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Abstract An attempt has been done to study the dual solutions (steady and unsteady
solutions) of free convective micropolar fluid flow near the stagnation point of a
sphere. Governing equations are solved numerically using suitable similarity trans-
formations and MATLAB built-in bvp4c solver technique. The results are discussed
graphically for various values of conjugate parameter (corresponds to convective
boundary condition) and material parameter for micropolar fluid. Numerical results
of wall temperature and skin friction coefficient are represented by tables. During
time-dependent case, skin friction coefficient is controlled by material parameter,
but the conjugate parameter enhances skin friction coefficient.

Keywords Convective boundary condition · Lower stagnation point · Micropolar
fluid · Solid sphere · Steady and unsteady flow

Nomenclature

x Displacement variable along the surface of sphere from lower stagnation
point

y Displacement variable transverse to x axis
u Velocity component along x axis
v Velocity component along y axis
H Angular velocity of the micropolar fluid
a Radius of the heated sphere
Cp Specific pressure
f ′(y) Dimensionless velocity
g Gravitational force
Gr Grashof number
h f Coefficient of heat transfer
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h(y) Dimensionless angular velocity
j Micro inertia density
k Vortex viscosity
K Material or micropolar parameter
kT Thermal conductivity
n Constant
Pr Prandtl number
T Temperature
T f Temperature of the hot fluid
T∞ Ambient temperature
t Time

Greek symbols

β Coefficient of thermal expansion
ρ Fluid density
γ1 Conjugate parameter for convective boundary condition
ψ Stream function
φ Spin gradient
υ Kinematic viscosity
μ Dynamic viscosity
θ(y) Dimensionless temperature
ω Eigenvalue parameter

Suffix

0 Initial condition
′ Prime which represents the differentiation with respect to y

1 Introduction

The stagnation point flow around a sphere has a large amount of practical significance
in engineering and industrial processes. Many researchers have used the mechanics
of stagnation point flow using different constitutive models due to its wide range of
applications in science and engineering. Theory of micropolar fluid flow is applied in
microdevices, defectoscopy (diagnostic method for identification of defects), living
organisms, etc. Eringen [1] has introduced the theory of micropolar fluid. Ariman
et al. [2] and Rees and Bassom [3] have studied fluid flow problems using micropolar
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fluid model. Analysis of mixed convective boundary layer flow past a sphere has
been done by Chen and Mucoglu [4]. Kadim et al. [5] have investigated the natural
convective boundary layer flow past a sphere using a viscoelastic fluid model. Nazar
et al. [6, 7] have investigated themicropolar fluid flowpast a sphere by taking constant
heat flux and wall temperature, respectively. Cheng [8] has investigated the heat and
mass transfer effects on micropolar fluid flow past a sphere.

Markin [9] has considered the buoyancy effects on viscous fluid flowwith Newto-
nian heating past vertical plate. Recently, Salleh et al. [10] have investigated the free
convection boundary layer flow past a heated sphere using micropolar fluid model.
Many researchers (Aziz [11], Makinde and Aziz [12], Ishak et al. [13], Markin and
Pop [14], Yao et al. [15], Yacob and Ishak [16]) have carried out the solutions of
convective boundary layer flowproblems.Recently,Mohamed et al. [17] have studied
the behavior of stagnation point flow with convection boundary condition. Stagna-
tion point flowwith convective boundary condition using micropolar fluid model has
been analyzed by Alkasasbeha et al. [18]. Shu and Wilks [19] have investigated the
heat transfer features in the thin-film flow over a hot sphere effecting from a cold
vertical plane of liquid falling onto the surface. Aziz et al. [20] have investigated
the mixed convection boundary layer flow using viscoelastic micropolar fluid model
with the effect of magnetic field.

Themain objective of this study is to investigate the steady and unsteady solutions
of micropolar fluid flow in the vicinity of the point where velocity is zero of a sphere
with convective boundary conditions. The governing partial differential equations
are renewed into set of ordinary differential equations using appropriate similarity
transformations and have been solved numerically byMATLABbuilt-in bvp4c solver
technique. A comparison of our work has been made with the results of Alkasasbeha

et al. [18] to exemplify the truth of the present work.

2 Mathematical Formulation

Here, free convective two-dimensional boundary layer flow has been considered in
the region of stagnation point of a heated sphere with the free stream temperature
T∞, which is subjected to a convective boundary condition. Let “a” be the radius of
the heated sphere which is shown in Fig. 1.

