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Abstract In this expository paper, we transcribe two letters by Guido Castelnuovo,
one to Francesco Severi and the other to Beniamino Segre, and explain the contents
of both, which basically focus on the quest for an algebraic proof of the equality
between the analytic and the arithmetic irregularity and of the closedness of regular
1-forms on a complex, projective, algebraic surface. Such an algebraic proof has
been found only in the 1980s by Deligne and Illusie.
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1 Introduction

As it is well-known, the treatise by Federigo Enriques epitomizing the celebrated
classification of algebraic surfaces by the Italian school of algebraic geometry has
been published posthumously in 1949, a few years after the sudden death of the
author in 1946. As pointed out by Guido Castelnuovo in the preface (see [8]),

(. . . ) dove il terreno è meno solido l’Autore mette sull’avviso lo studioso. Di questi punti
ancora fluidi quello che presenta la difficoltà più ardua ed il maggiore interesse è la
teoria dei sistemi continui di curve algebriche (. . . ) che esistono sopra ogni superficie
irregolare. (. . . ) tutti i tentativi compiuti (. . . ) per dimostrarla mediante considerazioni
algebrico-geometriche si sono urtati contro difficoltà sinora insuperate. (. . . ) l’Autore dà
anche suggerimenti sopra una via da tentare per giungere alla meta. Debbo confessare che
non vedo come quella via possa tradursi in un procedimento irreprensibile.
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(. . . ) where the ground is less solid the Author warns the reader. Among these still unsteady
points the most difficult and interesting one is the theory of the continuous systems of
algebraic curves (. . . ) existing on any irregular surface. (. . . ) all attempts (. . . ) towards an
algebro-geometric approach have been frustrated by still insurmountable difficulties. (. . . )
the Author provides some hints about a strategy to reach the goal. I should confess I cannot
see how that strategy may be translated into a fully rigorous argument.

The two letters by Guido Castelnuovo that we transcribe and translate into
English in Sect. 2, the first one addressed to Francesco Severi and dated 1947 and
the second one addressed to Beniamino Segre and dated 1950, provide firsthand
witness of Castelnuovo’s attempts to a purely algebro-geometric understanding of
irregular surfaces.

In Sect. 3 we explain the background of Castelnuovo’s letters, using modern
terminology. In particular we explain a classical method, very familiar to Castel-
nuovo and due to Picard and Severi, of constructing regular 1-forms on a surface.
As explained in Sect. 3.3, one of the crucial points of Castelnuovo’s approach
is the attempt of proving the closedness of global regular 1-forms, a fact that
today we are aware to strongly rely on the characteristic zero assumption. Indeed,
Castelnuovo’s remarks in his letters turn out to be quite inconclusive and sometimes
even unprecise, as we discuss in Sect. 4 that is devoted to explaining most of
the issues raised by Castelnuovo in his two letters. The algebro-geometric proof
of the results that Castelnuovo sought (i.e., closedness of global regular 1-forms
and equality of different definitions of irregularity, in characteristic zero) is now
available; it is due to work by Deligne and Illusie in the 1980s and turns out
to be completely out of reach of Castelnuovo’s classical tools, since (somehow
paradoxically) it involves a tricky reduction to the case of positive characteristic.
Section 5 is devoted to give a brief account on how these algebraic proofs can be
obtained using modern tools.

We stress that the present note does not contain any original result, but in our
opinion the contents of Castelnuovo’s letters are worthy of careful consideration
from both a historical and a mathematical viewpoint. This paper is addressed to
readers who are well aware of rather advanced concepts in algebraic geometry, so
we do not dwell on explaining standard technical details when they occur.

2 The Letters

In this section we transcribe two letters of Castelnuovo, the first one of November
26, 1947, to Francesco Severi and the second one of January 15, 1950, to Beniamino
Segre. The first letter belongs to the “Fondo Guido Castelnuovo” of the Accademia
Nazionale dei Lincei that has been edited by Paola Gario, has been digitalized, and
can be found on the web page

http://operedigitali.lincei.it/Castelnuovo/Lettere_E_Quaderni/menuL.htm
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The second letter comes from the collection of documents of Beniamino Segre
kept at the University of Caltech.

2.1 Guido Castelnuovo to Francesco Severi

Roma, 26 novembre 1947

Caro Severi,
aderendo al tuo desiderio ti comunico alcuni risultati sulle superficie irregolari;

parecchi si ottengono senza difficoltà e possono servire come esercizio per i tuoi
discepoli.

Lo scopo remoto ed ambizioso che mi proponevo era di costruire una teoria delle
dette superficie indipendente dalla nozione di sistema continuo di curve, teoria in cui
si ritrovassero il teorema sul numero .(pg − pa) dei differenziali totali indipendenti
di prima specie, il teorema di Hodge, ecc.. Il programma è appena iniziato; ma si
deve raggiungere la meta, a meno che la teoria delle superficie irregolari non riservi
delle sorprese che non saprei nemmeno immaginare.

I. Indico con .|C| un sistema regolare di grado n e genere .π ; in molti casi occorre
supporre che .|C| sia abbastanza ampio, contenga entro di sè il sistema cano-
nico .|K| od anche un suo multiplo; ricercando caratteri invarianti, tutto ciò non
ha importanza. Indico con .χ il tuo invariante .q ′, cioè il numero delle curve
indipendenti di .|2C + K| che passano per il gruppo jacobiano .Gδ di un fascio
.|C| e in conseguenza per il gruppo base .Gn del fascio. Indico con .Gk il gruppo
dei k punti cuspidali di una superficie, d’ordine n, a singolarità ordinarie, le cui
sezioni piane appartengano al sistema .|C|.

Ecco un significato di .χ che si raggiunge subito:

(1) E’ .χ la sovrabbondanza del sistema .|4C +2K| rispetto al gruppo dei punti
cuspidali .Gk (cioè .Gk impone .k − χ condizioni al detto sistema).

Invece .Gk presenta condizioni indipendenti ai sistemi .|mC +K|, .|mC +
2K|, . . . , per .m � 5.

Per .m = 4 vi è un risultato di Enriques ottenuto indirettamente
attraverso il computo dei moduli di una superficie, risultato che converrebbe
dimostrare direttamente; lo ricordo perché interviene tra poco: “La sovrab-
bondanza del sistema .|4C + K| rispetto al gruppo .Gk dei punti cuspidali è
un invariante”, che indicherò con .Q′ e di cui sotto darò l’espressione.

(2) La serie completa .gk determinata dal gruppo .Gk sopra una curva di .|4C +
K| passante per esso ha la dimensione .χ .

(3) La serie completa .gk determinata dal gruppo .Gk sopra una curva di .|3C +
K| passante per esso (ad es.: sulla .f = f ′

x = 0) ha la dimensione .2n−π +
2pg + pa − (I + 4) + θ dove .0 � θ � pg − pa (si suppone .|C| abbastanza
ampio). E’ .θ un invariante?
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II. Il procedimento che ti ha condotto a stabilire l’invarianza di .q ′ = χ fa vedere
subito che:

(4) E’ invariante il numero delle curve linearmente indipendenti di .|2C + 2K|
che passano per il gruppo jacobiano .Gδ di un fascio .|C| ed anche per il
gruppo base .Gn; indicherò questo invariante con Q.

Si vede poi (se è esatto il risultato di Enriques sopra citato) che:
(5) E’ pure invariante il numero delle curve linearmente indipendenti di .|2C +

2K| che passano per il gruppo .Gδ senza esser costrette a passare per .Gn;
questo nuovo invariante uguaglia l’invariante di Enriques .Q′.

