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Abstract

Nematodes and fungi are soil inhabitants. Both are essential for maintaining the
stability of food-web and facilitation of the nutrient cycle. Interaction between
nematodes and fungi is possible in multiple ways. Here, we supply a platform for
nematophagous (nematode destroying) fungi (NF), their mode of action, and their
importance in agricultural ecosystems. They are potentially important for sustain-
able agriculture and play a major role in integrated pest management programs.
Nematophagous fungi belong to a broad taxonomic group, such as Ascomycota,
Oomycota, Basidiomycota, and distinct groups of fungi. Nematophagous fungi
are broadly distributed in terrestrial and aquatic ecosystems that contain high
densities of nematodes. Depending on the mechanism that affects nematode, NF
can be divided into four types. Here, we described the classification, taxonomy,
occurrence, distribution and ecology, types of nematophagous fungi, and poten-
tial mechanisms of NF in the control of plant-parasitic nematodes.
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12.1 Introduction

In this materialistic world, increasing food production for feeding the ever-growing
population is the major world demand, while earning more profit from agriculture is
the grower’s demand, who faces an occasional setback due to the serious outbreak of
the diseases and keeps looking for an effective method to save his crop from
destructive pathogens. Among them, one of the major limiting factors is plant-
parasitic nematodes (PPNs) that continuously affected agricultural production by
and large. Further, the nature of crops, varieties, nematode species, the population of
primary inocula, and environmental factors influence the losses to a great extent. It is
estimated that 12.3% of global annual losses of major crops are due to phytoparasitic
nematodes (Sasser 1989). Such type of losses become intolerable for poor and
developing countries including India. Plant-parasitic nematodes cause 18–25%
losses in vegetables, 20–25% in pulses, 18–23% in oilseed crops, and 15–18% in
cereals crops (Indian Economy 2004).

Management of plant-parasitic nematodes is largely dependent on the use of toxic
pesticides, the majority of which are soil fumigants. Farmers are using toxic
pesticides intensively for the last few decades in order to reduce such a magnitude
of losses to sustained crop production. However, the residual effects of these
pesticides on nontarget soil flora and fauna are of great concern. Further, long-
term residual effects are responsible for eroding biodiversity, increasing resistance
and resurgence in the pathogen, and causing pollution that poses health hazards to
humans, animals, and the environment. Present circumstances of environmental
awareness evoke urgent need to search for and establish compatible alternatives to
these hazardous agrochemicals. The persistence of pesticides in soils, deterrents to
ecosystems, environmental contamination, detrimental impact on human health,
deterrents to ecosystems, and the creation of resistant pathogenic strains are all
consequences of heavy pesticide use. In order to reduce the use of pesticides,
researchers have intensified resistance breeding programs along with transgenic
plants to control the losses caused by these notorious pathogens. However, several
constraints limit the scope of the resistance breeding program, i.e., unavailability of
suitable donor parents having a high degree of resistance, detection of the source of
resistance, and transferring desirable traits into a cultivar using a resistance breeding
program is a great challenge. Biological control of plant-parasitic nematodes offers a
promising alternative to pesticides, which had attained lots of attention over the
years. Under these circumstances, using microbe-based strategies for the control of
plant-parasitic nematodes has been reported to be an environmentally friendly, safe,
and residue-free approach (Singh et al. 2012a, b, 2013, 2019a, b). Several biological
control agents of microbial origin have been evaluated and used to control the plant-
parasitic nematodes in many crops. Among them, Trichoderma asperellum,
T. harzianum, T. virens, Bacillus subtilis, B. licheniformis, Pseudomonas
fluorescens, Purpureocillium lilacinus, Arthrobotrys oligospora, Pochonia
chlamydosporia, Dactylaria spp.,Monacrosporium spp., Drechslerella dactyloides,
Syncephalastrum racemosum, Hirsutella spp., and Duddingtonia spp. were noted
worthy and are used to manage nematodes worldwide (Singh 2013; Singh et al.



