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Abstract

Regarded as highly successful in their clinical applications, therapeutic proteins
are now widely applied for the precise treatment of several diseases. Common
forms of therapeutic proteins include enzymes, antibodies, and recombinant
proteins. Here, we discuss different aspects of the clinical applications of
protein-based therapeutics, including therapeutic proteins, their mechanisms
and metabolism, challenges, precision medicine, and computer-aided drug
designing. In addition, an overview of recently approved therapeutic proteins is
provided. Conclusively, this chapter delivers comprehensive information on
clinical applications of protein-based therapeutics, emerging trends, and
challenges.
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2.1 Introduction

Proteins, undoubtedly one of the most versatile macromolecules, have been exten-
sively studied for their widespread biomedical and therapeutic applications [1]. Due
to their properties like natural origin, biodegradability, biocompatibility, recognition
by cells, reduced immunogenic potential, and natural bioactivity, therapeutic
proteins offer several advantages compared to synthetic therapeutic molecules. In
addition, they are easy to functionalize and engineered for specific locations or
applications through alteration of their primary amino acid sequences. Presently,
proteins form a dominating segment of the pharmaceutical industry as they have
tremendous therapeutic potential against various diseases and syndromes. The
demand for protein-based medicines has significantly augmented, mainly due to
increased medical awareness and the prevalence of chronic diseases. From $140
billion in 2016, the global protein therapeutics market is projected to reach $566
billion by 2030 [2]. However, the high costs of therapeutic proteins and stringent
government regulations remain significant challenges that negatively impact market
growth.

Based on their molecular types, therapeutic proteins are classified into several
types, such as antibodies, enzymes, fusion proteins, recombinant proteins, blood
factors, anticoagulants, growth factors, interferon, hormones, etc. They act differ-
ently on biological or drug targets. Some common pharmacological activities of
therapeutic proteins are replacing deficient or abnormal proteins, interfering with
molecules or pathways, and delivering other molecules [3]. Protein-based therapeu-
tics have evolved a lot with technological advances in the fields of drug discovery
and protein engineering. For customized drug designing, the most critical aspects of
protein-based molecules are understanding their mechanism of action and the
structure-function relationship. Continuous improvements in traditionally existing
therapies and methods to identify drug targets have resulted in developing drugs with
better efficacy and targeted clinical applications [4]. This chapter provides a com-
prehensive overview of protein-based therapeutics, their mechanism, clinical
applications, and challenges. A detailed illustration is provided about enzymes and
antibodies as therapeutic proteins, followed by the introduction, applications, and
prospects of precision medicine, an emerging, highly innovative, and targeted
medicine approach that looks into an individual’s genetics, environment, and life-
style. The discovery and development of drugs consist of very complex and time-
consuming processes. However, recent decades have seen much growth in this field
due to the application of computer-aided drug design (CADD). Thus, we also briefly
discuss CADD approaches in drug designing and their application in developing
protein therapeutics. The chapter concludes with a discussion of recently approved
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therapeutic proteins, emerging trends, challenges, and opportunities in the field,
followed by the safety and efficacy of protein-based drugs.

2.2 Enzyme as Biologics

In contrast to regular therapeutics, biologics are comparatively larger molecules
having higher molecular weights. Most of these molecules are unstable at room
temperature and require refrigeration for storage. Also, biologics are produced by
complex processes, and at times, even slight changes in their formulation might lead
to degradation of their efficacy in disease management. It is nearly impossible to
produce an exact copy of biologics, and thus, nearly similar biologics, compared to
the original one, are manufactured that are referred to as biosimilars.

In 1878, a German physiologist Wilhelm Kühne coined the word “enzyme”
[5, 6]. The enzymes are responsible for biological catalysis and are also called
biocatalysts. Biocatalysis is a remarkable property of enzymes to speed up the
specific biological reaction in living organisms. The study of enzyme kinetics
provides information about a diverse range of reactions, metabolism, cell regulation,
and how poisons and drugs affect the enzymes [7, 8]. The first enzyme discovered
was diastase (a mixture of amylases), which catalyzes the hydrolysis of starch into
maltose. It has a wide range of clinical, food, forensic, biochemical, medicinal,
pharmaceutical, and environmental applications [7]. Almost all enzymes are
proteins, and a functional enzyme has different components, such as holoenzyme
(functional unit of enzyme and conjugated protein), apoenzyme (polypeptide seg-
ment of the enzyme and inactive precursor), coenzyme (small organic moiety), or
zymogens (simple protein enzymes, which are secreted in an inactive form).
Enzymes are classified into six functional classes that catalyze a specific reaction,
that is, oxidoreductases, transferases, hydrolases, lyases, isomerases, and ligases/
lyases [9]. This classification enables the identification and separation of diverse
chemical reactions in living organisms. The functionality of an enzyme is intrinsi-
cally linked to its three-dimensional (3D) structure and is determined by the shape
when it binds to the substrate that creates an ideal fit for catalysis.

2.2.1 Biological Process: How Enzymes Work?

A large number of biochemical reactions occur in the human body to carry out
essential metabolic processes. Thousands of enzymes produced in the human body
help to accelerate metabolism, growth, digestion, building muscle, healing,
destroying toxins, reproduction, liver function, nerve function, and so on
[8, 10]. The functions of enzymes are strongly affected by pH and temperature
[7, 11]. The lock and key model related to substrate-enzyme interaction was
postulated by Emil Fischer. The key signifies a substrate, and the lock and keyhole
represent the enzyme and its active site. The shape and size of the substrate are
complementary to the active site of the enzyme [5, 7]. The substrate perfectly binds
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at the active site and forms the enzyme-substrate complex, allowing rapid biochemi-
cal reaction.

