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Abstract. Public auditing checks the integrity of outsourced data via
random sampling and verifying sample data blocks. In practice, however,
users do not pay attention to the entire data set but focus on the integrity
of only the part of the data containing keywords of interest. Therefore,
the keyword-based auditing paradigm is proposed; it depends entirely on
the subjective choice or access habits, which makes it possible for mali-
cious storage servers to analyze the auditing frequency, or reduce redun-
dant backups. For government data, auditing frequency privacy leakage
or corruption of any file could be catastrophic. In this paper, we propose
a hidden frequency keyword-based auditing scheme for a smart govern-
ment named HFKA, which is compatible with distributed storage archi-
tecture. HFKA leverages a Bloom filter, which adjusts the false positive
rate to consider auditing files corresponding to specified keywords and
auditing random files obtained via fuzzy matching. To obtain privacy-
preserving fuzzy matching, HFKA constructs an index table embedded
with update times to retrieve a wide range of files to be audited. This
approach is secure against the replay attack and supports the index table
update through structure iteration instead of recalculation. HFKA pro-
vides storage robustness, privacy protection of hidden frequencies, and
data security. Additionally, HFKA can reduce audit computation over-
head by 32.6% compared to the probabilistic public auditing.

Keywords: Keyword-based auditing · Frequency hiding · Distributed
architecture · Smart government · Fuzzy matching

1 Introduction

With the emergence of information islands and the increasing volume of govern-
ment data, a smart government [1] is being developed to facilitate the integration
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of government management services, as evidenced by the realization of data shar-
ing between government departments at all levels. The cloud [2] is the available
intermediate carrier for data storage and sharing, and the public integrity audit-
ing [3,5–7,9,10] paradigm can be used to check the integrity of outsourced data
to support its availability. However, for massive and targeted government data,
the existing probabilistic public auditing (PPA) model directly applied to smart
government scenarios has the following two limitations. (i) The PPA model does
not support targeted auditing of government data. Specifically, civil servants in
different departments pay attention to the integrity of only those files about
their own departments rather than the entire outsourced database. The chal-
lenge information in the PPA model cannot completely cover the involved data,
and therefore, cannot complete integrity auditing of the specified data. (ii) PPA,
which evenly selects data to be audited, is not economical for government data
verification. In each audit, PPA consumes unnecessary computation resources
to check irrelevant randomly selected files in addition to the department files.
In summary, for smart government, the proposed public keyword-based auditing
(PKA) model [4] that determines the challenge information according to users’
wishes could be a better choice.

In the PKA model, the third-party auditor (TPA) periodically verifies the
users’ data of interest integrity by retrieving specific keywords and performing
verifications, thereby reducing the overall cost of auditing while satisfying their
needs. Unfortunately, the PKA model cannot fully meet the security require-
ments of data auditing and sharing in smart government. In general, various
departments’ keyword setting is a long-term and business-related process to a
certain extent, which results in the files selected for auditing being relatively
fixed. The probability of these kinds of unrelated files being audited is negli-
gible. In this case, malicious cloud servers can infer privacy contexts such as
department information or file types, based on the auditing frequency and may
even delete files that are rarely retrieved to save storage space. Undoubtedly, the
value of government data is enormous. Either a privacy leak or a file corruption
can expose a government to a major security crisis.

To ensure the security requirements of government data in integrity auditing,
we propose HFKA that combines PPA and PKA. Specifically, the contributions
of this work are as follows:

– We propose the first hidden frequency keyword-based auditing scheme for
a smart government, named HFKA. In HFKA, a Bloom filter is introduced
to achieve fuzzy matching between user-specified keywords and files to be
audited. According to the degree of confidentiality requirements, HFKA sets
Bloom filter modes with different fuzziness levels. The generated verifiable
challenge information can not only cover the files that users are interested
in but also randomly select some low-frequency auditing files. HFKA is well-
suited for scenarios where users perform differential targeted auditing on spe-
cific data in a shared dataset.

– We design an index table label (ITL) to support the implementation of fuzzy
matching that can protect keyword contents from storage servers and resist
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two lazy behaviors. The ITL aggregates the serial numbers of all files corre-
sponding to a defined keyword, so the aggregated value determines whether
a storage proof covers all the involved files in the challenge information. In
addition, a global variable indicating the update time is embedded in the ITL.
When a storage server does not perform update operations according to the
storage protocol, HFKA can identify replay attacks on proofs in a new round
of auditing.

– We demonstrate the storage robustness, privacy protection regarding audit-
ing frequency and data security of HFKA. The performance evaluation shows
that HFKA maintains the computation complexity and communication com-
plexity at O(1) in terms of the total number of files n during the integrity
auditing phase. Furthermore, we design a comparative experiment to observe
the auditing frequency of Type-A files (files corresponding to the predefined
high-frequency keywords from all extracted keywords) and Type-B files (files
corresponding to the other keywords). The experimental results show that it
is negligible to distinguish user-specified high-frequency files from randomly
selected low-frequency files. Our scheme achieves the auditing frequency hid-
ing and satisfies the security requirements of government data.

