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Abstract. Deep learning brings high results in many problems, includ-
ing Link Prediction on Knowledge Graphs (KGs). Although there are
many techniques to implement deep learning into KGs, Graph Neural
Networks (GNNs) have recently emerged as a promising direction for
representing the structure of KGs as input for a decoder. With this
structural information, GNNs can help to retain more information from
the original graph than conventional embeddings like TransE, TransH,
RESCAL. As a result, the learning model achieves higher accuracy in
predicting missing links between entities in the KG. Meanwhile, several
studies have successfully demonstrated the intrinsic properties of the
embedding process in complex space while keeping many binary rela-
tions (symmetric and asymmetric). Thus, this paper proposes deploying
GNNs into complex space to increase the model’s predictive capability.
Another issue with GNNs is that they are susceptible to over-squashing
when a large amount of information propagating between nodes is com-
pressed down to a fixed representation space. As a result, we utilize a
dynamic attention mechanism to minimize the adverse effects of these
factors, and experiments on benchmark datasets have indicated that our
proposal achieves a significant improvement compared to baseline models
on almost all standard metrics.

Keywords: Knowledge graph embedding · Link prediction · Graph
convolutional networks · Dynamic graph attention networks

1 Introduction

Knowledge Graphs (KGs) are becoming a widely used term in the field of arti-
ficial intelligence. Some of its outstanding applications are in a number of areas
such as medicine [1] and e-commerce [11]. Among the KG-related challenges,
we are putting our efforts into tackling the link prediction (LP) problem, whose
objective is discovering the missed links in KG to accomplish itself. In fact, data
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in the KG is regularly gathered from various sources, including manually. More-
over, identifying the relations between data aids in order to complete KGs. Fur-
thermore, we could forecast potential relations between entities in the future.
Although numerous rule-based and probability-based methods for addressing
this problem were initially proposed, these models suffer the exploding com-
putational cost when performing on large KGs. As a result, the embedding
approaches emerged and gained widespread attention in recent years because
of their above mentioned characteristics.

Currently, KGE is classified into two categories: Translational and Seman-
tic matching models. At the Translational-based models, the models projecting
entities and relations into vector or matrix representation with simplicity, scal-
able characteristics, TransE [3] and its extensions such as TransH [19], TransR
[12], and TransD [8] are the top striking models of translational research. The
semantic-matching models include bilinear models and neural network-based
models. Bilinear methods such as the RESCAL model [14], DistMult [21], and
ComplEx [17] can mine the intrinsic properties of KGs by using tensor decom-
position, characterized by the less time-consuming and effective computation
except for RESCAL. In neural network-based models, researchers apply the
success of Convolutional neural networks (CNNs) in KGs and archive poten-
tial results such as ConvE [7], ConvKB [13], but it suffers to time-consuming,
increases model complexity and other related CNN’s problems. Another variant
of CNNs is Graph Convolutional Networks [9], levering the same convolutional
operation but performing on graph data while considering graph features during
the embedding phase. Some recent models such as RGCN [15], GATv2 [4], VR-
GCN [22], and TransGCN [5] - an associated model between GCN and Transla-
tional model, on the graph neural networks branches. Furthermore, incorporat-
ing additional information into the embedding process, such as literals, textual
descriptions, entity, and relation types, has been shown to yield higher quality
embedding and is especially effective in many downstream tasks such as triple
classification, entity classification, and link prediction [20].

Although the Translational models are outstanding by its qualities, it has
flaws when modeling the complex relations and TransE’s extensions ignore
two important characteristics including heterogeneity and imbalance [6]. In
the semantic-matching models, neural networks-based models significantly con-
tribute to and improve the performance of link prediction tasks, but the con-
nectivity information between entities and neighbors is neglected. To solve this
problem, GCNs emerged as the prisoner of applying graph structure information
to its embedding space to perform more semantic calculations. Specifically, they
create entity embeddings that aggregate local information in neighborhoods.
However, GCNs mainly solve problems in real space, which is the main weak-
ness leading to marginal performance growth in recent years. Thus, we propose
implementing GCNs in complex space and conducting experiments to demon-
strate the effectiveness of this approach in this paper. Moreover, the ComplEx
model is employed as a decoder to utilize the graph features in the complex space
because of its simplicity and scalability over large graphs. Specifically, ComplEx
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has low complexity while still representing interactions and entities in complex
spaces because it uses only the Hermitian dot product. Moreover, the reason we
integrate the GCNs and GATv2 [4] to tackle the challenge of GNNs, which is
detail reported in Sect. 3.

