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Chapter 9
In Vitro Models and Molecular Markers
for Assessing Nano-Based Systems
Inflammatory Potential

Renata Lima, Vitoria Aparecida Nobrega Antunes, Tais Germano da Costa,
and Mariana Guilger Casagrande

Abstract When nanotechnology proved to be a promising science with applications
in several areas, there was a need for studies regarding the toxicity of nanomaterials.
In vitro evaluation is a tool of potential interest among different study models since it
can provide early signals of the possible behavior of the nanomaterial quickly and
often accurately. In vitro studies allow the evaluation of both toxicological potential
and nanomaterial activity. For confidence in these tests to reduce experiments using
animal models, evaluative markers began to be studied and refined, along with
different cell culture models, to ensure compatibility with in vivo exposure. Thus,
two strands should be developed and used together for the application of in vitro
models. One of them regards cell seeding and exposure techniques, and the other is
the study of valuable markers to detect possible cellular alterations and their conse-
quences. Although there are well-established techniques to evaluate cell viability
and genotoxicity, these are not always appropriate for assessing cells exposed to
nanocomposites due to the unique characteristics of these new materials. In this way,
it is still necessary to verify the actual efficiency of the existing techniques when
evaluating nanomaterials and envision possible changes and adjustments.
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9.1 Introduction

Almost a century ago, most of the innovations and technologies that emerged in the
research fields were directly or indirectly related to cell culture. Most cancer-related
studies are directly related to Henrietta Lacks (HeLa) cells.

Since the discovery and culture of HeLa cells in 1952, innovations such as the
polio vaccine in 1954 and sequencing of the human genome in 2000 have significant
social and economic relevance showing that new technologies and discoveries play
an essential role in the future of science (Freshney 2016; Masters 2002; Skloot
2010).

Over the years, it is possible to observe an increasing interest in developing
protocols for in vitro cell culture. In 1885, when the embryologist Wilhelm Roux
succeeded in conserving an embryonic tissue of chicken in a warm saline solution, a
constant search for better culture conditions has begun. Harrison (1907) demon-
strated the development of frog nerve fibers in a coagulated blood suspension, Carrel
(1912) observed the importance of the nutrient content in the culture media, and in
1952, George Gey propagated the HeLa cell line from a cervical tumor tissue which
has been used to this day (Freshney 2016; Gruber and Jayme 1994; Verma et al.
2020).

The emergence of nanomaterials triggered the need for new study models, mainly
regarding in vitro evaluation since the assessment of newly developed nanomaterials
aims to establish rules for their application and manipulation. As these are materials
with totally differentiated characteristics, a new view concerning the applied tests
must be considered, since the biological impacts on health and the environment are
the primary concern of researchers to avoid future risks (Srivastava et al. 2015;
Savage et al. 2019).

One of the possibilities presented using cell cultures is the rapid screening of
these materials. However, the use of in vitro tests for the evaluation of nanomaterials
goes far beyond screening. Nanomaterials act at the molecular level so that in vivo
investigation studies will not keep up with the advances in nanotechnology, requir-
ing a connection between in vivo and in vitro studies (Romeo et al. 2020). Therefore,
tests should not be replaced but used in combination. The association between
in vitro and in vivo tests can give accurate answers about nanomaterials, reduce
animal experimentation, and introduce optimized tests. In vivo tests can track the
routes of biodistribution and bioaccumulation of nanomaterials. However, previous
evaluations using in vitro tests can identify highly dangerous nanocomposites
(Hartung 2009, 2010; Berg et al. 2011).

Most studies involving the assessment of nanomaterials follow a sequence of
in vitro tests with subsequent in vivo evaluations. However, it is predicted that this
context will change within a few years. Both types of tests will be performed in an
interconnected way, mainly regarding the evaluation of nanomaterials. Different cell
culture models and markers are being developed, which nowadays enhance the
assessments and will have even more impact in the future (Fig. 9.1).
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Fig. 9.1 Trends in nanomaterial research over time

Studies for improving some aspects of in vitro evaluation enable the development
of models that employ different structures and materials and simulate a living
organism (body-on-a-chip). It means that in the future, more elaborated in vitro
evaluations could have a more significant contribution than the simple determination
of risk potential, toxic dose, or as precursors to in vivo tests. In addition, it will be
possible to reduce the use of animal tests, which will be performed just when the
material is entirely safe (Frey et al. 2014; Romeo et al. 2020; Chen et al. 2021).