2.2.2 Therapeutic Enzymes

The concept of therapeutic enzymes has been exploited for several decades
[10]. Some enzymes are the preferred markers of various diseases, including cancer,
infectious disease, myocardial infarction, clotting, pancreatitis, inherited diseases,
neurodegenerative disorders, etc. These markers help in disease management via the
diagnosis, prognosis, and assessment of responses to a therapeutic intervention
[6]. Effective therapeutic solutions via various enzymes are helpful for the treatment
of several diseases. The wide variety of uses of therapeutic enzymes is depicted in
Table 2.1 and Fig. 2.1.

2.3 Antibodies as Biologics

Antibodies are the proteins produced to bind a specific antigen. The main task of
antibodies is to get associated with the specific substance chemically considered
alien by our body, such as bacteria, viruses, and other foreign substances in the
blood, to neutralize them. Biochemically, antibodies are immunoglobulins, protec-
tive proteins produced by our immune system when it recognizes the presence of any
foreign substance, commonly referred to as an antigen.

Biologics have the potential to mount an immune response against them, reducing
their efficacy, and sometimes, it becomes life-threatening due to the generation of
antibiologics antibodies. To compensate, other cotherapy options are used to treat a
particular disease. It is always advisable to keep track of antibiologics antibodies in a
patient’s blood using therapeutic drug monitoring. It is one of the most prominent
techniques that detects the presence of biologics and antibiologics antibodies in the
blood [12]. If antibiologics antibodies are present above a permissible limit and the
amount of biologics is insufficient to reduce the inflammation, immune-modulators
are introduced into the treatment regimen [13]. Antibody-based biologics can be
subdivided into three major categories: monoclonal antibody (mAb) products,
non-mAb products, and vaccines [14]. The working mechanism of vaccines relies
solely on mounting immune response and is mainly used for only prophylactic
purposes rather than therapeutic uses and, thus, not elaborated here.

2.3.1 Monoclonal Antibody Products as Biologics

Monoclonal antibodies (mAbs) are immunoglobulin G (IgG) that imitate the natural
IgG function within the body. Their role is to bind to the foreign particles to
neutralize them. Fc Fusion proteins (FcFPs), consisting of the Fc receptor of the
IgG, can also bind to a modified protein. Like natural IgGs, mAbs, and FcFPs bind to
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Table 2.1 Enzymes and their therapeutic uses

Enzyme name Therapeutic uses

Enzymes for the treatment of infectious diseases

Lysozyme Treatment of HIV infection, Rainbow trout, Barrett’s
oesophagitis, Chronic gastritis, Coeliac disease,
Lymphocytic colitis, and Crohn’s colitis

Chitinases Allosamidin

Enzymes for the treatment of inherited diseases

Alteplase; recombinant human tissue
plasminogen activator

Used for the treatment of heart attacks

Pegademase bovine For enzyme replacement therapy in severe combined
immunodeficiency disease (SCID), caused by the chronic
deficiency of ADA.

Imiglucerase
Velaglucerase
Taliglucerase

For replacement therapy in patients with Gaucher’s
disease type I, a lysosomal storage disease (LSD)

Phenylalanine hydroxylase (PAH) Phenylketonuria (PKU)

Imiglucerase Replacement therapy in patients with types I, II, and III
Gaucher’s disease

Sacrosidase Treatment of congenital sucrase-isomaltase deficiency

Agalsidase-α
Agalsidase-β

Treatment of Fabry disease

Cancer treatment

PEGylated arginine deaminase, an
arginine-degrading enzyme

Treatment of human melanoma and hepatocellular
carcinomas

Rasburicase Treatment of malignancy-associated or chemotherapy-
induced hyperuricemia

Topoisomerase IIα Breast cancer treatment

ASNase Treatment of breast, rectal, acute lymphoblastic
leukemia, and colon cancer

Other treatments

Streptokinase (a nonenzymatic
protein)

Treatment of thromboembolic diseases and heart attacks

Urokinase (UK) Treatment of thrombotic disorders

L-asparaginase Hodgkin’s disease and melanosarcoma

Amylase, lipase, and protease Diabetes treatment

Dornase α Improves lung function in patients with cystic fibrosis
(CF)

Agalsidase β Treatment of Fabry’s disease

Nattokinase Treatment of cardiovascular diseases

Glutenase
Prolyl endopeptidases (PEPs)

Treatment of celiac disease

Chymotrypsin Treatment of pain relief and swelling

α-amylase Treatment of type 2 diabetes mellitus

Collagenase Treatment of Dupuytren’s disease (DD)
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Fig. 2.1 Therapeutic enzymes used in the treatment of different diseases

extracellular targets, cells, or pathogens to neutralize them by disrupting their
functions and removing them from circulation or modulating or imitating their
activity. For example, inflammatory cytokines such as tumor necrosis factor-α
(TNF-α) or interleukin-1b (IL-1b) neutralize the infected cells and result in immu-
nosuppression [15]. The mAbs are usually derived from mice and rats and
humanized to various degrees by engineering amino acid substitutions that make
them similar to the human gene sequence through recombinant DNA (rDNA)
technologies.

2.3.1.1 Biological Characteristics of mAbs
The mAbs are monospecific antibodies made from identical clones of a unique
parent cell [16]. The essential biological characteristics of mAbs are listed below.

