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Abstract. Backdoor attacks, as an insidious security threat to deep
neural networks (DNNs), are adept at injecting triggers into DNNs. A
malicious attacker can create a link between the customized trigger and
the targeted label, such that the prediction of the poisoned model will be
manipulated if the input contains the predetermined trigger. However,
most existing backdoor attacks define an obvious trigger (eg: conspicu-
ous pigment block) and need to modify the poisoned images’ label, caus-
ing these images seems to be labeled incorrectly, which leads to these
images can not pass human inspection. In addition, the design of the
trigger always needs the information of the entire training data set, an
extremely stringent experiment setting. These settings above remarkably
restrict the practicality of backdoor attacks in the real world.

In our paper, the proposed algorithm effectively solves these restric-
tions of existing backdoor attack. Our Label-Specific backdoor attack
can design a unique trigger for each label, while just accessing the images
of the target label. The victim model trained on our poisoned training
dataset will maliciously output attacker-manipulated predictions while
the poisoned model is activated by the trigger. Meanwhile victim model
still maintains a good performance confronting benign data samples.
Hence, our proposed backdoor attack approach must be more practical.

Keywords: Deep neural network · Backdoor attack · Label-specific
trigger

1 Introduction

Deep learning has shown increasing performance advantages in many real-world
tasks with the development of computing resources and enrichment of training
data [1,2], so many industries are more willing to make deep neural networks the
foundational mean for solving practical challenges. Therefore, the security issue
of deep neural networks is more remarkable than before. In common, a secu-
rity system needs to consider three main aspects: availability, confidentiality,
and integrity, where availability and confidentiality refer to the possible soft-
ware vulnerabilities in the deep learning system framework as well as its depen-
dent libraries, such as overflow attacks and DDos attacks, and the possibility
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of the model’s own parameters and data being stolen by an attacker during the
inference phase [3,4], respectively. As for integrity-related security issues, they
mainly refer to the interference in the process of model learning and prediction,
which makes the output results not conform to the normal performance of the
model, which can be divided into two categories: Evasion Attacks [5] and Data
Poisoning Attacks [6,7]. Among them, data poisoning attacks occur during the
model training phase, where attackers exploit vulnerabilities in data collection
to manipulate training data so that downstream machine learning models con-
tain exploitable behavior. Some attacks degrade the inference capability of the
entire sample [8], while targeted data poisoning attacks induce false outputs on
specific target samples [9].

Backdoor attacks, a classic representation of targeted data poisoning attacks,
compromise the integrity of a model by poisoning a portion of the training
data during the training phase of the model. Since deep learning systems often
require large amounts of training data to support model training and high-quality
training sets are expensive to collect and collate, practitioners seek larger and
larger data sets to train their data-hungry models. Due to the surge in demand for
training data and increased accessibility through the web, data curation efforts
are also ongoing and the process of data curation is increasingly automated,
which allows malicious attackers to control or poison training datasets.

A backdoor attack manifests itself in the form of a poisoned neural network
model that outputs the same results as a normal model when confronted with
benign data inputs but changes its output to a target label specified by the
attacker when confronted with data with a trigger set by the attacker. Since a
successful backdoor attack does not lead to any degradation in the overall task
performance of the model, and the malicious attacker is free to select target
labels and triggers, it is difficult to detect the backdoor attack. However, partial
backdoor attack defense and backdoor removal techniques have been proposed
and have yielded good results for partial backdoor attacks. So the concealment
of backdoor attacks has received great questions.

A series of approaches to generating triggers have occurred in the existing
works on backdoor attacks. The initial mean of backdoor attacks is to directly
inject randomly generated triggers into the training data, so that the model
trained on that data relies on triggers for inference, while the threat model
of such attack methods usually includes label flipping, in which the poisoned
images are often easily inspected because they belong to the incorrect class and
contain a trigger that is placed in a visible location. In addition, there is a class
of work that investigates invisible triggers, and to provide stealth in backdoor
attacks, they make the trigger unobtrusive to the naked eye through different
backdoor generation strategies, but the label-image inconsistency problem is still
left behind. Subsequent work related to clean-label backdoor attacks emerged,
which ensure that the labels of the poisoned data appear to human reviewers to
be consistent with the category of the image itself.