Organization. The remainder of this paper is organized as follows. Section 2
reviews the related work. Section 3 covers the system model, threat model and
definitions, and briefly introduces design goals of HFKA. Section 4 presents a
detailed construction of HFKA. Section 5 provides a security analysis, and Sect. 6
presents the performance evaluation. Finally, Sect. 7 concludes the paper and
gives directions for future work.

2 Related Work

Data integrity auditing enables users to verify the integrity of outsourced data.
In 2007, Juels et al. [6] proposed the proofs of retrievability (PoR) protocol to
enable a user to recover complete data from partial data provided by a server.
Ateniese et al. [5] introduced a probabilistic data possession (PDP) proof gener-
ation model that can ensure overall data integrity by randomly sampling certain
data. Considering the computation overhead and economic burden of users to
verify data in a cloud environment, Wang et al. [7] achieves public verifiability
by introducing a TPA based on the PoR model to complete auditing work. Then,
Wang et al. [9] implemented storage correctness assurance and error localization
based on a homomorphic token and an erasure-coded approach [8]. In [10], to
resist an honest but curious TPA with malicious behavior, based on a homo-
morphic linear authenticator with a masking technique, TPA was designed to
audit user outsourced data integrity without knowing the data content. Similarly,
masking was used to improve the system decentralization and storage efficiency
in [13–15]. To protect conditional identity privacy in medical data, Zhang et
al. [12] designed an identity-based aggregated signature to protect patients’ real
identity and used Ethereum blockchain to record TPA’s auditing results, thereby
preventing a dishonest TPA from performing malicious auditing behaviors. To
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address the authenticity of big data streams in untrusted environments, a novel
data structure, P-ATHAT, was constructed based on the BLS signature and
Merkle hash tree to achieve real-time authentication of data streams in [16].
Li et al. [17] proved that the security of P-ATHAT is unable to resist forgery
attacks on cloud servers. Shen et al. [19] focused on identity privacy using the
user’s biological data to verify their identity; the method can perform integrity
auditing under the condition that there is no hardware token to store the private
key. Zheng et al. [20] protected a user’s private key by updating it. To reduce the
burden of recalculating the private key, a TPA participates in generating part
of the private key. Zhou et al. [11] discussed the use of certificateless signatures
to avoid the management and computation problems of certificates in the case
of multicopy storage. Notably, these schemes all use the probabilistic auditing
model of PDP to audit the integrity of the user’s private data.

For integrity verification of shared data, different auditing models should be
selected depending on the specific scenario. Take smart government as an exam-
ple. Users in different departments have different concerns about outsourced
shared data, and the probabilistic auditing model cannot meet the individual
needs. In 2021, Gao et al. [4] proposed a keyword-based auditing paradigm
that determined the scope of audited data based on keywords selected by users.
In addition, a feasible keyword-based auditing scheme was achieved using the
privacy-preserving keyword-file index table designed by Ge et al. in [21] and
referred to the trapdoors in [22]. As a result of the index table design, which
adopted a linked-list structure with an index vector and generated an authen-
tication label for each keyword, storage space is saved and it is easier for the
user to detect malicious behavior of the cloud server based on the authentica-
tion label. The content in trapdoor in [22] is ciphertext, meaning that without
access to user’s encrypted key, no one can forge an efficient trapdoor or crack
the information included in the trapdoor. It also supported multiple keywords
submitted into a trapdoor.

However, since users have attention preferences for certain data, semihonest
cloud servers can infer user privacy by considering how often certain data are
audited. Therefore, we need a new paradigm to address the challenge of auditing
frequency privacy in this particular scenario. Bringer et al. [23] first used the
locality-sensitive hash (LSH) algorithm to allow fuzzy search. LSH has been
used in many schemes as a basic technique for fuzzing keywords [25–28]. Li et al.
[24] chose to use edit-distance to measure the similarity between keywords for
imprecise fuzzy search. Furthermore, the Bloom filter is a widely used fuzzy tool.
In 2021, Indra et al. [30] designed a two-dimensional bloom matrix to achieve
fast matching of similar words. Tong et al. [31] designed a twins Bloom filter
with LSH in 2022 that combined the above approaches. The coin has two sides,
and the fuzzy operations of the above schemes aim to narrow down the trapdoor
search and improve the keyword search accuracy, which is the opposite of our
intended effect of amplifying the hidden keyword frequency in the search results.
Only the application of a Bloom filter by Gervais et al. [32] to fuzzy user’s address
in the process of simple payment verification fits the intended purpose perfectly.
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There has recently been a high frequency of centralized storage accidents, but in
smart government, any corruption of shared data is unacceptable. Consequently,
distributed storage architecture is available. The distributed storage system,
Hyperledger Fabric, is an ideal architecture for data storage designed by Cachin
et al. [39]. Furthermore, Xu et al. [18] proved the feasibility of Hyperledger
Fabric architecture when discussing how to achieve distributed storage integrity
auditing. More privacy-preserving schemes are summarized in [40].