2013, 2017, 2019b; Wang et al. 2014; Huang et al. 2014; Gupta et al. 2015a, b).
Predacious fungi are an important part of the soil’s biodiversity. Interactions
between predatory fungi and parasitic nematodes are widespread and dynamic in
the soil. Several reviews and research publications have demonstrated the ability of
nematophagous fungi (NF or NPF) to suppress plant-parasitic nematodes; however,
they are scattered. Nematophagous (nematode-eating) fungi are found in both
terrestrial and aquatic habitats and are diverse in nature (Pramer 1964; Nordbring-
Hertz et al. 2006). More than 200 fungal species, which can develop specific
trapping devices, belong to the NF group such as adhesive knobs, constricting
rings, and adhesive networks to capture nematodes juveniles, eggs, and adults and
then use various strategies to extract nutrients from their nematode prey (Jansson and
Lopez-Llorca 2001; Nordbring-Hertz et al. 2006; Yang et al. 2007; Schmidt et al.
2007). Most of the nematode-trapping fungi can function as both saprophytes and
parasites (Pramer 1964; Nordbring-Hertz et al. 2006). Nematode-trapping fungi
develop sophisticated hyphal structures, such as hyphal knobs, hyphal branches or
rings, and hyphal nets, by adhesion or mechanical capture (Nordbring-Hertz et al.
2006; Singh 2007; Singh et al. 2012b). They have an essential role in maintaining
nematode population density via natural settings. Many egg-parasitic and trap-
forming fungi may exist in soil saprophytically while endoparasites are obligate
parasites. Considering the importance of the problem and the potentiality shown by
previous workers, the present study was undertaken with the objectives to give an
overview of the biology, ecology, and potential application of nematophagous fungi
to sustain crop production in changing climatic scenarios.
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12.2 Historical Background

The word “predacious” comes from the Latin word preada, which means “to grab
out all valuables and things of a victim after they have been killed.” Predacious fungi
are distributed in all types of soils. These fungi are more significant in decomposing
plant waste, and the organic matter supplied to the soil increases the number of
predacious fungi. Arthrobotrys oligospora was first described as a common inhabi-
tant of organic plant debris by Fresenius (1852). Woronin (1870) reported that the
conidia of A. oligospora germinated on the old manure and some of the hyphae-
produced net-like bails, although he did not know the functions of such bails.
Sorokin (1876) created the genus Catenaria with the type species C. anguillulae.
He found C. anguillulae parasitizing eelworms in a vessel, which were eventually
killed. He also described that round zoospores were liberated from the sporangia
through a discharge tube. Zopf (1888) was the first to record the predacious behavior
of A. oligospora. Further, his studies show that the cuticle of the captured nematode
is penetrated, and the fungus grew within the nematode body and consumed it by its
hyphae. Thus, Zopf established the predatory relationship of a fungus on nematodes.
Drechsler (1937) established a base for studies on predacious fungi responsible for
capturing and killing nematodes. He described that the predacious fungi produced
different trapping devices for the predation of nematodes. Such capturing devices



include adhesive hyphae, adhesive branches, adhesive nets, and adhesive knots,
whereas the nonadhesive organs include non-constricting rings and constricting
rings. Some predaceous fungi produce sticky knobs that capture nematodes
(Drechsler 1937; Barron 1977).
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12.3 Occurrence and Distribution

Predacious fungi can be found as saprophytes in the soil or on decaying plant
materials where they live saprophytically and/or feeding on plant-parasitic
nematodes. The efficacy of capturing predacious fungi may be influenced by the
nature of the soil and environmental conditions. The presence of nematodes in the
soil and organic matter is necessary in maintaining the biodiversity of soil and
increasing the population of predacious fungi. Most of the predatory species belong
to either the Zoopagales or Moniliales, while endo-parasites are found in the lower
fungi such as Chytridiales, Saprolegniales, Peronosporales, Lagenidiales,
Mucorales, Entomophthorales, and in higher fungi Deutromycetes.

