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Foreword

It is my pleasure to have been invited to write this foreword for our TGSW- and
Tsukuba Conference (TC)-related book from Springer Nature with regard to the
session Agriculture × IoT × AI: Self-Sufficiency in Food Production to Achieve
Society 5.0 and SDG’s Globally. I have been participating as President of the
University of Tsukuba in this special session series for the last 4 years starting from
2018. Each year, I had the opportunity to join this session and seen the networking of
this session from all over world. The invited guests were from the USA, Europe,
Australia, Japan, Malaysia, Indonesia, Bangladesh, Thailand, Vietnam, China, Tai-
wan, Sri Lanka, the Philippines, and continuously growing from other countries. I
am very happy that our TGSW/TC conferences and networking grow over time and
have contributed to a book in one frame with our friends and distinguished guest
speakers of this session. As the COVID-19 pandemic started in 2020, we have the
difficult time to meet face to face. On the other hand, we have become more closer
with IoT technologies that bring even closer. We have overcome the situation with
the help of scientific innovation. Our TGSW theme also changed with the New
Normal better and more inclusive to bring our stakeholders together.

This session highlights the new challenges in food production, food traceability,
and food safety globally. These challenges were magnified by the pandemic and are
expected to be solved by science and technology. This book focuses on digital
science and technology including IoT/ICT and AI that contribute to all phases of the
food production system from preharvest to postharvest levels for crops, fruits, and
vegetables. The book contents are divided into several sections, each of which is
supplemented with a strategic short note from our TGSW/TC invited speakers that
provides insightful thoughts on AI/IoT-based applications covering indoor and
outdoor field practices to increase crop production and to achieve food security.
The challenges clarified that worldwide and integrated efforts are required for its
control, because there are no borders of all current events such as pandemics, for
example, between countries and areas, between organizations, and between
societies.
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vi Foreword

The novel approaches through AI have the impact in the intervention of utilizing
limited resources to predict climate changes. The large data analytical platform
brings an immense potential to serve decision support analysis in agriculture for
smart applications of agricultural inputs such as water, seeds, fertilizers, herbicides,
and pesticides as minimum as possible for maximum productivity, which is known as
precision agriculture technology. For example, machinery companies in Japan
started to provide smart assist systems from land preparation to food production
for ensuring the traceability of agricultural inputs. To achieve the expected feature,
interdisciplinary collaborations not only among life science, environmental science,
medical science, and engineering technologies, but also including social science and
humanity are needed to implement scientific achievements into society. Digital
science and cooperation among different societies will bring a new decision matrix
for sustainable food production.

The sustainability of global food production faces challenges over the years due
to climate change, which causes drought, flash floods, tidal surges, salinization, and
an uneven increase in the number of populations. Distant differences and population
growth rates are dispersed in developed and developing countries. The labor force
shifting from agriculture to industry threatens agricultural productivity and the
constant supply of food production. Innovation toward modern agriculture, that is,
an AI-based system, creates new opportunities and solutions to predict climate
change hazards and minimize labor requirements. In this regard, this book solely
discusses AI and IoT systems and their potential outlined in the 23 chapters related to
smart agriculture.

The various smart farm technologies through different agricultural operations,
including agricultural input management, plant monitoring, and farm machinery
system, are highlighted with the effective approach in terms of resource utilization.
Water management within irrigation systems is one of keys for sustainable and smart
agriculture. IoT-based precision soil and irrigation management have become sub-
stantial, considering population growth and rising water shortages. In this regard, we
are giving our best efforts for increasing water use efficiency, maintaining soil
fertility, and boosting agricultural crop production in both protected and open field
cultivation systems.

I am also happy that this book addresses automation in orchards, which is very
challenging due to the complex canopy structure and fruits production. The book
also further discusses the shortcomings of the present orchard automation
approaches in the context of the shortage of seasonal labor and rising labor cost.
The innovations and implementation of advanced machinery can be stratified based
on regional demand, population engagement in agriculture, and socioeconomic
aspects. The transformation of the present state of machinery and its automation
levels is also described elusively. Furthermore, the poultry and livestock also require
significant attention to increase production and reduce postprocess losses. This book
also attempts to bring some important application of AI technologies and its inte-
gration in the poultry industry.

To conclude, I felt the application of digital science in agriculture becomes the
leading area integrated with IoT and AI. The advancement of science, technology,



and innovation contributes to achieving Society 5.0, and SDGs, and is one of the
driving forces of sustainable development with our partners from all over the world
in these transboundary trends. In this regard, the University of Tsukuba is celebrat-
ing its 150-year anniversary from its inception this year and its 50-year anniversary
of relocating to Tsukuba Science City next year. We are committed to “Design the
Future, Together” with partner universities, research institutes, and industries.
Therefore, this book has outstanding contributions relating to our TGSW and
Tsukuba Conference series, will create certainly more signature impacts in smart
agricultural application to increase productivity, and strengthen our partnerships
among the collaborators.

Foreword vii

University of Tsukuba, Tsukuba, Japan Kyosuke Nagata



Preface

The sustainability of global food production faces challenges over the years due to
climate change, which causes drought, flash floods, tidal surges, salinization, and an
uneven increase in the number of populations. Distant differences and population
growth rates are dispersed in developed and developing countries. The labor force
shifting from agriculture to industry threatens agricultural productivity and the
constant supply of food production. To address these two main problems of climate
change and labor forces in agriculture, innovation in agriculture and its application
are highly needed. Innovation toward modern agriculture, such as artificial intelli-
gence (AI)-based systems, creates new opportunities and solutions to predict climate
change hazards and minimize labor requirements. The Internet of Things (IoT)
opened a new window with low bandwidth information sharing. In this regard,
this book solely discusses AI and IoT systems and their potential outlined in the
23 chapters related to smart agriculture.

Agricultural inputs are the main criteria used to increase production. In this
regard, Chap. 1 discusses the introductory notes related to the various smart farm
technologies through different agricultural operations, including input management,
plant monitoring, and farm machinery, to highlight the effective approach in terms of
resource utilization. In addition, how to minimize postharvest losses and prevent
agricultural losses and farm automation in its potential to establish a digital and big
data analytics platform for the innovation of agriculture and food production systems
have also been discussed throughout this chapter.

Chapter 2 is a strategic short note that highlights the concept of circular
bioeconomy as applied to food and agriculture. In-depth explanation regarding
the new transformation processes for controlled environment plant production
system (CEPPS) is also presented. Chapter 3 discusses artificial lighting systems
for plants grown in indoor farming, which aims to enlighten readers regarding
lighting requirements for plants generally with some examples. Three main princi-
ples of light, light quality, light quantity, and light duration, and their effects on plant
growth and development are reviewed in this chapter. Furthermore, different types
and some examples of artificial lights have also been reviewed in this chapter to
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provide insights into the light sources that are commonly used to enhance the growth
and yield of plants cultivated in indoor farming. Light intensity and its control
through smart application and IoT-based application layers are discussed to utilize
through the maximum utility of artificial lighting for indoor plant growth.

x Preface

Water management within irrigation systems is the key to sustainable and smart
agriculture. In this regard, Chap. 4 discusses IoT-based precision irrigation manage-
ment that has become substantial, considering population growth and rising water
shortages, in increasing water use efficiency and boosting agricultural crop produc-
tion in both protected and open field cultivation systems. Initially, extensive reviews
were performed to provide insights into recent developments in IoT-based precision
irrigation management, including monitoring and controlling protocols, and finally
referred to some points that must be addressed in future studies. Chapter 5 continues
to describe as a short note to focus on IoT and AI in urban water management to
achieve sustainable hybrid water systems for domestic and agricultural uses.