In conclusion, our contributions are summarized:

– Proposing an end-to-end framework ComplEx-GNN for learning entity and
relation embedding characteristics in complex space.

– Constructing an association between GCN and Dynamic Graph Attention
(GATv2) layer as an encoder to mapping entities, exploiting graph informa-
tion and alleviating the bottleneck problem.

– Leveraging ComplEx as a decoder to simulate the interacting between entities
and relations in complex space.

The remaining paper includes five sections. In Sect. 2, we discuss some related
works and the typical models in each branch of KGE. We focus on presenting
the main idea of the ComplEx-GNN framework in detail in Sect. 3. Section 4
contains experimental results in detail on FB15K-237 and WN18RR. Section 5
summarises our contributions and recommends future research directions.

2 Related Work

Models for KGE problems can be categorized into two types: translational mod-
els and semantic-matching models. Translational-based models were regarded as
the pioneers of KGC by their simplicity, clarity, and high interpretability. The
scoring function and representation space distinguish these approaches. Specifi-
cally, they utilize relations as translation operators in translation-based models.
In the embedded space, the head entity h is expected to approximate the tail
entity t via the translation r, then the scoring function is computed based on
the deviation of the predicted entities from the actual entities in the triple.

Semantic-based models include bilinear and neural network-based models,
which leverage the similarity measures as the scoring functions for the triples.
Bilinear models are based on matrix decomposition by using tensors to represent
relational data Y ∈ {0, 1}N×R×R where N is the number of entities, R is the
number of relations, Y is state of the connection between entities (yes or no).
Moreover, these approaches are distinguished based on structural conditions on
tensors with the capability of modeling binary relations. Furthermore, Bilinear
models consider link prediction tasks as tensor decomposition problems. Mean-
while, neural networks-based models consist of many different layers to mine the
fundamental relations between entities and relations with self-feedback and fast
convergence. In addition, current models also integrate some additional infor-
mation such as context information, entity type, and path information to be
exploited deep semantic information.
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2.1 Translational Based Models

TransE model [3] was developed based on the idea of the energy-based model,
which is the cornerstone for later translational-based approaches because of its
efficient, less parameter, and scalable characteristics. TransE is considered the
backbone of the embedding space. Moreover, Bordes et al. also mentioned that
KGs have many hierarchical relations, and the translation is a natural transfor-
mation. Thus, they represent each relation as a translation in the embedding
space such that the tail entity is close to the head entity in the embedding space
(h + r ≈ t). Each entity or relation is represented by a single embedding vec-
tor. However, the model is only suitable for 1 − 1 relations. And it has flaws
when representing 1 − n, n − 1, and n − n relations. To address these issues,
TransH [19], motivated by TransE, interprets the interaction by shifting oper-
ations into hyperplanes and introducing a relation-specific mechanism. In this
way, it allows entities to take different roles in each relation type. Each rela-
tion, as a hyperplane, is determined by two vectors including the norm vector
(wr) and the translation vector (dr). Although the latter comparative researches
such as TransR [12], TransD [8] conducted in that direction gained considerable
improvements compared to TransE, the complexity also increased quite a bit.