12.4 Classification

Fungi represent the fifth kingdom in the living organisms (Kendrick 2001). NPF are
found in all lower and higher groups of fungi, such as Basidiomycetes,
Ascomycetes, and Deuteromycetes in higher fungi and Chytridiomycetes,
Oomycetes, and Zygomycetes in lower fungi. In distinct taxonomic groups of
fungi, the habit of nematophagous fungi evolved separately. Barron (1992) reported
that the habit of nematophagous fungi evolved from lignolytic (characterized by a
unique ability to depolymerize and mineralize lignin) and cellulolytic fungi
(hydrolyzing or having the capacity to hydrolyze cellulose) for adaptation to over-
come nutrient competition in the soil.

In tandem with entomopathogenic species of Verticillium, which were relocated
to the genus Lecanicillium based on both morphological and molecular features,
egg-parasitic fungi previously placed within the genus Verticillium were recently
shifted to the new genus Pochonia (Zare and Gams 2001; Zare et al. 2001).
Cordyceps contains the teleomorphs of the Pochonia species. P. chlamydosporia
and P. rubescens are the most well-known egg parasites, and other taxa reported to
parasitize nematode eggs include Paecilomyces lilacinus and Lecanicillium lecanii.
Based on the molecular evidence, Scholler et al. (1999) proposed the following
classification: Arthrobotrys (adhesive three-dimensional networks), Dactylellina
(stalked adhesive knobs or non-constricting rings), Drechslerella (constricting
rings), and Gamsylella (non-constricting rings) (having adhesive branches and
unstalked knobs).

The taxonomy and phylogeny of endoparasitic fungi are far less well-understood
(Fig. 12.1). Some, such as the zoosporic Catenaria anguillulae, are classified as
Chytridiomycetes, while others are classified as Haptocillium (previously



Verticillium), Harposporium, or Drechmeria. Harposporium spp. teleomorphs have
lately been shifted to Podocrella from Atricordyceps (Chaverri et al. 2005).
Pleurotus is a category of toxin-producing fungi that contains species such as the
oyster mushroom Pleurotus ostreatus. Luo et al. (2004) reported that Coprinus
comatus was recently discovered to have similar abilities, suggesting that
nematophagy is more widespread among Basidiomycetes than previously thought.
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Fig. 12.1 Classification of nematophagous fungi

12.5 Ecology

Nematophagous or nematode-trapping fungi (NF or NPF) are found in the soil. They
are mostly found in the topsoil, meadows, leaf litter, mangroves, and some shallow
aquatic areas. NF employ adhesive knobs, adhesive hyphal strands, and nets made of
hyphal threads, hyphal loops, and non-constricting loops that capture nematodes.
When the nematode is bridled, the NF hyphae enter the cuticle and eat the
nematode’s internal tissues (Zhang et al. 2014).

Arthrobotrys oligospora, a species of Arthrobotrys, is one of the most well-
studied nematode-trapping fungi (Nordbring-Hertz et al. 2006). Strains of
A. oligospora have been discovered in different soil conditions (Pfister and Liftik
2018; Money 1998). By creating intricate three-dimensional networks, A. oligospora
enters the parasitic stage in the presence of nematodes to capture them. Nematode
trapping triggers a chain of actions that include nematode adhesion, penetration, and
immobilization (Nordbring-Hertz 2004; Nordbring-Hertz et al. 2006). The fungus’
strong ability to capture nematodes makes it a promising candidate for controlling
plant-parasitic worms. To catch nematodes mechanically, A. oligospora forms three-
dimensional adhesive nets. The fungus actively seeks out its prey by creating



