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5.1 Introduction

Cancer is a disease mainly caused by the accumulation of mutations in two gene
classes, which are proto-oncogenes and tumor suppressor genes (Weinberg 1996).
With its incidence growing rapidly, cancer is regarded as an important obstacle to
human life extension (Torre et al. 2016b). In terms of cancer deaths worldwide for
both men and women, lung cancer, colorectal cancer, and liver cancer are top three
cancer types (Sung et al. 2021).

Since the twentieth century, lung cancer started to become the most common
cause of cancer death as well as the second most commonly occurring cancer in both
men and women internationally (Alberg and Samet 2003). It also ranks the most
frequently diagnosed cancer and the leading cause of cancer mortality in men (Sung
et al. 2021). In the United States, every year the number of patients who die from
lung cancer is higher than the combined death toll from colon, breast, and prostate
cancer (Spiro and Silvestri 2005). Tobacco smoking is regarded as the leading cause
of lung cancer (Salgia and Skarin 1998). Compared with non-smokers, smokers have
a 20- to 30-fold increase in lung cancer risk (Minna et al. 2002). Hence, the
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industrialized countries, where the smoking prevalence first took place, have the
highest lung cancer incidence rates (Alberg et al. 2005). Over the past several
decades, because of tobacco control policies and smoking cessation, the smoking
prevalence keeps decreasing in those countries (De Groot et al. 2018), thus the
burden of lung cancer shifts to developing countries (Torre et al. 2016a). People also
gain more knowledge in lung cancer biology. The majority of lung cancers have
been divided into four histological types, which are small-cell lung cancer (SCLC)
and three non-small-cell lung cancer (NSCLC) types including squamous cell
carcinoma, adenocarcinoma, and large cell carcinoma (Wistuba and Gazdar 2006).
However, the mortality rates of lung cancer still remain high (Barta et al. 2019),
which might be explained by nonspecific symptoms of this disease at early stages
(Van Meerbeeck et al. 2011). When seek medical treatment, most patients present
with advanced disease which is nearly incurable (Patz et al. 2000).

Nowadays, colorectal cancer (CRC) is the second most common cause of cancer-
related death worldwide and the third most common malignant disease (Center et al.
2009). Generally, colorectal cancer has been thought as a disease of the elderly, with
rare people being diagnosed before 50, but it also strikes younger people (O'connell
et al. 2004). In addition, colorectal cancer is the only type that strikes both men and
women with approximately equal frequency (Potter 1999), since it is the second
most common cancer in females and the third most common cancer in males (Siegel
et al. 2014). What’s more, the incidence rates of colorectal cancer vary greatly
around the world (Stintzing 2014). It is well-known that most cases of colorectal
cancer are detected in western countries (Mármol et al. 2017), because people in
longstanding developed countries often exhibit same factors playing important roles
in the development of colorectal cancer, which might include obesity, unhealthy
diet, smoking, alcohol consumption, and physical inactivity (Fearon 1995; Weinberg
and Schoen 2014). However, in recent years, high incidence rates of CRC have been
observed in newly developed countries where the risk of suffering from colorectal
cancer was once quite low (Mármol et al. 2017).

Liver cancer is regarded as an aggressive and heterogeneous tumor which ranks
the third most common cause of cancer-related death as well as the second leading
cause of cancer-related death in man around the world (Yamashita and Wang 2013;
Gao et al. 2019). In addition, liver cancer can be divided into primary liver cancer
and secondary liver cancer in nature (Mckillop and Schrum 2005). As for primary
liver cancer (PLC), based on different histological features, it can be categorized into
six subtypes, which are hepatocellular carcinoma (HCC), intrahepatic
cholangiocarcinoma (iCCA), mixed hepatocellular-cholangiocarcinoma
(HCC-CCA), fibrolamellar HCC, and the pediatric neoplasm hepatoblastoma
(Mcglynn et al. 2001; Srivatanakul et al. 2004). Among these histological types,
HCC is the commonest primary liver cancer worldwide which accounts for nearly
90% of all cases of primary liver malignancies (Ariff et al. 2009). The second most
frequent type of primary liver cancer is iCCA, the incidence rates increase steadily
(Sia et al. 2017). What’s more, the incidence rates of liver cancer in different
countries vary significantly (Bosch et al. 1999). Blaming for hepatitis B virus
(HBV) infection, the East and Southeast Asia as well as the Middle and Western
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Africa have the highest liver cancer rates (Bosch et al. 2004). Thanks to HBV
vaccine, liver cancer incidence rates is decreasing in several highest-risk areas
(Chen and Zhang 2011). However, in some low-risk western countries, the rates
continue to increase. Risk factors such as obesity, cigarette smoking, hepatitis C
virus (HCV) infection and chronic alcohol abuse are believed to be related to liver
cancer in these areas (Bishayee 2014). Gender is another risk factor for liver cancer
development, males are more susceptible than females, as the incidence rates of liver
cancer among men is over twice that among women (Liu et al. 2015).