2.2 Semantic-Matching Models

Bilinear models such RESCAL [14], DistMult [21], and ComplEx [17] employ
similarity measures as scoring functions to assess the plausibility of triplets.
RESCAL also applies tensor decomposition to obtain the implicit semantic by
integrating a two-way interaction of relations and entities to measure the prob-
ability of forming triplets. DistMult represents entities and relations as diago-
nal matrices and modifies the scoring function to Eq. 1. Although it has less
parameters and reduces memory parameters from O(Ned + Nrk

2) (d = k)
to O(Ned + Nrk) (d = k) [19] compared to RESCAL, it only handles sym-
metric relations [18]. Meanwhile, ComplEx increases the ability to cope with
asymmetric relations by utilizing the complex value to embed interactions and
entities into complex space C

d. We realize that by combining tensor decompo-
sition with graph features, the ComplEx model could extract deeper semantic
information from the embedding phase. Besides that, some investigations, such
as ComplEx-Literal [10] and DistMult-Literal [10], have focused on exploiting
additional information to enhance the overall performance of downstream tasks
as link prediction. Despite the fact that the additional information is applied
during the embedding phase, this information has not been fully exploited, and
it does not bring significant improvement results.

fr(h, r) = hT diag(r)t | r ∈ Rd (1)

where d is the dimensionality of embedding space.
Neural networks-based models such as ConvE [7], ConvKB [13] are the repre-

sentative models on this branch. ConvE uses a 2D reshaping operator to define
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the scoring function while using the convolutional and fully connected layers
to model the interactions between entities and relations. ConvKB is inspired
by a similar idea as ConvE by leveraging the success of a convolutional oper-
ator in computer vision but achieves a better result than ConvE. In particu-
lar, this approach uses the concatenate operator instead of the reshape oper-
ator to define the scoring function while keeping the transitional features and
observing the global relationship among entities. Another variant of using the
convolutional operator but performing on unstructured data is Graph Convolu-
tional Networks. GCNs are applied in KGs such as RGCN [15], VR-GCN [22]
and TransGCN [5], which aggregate the local informations of target entities
by propagating the information between its neighbors. RGCN models the rela-
tional data by introducing relations-specific transformations for each relation
type. Furthermore, RGCN uses parameter sharing techniques including basis
and block diagonal-decomposition in regularization to tackle the sparsity prob-
lem and memory requirements of GCN on large KGs. Although RGCN leverages
the benefit of different relation types in entity representation, it does not con-
sider the representations of relations that contain rich semantic information.
To address this problem, VR-GCN takes into account relations and entities to
generate both embedding, allowing the relations to involve the multi-relational
networks while keeping the translational properties. TransGCN operates on the
same idea as VR-GCN because it considers entities and relations embedded in a
unified framework, but TransGCN is supposed that each relation as a transfor-
mation operator transforms the head entity to the tail entity. When compared to
R-GCN, TransGCN can transform a heterogeneous neighborhood in a KG into
a homogeneous neighborhood with fewer parameters and directly perform link
prediction without the support of external encoders such as DistMult in RGCN
[2].

3 The Proposed Model

In this section, we demonstrate our model ComplEx-GNN. The encoder inte-
grates a GCN layer and GATv2. It aims to aggregate the necessary information
from a neighbor as specified by relations, then reproduce it into features repre-
sentation for each entity including the real and the imaginary components. The
decoder ComplEx focuses on representing entities and relations embedding in
complex space, then calculates the possibility of forming triplets by leveraging
the scoring function of the ComplEx model [17].

Our proposed framework including the encoder and decoder demonstrated
in Fig. 1. For the encoder, entities and relations are embedded into the complex
space to create two main components including real component and imaginary
component for each entity and relation. The Graph Aggregation Layer takes the
entities embedding as input, which consists GCN and GATv2 layers. We utilize
GCN layer as the first layer to propagate information between neighbors because
of its scalable on large KGs and can operate on local graph neighbors. Next, we
expand the interaction between entities and assess neighbors contributions by
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Fig. 1. An overview of our proposed model ComplEx-GNN

adding a Graph Attention Layer (GAL) to assign the different weight for the
importance of neighbor’s features in the entity’s neighborhood. However, GAL
could only compute the static attention layer for architecture including only one
layer; if it exceeds (n > 1), the dynamic attention can not be computed, detail
in [4]. Thus, we use its upgraded version - Dynamic Graph Attention Networks
(GATv2) in our framework. GATv2 could also assign the weight for neighbor,
while reducing the amount of information passed through an activation function,
and alleviate the bottleneck problem of GNN because of exponential growing
information into fixed-size vectors [2]. After obtaining the entities embedding
from Graph Aggregation Layers, we take the entities and relations embedding
matrices as input to the decoder. For the decoder, ereal, eimg, relreal, and relimg

are passed into the scoring function. We utilize the ComplEx scoring function as
the scoring function, because it is the standard approach applying the complex
representation without any additional information, while their representation
space could describe the symmetric and asymmetric relations more accurately
than other approaches. Next, a sigmoid function is applied to get the prediction
results.