Under the boundary layer and Boussinesq approximations, the fundamental equa-
tions are (following Aziz [11], Eringen [1], Salleh et al. [10], Alkasasbeha et al.
[18]):

∂(ru)

∂x
+ ∂(rv)

∂ y
= 0, (1)

ρ

(
u

∂u

∂x
+ v

∂u

∂ y

)
= (μ + k)

∂2u

∂ y2
+ ρgβ(T − T∞) sin(

x

a
) + k

∂H

∂ y
, (2)
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Fig. 1 Flow model

ρ j

(
u

∂H

∂x
+ v

∂H

∂ y

)
= −k

(
2H + ∂u

∂ y

)
+ φ

∂2H

∂ y2
(3)

u
∂T

∂x
+ v

∂T

∂ y
= υ

Pr

∂2T

∂ y2
(4)

and the boundary conditions subject to the above equations are:

as y = 0 : u = v = 0,−k ∂T
∂ y = h f (T f − T ), H = −n ∂u

∂ y ,

as y → ∞ : u → 0, T → T∞, H → 0,

}
(5)

where Pr = μCp

kT
and h f the coefficient of heat transfer for the convective boundary

conditions and n the constant with 0 ≤ n ≤ 1 such that the value n = 0 which
implies H = 0 at the wall physically signifies the concentrated particle flows in
which the density of the particle is significantly large that of microelements near
the wall are unable to rotate and n = 1 gives turbulent boundary layer (Ahmadi
[21]). In this study, we have considered n = 1

2 which physically corresponds to
vanish the antisymmetric part of the stress tensor and gives the weak concentration
of microelements.

Let r(x) be the radial distance which characterizes the distance between the
surface of the sphere and symmetrical axis of the sphere which is defined by
r(x) = a sin( xa ), and φ is the spin gradient viscosity that has the following form
as proposed by Ahmadi [21]:
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φ = (μ + (
k

2
)) j. (6)

Following Salleh et al. [10], Aziz [11], and Alkasasbeha et al. [18], we consider
the following dimensionless variables:

x = x̄
a , y = Gr

1
4 (

ȳ
a ), r = r̄

a , u = ( a
υ
)Gr− 1

2 ū, v = ( a
υ
)Gr− 1

4 v̄,

H = ( a
2

υ
)Gr− 3

4 H̄ , θ = T−T∞
T f −T∞ ,

}
(7)

where Gr = gβ(T f −T∞)a3

υ2 is the Grashof number. Substituting (7) into Eqs. (1–4), we
have got

∂

∂x
(ru) + ∂

∂y
(rv) = 0, (8)

u
∂u

∂x
+ v

∂u

∂y
= (1 + K )

∂2u

∂y2
+ θ sin x + K

∂H

∂y
, (9)

u
∂H

∂x
+ v

∂H

∂y
= −K (2H + ∂u

∂y
) + (1 + K

2
)
∂2H

∂y2
, (10)

u
∂θ

∂x
+ v

∂θ

∂y
= 1

Pr

∂2θ

∂y2
, (11)

where K = k
μ
, and the reduced boundary conditions are

as y = 0 : u = v = 0, ∂θ
∂y = −γ1(1 − θ), H = − 1

2
∂u
∂y ,

as y → ∞ : u → 0, θ → 0, H → 0

}
(12)

where γ1 = ah f Gr− 1
4

k . It is seen that if γ1 = 0, then θ = 0, and therefore, h f = 0
implies that there is no heat supply from the sphere (Salleh et al. [10] andAlkasasbeha

et al. [18]).
We introduce the following similarity variables (following Alkasasbeha et al.

[18]):

ψ = xr(x) f (x, y), θ = θ(x, y), H = xh(x, y) (13)

whereψ is the stream function, and u = 1
r

∂ψ

∂y and v = − 1
r

∂ψ

∂x satisfy Eq. (8). Further,
we have concentrated our main concern to study the flow behavior in the vicinity
of lower stagnation point, and mathematical formulations are done using (following
Alkasasbeh et al. [18]) x ≈ 0. Now, substituting Eq. (13) into Eqs. (9–12), the
following ordinary differential equations are obtained:
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(1 + K ) f ′′′ + 2 f f ′′ − f
′
2 + θ + Kh

′ = 0, (14)

(1 + K

2
)h′′ + 2 f h′ − f ′h − K (2h + f ′′) = 0, (15)

1

Pr
θ ′′ + 2 f θ ′ = 0, (16)

and the modernized boundary conditions are:

f (0) = f
′
(0), θ

′
(0) = −γ1(1 − θ(0)), h(0) = − 1

2 f
′′(0),

as y → ∞ : f
′
(y) → 0, θ(y) → 0, h(y) → 0.

