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Chapter 15
Sulforaphane-Loaded Nanomedicines
Applications: Trends on Inflammatory
Diseases and Cancer Treatment

Mônica Helena Monteiro do Nascimento, Naially Cardoso de Faria,
and Daniele Ribeiro de Araujo

Abstract Sulforaphane (SFN), a natural isothiocyanate derivative, has been exten-
sively studied as therapeutic compound. Different cellular pathways were described
for explaining its promising pharmacological effects such as anti-inflammatory,
antitumoral, and antioxidant. In this sense, several studies have investigated SFN
as single or in association with conventional drugs, specially as anti-inflammatory
and antitumoral. In this sense, new strategies for delivering SFN have been discussed
for overcoming physicochemical and/or biopharmaceutics limitations by using
a variety of nanocarriers types such as micelles, polymeric/lipid/inorganic
nanoparticles, nanocomposites, and gels. In this chapter, a discussion associating
SFNmolecular mechanisms of action with its potential pharmacological applications
and the main nanocarriers for SFN delivery are provided, highlighting the relation-
ships between biological synthesis, pharmacological aspects, and the new nanotech-
nological strategies for developing effective and safe pharmacotherapeutic
alternatives.
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Abbreviations

CSCs Cancer stem-like cells

15.1 Sulforaphane: Biological Synthesis and Metabolism
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ARE Antioxidant response element

EOC Epithelial ovarian cancer cell
ER Estrogen receptor
GLS Glycosinolates
GRR Glycorafanine
GSH Glutathione
GST Glutathione S-transferase
HO-1 Heme-oxygenase-1
ICT Isothiocyanates
MMPs Metalloproteinases
NfkB Nuclear factor kappa B
NQO1 Quinone oxidoreductase 1
Nrf2 Nuclear factor erythroid 2-related factor 2
NSCLCs Non-small cell lung cancers cells
PC-3 Human prostate cancer cells in culture
PC-3 Human prostate cancer cells in culture
ROS Reactive oxygen species
SFN Sulforaphane
TNBC Triple-negative breast cancer
γGCL γ-Glutamylcysteine ligase

Sulforaphane (SFN) [1-isothiocyanate-(4R)-(methylsulfinyl) butane] (Fig. 15.1a) is
a natural compound widely studied since 1980 (Guerrero-Beltrán et al. 2012). It
belongs to the group of isothiocyanates (ICT) phytochemicals and is found in
abundance in cruciferous vegetables. These plants belong to the Brassicaceae
family, which has about 350 genera and 3200 species, including broccoli (Brassica
oleracea var. italica), white cabbage (Brassica oleracea var. capitata), cauliflower
(Brassica oleracea var. Botrytis), Brussels sprouts (Brassica oleracea var.
gemmifera), watercress (Nasturtium officinalis), white mustard (Sinapis alba), aru-
gula (Eruca sativa), and radish (Raphanus sativus) (Fahey et al. 2001, 2015).
Among them, broccoli and, in particular, its sprouts, have the greatest potential for
extracting SFN (Totušek et al. 2011).

In fresh vegetables, SFN is obtained from the hydrolysis of glycorafanine (GRR),
a secondary metabolite of glycosinolates (GLS) family, also called sulforaphane
glycosinolate, from the catalytic activity of the enzyme myrosinase (Pérez et al.
2014). When vegetable tissues are processed by cutting, cooking, freezing, or
chewing, GLS are exposed to the action of the enzyme myrosinase, which



hydrolyzes them to isothiocyanates, which are the bioactive compounds (Fig. 15.1).
The β-thioglucoside bond is hydrolyzed by myrosinase, producing glucose, sulfate,
and a diverse group of aglycone products. The resultant aglycones then undergo
nonenzymatic, intramolecular rearrangement to yield isothiocyanates, thiocyanates,
or nitriles (Fig. 15.1).

In addition, the human intestinal flora is also capable of converting GLS into
isothiocyanates with biological activity, as it has an isoform of the enzyme
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Fig. 15.1 Sulforaphane biological synthesis reaction

myrosinase, but hydrolysis in the intestinal tract manages to convert only between
14 and 20% of glucoraphanin in sulforaphane (Fahey et al. 2001; Rungapamestry
et al. 2007; Van Eylen et al. 2007).