Through molecular and genetic studies of cancer, multiple biomarkers of colo-
rectal cancer, liver cancer, and lung cancer have been identified (Zochbauer-Muller
and Minna 2000; Bishayee 2014; Dienstmann et al. 2017). However, it is quite
difficult to find diagnostic, prognostic, and therapeutic targets from these outcomes,
and the morality is still high for patients all over the world (Chakraborty et al. 2018).
With the advancement of high-throughput omics technologies, researchers are now
able to study genomics, transcriptomics, proteomics, and phosphoproteomic data at
the same time (Ahmed 2020). Although through analyzing single omics data set, one
can observe the alternation and association of biological entities at that level, the
interaction between multiple molecular layers cannot be fully assessed (Biswas and
Chakrabarti 2020). Hence, in lung cancer, liver cancer, and colon cancer research,
many multi-omics analyses have been conducted in order to gain a holistic view of
the molecular dynamics underlying cancer progression and to make a progress in
early detection and prognosis (Sun and Hu 2016). Also, because of the heteroge-
neous nature of cancer, different patient may have different clinical responses to the
same treatment (Du and Elemento 2015). For this problem, multi-omics studies at an
individual level have been conducted to develop precision cancer medicine (Ghosh
et al. 2018; Mantini et al. 2021).

In this review, we introduced different types of omics data used in the research of
colorectal cancer, liver cancer, and lung cancer. In addition, we summarized cur-
rently used technologies for high-throughput multi-omics data analysis. We also
reviewed integrative analyses using genomic, epigenomic, transcriptomic, proteo-
mic, and metabolomics data that helped reveal the molecular pathology of colorectal
cancer, liver cancer, and lung cancer. Finally, we discussed challenges and
envisioned the future of precision cancer medicine.

5.2 Various Multi-Omics Data Types and Selected
Repositories

With the advent of sequencing technologies, biomolecules in a given biological
samples can be identified and quantified at multiple omics levels (Das et al. 2020).
Next-generation sequencing (NGS) is now frequently used for whole-genome or
whole-exome sequencing (Behjati and Tarpey 2013). ChIP-seq (chromatin immu-
noprecipitation) and DNase1-seq (DNase I hypersensitive sites-sequencing) are used
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for detection of DNA-protein interactions. RNA-seq can be used to identify and
quantify RNA molecules (Kim and Dekker 2018; Lu et al. 2019). As for proteomic
and metabolomic study, mass-spectrometry based techniques are widely used
(Domon and Aebersold 2006). Omics data generated by these techniques, including
but not limited to genomic, epigenomic, transcriptomic, proteomic, and
metabolomic, is together called as multi-omics data (Liu et al. 2019). There are
several publicly accessible databases listed in references (Huang et al. 2017;
Subramanian et al. 2020), which accommodate multiple omics data sets and serve
as rich resources for understanding the etiology of human cancer.

5.2.1 DriverDB v3

The DriverDB database (http://ngs.ym.edu.tw/driverdb/) contains numerous exome-
seq data that was extracted from The Cancer Genome Atlas (TCGA), The Interna-
tional Cancer Genome Consortium (ICGC), Prostate Cancer Genetics Project
(PCGP), The Therapeutically Applicable Research to Generate Effective Treatments
(TARGET), and published papers (Cheng et al. 2014). More exome-seq data as well
as additional RNA-seq data from TCGA, ICGC, and published papers were added to
updated DriverDB v2 (Chung et al. 2016). DriverDB v3, the latest version, incor-
porated not only new exome-seq and RNA-seq datasets but also copy number
variation (CNV), methylation, and smRNA-seq datasets. By applying various bio-
informatic tools it contains, users can identify abnormalities at multi-omics levels
and discover driver genes and mutations (Liu et al. 2020a).

5.2.2 TCGA Portal

The Cancer Genome Atlas (TCGA) was launched by The National Institute of
Health (NIH) in 2006 aiming to reveal genomic and epigenomic alternations asso-
ciated with 32 types of human cancers (Wang et al. 2016). For each type of human
cancer, various kinds of data including gene expression, exon expression, miRNA
expression, protein expression, single nucleotide polymorphism (SNP), copy num-
ber variation (CNV), loss of heterozygosity (LOH), and DNA methylation has been
generated and processed (Tomczak et al. 2015). The aforementioned data are stored
in a free-access database, namely the TCGA Data Portal (https://tcga-data.nci.nih.
gov/tcga/). Without a doubt, the wealth of TCGA data has led to the discovery of
diagnostic biomarkers and development of new cancer therapies (Colaprico et al.
2016).

http://ngs.ym.edu.tw/driverdb/
https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
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5.2.3 ICGC

The International Cancer Genome Consortium (ICGC; https://icgc.org/) mainly
contains mutational genomic data in nearly 50 cancer types. The International
Cancer Genome Consortium Data Portal (https://dcc.icgc.org) is a user-friendly
platform which helps users visualize, analyze, and interpret cancer-related genetic,
molecular, and clinical data it contains. This may lead to deeper understanding of
tumor biology as well as development of better diagnostic methods and drugs
(Zhang et al. 2019).

5.2.4 CCLE

In order to promote the translation of genetic and pharmacological data generated by
cancer cell line studies into understanding of cancer progression and development of
novel therapies, Cancer Cell Line Encyclopedia (https://portals.broadinstitute.org/
ccle) was built by the collaboration between the broad Institute and the Novartis
Institute (Barretina et al. 2012). The original release of CCLE contains a large-scale
genomic data set from 947 human cancer cell lines and pharmacological profiling of
24 anticancer drugs across 479 of those cell lines. Later, whole genome sequencing,
RNA-seq, miRNA profiling, and histone profiling were added to it (Nusinow et al.
2020).