}
(17)

3 Unsteady Flow Case

The unsteady case of this problem is performed to make a comparison between the
steady and unsteady flow solutions and help us to characterize which solution of
the dual solutions is physically realizable. Weidman et al. [22] and Khashi’ie et al.
[23] have investigated that the dual solutions (steady and unsteady cases) exist for
the forced convection boundary layer flow past a permeable flat plate and forced
convection flow of a non-Newtonian fluid past a wedge, respectively, and suggested
that the upper branch (steady solution) solutions are stable in nature and physically
realizable and the lower branch (unsteady solution) solutions are not physically
acceptable.

To test these features, we consider the unsteady form of Eqs. (1–4), and (1) clearly
holds. Equations (2–4) become.

∂u

∂t
+ ρ

(
u

∂u

∂x
+ v

∂u

∂ y

)
= (μ + k)

∂2u

∂ y2
+ ρgβ(T − T∞) sin(

x

a
) + k

∂H

∂ y
, (18)

∂H

∂t
+ ρ j

(
u

∂H

∂x
+ v

∂H

∂ y

)
= −k

(
2H + ∂u

∂ y

)
+ φ

∂2H

∂ y2
, (19)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂ y
= υ

Pr

∂2T

∂ y2
. (20)

We consider the following non-dimensionless variables:

t = Gr
1
2

a2 t, x = x
a , y = Gr

1
4

(
y
a

)
, r = r

a , u = (
a
υ

)
Gr− 1

2 u, v = (
a
υ

)
Gr− 1

4 v,

H =
(
a2

υ

)
Gr− 3

4 H , θ = T−T∞
T f −T∞ .

⎫⎬
⎭
(21)
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Using these dimensionless variables in Eqs. (18–20), we get the following partial
differential equations:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= (1 + K )

∂2u

∂y2
+ θ sin x + K

∂H

∂y
, (22)

∂H

∂t
+ u

∂H

∂x
+ v

∂H

∂y
= −K (2H + ∂u

∂y
) + (1 + K

2
)
∂2H

∂y2
, (23)

∂θ

∂t
+ u

∂θ

∂x
+ v

∂θ

∂y
= 1

Pr

∂2θ

∂y2
, (24)

where t denotes time, and it is important for the question of which solution will be
obtained physically realizable. Based on the variables (13), we introduce the new
dimensionless variables:

ψ = xr(x) f (x, y, t), θ = θ(x, y, t), H = xh(x, y, t). (25)

Using these variables into Eqs. (18–20), we have got the following nonlinear
ordinary differential equations:

∂2 f

∂y∂t
+ x

∂ f

∂y

∂2 f

∂x∂y
+

(
∂ f

∂y

)2

− (1 + x cot x) f
∂2 f

∂y2
− x

∂ f

∂x

∂2 f

∂y2

= (1 + K )
∂3 f

∂y3
+ sin x

x
θ + K

∂h

∂y
, (26)

∂h

∂t
+ x

∂ f

∂y

∂h

∂x
+ ∂ f

∂y
h − (1 + x cot x) f

∂h

∂y
− x

∂ f

∂x

∂h

∂y

= −2Kh − K
∂2 f

∂y2
+

(
1 + K

2

)
∂2h

∂y2
, (27)

∂θ

∂t
+ x

∂ f

∂y

∂θ

∂x
− (1 + x cot x) f

∂θ

∂y
− x

∂ f

∂x

∂θ

∂y
= 1

Pr

∂2θ

∂y2
. (28)

Again, putting x ≈ 0, Eqs. (26–28) will reduce to the following equations:

∂2 f

∂y∂t
+

(
∂ f

∂y

)2

− 2 f
∂2 f

∂y2
= (1 + K )

∂3 f

∂y3
+ θ + K

∂h

∂y
, (29)

∂h

∂t
+ ∂ f

∂y
h − 2 f

∂h

∂y
= −2Kh − K

∂2 f

∂y2
+

(
1 + K

2

)
∂2h

∂y2
, (30)

∂θ

∂t
− 2 f

∂θ

∂y
= 1

Pr

∂2θ

∂y2
, (31)
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and the relevant boundary conditions are:

f (0, t) = ∂ f
∂y (0, t) = 0, ∂θ

∂y (0, t) = −γ1(1 − θ(0, t)), h(0, t) = − 1
2

∂2 f
∂y2 (0, t),

as y → ∞ : ∂ f
∂y (y, t) → 0, θ(y, t) → 0, h(y, t) → 0.

}

(32)

The following representation is takenon to comparisonbetween the dual solutions,
according to Weidman et al. [22] and Khashi’ie et al. [23]:

f (y, t) = f0(y) + e−ωt F(y, t),
h(y, t) = h0(y) + e−ωt H1(y, t),
θ(y, t) = θ0(y) + e−ωtG(y, t).