3.1 Graph Aggregation Layers

A knowledge graph G(E,R), where E = {e1, e2, ..., eM} denotes the set of M
entities, R = {r1, r2, ..., rN} denoting the set of N relations, (i, j) ∈ R denotes
a connection between two entities i and j , and (h, r, t) denoting a triplet with
h representing the head entity, r representing relations, and t representing the
tail entity.
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We utilize the complex representation and GNN layer to perform aggregating
graph features in our approach. First, entities and relations are embedded into
the complex space. Thus each embedding consists of a real component and an
imaginary component. We denote H(0)

real and H(0)
img are the set of real and imagi-

nary components of entities E; R(0)
real and R(0)

img are the set of real and imaginary
components of relations R as follows:

H(0)
real = {hr1,hr2, ...,hrN}; H(0)

img = {hi1,hi2, ...,hiN} (2)

R(0)
real = {rr1, rr2, ..., rrN}; R(0)

img = {ri1, ri2, ..., riN} (3)

where hrj and hij are the real and imaginary components of entity jth, rrj and
rij are the real and imaginary components of relation jth.

Then, we collect neighbors’ information in H(0)
real and H(0)

img by using the GCN
and GATv2 layers. GCN is operated on graph structure as the KGs structure, so
we applied GCN to propagating information around one-hop neighbors, which
helps to exploit the structural information of KGs at the first layer. In our work,
the first layer takes the input matrix H(0), and generates a feature representation
for the second layer. The output matrix H(1) is calculated as follows:

H(j+1) = σ(W(j)H(j)A′) (4)

where σ is an activation function, W(0) is weight matrix at the first layer, A′ is
the normalized adjacency matrix. To construct the normalized adjacency matrix
A′, we first construct the adjacency matrix A representing connections between
entities. In addition, to consider the features of each entity itself, we create a
matrix ̂A by adding A with its identity matrix as follows:

̂A = A + IA (5)

where IA is the identity matrix of size N × N . Next, ̂A is normalized to form
matrix A′ as follows:

A′ = D−1/2
̂A D−1/2 (6)

where D is the degree matrix.
After obtaining two components of feature’s representation for each entity

H(1)
real and H(1)

img. In the GCN layer, we continue to expand these representations
by performing an additional one-hop aggregation to assess the importance coef-
ficients for each neighbor in the Dynamic graph attention layer. To do that, the
attention scores are calculated as follows:

eij = e(h′
i,h

′
j) = aTLeakyRELU(W.[h′

i||h′
j]) (7)

Next, these scores are normalized by Softmax function to make them easily
compare as follows:

αij = Softmax(eij) =
exp(eij)

∑

k∈Ni
exp(eik)

(8)
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where αij is the normalized attention score between entity ith and jth.
Finally, this attention score is leveraged to calculate the final output H(2)

real

and H(2)
img as follows:

H(2) = σ(
∑

j∈Ni

αijWj) (9)

3.2 The Scoring Function

To measure the plausibility of triplet, we employ the ComplEx’s scoring function
by Eq. 11, which can model more accurately the symmetric and symmetric in
each triplet. By obtaining the entity representation from H(2)

real, H(2)
img, and the

relation embedding in complex space, we can easily compute the score of triplets.
Moreover, we also apply the Sigmoid function to the score before assessing the
result with the truth labels. The probability of forming triplet (h, r, t) as follows:

P (Y(h,r,t) = 1) = σ( φ(h, r, t) ) (10)

where σ is the Sigmoid function, φ is the scoring function can be computed as
Eq. 11, Y ∈ {−1, 1} represent a binary value of a relation between head and tail
entity.

