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Abstract. The data analysis in the process of vehicle collaboration for
the Internet of Vehicles (IoV) environment improves the driving experi-
ence and service quality. However, the privacy issue is becoming one of
the problems of obstructing the development of data sharing among vehi-
cles. To overcome the disadvantage, in this work, we propose a privacy-
preserving data sharing scheme based on federated learning by the col-
laboration of participants, which can resist gradient leakage, poisoning
attacks, etc. Firstly, the gradient data is encrypted by random mask-
ing to protect the privacy of training data. Then, the Pearson corre-
lation coefficient is utilized to distinguish the correctness of the model
parameters uploaded from the vehicle at uplink. Finally, the proposed
scheme can verify the correctness of the global model distributed from AS
at downlink using the Lagrange interpolation The experimental results
show that the proposed privacy-preserving data sharing scheme provides
higher learning accuracy by eliminating malicious gradients.

Keywords: Federated learning · Privacy-preserving · IoV · Data
sharing

1 Introduction

With the rapid development of intelligent transportation system, new computing
methods have been widely deployed on Internet of Vehicles. In particular, the
integration of IoV and artificial intelligence has led to a trend of sharing data
among vehicles and infrastructure. The shared data usually includes trajectories,
surrounding information and operation information, etc. To improve the driving
experience and service quality, vehicles could utilize the shared data. For exam-
ple, vehicles could generate a region traffic flow model according to the shared
data. However, in the process of sharing data, the data privacy of the vehicles
will be damaged, which may lead to serious consequences.

In the privacy-sensitive scenario of the IoV, to avoid privacy disclosure caused
by sharing data, the federated learning(FL) [1,2] mechanism is applied to the
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IoV. The existing achievements [3–5] have well implemented the scheme that
the vehicle privacy data is not sent directly in the public channel. However, as
previous work [6] had shown that, the private information of vehicle can also be
leaked from the gradient. Considering such security vulnerabilities, if a aggre-
gation server and other entities obtain sufficient gradients, the privacy data(e.g.
vehicle position information and trajectories information) of participants will
be seriously threatened. Another concern is that the gradient may come from
malicious participants. On the one hand, the malicious vehicles upload incorrect
gradients to lead to a decline in the accuracy of the model, and even make the
final global model unavailable. On the other hand, the AS may forge the aggre-
gation model parameters, if the participant cannot recognize the modified global
model, the entire FL process will be destroyed, even leading to a serious threat
to traffic safety.

In this paper, we address the data privacy leakage issue by integrating feder-
ated learning into IoV, on this basis, we use masks to encrypt the model gradient
and remove the incorrect gradients without knowing the gradient. Finally we ver-
ify the correctness of the global model. The contributions of the paper can be
summarized as follows.

• The proposed scheme divides the vehicles into multiple groups containing
an appropriate number of vehicles, and vehicles in the same group use the
negotiated mask to encrypt the model gradient. Moreover, secret share is
adopt to recover the mask of leaved vehicles.

• The proposed scheme distinguishs the correctness of gradients by using the
Pearson correlation coefficient when receiving the uploaded gradients from
vehicle. Then the Lagrange interpolation is adopted to verify the global aggre-
gation result at the downlink from AS to RSU.

• The convolution neural network (CNN) with the MNIST dataset is uesed to
evaluate the performance of the proposed scheme. The experimental results
demonstrate that the proposed scheme shows a higher accuracy with the
acceptable overhead for the FL participants.

The remainder of the paper is organized as follows. Section 2 presents related
work and Sect. 3 presents background knowledge include the system model, cryp-
tography primitives and federated learning. Section 4 introduces the mechanism
details. Analysis including correctness, privacy and performance evaluation are
presented in Sect. 5. Section 6 concludes the paper.

2 Related Work

In recent years, given the rising popularity of IoV [7–10], the data privacy of
vehicles has increasingly become the focus of attention. Several studies have
been proposed to solve related issues.