⎫⎬
⎭ (33)

where F(y, t), H1(y, t), and G(y, t) are small relative to the steady flow solutions
f0(y), h0(y), and θ0(y), respectively. The following linearized problems will be
obtained by substituting (29) into Eqs. (29–31):

(1 + K )
∂3F

∂y3
+ G(y, t) + K

∂H1

∂y
+ ω

∂F

∂y
− ∂2F

∂y∂t

− 2
∂F

∂y
+ 2 f0

∂2F

∂y2
+ 2F

∂2 f0
∂y2

= 0, (34)

(
1 + K

2

)
∂2H1

∂y2
− K

[
2H1 + ∂2F

∂y2

]
+ ωH1 − ∂H1

∂t
+ ∂ f0

∂y
H1

+ ∂F

∂y
h0 + 2 f0

∂H1

∂y
+ 2F

∂h0
∂y

= 0, (35)

1

Pr

∂2G

∂y2
+ ωG − ∂G

∂t
+ 2 f0

∂G

∂y
+ 2F

∂θ0

∂y
= 0 (36)

and the boundary conditions are:

F(0, t) = ∂F
∂y (0, t) = 0, ∂G

∂y (0, t) = γ1G(0, t), H1(0, t) = − 1
2

∂2F
∂y2 (0, t),

as y → ∞ : ∂F
∂y (y, t) → 0,G(y, t) → 0, H1(y, t) → 0.

}
. (37)

The solutions f (y) = f0(y), h(y) = h0(y) and θ(y) = θ0(y) of the steady
Eqs. (14–16) are obtained by setting t = 0. The function F(y) = F0(y), H1(y) =
H10(y), and G(y) = G0(y) will identify the initial growth or decay of disturbances
of the solutions of Eqs. (34–36). Thus, the linearized eigenvalue problems are given
by

(1 + K )F ′′′
0 + G0 + K H ′

10 + (ω − 2)F ′
0 + 2

(
f0F

′′
0 + F0 f

′′
0

) = 0, (38)
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(
1 + K

2

)
H10 + (

f ′
0 − 2 + ω

)
H10 − K F0 + F ′

0 + 2 f0H10 + 2F0 = 0, (39)

1

Pr
G0 + ωG0 + 2

(
f0G

′
0 + F0θ

′
0

) = 0 (40)

Related boundary conditions are:

F0(0) = F ′
0(0) = 0, G ′

0(0) = γ1G0(0), H(0) = − 1
2 F

′′
0 (0)

as ∞ : F(0) → 0, G0(0) → 0, H0(0) → 0

}
(41)

The nature of the steady and unsteady flow solutions depends on the smallest
eigenvalue, ω1. Following Harish et al. [24], we reduce the boundary condition
F

′
0(∞) → 0 to a new boundary condition, F0(0) = 1, to evaluate the fixed value of

eigenvalues and hence solve (38–40).

4 Results and Discussion

The outcome of thiswork highlights the effect of two parameters, namely thematerial
parameter K and the conjugate parameter γ1 (parameter responsible for convective
boundary condition) on the velocity, angular velocity, and temperature profiles. Here,
we have considered x ≈ 0 (neighborhood of lower stagnation point of the sphere),
and the Prandtl number Pr is fixed to 0.7 (Pr � 1), which physically indicates
the liquid metals-air, which have high thermal conductivity) throughout this paper.
We have considered the values of the material parameter K = 0, 1, 2, i.e., K = 0
characterizes Newtonian fluid and nonzero values signify micropolar fluids. Also,
we have considered the conjugate parameter γ1 ≤ 1, which physically indicates the
higher vortex viscosity fluid. All the flow profiles (2–6) have satisfied the convective
boundary conditions asymptotically. The visualizations of steady and unsteady flow
are emphasized on Figs. 2, 3, 4, 5 and 6. The first solution (steady solution) is
denoted by a solid line, and the second solution (unsteady solution) is represented
by the dashed line.

Tables 1and 2 represent the numerical results of the first and second solutions of
the skin friction coefficient f (0) and wall temperature θ(0) for K = 0, 1, 2 when
Pr = 0.7 and γ1 = 0.05, 0.2. We have compared our first solutions (steady flow)
of skin friction coefficient and wall temperature with the work of Alkasasbeha et al.
[18] in Tables 1 and 2, respectively.