In order to address these severe shortcomings and limitations in the above-
mentioned backdoor attacks, we proposes a new backdoor attack scheme that is
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more likely to be implemented in practical scenarios, and our contribution can
be mainly concluded in the following three points:

– Clean-label backdoor attack: In our scheme, the user does not modify
the label of the poisoned image as in a standard backdoor attack, so that
the attack can effectively avoid the defense of human inspection and does not
need to access data of different labels.

– Less data information: Compared with other backdoor attack methods
and existing clean-label attack methods, the malicious attacker in our attack
method needs extremely little information, only the data of the target label
is indispensable in the trigger generation phase. The information about the
structure of the victim model, and training process settings is not needed at
all.

– Low data poisoning rate: Our attack method, as one of the clean-label
backdoor attack, only need to poison a very small portion of the target label
to achieve a very good attack effect. Concretely, we only need 0.5% of the
overall dataset to achieve close to 100% of the attack effect, e.g.: 250 pictures
in Cifar-10 dataset containing a total of 50000 pieces of images.

2 Related Work

2.1 Image Classification

Image Classification is a fundamental task that attempts to comprehend an
entire image as a whole. The goal is to classify the image by assigning it to a
specific label. Typically, Image Classification refers to images in which only one
object appears and is analyzed. The backdoor attack scenarios considered in
this thesis all take place in the image classification task, where the inputs x ∈ X
and label y ∈ Y are mainly included, where the combination of (x, y) is the
samples in the dataset (X, Y). The model can then be defined as the equation
fθ : X→Y , θ represents the parameters of the model (including the weights
and bias in the neural network). To evaluate the performance of the model, a
loss function L(x, y, θ) is often defined. The objective of the image classification
task is to improve the accuracy of the model for image classification, which is
equivalent to minimizing the loss function. Therefore, the model parameter θ∗

corresponding to the smallest value of the loss function is what we want.

θ∗ = argmin
θ

1
n

∑n

i=1
L(x, y, θ)

Here the minimization of the loss function is usually done by using various
gradient descent strategies, such as SGD, Adam, etc.

2.2 Data Poisoning Attack

Data poisoning attacks [10] mainly refers to a kind of attack where an attacker
manipulates training samples or model architecture, aiming at impairing the
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functionality of the model such as wrong predictions of data from all classes (an
indiscriminate attack) or misclassification of subsequent input data associated
with a specific label (a targeted attack).

As for untargeted data poisoning attacks, the goal of such attacks is to
degrade the performance of a model so that it can no longer provide services.
From the previous work presented [10], such attacks first act on simple machine
learning models, like SVMs [8], logistic regression models [11], and linear clas-
sifiers [12], and then use methods like gradient descent strategy to reduce the
overall effectiveness of the model. This series of attacks often render the final poi-
soned model incapable of completing its task and functionally paralyzed, which
is discernible to anyone using it. As a result, this attack must be disposable,
after which the poisoned model is quickly taken offline and modified. Moreover,
the prerequisites required for the success of such an attack are stringent, which
compel the attacker to have control over most of the training data. However,
another collection of data poisoning attacks, targeting certain labels instead of
the entire dataset, has substantial existing works and they can be divided into
several categories. The following sections will specifically introduce Standard
Backdoor Attack, Invisible Backdoor Attack, and Clean-Label Backdoor Attack
and analyze their characteristics.

2.3 Backdoor Attack

Due to the uniqueness of backdoor attacks in terms of attack purpose, the com-
prehensive performance of backdoor attacks can be concluded with three aspects:
attack success rate (ASR), attack stealthiness, and the model performance on
the benign dataset. More specifically, the attack stealthiness can be assessed
from two perspectives: whether the trigger is conspicuous and whether the label
of the poisoned data is modified.