9.2 Evolution of Cell Culture Models

9.2.1 Cells

Multicellular organisms exist because cells can adhere to each other. This adhesion
occurs through physical and biochemical mechanisms that happen in the extracel-
lular matrix. In addition to enabling cell–cell adhesion, the extracellular matrix also
promotes cell–substrate adhesion. The loss of cell adhesion can occur due to genetic
mutations that cause alterations in the extracellular matrix proteins and, conse-
quently, destabilize the tissue and alter the transduction of signals from the external



environment. Thus, it is a dynamic process that continuously moves and responds to
changes in the microenvironment (Armingol et al. 2020; Windisch et al. 2019).

166 R. Lima et al.

When using cell cultures as a strategy for performing in vitro tests, there is a need
to provide a microenvironment-like in vivo systems, guaranteeing its homeostasis.
One of the main limiting factors for this strategy is cell adhesion and cell–matrix–cell
interaction (Oliveira et al. 2019; Zhou et al. 2018; Bich et al. 2019), which often are
not maintained. The extracellular matrix comprises metabolites, receptors, ions, and
multifunctional proteins such as growth factors, hormones, cytokines, chemokines,
and neurotransmitters (Armingol et al. 2020). Cell adhesion molecules (CAMs) play
a fundamental role, both physical and regarding cell signaling, influencing cell
migration, mesenchymal remodeling, and contributing to critical processes such as
embryogenesis, organ development, and wound healing (Canel et al. 2013;
Windisch et al. 2019; Thiery et al. 2009; Epifano and Perez-Moreno 2012).

Therefore, over time and with the evolution of cell models, much has come to be
questioned regarding the maintenance of the cell culture microenvironment, such as,
for example, interactions mediated by cell adhesion molecules (Daley et al. 2008).
These structures are widely distributed in the plasma membranes or clusters near the
cellular junctions, which are responsible for maintaining the rigidity and strength of
the tissues and epithelial barrier, transmission of information between intracellular
and extracellular compartments, and the movement of molecules and ions from the
cytoplasm of a cell into the cytoplasm of the adjacent cell (Saraiva et al. 2016; Nzou
et al. 2019; Bergmann et al. 2018; Gloushankova et al. 2017). Cadherins, integrins,
selectins, and immunoglobulins are examples of CAMs (Honig and Shapiro 2020;
Mui et al. 2016; Aplin 2003; Juliano 2002).

9.2.2 Cell Cultures

Cell cultures have been used for material evaluation since the late nineteenth century
when cells began to be isolated and cultured in the laboratory (Curtis et al. 1983;
White 1946; Eagle 1955). An overview from 1907 to the present day (Fig. 9.2)
shows that the techniques have evolved a lot concerning the employed technology,
with several problems being solved over time, from cell adhesion in culture plates
(1980) to the solution of issues related to the current three-dimensional cultures
(Pardo et al. 2005; Sharrer 2006; Andrysiak et al. 2021; Hennies and Poumay 2021).

Depending on the type of culture, cells show different morphological properties
and changes in gene expression, proliferation potential, cell interaction, and signal
transduction (Fang and Eglen 2017; Riedl et al. 2017). An example was the work
carried out by Ma et al. (2018), who compared the genome of glioblastoma
multiforme cells in 3D cultures (polylactic acid scaffolds) and 2D cultures and
found that cells cultured in a 3D system showed positive regulation of 8117 genes
and negative regulation of 3060 genes in comparison with 2D cultures.

In vivo, the cellular response to external factors depends on the adhesion between
cells and proteins of the extracellular matrix, mediated by the transmembrane



receptor system (Bachmann et al. 2019). In 2D culture, cell surface receptors have a
structure and spatial arrangement different from in vivo organization. This change
influences the way drugs and other substances bind to the cell, triggering varied
responses (Edmondson et al. 2014). An example is a study by Loessner et al. (2010)
in which ovarian cancer cells showed a viability decrease between 40% and 60% in
3D culture and 80% in 2D culture when exposed to paclitaxel. In this study, an
increase in the expression of surface receptor integrins a3/a5/b1 and MMP9 protease
was observed in 3D culture compared to the 2D culture model.
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Fig. 9.2 Cell culture models over time. Cells grown in monolayers, in general, have a flat shape,
not corresponding to the actual morphology. Coculture systems can mimic cellular interaction. 3D
cultures are inserted in microenvironments like in vivo, being more representative