1. They show edacity effects against target cells.
2. They have the ability to obstruct protein-protein interactions with different targets

like the serum, extracellular, and membrane-bound proteins.
3. They can mediate multiple processes like antibody-dependent cellular cytotoxic-

ity (ADCC), complement-dependent cytotoxicity (CDC), antibody-dependent
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cellular phagocytosis (ADCP), antibody-mediated immune complex formation
with clearance, or a completely silent Fc with none of the above activities [17].

4. They can penetrate certain tissues.
5. The mAbs have minimal drug-drug interactions.
6. They show little or no non-mechanism-mediated toxicity.
7. They also have little or no off-target activity or drug-metabolism-related issues.

2.3.1.2 Applications of mAbs
Modifications in mAbs, such as Fab fragments, and bifunctional antibodies, are used
to produce various biologics to treat a variety of diseases.

Fab Fragments
Fab fragments are the single binding site for the antigen. The important clinical
applications of Fab fragments are as follows:

1. Caplacizumab is a humanized, bivalent, variable-domain-only fragment with a
high affinity for the von Willebrand factor (VWF). The interaction between VWF
and platelet plays a central role in microvascular thromboses in patients with
thrombotic thrombocytopenic purpura (TTP). Caplacizumab disrupts the
interactions between VWF multimers and platelets and is used to treat acquired
TTP conditions [18].

2. Ranibizumab is a recombinant humanized Fab fragment that binds to and inhibits
the human vascular endothelial growth factor A (VEGF-A) [19]. It inhibits the
binding of VEGF to its receptors and slows down the related vision loss, and is
used in treating age-related macular degeneration.

3. Abciximab is a Fab antibody fragment derived from a chimeric human-murine
mAb (7E3) that binds to platelet IIb/IIIa receptors, resulting in steric hindrance
and thus inhibiting the platelet aggregation [20]. Abciximab has been used in
unstable angina and reduction of thrombosis in various coronary stenting
procedures.

Bifunctional Antibodies
Bifunctional antibodies are antibodies with dual specificity. Both the immunoglobin
chains are fused together to form a single antibody molecule. A few examples of
bifunctional antibodies are as follows:

1. Emicizumab binds to two coagulation factors (factor IXa and factor X), taking
the place of activated factor VIII (factor VIIIa) in the coagulation cascade
[21]. The mAb is used for the prophylaxis of hemophilia patients.

2. Blinatumomab is a bispecific T cell and B cell engager molecule that binds to the
cell surface proteins, CD3 present on T cells and CD19, present on precursor
B-cell acute lymphoblastic leukemia (ALL) cells, and takes the site of cytotoxic T
cells to recognize malignant B cells [22].

3. Catumaxomab is a bispecific trifunctional antibody that binds to the T-cell
surface molecule CD3 and epithelial cell adhesion molecule (EpCAM), a tumor
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cell surface marker, and receptor Fc region on dendritic cells [23]. This combina-
tion of antigen-binding helps in maintaining antitumor immune responses.

2.3.2 Non-Monoclonal Antibody Products as Biologics

The function of some natural proteins, enzymes, hormones, or peptides is disrupted
in a healthy individual, resulting in the rise of physiological-function-related
diseases. To counter this, non-monoclonal antibody (non-mAb) products with simi-
lar physiological effects are given to the patients [24]. Non-mAb therapy helps
patients to recover by filling the physiological gaps. In general, the molecular weight
of non-MAb products is more than 700 Da. These products are usually homogenous
in nature and can be heterogenous only if they are glycosylated. Non-mAb products
may include hormones, enzymes, interferons, interleukins, growth factors, or even
natural or mimetic peptides [25]. The recent advancements in rDNA technology lead
to the development of many hormones and non-MAbs under the biologics category
to treat various diseases (Table 2.2).

2.4 Precision Medicine

The application of medicines is patient specific for treating a particular disease. It
works better in certain patients compared to others, but the reason for this differential
effectiveness was unknown a few decades back. Some patients face severe side
effects, and others have fewer adverse effects when treated with anticancer drugs
[36]. Over the past six decades, evidence has emerged indicating that a substantial
portion of the variability in drug response is genetically determined as age, nutrition,
health status, environmental exposure, and epigenetic factors play critical contribu-
tory roles [37]. The unique genetic constitution and differential gene expression in an
individual is responsible for variation in drug responses. Precision medicine is an
emerging practice that uses an individual’s genetic profile to guide decisions regard-
ing disease prevention, diagnosis, and treatment [38, 39]. The genetic profiling of
every patient is necessary before treating them with a particular medication to
increase the treatment efficacy with fewer side effects. One can take guidance
from the knowledge of an individual’s genome profile to preselect the treatment
protocols that minimize adverse side effects or ensure more successful outcomes.
After completing the human genome project, many advancements have occurred in
the field of precision medicine. The individual genomic sequence data can indicate
their susceptibility to certain diseases before they manifest, allowing physicians and
patients to design a plan for monitoring and prevention [40]. The science of studying
how the genetic variations affect drug responses in an individual is
pharmacogenomics, an evolving field to better understand an individual’s responses
to different treatments.
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Table 2.2 Some commercially available non-mAb biologics and their uses

Non-MAb
biologics

Conditions
treated

Insulin Novolin R (Novo
Nordisk) Humulin R
(Eli Lilly, Indiana,
USA)

Regulates carbohydrate
and fat metabolism

Diabetes
mellitus

[26]

Insulin-like
growth factor
1

Increlex (Tercica/Ipsen,
California, USA)

Stimulates growth in
response to GH

Laron dwarfism [27]