chemical signals or olfactory cues that are similar to those used by worms to find
food and mate (Yu’e et al. 2005; Zhang et al. 2015; Hsueh et al. 2017). Some
nematophagous fungi produce toxins that render nematodes immobile. The hypha of
the shaggy ink cap (Coprinus comatus) attacks the nematode Panagrellus redivivus
as a spiny ball structure, which immobilizes and breaks the nematode cuticle,
following which the hypha pierces the skin and digests the contents (Luo et al.
2007). The spores of the most endoparasitic fungi are attracted to and concentrated in
the mouth region of soil nematodes. The hyphae proliferate throughout the nematode
after penetration of the cuticle and absorption of nematode tissues. Conidia are
contacted by the nematode in other fungal species and are infected in a similar
fashion. Harposporium anguillulae having sickle-shaped conidia are consumed by
the nematodes and lodge themselves in the esophagus or gut, where they destroy the
tissues (Aschner and Kohn 1958).
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The hypha flattens itself against the egg in egg-parasitic species, and the presence
of appressoria indicates that infection is about to occur or has already occurred. After
piercing the egg and devouring the developing juvenile worm, the hypha produces
conidiophores and moves on to nearby eggs (Money 1998).

12.6 Plant-Parasitic Nematodes have an Impact on Agriculture

Plant-parasitic nematodes are a serious constraint in agricultural crop production.
These nematodes have been discovered in over 4100 different species (Decraemer
and Hunt 2006). Crop loss is projected to cost between US$118 and 80 billion per
year (Sasser and Freckman 1987; Nicol et al. 2011). The most economically
important nematode species accounts for 15% of all identified nematode species.
They directly target the plant roots of major crops, preventing nutrient uptake and
water, resulting in decreased agronomic performance, overall yield, and quality of
the crop. Surprisingly, just a small percentage of the nearly 4000 reported plant-
parasitic nematodes cause major agricultural losses. In a survey, the principal genera
of phytoparasitic nematodes identified to cause crop losses in the United States were
Meloidogyne, Heterodera, Hoplolaimus, Rotylenchulus, Xiphinema, and
Pratylenchus (Koenning et al. 1999).

12.7 Types of Nematophagous Fungi

Nematophagous fungi can be divided into four major groups (Fig. 12.2) depending
on their mode of attacking nematodes (Jansson and Lopez-Llorca 2001):

1. Nematode-trapping fungi (previously sometimes called predacious or predatory
fungi)

2. Endoparasitic fungi
3. Egg- and female-parasitic fungi
4. Toxin-producing fungi
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Fig. 12.2 Types of nematophagous fungi

The nematode-trapping fungi use hyphal trapping devices of various shapes and
sizes to capture nematodes, such as sticky/adhesive three-dimensional nets, adhesive
knobs, and nonadhesive constricting rings. Some “nematode-trappers” capture
nematodes by an adhesive substance formed on their hyphae without any visible
traps, e.g., Stylopage spp. Endoparasitic fungi use their conidia or zoospores to infect
the nematodes. The propagules of fungi adhere to the cuticle of the nematode, and
then spore contents are injected into them or spores are swallowed by the host. Most
of them are obligate parasites and the entire vegetative stages of their life live inside
the infected nematodes. The egg- and female-parasitic fungi are facultative parasites.
They infect nematode females and their eggs, using appressoria or zoospores. Being
facultative parasites, they grow on nematodes and parasitize the sedentary stages
such as eggs. The toxin-producing fungi produce toxic compounds that can immo-
bilize nematodes, prior to penetration by hyphae through the cuticle of the nematode.
Parasitism of nematodes results in complete prey or egg digestion in all four
nematophagous fungal groups, an action that provides the fungus with nutrients
and energy for continuous growth.
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12.8 Mechanism and Mode of Action of Nematophagous Fungi
to Control Plant-Parasitic Nematode

Biological control of phytonematodes is described as a reduction in populations of
nematodes caused by actions of living organisms other than those found naturally in
the host plant, or by introduction of antagonist organisms into the environment (Kim
2015). More than 200 taxonomically distinct fungi have demonstrated the ability to
kill live nematodes in all the stages of development such as juveniles, adults, and
eggs (Nordbring-Hertz et al. 2006). Two types of barriers to fungus invasion are
created by the morphology of nematodes. The eggshell is the first barrier, made up of
three layers in root-knot and cyst nematodes: the outer vitelline (mostly proteins), the
inner lipoprotein layer, and the chitin layer, and the cuticle is the second barrier. The
parasitism, poisonous chemicals, and enzyme methods used by nematophagous
fungi to infect nematodes can be separated into three categories (Fig. 12.3).