Some factors, such as basic pH and high temperatures, favor the formation of
SFN from GRR, while acidic pH, the presence of ferrous ions and proteins
(non-catalytic co-factors of the enzyme myrosinase) increase the nitrile formation
of SFN which has no potential activity. However, the main determinant for
isothiocyanates production from their precursor GLS is the way the vegetable is
cooked. In this sense, the consumption of lightly cooked vegetables over overcooked
vegetables is preferable. Additionally, the composition of the meal does not seem to
alter the bioavailability of the SFN (Rungapamestry et al. 2007; Williams et al.
2008).

Broccoli is recognized as the best source of SFN, a portion can contain up to
60 mg of the precursor GRR (Rungapamestry et al. 2007). The ideal cooking
condition that maximizes the SFN content in broccoli was determined by Pérez
et al. (2014) and corresponds to immersion in water at 57 °C for 13 min. In this



15.2 Cellular and Molecular Mechanisms of Action

condition, the minimum content of GLS and GRR was observed and the mirosinase
showed its maximum activity. Fresh young broccoli sprouts contain 128 mg of GLS
per gram of fresh weight, in contrast, blanched broccoli contained only 92 mg,
cooked broccoli contained 47 mg, and frozen broccoli contained 45 mg per gram of
fresh weight (Cieślik et al. 2007; Vanduchova et al. 2019). The determination of
SFN from plant tissues or functional foods is based mainly on analysis by high-
performance liquid chromatography (Vanduchova et al. 2019).

After ingestion, SFN is formed inside the gastrointestinal tract reversibly binding
to thiols, organosulfur compounds that contain a group –SH. Then, they are
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transported by plasma proteins to cross the plasma membrane, by passive diffusion,
entering tissue cells. After internalization, the ITCs will react with glutathione
(GSH), forming its conjugate (S-(N-alkyl/arylthiocarbamyl)-glutathione), this reac-
tion is catalyzed by the enzyme glutathione S-transferase (GST). The glutathione
conjugate is released to the outside of cells through carrier proteins or MRPs
“multidrug resistance proteins.” In the middle extracellular, glutathione conjugated
to γ-glutamyl and glycine residues, will be cleaved by the enzyme γ-glutamyl
transferase (γ-GT) and dipeptidase giving rise to a cysteine conjugate that will be
transported to the liver. Finally, the conjugate of cysteine, under the action of the
enzyme N-acetyl transferase, will become mercapturic acid (Yagishita et al. 2019;
Langston-Cox et al. 2020). After the formation of mercapturic acid, it is then
transported to the kidney, where it will be eliminated (Yagishita et al. 2019;
Langston-Cox et al. 2020).

In the last years, the interest in extraction, isolation, and characterization of the
biological activity of compounds from broccoli have been demonstrated by several
published works, with the majority of studies dedicated to the analysis of GLS and
related compounds, especially SFN (Singh and Singh 2012; Gupta et al. 2014;
Mishra et al. 2019).

SFN cell signaling pathways are dependent on different molecular targets; how-
ever, their best-described mechanism of action is via the Nrf2 pathway (Kensler et al.
2012; Wu et al. 2019; Yagishita et al. 2019; Yang et al. 2020) (Fig. 15.2). Nrf2 is a
central transcription factor with a central role on cellular redox process. In
unstimulated cells, it is repressed by the protein Keap1, which causes the
ubiquitination and subsequent degradation of Nrf2. SFN can interact with the
Keap1 protein, disrupting the Nrf2–Keap1 interaction, allowing the nuclear activa-
tion and translocation of Nrf2. In the nucleus, Nrf2 binds to the antioxidant response
element (ARE), a DNA region that promotes genes encoding antioxidant enzymes,
including NAD (P) H: quinone oxidoreductase 1 (NQO1), heme-oxygenase-1
(HO-1), γ-glutamylcysteine ligase (γGCL), and thioredoxin (Vomhof-DeKrey and
Picklo 2012) (Fig. 15.2).