Chapter 6 discusses the possibility of using IoT for monitoring of water manage-
ment systems, especially focusing on solar water distillation systems from urban to
agriculture to meet the water demands. While reusing, water quality and other
parameters must be monitored regularly, and available sensors have been discussed
along with the possibility of using IoT technology. Further resources are discussed to
improve solar water distillation, which can be compiled and combined with a few
systems that have been experimentally investigated. The results showed the potential
to increase the scale of water reuse systems and continuous monitoring systems.

Chapter 7 introduces the application of the long-range wide area network
(LoRaWAN) communication protocol in managing soil EC and pH in oil palm
nurseries. This protocol consisted of four layers, including a sensor node, gateway,
network server, and application server. LoRaWAN technology is a robust tool for
outlying regions without cellular network coverage or for establishing private net-
works covering long distances with minimum power consumption and maintenance.

Chapter 8 reviews shortly the future of smart machine vision technology in
agriculture, forestry, fisheries and animal husbandry to develop an automatic solu-
tions to cater the labor shortages and replace human power. Chapter 9 discusses
artificial intelligence (AI) in a general overview to open the discussion regarding this
trending topic that has been changing our daily lives and society as well. This
chapter unleashed the meaning and basic applications of AI, machine learning, and
deep learning step by step in a time series of events, from their origins until the
present. Furthermore, some of the applications of these new trends are explored for
agricultural production to achieve the goals of sustainability and Society 5.0.

Chapter 10 illustrates the potential of thermal images in navigation systems by
introducing and comparing three deep learning methods. As RGB cameras are easily
affected by light, this study used thermal images for tree trunk detection. By training
Faster R-CNN, YOLO, and CenterNet with the same dataset, based on the mAP and
comparison of the test images between the three methods, the most stable deep
learning method was obtained. The potential of using thermal images for automatic
navigation in low light conditions was also demonstrated in this chapter.

Chapter 11 provides a systematic and pragmatic methodology for choosing the
most suitable model for a desired application in agricultural sciences. It further



discusses in detail a comprehensive study conducted aiming to produce a robust real-
time pear fruit counter for mobile applications using only RGB data, the variants of
the state-of-the-art object detection model YOLOv4, and the multiple object tracking
algorithm called Deep SORT.

Preface xi

Chapter 12 compares the evaluation of the recognition quality of different visual
recognition techniques with the same dataset. Mask R-CNN and Faster R-CNN,
which are two-stage algorithms, were compared and observed. Both methods had
similar accuracy in the case of detecting individual pears, but unlike Faster R-CNN,
Mask-RCNN generated masks made it more effective in the case of aggregated
pears. Furthermore, the performance of the one-stage algorithm (YOLACT) and the
two-stage algorithm (Mask R-CNN) were also compared. The results showed that
YOLACT with 35 fps+ as the one-stage algorithm had lower accuracy than Mask
R-CNN in generating the bounding box and mask. However, it was significantly
better in real-time processing compared to Mask R-CNN with 5 fps+.

In addition to crops, livestock also require significant attention to increase
production and reduce postprocess losses. Specifically, the poultry production sector
is one of the most challenging sectors of the agriculture chain, as early embryo
detection and sexual segregation at early stages represent bottlenecks to reach
sustainability in this sector. In this regard, Chapter 13 presents a novel application
of thermal micro cameras associated with deep learning algorithms to identify quail
embryos at early stages during the incubation period, addressing high-throughput
application at automatic and efficient incubator machines. The novel practice pro-
posed in this chapter may overcome these issues, especially AI-based systems and
sensor technologies. The application of AI-based system is further discusses
briefly in Chap. 14 to explore its prospects for orchard picking harvester robot
specifically for kiwifruit.

Chapter 15 discusses the application levels of mechanization to support labor
shortages and increase productivity in developed and developing countries. The
innovations and implementation of advanced machinery can be stratified based on
regional demand, population engagement in agriculture, and socioeconomic aspects.
This chapter solely describes the current trend in agricultural machinery adoption
that can be used to recommend the levels of mechanization for appropriateness
globally. The transformation of the present state of machinery to advanced levels is
classified from Level 0 to Level 5. Each level is discussed in detail along with the
transformation process from Level 0 to the automation level.

In continuation of automation and advanced development, Chap. 16 designed a
human-controlled navigation system consisted of a leader vehicle and a follower
vehicle, in which the follower vehicle follows the leader vehicle automatically. The
system consisted of a monocular vision sensing system and rectangular markers,
used least squares to reduce noise in data acquisition, and introduced a PID control-
ler to maintain the tracking performance of the two-vehicle system. Higher accura-
cies were obtained for the straight line, turn, Z paths, and parallel trajectory tracking.
The system can be used for grain harvesting and other agricultural developments,
and the driver can perform the task effectively in agricultural operations.

Furthermore, automation in orchards, which is very challenging due to the
complex canopy structure, must be addressed. In this regard, Chap. 17 provides an



account of opportunities and challenges in orchard automation with special reference
to pre- and postharvest management practices. It further discusses the shortcomings
of the present orchard automation approaches in the context of the shortage of
seasonal labor and rising labor cost. Finally, both technically and commercially
viable solutions are included in this chapter to overcome such drawbacks that hinder
the development of the orchard sector.

xii Preface

Chapter 18 outlines the novel approach on detecting soil moisture for oil palm
cultivation based on PALSAR-2 sensor data which is benefited to prepare for
climate-related droughts. Chapter 19 on the other hand reports a system for the
precision application of pesticides using unmanned aerial vehicles (UAVs) based on
machine learning. The system used the mutual subspace method to classify the
cropland and orchard images into spray and nonspray areas. In the field test, the
classifier accuracies in offline cropland and orchard were observed with good
accuracy. Similarly, in the online recognition, the average cropland accuracy was
satisfactory. The average computational time of the recognition system indicated the
possibility of implementing this method in real time. This recognition system is
proven to be fast and accurate for the real-time recognition of spray and nonspray
areas.

Chapter 20 discusses the feasibility of using thermal imaging techniques to
distinguish healthy trees and basal stem rot (BSR)-infected trees. In particular,
WEKA standard machine learning algorithms (ML) including naïve Bayes (NB),
multilayer perceptron (MLP), and random forest (RF) were used to classify the trees
into two categories: healthy and infected trees, with emphasis on imbalanced or
nonuniform data approaches such as random undersampling (RUS), random
oversampling (ROS), and synthetic minority oversampling (SMOTE).

Chapter 21 provides an in-depth explanation of the applicability of hyperspectral
data and machine learning in the early detection of plant diseases, especially basal
stem rot (BSR), which is one of the most destructive diseases caused by fungi in oil
palm plantations. The results indicated that hyperspectral data and machine learning
techniques have great potential with very high accuracy to classify and detect disease
in the early stage.

Chapter 22 highlights the effort in development of an automated speed sprayer for
precise application in orchard apple in Japan by utilizing GNSS, optical markers,
image processing and LIDAR. The last chapter, Chap. 23, discusses the conclusion
of this book referring to automation toward Society 5.0. A discussion is presented
based on the supervised and remote autonomy of AI application in agriculture and
machinery automation. Some of the basic standards, transformation from Level 0 to
Level 5, are focused on how to adopt supervised and remote autonomy to achieve
further AI-based application of machinery.

The book contents are divided into in depths chapters and supplemented with
strategic short notes that provide insightful thoughts on AI-IoT-based applications
covering indoor and outdoor field practices to increase crop production to achieve
global food security.