E’ quindi invariante il numero delle condizioni che una curva di .|2C +
2K| passante per il gruppo jacobiano .Gδ di un fascio .|C| deve soddisfare
per contenere il gruppo base. Si dimostra che questo invariante soddisfa alla
diseguaglianza .Q′ − Q � pg .

Quanto alle espressioni di Q e .Q′ posso dir questo.
Se le .∞Q−1 curve di .|2C + 2K| passanti per .Gδ +Gn segano sopra una

curva di .|2C+K| passante per lo stesso gruppo una serie completa (residua
di .Gδ + Gn rispetto alla serie canonica) allora:

.Q − 1 = pa + pg + p(1) − (I − 4) + ω

dove .ω (.� pg − pa) è un nuovo invariante che ha un significato molto
semplice: .I + 4 − ω − 1 è il numero delle condizioni che un gruppo
.GI+4 della tua serie d’equivalenza (in senso stretto) presenta alle curve
bicanoniche costrette a contenerlo.

Se la serie lineare nominata non è completa, dall’espressione di .Q − 1
va tolta la deficienza .� pg − pa della serie stessa.

Nello stesso ordine d’idee ti comunico ancora questo risultato:
(6) La sovrabbondanza del sistema .|3C + K| rispetto al gruppo jacobiano

.Gδ di un fascio .|C| è un invariante e vale precisamente .2pg (se il sistema
completo .|C| cui il fascio appartiene è abbastanza ampio).

III. Altre questioni. Come sai il teorema fondamentale da dimostrare è questo: una
curva .� di .|2C + K| passante per il gruppo jacobiano .Gδ e il gruppo base
.Gn di un fascio .|C| sega sopra la curva generica C del fascio (fuori di .Gn)
un gruppo canonico che non appartiene ad una curva aggiunta .C′. Ho cercato
di trasformare la condizione in altre equivalenti. Tale è ad esempio questa: il
gruppo .Gn su quella curva deve presentare condizioni indipendenti alla serie
caratteristica di .� resa completa. Alla serie caratteristica in senso stretto, .Gn

presenta solo .n − 1 condizioni.
Altra forma: Scriviamo la identità di Picard in coordinate omogenee:

.Xf ′
x + Yf ′

y + Zf ′
z + Tf ′

t = 0

dove .X = 0, . . . sono superficie d’ordine .n − 3. Occorre aggiungere la
condizione (non detta esplicitamente) che le superficie .yX−xY = 0, . . . , tZ−
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zT = 0 siano aggiunte alla .f = 0 d’ordine n. Segue che le .X = 0, . . . , T = 0
passano semplicemente per i t punti tripli di f ed hanno inoltre in comune un
gruppo di .(n − 4)d − 3t punti sulla curva doppia d’ordine d di f ; esse segano
inoltre rispettivamente i piani .x = 0, . . . , t = 0 in curve aggiunte d’ordine
.n − 3. Da ciò segue che quel gruppo di punti della curva doppia appartiene alla
serie segata su questa dalle superficie d’ordine .n − 4 passanti semplicemente
per i t punti tripli, purch’e questa serie venga resa completa, mentre essa ha la
deficienza .pg − pa per la definizione stessa di irregolarità. Orbene il teorema
fondamentale equivale al seguente: Per quel gruppo di .(n−4)d −3t punti della
curva doppia non passa nessuna superficie d’ordine .n−4 che contenga i t punti
tripli di f . Questo enunciato si traduce in questo altro, molto elegante dal punto
di vista analitico: Non è possibile soddisfare una identità del tipo:

.Xf ′
x + Yf ′

y + Zf ′
Z + T f ′

t ≡ Qf

ove .X = 0, . . . , T = 0 sono superficie aggiunte d’ordine .n − 3 e .Q = 0 una
superficie d’ordine .n − 4 se non nel caso banale .X = 1

n
xQ, . . . , T = 1

n
tQ.

Ritornando all’identità di Picard scritta sopra, ti consiglio di far studiare da
qualche discepolo la omografia tra il sistema di superficie non aggiunte di ordine
.n − 3 .λX + μY + νZ + ρT = 0 e il sistema di piani .λx + μy + νz + ρt = 0,
ognuno dei quali taglia la superficie corrispondente in una curva aggiunta. Nel
caso delle rigate irrazionali dei primi ordini si trovano proprietà elegantissime.

IV. Finalmente alcune osservazioni che ti potranno servire se esporrai in lezione la
tua Nota sugli integrali semiesatti.

Tu dimostri che ad ogni curva di .|2C + K| passante per il gruppo jacobiano
e per il gruppo base di un fascio .|C| (curva covariante del fascio, come io la
chiamo) si può associare una determinata curva covariante di ogni altro fascio
.|D|. Due curve associate segano sullo stesso gruppo di punti la curva di contatto
di due fasci. Esse inoltre si segano in un gruppo .GI+4 della tua serie. Si vede
facilmente che questo gruppo è comune a tutta la famiglia di curve covarianti
associate relative agli infiniti fasci esistenti sulla superficie. Ogni curva C di
.f = 0 è segata dalla curva covariante della famiglia in un gruppo canonico che
dirò gruppo traccia.

Preso un punto P della superficie, esistono infinite curve per P per le quali
P appartiene al gruppo traccia. Tutte queste curve si toccano in P . Vuol dire
che ad ogni punto P di .f = 0 è collegata una direzione tangente, o un
elemento lineare uscente da P (indeterminato solo se P appartiene al gruppo
.GI+4). Connettendo tutti questi elementi si viene a ricoprire la superficie
con un fascio di curve (trascendenti) che risultano esser le curve integrali
dell’equazione .Bdx − Ady = 0, dove .A = 0 e .B = 0 sono due superficie
aggiunte d’ordine .n − 2 secanti su f le curve covarianti dei fasci .x = cost.,
.y = cost. Resterebbe naturalmente da far vedere che .1/f ′

z è fattore integrante
dell’espressione differenziale.



248 C. Ciliberto and C. Fontanari

Al variare di P su f quella tangente in P descrive una congruenza algebrica
di classe .2π − 2 e di ordine .k − ν = 6π − 6 + p(1) − 1 − (I + 4) ove k è il
numero di punti cuspidali e .ν è l’ordine della curva .f = f ′

x = 0.

E qui termino questa lunghissima lettera che vorrei potesse spingere a colmare
nella teoria delle superficie quella lacuna che tutti avvertiamo.

Cordiali saluti dal tuo aff.mo

GUIDO CASTELNUOVO

Rome, November 26, 1947

Dear Severi,
following your wishes I am going to tell you some results about irregular

surfaces; many of them are easily obtained and may be useful as exercises for your
students. My ambitious and ultimate purpose was to build a theory of such surfaces
independent of the notion of continuous system of curves, a theory embracing the
theorem on the number .(pg − pa) of independent global differentials of the first
kind, the theorem of Hodge, etc.. This program has just started; but the goal should
be achieved, unless the theory of irregular surfaces hide amazing things I could not
even imagine.

I. Let .|C| be a regular system of degree n and genus .π ; in many cases we need
to assume that .|C| is sufficiently ample, containing the canonical system .|K| or
even one of its multiples; since we are looking for invariant characters, this is
immaterial. I denote by .χ your invariant .q ′, namely, the number of independent
curves of .|2C+K| passing through the jacobian group .Gδ of a pencil .|C|, hence
through the base locus .Gn of the pencil. Let .Gk be the group of the k cuspidal
points1 of a surface, of degree n, with only ordinary singularities, and whose
plane sections belong to the system .|C|.