Different nematophagous fungi infect nematodes and their eggs in a similar,
general way. Infection of nematode eggs by Pochonia rubescens, as well as the
zoospores of Catenaria anguillulae, which infect vermiform worms, demonstrate
this. P. rubescens begins penetrating nematode eggs by contacting the egg with its
hyphae and then forming an appressorium. The appressorium forms an extracellular
matrix (ECM) or adhesive, which is disclosed by lectin Concanavalin A labeling.
The fungus uses both mechanical and enzymatic components to enter the worm
eggshell from the appressorium. Because the nematode eggshell is mostly made up
of chitin and proteins (Bird and Bird 1991), chitinases and proteases are vital during
the penetration of eggshell (Lopez-Llorca 1990a, b; Tikhonov et al. 2002). Eggshells
are degraded as a result of proteolytic action.

Fig. 12.3 Key mechanisms involved in the nematophagous fungi
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12.8.1 Chemotaxis and Adhesion (Host Recognition, Host
Specificity, and Infection)

The recognition phase of nematode begins, which includes chemotaxis of the host
toward fungal traps, hyphae, or zoospore chemotaxis toward the host’s natural
apertures (Jansson and Nordbring-Hertz 1979; Jansson and Thiman 1992). It is
unknown which chemicals are involved in the chemotactic events (Jansson and
Friman 1999; Bordallo et al. 2002). After contact with a nematode, the adhesive
on A. oligospora traps changes from amorphous to fibrillar, in contrast to the
adhesive on D. coniospora conidia, which always appears fibrillar (Jansson and
Nordbring-Hertz 1988). Lopez-Llorca et al. (2002) suggested that the adhesion on
the appressoria of P. rubescens and P. chlamydosporia can be identified using the
lectin Concanavalin A, indicating that it is a glycoprotein having glucose/mannose
moieties. A. oligospora’s Gal-NAc-specific lectin and D. coniospora’s sialic acid-
specific lectin have both been implicated in worm recognition (Nordbring-Hertz and
Mattiasson 1979; Jansson and Nordbring-Hertz 1984). Infection events eventually
trigger a signaling cascade that is required for nematode prey penetration and
colonization (Tunlid et al. 1992). An extracellular substance is generated after
contact, which keeps the fungus attached to the nematode surface. Proteins or
carbohydrates are typically found in the adhesives of nematophagous fungi (Tunlid
et al. 1991a, b). Carbohydrates on nematode surfaces are engaged in the lectin-
binding recognition stage, but they also appear to play a role in nematode chemotaxis
(Zuckerman and Jansson 1984; Jansson 1987). Major nematode sensory organs,
such as inner labial papillae and amphids, are positioned around their mouth in the
labial and cephalic region (Ward et al. 1975). Zuckerman (1983) and Zuckerman and
Jansson (1984) proposed that carbohydrates play a role in nematode chemorecep-
tion. Lectins (Concanavalin A binds with mannose/glucose residues, and Limulin
binds with sialic acid) could block the chemoreceptors, leading bacterial-feeding
nematodes to lose their chemotactic behavior to microbial exudates (Jeyaprakash
et al. 1985). Further, nematode chemotaxis was reduced when enzymes
(mannosidase, sialidase) obliterated the terminal carbohydrates (Jansson et al.
1984), demonstrating the importance of carbohydrate moiety in nematode chemo-
taxis. An endoparasitic nematophagous fungus,D. coniospora, uses conidia to infect
nematodes that cling to the host’s chemosensory organs (Jansson and Nordbring-
Hertz 1983). Both Limulin treatment of nematodes and sialic acid treatment of
spores reduced conidial adhesion, implying that a sialic acid-like carbohydrate is
involved (Jansson and Nordbring-Hertz 1984). Furthermore, it is evaluated that
nematode adherent with spores lost their capacity to respond chemotactically to all
the attracting sources, including hyphae, conidia, or bacteria, implying a link
between chemotaxis and adhesion via carbohydrates on the surface of nematode
(Jansson and Nordbring-Hertz 1983). D. coniospora conidia stick to Meloidogyne
spp. chemosensory organs, but they do not penetrate and cannot infect the worms.
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12.8.2 Differentiation and Signaling