Analyzing the metabolic profile, Russell et al. (2017) found that in 2D culture,
due to the monolayer arrangement, all the cells die when exposed to a cytotoxic drug,
while in the 3D model, the cells form a protective barrier so that only those in the
edge die. Soares et al. (2012) compared cardiac cells in 2D and 3D cultures and
observed several differences, among them structural differences. The 3D culture
showed a higher number of intercellular junctions, organized myofibrils, and pre-
served mitochondria and desmosomes, making the connection of neighboring cells
and more significant deposition of extracellular matrix. A higher frequency of
spontaneous contractions and an increase in the expression of the cardiac differen-
tiation markers cadherin, sarcomeric alpha-actin, and desmin were also observed in
the cells of the 3D model.
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Liu et al. (2021) investigated the genomic architecture of mouse hepatocytes
(AML12) in 2D and 3D cultures and observed differences in cellular organization,
cell shape, and nucleus shape. They also observed differences in genomic interac-
tions and a higher expression of genes involved in physiological processes in 3D
culture. Chen et al. (2017) observed differences in the face of genomic regions
related to structural changes in human fibroblasts grown in 3D and 2D models. More
than 3000 genes showed altered expression.

Cells in 2D culture grow in monolayers attached to a plastic surface. Due to this
arrangement, they present different morphology, physiology, interaction, and com-
munication than the cells that compose living organisms (Edmondson et al. 2014).
Thus, cells in 2D culture may be more sensitive when exposed to some substances
(Chen et al. 2017; Lv et al. 2017); moreover, in this arrangement, all the cells receive
the same amount of nutrients and growth factors, different from cells in natural
conditions (Huang et al. 2013). In general, even though it is a low-cost and widely
used practice compared to in vivo tests, 2D cultures present some limitations, mainly
due to the impossibility of mimicking tissue architecture and the cellular microen-
vironment (Hartung 2013; Kieninger et al. 2018).

Since the presumption that the culture of monolayer cells limited cell–cell
interaction and altered cell signaling, consequently causing discrepancies in the
results of tests with cell cultures and organisms, new models of cell culture began
to be studied and evaluated (Langhans 2018; Sieber et al. 2018; Chou et al. 2020;
Turnbull et al. 2018). Then, the absence of a third dimension and a concentration
gradient in the cell population in 2D models and the demand for more accurate
models have triggered further studies.

Although there are gaps between the different types of cell models, the use of cell
culture for the evaluation of new materials has been established, with varying
attempts at combinations to obtain tremendous success (Fig. 9.2). With this exhaus-
tive search for better in vitro evaluation parameters, it is possible to observe an
increase in the number of studies that bring more effective and differentiated tests
(Langhans 2018). All the advancement in this technology aims the search for study
environments that resemble the in vivo cellular environment since many clinical
trials fail in phase II and III due to safety and efficacy problems (Arrowsmith and
Miller 2013).

3D cell culture models have advantages underrepresented in 2D cultures since
they provide a complex cellular microenvironment closer to the in vivo environment,
composed of proteins and extracellular matrix glycoproteins. Moreover, depending
on the cellular composition, it is possible to simulate the signaling from other tissues
(Vinci et al. 2012; Jedrzejczak-Silicka 2017; Chaicharoenaudomrung et al. 2019). In
summary, the critical characteristic of 3D culture is the maintenance of the natural
shape of the cell, which allows heterogeneous exposure to the medium, cellular
communication, and better development (Chen et al. 2017; Lv et al. 2017). This
system can be obtained using structures produced with biocompatible material
denominated scaffolds or through the development of spheroids (Maia-Pinto et al.
2021; Saydé et al. 2021; Wang et al. 2020; Sokolova et al. 2020). In addition, it is



worth mentioning that 3D models enable better exploration of space dimensions,
providing greater cell–cell and cell–environment interactions (Fig. 9.3).
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Fig. 9.3 Schematic representation of the two most used 3D cell culture models. The material used
for the production of the scaffold may vary according to the needs of the study

In the 3D cell culture model, the cellular organization is heterogeneous; that is,
each cell is at a stage, with proliferating cells in the edges and cells in necrosis or
quiescent within the system (Langhans 2018; Bonnans et al. 2014). Due to the cell–
cell and cell–extracellular matrix interactions similar to in vivo experiments, the 3D
cell culture model has become one of the most used methods for studying drugs and
new materials (Jensen and Teng 2020).