Here is a meaning of .χ which is immediate:

(1) The invariant .χ is the superabundance of the system .|4C+2K| with respect
to the cuspidal points .Gk (i.e. .Gk imposes .k−χ conditions to such system).

On the other hand, .Gk gives independent conditions to the systems
.|mC + K|, .|mC + 2K|, . . . , per .m � 5.

For .m = 4 there is a result of Enriques, indirectly obtained by a moduli
computation for a surface, but which should be directly proven; I recall it
because it is coming into play shortly later: “The superabundance of the
system .|4C + K| with respect to the group .Gk of cuspidal points is an
invariant”, which I will denote .Q′ and whose expression I am going to give
below.

(2) The complete series .gk determined by the group .Gk on a curve of .|4C +K|
passing through it has dimension .χ .

1 The usual English term for cuspidal points is pinch points.
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(3) The complete series .gk determined by the group .Gk on a curve of .|3C +K|
passing through it (for instance: on .f = f ′

x = 0) has dimension .2n − π +
2pg + pa − (I + 4) + θ where .0 � θ � pg − pa (assume .|C| sufficiently
ample). Is .θ an invariant?

II. The same argument which led you to establish the invariance of .q ′ = χ

immediately shows:

(4) It is invariant the number of linearly independent curves of .|2C + 2K|
passing through the jacobian group .Gδ of a pencil .|C| and also through
the base group of .Gn; I will denote this invariant by Q.

Then one sees (if the aforementioned result of Enriques is correct) that:
(5) It is also invariant the number of linearly independent curves of .|2C +2K|

passing through the group .Gδ without having to pass through .Gn; this new
invariant is equal to Enriques invariant .Q′.

It is therefore invariant the number of conditions that a curve of .|2C +
2K| passing through the jacobian group .Gδ of a pencil .|C| has to satisfy in
order to contain the base group. One proves that this invariant satisfies the
inequality .Q′ − Q � pg .

Regarding the expressions of Q e .Q′ I can state the following.
If the .∞Q−1 curves of .|2C+2K| passing through .Gδ+Gn cut on a curve

of .|2C + K| passing through the same group a complete series (residual of
.Gδ + Gn with respect to the canonical series) then:

.Q − 1 = pa + pg + p(1) − (I − 4) + ω

where .ω (.� pg − pa) is a new invariant which has a very simple meaning:
.I +4−ω−1 is the number of conditions that a group .GI+4 of your series of
equivalence (in the strict sense) prescribes to the bicanonical curves forced
to contain it.

If such a linear series is not complete, from the expression of .Q − 1 one
has to subtract the deficiency .� pg − pa of the series.

In the same circle of ideas I also tell you the following result:
(6) The superabundance of the system .|3C + K| with respect to the jacobian

group .Gδ of a pencil .|C| is an invariant and its value is precisely .2pg (if
the complete system .|C| to which the pencil belong is sufficiently ample).

III. Other issues. As you know, the fundamental theorem to be proven is the
following: a curve .� of .|2C + K| passing through the jacobian group .Gδ

and the base group .Gn of a pencil .|C| cuts on the generic curve C of the
pencil (off .Gn) a canonical group which does not belong to an adjoint curve
.C′. I tried to translate this condition into other equivalent formulations. Such
is for instance the following one: the group .Gn on that curve has to impose
independent conditions to the characteristic series of .� made complete. To the
characteristic series in the strict sense, .Gn imposes only .n − 1 conditions.
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Other formulation: Let us write Picard’s identities in homogeneous coordi-
nates:

.Xf ′
x + Yf ′

y + Zf ′
z + Tf ′

t = 0

where .X = 0, . . . are surfaces of degree .n − 3. We have to add the condition
(not explicitly stated) that the surfaces .yX − xY = 0, . . . , tZ − zT = 0 are
adjoint to .f = 0 of degree n.2 It follows that .X = 0, . . . , T = 0 pass simply
through the t triple points of f and moreover share a group of .(n − 4)d − 3t

points on the double curve of degree d of f ; furthermore, they cut the planes
.x = 0, . . . , t = 0, respectively, in adjoint curves of degree .n − 3. Hence it
follows that such group of points of the double curve belongs to the series cut
on this curve by the surfaces of degree .n− 4 passing simply through the t triple
points, provided this series has been made complete, while it has deficiency
.pg − pa by the very definition of irregularity. Now, the fundamental theorem
is equivalent to the following: Through such groups of .(n − 4)d − 3t points of
the double curve it does not pass any surface of degree .n − 4 containing the t

triple points of f .3 This statement translates into the following one, which is
quite elegant from the analytic viewpoint: It is impossible to verify an identity
of the form:

.Xf ′
x + Yf ′

y + Zf ′
Z + T f ′

t ≡ Qf

where .X = 0, . . . , T = 0 are adjoint surfaces of degree .n − 3 and .Q = 0 is a
surface of degree .n − 4 except in the trivial case .X = 1

n
xQ, . . . , T = 1

n
tQ.

Going back to Picard’s identity as written above, I suggest to you to propose
to some student to investigate the homography between the system of non–
adjoint degree .n − 3 surfaces .λX + μY + νZ + ρT = 0 and the system of
planes .λx + μy + νz + ρt = 0, each cutting the corresponding surface in an
adjoint curve. In the case of irrational ruled surfaces of low degree one finds
very elegant properties.

IV. Finally, a few remarks you may find useful if you will present in a course your
note about semiexact integrals.

You prove that to every curve of .|2C+K| passing through the jacobian group
and the base group of a pencil .|C| (covariant curve of the pencil, as I call it) one
can associate a unique covariant curve of every other pencil .|D|. Two associated
curves cut on the same group of points the contact curve of two pencils. They
moreover cut each other in a group .GI+4 of your series. One easily checks that
this group is common to the whole family of associated covariant curves with

2 This is clearly an error, Castelnuovo means adjoint of degree .n − 2.
3 The right statement here would be: Through such groups of .(n − 4)d − 3t points of the double
curve it does not pass any surface of degree .n − 4 containing the t triple points of f and not
containing the double curve.
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respect to the infinitely many pencils on the surface. Every curve C of .f = 0 is
cut by the covariant curve of the family in a canonical group which I will call
trace group.

Taken a point P of the surface, there exist infinitely many curves through
P such that P belongs to the trace group. All these curves intersect in P . It
means that to every point P of .f = 0 is associated a tangential direction, or a
linear element (not defined only if P belongs to the group .GI+4). By connecting
all these elements the surface is covered by a pencil of (transcendental) curves
which turn out to be the integral curves of the equation .Bdx −Ady = 0, where
.A = 0 and .B = 0 are two adjoint surfaces of degree .n − 2 cutting on f the
covariant curves of the pencils .x = const., .y = const. Of course one should
show that .1/f ′

z is an integral factor of the differential expression.
Varying P on f the tangent in P describes an algebraic congruence of class

.2π − 2 and degree .k − ν = 6π − 6 + p(1) − 1 − (I + 4) where k is the number
of cuspidal points and .ν is the degree of the curve .f = f ′

x = 0.

Here I stop this quite long letter I wish it could stimulate to fill in the theory of
surfaces that gap we all perceive.