Tsukuba, Ibaraki, Japan Tofael Ahamed
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Chapter 1
IoT × AI: Introducing Agricultural
Innovation for Global Food Production

Munirah Hayati Hamidon, Mohammad Hussain Seyar, P. D. Kahandage,
Victor Massaki Nakaguchi, Arkar Minn, Ailian Jiang,
R. M. Rasika D. Abeyrathna, and Tofael Ahamed

Abstract In many regions of the world, key inputs for food production, such as
land, healthy soils, and water are becoming increasingly scarce, making it crucial to
utilize and manage them sustainably. The advancement of various technologies in
the agricultural sector allows stable and sustainable agricultural and food production.
Innovation of artificial lighting and environmental control for indoor farming uses
far less land but allows the intensification of food production. The Internet of Things
(IoTs) technology serves as an alternative to better manage the main agricultural
resources and water through smart irrigation. Additionally, the use of artificial
intelligence (AI) and machine learning (ML) provides a new opportunity to improve
the overall agriculture operations and production by involving real-time analysis and
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machinery automation. Therefore, the main purpose of this chapter is to highlight the
future trend of agricultural innovation for realizing sustainable global food
production.

2 M. H. Hamidon et al.

Keywords Sustainable agriculture · Indoor farming · Artificial lighting · Internet of
things (IoTs) · Smart irrigation · Artificial intelligence (AI) · Machine learning (ML)

1.1 Introduction

Over time, technology has evolved farming systems and has had a wide range of
effects on the agriculture industry. In many countries around the world, agriculture is
the main source of income. According to the United Nations projections, the rising
population from 7 to 9 billion in 2050 will put more pressure on resources such as
land and water to produce more food to feed the increasing population. Moreover,
shortages in farm labor continue to be an issue due to the relatively low income in the
agricultural sector and the fact that the majority of people have relocated to urban
areas for better job expectations and more global competition.

Hence, in 2015, the Sustainable development goals (SDGs) were structured by
the United Nations General Assembly (UN-GA) as a “blueprint to achieve a better
and more sustainable future for all” and are intended to be accomplished by 2030.
Among the 17 SDGs, SDG2 states that “end hunger, achieve food security and
improve nutrition and promote sustainable agriculture” is a goal that needs to be
achieved by agriculture and food systems, including both production and consump-
tion, to eradicate hunger within the next generation (United Nations, 2017).

However, reliance on the conventional agriculture system will not be able to
address these challenges. Urgent action is needed to revolve agriculture and food
production systems in a smarter way to become more productive and less wasteful.
In recent years, emerging cutting-edge technologies such as controlled environment
agriculture (CEA), the Internet of Things (IoT), machine learning (ML), artificial
intelligence (AI), deep learning (DL), unmanned aerial vehicles (UAV), and global
positioning systems (GPS) have attracted much interest from both farmers and
researchers to fulfill the rising demand for agricultural products and food. The
adoption of these advanced technologies for remote and unmanned monitoring in
agriculture fields, also by implementing solutions to create the most conducive
environment for crop growth, has been proven to improve input management, reduce
yield losses, and support growers and interveners in decision-making.

The combination of hardware and software technologies has optimized agricul-
tural operations to improve production. Currently, there are many portable, low-cost,
and power-efficient hardware and sensors with wireless connections that are widely
implemented across both indoor and outdoor agriculture. The utilization of hardware
and sensor networks to continuously monitor agricultural growth parameters such as
temperature, relative humidity, and soil moisture provides farmers with essential
information to allow better input management and plant monitoring and enhance
quality and crop yield. Additionally, sophisticated hardware such as graphical



processing units (GPUs) can process an enormous volume of data collected by these
modules, as prompted by AI framework-based software.
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The current rise in AI and big data technologies support software systems,
allowing the management of massive quantities of data collection by hardware
modules. The use of these data as input to cutting-edge, AI-based analyzers may
provide better-informed judgments and insights to farmers or decision-makers. Such
automation and intelligent control of agricultural operations offer farmers the oppor-
tunity to efficiently manage their resources, such as irrigation water, fertilizer,
pesticides, and herbicides, in the right place, time, and amount. Furthermore,
advancements in AI and machine vision techniques to detect and classify objects
have sparked interest in deployment in agriculture fields. Using this AI-machine
vision approach, plant disease can be detected early and accurately replace manual
assessment, which is time- and labor-consuming, especially for larger farms. AI
technology, including deep learning, can also be utilized for the automation of farm
machinery and orchard operations, such as navigation systems, transplanting,
spraying, and harvesting, to combat agricultural labor shortages.

In this context, this chapter discusses the various smart farm technologies through
different agriculture operations, including input management, plant monitoring, and
farm machinery to highlight the effective approach in terms of resource usage,
preventing agricultural losses and farm automation in its potential to establish a
platform of big data analytics for agricultural innovation and food production
systems (Fig. 1.1).

1.2 Key Factors for Plant Growth and Agricultural
Production

Plant growth is greatly affected by the growing environment. The primary factors
driving plant growth include light, water, nutrients, humidity, and temperature.
These factors determine plant development and their growth hormones, which
indicate that they grow either slowly or rapidly. Providing an ideal growing envi-
ronment by properly controlling all these elements will make the plants thrive.
Environmental stresses, in contrast, will affect normal plant development, resulting
in stunted or slow growth. Plants may potentially die under excessive stress
circumstances.

Plants need energy from light to complete the process of photosynthesis, which
allows them to manufacture their food by converting water and carbon dioxide into
carbohydrates and oxygen. The pace of this process is strongly reliant on the amount
of light available. As our population grows and puts pressure on agricultural
production, significant reforms in sustainable agriculture are needed. Sustainable
agriculture can ensure a sufficient supply of safe and affordable food. Utilizing
artificial lights in indoor farms with less use of water and land than traditional



agriculture practices may play an important role as a sustainable alternative to our
future food system.
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Fig. 1.1 Advanced agricultural innovation for global food production

On the other hand, clean water is also a crucial resource for agriculture and is an
asset in producing food. Land degradation and significant population growth have
had a tremendous impact on agriculture’s water resources. The implementation of
intelligent irrigation techniques employing automated and Internet of Things (IoT)



technology can be one of the alternatives to overcome water issues in agricultural
fields.
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1.2.1 Source of Light for Indoor Farming Systems

The potential of indoor farming as one of the sustainable food production systems is
promising when considering more needs to produce to meet the food demand of the
growing population. Crops cultivated in controlled environments are anticipated to
become much trendier, especially in urban areas, concurrent with the emergence of
agriculture technologies to cater the issues related to plant-based diets, food safety,
and labor shortages. Climate changes and frequent weather extremes, such as
droughts, floods, storms, and severe freezes, have significantly impacted the con-
ventional farms that produce fresh fruits and vegetables. Hence, indoor farming’s
controlled environment approach permits year-round food production in any cli-
mate, allowing farmers to prioritize food quality and safety.

Sustainability is a major reason for the effort to produce more food in indoor
farming operations. Practicing indoor farming under proper conditions can reduce
the environmental impact of growing more food with less land resource degradation.
Additionally, consumers currently prefer to consume food that is produced more
sustainably. Consumers are increasingly appreciating the benefits of receiving food
as soon as it is harvested. Moreover, they also want pesticide-free products, as
pesticides can be harmful to long-term human health. Thus, the trend in consumers’
preferences for consuming more fresh plant-based foods and foods prepared in a
more environmentally friendly manner is growing.