5.2.5 LinkedOmics

The LinkedOmics database (http://www.linkedomics.org) contains mass spectrom-
etry (MS)-based global proteomics data which was downloaded from the Clinical
Proteomic Tumor Analysis Consortium (CPTAC). Multi-omics data including geno-
mic, epigenomic, and transcriptomic data as well as clinical data for 32 TCGA
cancer types which were downloaded from The Cancer Genome Atlas (TCGA)
project were also added to this database. Aiming to allow users to analyze these data
in detail, LinkedOmics provided three analysis modules, namely LinkFinder,
LinkCompare, and LinkInterpreter. For each cancer cohort, the LinkFinder module
allows user to find associations between an attribute of interest and all other
attributes. These associations can be compared with query attributes through the
LinkCompare module and interpreted through the LinkInterpreter module. The
results are presented in the form of plot or heatmap, which may effectively help
users gain biological understanding (Vasaikar et al. 2018).

https://icgc.org/
https://dcc.icgc.org/
https://portals.broadinstitute.org/ccle
https://portals.broadinstitute.org/ccle
http://www.linkedomics.org
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5.2.6 RHPCG

Consisting of a group of kinases, hippo signaling pathway is a highly conserved
pathway which plays important roles in controlling cell proliferation, apoptosis, and
migration. Dysregulation of Hippo signaling pathway is involved in the initiation
and progression of cancer, such as breast cancer, lung cancer and so on. The
Regulation of the Hippo Pathway in Cancer Genome database (http://www.
medsysbio.org/RHPCG) can serve as an open resource for visualizing alternations of
Hippo pathway genes as well as understanding the roles of Hippo pathway in cancer,
because RHPCG was designed to allow users easily search, view, and download
alternations of core Hippo-protein-encoding genes in 33 cancer types at levels of
genomics, epigenomics, and transcriptomics (Wang et al. 2019).

5.2.7 MOBCdb

The Multi-Omics Breast Cancer Database (http://bigd.big.ac.cn/MOBCdb/) was
constructed in order to facilitate identification of breast cancer subtypes and discov-
ery of novel biomarkers. MOBCdb contains SNV, gene expression, microRNA
expression, DNA methylation, clinical, and drug response data that were
downloaded from the TCGA data portal, GENECODE, miRBase, PharmGKB,
and NCBI. With more than 10,000 files stored in the database, MOBCdb provides
several methods to help users effectively gain information. In addition, by using the
genome-wide browser in MOBCdb, users can visualize different omics data easily.
The survival module was designed to help users find new biomarkers (Xie et al.
2018).

5.2.8 Target

The Therapeutically Applicable Research to Generate Effective Treatments database
(https://ocg.cancer.gov/programs/target) was built by the cooperation of extramural
and NCI investigators. TARGET originated with two pilot projects, now it contains
the clinical information, gene expression, miRNA expression, copy number, and
sequencing data of 24 molecular types of cancer. The effort of TARGET researchers
has undoubtedly accelerated discoveries of genomic alterations in cancer and facil-
itated rapid translation of those findings into the clinic (Wu et al. 2021a).

There is much information that can be obtained from the data sets stored in the
aforementioned databases. For instance, genomic studies can reveal the associations
between tumorigenesis and genetic mutations (Ghosh et al. 2018). Also, Epigenomic
data can lead to knowledge regarding how chemical modifications of DNA and
protein drive tumorigenesis (Rhee 2018). Similarly, transcriptomic profiling can be

http://www.medsysbio.org/RHPCG
http://www.medsysbio.org/RHPCG
http://bigd.big.ac.cn/MOBCdb/
https://ocg.cancer.gov/programs/target
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used to detect the association between cancer and dysregulated genes (Canzler et al.
2020). Proteomic data can help researchers better understand its function in human
cancer (Matthiesen and Jensen 2008). Because each omics data type only provides a
partial view of the complexity of cancer, biological mechanisms can be fully
captured only through integrating different omics data types (Hao et al. 2019).

5.3 Selected Integrative Tools for Multi-Omics Analysis

Cancer is a consequence of malfunction and alteration in multiple molecular layers
(Hausman 2019). With decreasing time and cost to generate multiple omics datasets
from biological samples, an increased need for large-scale omics analysis tools
emerged to explore relationships between different biological readouts
(Altenbuchinger et al. 2020). Usually, steps to conduct an integrative analysis of
these readouts include data normalization, variable selection, cluster analysis, and
dimensional reduction (Meng et al. 2016; Chauvel et al. 2020; Nicora et al. 2020). In
this section, we review eight computational integrative tools that are capable of
multi-omics data analysis. The first five tools were designed to reveal the biological
mechanisms connecting identified key drivers and pathways to diseases. The
remaining three tools can be used to discover new therapeutic interventions or
support clinical decision making.

Integrative Omics Data Analysis (iODA) is a software for omics data analysis,
which is written in Java and able to run on Windows or Linux operating systems.
iODA can integrate and refine data generated by RNA-seq, miRNA-seq, and ChIP-
seq, which leads to the revelation of complex pathogenesis of human cancer. There
are six statistical methods included, namely Least Sum of Ordered Subset Squared,
Cancer Outlier Profile Analysis, Maximum Ordered Subset T-statistics, Outlier
Robust T-statistics, Outlier Sum, and t-test, which can be selected by users to process
their input data. Then, differentially expressed genes and miRNAs as well as
transcription factor binding sites are extracted for the following pathway enrichment
analysis and consistency analysis. The dysfunctional molecules are mapped on the
KEGG pathway, and the consistent molecular signatures are identified as key
pathogenic factors in cancer. The source code as well as executable file of iODA
can be downloaded at http://www.sysbio.org.cn/iODA for free (Yu et al. 2020).