Best regards, yours friendly

GUIDO CASTELNUOVO

2.2 Guido Castelnuovo to Beniamino Segre

Roma, 15 genn. 50

Caro Professore,
In relazione alla nostra conversazione di venerdì scorso e al programma di

ricerche di cui Le parlavo, penso di sottoporle una questione, risolta la quale si
sarebbe compiuto un passo notevole verso la meta cui Le accennavo. Si tratta di una
questione di geometria algebrica, la quale, ove si possano togliere alcune restrizioni
forse non necessarie, si muta in una questione relativa alle equazioni alle derivate
parziali con condizioni al contorno. Con i mezzi svariati e potenti di cui Ella dispone
potrà affrontarla e pervenire alla risposta desiderata.

Sia .f (x, y, z, t) una superficie (in coord. omog.) d’ordine n, irriducibile, con
singolarità ordinarie; e siano .X = 0, .Y = 0, .Z = 0, .T = 0 quattro superficie
aggiunte d’ordine .n − 3. Si tratta di dimostrare che un’identità del tipo

.Xf ′
x + Yf ′

y + Zf ′
z + Tf ′

t = Qf, (1)

con Q polinomio di grado .n − 4, non può sussistere salvo nel caso banale (identità
di Eulero) .X = 1

n
xQ, . . . , T = 1

n
tQ. Per farle vedere l’interesse della questione

Le dirò che se si toglie la condizione che le sup. .X, . . . , T siano aggiunte, e
si sostituisce con la condizione meno stretta che siano aggiunte le sei superficie
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d’ordine .n − 2 .yX − xY = 0, . . ., allora la identità può sussistere con Q

identicamente nulla; anzi di identità di quel tipo ve ne sono .pg − pa indipendenti
per una superficie irregolare (Picard).

Ritornando alla (1), supposto che essa possa aver luogo, si vedrebbe che la
superficie .Q = 0 incontra la curva doppia di .f = 0 nei punti tripli e nei punti ove
.X′

x + Y ′
y + Z′

z + T ′
t = 0, donde si concluderebbe che .Q ≡ X′

x + Y ′
y + Z′

z + T ′
t + Q

(salvo un fattore costante), essendo .Q = 0 una superficie aggiunta d’ordine .n − 4
che darebbe luogo a un integrale doppio senza periodi; e di qua l’assurdo (Hodge).
Ma io richiedo evidentemente una dimostrazione più diretta e più elementare di
quella qui abbozzata.

Ci pensi quando ha tempo, perché mi pare ne valga la pena. Cordiali saluti; aff.mo

G. Castelnuovo

Rome, January 15, 1950

Dear Professor,
Concerning our conversation of last Friday and the research program I exposed

to you, I am going to propose to you a question, whose solution would provide a
remarkable step towards the goal I mentioned. It is a question in algebraic geometry,
which, up to removing some maybe unnecessary restrictions, translates into a
question in partial differential equations with boundary conditions. By applying the
many and poweful tools you have at your disposal you could address it and obtain
the desired answer.

Let .f (x, y, z, t) be a surfaces (in homogeneous coordinates) of degree n,
irreducible, with ordinary singularities; let .X = 0, .Y = 0, .Z = 0, .T = 0 be
four adjoint surfaces of degree .n − 3. The point is to show that an identity of the
form

.Xf ′
x + Yf ′

y + Zf ′
z + Tf ′

t = Qf, (2)

with Q polynomial of degree .n − 4, is not satisfied unless in the trivial case (Euler
identity) .X = 1

n
xQ, . . . , T = 1

n
tQ. In order to show you the interest of the question

I will tell you that if one drops the condition that the surfaces .X, . . . , T are adjoint,
and one replaces it by the less strict condition that the six degree .n−2 surfaces .yX−
xY = 0, . . . are adjoint, then the identity may hold with Q identically zero; indeed,
there are .pg − pa independent such identities for an irregular surface (Picard).

Coming back to (2), assuming it may hold, one would see that the surface .Q =
0 meets the double curve of .f = 0 in the triple points and in the points where
.X′

x+Y ′
y+Z′

z+T ′
t = 0, whence one would conclude that .Q ≡ X′

x+Y ′
y+Z′

z+T ′
t +Q

(up to a constant factor), where .Q = 0 would be an adjoint surface of degree .n − 4
which would give rise to a double integral without periods, hence a contradiction
(Hodge). But of course I am looking for a more direct and more elementary proof
than the one sketched here.



Two Letters by Guido Castelnuovo 253

Please think about that when you have time, because I believe it is worth the
trouble. Best regards; yours friendly

G. Castelnuovo

3 Regular 1-Forms on a Surface

If X is a smooth, irreducible, projective surface over an algebraically closed field
.K, the elements of .H 0(X,�1

X) are called regular 1-forms on X. We will denote
the dimension of .H 0(X,�1

X) by .qan(X) (or simply by .qan if there is no danger of
confusion), and we will call it the analytic irregularity of X (see [6]).

In this section we want to explain the background of Castelnuovo’s letters, using
modern terminology. In particular we want to explain a classical method, very
familiar to Castelnuovo and due to Picard and Severi, of constructing regular 1-
forms on a surface. In Sect. 3.3, we explain Castelnuovo’s viewpoint on the attempts
of proving closedness of regular 1-forms on a surface.

3.1 The General Set Up

Let X be a smooth, irreducible, projective surface over an algebraically closed field
.K. We may assume X to be linearly normally embedded as a surface of degree d in
a projective space .P

r , with .r � 5, in such a way that the following happens. If we
consider a general projection .π of S to .P

3, whose image is a surface S of degree d,
then S has ordinary singularities (see [20, Thm. 2]), i.e., it has:

• an irreducible nodal double curve .�, i.e., S has normal crossings at the general
point of .�,

• a finite number of triple points for both .� and S; the triple points for .� are
ordinary, i.e., the tangent cone there to .� consists of the union of three non-
coplanar lines, and the tangent cone there to S consists of the union of three
distinct planes,

• finitely many pinch points on .�; we will denote by .Gc the pinch points scheme,
i.e., the reduced zero-dimensional scheme on X where the differential of .π drops
rank, so that .Gc is mapped by .π to the set of pinch points of S on .�. We will set
.γ = length(Gc).

The map .π : X → S is the normalization map.
We will introduce homogeneous coordinates .[x1, x3, x3, x4] in .P

3 and related
affine coordinates .(x, y, z), with

.x = x1

x4
, y = x2

x4
, z = x3

x4
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so that .x4 = 0 is the plane at infinity. We assume that the coordinates (i.e., the
corresponding fundamental points) are general with respect to S. The homogeneous
equation of S is of the form .F(x1, x2, x3, x4) = 0, with F an irreducible
homogeneous polynomial of degree d, and the affine equation of S is .f (x, y, z) = 0,
with .f (x, y, z) = F(x, y, z, 1). We will denote by .fx, fy, fz the partial derivatives
of f with respect to .x, y, z and by .Fi the partial derivative of F with respect to .xi ,
for .1 � i � 4 (we will use similar notations for other polynomials). Note that

.fx(x, y, z) = F1(x, y, z, 1) (3)

and similarly for the other derivatives. Therefore, by Euler’s identity, we have

.d · f (x, y, z)= xF1(x, y, z, 1) + yF2(x, y, z, 1) + zF3(x, y, z, 1) + F4(x, y, z, 1).

(4)

By the generality assumption of the coordinates with respect to S, we have that:

• the plane at infinity is not tangent to S, i.e., it cuts out on S a curve whose
pullback on X via .π is smooth;

• each of the pencils .Pi of planes with homogeneous equations .hxi = kx4, with
.(h, k) ∈ K \ {(0, 0)}, pulls back via .π to a Lefschetz pencil .Xi on X, with .1 �
i � 3;

• the pullback .�i on X of the curve .γi cut out on S off the double curve .� by the
polar surfaces .Fi = 0 is smooth for .1 � i � 3.