Studies of scaffolds were introduced in the last decades, and, initially, these
structures were composed of animal biomaterials such as collagen, gelatin, and
chitosan. However, new biomaterials based on plants started to be studied and
applied over time, including pectin and cellulose derivatives. Some studies showed
that these scaffolds have favorable characteristics for developing cell cultures and
contribute to the control of contamination and the improvement of cell–matrix
interaction (Ravi et al. 2015; Campuzano and Pelling 2019; Mizoguchi et al. 2017).

Cellular interactions and communication play an essential role in several cellular
functions, such as differentiation and proliferation, vitality, gene expression,
response to stimuli, and metabolism, and are greatly influenced by the cell culture
model (Kapałczynska et al. 2018). In addition to affecting cell–cell communication,
the culture model also influences the extracellular matrix organization and its
interaction with cells (Jensen and Teng 2020). The extracellular matrix biomolecules
such as proteins, glycoproteins, and growth factors regulate cell proliferation,
migration, differentiation, adhesion, and survival (Bonnans et al. 2014; Langhans
2018). Alterations in this organization, common in 2D cell cultures, give rise to
inaccurate evaluations (Jensen and Teng 2020).
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9.2.3 Coculture Models

Coculture models enable the study of two or more cell populations of different lines,
the interactions between cell populations, exchange of substances, cell signaling or
prediction of some events, as well as the development of methods for the creation of
artificial tissues (Moraes et al. 2012; Costa and Ahluwalia 2019).

Another promising application of the coculture model, especially for nanotech-
nology, is tracking the transport of nanoparticles and other substances. These models
enable the evaluation of materials permeation through biological membranes (Costa
and Ahluwalia 2019). It is possible to assemble different models, from confluent
monolayers and bilayers to 3D cell cultures, simulating different pathways such as
pulmonary, cutaneous, and digestive, and then evaluate the permeability, transloca-
tion, and toxicity of substances and nanomaterials (Fig. 9.4).

These new evaluation methods employing cell cultures are more realistic. They
provide essential strategies for the advancement of tissue engineering studies,
discovering new drugs, organogenesis studies, and the modeling of diseases. In
addition, they follow the 3Rs principle (reduction, replacement, and refinement),
which boosts activities related to in vitro evaluation (Ravi et al. 2015; Jaroch et al.
2018). Another critical factor is that the development of 3D printing using bio-
materials enabled new study models such as tridimensional organs (Ma et al. 2021).

One of the models of great importance for the evaluation of compounds using cell
culture is the 3D coculture for the ocular surface. It is composed of rabbit conjunc-
tival epithelium and lacrimal gland spheroid cells. According to the cell organiza-
tion, Lu et al. (2017) tested different models for optical surface studies, which they
named top, bottom, and membrane. The results proved that coculture introduced a
beneficial effect on secretory function, mimicking the healthy ocular surface. This
study provided a new platform for pathophysiological studies of the ocular surface.

Nanomaterials require molecular evaluation due to their unique characteristics,
and the use of cellular cultures comes out as a great combination. Numerous studies
involving different cell culture models have been developed for this purpose, which
is increasingly well-elaborated, aiming not only for the previous assessment of
nanomaterials but also for more robust analyses (Table 9.1).

Even in the face of different strategies of cocultures and 3D cultures, to obtain
even more effective models, it is necessary to integrate different areas such as
materials, molecular biology, and computational modeling, among others (Kamm
et al. 2018). Moreover, although already used for a long time, in vitro analyses still
need improvements mainly concerning current tests involving human biometric
pathophysiology, which have a gap (Franzen et al. 2019; Ma et al. 2021). In the
future, this gap may be completed using organ-on-a-chip, which enables the repro-
duction of organs or tissues in vitro, mimicking the architecture and functionality of
in vivo systems, as an attempt to replace in vivo tests.
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9.2.4 Organ-on-a-Chip

From the year 2010, with the construction of lung-on-a-chip (Huh et al. 2010),
organ-on-a-chip systems started to be recognized with the development of several
studies involving different tissues over the years (Si et al. 2020; Ma et al. 2016;
Musah et al. 2017; Glieberman et al. 2019; Ugolini et al. 2018; Poceviciute and
Ismagilov 2019; Koo et al. 2018; Bein et al. 2018). The use of chip systems for
multi-cultures enables the control of interconnected independent cell cultures
arranged to simulate tissue and organ physiology, which cannot be accomplished
using only 2D or 3D cell cultures. This system also enables evaluating incompatible
cultures in the same model simulating a specific microenvironment, leading to the
discovery of new signaling mechanisms. The application of organ-on-a-chip models
allows molecular and immunological analyses to promise future in vitro analyses
(Ma et al. 2021; Chen et al. 2021).