From these tables, it is seen that for a fixed value of γ1, skin friction coefficient for
time-independent flow experiences reduction in themagnitudewith the enhancement
of K, but a reverse pattern is experienced during time-dependent fluid flow around
a solid sphere. Further, the convective boundary condition helps to magnify skin
friction coefficient. The skin friction coefficient of Newtonian fluid flow is more than
micropolar fluid flow (steady case), but opposite behavior is observed for unsteady
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Fig. 2 Velocity distributions f ′(y) for some values of K when Pr = 0.7 and γ1 = 0.05
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K = 0,1,2                    First solution

                   Second solution

Fig. 3 Angular velocity distributions h(y) for some values of K when Pr = 0.7 and γ1 = 0.05

cases. Similarly, temperature of fluid at the surface experiences reductionwithK, and
it is maximum for Newtonian fluid than micropolar fluids during time-independent
cases, but during time-dependent cases, K helps to enhance the wall temperature.

Figures 2 and 3 characterize the influence of material parameter K for γ1 = 0.05
and Pr = 0.7 on the velocity and angular velocity in the neighborhood of lower
stagnation point of the sphere, x ≈ 0. Fluid reaches its maximum velocity during
K = 0 (Newtonian case) and then gradually it decreases because of the presence of
vortex viscosity. Small variation between Newtonian and non-Newtonian cases is
seen during unsteady fluid flows.
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Fig. 4 Velocity distributions f ′(y) for some values of γ1 when Pr = 0.7 and K = 2
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Fig. 5 Angular velocity distributions h(y) for some values of γ1 when Pr = 0.7 and K = 2

Negative angular velocity of Newtonian fluid motion (first solution) indicates the
reduction of angular displacement. Maximum variation of angular displacement is
seen in the neighborhood of the surface where viscosity plays a significant role.
Further, it may be concluded that magnitude of angular velocity reduces with the
increase of K (Fig. 3). Physically, it may be interpreted that vortex viscosity reduces
the angular momentum of governing fluid motion.
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Fig. 6 Temperature distributions θ(y) for some values of γ1 when Pr = 0.7 and K = 2

Table 1 Numerical values of skin friction coefficient f ′′(0)
K↓ Alkasasbeha et al. [18] Present results

First solution Second solution

γ1→ 0.05 0.2 0.05 0.2 0.05 0.2

0 0.184661 0.357656 0.1846 0.3574 0.0150 0.0435

1 0.133231 0.244051 0.1427 0.2729 0.0283 0.0628

2 0.111617 0.195632 0.1205 0.2289 0.0312 0.0655

Table 2 Numerical values of wall temperature θ(0)

K↓ Alkasasbeha et al. [18] Present results

First solution Second solution

γ1→ 0.05 0.2 0.05 0.2 0.05 0.2

0 0.149501 0.360667 0.1495 0.3606 0.4260 0.1258

1 0.157545 0.378091 0.1559 0.3726 0.4230 0.1233

2 0.162725 0.388925 0.1610 0.3820 0.0421 0.1218

Figures 4 and 5 represent the influences of the conjugate parameter γ1 for Pr = 0.7
and K = 2 on velocity and angular velocity distributions in the neighborhood of the
lower stagnation point of the sphere. It is observed that fluid motion is accelerated
with the conjugate parameter as the parameter (related with the heat transfer) helps
to reduce the kinematic and vortex viscosities of fluid. Similarly, reduction in vortex
viscosity also helps to reduce the magnitude of angular velocity of fluid.
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Temperature distribution across the fluid flow is shown graphically in Fig. 6.
During steady flow, there is continuous fall of temperature across the fluid flow,
and the conjugate parameter enhances the temperature of fluid flow with maximum
variation which is seen in the neighborhood of the surface. But, during time-
dependent flow, the dimensionless temperature experiences negative values. Phys-
ically, it represents that free stream temperature is greater than temperature at the
surface.

5 Conclusion

We have formulated the problem of micropolar fluid flow near the lower stagnation
point with convection boundary condition. TheMATLAB built-in bvp4c solver tech-
nique is used to solve the resulting problems. Some of the important results from the
above investigations are highlighted below:

• When γ1 and Pr are fixed, material parameter K helps to reduce the skin friction
coefficient of steady flow (lower velocity gradient), but an opposite behavior is
seen during unsteady fluid flow.

• Thematerial parameter increases thewall temperature of steadyflow, but it reduces
the wall temperature during time-dependent flow.

• Fluid flow reaches its maximum speed in time-independent cases.
• Fluid flow attains its maximum variations with flow parameters in the boundary

layer region.
• During unsteady flow, free stream temperature rises.
• For Newtonian fluid ( K = 0), the steady and unsteady flow solutions of angular

velocity experience completely negative values.
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