Growth
hormone

Nutropin (Genentech),
Genotropin (Pfizer,
New York, USA)

Stimulates growth and
cell reproduction and
regeneration

Idiopathic short
stature

[28]

Erythropoietin Erythropoietin Stimulates red blood
cell production

Anemia [29]

Granulocyte-
colony-
stimulating
factor

Neupogen (Amgen,
California, USA)

Stimulates granulocyte
and stem cell
production

Used to
accelerate
recovery after
chemotherapy

[30]

Interferon
α-2b

Intron-A (Schering-
Plough, New Jersey,
USA)

Antiviral activity Hepatitis C,
Hepatitis B

[31]

Interferon
β-1a

Avonex (Biogen Idec,
USA)

Anti-inflammatory;
improves the integrity
of the blood-brain
barrier

Multiple
sclerosis

[32]

Interferon
β-1b

Betaferon (Bayer
healthcare), Extavia
(Novartis, Basal,
Switzerland)

Anti-inflammatory;
improves the integrity
of the blood-brain
barrier

Multiple
sclerosis

[33]

Interleukin 2 Proleukin (Prometheus
Laboratories Inc.,
California, USA)

Mediates the immune
response

Malignant
melanoma,
renal cell cancer

[34]

Interleukin 11 Neumega (Pfizer,
New York, USA)

Stimulates platelet
production

Used to
accelerate
recovery after
chemotherapy

[35]

2.4.1 Benefits of Precision Medicine

Though the current use of precision medicine is limited, it has the potential to offer a
wide range of applications in the coming years.

1. Better medication selection: The adverse reactions to medicines, one of the
drawbacks during treatment, leads to the death of many individuals. Although
the Food and Drug Administration (FDA) approved drugs have to qualify the
stringent parameters before coming to the market, there is either less or no
information related to their response when given to certain individuals. The
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medication may appear safe for a large population; however, some patients may
experience harmful side effects due to genetic variations. The study of
pharmacogenomics may help to predict how a particular group of individuals
will be able to respond to one specific medication and can play a deciding role in
its selection.

2. Safer dosing options: Following FDA approval, the standard dosage of a medi-
cation is decided based on factors such as liver or kidney function, weight, age,
etc. However, these parameters might not be sufficient. Standard dosage may
work well for one group of individuals but may be toxic for another group
because of underlying genetic variations. Currently, clinicians generally decide
which medication is appropriate for treating a particular disease based on their
diagnosis. Once the field of pharmacogenomics matures, clinicians can directly
consider an individual’s genetic profile to decide the optimal medication dosage.

3. Improvements in drug development: Pharmaceutical companies often spend
years conducting research and clinical trials of a new drug before it reaches the
market. Diagnostic and device firms and pharmaceutical companies typically
have to test a product in a large cohort to ensure its safety and efficacy. The
study of pharmacogenomics may help these companies to ensure the efficacy of
drug testing. For example, if a company has an advanced idea that the drug can
optimally work in participants with a particular type of genetic variations, and
may cause adverse reactions to others, then those participants having adverse
reaction can be excluded from the clinical trials. This will speed up the whole
clinical trial process, and a specific population can be treated with the same
medication.

2.4.2 Applications of Precision Medicine

A promising application of precision medicine lies in the discovery and manipula-
tion of potential drug targets for the treatment of cancer. Precision medicine is used
to treat chronic myeloid leukemia (CML). However, the discovery of molecular
predispositions, that is, the presence of genetic variants, in various diseases, such as
CML, has made it possible to design and develop specific therapeutic agents against
novel molecular targets. With this applicability, precision medicine has identified a
novel molecular target, Bcr/Abl tyrosine kinase. This kinase is an oncoprotein
expressed in more than 95% of CML patients, and administration of a competitive
inhibitor helps to achieve almost 80% cytogenetic responses in newly diagnosed
CML patients [40].

In 2017, FDA approved more number of precision medicines. One of the drugs
approved was pembrolizumab [41], which was marked as the first robust cancer
therapy approved for clinical use based on a specific biomarker rather than a tumor’s
location. Similarly, trastuzumab-dskt (Ogivri™) was approved as the first biosimilar
agent that targets both stomach and breast tumors overexpressing the HER2 gene,
facilitating competition and lowering healthcare costs [42]. Since these drugs are
developed based on specific biomarkers, a need of companion genetic tests is needed
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to identify all the biomarkers. MSK-IMPACT™ (screens 468 genes) and Foundation
One CdX™ (screens 324 genes) assays are examples of companion genetic tests.
Both are solid tumor tests and massively parallel sequencing in vitro diagnostic tests
[43]. These tests allow screening of multiple oncogenes to identify variants that
might assist in the clinical management of the patients.

2.4.3 Future Prospects of Precision Medicine

In the past, physicians practiced intuition-based diagnosis and used their knowledge
to provide medicine for the treatment of diseases. In the present time, clinicians rely
on evidence-based diagnosis and treatment. They recommend the medicine based on
evidence produced by scientific research, including clinical trials. In the future,
precision medicines will be used according to algorithms that will consider the
comprehensive information of an individual patient, including their genome,
epigenetics, and lifestyle. Therefore, medicine in the twenty-first century must
focus on attaining the four P’s: prediction, prevention, personalization, and partici-
pation, as stated by Dr. Leroy E. Hood [44]. Currently, patients are treated based on
symptoms and diagnosis, which requires a transformation using precision medicine
where the treatment is planned using the genetic profile of an individual. This
evolution of medical treatment in the past, present, and future is summarized in
Fig. 2.2.