As shown in Table 1, we summarize the characteristics of some classical
backdoor attack algorithms here, mainly comparing the adversary capabilities
assumed by different methods and the visibility of generated triggers. ’Obvi-
ous trigger’ refers to whether its trigger is visible, and ’label flipping’ refers to
whether an attacker needs label poisoning operations. The “low poisoning rate"
also refers to whether the poisoning rate of attackers is low as well as the “entire
dataset information" indicates whether the attacker needs information on the
complete training dataset.

Table 1. Backdoor attack features

BadNets [13] SSBA [14] HTBA [15] Ours

Obvious Trigger � × × ×
Label Flipping � × × ×
Low Poisoning Rate � � � ×
Entire dataset information � � � ×
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Standard Backdoor Attack. The original backdoor attack scheme against
DNNs is BadNets [13], the representative of Standard Backdoor Attack. In this
attack scheme, the attacker would specify an attack target label t, then implant
conspicuous triggers in parts of the image data with non-target labels, after
which modify the labels of these images to target label t. The combination of
poisoned data, image data injected with trigger, and benign dataset will be fed
into the victim model, which will be successfully injected with the backdoor
after a normal training procedure. Meanwhile, there are many similar backdoor
attacks, [16] uses the combination of sample features belonging to non-target
labels in the training dataset to generate a trigger, [17] generates a separate
trigger for each input image, and [18] reduce the possibility of detection by
backdoor detection techniques through adversarial regularization. In general, all
these approaches require conspicuous triggers and label flipping to conduct the
connections between target label and trigger, which greatly reduces the stealthi-
ness of backdoor attacks. In addition, backdoor attack methods that require label
flipping operations always assume that the attacker has information about the
complete dataset and can make changes to the entire dataset, which is unrealistic
in practical scenarios.

Invisible Backdoor Attack. In order to improve the conspicuousness of back-
door attacks, [19] mentions the conspicuousness of the trigger for the first time,
specifically that the trigger set in a backdoor attack should not be too visible, or
the image data with the trigger will be easily recognized in front of the human
inspector. Therefore, [19] proposes a backdoor attack method based on a blended
strategy. Meanwhile, [20] used image-scaling attack to hide the trigger and SSBA
[21] proposed a sample-specific backdoor attack method. Although such trigger
generation approaches can help the backdooring attacks evade human inspector
detection, these methods still require the attacker to do label-flipping operations
on non-target data and to maintain information about the entire dataset.

Clean-Label Backdoor Attack. The most distinctive feature of this type of
backdoor attack is just like its name itself, ’clean-label’ means that there is no
label poisoning in the method. In this series of approaches, even the image data
provided by the malicious attacker remains consistent with their semantic label,
and the label-flipping operation no longer exists in the attack procedures. The
HTBA [15] minimizes the distance between the non-target label data and the
target-label data in the feature space by using the PGD algorithm to add the
trigger so that the victim model will misclassify the data with the trigger. So
at the same time, a feature extractor obtained on the complete training dataset
has to be known to the attacker. Similar work has been done on [21–23], all of
these attack methods assume that the attacker has access to the entire dataset
information.
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3 Method

We first briefly introduce the threat model and the problem setup parts and
then show the detailed procedure of the proposed method.

3.1 Threat Model

Fig. 1. Threat model

We consider a practical scenario: a model owner would like to use the data
collected from multiple sources to assist in training their model and only the
data collection phase is open to the public. Hence throughout all model training
phases, any malicious attacker can only interfere with the model during the data
collection phase. Therefore, we will define two main parts in Fig. 1: the attacker
and the victim model, where the attacker is one of the many data providers
and the victim model is the model with the backdoor trigger. As a result, the
attacker can control only a limited part of the training dataset while having no
information about the data from other providers.

The essential goal of the attacker is to successfully implant the trigger of the
backdoor attack into the victim model. More concretely, the attacker wants to
manipulate the model’s output when confronting data patched with the trigger,
whose output label will be the attacker’s pre-specified label instead of the original
label of the image data, and ensure the model’s performance on clean data at
the same time (classification accuracy).