φ(h, r, t) =
〈

Re(wr), Re(h′′
h), Re(h′′

t )
〉

+
〈

Re(wr), Im(h′′
h), Im(h′′

t )
〉

+
〈

Im(wr), Re(h′′
h), Im(h′′

t )
〉 − 〈

Im(wr), Im(h′′
h), Re(h′′

t )
〉

(11)

where h′′
h,h′′

t ∈ H(2),wr ∈ W.
Generally, our proposed model (ComplEx-GNN) considers the graph con-

nectivity, relation type, and complex representation into the complex space. The
graph aggregation layers allow learning the graph features while retaining the
learning model’s essential features. Additionally, we refer to the ComplEx model
as the encoder and decoder for our framework. It helps to encode the entities and
relation into complex values and then estimate triplets’ plausibility by the scor-
ing function. We also observe that our model acquired remarkable improvement
over the ComplEx model without additional information.

4 Experiments and Result Analysis

4.1 Datasets and Evaluation Protocol

We use two widely used datasets to evaluate the link prediction task, includ-
ing FB15-237 [16] and WN18RR [7]. Table 1 illustrates statistics about two
datasets. We also use two common benchmarks including Hit@k, and mean recip-
rocal rank (MRR), to evaluate the performance of the link prediction task.
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Table 1. Statistics of FB15k-237 and WN18RR datasets.

Dataset Entities Relations Training triples Validation triples

FB15k-237 14541 237 272115 17535

WN18RR 40943 11 86835 3034

4.2 Hyperparameters

The hyperparameters include {learning rate, embedding dim, hidden dim,
dropout rate}. Through experiment, the following hyperparameters gave the
best result on FB15k-237: {0.001, 300, 400, 0.3}; on WN18RR: {0.003, 200,
400, 0.4} and the other configuration based on the framework of ConvE. We
use PyTorch version 1.9.1 and run on NVIDIA Tesla V100-DGXS-32 GB. The
training time on WN18RR and FB15k-237 is about 1–2 min, respectively.

4.3 Results

Table 2. Link prediction results on FB15k-237 and WN18RR

Model FB15k-237 WN18RR

MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

TransE-GCN [5] 0.315 0.229 0.388 0.477 0.233 0.203 0.338 0.508

DistMult [19] 0.241 0.155 0.263 0.419 0.43 0.39 0.44 0.49

ComplEx [17] 0.247 0.158 0.275 0.428 0.44 0.41 0.46 0.51

RGCN [15] 0.248 0.153 0.258 0.417 0.402 0.345 0.437 0.494

VR-GCN [22] 0.248 0.159 0.272 0.432 – – – –

ConvE-Literal [10] 0.303 0.219 0.33 0.471 - - - -

Complex-Literal [10] 0.305 0.222 0.336 0.466 – – - –

ComplEx-GNN (our) 0.328 0.238 0.361 0.509 0.451 0.415 0.462 0.522

To illustrate the efficiency of our model, we compare our works with some
standard models on the bilinear group such as DistMult and Complex, while
comparing with models using additional information like ComplEx-Literal and
ConvE-Literal to compare the power of structural information with additional
information. Furthermore, our result is also compared with some pioneer GCN
models employing both embeddings of entities and relations such as VR-GCN,
TransE-GCN, and R-GCN to demonstrate the benefits of complex values in
complex space. Table 2 illustrates our comparisons on FB15k-237, and WN18RR
datasets. Summarizes the results of eight different baseline models including our
models on FB15k-237 and WN18RR in terms of MRR - Mean reciprocal rank,
Hits@1, Hits@3, and Hits@10.
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Fig. 2. The loss values of ComplEx-GNN models in FB15k-237 and WN18RR

In Table 2, our model achieved the best performance except for Hits@3. In
detail, ComplEx-GNN model outperforms ComplEx Hits@10 by 5.9% and Com-
plex Hits@3 by 7%. Furthermore, the Hits@1 in our model are 23.8%, which is 8%
higher than the Complex model’s 15.8%. Additionally, our approach improved
the average rank of accurate triples by about 8.1% in MRR. The results con-
firmed the efficiency of the graph aggregation layer mentioned in Sect. 3. Mean-
while, when compared to the VR-GCN and RGCN models, our model achieved
an improvement of more than 7% in all metrics. For the TransE-GCN model,
ComplEx-GNN is higher around 1.3% on MRR, and 3.2% on Hits@10.