Traditional privacy protection schemes mainly combined cryptography to
encrypt or hide the collected data and send it to the center. Hui Li et al.
[11] designed an Architecture for identity and location privacy protection in
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VANET base on k -anonymity and dynamic threshold encryption. Han et al. [12]
designed a vehicle privacy-preserving algorithm based on a local differential pri-
vacy to minimize the possibility of exposing the regional semantic privacy of the
k-location set. Ma et al. [13] performed homomorphic encryption on the sensi-
tive part of the data and keep the ciphertext at the blockchain to preserve IoV
data privacy. Zhang et al. [14] encrypted traffic flow data by BGN homomor-
phic encryption to protect the travel direction when arriving at T-junctions or
crossroads.

Although these approaches do solve the issue of data privacy to a certain
extent, still have two issues: (1) based on differential privacy, the noise will affect
the availability of data. Based on homomorphic encryption, the computational
overhead is not suitable in IoV. (2) a large amount of collected data needs to be
sent, which will lead to the potential threat of leaking sensitive data and high
network bandwidth usage.

FL, as a distributed artificial intelligence approach, allows participant trains
local models on local privacy database and then the center aggregates the local
model to construct a global model. Compared with traditional privacy protection
schemes, FL could enhance communication efficiency and privacy preservation
[15]. Lu et al. [16] designed a secure data sharing scheme based on asynchronous
FL and blockchain, which could improve efficiency. A hierarchical FL algorithm
with a multi-leader and multi-player game for knowledge sharing is proposed in
[17]. Wu et al. [18] proposed a Traffic-Aware FL framework to enhance motion
control of vehicles. Although the above FL-based schemes avoid directly upload-
ing a large amount of privacy data, the uploaded gradient is not protected, and
the privacy data is still likely to be exposed [6].

To prevent the leaking of privacy from the gradient, some studies are pro-
posed. Phong et al. [19] bridged deep learning and homomorphic encryption to
ensure that the server can not get user privacy and the accuracy is kept intact.
Liu et al. [20] presented a privacy-enhanced FL (PEFL) framework by using
homomorphic encryption, in process of FL, In the whole process, the gradient
is only processed in the form of ciphertext. Although homomorphic encryption
is useful for privacy-preserving, it is not suitable for IoV as the time cost. The
scheme of adding mask to gradient was proposed in [21], two types of masks
would be added in gradient, the participant only reply one mask recover request
from the center, which Effectively protects privacy gradient. Further, a more
efficient scheme [22] based on [21] is proposed, which only needs logarithmic
overhead. To verify global aggregation result in FL, Fu et al. [23] designed a
verifiable FL scheme by using Lagrange interpolation. Guo et al. [24] proposed
a verifiable aggregation scheme for FL by using Linear homomorphic hash and
Cryptographic commitment. To achieve the privacy-preserving, we propose a
privacy-enhanced federated learning scheme based on gradient encryption by
the mask.
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Fig. 1. Proposed Federated Learning Framework in IoV

3 Preliminaries

3.1 System Model

As shown in Fig. 1, the proposed scheme consists of some vehicles, some Roadside
Units(RSUs) and one Aggregation Server(AS).

The vehicle executes federated learning to generate the local gradient on local
privacy data set. During the whole process, the vehicle transmits the gradient
instead of privacy data. RSU is a kind of wireless infrastructure, as relay node,
RSU is responsible for organizing vehicles to execute the mask agreement and
checking the correctness of received model parameters. AS is responsible for
constructing a global model. In the proposed scheme, AS may return forged
global model parameters to other participants.

3.2 Cryptography Block

• Hard problem Let G denotes a cyclic group, g ∈ G denotes a generator
of group G, and q is the prime order of group G. Then the computational
hard problems named Discrete Logarithm Problem (DLP), Decisional Diffie
Hellman Problem (DDHP),Computational Diffie-Hellman Problem(CDHP)
can be described as follows.
(1) DLP: Given one tuple {P, Q}(P,Q ∈ G), where Q = P x, x ∈ Z

∗
q ,

the advantage for any probabilistic polynomial time (PPT) adversary to
calculate x is negligible.