The enhanced transcription of Nrf2 target genes causes a strong cytoprotective
response, increasing resistance to carcinogenesis and other diseases that have oxi-
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Fig. 15.2 Proposed molecular mechanism for sulforaphane anti-inflammatory activity through the
NF-кB pathway

dative stress involved in pathogenesis, including neurodegenerative and chronic
inflammatory diseases, such as colitis, atopic dermatitis, osteoarthritis (Nascimento
et al. 2021; Kensler et al. 2012). In addition, SFN through the activation of Nrf2
increases the activity of phase II enzymes such as glutathione-S transferase (GST),
involved in the elimination of xenobiotic compounds (Guerrero-Beltrán et al. 2012).
It is suggested that the induction of phase II enzymes may be one of the main
mechanisms by which cruciferous vegetables result in health benefits (Manchali
et al. 2012).

Recently, several studies have shown that the SFN also has an anti-inflammatory
activity, acting through the NF-кB pathway (Fig. 15.2).

The main mechanisms involved in the regulation of NF-кB signaling by SFN
compresses the inhibition of phosphorylation and/or degradation of IkB, phosphor-
ylation of IKK, and nuclear translocation of NF-кB (Fig. 15.2). All these mecha-
nisms are described in the literature, in different cell types (Xu et al. 2005; Kim et al.
2012; Davidson et al. 2013, 2017). In a study using macrophages (cell line RAW
264.7), lipopolysaccharide-induced inflammation (LPS) was attenuated with SFN,



15.2.1 Therapeutic Applications

which negatively regulated the activity of the enzymes iNOS, COX-2, and the
expression TNF-α (Heiss et al. 2001). Likewise, SFN reduced the synthesis of
inflammatory mediators, such as interleukin IL-1β, TNF-α, and IL-6, induced by
LPS, in primary microglial and rat astroglial cell co-cultures (Wierinckx et al. 2005).
SFN also has anti-arthritic and immunoregulatory activity thus inhibiting synovial
hyperplasia and the proliferation of activated T cells (Kong et al. 2010). In addition,
it inhibits the expression of metalloproteinases (MMPs), as well as regulates the cell
cycle keeping it in the G2/M phase, blocking joint degeneration both in vitro and
in vivo (Heiss et al. 2001; Kim et al. 2009; Davidson et al. 2013, 2017).
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This section presents and discusses relevant publications based on the progress in the
design of SFN protective effect in a variety of in vivo pathologies as well as in
in vitro studies on in vitro/in vivo experimental models, as summarized in
Table 15.1.

The consumption of isothiocyanates, especially SFN, through the diet is directly
related to the decreased risk of certain types of cancer, including lung, pancreas,
ovarian, breast, prostate, colon, and bladder. It can act on multiple pathways:
inhibiting growth, and proliferation of cancer cells, inducing apoptosis, inhibiting
angiogenesis, and cell cycle as well as metastasis formation (Gupta et al. 2014;
Kamal et al. 2020). In addition to acting as a chemopreventive, it also can act as an
antineoplastic treatment (Singh and Singh 2012; Aumeeruddy and Mahomoodally
2019; Kamal et al. 2020).

Singh et al. (2005) demonstrate that SFN inhibited the growth of human prostate
cancer cells in culture (PC-3), through the administration of 20 μM for 24 h,
inducing apoptosis initiated by reactive oxygen species (ROS) generation (Singh
et al. 2005). Similarly, Choi et al. (2007) also demonstrate the SFN effect on PC-3
and LNCaP prostate cancer cell lines. The in vitro treatment promoted the inactiva-
tion of inhibitors of apoptosis proteins (IAP-family) (Choi et al. 2007).

The effects of SFN treatment have also been evaluated in human bladder cancer
T24 cell (Shan et al. 2006). Treatment with 10–40 μM SFN for 24 and 48 h
significantly inhibited proliferation in a dose-dependent manner and also induced
early apoptosis of T24 cell in a lower level of (5 μM) treatment (Shan et al. 2006).

SFN also inhibited cell growth and death in several human breast cancer cell
lines, representative of a wide range of breast tumor phenotypes (MDA-MB231,
MDA-MB-468, MCF-7, and T47D cells), by the inhibition of estrogen receptor
(ER), EGFR1 and HER2, which are particularly important for the growth of breast
cancer (Pledgie-Tracy et al. 2007). Another approach studied the effect of SFN on
the inhibition of growth in breast ductal carcinoma (ZR-75-1) cells (Cheng et al.
2019). They demonstrated a cell cycle arrest (G1/S) caused by the downregulation of
SERTAD1 gene expression by reducing the CDK4 activity in breast cancer cells
(Cheng et al. 2019). Other in vitro and in vivo recent investigations reveal that SFN