2.5 Computer-Aided Drug Design

The discovery and development of new therapeutics is a complex and time-
consuming process requiring much experimentation and research. Traditionally, a
drug discovery takes an average of 10 to 15 years before it reaches the market for
sale, with an estimated cost of 58.8 billion USD in 2015 [45, 46]. The high
investment cost and failure rate of traditional methods prompted a need to utilize
computational methods to aid drug discovery. Computer-aided drug design (CADD)

Fig. 2.2 Evolution in the
field of medicine
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refers to the use of computational tools and available data resources for designing,
storing, analyzing, and modeling lead molecules to establish them as candidate
drugs. This will facilitate studying chemical and biological interactions between
the lead compounds and their biological targets. The technique systematically
evaluates the potential lead candidates before their synthesis and in vitro and
in vivo testing [47]. The computational resources comprise a screening process to
select the best possible candidates and later estimate their physicochemical
properties, such as absorption, distribution, metabolism, excretion, and toxicity
(ADMET). CADD is routinely applied to discover and improve the quality of
identified lead compounds quickly. Nowadays, the different applications of CADD
techniques are used to speed up the drug design and discovery process.

2.5.1 Approaches of CADD in Designing Protein-Based
Therapeutics

CADD strategies rely on the accessibility and availability of the 3D structure
information of biological target and candidate molecules. This technique can be
broadly divided into structure-based drug design (SBDD) and ligand-based drug
design (LBDD), based on the information available for a protein receptor and
ligands, respectively. The availability of the 3D structure of a receptor leads to the
implementation of structure-based drug design methods. If only the ligand informa-
tion is known, then ligand-based drug design can be adopted.

2.5.1.1 Structure-Based Drug Design Approach
This approach can only be used in the drug design process if the structure informa-
tion of the protein receptor target is available. One can identify the active site and
analyze the key amino acid residues responsible for its biological functions using the
3D structure. This information can then be used to create protein-based therapeutics
that can outcompete the natural ligands, thereby interfering with the biological
pathways to prevent the disease. The foundation for structure-based drug design
was laid by the easy identification of binding cavities due to the availability of 3D
structures of a large number of therapeutically important proteins. It is a precise,
efficient, and rapid process, because it involves the 3D structure of a protein and
knowledge about the disease at the molecular level [48]. SBDD is a multicycle
process that leads to the development of potential lead candidates for clinical trials.
The most notable success story involves FDA-approved drugs that inhibit the human
immunodeficiency virus (HIV)-1, such as amprenavir, an inhibitor of HIV protease
discovered through protein structure modeling and molecular dynamics
(MD) simulations [49].

Along with success stories, some failures have also been reported. For example,
RPX00023 was claimed to be an antidepressant with agonistic activity toward
receptor 5-HT1A, but it behaved as an inhibitor of the receptor. Such failures
highlight the limitations of SBDD strategies. To overcome these limitations,
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continuous improvements and developments have been incorporated into SBDD
techniques, but still, consistent solutions need to be developed.

2.5.1.2 Ligand-Based Drug Design Approach
Ligand-based drug design (LBDD) is another method where information on ligand
molecules is essential to use on previously unknown drug targets. LBDD methods
are used when the experimental 3D structure of a receptor is not available. The
structural and physicochemical properties of the known ligands that bind to the
known drug target are analyzed to study their desired pharmacological activity
[50]. The relationship between physicochemical properties and drug activity is
known as a structure-activity relationship (SAR), which can be used to optimize
known drugs or help design new drugs with improved activity [51]. LBDD methods
also include substrate analogues that interact with the target molecule to produce the
desired pharmacological effect.

The preparation of small-molecule libraries is the initial step of LBDD, where
chemical structures of different compounds are created, processed, and analyzed in
the form of molecular graphs. A molecular graph comprises a network of nodes and
edges, in which atoms are represented as nodes and bonds between different atoms
as edges. The molecular graphs communicate by using connection tables and their
linear notations. The different sections and sub-sections of a connection table contain
information related to atoms, atom types, connection types, and their coordinate
positions in the 3D or 2D space. Specific file formats are used to store the ligand
information, such as .mol2, .sdf, .pdb, etc. Simplified molecular-input line-entry
specification (SMILE) and Wiswesser line notation are examples of linear notations
where alphanumeric characters are used to store the ligand information. Linear
notation is preferred for storing or transferring millions of small molecules due to
its compactness compared to connection tables [52]. The quantitative structure-
activity relationship (QSAR) and pharmacophore modeling concepts are used for
designing drugs based on LBDD approaches.

2.5.2 Quantitative Structure-Activity Relationship

The quantitative structure-activity relationship (QSAR) is a computational method
for determining the relationship between the structural properties of chemical
compounds and their biological activities [47]. It is based on the principle that
different structural properties yield different biological activities [53]. Structural
properties include physicochemical properties, whereas biological activities corre-
spond to pharmacokinetics, that is, ADMET, of drug molecules. The development of
a QSAR model begins with recognizing a group of chemical entities or lead
molecules that exhibit the desired biological activity. Then, suitable molecular
descriptors are identified that are associated with various structural and physico-
chemical properties of the molecules of interest. Molecular descriptors are mathe-
matical representations of molecular properties generated by associated algorithms.
Finding the set of molecular descriptors is a significant step in constructing QSAR
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models. It helps reduce computational time, improve prediction performance, and
better understand data in machine learning [54]. Further, statistical methods are
employed to derive a quantitative relationship between molecular descriptors and
their associated biological activity. Finally, the developed QSAR model is validated
and tested for structural stability and predictive power. A QSAR model helps predict
the movements of untested chemicals and aids in rational drug design through
computer-aided simulation, molecular modeling, and virtual screening of suitable
compounds.