Labor shortages have always been one of the greatest challenges in the agriculture
sector, with problems of an aging agricultural labor force and a lack of a new young
workforce. However, indoor farms have various automated controls and duties and
are less impacted by labor market volatility and stressors. In addition, the global
COVID-19 pandemic has also accelerated the growth of indoor farming. When some
merchants faced supply chain challenges and could not obtain fresh items, they
resorted to new partners and vendors who operated indoor farms with more con-
trolled conditions and inventory. Indoor farms are typically faster to construct and
have more adaptable operations that allow for transitions in the case of unforeseen
circumstances.

Several key factors, such as obtaining the right climate, lighting, and spacing,
need to be considered when starting an indoor farm. Among those factors, lighting is
one of the crucial factors that can determine the success or failure of indoor farming.
After all, the reliance on artificial lighting distinguishes an indoor farm from other
plant growing methods. The most important light principles influencing plant growth
are light intensity, photoperiod, spectrum, and uniformity. Each plant needs specific
light requirements based on its principles, as the yield for indoor farming is highly
dependent on the light. Light quantity refers to the concentration or intensity of the
light source. Light quality describes the color or wavelength that reaches the plants.



The length of time a plant must be exposed to a light source is referred to as the light
duration or photoperiod. Choosing an appropriate light spectrum is difficult in regard
to lighting systems for indoor farming, as under the incorrect spectrum, plants will
not thrive. Additionally, this spectrum and wavelength vary depending on the plant
development stage. For instance, a blue spectrum is ideal during the vegetative stage,
while during the flowering stage, adding a red spectrum enhances the blooming
process (Fig. 1.2).
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Fig. 1.2 Plants grow under different spectra of light

Table 1.1 List of important parameters to understand artificial light use in indoor farms

Parameters Definition

Photosynthetically Active
Radiation (PAR)

Wavelengths of light ranging from 400 to 700 nm. This is the
light spectrum portion used by the plants for photosynthesis.

Photosynthetic Photo Flux
(PPF)

The number of photons emitted by a light source.

Photosynthetic Photo Flux
Density (PPFD)

The quantity of PAR delivered to the plant (measured as PPF).

Daily Light Integral (DLI) Number of photosynthetically active photons that accumulate on
a surface over a 24-h period.

In addition to understanding light principles, it is also important to understand
light parameters for determining the most suitable light for plant growth and
development. The parameters provided in Table 1.1 were created to better regulate
and measure light exposure and perceived plant growth in a controlled indoor
farming environment. The parameters were developed from the perspective of how
light is absorbed and utilized by plants. Hence, combining both light principles and
parameters helps to qualify the proper artificial lighting system for plant growth in
indoor farming (Fig. 1.3).
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PAR PPF PPFD DLI
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• Spectral distribution

• Quantity of visible light
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Give effects on plant’s biomass, morphology and flowering

Fig. 1.3 Important parameters related to artificial lighting for indoor farming

1.2.2 IoT-Based Precision Irrigation Systems

Agricultural production is facing numerous challenges, including staggering popu-
lation growth, decreasing land due to rural buildings and growing water scarcity
exacerbated by practicing traditional irrigation systems, which are usually associated
with the waste of water and resources. With all the aforementioned global problems,
water shortages are more critical, especially in arid and semiarid regions. Thus,
seeking approaches to boost water use efficiency within agricultural systems is the
key to saving water and feeding the global population. In other words, agriculture in
these areas is not possible without irrigation because of limited and erratic rainfall
that makes them unavailable for plant consumption. Moreover, agriculture alone
constitutes over 70% of global freshwater, which makes it the largest water con-
sumer. Therefore, employing methods to help use limited water efficiently while
maintaining a sustainable production level is the key to feeding the global population
over the coming years.

In recent decades, various studies have been carried out to find approaches that
can contribute to water use efficiency in agriculture or farming systems. There have
been a couple of methods suggested by researchers worldwide to deal with water
scarcity while increasing production levels. Employing deficit irrigation, which
refers to applying water lower than the plant water requirement is an effective
strategy to increase water use efficiency (Ali et al., 2007; Bekele & Tilahun, 2007;
Chai et al., 2016; Comas et al., 2019). However, this approach can be further



improved through IoT-based technology applications for monitoring and controlling
watering or irrigation (Fig. 1.4).
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Fig. 1.4 The concept of precision agriculture based on IoT

Practicing precision irrigation systems is another effective approach to water
saving and enhancing production, but if these systems are integrated with IoT
devices, including sensors, better results can be achieved since farmers can have
real-time feedback on their fields and provide the plants with an optimum amount
and on time water application. If the farmer is not in the field, he or she can still
monitor and perform irrigation, which makes these systems robust and helpful.
Several IoT technologies are employed in agriculture, and the major and widespread
types are the long-range wide area networks (LoRaWANs), narrowband Internet of
Things (NB-IoT), and Wi-Fi networks, where any of them can be employed under
specific conditions. For example, for short distances, using Wi-Fi is recommended,
while for long distances, using NB-IoT and LoRaWAN technologies are preferred.
These systems usually run based on sensor data that are deployed in greenhouses or
open fields. Data are retrieved by the sensors and uploaded to the cloud server, where



the users can access the data remotely and control the irrigation or watering opera-
tions over a long-distance range.
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1.2.3 IoT-Based Water Purification

The Internet of Things (IoT) has become a very beneficial application in a vast range
of areas, including home management, traffic management, autonomous vehicles,
environmental monitoring, industrial, agricultural, and commercial administration.
The application of the IoT in water management is also admirable and brings many
rewards by increasing operational efficiency. Potable water is one of the basic needs
of human beings for their survival and good health. Clean water is one of the major
inputs for agriculture as well. Guaranteeing the availability and sustainable manage-
ment of water is identified as one of the Sustainable development goals (SDGs) by
the United Nations (United Nations, 2020). Even though 1.4 billion km3 of water is
available on Earth, only 2.5% of it is considered fresh, while approximately the
remaining 97.5% is sea water (Modi & Modi, 2019). As many of the freshwater
sources on Earth are inaccessible to humans or are polluted, only 0.4% of freshwater
is usable and drinkable for 7.8 billion people worldwide, so most developing
countries do not have enough resources to provide safe potable water to people
(Misachi, 2018). Agriculture also acts as a source of water pollution, as heavy metal
ions, including As, Cd, Cu, and Zn, from chemical fertilizers and other agrochem-
icals accumulate in surface water bodies and groundwater. Chronic kidney disease
(CKD) is a common severe health issue in the North Central Province of Sri Lanka,
and high levels of As and Cd in the water have been suspected as root causes of CKD
(Jayasekara, 2017).

Therefore, water purification and management are crucial for achieving a sus-
tainable environment for all living beings. Although the large-scale municipal water
purification process consists of several steps, there are some simple purification
methods possible at the domestic level. Boiling, chlorination, filtration, coagulation
and sedimentation, ion exchange, solar treatments, distillation, and combined treat-
ment systems are some of the small-scale purification methods in use at the domestic
level (Agrawal & Bhalwar, 2009). The most important thing expected from a water
purification system is maintaining water quality within the purest range. Therefore,
continuous water quality monitoring is essential for confirming that the system is
working properly. IoT technology facilitates this requirement with different water
quality sensors, such as pH sensors, temperature sensors, turbidity sensors, dissolved
oxygen sensors, conductivity sensors, salinity sensors, and total dissolved solids
(TDS) sensors (Singh & Ahmed, 2020). In addition to determining water quality,
determining water level and water flow can be achieved with ultrasonic sensors and
flow sensors. The Arduino microcontroller board or Raspberry Pi minicomputer
boards can be selected based on the program requirements, and the method of
communication can be selected based on the required operational distance. The
system can be controlled using a smartphone application.