(2) CDHP: Given one tuple {g, gx, gy ∈ G}, where x, y ∈ Z
∗
q , the advantage

for any PPT adversary to calculate gxy ∈ G is negligible.
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(3) DDHP: Given two tuples {g, gx, gy, gxy ∈ G} and {g, gx, gy, gz ∈ G},
where x, y, z ∈ Z

∗
q , any PPT adversary is decisional hard to distinguish

the two tuples.
• Secret share Shamir secret share is a threshold secret sharing scheme. The

threshold secret sharing scheme first constructs a t−1 degree polynomial and
takes secret k as a constant term of the polynomial

fk(x) = k +
t−1∑

j=1

ajx
j , aj ∈ GF (q) (1)

where q is a big prime number and GF (∗) is a finite field. Thus, according to
formula 1, fk(0) is the secret k. Selecting n elements {xi ∈ GF (q), 1 ≤ i ≤ n}
and feeding xi into fk(x) to get fk(xi), arbitrary t {(xi, f(xi))} could recover
the t − 1 degree polynomial fk(x) as follows

fk(x) =
t∑

i=1

fk(xi)
t∏

j=1,j �=i

x − xi

xi − xj
(2)

Therefore, secret k is secure if malicious participants can not obtain t or more
sub-secrets {xi, fk(xi)}.

3.3 Federated Learning

We leverage federated learning to protect the privacy data of vehicle. Assume
there are N vehicles in proposed scheme, Vehicle vi(0 ≤ i ≤ N − 1) par-
ticipates in the FL and cooperatively trains a model M on private data set
Di = {(xj , yj), 0 ≤ j ≤ di − 1}, where di is the size of Di A loss function quan-
tifies the difference between estimated values and real values of samples in Di,
defined as follows:

Ei(M) =
1
di

d−1∑

j=0

L(M, xj , yj) (3)

where L(M, xj , yj) is the loss function on data sample (xj , yj), and yj is the
label of xj . The global loss function E(M) could be calculated.

E(M) =
1
N

N−1∑

i=0

Ei(M) (4)

In FL, each vehicle trains the model on the training set by a back propagation
algorithm, and gets the private gradient ωi = ∂Ei

∂M . Vehicles and RSUs syn-
chronously upload gradients to the AS to aggregate. Then AS returns the result
to RSUs, vehicles download the result.
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4 The Proposed Scheme

We assume that most vehicles are honest, but a small number of malicious gra-
dients generated by malicious vehicles will still affect the aggregation results
of FL. In the proposed scheme, RSUs could check the correctness of gradients
uploaded by local region vehicles and eliminate malicious gradients. AS may
forge global aggregation result, to verify the correctness of the global aggrega-
tion result, RSUs would perform the Lagrange interpolation function on the local
region gradients. RSUs are regarded as honest participants, but during the whole
process, all RSUs also can not learn vehicles’ privacy data and gradients. The
CA is used to generate public parameters for the registered vehicles and RSUs.
The vehicle generates a private-public key pair which are used for negotiating
masks respectively, the RSU generates a private-public key pair which is used for
negotiating a common integer sequence as the Lagrange interpolation function
points.

4.1 Initialization

In this phase, CA initializes all necessary system parameters and publishs the
parameters to participants. RSU calculates common sequence as the necessity
of verifying global parameter.

Algorithm 1: sequence generation algorithm
Result: Three integer sequences SeqA, SeqB, SeqS

1 Initialization: R = RSU0, RSU1, · · · , RSUK−1 ;
2 for RSUi = RSU0 → RSUK−1 do
3 ri ← random select integer in Zq ;
4 broadcast Zi = gri to R/RSUi ;
5 calculate Xi = (

Zi+1
Zi−1

)ri ;
6 broadcast Xi to R/RSUi ;
7 calculate ComKey = (Zi−1)

nri · Xn−1
i · Xn−2

i+1 · · · Xi−2 ;
8 broadcast ti = Enc(ComKey, 1) to R/RSUi ;
9 T = {t0, t1, · · · , tK−1}/{ti} ;

10 for t ∈ T do
11 if Dec(ComKey, t) != 1 then
12 abort
13 end
14 end
15 SeqA, SeqB, SeqS = h1(ComKey||1), h1(ComKey||2), h2(ComKey||3) ;
16 h1(∗) or h2(∗): map ∗ to a integer sequence
17 end

The CA generates a cyclic group G with prime order q, chooses randomly a
group generator g as a public parameter which is used for calculating vehicles’
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agreement key and RSUs’ public key. The CA also generates m+1 positive inte-
ger P = {p, p1, p2, · · · , pm}, where gcd(pi, pj) = 1, (i �= j), 1 ≤ i, j ≤ m and p is
large enough. Vehicles and RSUs receive public parameters PP = {G, q, g, P} to
generate a private-public key, for example, vehicle vi chooses SKi ∈ Z

∗
q and cal-

culates PKz,i = gSKi , RSU gets the private-public pair with the same operations
with vehicle.