3 Preliminaries

3.1 System Model

On the basis of previous work [4], combined with the Hyperledger Fabric archi-
tecture1, HFKA introduces the Fabric certificate authority and optimizes the
traditional single cloud storage server into a scalable distributed storage struc-
ture. In addition, HFKA introduces a retrieval server to modularize the entity’s
functionality.

The system model of HFKA involves five entities as illustrated in Fig. 1:
Fabric Certificate Authority (FCA), User (U), Third-Party Auditor (T PA),
Retrieval Server (RS), Storage Node (SN ).

– Fabric Certificate Authority. The FCA is a trusted institution that generates
and determines digital certificates on the basis of public key infrastructure
(PKI). According to the auditing requirements of smart government, the FCA

Fig. 1. System model of HFKA

1 Hyperledger Fabric architecture is a scalable architectural design, an open inter-
face style, and pluggable components. It first introduced authority management into
the blockchain field, and its authority management function was completed by its
independent Fabric certificate authority module. Hyperledger Fabric provides an
important architectural reference for the design and implementation of distributed
platforms.
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mainly issues identity certificates of various entities and generates the signa-
ture key pairs for U .

– User. Each U is a collator and uploader of some government outsourced data.
According to the construction goal of the smart government platform, Us of
each department outsource files to a distributed storage network, involving
many SN s. To ensure the recoverability and confidentiality of outsourced
data, each U completes data preprocessing, such as redundancy and encryp-
tion. During the auditing phase, each U generates authenticators and index
information.

– Third-Party Auditor. The T PA performs audit tasks on behalf of Us, with
expertise and corresponding computing resources. The T PA completes the
fuzzy matching of the specified keywords, challenges the RS in the auditing
phase, and finally checks the validity of the proof information fed back by
SN s.

– Retrieval Server. The RS assists the T PA in completing the generation of the
audited files set, specifically including saving index information and retrieving
corresponding files according to the keyword trapdoor.

– Storage Node. Each SN is a storage unit in the distributed storage archi-
tecture that stores redundantly processed data blocks and calculates storage
proofs based on challenge information.

Here, we briefly describe the relationships among the various entities in the
system model of HFKA. To free up local storage space and realize data sharing,
the involved Us outsource the preprocessed (encrypted and redundantly pro-
cessed) data to a distributed storage architecture with multiple SN s. The T PA
is authorized to perform periodic integrity auditing tasks, aiming to determine
the integrity of outsourced data with the least amount of user-side communi-
cation and computational overhead. The RS assists SN s with completing the
serial number confirmation of the audited data during the challenge phase. The
FCA creates signature keys for Us and offers ID certificate management for each
entity to assist the security of distributed storage systems.

3.2 Threat Model

In the threat model, RS and U are assumed to be completely trusted, but SN
is considered to be semihonest and T PA is considered to be curious. The above
security assumptions are consistent with the situation of the interests in the
actual smart government.

Semihonest SN . The SN may detect data privacy by utilizing keyword-based
auditing or a replay storage proof with exited proof to reduce the computational
overhead of data updating. The details of the malicious behavior of a semihon-
est SN are as follows: (i) Frequency analysis attack. In the challenge generating
phase, the T PA and the RS select the auditing target data based on the search
trapdoor input by the U . U ’s subjectivity makes the auditing distribution con-
centrated in a small number of files. A curious SN can analyze the auditing
frequency of certain data and delete those data that are rarely audited to save
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storage space. Additionally, a curious SN can combine these data with external
information (such as U ’s department) to guess the value and types of files with
high auditing frequency. (ii) Replay attack. When the U updates the outsourced
data, a lazy SN does not perform the updating operation. The generation of
a storage proof is computed by the SN completely, even though the SN does
not generate storage proofs based on the challenge information. Because the
verified proof has the verification logic, it can pass the T PA’s verification. In
fact, the random number selection range of the T PA is also limited. Although
it is extremely unlikely that two groups of challenge information are exactly the
same, the probability becomes nonnegligible after multiple rounds of auditing. It
is more difficult to be distinguished in this case. Once the attack occurs, whether
due to hardware/software failures or to reduce computational costs, the behavior
violates cloud storage principles.

Curious T PA. A curious T PA does not initiate attacks, but will eavesdrop
on all kinds of private data. (iii) Privacy speculation. In HFKA, a curious T PA
may guess the type of outsourced files and further infer a U ’s identity based
on the keywords in the U ’s search trapdoor. As the number of auditing rounds
increases, the T PA learns more information. Based on the U ’s identity and the
keywords entered in the search trapdoor, the T PA can detect the general content
of the files. This level of confidentiality leakage is unacceptable for government
data.

Based on the above discussion, we provide three relevant definitions for the
security of HFKA.

Definition 2 (Storage Robustness.) Storage robustness means that HFKA
can resist SN ’s replay attack and frequency analysis attack.