10 M. H. Hamidon et al.

Fig. 1.5 Combination of strategies to improve solar still functionality

Solar water distillation is an economical and feasible method of purifying pol-
luted water in many developing countries with sufficient solar power throughout the
year. The flat plate collector of an active type solar water distillation system is a
major component of a solar heating system as well. Therefore, switching the
operation between water distillation and water heating can be achieved with some
structural changes to the system. Therefore, the concept of designing and fabricating
a solar system that can be used for two purposes, water distillation and hot water, and
controlled by IoT technology with real-time data monitoring was introduced. The
solar still of the system also acts as a storage tank by remotely insulating the glass top
using IoT when the system must switch to a hot water system. Sensors are used to
determine the water and air temperatures of the solar still, pH, and TDS of water and
distilled output. Several innovative strategies, such as connecting a flat plate collec-
tor, placing sponge cubes in the still and placing a sand layer under the still, were
selected to improve the evaporation capacity. Figure 1.5 shows the strategies used to
improve the solar still.

The flat plate solar collector absorbs solar heat and transfers it to the water
circulating through it by increasing the water temperature inside the solar still.
Sponge cubes are placed in the solar still such that half of a cube is submerged,
and the other half is above the water level. Then, sponge cubes absorb water and
improve evaporation by reducing the water surface tension. The sand layer below the
solar still can store sensible heat during the daytime and release nocturnal time. As
solar panels provide photovoltaic power to operate the components that utilize
electricity, the whole system is driven by renewable power. Figure 1.6 shows the
constructed solar still with a flat plate collector.
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Fig. 1.6 Constructed solar still

1.3 Artificial Intelligence for Smart Agriculture

Agriculture in the twenty-first century is no longer a human activity that everyone
can perform with low or almost no skills as it used to be. Every day, more automated
processes involving complex machinery and powerful computers are necessary
inside all sectors of the productive chain. Innovation, which has always been present
throughout agricultural history, despite being associated with technicians and
mechanics, has shown enhancements along with the prefarming, infarming, and
postfarming sectors. New advancements have been proposed for chemometrics,
materials engineering, nanotechnology, low-cost microprocessors, bioinformatics,
software, and machinery.

During the industrial revolution, agriculture was issued to supply the demand for
raw materials and energy, thus working on the backstage of technological progress.
Industry 4.0, however, has placed agriculture into the digital era, where IoT tech-
nology, big data, fast-network connections, and business intelligence are responsible
for controlling and performing improvements in production, logistics, and markets
across the globe. Mechanization and automation, especially robotics, can deliver



solutions to optimize the workforce in addition to supplying labor demand of
operations/quality at the field level.
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Fig. 1.7 Terminology chart to conceptualize the main terms regarding computer sciences, AI,
machine learning, and deep learning

Global issues related to overpopulation, global warming, environmental pollu-
tion, water contamination, and desertification are the main pressure forces that have
been pushing farmers, companies, and all industries to sustainable systems in
agrifood industries. In this sense, artificial intelligence (AI) was set as one of the
main technologies able to support decision-making toward big data and multicriteria
analysis. Thus, it has been elected the fundamental stone to settle down Society 5.0
(CSTI, 2016).

In the field of computer sciences, AI is a hot topic that has recently attracted
attention worldwide. Although it was introduced many decades ago, its enormous
potential has recently been identified, associated with big data, efficient algorithms,
and parallel processing using graphic processing units (GPUs). Machine learning
(ML), which uses mathematical and statistical approaches to solve problems involv-
ing big data analysis, is the main tool in AI. ML uses predictive methods based on
classification and regression techniques, and another technique is descriptive
methods using association, grouping, outlier detection, standard sequences, and
summarization methods. Deep learning (DL) can be classified under ML; this
subject focuses on neural networks (NNs) to solve complex problems involving
nonlinear and multidimensional data (Fig. 1.7), but it also uses ML algorithms
embedded in some processes. Currently, DL is considered the state of the art of
AI, where most of the applications have been developed thus far.

DL-based algorithms are providing new solutions for computer vision
(CV) systems and are thus responsible for breakthrough solutions regarding complex
problems involving real-time analysis and automation of machinery. Supported by
heuristic algorithms for image recognition and classification, these systems are
directly involved with recent approaches for phenomics and self-decision-making



systems. Advancements in NN algorithms can deliver faster and more accurate
models able to mimic humans’ capacity to solve problems faster and in real time.
Moreover, when associated with sensors such as optical and radiometric cameras
(multispectral sensors), CV systems represent the state of the art for navigation of
autonomous driving vehicles and robotic arms.
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Fig. 1.8 Computer vision system based on deep learning object detection algorithm

NNs are the workhorse for DL models. Generally, we divide NNs into three
groups: recurrent neural networks (RNNs), convolutional neural networks (CNNs),
and generative adversarial networks (GANs). Among these groups, countless types
of architectures can deliver models that vary in terms of accuracy, speed, and
portability. However, most efforts have been applied to CNNs, which have proven
to be the best technique for image processing tasks. CNNs are NNs that can extract
features from images and generalize classes of images by using a nonlinearity
approach and extensive training datasets. By using CNNs, robust algorithms are
frequently released, improving the speed of training, deployment and accuracy of
classification and detections. Figure 1.8 shows an example of a DL model that uses a
CNN on the backbone of the object detector algorithm.

For agrifood industries, image recognition and classification can support the
automation of thousands of operations, especially those regarding fast sorting,
tracking, and grading of products; moreover, it can help in the identification of
disease symptoms in early stages and improve the quality and safety of operations. It
can also improve the welfare conditions of livestock and supply labor shortages in
the fields with onboard machinery and management systems.

Artificial intelligence in agriculture is a recent topic that has already extended
content associated with IoT technologies and big data, and a global commitment to
achieve Society 5.0 is becoming reality. For the next few years, we will see fantastic



applications for the automation of farms by incorporating AI-based management
systems and they will be responsible for ensuring the sustainability of all operations.
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1.4 Agricultural Machinery Automation

Currently, automated agricultural machinery is being developed because of climate
change, labor shortages, increased food demands, etc. Each country changes its farm
machinery operations with the aid of automation according to its available resources
and technologies. The operations of agricultural machinery can be distinguished
according to their operations. They are land preparation operations, planting, sowing
and fertilizer application operations, weeding and intercultural operations, crop
protection operations, and harvesting and threshing operations.

1.4.1 Farm Automation Technology

The main purpose of farm automation technology is to cover ordinary tasks more
easily. Currently, the agriculture sector widely uses sensors. Sensors come with less
weight and size, low cost, and high performance. Moreover, the combination
technology of sensor data fusion was significantly developed so that farm automa-
tion is more precise and easier to perform in farming operations (Fig. 1.9).

The following technologies are commonly utilized in farm machinery operations.

An autosteering guidance system transforms an ordinary tractor’s steering into
semi or partially automated steering. Autosteering devices are available in the
markets so that farmers can choose suitable autosteering systems.

Fig. 1.9 Flowchart of farm automation



The navigation system achieves not only vehicle location but also path planning. A
real-time tracking system has been developed in agriculture by using RTK-GNSS
with centimeter accuracy. Furthermore, a new hybrid navigation system was
launched that combines an inertial measurement unit (IMU) and GNSS so that
vehicles can easily obtain precise locations and headings. Farmers can install
navigation systems in high-precision and low-cost devices on their vehicles.
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Sensing and recognition not only perform real-time sensing but also create driver-
less cab conditions. RGB cameras, 3D depth cameras, and LiDAR are widely
used in this system. Variable-rate technology (VRT) is the most expected one to
reduce agricultural inputs such as chemical fertilizers, pesticides, herbicides,
irrigation water, and precision seed placement.