The interactive tool for statistical analysis of omics and clinical data (IOAT in
short) is a R and Python-based Windows application for analyzing and visualizing
multi-omics and clinical data. IOAT is a user-friendly tool designed for
non-programmers. It can perform feature screening, risk assessment, clustering,
and survival analysis after reading a comma-separated value text file imported by
users and preprocessing the multi-omics and clinical data contained in the file. All
results are displayed in a report, which enables users to view the outcomes of each
step and thus gain a better understanding of their data. Additionally, IOAT considers
data breaches. After downloading an executable file from https://github.com/WlSun

http://www.sysbio.org.cn/iODA
https://github.com/WlSun
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shine/IOAT-software, users can use this desktop tool without the need for network
connectivity, ensuring the security of their personal data (Wu et al. 2021b).

MEXPRESS is a simple and user-friendly web tool for visualizing and
interpreting multiple omics data that does not require clinical researchers to be
programmers. Users can view gene expression, DNA methylation, and clinical
data extracted from TCGA by entering a gene name and selecting a cancer type.
MEXPRESS can also be used to conduct statistical analyses on these datasets and
determine their correlation, which is extremely useful for biomarker discovery
(Koch et al. 2015). While the core functions of MEXPRESS remain unchanged in
the new version released in 2019, new data types, statistical methods, and options are
included. All code is available for free download at https://github.com/akoch8/
mexpress (Koch et al. 2019).

PROMO is a powerful and integrative Windows software written in Matlab that is
designed to analyze large genomic and clinical datasets contained in multi-omics
databases effectively. It includes several features such as data preprocessing, explo-
ration and visualization, clustering, enrichment analysis, biomarker discovery, and
classification of cancer subtypes. After importing a multi-omics dataset into
PROMO, users can discover correlations between features at various multi-omics
levels as well as the genes involved in biological differences, resulting in a better
understanding of biological mechanisms and the discovery of new biomarkers.
PROMO is freely accessible to the public at http://acgt.cs.tau.ac.il/promo/ (Netanely
et al. 2019).

Chromatin structures, such as topologically associating domains (TAD) and TAD
boundaries, are critical for gene expression regulation. Changes in the structure of
chromatin may contribute to the progression of human cancer (Valencia and Kadoch
2019). PredTAD is a machine learning tool that uses the Gradient Boosting Machine
(GBM) algorithm to predict 3D chromatin structures. It makes use of genomic and
epigenomic data to predict and detect TAD boundary variants in normal and cancer
cell genomes. Correlations between TAD boundary alternations and the expression
of nearby genes can be identified using RNA-seq data analysis. Because genes
located near altered boundaries may be involved in a cascade of oncogenic signaling
pathways, PredTAD is an effective tool for transforming genomic and ChIP data into
an understanding of the roles of chromatin structures in cancer progression. The
source code for PredTAD is available at https://github.com/jchyr-sbmi/PredTAD/
(Chyr et al. 2021).

IOBR is a computational tool for interpreting multi-omics data; its application in
immuno-oncology biological research has the potential to shed new light on tumor-
immune interactions and accelerate the development of immunotherapies. It is
composed of four functional modules: signature and tumor microenvironment
(TME) estimation, phenotype estimation, mutation estimation, and module construc-
tion. IOBR is capable of identifying signature genes and phenotype-relevant signa-
tures, analyzing signature-associated mutations, and building models using
previously identified signatures. These models can be used to forecast therapy
response, prognosis for cancer, and tumor resistance. The IOBR R package can be
downloaded from https://github.com/IOBR/IOBR (Zeng et al. 2021).

https://github.com/akoch8/mexpress
https://github.com/akoch8/mexpress
http://acgt.cs.tau.ac.il/promo/
https://github.com/jchyr-sbmi/PredTAD/
https://github.com/IOBR/IOBR
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DrugComboExplorer, a computational systems biology tool, predicts drug com-
binations for specific cancer types by integrating DNA-seq, RNA-seq, methylation,
and gene copy number data. It processes multi-omics data from cancer patients,
identifies driver signaling networks, and quantifies the efficacy of combinatorial
drugs on these networks using multiple algorithms. Combinations of optimal drugs
that target driver signaling networks may be a way to copy resistance progression.
The source code for DrugComboExplorer is available at https://github.com/
Roosevelt-PKU/drugcombinationprediction (Huang et al. 2019).

OncoPDSS is a system that interprets multi-omics variants detected in cancer
samples as supporting evidence for clinical pharmacotherapy decision-making. It
contains the OncoPDSS knowledgebase (OncoPDSSkb), which was created to store
data on drug-drug interactions, clinical trials for cancer, and drug indications.
OncoPDSS imports user-uploaded variants. It uses a classification strategy to deter-
mine whether pharmacotherapies are potentially effective or not based on
OncoPDSSkb mutation records, cancer records, and drug records that serve as
oncology pharmacotherapy evidence. As a result, this tool will significantly aid
clinicians and physicians in making clinical decisions, while also providing cancer
researchers with novel treatment strategies. OncoPDSS is accessible via the
following link: https://oncopdss.capitalbiobigdata.com (Xu et al. 2020a).

Recent cancer projects as well as multi-omics databases provide the research
community with a wealth of omics data and clinical information on cancer patients
(Cieslik and Chinnaiyan 2020). Integrative analysis of these data is challenging and
requires bioinformatics, statistical, and programming skills (Chakraborty et al. 2018;
Park et al. 2020). Numerous tools have been built to solve this problem. However,
some limitations still exist. For instance, iODA only supports the analysis of mRNA,
miRNA, and ChIP-seq data (Yu et al. 2020). Efforts should be devoted to develop
new tools that can be applied for all omics data types. In addition, several tools
utilize the R language, which is not friendly for researchers with limited biostatistical
or programming knowledge (Eicher et al. 2020; Graw et al. 2021). Web-based
interfaces should be created to allow fundamental researchers to leverage the merits
of multi-omics tools.