Definition 3 (Privacy Protection.) Privacy protection means that not only
outsourced data context privacy, as well as keywords specified by user, index and
keyword-file relation privacy can be guaranteed.

Definition 4 (Data Security.) Data security means that any adversary can-
not detect original files in a direct or indirect manner, such as via brute force
attack or ciphertext-chosen attack.

3.3 Design Goals

To achieve a secure and efficient application of keyword-based auditing for smart
government, HFKA aims to achieve the following goals: (i) Privacy preserving.
HFKA hides information about files, keywords, keyword-file index table and
trapdoor using encryption and other processing methods so that SN s and RS
cannot obtain sensitive information about files. Even if the data are intercepted
by an adversary in the middle of network transmission, no information can be
leaked, even the correspondence between files and keywords. (ii) Even auditing.
Even auditing makes it impossible for adversaries to capture file auditing regu-
larity, which is an important feature to protect data integrity. For the traditional
PPA auditing model, the probabilistic auditing framework aims to achieve even
auditing. However, the considerable auditing overhead is unacceptable for smart
government due to its absolute evenness. HFKA overcomes the limitations of
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the above models and achieves relatively even auditing of the files that are and
are not of concern to U and is suitable for the smart government scenario. (iii)
Replay attack resistance. To further ensure data security, HFKA resists replay
attacks, focusing on resisting the replay of stored proofs of updated data. The
T PA can verify whether the storage proofs come from the updated data instead
of the old data, which prevents SN s from not updating the data to reduce com-
putational overhead or because of hardware/software failures. Meanwhile, the
calculation of the design for replay attack resistance is constant.

4 The Proposed Scheme

An FCA, multiple Us, a T PA, an RS and multiple SN s in the distributed
storage architecture are involved in HFKA. For readability, we show a U and an
SN that interact with other entities, as shown in Fig. 2.

Fig. 2. Procedure of HFKA

Setup phase.
(1) SysInit. Given a secure parameter λ, FCA chooses the public parameters

and issues identification certificates for all entities and generates signature key
pairs for U .

– Initialize the public parameters: choose two multiplicative cyclic groups of q-
order G1(g), G2(u); a bilinear pairing e : G1 ×G1 → G2; three hash functions
H1,H2,H3 : {0, 1}∗ → G1; secure hash functions SHAi : {0, 1}∗ → Z∗

q , i ∈
{1, 2, ...,R}; a symmetric encryption algorithm: Enc(·, key); a pseudo random
permutation PRP: π(·, key) and a pseudo random function PRF: f(·, key).

– Issue the identification certificates for Us, RS, SN s and T PA. There is an
example to illustrate the structure of each entity’s certificate as shown in
Fig. 3.
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Fig. 3. Certificate issued by FCA.

– Choose ssk ∈ Z∗
q randomly, then compute spk = gssk and send (ssk, spk)

to U .

Data Processing phase.
(2) AuthGen. U generates the encrypted data block set C and the authen-

ticator set φ.

– Divide the raw data set F into f1||f2||...||fn
2 and split the processed file into

s data blocks mij , where i ∈ [1, n], j ∈ [1, s].
– Compute the encrypted data block cij = Enc(mij , k0) and obtain the

encrypted data block set C = {cij}i∈[1,n],j∈[1,s], where k0 is the encryption
key.

– For each cij ∈ C, compute the data block authenticator

σij = [H1(IDi||j) · gcij ]ssk,

where IDi is the unique identifier of fi. Then, create authenticator set φ =
{σij}i∈[1,n],j∈[1,s].

– Send {C, φ} to certain SN s randomly and record these SN s’ certificates.

(3) ExtractKW. Based on F , U generates the keyword set W and the index
vector set V .

– Extract top-K ranked keywords {ωt}t=1,2,...,K from the files using the time fre-
quency inverse document frequency3 text keyword extraction method. Then,
create the keyword set W = {ωt}t=1,2,...,K.

2 The Reed Solomon erase-code technique is chosen to redundantly segment F , and
its security and efficiency have been widely proven.

3 Time frequency inverse document frequency is a keyword extraction technology that
sorts all words according to the frequency of each word in the document, which is
used to extract the top-K words as the keywords of a file in HFKA.
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– For ωt, set up an n-bit binary array as the index vector vωt
and initialize

vωt
= 0. For each file fi ∈ F , set vωt

[i] = 1 if fi contains the keyword ωt (e.g.,
vωt

= {0, 1, 0, 0, ..., 0} when only the file f2 contains ωt). Create the index
vector set V = {vω1 , vω2 , ..., vωK}.

(4) IndexGen. Based on (W,V ), U generates the encrypted index table IRS

and challenge generating auxiliary index IT PA.

– For ωt, compute the index address fωt
= f(ωt, k1) via PRF and then update

the original index vector vωt
to vfωt

, where k1 is the key of the PRF imple-
mentation.

– Compute the encrypted permutation πωt
= π(vfωt

, k2) via PRP, where k2 is
the key of the PRP implementation.