(continued)
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Table 15.1 Sulforaphane anticancer and anti-inflammatory cellular and molecular mechanisms
described in in vitro and in vivo models

Organ/tissue Pathology Cellular and molecular mechanisms References

Bladder Cancer Inhibited the proliferation and induced apo-
ptosis of T24 cells in vitro

Shan et al.
(2006)

Breast Cancer Inhibition of cell growth (G2-M cell cycle
block) and induction of apoptosis in multiple
breast cancer cell lines

Pledgie-
Tracy et al.
(2007)

Breast Cancer SFN-paclitaxel-induced apoptosis by
inhibiting the overexpression of Bcl-2

Kim et al.
(2017)

Breast Cancer SFN enhanced the efficacy of doxorubicin in
suppressing breast tumor growth

Bose et al.
(2018)

Breast Cancer Inhibited the proliferation by G1/S arrest in
breast carcinoma (ZR-75-1) cells

Cheng et al.
(2019)

Breast Cancer Triple-negative breast cancer (TNBC) prolif-
eration was suppressed in in vitro and in vivo
models

Castro et al.
(2019)

Colon Cancer Induction of G1-phase cell cycle arrest in
HT-29 cells

Shen et al.
(2006)

Colon Cancer Synergistic cytotoxicity effect with curcumin
and dihydrocaffeic acid

Santana-
Gálvez et al.
(2020)

Digestive Cancer Suppression of migration and cell invasion in
oral carcinoma

Jee et al.
(2011)

Lung Cancer Arrest of cell migration and invasion
avoiding metastasis of lung cancer

Wang et al.
(2017)

Lymphoblastic
leukemia

Cancer Inhibition of lymphoblastic leukemia, induc-
ing cell cycle arrest

Suppipat
et al. (2012)

Ovarian Cancer SFN induces growth arrest and apoptosis
epithelial ovarian cancer cell (EOC) line

Bryant et al.
(2010)

Ovarian Cancer Inhibition of ovarian cancer progression via
cell cycle and apoptosis

Kan et al.
(2018)

Pancreas Cancer Inhibited human pancreatic carcinogenesis,
reducing proliferation and tissue invasion

Li et al.
(2013)

Prostate Cancer Induced apoptosis in PC-3 cells by ROS
generation

Singh et al.
(2005)

Prostate Cancer Inactivation of inhibitors of apoptosis induc-
ing the death of human prostate cancer cells

Choi et al.
(2007)

Cartilage Rheumatoid
arthritis

Pro-inflammatory cytokines reduction and
synovial hyperplasia in vitro and in vivo
models

Kong et al.
(2010)

Cartilage Osteoarthritis/
rheumatoid
arthritis

Inhibition of cytokine-induced
metalloproteinase expression in human
chondrocytes and synovial cells

Davidson
et al. (2013)

Cartilage Osteoarthritis SFN-rich diet can provide chondroprotection Davidson
et al. (2017)



can inhibit malignant cell proliferation and tumor sphere formation of cancer stem-
like cells (CSCs) in triple-negative breast cancer (TNBC) model (Castro et al. 2019).

Some studies have shown SFN to be effective in preventing ovarian cancer,
another important gynecologic cancer-associated mortality. Kan et al. (2018) inves-
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Table 15.1 (continued)

Organ/tissue Pathology Cellular and molecular mechanisms References

Skin Atopic
dermatitis

Inhibition of IFN-γ and TNF-α-induced pro-
duction of TARC/CCL17 and MDC/CCL22
in human HaCaT cells by inhibition of
NF-κB pathway

Jeong et al.
(2010)

Skin Skin
inflammation

Reduced inflammation scores in atopic der-
matitis mice model

Wu et al.
(2019)

tigation indicated that SFN effectively suppressed ovarian cancer cells (A2780 and
OVCAR lines) proliferation, migration, and cell cycle progression, and also enhance
apoptosis (Kan et al. 2018). SFN also inhibited the growth of epithelial ovarian
cancer cell (EOC) (MDAH-2774 and SkOV-3 line) in vitro by the modulation of cell
cycle regulatory proteins and by increasing apoptosis (Bryant et al. 2010).