2.5.3 Applications of CADD in Protein-Based Therapeutics

Therapeutic proteins are genetically engineered proteins that substitute abnormal or
malfunctioned human proteins to cure a disease. In CADD, protein-drug interactions
are simulated to determine their binding affinities. Virtual database screening helps
screen large libraries efficiently to identify potent drugs that are likely to have high
binding affinities to the target. Target may be any enzyme or protein linked to a
specific disease. Structural information about the target is also required to learn about
its functions. One can harness the structural information of proteins already available
in the PDB database. The missing structural information can be predicted using
bioinformatics approaches, such as homology modeling, threading, or ab initio
predictions. Dhanavade et al. predicted the 3D structure of cysteine protease using
molecular modeling, which degrades amyloid-β peptide, a major cause of
Alzheimer’s disease (AD) [55–57]. In recent years, CADD has successfully
identified potential drugs for treating several neurodegenerative disorders. ROCK-I
and NOX2 are two of the most promising potential therapeutic targets for various
neurodegenerative disorders [58, 59]. Inhibition of these two enzymes can help
manage neurodegenerative disorders like autism spectral disorder, AD, and fragile
X syndrome. Utilizing this information, Alokam et al. identified chemical entities
that behave as dual inhibitors of these enzymes using a combination of
pharmacophores and the molecular docking approach of CADD [60]. Also,
in vitro validation demonstrated their inhibitory potentials to ROCK-I and NOX2.

In the COVID-19 pandemic, CADD served as a powerful tool for identifying
therapeutic proteins against rapidly mutating SARS-CoV-2 [61]. The main protease
(Mpro) enzyme is crucial for the survival of pathogen as it is involved in replication
and maturation. The structure-based virtual screening successfully identified four
compounds having the ability to disrupt the normal functioning of Mpro protein.
Later, ADMET analysis, molecular docking, and MD simulations were applied to
explore their binding conformational stability at the active site of Mpro protein. The
study identified crucial ligand amino acid residues, such as GLN189, SER10,
GLU166, ASN142, PHE66, and TRP132, that participate in stabilizing the
protein-ligand interaction of SARS-CoV-2 Mpro [62]. Nowadays, machine learning
approaches are used in conjunction with CADD to identify repurposed therapeutics
[63]. Thus, CADD is serving as a rapid and promising technology in the develop-
ment of protein-based therapeutics [64, 65].
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2.6 Overview of Recently Approved Protein Therapeutics
for Clinical Applications

Recombinant human proteins can be used as therapeutics for treating many illnesses
such as diabetes mellitus and multiple sclerosis. The production of high-quality and
functional recombinant proteins is crucial in drug therapy. Although many
applications of recombinant proteins exist as potent therapeutics, the production of
antidrug antibodies (ADAs) is a matter of concern that limits its use. The aggregates
formed during the formulation of recombinant proteins lead to the breakage of
immune system tolerance and result in the production of ADAs. Various strategies
are applied to minimize the aggregation and reduce immunogenicity to make protein
therapeutics safer and more efficient.

2.6.1 Diabetes

Purified from the porcine and bovine pancreas in the 1920s, insulin was the first
therapeutic protein discovered. Since it had a nonhuman origin, its immunogenicity
was expected. The patients suffering from diabetes mellitus were treated with insulin
for over 80 years [66]. In addition to the source being nonhuman, early purification
methods were also not up to the mark, resulting in the development of anti-insulin
antibodies in most patients. To overcome the issue, therapeutic insulin is now mainly
produced as recombinant human protein, and advanced purification methods take
care of purity. Although recombinant insulin is a safer drug, it has been reported that
ADAs, including subclasses of immunoglobulins, developed in about 50%
of diabetic patients treated with recombinant human insulin [67, 68]. The presence
of insulin autoantibodies in diabetes Type I patients hampers the interpretation of
clinical data [69]. Several theories have been put forward to explain why ADAs
develop against insulin in many patients. One of the most promising theories
suggests the involvement of insulin ADAs with themselves and the formation of
aggregates as insulin antibodies have a high tendency to self-associate. These
aggregates contribute to high immunogenicity [70].

The glucagon-like peptide-1 (GLP-1) receptor agonist lixisenatide (lyxumia 1)
was approved for the treatment of type 2 diabetes [71]. The GLP-1 receptor agonist
is compared to other antidiabetic drugs, that is, exenatide, insulin glargine, metfor-
min, sitagliptin, liraglutide, or placebo in type 2 diabetes patients [72]. It is linked
with other biomolecules like lipids, carbohydrates, polyethylene glycol, or proteins
to increase its efficacy. The GLP-1 receptor agonist, along with these conjugates,
acts as cell-targeting peptides or cell-penetrating peptides. It induces insulin release
and suppresses glucagon release in type 2 diabetes [73]. Another study showed that
the C-peptide activates the phosphorylation of insulin receptor tyrosine kinase and
glycogen synthase kinase 3 and results in the mobilization of insulin-responsive
glucose transporter, increased amino acid uptake, and glycogen synthesis. This
suggests that C-peptide signaling may cross-talk with the insulin pathway at the
level of the insulin receptor [51]. The clinical studies indicate that the replacement of



38 M. K. Yadav et al.

C-peptides in type 1 diabetic patients shows advantageous effects on somatic and
autonomic diabetic peripheral neuropathy (DPN). Apart, the C-peptide also reduces
the diabetes-induced glomerular hyperfiltration and, thus, decreases the excretion of
urinary albumin [74].