RSUs should calculate three common sequences SeqA, SeqB and SeqS as
Algorithm 1 which are confidential to other entities to achieve the verifiability
of the aggregated result from AS. Let R = {RSU0, RSU1, · · · , RSUK−1},

Algorithm 2: FL algorithm
Output: global modelω

1 Initialization groups = {g0, g1, · · · , gng−1} in each RSU ;
2 R = {RSU0, RSU1, · · · , RSUK−1} ;
3 for each local epoch do
4 for group ∈ groups in parallel do
5 for vi ∈ group in parallel do
6 learning local model ωi = ωi − α · ∇Ei(M, x, y) ;
7 upload ω

(M)
k,z,i = ωi + m

(R)
k,z,i + m

(V )
i to RSUk ;

8 end
9 end

10 for each RSUk ∈ R do
11 {ωk} ← eliminate incorrect gradients ;
12 upoad CRT(*) ← Lagrange Interpolation on ωk ;
13 end
14 distribute ω(G) ← AS aggregates CRT(*) from RSUs ;
15 ω(G′) ← RSU calculates real model parameter from ω(G) ;
16 return ω(G′) to vehicles ;
17 end

4.2 Gradient Encryption

• Mask agreement. In the proposed scheme, for any RSUk, 0 ≤ k ≤ K − 1,
we divide the vehicles in the RSU area into multiple groups, each group
contains h = Nk

nk
vehicles, where Nk is the number of vehicles in RSUk and

nk is the number of the groups in RSUk. In a group, every vehicle negotiates
mask with the neighbor vehicles. To describe the mask agreement process, we
denote the vehicles that have joined the mask agreement process as ordered
sequence {v0, v1, · · · , vh−1} in every group. In followed phases, we introduce
the agreement process.

Vehicle vi(0 ≤ i ≤ h − 1) in group gz(0 ≤ z ≤ nk − 1) sends PKz,i to RSUk

when enters the communication range of RSUk. RSUk transmits all other public



Privacy-Preserving Federated Learning 25

keys to a vehicle vi to execute the secret share in the group. Once a group is
generated, then calculates the first mask code(FMC) m

(R)
k,z,i between RSUk and

vehicle vi as follows:
m

(R)
k,z,i = Hash(PKSKk

z,i ) (5)

where Hash(∗) is the function that map ∗ to a integer sequence with the same
size as |ω|.

ThenRSUk

sends {PKk||PKz,<i+1>||ci,<i+1>||PKz,<i−1>||ci,<i−1>||{PKu}} to {vi, |i =
0, 1, · · · , h − 1}, where < · >= · (mod h), ci,<·> = −c<·>,i, {PKu} is a set
include other participants’ information exclude PKz,<i+1> and PKz,<i−1>.

After receiving message, vehicle vi calculates FMC m
(R)
k,z,i = Hash(PK

SKz,i

k ),
and calculates k1 = PK

SKz,i

z,<i+1> and k2 = PK
SKz,i

z,<i−1>. To calculate second
mask code(SMC), vehicle vi executes m

(V )
i,<i+1> = Hash(k1) and m

(V )
i,<i−1> =

Hash(k2), SMC could be calculated as follows.

m
(V )
i = ci,<i+1> · m

(V )
i,<i+1> + ci,<i−1> · m

(V )
i,<i−1> (6)

Notice that both m
(V )
i and m

(R)
k,z,i would be added to the gradient to ensure the

confidentiality of the gradient.
Vehicle vi executes secret share to share k1 and k2 with the vehicle vj , j =

0, 1, · · · , h − 1. In the proposed scheme, the Shamir algorithm is used for secret
share. Vehicle vi constructs two polynomials fk1(x) and fk2(x) as formula 1 and
generates sub-secret sj = {fk1(xj)||fk2(xj)||xj} for vehicle vj . Then vi encrypts
sub-secrets

si,j = Enc(PKj , sj)

where Enc(·, ∗) is the encryption function such as RSA, · and ∗ are the public
key and the plaintext. Vehicle vi sends si,j to RSUk for forwarding to vehicle vj .