Organ-on-a-chip systems enable the investigation of the toxicity of nanomaterials
and other substances intermediating preclinical models such as 2D culture and
animal models and population studies (Lu and Radisic 2021). A 3D culture system
that involves fluid flow technology simulates living organisms’ conditions with the
continuous nutrient exchange, oxygenation, gas exchange, removal of residues and
metabolites, shear stress, and other characteristics of in vivo systems. Among the
advantages of organ-on-a-chip compared with static cultures such as 2D is that this
system simulates cellular metabolism. An example is a study by Trapecar et al.
(2020) in which the metabolism and inflammatory responses of CD4 T effector cells
were observed in a multi-organ-on-a-chip model created with human hepatocytes
and Kupfer cells, mimicking the liver, and ulcerative colitis epithelium, dendritic
cells, and macrophages mimicking the gut.

Specifically, regarding the evaluation of the toxicity of nanomaterials, it is known
that the dynamism of tissues has a significant influence on their behavior (Lu et al.
2020; Lu and Radisic 2021). In this way, different organ-on-a-chip systems are being
developed, aiming at the investigation of nanomaterials effects. Huh et al. (2010)
developed a biomimetic microsystem mimicking the alveolar-capillary interface of
the human lung with human alveolar epithelial cells and microvascular endothelial
cells to investigate the toxicity of silica nanoparticles. They observed high levels of
intercellular adhesion molecule-1 (ICAM-1) expression in the underlying endothe-
lium in the microvascular channel and an increase in reactive oxygen species
production, which were intensified by mechanical stretching, suggesting that the
toxic effects of nanomaterials may be induced by physiological breathing. Zhang
et al. (2018) also developed a lung-on-a-chip system to investigate the effects of
TiO2 and ZnO nanoparticles. The system consisted of three parallel channels, with
the culture of primary human lung epithelial cells (HPAEpiCs) on one side, a layer of
3D matrigel membrane with fluid flow in the center, simulating the human lung
alveolar-capillary barrier, and vascular endothelial cells (HUVEC) on the opposite
side. An increase in the system’s permeability and the production of reactive oxygen



species were observed, especially in epithelial cells directly exposed to the
nanoparticles, and apoptosis, with more significant effects of ZnO nanoparticles.
Still focusing on the respiratory system, Chen et al. (2016) developed a human lung
microtissue array using bronchial epithelial cells BEAS-2B to investigate the
fibrogenic potential of multi-wall carbon nanotubes. After 72 h of exposure to
carbon nanotubes, an increase in the microtissue contraction force and the fibrogenic
marker miR-21 expression was observed, indicating the fibrogenic potential of the
nanomaterial.
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Directing the organ-on-a-chip model to investigate possible impacts of
nanomaterials on the cardiovascular system, Ahn et al. (2018) evaluated the effects
of TiO2 and silver nanoparticles on the cardiac contraction tissue using a 3D mussel-
inspired microphysiological model. The system consisted of bioadhesive
polydopamine (PDA)/polycaprolactone (PCL) nanofibers introduced with neonatal
rat ventricular myocytes, which developed into mature and functional cardiac tissue.
The nanoparticles caused structural damage to the tissue architecture with disruption
of the sarcomeric alignment and calcium signaling, decreasing the contractile func-
tion of the microphysiological system. Lu et al. (2020) also used a heart-on-a-chip
system to evaluate the toxicity of air pollution CuO and SiO2 nanoparticles. They
developed a 3D vascularized microfluidic system that simulates cardiac tissue with
cardiomyocytes derived from human pluripotent stem cells and human umbilical
vein endothelial cells (HUVEC) into a bioscaffold. CuO nanoparticles showed high
toxicity translocating from endothelium to cardiac tissue and causing electrical and
contractile dysfunction, whereas SiO2 nanoparticles did not translocate but induced
the release of inflammatory cytokines.