Remark 1 By the genericity of the position of S with respect to the coordinate
system, one sees that the curves .�i , for .1 � i � 3, contain the pinch points scheme
.Gc and intersect pairwise transversely there.

The singular points of the finitely many curves in the pencil .Xi are nodes and
form a reduced zero-dimensional scheme .Ji on X, which is called the Jacobian
scheme of .Xi , for .1 � i � 3. We will assume that, for all .i ∈ {1, 2, 3}, the image .Ji

of this scheme on S, called the Jacobian scheme of .Pi , has no intersection with the
double curve .�.

It is also easy to check that the curve .�i cuts out on .�j the divisor .Gc+Jk , where
.{i, j, k} = {1, 2, 3}. So, in particular, taking into account that .�i ∈ |3C + KX|, for
.1 � i � 3 (we denote by C a hyperplane section of X), one has

.O�3(Gc + J1) = O�3(Gc + J2) = O�3(3C + KX), (5)

hence

.O�3(J1) = O�3(J2). (6)

Similar relations hold on .�2 and .�3. Note that (5) implies that .|3C + KX| has no
fixed component and .(3C + KX)2 > 0; hence, .3C + KX is big and nef.
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Let .e := e(X) be the Euler–Poincaré characteristic of X (i.e., the second Chern
class of the tangent bundle of X) and g the arithmetic genus of the hyperplane
sections of X. By the Zeuthen–Segre formula (see [10, p. 301]), the length .δ of .Ji is

.δ = e + 4(g − 1) + d.

3.2 The Expression of 1-Forms on a Surface

It is a result by Picard (see [19, p. 116]; Picard works over .C, but it is easy to check
that his argument works on any algebraically closed field .K) that if .ω is a regular
1-form on X, then it is the pullback on X of a rational 1-form of the type

.
Ady − Bdx

fz

(7)

where .A = 0, B = 0 are affine equations of two adjoint surfaces of degree .d − 2 to
S. Recall that a surface is said to be adjoint to S if it contains the double curve .� of
S.

In the 1-form (7), we can make a change of variables passing from .x, y to .x, z.
From the relation

.fxdx + fydy + fzdz = 0

we deduce

.dy = −fxdx + fzdz

fy

.

Substituting into (7) we find

.

−Afx+Bfy

fz
dx − Adz

fy

and this has to be of the same form as (7) with respect to the variables .x, z. This
implies that there must be a polynomial C of degree .d − 2 such that .C = 0 is the
affine equation of an adjoint surface to S, such that

. − Afx + Bfy

fz

= C, modulo f = 0.

This yields the Picard’s relation

.Afx + Bfy + Cfz = Nf (8)
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where N is a suitable polynomial of degree .d − 3. The Picard relation has some
remarkable consequences, pointed out by Severi (see [22, §9]). Before stating
Severi’s result, we recall the following:

Lemma 2 (Castelnuovo’s Lemma) Let .g(x1, x2, x3) = 0 be the equation of an
irreducible plane curve of degree n with no singular points except nodes. Then there
is no non-trivial syzygy of degree .l � d − 2 of the triple .(g1, g2, g3) of derivatives
of g.

For the proof see [22, §7] or [14, p. 34]. Next we can prove Severi’s result:

Proposition 3 If .A,B,C are non-zero polynomials verifying (8), then the (projec-
tive closure of the) surface with equation .A = 0 [resp. .B = 0, .C = 0] contains
the base line of the pencil of planes .P1 [resp. of .P2, of .P3] and also the Jacobian
scheme .J1 [resp. .J2, .J3] of this pencil. Moreover the (projective closures of the)
surfaces .A = 0, B = 0, C = 0 cut out on the plane at infinity the same curve off
the aforementioned lines.

Proof First we prove that the surface with equation .A = 0 contains the scheme .J1.
Let P be a point of .J1. Then .f, fy, fz vanish at P . Hence by (8), also .Afx vanishes
at P . However .fx does not vanish at P because P does not belong to the double
curve .� of S. Hence A vanishes at P . Similarly for the surface with equation .B = 0
[resp. .C = 0] containing the scheme .J2 [resp. .J3].

Next, homogenize (8). By (3) (and the similar for the other derivatives), we get a
relation of the form

.ĀF1 + B̄F2 + C̄F3 = N̄F

where we denote by the bars the homogenization of the corresponding polynomials.
By taking into account the Euler identity, this relation takes the form

.(dĀ − x1N̄)F1 + (dB̄ − x2N̄)F2 + (dC̄ − x3N̄)F3 = x4N̄F4.

Setting .x4 = 0 and taking into account Castelnuovo’s Lemma 2, we have identically

.dĀ − x1N̄ ≡ 0, dB̄ − x2N̄ ≡ 0, dC̄ − x3N̄ ≡ 0

under the condition .x4 = 0. This implies that

.dA0 − x1N0 ≡ 0, dB0 − x2N0 ≡ 0, dC0 − x3N0 ≡ 0

where .A0, B0, C0 are the homogeneous components of .A,B,C in degree .d − 2 and
.N0 is the homogeneous component of N of degree .d−3. The assertion follows right
away. ��
Remark 4 Note that the surfaces with equations .A = 0, B = 0, C = 0 in
Proposition 3 are not necessarily adjoint. Keeping the notation of the proof of
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Proposition 3, set .N0 = ϑ . Then we have identities of the form

.A = xϑ + A1, B = yϑ + B1, C = zϑ + C1, N = dϑ + N1 (9)

where .A1, B1, C1 are (non-homogeneous) polynomials of degree at most .d − 3 and
.N1 has degree at most .d − 4.

Severi next proved the following proposition (see [22, §9]):

Proposition 5 Let .A = 0 be the affine equation of an adjoint surface of degree
.d − 2 to S containing the scheme .J1. Then there are uniquely determined adjoint
surfaces of degree .d − 2 to S with affine equations .B = 0 and .C = 0, containing
the schemes .J2 and .J3, respectively, such that (8) holds. Each of the polynomials
.A,B,C uniquely determines the other two.

Proof Consider A as in the statement. The complete linear system .|2C + KX| is
the pullback to X of the curves cut out on S, off the double curve .�, by the adjoint
surfaces of degree .d − 2. Looking at the exact sequence

.0 −→ OX(−C) −→ OX(2C + KX) −→ O�3(2C + KX) −→ 0

we see that .|2C + KX| cuts out on .�3 a complete linear series .ξ , because
.h1(X,OX(−C)) = 0 (by the Kodaira vanishing theorem, see [11, p. 154]).
Moreover, since .h0(X,OX(−C)) = 0, the restriction map

.H 0(X,OX(2C + KX)) −→ H 0(�3,O�3(2C + KX))

is injective.
Let us abuse notation and denote by .A ∈ |2C + KX| the pullback on X of the

curve cut out on S by the (projective closure of the) surface .A = 0 off .�. Then A

cuts out on .�3 a divisor of the form .J1 + Z ∈ ξ . Since .J2 + Z ∈ ξ by (6), there
is a unique curve .B ∈ |2C + KX| that cuts out .J2 + Z on .�3. By abusing notation,
we denote by B a non-zero polynomial, uniquely defined up to a constant, such that
.B = 0 is the adjoint surface cutting out on S off .� the curve whose pullback on X is
B. The surfaces .Afx and .Bfy cut out on the curve .γ3 the same divisor; hence, there
is a non-zero constant b such that .Afx − bBfy = 0 on .γ3. By substituting B with
.−bB, we may assume that .Afx + Bfy = 0 on .γ3.