• Local training. The local training is implemented with distributed gradient
descent. In the training process, we iteratively improve the accuracy of model
M by minimizing the global loss function 4.

For every vehicle in IoV, the goal of training the model is to find the gradient
to update M for minimizing the value of the loss function 3.

Vehicle vi(0 ≤ i ≤ h−1) in RSUk(0 ≤ k ≤ K −1) calculates ωi = ∂Ei

∂M , where
ωi is a vector with dimension d = |ωi|. Then vehicle vi masks ωi as follows:

ω
(M)
k,z,i = ωi + m

(V )
i + m

(R)
k,z,i

(7)

4.3 Region Verification

The difference between the malicious gradient and correct gradient is perceptible.
Actually, the low similarity with the correct gradients means that the gradient
is malicious with high probability. So the Pearson correlation coefficient between
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gradients could be calculated to make a distinction between the correct gradients
and the malicious gradients. Pearson correlation coefficient is defined as follows:

ρXY =
Cov(X,Y )
σ(X)σ(Y )

(8)

where Cov(X,Y ) is covariance between random variables X and Y , σ() is the
standard deviation.

• Verification RSUk(0 ≤ k ≤ K − 1) calculates the gradients sum of group
gz(0 ≤ z ≤ nk − 1) if all vehicles upload masked gradients. And we set

ωk,z =
h−1∑

i=0

ω
(M)
k,z,i − m

(R)
k,z,i (9)

If a vehicle (suppose vi) leaves RSUk’s communication range, because of the
lack of ω

(M)
k,i , the sum of the gradients could not be recovered. To eliminate

the mask, RSUk sends a recover request to the rest vehicles in the group to
get vi’s sub-secrets. The rest vehicle vj(0 ≤ j ≤ h − 1, j �= i) sends dci,j =
Dec(SKj , si,j) to RSUk, where Dec(·, ∗) is decryption algorithm corresponding
to encryption algorithm Enc(·, ∗). After receiving enough sub-secrets, RSUk

extracts {xj , fk1(xj), fk2(xj)} from dci,j and executes formula 2 to get k1 and
k2, further RSUk calculates m

(V )
i,i+1 = Hash(k1) and m

(V )
i,i−1 = Hash(k2) to get

the SMC of vi as formula 6. Then RSUk adds the recovered SMC to uploaded
gradients to eliminate masks as follows.

ωk,z,i =
h−1∑

c=0,c �=i

(ω(M)
k,z,c − m

(R)
k,z,c) + m

(V )
i (10)

Note that, the value of ωk,z,i is the gradients sum ωk,z of group gz, the RSU can
not attain the specific gradients when recovering the SMC.

To calculate the Pearson correlation coefficient, the gradients coordinate-wise
medians ¯(ωk)(0 ≤ k ≤ K − 1) should be calculated as the benchmark.

ω̄k =
1
nk

nk−1∑

r=0

ωk,r

RSUk randomly selects X = ωk,x and Y = ωk,y(0 ≤ x, y ≤ ng−1), and calculates
ρXY according to ω̄k and formula 8. RSUk discards ωk,x if ρXY ≤ l, where l is
the limiting value of correlation coefficient, The number of rest gradients sum
is nk,re. Then RSUk broadcasts nk,re to R. Before uploading gradients to AS,
RSUk will process the gradients sum with Lagrange interpolation.

• Interpolation RSUk would convert the sum of gradients ωk =
∑nk,re−1

r=0 ωk,r

from float number to finite field as follows:
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ωk =

{
�λ · ωk� , �λ · ωk� ≥ 0
p + �λ · ωk� , �λ · ωk� < 0

where �∗� is the rounding method , λ is a large integer (i.e. 106) used to control
accuracy. And in this phase, the data uploaded by RSUk to AS is not gradients,
but the Lagrange function results. First,RSUk randomly selects m − 1 arrays
Uk = {uk,i, |i = 1, 2, · · · ,m − 1} that satisfies that the sum of Uk is equql to
ωk, note that, each element in Uk is an array with the dimension d. RSUk has
parameters SeqS = [s0, s1, · · · , sd−1] and SeqA = [a0, a1, · · · , am−1], according
to (Uk, SeqA, SeqS), we have points Pj = {(ai, uk,i,j), |i ∈ {0, 1, · · · ,m − 2}} ∪
{(am−1, sj)}, where uk,i,j is the j -th element in uk,i. Therefore Lagrange inter-
polation function could be executed on Pj to generate m − 1 degree polynomial
Fk,j(x) as formula 2. RSUk sends Packk,j = CRT [Fk,j(b0), · · · , Fk,j(bm−1)] on
SeqB = [b0, b1, · · · , bm−1], where CRT is the Chinese remainder theorem as [23].