– Compute the encrypted index vector eωt
= vfωt

⊕πωt
to facilitate the restora-

tion of the original index vector.
– Create a set Sωt

= ∅ to record the subscripts of files containing ωt and add i
to Sωt

if fi contains ωt. Then, compute the index table label

Δωt,j = [H2(Z)−1 · H3(fωt
||j) ·

∏

i∈Sωt

(H1(IDi||j)−1)]ssk,

where Z is the number of file updates with an initial value of 1. Let Δωt
=

{Δωt,j}j=1,2,...,S be the ITL set.
– Set the encrypted index table IRS = {(fωt

, eωt
,Δωt

)}ωt∈W and challenge
generating auxiliary index IT PA = {(fωt

, πωt
)}ωt∈W . Send IRS and IT PA to

RS and T PA, respectively.

(5) TrapdoorGen. Based on the searched keyword ω′, U generates the
search trapdoor Tω′ .

– Compute the search index address fω′ = f(ω′, k1) and the encrypted permu-
tation πω′ = π(vfω′ , k2). Set the search trapdoor Tω′ = (fω′ , πω′).

Challenge Generating phase.
(6) InitBF. T PA initiates the Bloom filter and sets its parameters tuple

BF .

– Compute Len = ln 2·|Tω′ |
R . Create a Len-bit array B and make B[i] = 0, where

i ∈ [0, Len − 1]. Build BF = (B, {SHAi}i=1,2,...,R).

(7) FuzzyTDGen. Based on Tω′ and IT PA, T PA updates BF and generates
the fuzzy search trapdoor FTω. The pseudo-code is shown in Algorithm 1.

– When Tω′ is verified to be legitimate with IT PA, extract the index address
fω′ from Tω′ and then update BF : B[SHAi(fω′)mod Len]i=1,2,...,R = 1.

– Create a set Fω′ and then take the all files’ index address as the input of BF .
Write fω′′ into Fω′ if B[SHAi(fω′′)mod Len] = 1.

– Search πω′′ with fω′′ from IT PA, and set Πω′ = {πω′′}. Let FTω = (Fω′ ,Πω′)
be the fuzzy search trapdoor.
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Algorithm 1: FuzzyTDGen
Input: Bloom filter data tuple BF , search trapdoor Tω′ , challenge

generating auxiliary index IT PA;
Output: Fuzzy search trapdoor FTω;

1 for ∃fω′ ∈ {Tω′} is not checked do
2 search (fω, πω) according to fω′ ;
3 if πω == πω′ then
4 continue;

5 else
6 return “The search trapdoor

from U
7 exits problem!”;

8 for each i ∈ (0,R) do
9 for each fω′ ∈ {Tω′} do

10 data = SHAi(fω′);
11 B[datamod Len] = 1;

12 for each fωi
∈ IT PA do

13 for j ∈ (0,R) do
14 data′ = SHAj(fωi

);
15 if B[data′ mod Len] == 1

then
16 continue;

17 else
18 break;

19 add fωi
into Fω′ , πωi

into Πω′ ;

20 return FTω = (Fω′ ,Πω′);

(8) ChalGen. Based on FTω, T PA generates the challenge information
Chal.

– Randomly choose a c-element subset Q = {q1, q2, ..., qc} ⊆ [1, s] and vj ∈ Z∗
q

for each element of Q.
– Generate Chal = (FTω, Q, {v1, v2, ..., vj}) and send it to RS and SN .

Integrity Auditing phase.
(9) Retrieval. Based on Chal and IRS , RS selects the challenged file set

Sωt
and corresponding index table label Δωt

.

– Take fω′′ from FTω and retrieve fωt
= fω′′ in IRS . Then, remove the eωt

and
Δωt

corresponding to fωt
from IRS and remove the πω′′ corresponding to fω′′

from FTω.
– Compute vωt

= eωt
⊕ πω′′.

– Initiate the challenged file set Sωt
= ∅. When vωt

[i] = 1, i ∈ [1, n], write i into
Sωt

and send (Sωt
,Δωt

) to SN .

(10) ProofGen. Based on Chal, Sωt
, Δωt

, C and φ, SN generates the storage
proof Prf .

– With Chal = (FTω, Q, {v1, v2, ..., vj}) from T PA, Sωt
,Δωt

from RS and
C = {cij}, φ = {σij} from U , compute

T =
∏

i∈Sωt

∏

j∈Q

σ
vj

ij ·
∏

j∈Q

Δ
vj

ωt,j
,

μ =
∑

i∈Sωt

∑

j∈Q

cij · vj ,

and then set Prf = (T, μ).
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(11) VerifyProof. Based on Chal and Prf , T PA verifies the validity of
Prf .

– Verify whether Prf is valid via the following equation:

e(T, g) ?= e(gμ ·
∏

j∈Q

[H2(Z)−1 · H3(fωt
||j)]vj , spk).

5 Security Analysis

Theorem 1. HFKA achieves storage robustness, i.e., semihonest storage nodes
are unable to launch successful auditing frequency analysis attacks and auditing
proof replay attacks using stored data.