The attacker’s knowledge and capabilities: We divide the practical scenario
into three phases: data collection phase, model training phase, and model deploy-
ment phase. In the data collection phase, the attacker is one of the many data
providers. We assume that the attacker is responsible for providing data for a
certain label and has only limited knowledge about the model training task, not
the specific information about the whole training task, such as the number of
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labels and the meaning of each label for the multi-category task. However, the
attacker can find some relevant additional publicly available datasets to assist
in training the alternative model based on the basic information available, but
we assume here that there is no overlap of sample labels between the publicly
available alternative datasets and the training dataset. As for the attacker’s
manipulation of the poisoned data, our assumptions are more stringent. The
attacker is required not to do label flipping (poisoning) on the data, and the
percentage of poisoned data is also limited to a small range. Based on previous
work settings, the attacker to modify the data range is also limited in the l norm
range, making the trigger to add will not cause a sharp change of the original
image.

In the training phase of the model, the attacker has no information about
the parameters used in the training phase of the victim model and the structure
of the model, and cannot directly modify the model parameters of the model
training to control the model training process. In the deployment phase of the
model, it is also impossible to do any modification to the trained model, but in
this phase, it is possible to control the output of the model by putting data with
a trigger into the victim model. This adversary capability is common and feasible
in realistic scenarios and is weaker than the adversary capability mentioned in
the existing work [13].

3.2 Proposed Attack

Fig. 2. Backdoor attack workflow

In this section, we will mainly introduce our attack method with a complete
illustration(label-specific backdoor attack). The exact attack workflow will be
divided into three stages: trigger generation stage, model poisoning stage, and
inference stage (model deployment stage) (Fig. 2).

Trigger Generation Stage: At this stage, our main goal is to generate the
target-label-specific trigger and the specific algorithm for this part is shown
in ALGORITHM 1. Because of the characteristics of the clean-label backdoor
and the limitation of our ability to the adversary, our method is different from
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Algorithm 1. Trigger generation algorithm
Input: Auxiliary dataset Daux, targeted label data Dt, target label t, limited pixal
range of trigger ρ, total train epoch Ntrain, trigger generation epoch Ntrigger;
Output: Pretrained surrogate model fsurrogate, Trigger τ ;
Begin:
1. Surrogate dataset Dsurrogate ∈ (X, Y ) ←− combine the Auxiliary dataset Daux and
targeted label data Dt

2. fsurrogate ←− random initialization
For i ∈ range(0, Ntrain): do

loss = CrossEntropy(fsurrogate(X), Y )
compute gradient and update fsurrogate

Fori ∈ range(0, Ntrigger): do
loss = CrossEntropy(fsurrogate(ρ), t)
compute gradient and update trigger image ρ

Output trigger image ρ and Pretrained surrogate model fsurrogate

the previous work, which directly establishes a connection between the trigger
and the target label through label reversal operation. Rather, by reinforcing the
connection between the victim Model and the characteristics of the target label
data itself.

Therefore, we first need an extractor that can extract the features of the
target label data, and a well-trained target classification model is an ideal feature
extractor because a high-performance classification model must be a good feature
extractor. However, due to the attacker can not access the complete training
dataset, only target label data sets cannot complete the feature extractor (image
classification model), so the attacker needs to find the appropriate auxiliary
dataset to facilitate the target label data to train a surrogate feature extractor
(image classification model).

Then, the surrogate model is used to extract the features of the target label
data. Here, we first initialize a noise image and then use the ADAM optimizer
to continuously update the noise image iteratively to improve the confidence of
the prediction of the noise image as the target label. In addition, the noise image
after each round of update is scaled to ensure that its maximum pixel value does
not exceed the established range, and to ensure that the poisoned data will not
change too much from the original image. Otherwise, the model will be overfitted
to the trigger image on the target label, which will not only affect the overall
performance of the model, especially the accuracy of the clean data of the target
label but also lead to the reduction of the concealability of the backdoor attack.