On WN18RR, the results of ConvE-Literal, ComplEx-Literal, and VR-GCN
are empty due to the missing experiments on the original paper. In general,
we obtain the best results on WN18RR. Compared with ComplEx, ComplEx-
GNN enhances Hits@1 by 0.5% and MRR by 1.1%. For the Distmult, our model
improves by around 2%-3% in all of metrics. Moreover, compared to the TransE-
GCN model, ComplEx-GNN improves by 21.8% on MRR, 21.2% on Hits@1,
12.4% on Hit@3, and 1.4% on Hits@10. Meanwhile, our model achieves a marked
increase of about 4.9% on MRR, 7% on Hits@1 and 2.5% on others metrics.
This proves that our model retained the advantage property of the complex
representations and enhancing the quality of embeddings to obtain improved
results.

Next, we evaluate the convergence process of the model on both datasets.
Figure 2 shows the loss proportion during the training phase of our model on
FB15k-237 and WN18RR after every 10 epochs. Overall, the figure for WN18RR
was consistently lower than that of FB15k-237. Additionally, after decreasing
to 0.13% in FB15k-237 and 0.05% in WN18RR at the first 100 epochs, the
WN18RR’s loss percentage plateaued at 0.04%, and the figure for FB15k-237
witnessed a wild oscillation ranging from 0.13% to 0.16% in the remaining train-
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Fig. 3. The metric convergence research of ComplEx-GNN on FB15k-237

ing process, respectively. In addition, convergence proceeds quickly at the first
100 epochs on WN18RR, which is unstable on the remaining dataset. To save
training time, we should use around the first 300 epochs on the WN18RR and
about 1000 epochs for FB15k-237.

Fig. 4. The metric convergence research of ComplEx-GNN on WN18RR

Moreover, we also analyze the metrics’ convergence to determine the possible
epoch to train the model optimally. Figure 3 shows the Hit@n, mean rank, and
mean reciprocal rank of ComplEx-GNN on FB15k-237 dataset. At first glance,
on Hit@k’s chart, the percentage saw an upward coverage tendency at the first
64 epochs, then having a mild fluctuation from 23.1% to 23.6% on Hits@1, 33.4%
to 35.9% on Hits@3 and 49.4% to 50.6% on Hits@10, respectively. Meanwhile, a
similar trend was experienced on MRR’s chart ranging 32.1% to 32.8%, approxi-
mately. Figure 4 shows our experiments on WN18RR, the statistics for Hits@k(1,
3, 10) climbed substantially, reaching 37.6% on Hits@1, 45.6% on Hits@3, and
51.1% on Hits@10 at the first 304 epochs, before continuing to follow this ten-
dency but less critically. Meanwhile, the MRR rapidly increased to 43.1% before
fluctuating with a variation of around 1.6%. The charts shows that the conver-
gence proceed of Hits@k is slightly slower than MRR on both two dataset.
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In conclusion, the convergence of our model shows that it is fast and requires
at least 300 epochs for WN18RR and 1000 epochs for FB15k-237. Although the
stable process on WN18RR, the poor result on that dataset.

5 Conclusion

In this paper, we have proposed ComplEx-GNN model based on integrating
graph neural networks and complex representation for the link prediction prob-
lem. First, we embedded entities and relations into complex space, then utilized
the graph features by the Graph Aggregation Layers. By the way, the graph
connectivity and relation types can be included in the learning process. The
ComplEx’s scoring function is applied to take advantage of the complex space,
which could handle symmetric and asymmetric relations and enhance the model’s
expressivity. The gap between our model with ComplEx and LiteralE and GNN
models proves the importance of structural information, indicating the power
of complex space in representing entities and relations. Although obtaining the
better result, the training time is significant and performs poorly on WN18RR.

In future work, we intend to embed graph features into the hypercomplex
space to exploit more latent semantic information. Moreover, we also seek to
simplify the Graph Aggregation Layer to be scalable in large KGs.
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