SFN was able to regulate the cell cycle and inhibit its proliferation in other types
of cancer. Suppipat et al. (2012) investigated in vitro the SFN activity in lympho-
blastic leukemia cells, noting that after exposure of 15 μM for 1 day, these cells
undergo cell cycle arrest and apoptosis thus preventing their multiplication and
invasion to other tissues (Suppipat et al. 2012). Shen et al. (2006) detected the
antiproliferative effects of SFN in the human colon carcinoma cell line, HT-29, by
blocking the cell cycle at G1 (Shen et al. 2006).

As another important feature, SFN also induces anti-metastatic effects by
suppressing cell migration and invasion. Li et al. (2013) studied the hypothesis of
SFN acting on the malignant cells of pancreas in vivo (Li et al. 2013). Having
verified, that with the administration of a dose between 0–20 mg/kg in mice over a
6-week period, the cell carcinogens were suppressed. SFN also inhibited cell
migration and invasion through blockade of miR-616-5p expression and suppression
of the epithelial-mesenchymal transition (EMT) process in non-small cell lung
cancers (NSCLCs) cells (Wang et al. 2017). Jee et al. (2011) demonstrated that the
anti-cell migratory effect of SFN was associated with MMPs suppression of human
oral squamous cell carcinoma (Jee et al. 2011).

Nowadays, combination therapy has become the hallmark of different types of
cancer treatment due to the disease progression after monotherapeutic treatments. In
this context, the SFN has combined effect with other medicinal agents to act
synergistically against cancer (Kim et al. 2017; Bose et al. 2018; Aumeeruddy and
Mahomoodally 2019; Mangla et al. 2019; Santana-Gálvez et al. 2020). A study by
Kim et al. (2017) test the combination of SFN and paclitaxel and observed an
increase in the activation of apoptotic signaling pathway members (caspase-3,
caspase-8, and caspase-9 and cytochrome c) (Kim et al. 2017). In addition, the
combined treatment downregulated the NF-кB signaling pathway, reducing the



protein expression of the apoptosis regulator genes of breast cancer. Bose et al.
(2018) determined in a rats model, that SFN reduces DOX cardiotoxicity through
Nrf2 activation while enhancing the killing of cancer cells by DOX (Bose et al.
2018). Another approach evaluated the effect of SFN, curcumin (C), and
dihydrocaffeic acid (D, a chlorogenic acid metabolite) individually and in different
combinations, over the viability of human colon cancer cells (HT-29 and Caco-2)
(Santana-Gálvez et al. 2020). The best combination was SFN-D (1:1) since it was
both synergistic and significantly more cytotoxic for colon cancer cells than healthy
colon cells.

Several studies have shown that SFN exhibits anti-inflammatory activity by
inhibiting NF-κB translocation and through the activation of Keap1/Nrf2 pathway,
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a mechanism that interrupts inflammatory signals to the nucleus (Vanduchova et al.
2019). Some approaches have presented SFN anti-arthritic and immunoregulatory
activity (Table 15.1) (Kong et al. 2010; Davidson et al. 2013, 2017; Du et al. 2020).
Kong et al. (2010) demonstrated that SFN inhibits synovial hyperplasia, activated T
cell proliferation, and the production of IL-17 and TNF-α by rheumatoid arthritis
(RA) T cells (Kong et al. 2010). Moreover, in a mouse model, SFN suppressed
chronic autoimmune arthritis, inducing apoptosis in the proliferating synovium, at a
high dose (200 μM). Another RA study revealed that activating Nrf2 by SFN
profoundly inhibited the TNF-α-induced proliferation invasion, and MMPs expres-
sion in RA-fibroblast-like synoviocytes (RA-FLS) (Du et al. 2020). In
pro-inflammatory cytokine-stimulated osteoarthritis (OA) study, SFN was able to
suppress PGE2 or NO production from articular chondrocytes and inhibit proteo-
glycan and type II collagen degradation (Kim et al. 2012). The chondroprotective
effect of SFN was also demonstrated by Davidson et al. (2013). SFN inhibits the
expression of key MMPs implicated in OA, prevents inflammation at NF-кB
pathway, and protects against cartilage destruction in vitro and in vivo (Davidson
et al. 2013). Davidson et al. (2017) also conducted a human study to determine the
detection of dietary isothiocyanates (ITCs) in knee joint (OA) patients and identify
changes in the joint tissues. They demonstrate that a dietary bioactive with
chondroprotective properties reaches the synovial fluid at concentrations with bio-
logical impact on the articular joint tissues (Davidson et al. 2017).