Consider now the complete intersection scheme Y , whose ideal is generated by
f and .fz, which consists of two components given by .γ3 and by .� with a double
structure. Since .Afx + Bfy vanishes on .γ3 and vanishes with multiplicity 2 on .�,
then .Afx + Bfy vanishes on Y , and therefore .Afx + Bfy is a combination of f and
.fz, i.e., there are polynomials C and N , of degrees .d − 2 and .d − 3, respectively,
such that (8) holds. Note that C cannot be identically zero. Otherwise we would
have an identity of the sort

.Afx + Bfy = Nf.
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This is impossible, because then .Bfy would vanish along the curve .γ1, but neither
.fy nor B can vanish along this curve. Since .Afx , .Bfy , and f vanish doubly along
.�, then C vanishes along .� so that .C = 0 is adjoint to S. Moreover C is uniquely
determined. In fact, from another identity of the form

.Afx + Bfy + C′fz = N ′f,

subtracting memberwise from (8), we deduce

.(C − C′)fz = (N − N ′)f

and f would divide the left-hand side, which is impossible because both factors
there have degree smaller than f . The assertion follows. ��

By taking into account Proposition 3, one has the:

Corollary 6 Every adjoint surface to S of degree .d − 2 containing the scheme .J1
contains also the base line of the pencil .P1.

We can state this corollary in an intrinsic form:

Corollary 7 Let X be a smooth, irreducible, projective surface, C a very ample
effective divisor on X, and .P a Lefschetz pencil in .|C|. Then any curve in .|2C+KX|
containing the Jacobian scheme of the pencil .P (i.e., the scheme of double points of
the singular curves in .P) also contains the base locus scheme of .P.

Now, given an adjoint surface of degree .d−2 to S containing the scheme .J1, with
affine equation .A = 0, consider the other two adjoint surfaces .B = 0 and .C = 0
existing by Proposition 5. We can consider the three regular 1-form pullbacks on X

of the forms

.
Ady − Bdx

fz

,
Bdz − Cdy

fx

,
Cdx − Adz

fy

.

By the very proof of Proposition 3, we see that these forms are equal. In conclusion,
if we consider the vector space .Adjd−2(S) of (non-homogeneous) polynomials of
degree (at most) .d − 2 defining adjoint surfaces to S passing through .J1, this
determines an isomorphism

.ϕ : Adjd−2(S) → H 0(X,�1
X). (10)

The map .ϕ sends a polynomial A to the 1-form pullback of the form (7) to X, where
.B = 0 is the adjoint surface of degree .d − 2 described in Proposition 5. The same
by exchanging .J1 with .J2 or .J3.
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3.3 Closedness of 1-Forms

The following result is well-known:

Proposition 8 If X is a complex, smooth, compact surface, any regular 1-form on
X is closed.

Proof This proof is extracted from [2, p. 137–138].
Let .ω ∈ H 0(X,�1

X) be a non-zero regular form. By Stokes’ Theorem one has

.

∫
X

dω ∧ dω̄ =
∫

X

d(ω ∧ dω̄) = 0. (11)

Write down locally .dω = f dz1 ∧ dz2. Then

.dω ∧ dω̄ = −|f |2dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2 = 4|f |2dx1 ∧ dy1 ∧ dx2 ∧ dy2

where .zj = xj + iyj , for .1 � j � 2, so that by (11) one gets .f = 0, i.e., .dω = 0.
��

The proof of this proposition is analytic and does not hold in positive charac-
teristic. In fact in positive characteristic there are counterexamples to Proposition 8
(see [16, Corollary]). There is then the problem, which was classically well-known
(see [24, p. 185]) and considered also in the two letters by Castelnuovo, of finding
a purely algebraic proof of Proposition 8. It is useful for us to review the classical
viewpoint on this subject.

Let us keep the notation introduced above. Let .ω be a regular 1-form on the
surface X, which is the pullback on X of the rational 1-form (7). Then we have
.dω = φdx ∧ dy, with

.φ = ∂

∂x

( A

fz

)
+ ∂

∂y

( B

fz

)

where it is intended that the differentiations take place on the surface X, so that z is
function of .x, y implicitly defined by .f (x, y, z) = 0. So, for instance,

.
∂z

∂x
= −fx

fz

and

.

∂
∂x

(
A
fz

)
=

(
Ax+Az

∂z
∂x

)
fz−A

(
fzx+fzz

∂z
∂x

)
f 2

z
=

=
(

Ax−Az
fx
fz

)
fz−A

(
fzx−fzz

fx
fz

)
f 2

z
=

= f 2
z Ax−fz(Afzx+Azfx)+fzzAfx

f 3
z
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and similarly

.
∂

∂y

( B

fz

)
= f 2

z By − fz(Bfzy + Bzfy) + fzzBfy

f 3
z

so that

.φ = f 2
z (Ax + By) − fz(Afzx + Azfx + Bfzy + Bzfy) + fzz(Afx + Bfy)

f 3
z

.

(12)

Taking into account (8) and the identity

.
∂(Afx + Bfy)

∂z
= Azfx + Afxz + Bzfy + Bfyz,

Equation (12) becomes

.φ = 1

f 3
z

[
f 2

z (Ax + By + Cz − N) + f (Nfzz − fzNz)
]

so that

.φ = Ax + By + Cz − N

fz

, modulo f

and this is regular on X. Hence if we set

.Q = Ax + By + Cz − N

the polynomial Q has to vanish on the double curve .� of S, because it has to vanish
where .fz vanishes.

A priori Q is a polynomial of degree .d − 3, but one has actually:

Lemma 9 In the above setting, Q has degree .d − 4.

Proof By taking into account the identities (9) in Remark 4, we have

.Ax = θ + xθx + ∂A1

∂x
, By = θ + yθy + ∂B1

∂y
, Cz = θ + zθz + ∂C1

∂z

where .θ is a homogeneous polynomial of degree .d − 3. Hence, by Euler’s identity,
we get

.
Ax + By + Cz − N = dθ + ∂A1

∂x
+ ∂B1

∂y
+ ∂C1

∂z
− (dθ + N1) =

= ∂A1
∂x

+ ∂B1
∂y

+ ∂C1
∂z

− N1
(13)
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which proves the assertion. ��
In conclusion, we have

.
∂

∂x

( A

fz

)
+ ∂

∂y

( B

fz

)
= Q

fz

and with similar computations, one finds

.
∂

∂y

( B

fx

)
+ ∂

∂z

( C

fx

)
= Q

fx

,
∂

∂z

( C

fy

)
+ ∂

∂x

( A

fy

)
= Q

fy

.

In any event, the form .ω as above is closed if and only if .Q = 0 modulo f . But,
since Q has degree smaller than d, this is the case if and only if Q is identically
zero. So, taking into account (13), the problem of giving an algebraic proof of
Proposition 8 translates in the following:

Problem 10 Find an algebraic proof that (8) implies either one of the two equiva-
lent relations

.N = Ax + By + Cz, N1 = ∂A1

∂x
+ ∂B1

∂y
+ ∂C1

∂z
(14)

each of which is called the integrability condition.

We want to stress that any solution of Problem 10 must use the fact that the base
field .K has characteristic zero.

3.4 Homogeneous Form of Picard’s Relation

It is useful to describe the homogeneous form of Picard’s relation (8). This is
contained in [19, p. 119], and we expose this here for the reader’s convenience.