Advancing even further, the inclusion of different organs in the organ-on-a-chip
model to assess the effects of nanomaterials may present different results. Esch et al.
(2014) developed a microfluidic body-on-a-chip system to evaluate the impacts of
carboxylated polystyrene nanoparticles, combining in vitro models of the human
intestinal epithelium with the coculture of enterocytes (Caco-2) and mucin-
producing cells (HT29-MTX), and liver, with HepG2/C3A cells. When comparing
the system which combined the intestinal tract and liver to a system that simulated a
unique organ, the first one showed more significant toxic effects of the nanoparticles.
Because of this, the authors suggest the greater effectiveness of multi-organ in vitro
models for nanomaterials toxicity assessment.

Another essential point to be evaluated for the specific study of nanomaterials
are the biomarkers, which can be safely employed to investigate how inert or
potentially toxic a nanomaterial is. According to Salieri et al. (2020), there is a
tendency to conduct more in vitro evaluations to replace in vivo tests in the future.
However, new study strategies are necessary to use better data provided by in vitro
analyses.
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9.3 Inflammatory Effect Biomarkers of Exposure
to Nanoparticles

Inflammatory effects occasioned by the exposure of cell cultures to nanomaterials
are generally assessed by analyzing the release of soluble factors such as cytokines,
chemokines, and growth factors by enzyme-linked immunosorbent assay (ELISA),
with detection through flow cytometry or microplate reader (Drasler et al. 2017).
Some studies have evaluated inflammatory responses using the ELISA assay with
inflammatory markers, such as that performed by Huk et al. (2014), who investigated
the inflammatory effects of silver nanoparticles (50, 80, and 200 nm) coated by
polyvinylpyrrolidone (PVP) through the analysis of IL-8 and MCP-1 biomarkers in
human lung carcinoma epithelial cells (A549). Greulich et al. (2011) quantified the
release of the pro-inflammatory cytokines IL-6, IL-8, and TNF-α, the anti-
inflammatory IL-1ra, and the IL-2 and IL-4 cytokines derived from T cells exposed
to silver nanoparticles. Hackenberg et al. (2011) also quantified the release of the
inflammatory cytokines IL-6 and IL-8 and the vascular endothelial growth factor
(VEGF) in human mesenchymal stem cells silver nanoparticles exposed.

The evaluation of inflammatory proteins is widely used in studies of
nanomaterials; however, it is still subject to interference from the evaluated
nanomaterial, as it can interact with the culture medium or with the marker proteins.
In addition, it is crucial to work with concentrations below the limit of cytotoxicity
since a cytotoxic nanomaterial reduces cell viability and consequently reduces the
release of cytokines, causing false-negative results (Drasler et al. 2017).

Due to the previously addressed problem, some authors prefer to use gene
expression analyses, such as those performed by Shannahan et al. (2015), who
evaluated the expression of the inflammatory marker TNF-α in mouse macrophages
(RAW264.7) exposed to silver nanoparticles with and without protein corona. The
assay consisted of the exposure of macrophages to the nanoparticles for 6 h,
followed by the extraction of total RNA, reverse transcription for cDNA, and real-
time PCR to quantify TNF-α. Cheng et al. (2020) evaluated the expression of the
pro-inflammatory cytokine genes IL-1β and IL-6 and the chemokines CXCL1,
CXCL2, CXCL3, CCL20, and CXCL8 in keratinocytes differentiated from embry-
onic stem cells exposed to ultrafine carbon nanopowder.

The pro-inflammatory potential of Al2O3, SiO2, and CeO2 nanoparticles was
evaluated using a mouse alveolar macrophage cell model. The evaluation of the
pro-inflammatory markers TNF-α, IL-1β, and IL-6 expression was performed, as
well as the quantification of IFN-γ, IL-12p70, IL-1β, IL-6, IL-10, TNF-α, and mouse
keratinocyte chemoattractant (KC) in the cell culture supernatant, using the Mouse
ProInflammatory 7-Plex Ultra-Sensitive kit (Flaherty et al. 2015). The quantification
of TNF-α, IL-1β, IL-8, and IL-6 markers in a 3D reconstruct of human bronchial
tissue was performed by Di Cristo et al. (2020) after repetitive exposures to graphene
oxide nanomaterial. The model simulated prolonged and repetitive human occupa-
tional exposure to the nanomaterial by nebulization using an air–liquid interface
culture for 30 days. In this way, biomarkers are widely used for the evaluation of



nanoparticles. Some examples of studies that used biomarkers are shown in
Table 9.2.
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9.4 Evaluation of Genic Mutations for Exposure
to Nanoparticles—Genetic Markers

In addition to the detection of biological markers that indicate inflammation trig-
gered by cell exposure to nanomaterials, it is also possible to identify mutations
through genetic features. Genes such as Tk (thymidine kinase) and Hprt (hypoxan-
thine guanine phosphoribosyltransferase) may be used to evaluate genetic mutations
occasioned by nanomaterials (Kazimirova et al. 2020; Du et al. 2019; Doak et al.
2012).