The implementation of a communication system enhances the combination of
control on all attached implements. The operator can control all implements and
equipment with a single control device. The ISOBUS system is widely used
among the manufacturers of farm machinery.

The power transmission system provides easy access to power distribution on the
whole vehicles and implements system. John Deere Co. established new tech-
nology in power transmission systems. This system changed conventional
continously variable transmissions (CVTs) to electromechanical power splits.
An electric device is used as the main power transmission source.

Electrification can substitute for the prime power source: the engine. Electrification
uses a battery as the power source. Batteries use electrical drives, such as electric
motors, which have heavy torque at low speeds, are more powerful, more reliable,
lightweight, compact, and have lower noise. Currently, electric drive vehicles are
available in farm machinery markets.

Artificial intelligence (AI) is the technology that recognizes the difference between
the desired work and environment so that individual tasks can be operated.
Currently, this technology is used not only in farm machinery operations but
also in postharvest and process engineering operations.

1.4.2 Agricultural Robot Navigation System

In agricultural applications, a large quantity of labors is required for planting,
fertilizing, and spraying pesticides, as well as harvesting and transportation. With
the aging of labor and labor migration, the labor shortage in agriculture is becoming
increasingly serious, and the automation of agricultural production and management
has become an inevitable trend for future development.

The ability of robots to move through the agricultural environment is a funda-
mental requirement to accomplish production tasks in all phases of production
management. Navigation in agricultural environments remains difficult due to
weather and light variations and differences in terrain and vegetation, which require
the design of an efficient and stable sensing control system to solve. Stable operation
in agricultural environments requires robots with environmental sensing, path



planning, and obstacle avoidance capabilities and can operate on optimal routes in
complex agricultural environments while ensuring that the robots do not crash with
objects. They generally combine sensing, communication, detection, and control
technologies, such as tractors and human-follower smart boxes (Fig. 1.10), which
need to detect their surroundings while operating to plan their paths and perform
specific functions. These robots can improve operational efficiency and reduce the
use of manual labor. Before a robot can complete a task, it needs to select the
appropriate sensors and control algorithms based on the robot’s operating environ-
ment and task requirements. Figure 1.11 shows the sensors, algorithms, and control
strategies commonly used in agricultural robot navigation (Shalal et al., 2013).
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Fig. 1.10 Different agricultural navigation systems

The agricultural environment is composed of various factors, including crops,
trees, weeds, soil, and man-made landmarks. This complex environment makes it
difficult for robots to operate, such as large land areas, which can lead to poor signal
and interruption problems. Problems such as unevenness of the ground, rain, and
sunlight can also affect the data obtained by the robot’s sensors. The color and state
of plants in different growth stages can also have an impact on the identification of
target objects. However, there is also a certain simplicity in the agricultural envi-
ronment. For example, crops of the same type are planted together, and for target
detection, it is not necessary to prepare a large number of detection species. When
planted, crops are generally arranged in straight lines at almost the same intervals,
and with the development of automation, the crops tend to be planted in a way that
makes the machinery easy to manage and crops easy to harvest. Man-made land-
marks in the environment can also be used as a position reference when navigating
and guiding the robot’s operation.
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Fig. 1.11 Agricultural robot navigation system elements

Autonomous navigation is an important issue in robotics applications, where the
purpose is to safely guide the robot in different environments. The navigation
capability of the robot depends on the sensor system feedback and the control
algorithm calculations. The robot first detects its surroundings, then analyzes the
surrounding objects, and when it is moving, needs to consider following crops and
landmarks and avoiding obstacles. In response, many researchers have proposed
many different navigation methods, which can be divided into two groups. In one
group, the robot runs according to a map or creates a map as it explores. If the
environment map is perfect, the robot can easily determine its position and orienta-
tion at each time point. Localization and map learning are interdependent because
accurate localization is necessary to build a good map, and having an accurate map is
essential for good localization. Simultaneous localization and mapping (SLAM)
technology was used to create a map in an unknown environment and use this
map to locate the current position of the robot. Based on the current position and the
map, the robot can find the optimal path from the current position to the target spot
without hitting an object. The other group is path planning based on objects detected
in real time. Since most of the crops are grown in straight lines, an algorithm can be
developed to plan the detected crops as straight lines and obtain the planned path so
that the robot runs accurately along the straight line. However, during the detection
process, multiple uncertain factors need to be considered, such as the crop only on
one side of the boundary, the possibility of missing crops during the operation, and
the irregular shape and size of the crop. In addition, the weeds add noise to the path
calculation, which can affect the planned path and the machine operation process.
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A good autonomous navigation system requires the selection of appropriate
sensors, algorithms, and control strategies depending on the environment and the
task to make them work and interoperate with others to obtain the highest efficiency.
As robotic automation is increasingly needed, more research needs to be realized to
improve the technology and overcome the limitations of autonomous agricultural
robots.

1.4.3 Automation in Orchard Management

The quality and quantity of high-value crops such as orchard fruits depend on the
effective and efficient management of the orchard farm. Thus, conducting orchard
operations in such a way that the resulting optimum outcome is of greater impor-
tance. However, the shortage of seasonal labor along with the rising labor cost has
made achieving this task difficult. Since skilled labor is one of the key components
of the production system, finding ways and means for overcoming this situation is at
the forefront of the debate in the recent past. In this context, modern machinery has
acquired a crucial role in orchard fruit production, and different orchard management
robots have been introduced to simplify different tasks. Pruning, thinning, spraying
chemicals and fertilizers, harvesting, and transportation are key areas in that auto-
mation takes place to address the labor shortage and aims for decent quality orchard
outputs.

During the initial stages of orchard automation, robotic platforms were
semiautomated structures that were not overly complex but could be adapted to
conventional fruit orchards. The developments of high-tech sensors and actuators
integrated with high-performing computers have paved the way for the development
of complex robots that run based on machine learning and trained neural networks.

Therefore, identifying the potential of operating robotic arms as an attachment to
existing tractors or simple robotic vehicles with the help of developed orchard
architecture is important for the development of commercially and financially viable
orchard automation options. As illustrated in Fig. 1.12, conventional orchard struc-
ture (Fig. 1.12a), the higher-degree robotic arm should avoid collisions and should
penetrate inside the canopy to reach the target location, Fig. 1.12b shows easily
harvesting an orange without collisions with the branches and other fruits. The
challenge is maintaining a healthy canopy architecture, which can deal with various
robotic platforms and machinery. As indicated in Fig. 1.13a, b, an autonomous
tractor/autonomous crawler tractor can be used to attach robotic arms to take them
near the orchard canopy. In regard to cost, maintenance, and safety, robots with
lower degrees of freedom can be easily handled by farmers.
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Fig. 1.12 (a) Orange harvesting under complex canopy structure (b) Under improved canopy
structure