Proof. We design two games to prove why HFKA can resist the above two
attacks.

Game 1. We assume that adversary M1, a malicious SN that proactively
counts the frequency of stored files being audited and attempts to delete files
with a minimal auditing frequency to free storage space for other users. M is
the number of files stored in M1 for a U , A is the number of files selected
by U in each round, and R is the number of auditing rounds. In the original
keyword-based auditing paradigm, as the number of auditing rounds increases,
M1 can calculate the probability of each file being audited based on the law
of large numbers, i.e., knowing U ’s preference of files as shown in the following
equation: Pi = lim

R→∞

∑R
j=1 Xij

A·R , where Xij = 1 if fi is selected in the j-th round,
else Xij = 0. Given the calculated Pi of each file being audited, M1 can delete
files with Pi close to 0 and hardly be detected by the U . In HFKA, as a result
of the Bloom filter, additional A · p files are chosen randomly in each round,
where p is the false positive rate of the Bloom filter. As a result, the files not
selected by U have a probability of A·p

M−A of being selected by the Bloom filter
in each round. The probability of Pi analyzed by M1 becomes as follows: Pi =

lim
R→∞

∑R
j=1 Xij

A(1+p)·R + A·p
M−A = P ′

i + A·p
M−A , where Xij = 1 if fi is selected in j-th round,

else Xij = 0. From the above equation, we can see that even if the probability of
a file being selected by a U tends toward 0, the probability of it being audited is
still not less than A·p

M−A . It is worthwhile for SN to delete U ’s data with A·p·100
M−A %

risk.
Game 2. We assume that the adversary M2 is a lazy SN . It does not

perform the update operation to save its own computing resources when U
requests a data update. Furthermore, it attempts to use the original data to
pass the auditing verification. We analyze whether M2 can forge proof with
nonupdated data according to the auditing verification formula as follows:
e(T, g) = e(gμ ·

∏
j∈Q

[H2(Z)−1 · H3(fωt
||j)]vj , spk). In this formula, except for the

T and μ provided by M2, Z, spk is public, and fωt
and (j, vj)j∈Q are generated

by T PA itself. However, only T and μ are computed under data block cij , which
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suggests that M2 can pass the verification with nonupdated data. We provide
more details to support the following analysis: T =

∏
i∈Sωt

∏
j∈Q

σ
vj

ij ·
∏

j∈Q

Δ
vj

ωt,j
, σij =

[H1(IDi||j) · gcij ]ssk, Δωt,j = [H2(Z)−1 · H3(fωt
||j) ·

∏
i∈Sωt

(H1(IDi||j)−1)]ssk,

μ =
∑

i∈Sωt

∑
j∈Q

cij · vj . Ignoring challenge information (j, vj)j∈Q and challenged

file set Sωt
= {i}, μ is related to only cij , but T also implies Z. We make

Z ′ be M2’s update times; then, the system updates data z times after M2

does not perform an update operation. That is, the global number of updates
is Z = Z ′ + z. The probability of H(Z) = H(Z ′) can be ignored due to the
anticollision property of the hash function. �

Theorem 2. HFKA achieves privacy protection, i.e., no entities other than
users can obtain specific content about outsourced data or users through the
Bloom filter and the index table while executing auditing tasks.

Proof. We analyze how HFKA achieves privacy protection to resist a semihonest
SN or a curious T PA.

There are two strategies to undermine U ’s privacy for a semihonest SN : (i)
It deciphers ωt and then infers the file’s type and even the content from ωt. (ii)
It does not decipher ωt but speculates the importance of files based on the fre-
quency of selected fωt

and the audited files in each round. For the first strategy,
HFKA adopts PRF to protect ωt. Only U knows its keyword ωt; other entities
know only the keyword index address: fωt

= f(ωt, k1). Because of the backward
unpredictability of PRF, SN cannot invert ωt by any subsequence of fωt

. For
the second strategy, HFKA resists SN ’s privacy attacks in two aspects. Before
formally analyzing the measures, we show how SN violates U ’s privacy. By ask-
ing the T PA or RS, the SN can easily obtain fωs in the auditing trapdoor
of each round. After accumulating enough rounds of data, SN can easily guess
the documents corresponding to certain high-frequency keywords, as well as the
connections between keywords. Two measures are taken to cope with such a sit-
uation, firstly using the Bloom filter to make the mapping relationships more
ambiguous for each round, and secondly adopting distributed storage so that the
audit information received for a certain SN is not complete and the relation-
ships between keywords and documents and between keywords and keywords
are further weakened. Hence, HFKA blocks the adversary attack from the fre-
quency distribution. T PA faces the same difficulty regarding fωt

→ ωt. When
users are anonymous and PRF is backward unpredictable, a curious T PA can
do nothing. �

Theorem 3. HFKA achieves data security, which means that no external adver-
sary can obtain any details about the data in the event that outsourced data are
intercepted in transit.