Mouse lymphoma cell line L5178Y/Tk+/- (MLA) is employed to evaluate
mutagenicity using the TK gene. At a specific time after exposure,
trifluorothymidine (TFT), an analog of thymidine, is added to the cell culture, and
then, only the cells that have undergone TK mutation in the presence of the
nanocomposite can form colonies (Chen et al. 2014a; Demir and Castranova 2016;
Du et al. 2019).

The test for mutation evaluation with the Hprt gene is performed according to the
standardization proposed by the OECD Guidelines for the Testing of Chemicals
476 (OECD 2016) using 6-thioguanine (6-TG), a toxic guanine analog (Huk et al.
2014). Kazimirova et al. (2020) investigated the mutagenic effects of titanium
dioxide anatase/rutile nanoparticles on different dispersions of V79–4 cell lines
through the mammalian heart gene mutation test. Huk et al. (2014) used the same
technique to evaluate the effects of polyvinylpyrrolidone (PVP) coated silver
nanoparticles with different sizes (50, 80, and 200 nm) on the V79–4 cell line.
Table 9.3 shows some studies that used the genes hprt, tk, and other genetic markers
to detect the mutagenicity of different nanomaterials on in vitro cell cultures.

9.5 Conclusion

The emergence of nanotechnology has led to greater attention to new in vitro culture
techniques. In addition to studies focused on the impact of the environment and
health, it has also been necessary to improve molecular studies for more excellent
knowledge of this new material. Therefore, different in vitro assays have developed
an increasingly more effective approach to in vivo systems, which has led to a
reduction in animal experimentation.

Coculture, 2D, 3D models, and new organ-on-a-chip models, together with a
greater understanding of biomarkers, place in vitro analysis as one of the main tests
that can safely assess the effects of nanomaterials, as well as collaborate to evaluate
their inflammatory potential.
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Table 9.3 Genic mutation biomarkers for evaluation of nanomaterials effects on in vitro cell
cultures

Nanomaterial Cell line Genic mutation biomarker References

TiO2 nanoparticles Human Hypoxanthine guanine Wang et al.
lymphoblastoid cells
(WIL2-NS)

phosphoribosyltransferase
(hprt)

(2007)

Ni and NiO
nanoparticles

Human bronchial
epithelial cells
(HBEC3-kt)

Hprt Åkerlund et al.
(2018)

Cd/Se semiconductor
quantum dots

Human
lymphoblastoid-B
cells (TK6)

Hprt Manshian et al.
(2016)

TiO2 nanoparticles Chinese hamster lung
fibroblasts (V79)

Hprt Chen et al.
(2014b)

TiO2 nanoparticles V79 Hprt Kazimirova et al.
(2020)

Multi-wall carbon
nanotubes (NM401)

V79 Hprt Rubio et al.
(2016)

Ag nanoparticles
coated with PVP

V79 Hprt Huk et al. (2014)

TiO2 nanoparticles Chinese hamster
ovary cells
(CHO-K1)

Hprt Wang et al.
(2011)

TiO2 nanoparticles V79 Hprt Jain et al. (2017)

Multi-wall carbon
nanotubes

Chinese hamster lung
cells (CHL/IU)

Hgprt Asakura et al.
(2010)

TiO2 nanoparticles Mouse lymphoma
cells (L5178Y)

Thymidine kinase (tk) Du et al. (2019)

Ag nanoparticles L5178Y Tk Mei et al. (2012)

Ag nanoparticles L5178Y Tk Kim et al. (2010)

Poly(anhydride)
nanoparticles

L5178Y Tk Iglesias et al.
(2017)

Tungsten carbide–
cobalt (WC–Co)
nanoparticles

L5178Y Tk Moche et al.
(2014)

Multi-wall carbon
nanotubes

Mouse embryonic
stem cells (ES)

Adenine
phosphoribosyltransferase
(aprt)

Zhu et al. (2007)

Zinc oxide
nanoparticles

Human-hamster
hybrid cells (AL)

CD59 Wang et al.
(2015)
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