SFN has also attenuated other types of chronic inflammatory diseases
(Table 15.1). Wu et al. (2019) demonstrated that SFN can reduce the level of
inflammation in the skin of the atopic dermatitis (AD) mice model, reducing the
accumulation of eosinophils and mast cells in the epithelial tissue (Wu et al. 2019).
The effective target of SFN for the treatment of inflammatory skin diseases was also
demonstrated by the downregulation of chemokines (TARC/CCL17 and
MDC/CCL22) production in human keratinocytes (HaCaT) by inhibition of
NF-κB activation (Jeong et al. 2010). Recently, the protective effects of SFN on
brain health have been also demonstrated (Table 15.1) (Schepici et al. 2020). Hou
et al. (2018) investigated the potential effects of SFN on amyloid-β (Aβ—a striking
feature of Alzheimer’s disease (AD) oligomer generation) (Hou et al. 2018). In vitro
SFN improved cell viability and preserved dendritic length and in vivo SFN
improved cognitive deficits, inhibited aggregation, and tau hyperphosphorylation,



15.2.1.1 Sulforaphane and Their Therapeutic Associations: Trends
on Nanomedicines for Cancer Treatment

as well as reduced the oxidative stress and neuroinflammation. SFN can also exert
anti-inflammatory effects, reducing the neuronal damage mediated by microglial
activation and reducing the synthesis of inflammatory mediators such as IL-1β,
TNF-α, IL-6, and COX-2 (Klomparens and Ding 2019).
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Nanomedicine-based pharmacotherapy has been widely studied as innovative strat-
egy for SFN delivery, especially for cancer treatment. In fact, its promising antican-
cer effects have driven efforts to overcome some limiting physicochemical
properties such as chemical stability and low bioavailability (Tian et al. 2015;
Wang and Bao 2021). In general, recent reports describe the development of new
delivery systems, considering different routes of administrations and positions, but
main innovations are related to their association with other drugs such as currently
used anticancer therapies (docetaxel and cisplatin) and non-conventional drugs
(acetylsalicylic acid, curcumin). This section will discuss the development and the
main results obtained from those studies. Some of them are summarized in
Table 15.2.

In the last years, several nanocarriers have been designed for SFN delivery,
including polymeric, metallic, and lipid nanoparticles, micro and nanoemulsions,
gels, and carbon dots. Among the most reported strategies authors propose the
treatment of pancreatic cancer by oral route, which is considered an important factor
to increase patient compliance. In this sense, Grandhi et al. (2013) reported the
synthesis of solid lipid nanoparticles composed of stearic acid, as lipid phase, and
poloxamer 188 as emulsion stabilizer, for encapsulating acetylsalicylic acid,
curcumin, and SFN (Grandhi et al. 2013). The whole system chemopreventive
effects were studied by N-nitrosobis-induced pancreatic cancer animal model,
being effective at lower doses compared to other therapies, as well as reduced
adverse reaction to the treatment. In another report, the same drug triad was used
for avoiding pancreatic cancer progression by encapsulating them in a similar
nanocarrier. However, chitosan was used as a stabilizer agent instead of poloxamer
188 to achieve best in vivo performances due to its positive charges, especially
regarding bioadhesion to the small intestine and reduced uptake by the reticuloen-
dothelial system (Thakkar et al. 2016). The use of non-steroidal anti-inflammatory
drugs in association with SFN was also reported by the same authors. Ibuprofen was
encapsulated into solid lipid nanoparticles with different lipid compositions, such as
tripalmitin, stearic acid, and Compritol, stabilized by poloxamer 188 or tween 80. In
this case, the ibuprofen-loaded nanoparticles and SFN coadministration showed
synergistic effects by inhibiting the viability of human pancreatic cells (Thakkar
et al. 2015).