4.4 Aggregation and Update

After receiving {(Packk,0, · · · , Packk,d−1), |k = 0, 1, · · · ,K − 1}, AS executes
aggregation as follows:

ω(G) = (
K−1∑

k=0

Packk,0,

K−1∑

k=0

Packk,1, · · · ,

K−1∑

k=0

Packk,d−1)

Because AS does not know the x-coordinate SeqA and SeqB corresponding to
packaged function values Packk,∗, AS couldn’t forge an aggregation result that
can be verified successfully by RSU. Then AS distributes ω(G) to each RSU.
After receiving ω(G) from AS and nre =

∑K−1
i=0 ni,re from other RSUs, to verify

ω(G), For any j = 0, 1, · · · , d − 1, RSUk should unpack ω(G) as follows:

Fj(bi) ≡ ∑K−1
k=0 Packk,j (mod pi)

As mentioned before, there are points {(b0, Fj(b0)), · · · , (bm−1, Fj(bm−1))}, RSUk

applies the Lagrange interpolation to calculate corresponded function expression
Fj(x). Then RSUk calculates Fj(am−1), the aggregation result is correct if K ·
sj = Fj(am−1) holds. Next, RSUk calculates aggregation gradient as follows:

ω(G′) = (C(
m−2∑

c=0

F1(ac)), C(
m−2∑

c=0

F2(ac)), · · · , C(
m−2∑

c=0

Fd(ac)))

where

C(x) =

⎧
⎪⎨

⎪⎩

x, x ∈ [0,
p − 1
2

)

x − p, x ∈ [
p − 1
2

, p)
(11)
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Then RSUk sends global model parameters ω(G′) and nre to each vehicle in
communication region. The vehicle updates the local model as follows:

M = M − α
ω(G′)

nre
(12)

where α is the learning rate. Then vehicles iteratively perform local training
until global model M is available. The proposed FL algorithm is illustrated in
Algorithm 2.

5 Analysis

5.1 Correctness and Privacy

The masks FMC and SMC are added into the gradient, after receiving the
masked gradient, RSU performs formula 9 to get the sum of gradients. For any
group r in RSUk the correctness of the formula is as follows.

ωk,r =
h−1∑

i=0

ω
(M)
k,r,i − m

(R)
k,r,i

=
h−1∑

i=0

ωi + ci,i+1 · m
(V )
i,i+1 + ci,i−1 · m

(V )
i,i−1

=
h−1∑

i=0

ωi

If the vehicle vi(0 ≤ i ≤ h − 1) leaves, RSU performs formula 10, and the
correctness of the formula is as follows.

ωk,r =
h−1∑

j=0,j �=i

(ω(M)
k,r,j − m

(R)
k,r,j) + m

(V )
i

=
h−1∑

j=0

ω
(M)
k,r,j −

h−1∑

j=0

m
(R)
k,r,j − ω

(M)
k,r,i + m

(R)
k,z,i + m

(V )
i

=
h−1∑

j=0,j �=i

ωj

In the proposed scheme, to achieve the privacy-preserving of vehicle’s data, we
adopt FL to keep raw privacy data locally, Furthermore, the mask is used to
protect gradients.