Proof. In the whole process of information interaction, the data involved can be
classified as follows: keyword searchable data (index address fωt

, search vector
πωt

, encrypted index vector eωt
, ITL Δωt,j), auditing information (encrypted
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data cij and data authenticator σij). The security of fωt
is based on PRF, and the

security of πωt
is based on PRP. PRF is indistinguishable and its proof is detailed

in [36]; that is, in the face of an attack, the attacker cannot determine whether
the same PRF function is selected, i.e., the attacker cannot further guess the
function input. PRP also achieves indiscernibility using computationally difficult
mathematical problems. Since eωt

is designed to recover the original index vector
vωt

, its security is off the table. The security of cij is based on AES-128. AES
can resist differential cryptanalysis, linear cryptanalysis and other basic attacks;
more details are provided in [38]. Moreover, AES with a 128-bit key has the same
safety strength as RSA-3072 and ECC-256, which is estimated to be available
until 2040. The security of σij and Δωt,j is based on a discrete logarithm problem
(DLP) [37], which is stated as follows: For a, g ∈ G, ∃ b such that gb = a; finding
such b is computationally complex, where G is a cyclic group. For σij , M must
solve the DLP twice to obtain the data block cij , which is still protected by
AES-128. �

6 Performance Evaluation

In this section, we evaluate the performance of HFKA on a Lenovo desktop com-
puter equipped with an Intel Core i5 CPU and 8 GB of RAM. All cryptographic
operations in HFKA, such as PRP, PRF, Bloom filter and bilinear pairing, are
performed using the PBC library. We conduct detailed experiments to demon-
strate the unique function of HFKA by balancing the auditing distribution to
hide the files’ audited frequency.

6.1 Auditing Distribution

The Bloom filter plays an important role in HFKA, which hides the frequency
distribution properties of keyword-based auditing. We elaborate how it plays in
HFKA from experiments in three perspectives. Experiment 1 investigates the
factors influencing the false positive rate of the Bloom filter and finds the most
suitable parameters of it to assist the implementation of HFKA. Experiment
2 shows the results of implementing the frequency hiding function of HFKA.
Experiment 3 further improves the fuzzing capability of the Bloom filter. It is
assumed that the distribution of K keywords in n files is uniform. That is, the
distribution of keywords can represent the auditing distribution of files.

Based on the original introduction of the Bloom filter in [34], we know that
its false positive rate p is equal to (1 − e

−k·m
n )k, where k is the number of hash

functions, m is the size of the input, and n is the length of the BF array. In
Experiment 1, we construct the Bloom filter and control its false positive rate
by adjusting the parameters. Figure 4 shows the variation in the false positive
rate with different parameters. Comparing the four small plots (a), (b), (c), (d)
in Fig. 4, it was found that the larger the input size is, the larger the false positive
rate is. For any of the small plots, we found that both of the number of hash
functions and the size of the BF array are inversely proportional to the false
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Fig. 4. Effect of array length on false positive rate of BF

positive rate. Here, we set the size of each keyword index address to 10 B, so an
input size of 60 B means that the user selects 6 keywords in a search trapdoor.
According to the fuzzy requirements of HFKA and the specific experimental
data, it is most suitable when the input size is between 90 B and 110 B, the
array length is 1000 bits, and the hash function number is 3 so that the false
positive rate can be approximately 55%.

In Experiment 2, we use keywords from the simulated dataset to perform
fuzzy matching experiments. We select several keywords to update the Bloom
filter in each round, and then input all keywords for matching, and then finally
collect these matching results. The total number of keywords is 50, and 9 or
10 keywords are chosen in each round. The false positive rate means that there
would be 4 or 5 additional chosen keywords. Figure 5 shows the distribution
of the selected keywords after 20 rounds of experiments. Horizontally, the false
positive rate of the Bloom filter in each round can be seen, with red • being the
keywords selected by U and blue ✖ being the fuzzy keywords selected by the
Bloom filter. Vertically, the frequency of each keyword that was selected can be
seen. The more red • there are in a column, the higher probability of the keyword
would be selected by U , such as ω10, ω24, while blue ✖ balances the probability
of the other keywords being selected, such as ω20, ω40. The frequency of each
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Fig. 5. The keyword distribution of Exper-
iment 2

Fig. 6. The use of salt-hashing BF in
Experiment 3

Fig. 7. The auditing frequency comparison between HFKA and PPA

keyword is counted and compared with traditional auditing in Fig. 7. HFKA
represents high and low frequencies, which are evenly distributed in itself, while
PPA are all evenly distributed. Moreover, we discuss the total auditing overhead.
To guarantee detection confidence of 99% probability, TPA needs to select 460
files from 10,000 files randomly in the PPA model. However, in the PKA model
[4], the user is only concerned about 2% probability of the total files, i.e., select
200 files from 10,000 files. In HFKA, due to the 55% false positive of the Bloom
filter, there are additional 110 files to be selected, i.e., a total of 310 files are
selected in each round. Therefore, HFKA audits 150 files less than PPA each
time, which saves 32.6% probability of auditing overhead.

