function, as shown in Fig. 5.
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Fig. 5. 1-d Channel attention module.

Secondly is the Spatial Attention module, which first separately conducts average
pooling and max pooling operations on the values of each element of the input data on
the current channel so that to get two sets of data. And then using a one-dimensional
convolution of kernel size =7 to convert the two sets of data into a set of data, which
should be consistent with the size of the input data. Finally, by the Sigmoid activation
function, the output of this part can be down, as shown in Fig. 6.
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Fig. 6. 1-d Spatial attention module.
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The insertion positions of five CBAMs are designed in this paper respectively, at
the interval of each layer of the five layers of convolution and behind the fifth layer of
convolution, where the MLP neurons number of the channel attention module are set
to 0.5 times the number of input channels. Testing the effect of five positions on the
performance of the model after insertion of CBAM, and selecting the best performing
model for the next step, the CBAM insertion position is shown in Fig. 7.

Convl=> 1 > Conv2—=> 2 —=>Conv3—> 3 > Convd—> 4 = Conv5S > 5 —> OtherLayer

Fig. 7. Location of inserting CBAM.

3.2 Dropout

The problem of overfitting is often encountered when training neural networks. This is
reflected in the fact that the model has a small loss function on the training data and
has a high prediction accuracy, but has a larger loss function on the test data and has a
lower prediction accuracy. If the model is overfitted, the resulting model is almost unus-
able. Hinton proposed Dropout [17], which tends to cause overfitting when a complex
feedforward neural network is trained on a small data set. To prevent overfitting, the
performance of a neural network can be improved by blocking the coaction of feature
detectors. Subsequently, there have been a number of articles on Dropout [18, 19]. A
normal feed-forward neural network is shown in left panel of Fig. 8.

Letting the activation value of a certain neuron stop working with a certain probability
p during forward propagation makes the model more generalizable as it does not rely
too much on certain local features, dropout principle as shown in right panel of Fig. 8.

Fig. 8. Left: original network; right: adding dropout to the network.

When performing side-channel attack experiments, the trained model is very prone
to rapid overfitting, so the Dropout layer was introduced in the hope of solving the rapid
overfit problem. In this paper, the Dropout layer is added after the first fully connected
layer in the experiment, and the overall structure is shown in Fig. 9.
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Conv Layer —» FC1 Layer — Dropout Layer —» FC2 Layer — FC3 Layer —p

Fig. 9. Location of adding dropout.

4 Experiment

4.1 Experimental Platform and Data Set

The experiment is conducted in the CentOS 8 operating system on python 3.6 + pytorch
1.10 and executed by the processor Intel(R) Xeon(R) gold 5218 CPU, memory 128GB,
graphics card Nvidia Geforce RTX 2080 Ti, hard disk 512GB SSD + 4TB HDD
workstation for training model.

The dataset mainly uses ASCAD public datasets [8], 50,000 training set data, 10,000
test set data, each data contains the power consumption of the third byte for the first round
of S-box encryption that has been synchronously aligned, a total of 700 data points.

4.2 Feature Extraction Network Integrated into CBAM

First, in order to verify the performance of the model inserting CBAM at different
insertion locations, the experiment trained five models with different insertion locations
for testing and comparing them with the original model. These models are all “accuracy
optimal” models in the training set to simulate the choices that a model might make in
a real attack environment. And in later experimental tests, it may be found that these
models may not be the best choice for the attack dataset.

Depending on the insertion location, these models are labeled CBAM1, CBAM2,
CBAM3, CBAM4 and CBAMS, respectively, with the number following the tag name
referring to Fig. 10, and the original model is labeled No CBAM. The experiment mea-
sures the quality of the model from the rank traces of the model and the number of traces
required to attack the correct key, so as to select the model for the next experiment.

rank-traces

250 No CBAM CBAM3
= CBAMI1 CBAM+4
A" CBAM2 — CBAMS

, ‘MMV \

200 | f L

150 |

100

50

rank

0 200 400 600 800 1000
traces

Fig. 10. Rank line chart.
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It can be seen from the experimental test rank line chart results that both CBAM3 and
CBAMS predict the correct key earlier than the original model. The CBAMS performs
the best output. The CBAM4 also model performs well in the early stage, but the rank
of the model is stable at 1 for a long time, and always cannot be lowered to 0. Finally
the rank is successfully lowered to O until 913 traces are reached. Besides, CBAM1 and
CBAM2 cannot infer the correct key within the 1200 traces, so CBAM1 and CBAM2
are directly abandoned.

Table 1 shows the number of traces required when the correct key rank is stable to
0 when each model was attacking.

Table 1. Number of traces required for each method.