By (4), we can rewrite (8) as

.
d · AF1(x, y, z, 1) + d · BF2(x, y, z, 1) + d · CF3(x, y, z, 1) =

= N(xF1(x, y, z, 1) + yF2(x, y, z, 1) + zF3(x, y, z, 1) + F4(x, y, z, 1))

Set

.X1 = dA − xN, X2 = dB − yN, X3 = dC − zN, X4 = −N̄

where, as usual, the bars stay for homogenization. By (9), we have

.X1 = dA1 − xN1, X2 = dB1 − yN1, X3 = dC1 − zN1, X4 = −N̄
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and the polynomials .Xi , with .1 � i � 4, are of degree .d − 3. Then we have the
relation

.X1F1 + X2F2 + X3F3 + X4F4 = 0 (15)

which is the homogeneous Picard’s relation. If we consider the matrix

.M =
(

X1 X2 X3 X4

x1 x2 x3 x4

)
, (16)

all minors of order 2 of M , after dehomogenization, are linear combinations of
.A,B,C and so are in .Adjd−2(S).

Suppose the homogeneous Picard’s relation (15) holds. Taking into account the
expressions of the polynomials .Xi , for .1 � i � 4, and the relations (9), the
integrability relation in the form of the right-hand side of (14) becomes

.
∂X1

∂x1
+ ∂X2

∂x2
+ ∂X3

∂x3
+ ∂X4

∂x4
= 0 (17)

which is the homogeneous integrability condition. Problem 10 can now be expressed
in homogeneous form as:

Problem 11 Find an algebraic proof that (15) (with all minors of order 2 of the
matrix M in (16), after dehomogenization, in .Adjd−2(S)) implies the homogeneous
integrability condition (17).

4 Comments on Castelnuovo’s Letters

This section is devoted to explaining most of the issues raised by Castelnuovo in
his two letters. Both letters focus on the understanding of the algebro-geometric
meaning of the analytic irregularity .qan and on solving Problems 10 or 11.

In §§1 and 2 of the first letter, Castelnuovo suggests, with no proofs, various
geometric interpretations of .qan. Analogous remarks have been partially included
by Castelnuovo in the paper [4] published 2 years after this letter. Castelnuovo
does not say it, but maybe he had in mind in the letter that the various geometric
interpretations of .qan could have been useful to algebro-geometrically prove the
equality between .qan and .qa := h1(X,OX) that we will call the arithmetic
irregularity, an equality that Castelnuovo proved with analytic methods in the paper
[3] of 40 years before (a different proof was given by Severi in [21]; see also [6]).
Note that this equality does not hold in positive characteristic, as proved by Igusa in
[12] (see also [17]).
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Let us keep the notation introduced so far. The first result Castelnuovo states in
his letter to Severi is the following:

Proposition 12 Let .|C| be a very ample linear system on X. Then

.h1(X,OX(4C + 2KX) ⊗ IGc|X) = qan.

Proof In Remark 1 we saw that .3C + KX is big and nef. This implies that also
.4C + KX is big and nef.

Look at the exact sequence

.0 −→ OX(C + KX) −→ OX(4C + 2KX) −→ O�3(4C + 2KX) −→ 0.

We have .hi(X,OX(C + KX)) = 0 for .1 � i � 2 (by the Kodaira vanishing
theorem), and .h1(X,OX(4C + 2KX)) = 0, because .4C + KX is big and nef (by
Mumford’s theorem, see [18, §II]). This implies that .|4C + 2KX| cuts out on .�3 a
complete, non-special linear series .gr

n, where

.r = n − pa(�3)

(recall the definition of the curves .�i , .i = 1, 2, 3, from the beginning of Sect. 3.1).
Set now

.h1(X,OX(4C + 2KX) ⊗ IGc|X) = h.

The linear system .|OX(4C + 2KX) ⊗ IGc|X| cuts out on .�3, off .Gc, a complete

linear series .ξ = g
r−γ+h
n−γ (recall that .γ = length(Gc)), so that h is the index of

speciality of .ξ .
Let G be a general divisor of .ξ , so that

.O�3(G + Gc) = O�3(4C + 2KX).

Let .G′ be a divisor on .�3 such that

.O�3(G
′ + J1) = O�3(2C + KX).

Adding up these two relations and subtracting (5), we get

.O�3(G + G′) = O�3(3C + 2KX) = ω�3 .

So we get

.h = h0(�3,O�3(G
′)).

On the other hand, by looking at the exact sequence
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.0 −→ OX(−C) −→ OX(2C + KX) −→ O�3(2C + KX)) −→ 0,

since .h1(X,OX(−C)) = 0 (by the Kodaira vanishing theorem), we see that .|2C +
KX| cuts out on .�3 a complete linear series; hence

.h = h0(�3,O�3(G
′)) = h0(X,OX(2C + KX) ⊗ IJ1|X)

and the assertion follows by the isomorphism .ϕ in (10). ��
After this Castelnuovo claims that

.h1(X,OX(nC + mKX) ⊗ IGc|X) = 0

for .n � 5 and .m � 1. We have not been able to prove (or disprove) this assertion.
Another geometric interpretation of .qan that Castelnuovo suggests in the letter to

Severi is the following: let D be a curve in .|4C + KX| that contains .Gc and it is
smooth there; then

.h0(D,OD(Gc)) = qan + 1. (18)

Also for this statement, we could not come up with a proof (or a counterexample).

Remark 13 It looks rather difficult that (18) could hold. In fact, consider again the
curve .�3. Then D cuts out on .�3 a divisor .Gc + G, where, by (5), one has

.O�3(G) = O�3(J1 + H) (19)

where H is a divisor cut out on .�3 by a hyperplane. By looking at the exact sequence

.0 −→ OX(−C) −→ OX(3C + KX) −→ OD(3C + KX) −→ 0

and since .h1(X,OX(−C)) = 0, we see that .|3C + KX| cuts out on D a complete
linear series. Hence the linear series .|OD(Gc)| is cut out on D, off G, by the linear
system .|OX(3C + KX) ⊗ IG|X|, and therefore

.h0(D,OD(Gc)) = h0(X,OX(3C + KX) ⊗ IG|X). (20)

From the exact sequence

.0 −→ OX −→ OX(3C + KX) ⊗ IG|X −→ O�3(3C + KX) ⊗ IG|X −→ 0

we have

.h0(X,OX(3C + KX) ⊗ IG|X) � h0(�3,O�3(3C + KX) ⊗ IG|X) + 1. (21)

By (19), we have
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.O�3(3C + KX) ⊗ IG|X = O�3(2C + KX) ⊗ IJ1|X.

Since, as we saw in the proof of Proposition 12, .|2C+KX| cuts out on .�3 a complete
linear series, we have

.h0(�3,O�3(2C + KX) ⊗ IJ1|X) = h0(X,OX(2C + KX) ⊗ IJ1|X) = qan.

Putting together this, (20) and (21), one gets

.h0(D,OD(Gc)) � qan + 1.

Now the equality holds if and only if the restriction map

.H 0(X,OX(3C + KX) ⊗ IG|X) −→ H 0(�3,O�3(3C + KX) ⊗ IG|X)

is surjective. This looks difficult because the map

.H 0(X,OX(3C + KX)) −→ H 0(�3,O�3(3C + KX))

is not surjective (it has corank .qa).

At the end of the first section of his letter to Severi, Castelnuovo claims that: if
D is a curve in .|3C + KX| containing .Gc and smooth there, then

.h0(D,OD(Gc)) = 2d − g + 2pg + χ − e − 1 + θ

with .0 � θ � qa , and, as usual, .χ = χ(OX) and .pg = h0(X,OX(KX)). It is easy
to check that this is equivalent to

.2pg + χ − 1 � h1(D,OD(Gc)) � 3pg.