We combine h vehicles {v0, v1, · · · , vh−1} to form a group. If the vehicle only
masks uploaded gradients ωi with SMC m

(V )
i , the vehicle’s privacy gradient

may leak. Because the vehicle may be curious about neighbor vehicle’s privacy
gradient, especially if the two side neighbors of a vehicle conspire, the SMC may
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be eliminated. To address the problem of gradient leakage caused by neighbor
vehicles collusion, We add FMC m

(R)
k,z,i and SMC m

(V )
i to the gradient. The

FMC is only known between RSU and vehicle, so malicious neighbor vehicles
can not get vi’s privacy gradient without knowing the FMC. In the meantime,
we also avoid the RSU from knowing the specific gradient of the vehicle by
adding the SMC, so the RSU only knows the sum of h vehicles’ gradients. As
mentioned above, the privacy gradient is only known by itself. And according to
the computational or decisional hard problems mentioned before, it is difficult to
calculate the FMC and SMC without knowing corresponding private key. hence,
during the whole FL process, the privacy data and gradient of the vehicle will
not be leaked.

5.2 Performance

In this section, we give the performance analysis of our proposed scheme. Our
simulation experiment is conducted on Intel(R) Core(TM) i7-10875H,2.30GHz
and 16 GB memory.

• Performance of RSUs setup and agreement RSUs should perform
Lagrange interpolation with some points, RSUs’ common sequence is regarded
as the x-coordinate only known by itself. In the experiment, we use the JPBC
library in Java JDK8 to execute the Algorithm 1.

Fig. 2. The sequence gener-
ation overhead of RSU

Fig. 3. The mask agree-
ment overhead of vehicle

Fig. 4. the mask agree-
ment overhead with dif-
ferent number of gradient
parameter

We measure the computing overhead of our proposed algorithm under dif-
ferent number of RSUs. The computation overhead is shown in Fig. 2, with the
number of RSU increasing, the overhead increases linearly. The frequency of RSU
updating the common sequence can maintain at a low value, in the condition, the
cost of calculating common sequences is acceptable. Next we measure the cost of
agreement phase, we set h = 4, 5, · · · , 14 and fix gradient length106. The com-
putational overhead is shown in Fig. 3. With the number of gradients increasing,
the computational overhead increases approximately linearly. A vehicle shares
secrets K1, K2 with the vehicles within the group, the share operation cost is
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low as the number of vehicles in a group is small. And the most time-consuming
operation at this phase is to calculate the masks as the length of the gradi-
ent is generally the time of 105. Meanwhile, We set the number of CNN model
parameters from 105 to 12 ∗ 105 and set h = 9. The computational overhead
of different length of gradient as Fig. 4. The computational overhead increases
approximately linearly with the increase of gradient length.

Fig. 5. The accuracy with various num-
bers of vehicles

Fig. 6. The loss with various numbers of
vehicels

Fig. 7. The accuracy in various numbers
of groups with low correlation coefficient

Fig. 8. The loss in various numbers of
groups with low correlation coefficient

• Performance of FL We use the MNIST dataset to evaluate the proposed
scheme. We divided the dataset into 50, 80, 100 parts and assigned them to
50, 80, 100 vehicles, and the number of vehicles in a group is h = 5, that is,
10, 16, 20 groups would join in FL. Each vehicle executes the local train with
a splited dataset. The Convolutional Neural Network (CNN) is used in the
training process. The result of accuracy and loss are shown in Figs. 5 and 6.
We set a various number of vehicles and 0 low correlation group, 100 vehicles
that joined FL could provide the highest accuracy and the lowest loss, 50 and
80 vehicles could achieve almost the same accuracy and loss. The proposed
scheme could achieve a satisfactory result with no malicious vehicles.
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Fig. 9. The performance with malicious gradient between scheme [23] and the proposed
scheme

To measure the result with the malicious vehicles joined, we execute FL
with 100 data providers(20 groups) with different proportions of low correlation
groups. The result of accuracy and loss are shown in Figs. 7 and 8. The accuracy
has a reduction and the loss is not as good as Fig. 6. And as shonw in Fig. 9,
compared with [23], we have better performance in the presence of malicious
vehicles.

6 Conclusion

In this paper, we propose the privacy-preserving FL scheme. The proposed
scheme addresses the vehicle data privacy and gradient privacy, and the mali-
cious participants’ gradient could be removed at RSU by calculating the Pearson
correlation coefficient. Meanwhile, we use Lagrange interpolation to verify the
correctness of the returned result from AS. To reduce the overhead, We form a
small number of vehicles as a group to negotiate the mask. Numerical results
confirm the effectiveness of our proposed scheme in terms of accuracy. In future
work, we plan to reduce data waste in the process of eliminating malicious gra-
dients.
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