Fig. 1.13 (a) Autonomous 4-wheel tractor (b) Compact autonomous tractor

1.5 Conclusion

Agriculture worldwide is facing the same issues in terms of land degradation,
climate change and a decrease in the number of skilled farm workers. It is very
important to manage our agriculture resources wisely and intelligently to boost
productivity and ensure safe and sustainable food production for present and future
generations. As a method of addressing these issues, various advanced technologies,
such as lighting systems for indoor farming, IoT, sensors, location systems, robots,
and AI, have been developed to improve the agricultural system by establishing an
integrated smart agricultural system that covers all aspects of farming. Smart farming
based on the IoT increases production by making better use of natural resources and
inputs, as well as better land and environmental management. Furthermore, artificial



intelligence enables the automation of traditional agriculture operations that must be
done manually through the use of machine vision and deep learning. Image analysis
and machine learning algorithms based on AI can be utilized to automatically detect
and track fruits, pests and diseases, plant phenotyping and yield prediction.
Adopting these cutting-edge technologies digitalizes and transforms the agricultural
system to alleviate the pressure of producing more food with less for the growing
world population.
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Chapter 2
Strategic Short Note: Transforming
Controlled Environment Plant Production
Toward Circular Bioeconomy Systems

K. C. Ting

Abstract The American Society of Agricultural and Biological Engineers
(ASABE) embarked a Roundtable 2020 initiative on transforming food and agricul-
ture toward circular systems (TFACS). A series of online meetings were conducted
to explore challenges and opportunities in transformation processes for three con-
stituent systems of (1) open-field plant production system, (2) controlled environ-
ment food and agriculture system including controlled environment plant production
system (CEPPS), and (3) animal production system, respectively. In fall 2021,
ASABE appointed a TFACS taskforce to continue the work of Roundtable 2020
and start promoting the transformation of food and agriculture toward circular
bioeconomy systems (CBS). This strategic short communication note reports high
potential opportunities for improving the circularity of CEPPS value chains and their
interconnected stages. System of systems (SoS) approach and mission-oriented
coordination/collaboration are needed in providing systems informatics and analyt-
ics to effectively move the transformation forward. Intelligence driven and
empowered agricultural systems (IDEAS), that make things work well, better,
together, smarter, and wiser are needed in advancing the goals of circular
bioeconomy systems, including CEPPS.

Keywords Circular economy · Food and agriculture · Sustainability · System of
systems · Intelligent agricultural systems

2.1 Introduction

In spring 2020, American Society of Agricultural and Biological Engineers
(ASABE) formed a taskforce to move forward a Roundtable 2020 initiative on
transforming food and agriculture toward circular systems (TFACS). The activities
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of the initiative included conducting a series of online meetings, preparing reports,
and authoring articles for a special issue of Resource, an ASABE membership
magazine. The online meetings were to discuss the concept of circular bioeconomy
as applied to food and agriculture, set the missions and goals, and brainstorm
challenges, opportunities, and required expertise in improving the circularity of
food and agriculture systems (ASABE, 2021). ASABE appointed a TFACS
taskforce in Fall 2021 to continue advancing the goals of circular bioeconomy
systems (CBS).

22 K. C. Ting

Ellen MacArthur Foundation (2019) defines the concept of circularity as
“(1) design out waste and pollution, (2) keep productions and materials in use, and
(3) regenerate natural systems.” The TFACS taskforce added two more guidelines:
increase use efficiencies and provide economic benefits. The Foundation also states
three ambitions for achieving circular economy of urban food systems: “(1) source
food grown regeneratively, and locally where appropriate, (2) design and market
healthier food products, and (3) make the most of food.” National Research Council
(2015) provides a description of the links between the food supply chain (from farm
input supply to consumer) and the larger biophysical and social/institution context
(social organization, science and technology, biophysical environment, markets, and
policies).

The current food and agriculture systems are mostly linear and open systems of
systems (SoS), from resource inputs through the stages of production, harvest and
storage, processing and packaging, sales, and consumption with waste processing
and resource recovery and transportation and distribution as interconnections. These
linear systems may be transformed to circular systems as depicted in Fig. 2.1.

Fig. 2.1 Circular food and agriculture value chain as a system of systems



2 Strategic Short Note: Transforming Controlled Environment Plant. . . 23

Fig. 2.2 Examples of high potential opportunities for transforming controlled environment plant
production toward circular bioeconomy systems

2.2 Circular CEPPS

CEPPS has evolved from basic greenhouses to advanced greenhouses to vertical
farms/plant factories. The unique features of vertical farms/plant factories are their
high degree of closure and integration of sophisticated components/subsystems, like
a well-structured production lines and warehouses seen in advanced manufacturing
facilities. Some vertical farms/plant factories make use of both sun light and
supplemental light powered by electricity. The latest versions have moved toward
total “artificial” lighting (Kozai, 2018; Ting et al., 2022).

High potential opportunities for improving circularity of basic/advanced green-
houses and vertical farms/plant factories, at various stages of respective value chains
and systems levels, are reported in the article by Ting et al. (2021). Examples of
systems level opportunities are shown in Fig. 2.2. In addition, the concepts and
methodologies of system of systems (SoS) and intelligence driven and empowered
agricultural systems (IDEAS) are very useful.

2.3 Closing Remarks

CBS is both a means and a goal in making food and agriculture systems sustainable
and profitable. Methodologies and tools for defining, analyzing, designing,
implementing, managing, operating, and evaluating CBS are necessary in achieving
its goals. Among them, the concepts and approaches of SoS and IDEAS are essential
in ensuring that a CBS functions holistically and intelligently. SoS reveals the



behaviors of a system’s individual constituent systems and their interactions. IDEAS
may be enabled and implemented by human supervised cyber-physical systems.
CEPPS, a high-tech form of bioeconomy system, has a high level of readiness for
circularity improvement and may serve as a model for other types of circular food
and agriculture systems.
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Chapter 3
Artificial Lighting Systems for Plant
Growth and Development in Indoor
Farming

Munirah Hayati Hamidon and Tofael Ahamed

Abstract Due to the increasing demand for food from the growing global popula-
tion, indoor farms have received attention from farmers because of their ability to
produce more food as a supplement to the conventional farming system. In a highly
controlled indoor environment, the application of artificial lighting is essential in
replacing the function of natural sunlight. The primary purpose of artificial light
sources is to promote plant growth. However, the operational requirements of indoor
plants vary widely and uniquely, and thus artificial lighting systems become more
complex. The light used for indoor farms must satisfactorily address a variety of
performance to ensure the optimum plant growth and development. Therefore, this
chapter discussed the key factors involved in the specific lighting parameters such as
light quality, quantity, and duration for compliance to meet the growing require-
ments of indoor cultivation. Furthermore, several types of artificial lights also have
been reviewed to understand which light type is reliable for indoor farms.

Keywords Indoor farming · Artificial lighting · Light quality · Light intensity ·
Light duration

3.1 Introduction

The land resources for agriculture have been decreasing as more areas are urbanized
to accommodate other sectors, such as industry, manufacturing, and housing devel-
opment. However, the global population is increasing rapidly each year and is
projected to increase to 9.6 billion by 2050; thus, more food must be produced to
feed this population. Hence, urban agriculture (UA) is one of the growing food
security solutions to address the issues of global population and urbanization that are
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rapidly increasing. UA is defined as the production, processing, and distribution of
food produced in cities for local consumption. Vertical or indoor farming is one
developing form of urban agriculture that is currently booming and has been
explored specifically by developed countries.
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Farmers are increasingly adopting indoor farming due to the possibility of
regulating environmental conditions such as light and temperature in accordance
with the plant types and environmental requirements. Indoor faming typically pro-
vides a much higher yield than traditional farming methods and has the potential to
supplement food provided by existing agriculture practices. It allows farmers to
produce their crops year-round without being affected by the increasing trend in
global warming and extreme climate changes. Moreover, this advanced agricultural
model has enabled crops to be grown without the need for clearing additional land.