5.4 Overview of Cancer Multi-Omics Research

5.4.1 Lung Cancer

Lung cancer is a highly complex and heterogeneous disease (De Sousa and Carvalho
2018). In recent decades, cancer researches focusing on the discovery of prognostic
indicators and therapeutic targets have already been made (Jones and Baldwin
2018). Li proposed a novel method for mining cancer-related gene modules based
on multi-omics data. First, genome-wide regulatory networks were constructed
using key regulatory factors identified by feature selection method. Second,
dysregulated gene sets were identified by comparing regulatory networks in variant

https://github.com/Roosevelt-PKU/drugcombinationprediction
https://github.com/Roosevelt-PKU/drugcombinationprediction
https://oncopdss.capitalbiobigdata.com
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and non-variant samples, which were then used to generate cancer-related gene
modules. This new mining method has been proved to be applicable to lung cancer
research (Li et al. 2019). By analyzing genomic, transcriptomics, and proteomic
data, Kong et al. identified abnormal expressed membrane proteins in highly meta-
static lung cancer cells. The high expression level of CDH2, EGFT, ITGA3, ITGB1,
ITGA5 and low expression level of CALR were found to be associated with cancer
metastasis (Kong et al. 2020).

Small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) are two
major types of lung cancer (Wu et al. 2020). Patients diagnosed as NSCLC accounts
for nearly 85% of all lung cancer patients, which makes NSCLC the most common
histological type of lung cancer (Wang et al. 2018). Chen et al. performed gene
expression, prognosis, DNAmethylation, and gene mutation analysis of NUF2 gene.
It was shown that that the more NUF2 expressed, the poorer prognosis patients had.
Thus, NUF2 might be considered as a prognostic biomarker of NSCLC and can be
used for cancer treatment (Chen et al. 2014). Luan et al. integrated DNA methyla-
tion, RNA, miRNA and DNA copy number data to construct a survival risk model.
Based on this, the chromosome regions 17q24.3 and 11p15.5 were identified as the
copy number variation regions that were associated with NSCLC patient survival
(Luan et al. 2020).

NSCLC can be further divided into three main subtypes, lung adenocarcinoma
(LUAD), lung squamous cell carcinoma (LUSC), and large cell carcinoma (LCC)
(Herbst et al. 2018).

Numerous potential biomarkers have been identified as a result of advancements
in the molecule biology of LUAD. Paula et al. used proteomic data, ChIP-seq and
RNA-seq assays to demonstrate that MGA gene, which is mutated and copy number
deleted in LUAD, acts as a tumor suppressor by repressing genes activated by the
MYC pathway. This discovery may open new therapeutic avenues (Llabata et al.
2020). Zhang et al. estimated different tumor microenvironment infiltration patterns
and the correlation between these patterns and the genetic or epigenetic alterations
by analyzing expression, RNA-seq, WES, and DNA methylation profiles. A prog-
nosis model was constructed using the detected genetic and epigenetic alternations,
which may aid in the development of a more accurate prognostic predictor for human
LUAD (Zhang et al. 2020b). Ken built a SVM to subclass patients based on their
survival based on clinical data from LUAD. By combining RNA expression and
miRNA expression data of these subtypes, six genes were efficiently identified to be
associated with LUAD patient survival: ERO1B, DPY19L1, NCAM1, RET,
MARCH1, and SLC7A8 (Asada et al. 2020). Lee et al. applied mRNA, miRNA,
DNA methylation and CNV data to develop a deep learning autoencoding approach
for survival risk stratification. They successfully identify significant prognostic
difference between two groups of LUAD patients using this model (Lee et al. 2020).

LUSC has a worse prognosis than LUAD (Zhang et al. 2020a). Numerous studies
have already been conducted to ascertain the molecular characteristics of this
subtype. According to Zhang, an integrative analysis of methylation and gene
expression data revealed that 113 methylation features and 23 gene expression
features are strongly associated with lung cancer. SFTA3 and LPP may serve as
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molecular markers for subtyping NSCLC (Zhang et al. 2020a). Additionally, Xu
et al. investigated the gene expression changes associated with DNA copy number or
DNA methylation in LUSC patients by integrating genomic, transcriptomic, and
epigenetic data. Seven genes expressed at a high level, which could be due to CNV
or methylation and result in a poor prognosis (Xu et al. 2020c). Additionally, Hu
et al. examined multi-omics differences between LUSC patients with high and low
levels of programmed death 1 expression (PD1). It was discovered that 178 genes
involved in immunity were significantly upregulated in the high expression group,
which may contribute to a better understanding of the relationship between PD1 and
immunotherapy effect (Hu et al. 2020).

Pulmonary sarcomatoid carcinomas (PSC) is a rare tumor in the family of
NSCLC (Antoine et al. 2016). Yang et al. conducted multi-omics analysis of PSC
samples and found out that PSC may be converted from the epithelial components
and can be divided into five subtypes based on different histological morphologies
(Yang et al. 2020b). Also, it was delineated that a large portion of patients had
mutations in the p53, RTK/RAS, and PI3K pathways, suggesting that targeted
therapy could be an option for patients with PSC (Yang et al. 2020b). Totally,
their study shed light on the biological nature and brought entry points for the
treatment of this rare malignancy (Yang et al. 2020b).