After several rounds of iterative optimization, the noise image finally obtained
is the trigger corresponding to our ideal target label, because it will be super-
imposed on any image to make it possess certain characteristics of the target
label. The subsequent Model poisoning training phase will have Victim Model
strengthen the connection between the trigger and the target label.

Model Poisoning Stage: After the completion of the trigger generation stage,
a very small portion of the target label dataset can be selected with a trigger
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as the poisoned data. It should be noted here that we only add a trigger to
the image data but do not change any label corresponding to the data, and then
fuse it together with the benign dataset as the poisoned dataset. The subsequent
model training process is the same as the normal machine learning model training
process, and the attacker does not exercise any control over the training process.
The final trained model is the poisoned model with the backdoor implanted.

Inference Stage: This stage is the stage when the backdoor attack works after
the actual deployment of the victimization model on the ground. The attacker
can add the triggers generated in the previous stage to any non-target labeled
data to generate test data with triggers, which feeds the victim model and out-
puts the target labels specified by the attacker.

4 Experiment

4.1 Experiment Settings

This experiment mainly uses 2 GTX3090 Ti GPUs, 12th Gen Intel(R) Core(TM)
i9-12900K and 128G RAM as the hardware base. As for the machine learning
framework, we use Pytorch for all experiments, including comparison (ablation)
experiments.

Datasets and Models: The experiments here mainly focus on the classification
task of image datasets. We use CIFAR-10 dataset containing 10 classes [24], and
Tiny ImageNet dataset containing 200 classes, a subset of ImageNet dataset
[25], which are both classical datasets for image classification tasks. CIFAR-10
dataset is used as the training dataset of the victim model. Tiny Imagenet is
a helper dataset used by attackers to generate Surrogate Models. It is worth
noting that the two datasets do not coincide in the setting of labels, which is
consistent with our setting in the threat model.

As for the model selection, all experiments have been conducted on Resnet-
18 and GoogleNet models, and the backdoor attack effect is evaluated when the
structures of the surrogate model and victim model are inconsistent.

Attack Setup: Our experiment is mainly divided into the trigger generation
stage, poison model stage, and Inference stage. In Trigger Generation Stage, our
experimental process is mainly to train surrogate models and generate triggers
for target label datasets. Therefore, in this part, we specify that the target label is
Label 0 in the CIFAR-10 dataset – the size of the airplane and the corresponding
trigger, which is equal to the size of the original image(3× 32x32). The 5000
images corresponding to the target label Airplane were then merged with the
auxiliary dataset Tiny ImageNet into the surrogate dataset, which was used to
train the surrogate Model.

In the subsequent model poisoning stage, the data poison rate γ in backdoor
attack varies in different experiments. More specifically, we set the highest data
poisoning rate as γ = 0.5%, 200 training rounds, and the way of implanting
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backdoor as directly stacking the trigger with the original image. Meanwhile, we
also tested the experimental effects of different data poisoning rates.

Here we define three datasets: poison training data set, poison test data
set, and clean test dataset. The poison training dataset is used to implant a
backdoor into the victim Model. Therefore, 250 images randomly selected from
data belonging to the airplane label are superimposed with trigger images to
generate backdoor data and put into the original dataset as the poison training
dataset.

The poison test dataset and clean test dataset are used to measure the suc-
cess rate of backdoor attacks and the Benign accuracy of models, respectively.
Therefore, the clean test dataset is the original test dataset in the CIFAR-10
dataset (10000 images with 10 classes), and the poison test dataset is generated
by modifying the dataset in the clean test dataset with non-target labels.

During the training process, we also recorded the attack success rate and
Benign accuracy of the model. It is worth noting that to prove that our backdoor
attack method does not require information from the Victim Model Architecture,
we also tested the experimental effects of the Surrogate Model when it is different
from the Victim Model.

In the Inference stage, we test the attack success rate of the final victim
model, the Benign accuracy of the model, and other indicators (Fig. 3).

Fig. 3. Benign accuracy and attack success rate via epoch under different poisoning
rate

Evaluation Metric: Here, we use two indexes, attack success rate and Benign
accuracy to jointly measure the effect of the backdoor attack.