In Experiment 3, we fix the configuration of the Bloom filter and the search
trapdoor, but add different salt to the hash functions in each round. We adopt
the control method to verify the efficacy of salted hash functions. To avoid
the coincidence of one experimental group, we set three parallel experimental
groups, where the 1st, 2nd and 3rd groups have different Bloom filter parameter
settings. As shown in the Fig. 6, the red • in each group indicates the input of
the original Bloom filter, while the dark-blue • indicates the input of salt-added
Bloom filter, which must be consistent with the red •. Correspondingly, the
light-blue ✖ indicates the keywords fuzzied by the original Bloom filter, while
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the purple ✖ is the keyword fuzzied by the salt-added Bloom filter. From the
results of the above experimental groups, it can be seen that even for the exact
same input, different outputs are obtained after using the salting method.

6.2 Computation Overhead

Table 1 shows the symbols used to represent these operations. There are mainly
calculations in HFKA: hash operation, exponential operation, multiplication
operation and bilinear pairing operation. We ignore the XOR, PRF, PRP, addi-
tion operations, which have minimal computational cost.

Table 1. Notation description

Notation Operation

HASHG1 Map a value to G1

SHAZ∗
q

Map a value to Z∗
q with a secure hash algorithm

EXPG1 Exponentiation operation in G1

MULG1 Multiplication operation in G1

PAIR Bilinear pairing with G1, G2

Table 2 shows the concrete operations of involved data in each phase of
HFKA. The data preprocessing phase includes data authenticator generation
and index label generation. The challenge generation phase includes Bloom fil-
ter updating and fuzzy matching. The integrity auditing phase includes proof
generation and verification. Compared to the method of Gao et al. [4], HFKA
only increases the Bloom filter updating and the fuzzy matching process, which
increase R·(|Fω′ |+K) HMAC operations in each round of auditing. We assess the
run time of SHA operations with 128-bit keys and 1024 bytes input in Python,
and the experimental results show that it is only 0.03 ms, which is negligible due
to the whole system.

Table 2. Computation overhead

Processing phase Computation overhead

Authenticator generation n · s · (HASHG1 +MULG1 + EXPG1)

ITL generation K · s · [(|Sωt + 2|)HASHG1 + (|Sωt |+ 1)MULG1 + EXPG1 ]

BF updating R · |Fω′ | · SHAZ∗
q

Fuzzy matching K · R · SHAZ∗
q

Proof generation c · (2 · |Sωt |+ 1) · EXPG1 + c · |Sωt | ·MULG1

Proof verification 2 · PAIR+ (c+ 1) ·MULG1 + (c+ 1) · EXPG1 + 2c ·HASHG1
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6.3 Storage Overhead

Here, we consider the storage overhead in HFKA. Due to the involvement of the
keyword-file index, HFKA has some additional storage overhead compared to
PPA. We list the additional data structures and the storage space they consume
as the number of files sampled increases in Table 3. According to the experimental
results, when there are 100 files, RS requires only 0.37 MB of space to store IRS ,
and T PA requires only 0.368 MB of space. When there are 1000 files, these values
become 16.64 MB and 16.62 MB. Even when the number of files increases to
10,000, the size of IRS is only 466.51 MB, and the size of IT PA is 466.31 MB.
Notably, the size of a Bloom filter with a 55% false positive rate is always 1K
bits, as will be elaborated in Sect. 6.1. Furthermore, the size of IRS and IT PA
are related to the number of files. In fact, IRS and IT PA are directly related to
the number of keywords, and the number of files affects the number of keywords.

Table 3. Storage overhead

The number of files IRS storage IT PA storage Bloom filter (55%)

100 0.37 MB 0.368 MB 1000 bit
1000 16.64 MB 16.62 MB 1000 bit
10,000 466.51 MB 466.31 MB 1000 bit

7 Conclusion and Future Work

In this paper, we propose a keyword-based auditing scheme, HFKA, to address
the auditing frequency leakage problem for a smart government. We utilize the
Bloom filter to achieve a specified keyword fuzzy matching. Meanwhile, we design
an index table label to resist replay attacks by lazy server nodes and generate
storage proofs without exposing any keyword-file privacy. We also separate the
retrieval work from the storage work using a special retrieval server to improve
the retrieval efficiency, reduce the storage cost and computing cost of the storage
node, and further maintain the keyword privacy. Finally, the security of the
scheme is proven by rigorous security analysis, and the feasibility of the scheme
is proven by performance evaluation.

In future work, we will examine the security protection and economic via-
bility of the keyword-based auditing paradigm in real world applications and
strengthen the integration of the auditing model and smart government. First,
in order to allow batch auditing and dynamic auditing of various storage nodes,
we will enhance the data label construction of outsourced data. Second, we will
attempt to store massively outsourced and more finely partitioned data via a
directed acyclic graph (DAG). The difficulties of implementing smart govern-
ment affairs will then be examined, and we will work to overcome security issues
and performance bottlenecks in data sharing and integrity auditing.
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