When recognizing the surface of the host, or even synthetic surfaces, most harmful
fungi distinguish appressoria. Appressoria formation in plant pathogenic fungi
infecting leaves has been examined in depth (Lee et al. 2003; Basse and Steinberg
2004). St. Leger (1993) proposed a signaling hypothesis for the insect pathogen
Metarhizium anisopliae during appressorium production, based in part on knowl-
edge of plant pathogenic fungi. Appressoria on their hosts are differentiated by
nematophagous fungi, particularly egg parasites (Lopez-Llorca and Claugher
1990). The signaling pathways that lead to nematode infection by nematophagous
fungus are poorly understood. Using expressed sequence tag (EST) techniques, it
was recently demonstrated that genes involved in the creation of infection structures
and fungal morphogenesis were expressed during trap formation in the
nematophagous fungus Dactylellina haptotyla (syn. Monacrosporium haptotylum)
(Ahren et al. 2005). As a response to chemical and tactile inputs, fungi-infecting
vermiform nematodes differentiate multiple trapping organs. The three ring cells that
make up the trapping mechanism are inflated by the constricting ring traps. When a
nematode comes into contact with the inner ring wall, an unknown mechanism
causes the nematode to inflate and close, which takes around 0.1 s.

12.8.3 Nematodes Cuticle and Eggshell Penetration by NPF

Nematophagous fungi penetrate the worm cuticle or eggshell after a solid adhesion
to the host surface. Both enzymatic and physical mechanisms appear to be used by
the nematophagous fungus to penetrate host surfaces, as in many other cases of
fungal penetration. Because the nematode cuticle is mostly made up of proteins (Bird
and Bird 1991), proteolytic enzymes are necessary for penetration of the nematode
cuticle. The PII serine protease of A. oligospora has been characterized, sequenced,
and cloned (Ahman et al. 1996). The protein presence, such as nematode cuticles,
increases PII expression (Ahman et al. 1996). The subtilisin PII has a molecular mass
of 32 kDa and belongs to the subtilisin family (Fig. 12.4).

Another serine protease (Aoz1) was recently identified from A. oligospora,
having 38 kDa molecular mass and 97% similarity with PII (Zhao et al. 2004).
Other fungi have been isolated and characterized, including Arthrobotrys
microscaphoides (Mlx) (Wang et al. 2006a, b) and Arthrobortys shizishanna (Ds1)
(Wang et al. 2006a, b), both of which show significant similarities to the
A. oligospora serine (Wang et al. 2006a, b).

Protein and chitin are structured in a microfibrillar and amorphous form in
nematode eggshells (Clarke et al. 1967). As a result, extracellular enzymes that
degrade such polymers were sought. Lopez-Llorca (1990a, b) identified, purified,
and characterized P32, a 32 kDa serine protease from the egg parasite P. rubescens
for the first time. P32 suppression by polyclonal antibodies and chemicals reduced
the penetration and egg infection, despite pathogenesis being a complex process
involving many variables (Lopez-Llorca et al. 2002). An extracellular protease



(VcP1) is produced by P. chlamydosporia, which is linked to P32 and similar
entomopathogenic fungal enzymes (Segers et al. 1994). Eggs treated with VcP1
enzyme were more easily infected than non-treated eggs, implying that the enzyme
plays a role in eggshell penetration by fungi that feed on eggs. Recently, a serine
protease (Ver112) from Lecanicillium psalliotae was isolated and described,
exhibiting approximately 40% homology with Arthrobotrys proteases (PII and
Aoz1) and have 60% homology with egg-parasitic serine proteases (Yang et al.
2005a, b). Non-nematophagous fungi such as Clonostachys rosea and Trichoderma
harzianum are additional sources of nematicidal serine proteases (Suarez et al. 2004;
Li et al. 2006). Huang et al. (2014) reported that Pochonia rubescens and Pochonia
chlamydosporia both have chitinolytic enzymes that have been discovered. A
43 kDa endochitinase (CHI43) was one of those responsible for the majority of
the activity (Tikhonov et al. 2002). Damage to eggshells was more widespread when
treating G. pallida eggs with both P32 and CHI43, which indicated that the two
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Fig. 12.4 Eggshell penetration by NPF