Attack success rate (ASR): recorded here is the proportion of the data of
non-target labels that are successfully misclassified as target labels after being
put into the victim model. This index directly reflects the effectiveness of the
backdoor attack.
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Benign accuracy refers to the performance of the victim model on Benign data
sets. This index can also measure the stealthiness of backdoor attack methods
to a certain extent.

4.2 Main Results

Table 2. Comparison between existing clean-label backdoor attack performance with
ours under different poison budgets(the proportion of images that are poisoned). PB:
Poison Budget, BA: Benign Accuracy, ASR: Attack Success Rate, TA: Target-label
Accuracy

Approach Ours HTBA SSBA

PB 125 150 175 250 500 500 500
BA (%) 95.36 95.35 95.41 95.33 95.32 94.52 94.41
ASR(%) 66.11 75.53 84.57 99.08 99.53 41.37 83.31
TA (%) 93.33 93.41 93.54 93.37 93.74 96.31 95.87

Attack Effectiveness
As shown in Table 2, our attack can successfully implant the backdoor into the
Victim Model as the backdoor attack success rate is more than 99% with only
250 samples (0.5% of the training dataset). More specifically, we record exper-
imental effects on different poison budgets in backdoor attacks. When poison
samples occupy only 0.25% of the overall training dataset (125 pieces of poisoned
images), the attack success rate can reach above 66%. In the meantime, during
the improvement of the poisoning rate, Not only is the attack success rate on
the rise, but the other two indexes that we pay attention to in the experiment
are Benign accuracy and target-label accuracy, which have been kept around
95%. Benign accuracy remains a high effect. It can be seen that our scheme
does not cause model performance degradation on the main task. Target-label
accuracy also maintaines at a high level, indicating that our trigger generation
algorithm can actually extract the intrinsic features of the target label data.
This is because only by strengthening the connection between the label and its
inherent features can the model’s performance on the clean data of the target
label not be degraded.

In addition, Table II also shows the attack performance of two classical clean-
label backdoor attack schemes under the same experimental settings. Benign
accuracy and target-label accuracy of HTBA and SSBA programs are almost
consistent with ours, but it is obvious that when the poisoning rate has reached
1%, The attack success rate of our scheme is almost 100%, but the effect of
HTBA and SSBA is far worse than our scheme.

In addition, to verify that our attack scheme does not depend on the struc-
tural knowledge of the victim model, we conduct corresponding experiments on
the different pairs of surrogate model and victim model, and it can be concluded
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from the results that no matter whether the structure of surrogate Model and
victim Model is constant or not, our attack maintain a high attack success rate
(Table 3).

Table 3. The ASR with pairs of surrogate model and victim model on Cifar-10 dataset
and data poisoning rate γ = 0.5%

Surrogate model Victim model
ResNet-18 GoogLeNet

ResNet-18 99.08 95.46
GoogLeNet 96.35 99.26

Time Analysis
Although the generation method of our trigger is different from the random
setting of the standard backdoor attack method, which needs to be generated
by the surrogate model, our approach can iteratively generate the trigger of the
corresponding category within 10s using the trained surrogate model while this
trigger can complete the poisoning training and output manipulation for a target
label.

5 Conclusion

In this paper, we propose a backdoor attack scheme that is most likely to be
implemented in real scenarios. As a kind of clean-label backdoor attack, the
attacker does not need to perform any label poisoning operation and has no
information on non-target label data. As far as we know, the attacker’s ability
and knowledge are the weakest among these existing works. At the same time,
we only need the data poisoning rate of 0.5% of the overall training dataset to
achieve 99.53% success rate of backdoor attacks. Therefore, we believe that such
a real-world backdoor attack scheme is enough to reveal a remarkable hidden
danger in DNNs. Our work wants to indicate that relevant workers need to
research the defense scheme against this kind of attack to protect the deep
learning system.

Besides, to urge the development of the backdoor attack defense method,
we will concentrate on research about backdoor attack techniques, which can
escape the existing defense method, including human inspection and AI-based
approaches.
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