2.6.2 Interferon-b

Relapsing-reemitting multiple sclerosis is generally treated by interferon-β (IFN-β)
or recombinant human IFN-β (Rhu IFN-β). Though these are the most promising and
efficient anti-inflammatory drugs for treating multiple sclerosis, many patients do not
respond to them [75]. As suggested, this can be attributed to the production of
neutralizing antibodies (nAbs) against the IFN-β [76]. IFN-β 1a (Avonex®, Rebif®)
and IFN-β 1b (Betaseron®) products are available in the market that differ in their
source of production, glycosylation pattern, amino acid sequences, and degree of
aggregation [77]. These drugs can mount different levels of immunogenicity in
patients as their formulation sources, administered routes, dosage, and frequency
regimes differ.

Interestingly, patients with a history of developing nAbs, when treated with
IFN-β, result in the disappearance of nAbs. This indicates that the production of
nAbs does not form the memory and, thus, possibly does not involve in the classical
immune response. Besides that, there is an increasing research interest in
investigating and characterizing the formation of aggregates in IFN-β formulations
and their potency in eliciting an immune response in patients by breaking immune
tolerance [75]. One study reported that multiple sclerosis patients who received
IFN-β 1b developed more nAbs than those who received IFN-β 1a [78]. This
observation is most probably correlated to the levels of aggregates as IFN-β 1b
formulation shows a higher degree of aggregation than IFN-β 1a [79]. The self-
binding characteristic of IFN-β 1b is high, due to which they cluster together. Also,
the lack of glycosylation in these molecules promotes aggregation [80]. The exact
cause of the formation of ADAs is not well understood. However, aggregation is
considered an essential contributory factor for immunogenicity in almost all cases,
which requires comprehensive and exploratory studies to identify and validate the
causes of their formation.

2.6.3 Cancer

An array of peptide-based therapeutics has been tested in preclinical models to check
their efficacy in curing cancer. Therapeutics are developed based on a synthetic
polymeric carrier elastin-like polypeptide (ELP), which can be synthesized in
variable sequences and sizes to stabilize the therapeutic peptide and avoid crossing
the placental interface to prevent fetal exposure and potential developmental effects
[81]. The therapeutic peptides possess a targeting delivery feature to recognize
cancer cells effectively. These peptides increase the specificity and efficacy of
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drug delivery with minimal side effects [82]. The cyclic peptide, cCPGPEGAGC
(PEGA), is a homing peptide that can identify cancer cells. In conjugation with the
cell-penetrating peptide pVEC, this peptide was selectively taken up by different
breast cancer cells [83]. Another peptide, D2A21, and its gel formulations have been
used in wound-healing products to treat infected burns, wounds, and several types of
cancer. A TAT peptide derived from the N-terminus of p53, fused with a peptide
derived from the VHL tumor-suppressor gene, inhibits insulin-like growth factor I
receptor (IGF-IR) signaling in renal cell carcinomas [83].

2.7 Emerging Issues and Developments in Proteins-Based
Therapeutics

Both native and recombinant therapeutic proteins are an essential class of medicines
developed to treat a wide variety of diseases. Therapeutic proteins, including
vaccines, antigens, or hormones, are produced using rDNA technology and protein
purification methods. The drug developers apply protein engineering to achieve
desirable molecular characteristics to make these therapeutic proteins safe and
effective. Drug targeting is an important aspect of therapeutics to treat several
diseases. So, it is essential to devise better drug targeting and delivery methods to
have improved potency and functionality. The knowledge of the mechanism of
action and structure-function relationship of a protein is essential for engineering
its activity or introducing new desired activities. The customization of existing
proteins or the generation of novel therapeutics having specific clinical applications
is a developing field in drug design. Besides protein engineering, technological
advancements in genetic engineering are also used to develop therapeutic proteins
to tackle a wide range of life-threatening conditions. However, there are challenges
and limitations associated with the use of therapeutic proteins to combat life-
threatening conditions [84], which include (i) optimal utilization of therapeutic
proteins and peptides via the oral route, (ii) extensive hepatic first-pass metabolism,
(iii) degradation in the gastrointestinal tract, and (iv) large molecular size and poor
permeation.

2.7.1 Issue of Demand and Supply

Therapeutic protein development projects are time consuming and budget extensive.
Also, the associated development processes have various intricacies of cellular
metabolism, pharmacokinetics, and pharmacodynamics, making their development
task more difficult. To reduce the complexity and overcome related limitations,
pharmaceutical scientists do a lot of preresearch and testing to select only those
molecules with a maximum chance of success in clinical trials. It is a well-known
and documented fact that from discovery to the pharmaceutical market, a new drug
molecule takes more than ten years, and yet, its success rate is not guaranteed
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[17, 85]. Therefore, much research needs to be done to consider selective molecules
to maximize the chances of success.

2.7.2 Issues Related to Immunogenicity

Immunogenicity is a challenging aspect of disease management. A particulate
matter, however small in amount, can lead drastically enhance immunogenicity
[86, 87]. Protein-based therapeutics develop either from nonhuman or human
sources and have chances of producing neutralizing and/or nonneutralizing
antibodies [88]. In some cases, using protein therapeutics may also lead to an
array of adverse immune reactions from mild inflammation to severe anaphylaxis.
The therapeutic proteins given to patients may also neutralize endogenous proteins
in some cases and, thus, lead to adverse effects [89]. T cells are a critical arm of the
immune system, and their activity is regulated via T cell receptor interactions.
Therefore, the prior knowledge of all the T cell epitopes present on the surface of
therapeutics can enhance the immune tolerance level and, thus, minimize the
unwanted immunogenic responses [90].