enzymes work together to destroy eggshells (Tikhonov et al. 2002). A hydrolytic
enzyme chitosanase from the egg-parasitic fungus P. lilacinus was recently
identified and described (Chen et al. 2005).
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12.9 Potential Application

For many years, nematophagous fungi have been tested for biological control of
plant-parasitic nematodes, but the strategy had limited success due to the lack of
understanding of these species’ ecology (Stirling 1991) (Table 12.1).

The colonization of plant roots by endophytes is a significant element. By
induced resistance or by the production of secondary metabolites, NF may protect
plants from several fungal diseases and plant-parasitic nematodes. Plant growth can
also be boosted by nematophagous fungi participating in the nutrient intake or
modifying plant growth regulators. As a result, endophytic colonization must be
taken into consideration while looking for nematophagous fungi as biocontrol
agents. Combining numerous forms of nematophagous fungi, such as egg-parasitic
and nematode-trapping fungi, that kill nematodes at different phases of their lives,
could be a key requirement. When choosing the right fungi for biological control of
plant-parasitic nematodes, interactions with other soil fungi, including plant-
parasitic and biocontrol agents, are also crucial factors to consider. Larriba et al.
(2015) demonstrated the egg-parasitic fungus Pochonia chlamydosporia having
potential for biological control of plant-parasitic nematodes. They act as an endo-
phyte in both monocot and dicot plants and have shown plant growth promotion in a
variety of crops. Nematophagous fungus Pochonia chlamydosporia promotes
growth of barley (Hordeum vulgare) plants by endophytic colonization of roots
and provides defense against stresses. Escudero and Lopez-Llorca (2012) stated that
endophytic colonization of tomato roots by P. chlamydosporia is important for plant
growth and may influence root-knot nematode management.

12.10 Future Prospects

Plant-parasitic nematodes cause major yield and monetary losses in agriculture all
over the world. The utilization of nematophagous fungi as endophytes is a potential
technique for the biocontrol of nematodes in the soil. Larriba et al. (2015) observed
that at the molecular level, plants colonized endophytically having growth-
promoting effect by P. chlamydosporia, paving the way for more research into the
fungus’ ability to mitigate the negative effects of biotic and abiotic factors on plant
crops. Bioproducts formulated with these NF have various advantages over chemical
nematicides for more sustainable agriculture, including ease of application, environ-
mental safety, little impact on soil biota, and no residues in harvested products.
However, when producing a commercial bionematicidal product, there are various
aspects to be kept in mind as it is a living system. As a result, new technology such as



Name of fungi Mixed with References
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Table 12.1 Some fungal biocontrol agents for the management of plant-parasitic nematodes

Effective for
nematode

Crop/
plant

P. chlamydosporia Carbofuran +
neem cake

M. incognita Okra Dhawan and
Singh (2009)

Paecilomyces
lilacinus

Groundnut cake,
neem cake, castor
cake, mahua cake,
and linseed cake

M. javanica Brinjal Ashraf and Khan
(2010)

T. viride Compost Meloidogyne
spp.

Gotukola
(Centella
asiatica)

Shamalie et al.
(2011)

T. viride Neem cake M. incognita Tobacco Raveendra et al.
(2011)

Pochonia
chlamydosporia

Combination of
P. fluorescens,
T. viride, and
carbofuran

Globodera
spp.