5.4.2 Colorectal Cancer

Colorectal cancer (CRC) is a heterogeneous disease (Berg et al. 2017; Almusawi
et al. 2021). Various studies performed in recent years have provided insights into
the molecular characteristics of CRC. Xu et al. explored genes related to CRC
prognosis and incidence (Xu et al. 2020b). Genes annotated with single nucleotide
mutation sites, copy number variation sites, and methylation sites along with differ-
entially expressed genes were identified as candidate genes (Xu et al. 2020b).
Moreover, a weighted gene co-expression network analysis was performed to search
for hub genes (Xu et al. 2020b). Finally, LRRC26 and REP15 were identified as
CRC-specific driving genes (Xu et al. 2020b). Yuan et al. attempted to link genetic
variants, genes, and risk of CRC (Yuan et al. 2021). They conducted expression
quantitative trait loci (eQTL) analysis, meta-analysis, and methylation quantitative
trait loci (mQTL) analysis of 131 lead SNPs to explore potential target genes (Yuan
et al. 2021). In addition, a colocalization analysis of genes identified in the previous
step was performed, which revealed 66 putative susceptibility genes in CRC (Yuan
et al. 2021). Ayiomamitis et al. investigated the roles of cyclooxygenase 2 (COX-2),
an enzyme that promotes prostaglandin E2 (PGE2) production, and human telome-
rase reverse transcriptase (hTERT), a component of telomerase, in the onset of CRC
(Ayiomamitis et al. 2019). By analyzing the expression levels of COX-2, PGE2, and
hTERT along with telomerase activity, they demonstrated that COX-2 plays a key
role in the initial stages of CRC development (Ayiomamitis et al. 2019). Also, high
COX-2 expression was found to be associated with low hTERT expression and a
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better survival among CRC patients (Ayiomamitis et al. 2019). To gain a better
understanding of the clinical relevance between obesity and CRC, Holowatyj et al.
performed transcriptomic analysis on visceral adipose and tumor tissues and
metabolomics analysis on blood samples of CRC patients (Holowatyj et al. 2020).
Combining results generated by each omics measurement, they elucidated that
glycolytic metabolism, GPVI signaling, and fibrosis participated in the adipose-
tumor crosstalk and could promote CRC development (Holowatyj et al. 2020).
Ghaffari et al. investigated the underlying mechanisms that drive metastatic progres-
sion (Ghaffari et al. 2021). They performed RNA-seq, ChIP-seq, and ATAC-seq on
a CRC cell line (Ghaffari et al. 2021). Then, a statistical model was used to
comprehensively analyze these multi-omics profiles along with TF-DNA binding
information (Ghaffari et al. 2021). It was elucidated that JunD, a TF, plays a crucial
role in CRC migration and invasion (Ghaffari et al. 2021).

It is widely accepted that most colorectal cancers arise as a result of transforma-
tion from adenoma to adenocarcinoma (Lam et al. 2016), which is triggered by the
stepwise accumulation of genetic and epigenetic mutations (Aarons et al. 2014).
Using the deep learning framework, Lv et al. constructed a prognostic model for
patients with colon adenocarcinoma (COAD) using the TCGA and GEO databases
(Lv et al. 2020). After applying this model to the TCGA dataset, it was discovered
that two subgroups with significantly different survival rates existed. Further anal-
ysis of these two subgroups revealed 1217 differentially expressed genes and ten
differentially expressed miRNAs, which may aid in deciphering the mechanisms
underlying COAD development (Lv et al. 2020). Yin et al. proposed an approach to
detect potential prognosis risk biomarkers (PRBs) (Yin et al. 2020). First, based on
gene expression, exon expression, DNA methylation, and somatic mutation profiles
along with clinical information of COAD patients, the multi-omics-based prognostic
analysis (MPA) model was used to select features closely related to the prognosis of
COAD patients (Yin et al. 2020). Second, they applied the protein-protein interac-
tion (PPI) network to annotate the functions of these features (Yin et al. 2020).
Finally, 13 features were identified as PRBs through the further validation, which
may serve as drug targets in COAD treatment (Yin et al. 2020).

CRC is also known as bowel and colon cancer, which makes colon cancer (CC) a
subset of it (Jahanafrooz et al. 2020). Tong et al. successfully constructed a prog-
nostic prediction model of CC patients by integrating clinical features, gene expres-
sion, miRNA expression, and DNA methylation data extracted from TCGA (Tong
et al. 2020). Compared with models based on clinical and gene expression data, this
integrative prognostic model was more effective, suggesting that the more types of
omics data integrated, the better the cancer prognostic model would perform (Tong
et al. 2020). Yang et al. also established a prognostic model for CC (Yang et al.
2020a). They first conducted an identification of differentially methylated genes,
differentially expressed genes and miRNAs between tumor samples and normal
samples (Yang et al. 2020a). Then, using omics features correlated with prognosis,
the prognostic model was built, which might be helpful for CC research (Yang et al.
2020a). Yi et al. explored the underlying mechanisms of Wnt/β-catenin signaling
regulating EMT program (Yi et al. 2020). It was validated that the RUNX2
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expression activated by Wnt signaling pathway would lead to an increase in the
expression of EMT-associated genes (Yi et al. 2020). Because EMT has been proved
to be highly correlated with metastasis formation and tumorigenesis (Pastushenko
and Blanpain 2019), RUNX2 might serve as a prognostic biomarker for CC. Arora
et al. detected the dysregulated expression pattern of seven classical
non-homologous end joining (c-NHEJ) pathway genes in CC (Arora et al. 2020).
Compared to normal tissues, XRCC5, XRCC6, PRKDC, and PAXX were observed to
be overexpressed in tumor tissues, whereas the expression level of LIG4 and NHEJ1
were downregulated (Arora et al. 2020). In addition, PAXX was identified as a
prognostic biomarker (Arora et al. 2020). Thus, their study may help reveal the
clinical significance of c-NHEJ pathway genes in CC. Using a novel upstream
analysis strategy, Kel et al. deciphered the molecular mechanisms of the resistance
to methotrexate (MTX) in CC (Kel et al. 2016). This strategy mainly contains two
steps, i.e., the identification of transcription factors (TFs) and master regulators that
activate these TFs (Kel et al. 2016). After applying this approach to transcriptomics,
proteomics, and ChIP-seq data, PKC-alpha, TGF-alpha, TGF-beta, and alpha9-
integrin were identified as anti-resistance targets (Kel et al. 2016). Their findings
would provide new insight into oncology drug resistance research.