Model No CBAM3 |CBAM4 | CBAMS5
CBAM

Number | 520 128 913 83

of traces

In order to understand the change law of the specific performance of the model
during each epoch training and compare the changes of the model in the training process
between the original model and CBAMS, this paper tests the model generated by each
epoch. And using the number of traces required to reduce the rank to 0 for measuring
the quality of the model, as shown in Fig. 11. In the experiment, when the number of
traces required exceeds 800, this paper regards it as the model cannot attack the true
key, and it appears as a peak reaching 1000 in the line chart. It can be seen from the
test result curve that although the performance of the CBAMS model is better than that
of the original model, based on the above results, the CBAMS model is selected for the
next experiment.

Required traces count - epochs

] W | .

w | » Ml
. - \‘ (1l
(\'i . \u ( W |

w— CNNbest |V '
— CBAMS

0 25 50 75 100 125 150 175 200

10001

800 |

1

Required traces count

epochs

Fig. 11. Comparing CNNp,s; and CBAMS.
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4.3 Add Dropout to the Model

Figure 11 shows that the performance of the model inserted with the attention module is
improved compared to the original model, and it is also more stable, but the convergence
speed is not as fast as the original model, and the index quickly drops to less than 100
after 125 epochs. At the same time, the trend of rapid overfitting of the original model
can be clearly seen in this figure.

In order to improve the above problems, this paper conducts an experiment of adding
a Dropout layer. The experiment finally selects p = 0.3 as the dropout rate added by
the improved model. The final experimental results are shown in Fig. 12. Although
the accuracy of the classification model is not an effective indicator to measure the
performance of the side channel model, the final performance is related to the accuracy
of the classification model. The accuracy on the test data set is shown in Table 2. The
table is a selection of epochs where each model has the best performance when the
rank drops to O during training, where the minimum number of traces is needed for
comparison.

Table 2. Acc of three models.

Model | NO CBAM/% | CBAMS/% | CBAM +
Dropout0.3/%

Acc 0.49 0.5 0.57

Figure 12 clearly shows that after adding Dropout to the model with the attention
module, the model converged significantly faster and showed better performance in
the subsequent epochs. The model with Dropout added is the model with the highest
accuracy.

| ‘ U\\lr |
o Iy
600 1 " ‘
‘ l ‘|\ \N ;nw’ | '\Iﬁ \

‘ | H
m— CBAMS

0 || s CBANIS-Drop0.3
0 28 50 75 100 125 150 175 200

1000 ¢

400

Required traces count

2001 N‘v"‘)’ﬁlﬂerul ,‘ r " \,{ ‘H

|
m— CNNbest ’

epochs

Fig. 12. Compare CNN ., the model with the CBAMS and the model with both the CBAMS
and the dropout.
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Table 3 clearly shows the performance comparison of the three, demonstrating the
improved convergence speed and performance results with CBAMS.

Table 3. Minimum number of traces required for different models.

Model NO CBAM CBAMS CBAMS + Dropout0.3
Number of traces 88 53 10
Epochs 140 187 129
Rank plot
= o=
s CBAMS+Drop0.3
200 |
150
-
=
£
100

S0

0 100 200 300 400 500 600

traces count

Fig. 13. Rank of three models.

In order to verify the three models more clearly, a comparison of the rank curves of
the “best trained” models is shown in Fig. 13, where it is clear that the model with both
the attention module and the Dropout layer outperforms the other two models.

Table 4. Results of different model attacks on ASCAD dataset.

Model CNN pest 18] SincNet [20] Zaid’s CNN [21] Ours
Number of traces 520 170 191 17

Table 4 shows that the model proposed in [8] requires 520 traces before the rank
drops to 0; the model proposed in [20] requires 170 traces for a successful attack on the
SincNet network; and the model proposed in [21] requires 191 traces for a successful
attack. In contrast, the improved model proposed in this paper requires only 10 traces
for a successful attack, and the model is more effective.
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5 Conclusion

Information security is the backing of national development. It is an important research
direction to organically integrate deep learning theory and technology with classical
side-channel attacks, and to explore new analysis methods and evaluation indicators.
At present, with the rapid development of science and technology, side-channel attacks
can find vulnerabilities in cryptographic algorithms, and can also prompt researchers to
improve the defense capabilities of cryptographic algorithms. The two are interdepen-
dent and jointly promote the development of cryptographic algorithms and information
security. This paper proposes an improved side-channel modeling attack method based
on the CNN p.s; network. By introducing the CBAM in the best position, the feature
extraction network is optimized to suppress noise features and improve the learning of
key features; adding a dropout layer can effectively alleviate the over-modeling. The
fitting phenomenon occurs, helping to reduce the number of power consumption traces
used by the attack. The experimental results show that the model proposed in this paper
can effectively improve the modeling side channel analysis method based on neural
network. Considering the power consumption traces collected in reality, due to hidden
countermeasures or device settings, an offset power consumption traces, that is, an asyn-
chronous power consumption traces, will be generated. This is the direction we need to
improve the network adaptation.
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