Potato Muthulakshmi
et al. (2012)

T. harzianum Combination of
neem cake and
P. fluorescens

M. incognita Brinjal Singh et al. (2013)

T. harzianum Carbofuran M. incognita French
bean

Gogoi and
Mahanta (2013)

P. chlamydosporia Mustard cake and
neem cake

M. incognita Brinjal Parihar et al.
(2015)

T. harzianum Lantana camara M. incognita Tomato Feyisa et al.
(2015)

T. harzianum Carbofuran M. incognita Brinjal Devi et al. (2016)

T. harzianum Carbofuran and
neem cake

M. incognita Pea Brahma and Borah
(2016)

P. chlamydosporia Neem cake Heterodera
zeae

Sweet
corn

Baheti et al.
(2017)

Paecilomyces
lilacinus

Neem cake and
Karanj leaves

Heterodera
zeae

Sweet
corn

Baheti et al.
(2017)

P. fluorescens Carbofuran Meloidogyne
graminicola

Rice Narasimhamurthy
et al. (2017)

Arthrobotrys
oligospora,
Candellabrella
musiformis, and
Dactylella
eudermata

Carbofuran Meloidogyne
incognita

Tobacco Hastuti and Faull
(2018)

Drechslerella
dactyloides

– Meloidogyne
incognita

Tomato Singh et al.
(2019a, b)

Dactylaria
brochopaga

– Meloidogyne
incognita

Tomato Singh et al.
(2019a, b)

Duddingtonia
flagrans

– Meloidogyne
incognita

– Xiaoyu Mei et al.
(2021)

Arthrobotrys
oligospora

– Meloidogyne
incognita

Tomato Soliman et al.
(2021)



real-time quantitative PCR is used to quantify and track the biocontrol agent after its
application into the soil. Biocontrol agents can be genetically modified to have their
efficacy increased by increasing the expression of genes implicated in nematicidal
activity or pathogenicity (Zhang et al. 2020a, b). To improve aggression and
virulence against nematodes, expression of heat shock factors, UV protectants,
immunological modulators, destroying enzymes of cuticle, and genetic modification
techniques can be used. Several studies established the efficacy of applying a
combination of treatments to manage plant-parasitic nematode populations under
diverse conditions, including various cultural techniques (such as soil amendment
and soil solarization), biological agents, and chemical nematicides (Zhang et al.
2014). Finally, the unpredictability of nematode antagonists against PPN in field
circumstances, as well as their limited efficacy, are key barriers to using biocontrol
agents to manage plant-parasitic nematodes. The intrinsic mechanisms governing
ecosystem stability in field circumstances may be one of the causes for the disparities
between the results of laboratory trials and field trials. Understanding interactions
between nematodes and nematophagous fungi in native niches aids in the develop-
ment of better applications for long-term crop protection approaches. The effects of
combining various partners, such as NF, plant-pathogen mycoparasites, and plant
growth-promoting microorganisms, could provide useful information for the devel-
opment of biocontrol agents to reduce the impact of nematode and fungal pathogens
on agriculturally important crops (Luns et al. 2018; Baron et al. 2020).
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12.11 Conclusion

Nematophagous fungi are common soil organisms that may infect, attack, and
consume nematodes at any stage of their development, including adults, juveniles,
and eggs. To infect their nematode hosts, they use trapping organs, spores, and
appressoria. In addition to infecting nematodes, nematophagous fungi can infect
other fungi as mycoparasites and colonizing plant roots endophytically. Because of
their various capacities, nematophagous fungi, in particular, may be a promising
candidate for the biological management of plant root diseases. The use of
nematophagous fungi as a substitute for synthetic chemicals used in the production
of nematicides is fascinating. Obtaining bionematicides efficiently is a goal and a
prerequisite for all agricultural researchers seeking sustainability in the system.
Depending on the pathogenicity factor, some information is still lacking. Some NF
enzymes such as serine proteases, chitinases, and toxins function as virulence factors
and are especially interesting in the parasitic worm infection process. Some NF
strains’ success implies that they have different host preferences. Finally, we suggest
that NF is a potential alternative to synthetic pesticides in the management of plant-
parasitic nematodes, and that they may be more effective in making agriculture
sustainable by replacing hazardous chemicals and mitigating the effects of their
residues on the environment.
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