Left-sided colon cancer (LCC), which originates from the hindgut, and right-
sided colon cancer (RCC), which originates from the midgut, are two subtypes of CC
(Song et al. 2020). In addition to the different tumor locations, there are many
differences between them (Shen et al. 2015). To gain a better understanding of
these differences, Huang et al. analyzed transcriptomics, clinical, and somatic
mutation data of patients with CC (Huang et al. 2021). A total of 360 differentially
expressed genes were observed (Huang et al. 2021). Among them, it was indicated
that BRAF and KRAS mutations were frequently presented in RCC, whereas APC
mutation was frequently presented in LCC (Huang et al. 2021). In addition, the
4-mRNA and 6-mRNA were identified as prognostic signatures for LCC and RCC,
respectively (Huang et al. 2021). Similarly, Hu et al. conducted a study on the
differences in molecular features between LCC and RCC (Hu et al. 2018). It was
revealed that PARC was hypermethylated in RCC, whereas CDX2 was
hypermethylated in LCC (Hu et al. 2018). Also, the expression levels of miR31,
miR155, and miR625 were observed to be upregulated in RCC, whereas the
expression levels of miR-296 and miR592 were downregulated in LCC (Hu et al.
2018). In addition, compared with LCC, the mutation rate of KRAS and BRAF was
higher in RCC, which was believed to be associated with a worse prognosis
(Hu et al. 2018). Yi et al. performed a systematic analysis on the regulatory
mechanisms between gene mutations and tumor immune microenvironment
(TIME) in LCC and RCC cells (Yi et al. 2021). It was revealed that the mutations
of top mutated genes were strongly correlated with TIME, DNA methylation levels
of some immune checkpoints, and immune-related genes and miRNAs in RCC.
However, these associations were less significant in LCC (Yi et al. 2021).



90 H. Zhang et al.

5.4.3 Liver Cancer

Liver cancer, one of the extraordinarily heterogeneous diseases, is caused by the
interplay of various internal and environmental factors (Li and Wang 2016; Marengo
et al. 2016). The development of omics strategies has helped us gain a holistic view
of tumor biology. Shen et al. distinguished two molecular subtypes by analyzing
genomic, epigenomic, and transcriptomic data from patients with liver cancer (Shen
et al. 2021b). In addition, two prognostic molecular targets, ANXA2 and CHAF1B,
were highly expressed in tumor tissues and identified to be strongly related to the
prognosis of liver cancer patients (Shen et al. 2021b). Their research findings could
provide new insight into the exploration of key biomarkers and mechanisms of liver
cancer (Shen et al. 2021b).

Primary liver cancer is a serious public health issue, with HCC as the most
common pathological subtype (Lin et al. 2016). Significant effort has been made
to reveal the biological nature of HCC. Based on multi-omics datasets of HCC
samples downloaded from TCGA and GEO databases, Liu et al. conducted an
investigation on the methyltransferase-like 3 (METTL3) as well as
methyltransferase-like 14 (METTL14), which were both core molecules of a
multicomponent methyltransferase complex (MTC) that catalyzed the formation of
N6-methyladenosine (m6A) (Liu et al. 2020b). It was clarified that METTL3 and
METTL14 influence distinct signaling pathways and biological processes, thus may
play opposite regulatory roles in HCC (Liu et al. 2020b). Using several databases,
Jin et al. investigated the impact of the expression levels of CDK1, CCNB1, and
CCNB2 in the survival of HCC patients (Zou et al. 2020). The upregulation of
CDK1, CCNB1, and CCNB2, which might be caused by low levels of methylation or
genomic alternations, was found to be highly correlated with poor prognosis in HCC
patients (Zou et al. 2020). Using multi-omics analysis of metabolomics and absolute
quantification proteomics, Dan et al. conducted an investigation on the effects of
canagliflozin (CANA) on the proliferation of HCC cell lines (Nakano et al. 2020). It
was shown that CANA, the sodium glucose co-transporter 2 (SGLT2) inhibitor,
mainly altered oxidative phosphorylation metabolism, fatty acid metabolism, and
DNA synthesis, which may suppress cell proliferation of Hep3B and Huh7 cells
(Nakano et al. 2020). Shen et al. performed a multi-omics analysis to explore the
metabolic impact of estrogen and its receptors in HCC cells (Shen et al. 2021a). It
was suggested that estrogen acts on its receptors to suppress HepG2 cell growth via
altering glucose and lipid metabolism, which might be part of the reason why women
have a lower risk of HCC development as compared to men worldwide (Shen et al.
2021a). Woo et al. integrated CNV, DNA methylation, and mRNA expression data
of a cohort of HCC patients to identify DNA copy-number-correlated (CNVcor) and
methylation-correlated (METcor) genes (Woo et al. 2017). The frequencies of
CNVcor gene aberration were indicated to be significantly correlated with frequen-
cies of METcor gene aberration, demonstrating that the concomitant regulation of
transcriptomes by alternations in DNA copy numbers and methylation should be
took into consideration in liver cancer research (Woo et al. 2017).
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In developing countries prevalent for hepatitis B virus (HBV) infection, HBV still
remains the most common etiologic agent of HCC (Chang 2014). Much work also
has been done to uncover the direct and indirect mechanisms that are involved in
HCC oncogenesis by HBV (Xie 2017). Through the integration of proteomics and
metabolomics assays, Xie et al. conducted an exploration on the mechanisms of
HBV-induced HCC (Xie et al. 2017). They demonstrated that HBV core protein
might contribute to the progression of HCC by modifying the metabolism of
glycolysis and amino acid (Xie et al. 2017). Consequently, HBV core protein
could represent a promising target for antiviral therapy (Xie et al. 2017). Aiming
to identify novel biomarkers in HCC, Miao et al. performed multi-omics analyses
integrating genomic, transcriptomics, and clinicopathological data of patients with
HBV-related multifocal HCC (Miao et al. 2014). Six genes with abnormal expres-
sion levels were identified (Miao et al. 2014). Among them, TTKmight be an overall
prognostic indicator for HCC, because the expression level of TTK was shown to be
highly correlated with metastatic potential, postsurgical recurrence, and survival of
HCC patients (Miao et al. 2014). Gao et al. conducted a comprehensive
proteogenomic characterization of tumor and adjacent liver samples from
159 HCC patients with HBV infection (Gao et al. 2019). Two metabolic enzymes,
PYCR2 and ADH1A, were identified to participate in HCC metabolic
reprogramming (Gao et al. 2019). Because the upregulation of PYCR2 or
downregulation of ADH1A may result in HCC progression, they were also validated
as potential prognostic biomarkers (Gao et al. 2019).