However we have not been able to prove this.
In the second section of the letter to Severi, Castelnuovo states the:

Proposition 14 Let .P be a Lefschetz pencil in .|C|, with Jacobian scheme .J. Then

.h1(X,OX(4C + KX) ⊗ IGc|X) = h0(X,OX(2C + 2KX) ⊗ IJ|X).

The proof of this, not so different from the one of Proposition 12, is contained
in [4, §3], and we do not reproduce it here. Let B be the base locus scheme of the
Lefschetz pencil .P. Castelnuovo compares .h0(X,OX(2C + 2KX) ⊗ IJ|X) with
.h0(X,OX(2C + 2KX) ⊗ IJ+B|X). This does not look particularly interesting, and
we do not dwell on it here. Castelnuovo also claims that if .P is a Lefschetz pencil
in .|C| with Jacobian scheme .J, then

.h1(X,OX(3C + KX) ⊗ IJ|X) = 2pg
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but we have not been able to prove it.
Let us jump for a moment to section 4 of the letter to Severi. In this part, as well as

in the paper [4], Castelnuovo takes for granted the existence of the so-called Severi
equivalence series. Severi claimed in [23] that, unless the surface has an irrational
pencil, there exists the rational equivalence series, of dimension .qan −1, of the zero-
dimensional schemes of length e that are zeros of non-zero 1-forms in .H 0(X,�1

X).
In addition Severi claimed that .�1

X is generated by global sections. These claims are
false in general, as shown by F. Catanese in [5, §6]. Hence the contents of section 4
of the letter and of the paper [4] have biases because of this.

Let us now go back to section 3 of the letter to Severi. The focus of this section is
on Problems 10 or 11. Castelnuovo proposes a few equivalent formulations of these
problems, the most interesting of which, in our opinion, is the following, which is
also the topic of the letter to B. Segre.

Problem 15 Suppose there is a (homogeneous) relation of the form

.Y1F1 + Y2F2 + Y3F3 + Y4F4 = QF (22)

where .Yi = 0 are adjoint surfaces of degree .d − 3 to S and .Q = 0 is a surface of
degree .d − 4. Prove (algebraically) that Q is an adjoint surface and that

.Yi = 1

d
xiQ.

The solution of this problem implies the solution of Problem 11. Indeed, we can
rewrite (22) as

.

4∑
i=1

(
Yi − 1

d
Qxi

)
Fi = 0

and this is a homogeneous Picard’s relation of the type (15), with

.Xi = Yi − 1

d
Qxi, 1 � i � 4.

Problem 11 asks to prove that (17) holds, whereas Problem 15 asks to prove much
more, i.e., that .Xi = 0, for .1 � i � 4. So Problem 15 does not look equivalent to
Problem 11, and it is not at all clear if it has a solution or not.
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5 Algebraic Proofs via the Hodge–Frölicher Spectral
Sequence

This section is devoted to giving a brief account on how algebraic proofs of the
closedness of regular 1-forms and of the equality between algebraic and analytic
irregularity (both in characteristic zero) can be obtained using modern tools.

5.1 Global Regular 1-Forms Are Closed in Characteristic Zero

Let X be a smooth, irreducible, and projective variety of arbitrary dimension over
an algebraically closed field .K. Let .�i

X be the sheaf of algebraic differential i-
forms on X. The exterior derivative .d : �i

X → �i+1
X allows to define a complex

(the so-called algebraic de Rham complex) and a spectral sequence (the so-called
Hodge–Frölicher spectral sequence):

.E1 =
⊕
i,j�0

E
i,j

1

where

.E
i,j

1 := Hj(X,�i
X)

and

.d1 : E
i,j

1 → E
i+1,j

1

is given by

.d : Hj(X,�i
X) → Hj(X,�i+1

X ).

If this spectral sequence degenerates at .E1, then in particular we have .E
1,0
2 = E

1,0
1 ,

i.e.,

.
Ker(H 0(X, �1

X) → H 0(X,�2
X))

Im(H 0(X,OX) → H 0(X, �1
X))

= Ker(H 0(X, �1
X) → H 0(X,�2

X)) = H 0(X, �1
X).

Hence we see that if the Hodge–Frölicher spectral sequence degenerates at .E1, then
all global regular 1-forms are closed.

An algebraic proof of the degeneration at .E1 of the Hodge–Frölicher spectral
sequence in characteristic zero has been obtained by Deligne and Illusie in the paper
[7] published in 1987 (see also [9] and [13] for more detailed and self-contained
expositions). The strategy involves two steps: first, the result is proven under suitable
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assumptions in positive characteristic; then, by applying standard “spreading out”
techniques, it is extended to characteristic zero.

Theorem 16 ([13], Corollary 5.6) Let k be a perfect field of characteristic p, and
let X be a smooth and proper k-scheme of dimension .< p. If X satisfies a technical
assumption (namely, X can be lifted over the ring .W2(k) of Witt vectors of length 2
over k), then the Hodge–Frölicher spectral sequence of X over k degenerates at .E1.

Corollary 17 ([13], Theorem 6.9) Let .K be a field of characteristic zero, and let
X be a smooth and proper .K-scheme of arbitrary dimension. Then the Hodge–
Frölicher spectral sequence of X over .K degenerates at .E1.

For a friendly introduction to this circle of ideas, we refer the interested reader
to the informal survey [15] (see also [17], which explains the role of Witt vectors in
studying the irregularity in positive characteristic). Unluckily, it seems that in order
to address the case of surfaces, one needs to apply the whole machinery developed
for the general case.

5.2 Analytic Irregularity and Arithmetic Irregularity Coincide

Let X be a smooth and projective surface over the complex field .C. As already
realized (at least implicitly) by Castelnuovo, the fact that the analytic irregularity
.qan(X) = h0(X,�1

X) is equal to the arithmetic irregularity .qa(X) = h1(X,OX)

(which holds in general only in characteristic zero) is strictly related to the
closedness of global regular 1-forms.

A crucial additional ingredient for proving algebraically that .qan(X) = qa(X) is
the following equality, which admits a purely algebraic proof (see, for instance, [24,
Mumford’s remarks i) and iii) on p. 200], and [1, Theorem 5.1]):

.h1(X,C) = 2h1(X,OX) = 2qa(X). (23)

As in [2], proof of Lemma (2.6) on p. 139, there is a natural exact sequence

.0 → C → OX → S → 0,

where .S denotes the sheaf of closed regular 1-forms on X. Since all global regular
1-forms are closed, we get an exact sequence

.0 → H 0(X,�1
X) → H 1(X,C) → H 1(X,OX).

It follows that .h1(X,C) � h0(X,�1
X) + h1(X,OX) and together with (23) we may

deduce

.h1(X,OX) � h0(X,�1
X).
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On the other hand, the opposite inequality turns out to be much subtler and seems
to require the full strength of the Hodge–Frölicher spectral sequence. Indeed, if one
defines the algebraic de Rham cohomology .H ∗

dR(X/K) as the hypercohomology of
the algebraic de Rham complex, then the equality

. dim(H 1
dR(X/K)) = qan(X) + qa(X)

is a formal consequence of the degeneration at .E1 of the Hodge–Frölicher spectral
sequence (see for instance [15], Lemma 3.4). In particular, for .K = C we have

.qan(X) + qa(X) = dim(H 1
dR(X/K)) = h1(X,C) = 2qa(X)

by (23); hence, we obtain .qan(X) = qa(X).
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