In a more recent study, the association of curcumin and SFN was assessed by
developing an ethosomal nanogel for skin cancer treatment. Although the study
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Table 15.2 Summary of formulations sulforaphane (SFN)-loaded nanocarriers systems, their
composition, and main results aiming cancer treatment

Nanomaterial Composition Main results References

Carbon dots SFN-conjugated carbon dots
with thiourea groups

Enhanced targeting and imag-
ing of epidermal growth factor
receptor-overexpressing lung
cancer cells

Lu et al.
(2019)

Lipid
nanoparticles

Nanostructured lipid carriers
(Precirol®, ATO5, and
Transcutol®)

Tamoxifen-SFN-
coencapsulated nanoparticles
showed increased intestinal
permeability, oral bioavailabil-
ity, and reduced in vivo toxicity

Mangla
et al.
(2020)

Metallic
nanoparticles

Iron oxide–gold core-shell
nanoparticles

Induction of apoptosis in
human breast cancer cells
(MCF-7) with decreased
expression of Bcl-2 and Bcl-xL

Manjili
et al.
(2016)

Metallic
nanoparticles

PEGylated gold-coated iron
oxide nanoparticles

SFN-curcumin co-loaded
metallic nanoparticles evoked
apoptosis in breast cancer cells

Danafar
et al.
(2017a)

Metallic
nanoparticles

Gold nanoparticles Enhanced cytotoxicity for
B16-F10, MCF-7, SW-620,
and Caco-2 cells and perme-
ation across intestinal barrier

Soni and
Kohli
(2019)

Metallic
nanoparticles

Tellurium flower-like
nanoparticles

In vitro significant reduction of
breast cancer cells viability and
in vivo pancreatic
accumulation

Krug et al.
(2020)

Micelles Monomethoxypoly (ethylene
glycol)–poly(ε-caprolactone)

Enhanced cytotoxicity against
human breast cancer cells
(MCF-7)

Danafar
et al.
(2017b)

Micelles Poly caprolactone–polyeth-
ylene glycol–poly
caprolactone

Cytotoxic effects in MCF-7,
4T1 and MCF10A cells medi-
ated by apoptotic events via
BCL-2. SFN-loaded micelles
evoked reduction in tumor
dimensions and prolonged the
drug mean residence time

Kheiri
Manjili
et al.
(2017)

Nanocomposites Silk fibroin in cerium-oxide-
carbon dots

Theranostic strategy with
enhanced efficacy and imaging
in lung cancer cells

Passi et al.
(2020)

Nanogel Ethosomal gel Enhanced efficacy against
B16-F10 murine tumor cells for
skin cancer treatment

Soni and
Kohli
(2019)

Peptide
nanoparticles

Prolamin-based nanoparticles
stabilized by sodium casein-
ate and propylene glycol
alginate

SFN-encapsulated for colon-
specific delivery showed
controlled-release rate in simu-
lated gastrointestinal fluid

Wang and
Bao
(2021)

Polymeric
nanoparticles

Poly-lactide-co-glycolide-
hyaluronic acid-nanoparticles

Docetaxel-SFN dual delivery
was cytotoxic in docetaxel-
resistant breast cancer stem
cells and reduced β-catenin
expression

Huang
et al.
(2016)
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Table 15.2 (continued)

Nanomaterial Composition Main results References

Polymeric
nanoparticles

Poly-L-glutamic acid–cis-
platin conjugates

Cisplatin-SFN-nanoparticles
showed enhanced cell internal-
ization, tumoral accumulation,
and antitumor effects

Xu et al.
(2019)

Solid lipid
nanoparticles

Stearic acid stabilized by
poloxamer 188

Association of acetylsalicylic
acid, curcumin, and
SFN-encapsulated in solid lipid
nanoparticles with synergistic
antitumor activity in pancreatic
cancer animal model

Grandhi
et al.
(2013)

Solid lipid
nanoparticles

Stearic acid, Compritol
888 ATO, or tripalmitin sta-
bilized by poloxamer
188, tween-80

SFN-ibuprofen-loaded solid
lipid nanoparticles showed
synergistic cytotoxic effects in
in vitro pancreatic cancer cells

Thakkar
et al.
(2015)

Solid lipid
nanoparticles

Stearic acid stabilized by
chitosan

Acetylsalicylic acid, curcumin,
and SFN-encapsulated with
low toxicological profile and
enhanced intestinal
bioadhesive properties for pan-
creatic cancer treatment

Thakkar
et al.
(2016)

reports mainly physicochemical aspects, promising antitumor effects were achieved
after B16-F10 cell treatment (Soni et al. 2020).