Since accurate stratification is essential for clinical decision making (Preisser
et al. 2020), different stratification methods applied to cohorts of HCC patients have
been developed. Kumardeep et al. proposed a deep learning-based model derived
from RNA-seq, miRNA-seq, CpG methylation and clinical data of HCC samples to
identify two subgroups with significantly different survival (Chaudhary et al. 2018).
It was illuminated that the more aggressive subgroup is associated with TP53
inactivation mutations and Wnt pathway activation (Chaudhary et al. 2018). There-
fore, this risk stratification model may be useful at HCC prognosis prediction as well
as therapeutic intervention (Chaudhary et al. 2018). Xiao et al. formed an integration
method and used this method for an analysis of mRNA expression data,
DNA-methylation data, somatic mutation data, and clinical information of HCC
samples (Ouyang et al. 2020). 34 differentially expressed genes (DEGs) were
identified, some of them were verified as diagnostic biomarkers for HCC (Ouyang
et al. 2020). According to the gene expression data of the aforementioned DEGs,
tumor samples were divided into three subtypes that displayed different biological
processes (Ouyang et al. 2020). Hence, what they found out might help improve
precision medicine regarding HCC (Ouyang et al. 2020).

The advanced molecular biological techniques as well as improving understand-
ing of complex mechanisms of liver cancer has driven the development of precision
medicine (Yoo et al. 2018). Yildiz analyzed datasets generated by high-throughput
drug screening and genomic and transcriptomic studies on HCC cell lines (Yildiz
2018). He divided HCC cells into two subtypes that responded differently to the
same drug treatments (Yildiz 2018). 6 molecular targets were revealed to be
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associated with drug sensitivity, which could aid the development of effective
molecular therapies (Yildiz 2018). Also, the EGFR/PI3K/AKT/mTOR signaling
pathway was believed to play a central role in the regulation of sensitivity and
resistance to drug treatments in HCC (Yildiz 2018). Christos et al. utilized a
computational approach to explore the novel drug targets in mTOR-driven HCC
(Dimitrakopoulos et al. 2021). 74 mediators under the impact of upstream genetic
aberrations and changes in miRNA expression were identified, among which YAP1,
GRB2, HDAC4, SIRT1, and LIS1 were validated to be dysregulated in human HCC
(Dimitrakopoulos et al. 2021). Thus, inhibitors of these mediators may be potentially
useful in HCC treatment (Dimitrakopoulos et al. 2021).

5.5 Conclusion

Multiomics clearly has advantages when it comes to translating the biological
characteristics of cancer into understandable and clinically interpretable data. The
advancement of multiomics research in the context of a specific cancer reveals
numerous “invisible” but critical correlations. Multiple biomarkers have a higher
specificity than previous single-gene markers, laying the groundwork for future
research in this field. The identification of specific markers enables the diagnosis
of cancer and subsequent treatment, as well as better stratifying patients and devel-
oping more effective and personalized treatment methods.

As mentioned previously, multi-omics methods have been successfully applied to
colorectal cancer, liver cancer, and lung cancer, yielding a wealth of biological data.
As methods and resources for multi-omics analysis mature, multi-omics research
will play an increasingly important role in understanding the pathogenesis of cancer
and developing effective treatment measures.

However, there is a growing gap between the ability to integrate, process, and
interpret data and the ability to generate large amounts of omics data. The majority of
data standardization efforts and development of a central public database of omics
data have been abandoned. Simultaneously, the majority of tools for multi-omics
integration are insufficiently robust, prone to errors, and are only suitable for
advanced users with programming expertise. There is still a long way to go before
multi-omics analysis is widely applied and its value is maximized in cancer research.
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