The immunogenicity of protein therapeutics can be reduced by designing deplet-
ing T cell epitopes (deimmunization process) [91]. This idea led to many
deimmunized therapeutic proteins in clinical trials. The quality and quantity of T
cell epitopes are measured by using T-cell-based assays. These in vitro methods,
along with computational techniques, facilitate the identification and removal of T
cell epitopes. The desired mutations can be incorporated into the peptide sequences
using in silico tools, which are later implemented into deimmunized T cell epitope
protein sequences. The resultant peptides have limited capacity for MHC binding
and produce decreased immune responses. Antibodies are mainly deimmunized
protein therapeutics. The rise in the unwanted level of immunogenicity is diminished
by using deimmunized antibodies. The deimmunized antibodies specific for pros-
trate membrane antigen have passed different stages of clinical trials and are
approved for clinical use. In clinical trials, these antibodies are conjugated with a
radioactive probe and do not show antitherapeutic immune responses [92–95]. So, T
cell epitopes are one of the crucial factors taken into consideration to control
antitherapeutic antibody responses. Thus, deimmunized protein-based therapeutics
may provide a safe class of new biologics.

2.7.3 Issue of Protein Stability

The prolonged stability of therapeutic proteins in a clinical setting is a desirable but
challenging trait. It is one of the limitations in making them ideal clinical therapeu-
tics [96]. The possible aggregation of therapeutic proteins increases if they are stored
in the high concentrations required for using them on a large-scale [97, 98]. The
aggregation decreases their overall activity and results in immunological reactions
[97]. This problem can be overcome by spatial aggregation propensity, which
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identifies aggregation-prone regions in a protein sequence, and then those regions
are mutated to engineer stable antibodies [99, 100]. High temperature also influences
the stability of therapeutic proteins. The proteins lose their activity and structural
integrity when stored at room temperature. The best practice is to keep the purified
therapeutic proteins at or below 4 °C for an extended period. During the release of
therapeutic proteins, it may also form particles that compromise their stability and
induce an immune response in patients when administered [97]. The common
strategies to enhance protein stability include (i) the inclusion of desired mutations
in the protein [101, 102], (ii) optimization of the formulation of therapeutic proteins
[103], (iii) use of thermosensitive polymers [96], (iv) encapsulation of therapeutic
proteins, (v) use of biodegradable polymers for the delivery of therapeutic
substances, and (vi) use of nontoxic nanostructured materials.

2.7.4 Issues of Metabolism and Elimination

The metabolism and elimination of protein-based therapeutics, such as those used
for hepatic diseases (like liver cirrhosis), poses a significant hurdle in their successful
clinical uses. The noninvasive administration of protein-based therapeutic by using
alternative routes can possibly solve the issue of hepatic metabolism. Moreover, the
hepatic first-pass metabolism may also be overcome by using invasive delivery of
therapeutic proteins. Another problem with therapeutic proteins is that most have a
short half-life. To overcome this issue, therapeutic proteins are encapsulated and/or
conjugated with biocompatible polymers [104]. Nowadays, the half-life of these
therapeutics is enhanced by using existing fusion protein technology.

The hurdles in developing and delivering therapeutic proteins may be overcome
by studying their pharmacokinetic properties and pharmacodynamic effects. Com-
plete identification and analysis of their pharmacokinetic parameters are required for
predicting the biodisposition of these agents. Though recent advancements in
applied technologies have solved such problems to some extent, some unknown
factors are responsible for creating hindrances to efficiently using much-needed
therapeutics. For instance, poor intestinal absorption and intestinal first-pass metab-
olism significantly impact the clearance of protein-based therapeutics if they are
given via the oral route. Therefore, in-depth knowledge of the routes of their
administration and the underlying mechanism of metabolism is needed to tackle
the issues of early clearance. Several such protein-based therapeutics have recently
been developed, such as Oral Recosulin, Octreolin®, Sandimmune®, etc., and many
are in the clinical stages of development.

2.8 Conclusion and Future Prospects

Protein-based therapeutics are engineered drugs with a wide range of clinical
applications. Rapid progress has been made in the last decade toward developing
engineered proteins to treat several life-threatening conditions. Clinical safety and
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efficacy are some of the essential features to overcome by working on various factors
such as disease biology, individual genetic profile, and selection of target population
on the patient side, while safety margin, route of delivery, half-life, stability, and
solubility on the protein-based therapeutics side. The mode of drug delivery is a
concern for increasing the efficacy. The oral delivery of therapeutic proteins is one of
the efficient ways to replace the invasive routes, only if the problems of poor
absorption and intestinal first-pass metabolism are handled. The recent
advancements in several cross-cutting technologies have made the oral delivery of
therapeutic proteins possible. Apart from that, the stability of protein during its
formulation and decreasing its development cost remain a significant challenge in
front of research communities. These problems can be handled by parallel use of
advanced in vitro, in vivo, and in silico techniques. Many protein-based therapeutics
are either FDA approved or in the final stages of approval, with many reaching the
global market, and hundreds are in preclinical studies and clinical development.
These therapeutics have been successful in treating a variety of conditions, from
diabetes mellitus to cancers. The design and development of therapeutic proteins
considering novel scaffolds with superior biochemical and physiological activities
will be primary areas of research in the coming decades.
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