In other reports, the association of SFN with conventional anticancer therapy has
also shown promising results. For example, SFN-docetaxel co-loaded PLGA-
hyaluronic acid polymeric nanoparticles were studied for avoiding the initiation
and progression of breast cancer, including possible metastasis episodes. In this
in vitro study, breast cancer stem cells with recognized docetaxel-resistant pheno-
type were treated with both drugs docetaxel and SFN, where SFN-loaded
nanoparticles induced more pronounced cytotoxic effects than that compared to
non-encapsulated drugs and, additionally, reduced the expression of β-catenin. In a
complementary way, in vivo tests revealed an enhanced antitumor efficacy by SFN
and docetaxel-loaded nanoparticles (Huang et al. 2016).

The synergistic effects of SFN with tamoxifen were also investigated for breast
cancer therapy. In an attempt to avoid the extensive tamoxifen first-pass metabolism,
Mangla et al. (2019) developed nanostructured lipid carriers with different stabilizers
(poloxamer 188 or tween 80) for promoting tamoxifen permeation across the
intestinal barrier and, simultaneously, inhibit P-glycoprotein efflux transporter activ-
ity (Mangla et al. 2019). Those strategies improved the tamoxifen uptake by cancer
cells and increased their sensitivity to SFN, explaining the synergism between both
therapeutic agents. Subsequently, another study with a similar strategy also reported
a possible optimization of dosing and administration frequency, associated with
reduced tamoxifen toxicity, when compared to non-encapsulated drugs (Mangla
et al. 2020).



15.3 Conclusion

Innovative alternatives to overcome conventional drug limitations were also
emphasized by other authors (Xu et al. 2019). The cisplatin chemosensitivity

15 Sulforaphane-Loaded Nanomedicines Applications: Trends on. . . 335

restoration was their main purpose when synthesizing poly-L-glutamic acid–cisplatin
conjugates associated with SFN. The increased nanoparticles’ cellular internaliza-
tion was able to modulate the glutathione depletion, which promoted the cisplatin
capability for DNA binding, resulting in enhanced cell death effects by apoptosis in
breast cancer cells.

In addition to therapeutic associations, new SFN-loaded nanocarriers have been
reported, especially considering the development of hybrid systems with
multifunctional properties. One of the main strategies refers to the design of metallic
nanoparticles, for example, gold-coated iron oxide nanoparticles functionalized with
thiolated-polyethylene glycol–folic acid, as reported by Manjili et al. (2016). Phys-
icochemical characterization techniques revealed the synthesis of a stable system
able to induce apoptosis mechanisms in MCF-7 human breast cells cancer, such as
decreased expression rate of anti-apoptotic genes (Bcl-2 and Bcl-xL). In a similar
study, other authors reported the considerable cytotoxic effects of SFN-loaded
tellurium flower-like nanoparticles in two breast cancer cells lines (MCF-7 and
MDA-MB-231) when compared to normal cells (MCF-10A) (Krug et al. 2020).

Another recent innovation is the use of versatile nanocarrier systems applied to
theranostic purposes. Passi et al. (2020) described multifunctional materials based on
SFN-loaded silk fibroin and their further association with cationic cerium oxide
nanoparticles and carbon dots (Passi et al. 2020). In fact, the whole system multiple
functions are resulting from the association among green fluorescence emission,
antioxidant and anticancer activity attributed to carbon dots, cerium oxide
nanoparticles, and SFN-loaded silk fibroin, respectively. This multifunctional
nanocomposite efficiently reduced the reactive oxygen species levels and allowed
better resolution fluorescence images from both tumoral (A549) and normal (L132)
lung cells. In a similar report, SFN-carbon dots conjugates functionalized with
thiourea groups were developed for targeting and imaging epidermal growth factor
receptor-overexpressing lung cancer cells (Lu et al. 2019).

Nanomedicines have been described as one of the most promising alternatives for
overcoming physicochemical and biopharmaceutical limitations of a variety of
drugs. These advantages are especially useful for improving the pharmacological
effects of conventional therapeutics. On the other hand, phytochemicals, such as
SFN, have been proposed as new pharmacotherapy, which expands the research for
the treatment of some diseases such as chronic inflammatory processes and cancer.
Since polytherapy is the gold-standard treatment, dose adjustments, changes in
routes of administration, and possible side effects are factors that must be consid-
ered. In this sense, several nanocarriers (micelles, organic and inorganic
nanoparticles, nanocomposites, etc.) exert an essential role for developing more
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