Generally, several main factors must be considered when setting up and
maintaining an indoor farm: location, type of cultivation system, crops, and tech-
nology used (Wong et al., 2020). Indoor farms range in size from small shipping
containers to large vertical multi-layered buildings, enabling them to be built not
only in rural areas but also in cities. Regarding the cultivation type, the soilless
culture system is the most suitable cultivation practice for indoor farming, as it frees
plant from soil-related issues. Leafy vegetables, small fruits such as tomatoes and
strawberries, herbs, flowers, and microgreens are some of the common types of crops
that are suitable to grow in indoor farms. Currently, green vegetables dominate the
highest percentage of plants grown in indoor farming worldwide due to their high
nutrition per calorie compared to other foods. Moreover, they are also rich in
vitamins, minerals, fiber, and antioxidants (Wong et al., 2020).

The use of technology is frequently the determining factor in the success of an
indoor farm. Technological advancements such as light emitting diode (LED)
lighting, sensors, and automation have made indoor farming more efficient and
customized for producing certain crops. The growth and development of plants
grown indoors rely entirely on artificial lighting systems (Fig. 3.1). Understanding
what type of light is required and howmuch it is required is the key to effectively and
successfully growing plants indoors. Plants require an energy supply from light for
photosynthesis. Photosynthesis is a process when energy from light sources converts
carbon dioxide (CO2) and water into carbohydrates and oxygen with the aid of
chlorophyll pigments in the leaves. Different plants grow differentially when they
receive different light qualities, intensities, and durations.

3.2 Light for Plant Growth

Light is composed of particles called photons, which are bundles of the electromag-
netic field that contain a specific amount of energy. Electromagnetic radiation is one
type of wave that is expressed by speed (c), wavelength (λ), and frequency (ν).
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Fig. 3.1 Artificial lighting for indoor farming

λ= c=v ð3:1Þ

Equation (3.1) shows that the light wavelength is inversely proportional to the
frequency. An increase in frequency will decrease the light wavelength with a
corresponding increase in the energy of the photons that produce the light. These
photons produce light when a charged particle shifts from a higher energy level to a
lower energy level (Xu et al., 2016) (Fig. 3.2). The energy of a photon is determined
using the Planck–Einstein equation:

E= hv= hc=λ ð3:2Þ

where h is the Planck constant.
Three key aspects of light influence how plants grow and develop: quantity or

intensity, quality, and duration (Fig. 3.3) (Runkle, 2017). Light quantity refers to the
intensity or concentration produced by a light source. Light quality, on the other
hand, reflects the color or wavelength reaching the plant surface. Light duration, also
known as the photoperiod, is defined as the amount of time a plant needs to be
exposed to a light source.
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Fig. 3.2 Photons produced
from changes in the energy
level to emit light

Fig. 3.3 The principles of light and its importance for plant growth and development

3.3 Light Quantity

The light quantity needed by each plant differs. Some plants may require a very
minimal light intensity, but others may need a high light intensity to grow. Plants
perform the photosynthesis process within the radiation spectrum between 400 and
700 nm, which is known as photosynthetically active radiation (PAR).

Numerous studies have been conducted and have shown that the light quantity is
important for promoting plant growth and development. Under certain conditions
and in different plant types, a higher light intensity leads to high yields. However,
excess light may damage plants, and too little light will inhibit growth (Barber &
Andersson, 1992). This difference is because light intensity is one of the most critical
elements influencing the photosynthesis process in plants. Photosynthesis is defined
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as the process by which green plants use light to synthesize nutrients from carbon
dioxide and water to produce carbohydrates and oxygen (Fig. 3.4).
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Fig. 3.4 The photosynthesis process

Plants store and use the carbohydrates produced during photosynthesis as their
nutrient source. Every plant begins its photosynthesis process differently, depending
on the energy levels of the light sources, which is known as the light compensation
point. This threshold is reached when the amount of light energy available for the
photosynthetic process is sufficient to create more oxygen than the plant needs for
respiration. Similarly, the CO2 released by the plants through respiration should not
be greater than the amount of CO2 consumed by the plant during photosynthesis,
resulting in null or negative net photosynthesis.

Light falls to the ground as tiny particles known as photons. The photons
encompass various energy quantities, depending on the light frequency. However,
photosynthesis is mainly related to the number of photons rather than to their energy
level. The light quantity reaching the plant varies according to the distance between
the plants and the light source. The light quantity is determined by calculating the
photosynthetic photon flux density (PPFD). The PPFD is measured by calculating
the number of photons in the PAR region that reach a certain area at a constant
distance (Fig. 3.5). It is typically reported in μmol m-2s-1, where μmol is a unit of
counting based on Avogadro’s number:

1μmolm- 2s- 1 = 6:022× 1023 × 10- 6 × 109
2
= 0:6022nm- 2 s- 1 ð3:3Þ

By calculating the PPFD, we can understand the exact amount of light that is
received by or reached the plants for photosynthesis.
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Fig. 3.5 The measurement
of light energy required for
plants

PPFD=
Photons of light

area× time
ð3:4Þ

3.3.1 Plant Photosynthesis in Response to Light

In general, the photosynthesis rate is substantially influenced by the light intensity.
Initially, the photosynthesis rate increases as the light intensity increases. However,
after reaching the light saturation point, the rate eventually approaches its maximum
value. The light saturation point is defined as the point when light intensity no longer
affects the rate of photosynthesis. The photosynthesis rate curve or light response
curve (LRC) becomes flat when it reaches this saturation point (Fig. 3.6).

The LRC model quantifies the relationship between photosynthesis and light
intensity (Herrmann et al., 2020; Wan et al., 2018). The model is diversified and
has been determined using several empirical models: (1) a rectangular hyperbola
model, (2) a modified model of the rectangular hyperbola, (3) a nonrectangular
hyperbola model, and (4) an exponential function model (Wan et al., 2018).

1. Rectangular Hyperbola Model
The rectangular hyperbola model is calculated as follows:

Pn Ið Þ= αIPmax

αI þ Pmax
-Rd ð3:5Þ

where Pn(I ) is the net photosynthesis rate, I is the photosynthesis photon flux
density, α is the initial gradient of the light response curve, Pmax is the maximum
net photosynthetic rate and Rd is the dark respiration rate. Pmax is determined as:
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Fig. 3.6 Change of photosynthesis rate with the light intensity

Pmax = α

ffiffiffiffiffiffiffiffiffiffiffi
β þ γ-

ffiffiffi
β

γ

� �2

-Rd ð3:6Þ

where β is the humidity coefficient and γ is the temperature coefficient.
2. Modified Model of the Rectangular Hyperbola

The mathematical expression of the modified model of the rectangular hyper-
bola is described as follows:

Pn Ið Þ= α
1- βI
1- γI

I-Rd ð3:7Þ

where α is the initial gradient of the light response curve, β and γ are the
humidity and temperature coefficients, respectively, I is the photosynthesis pho-
ton flux density, and Rd is the dark respiration.

3. Nonrectangular Hyperbola
The following equation is used to calculate the nonrectangular hyperbola

model:

Pn Ið Þ=
αI þ Pmax -

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αI þ Pmaxð Þ2 - 4θαIPmax

q
2θ

-Rd ð3:8Þ

where Pn(I ) is the net photosynthesis rate, I is the photosynthesis photon flux
density, θ is the curve curvature, and α is the gradient of the plant photosynthesis
to the light response curve when I = 0, namely, the initial gradient of the light
response curve, which is also called the initial quantum efficiency. Pmax is the
maximum net photosynthetic rate, and Rd is the dark respiration rate.
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4. Exponential Function Model
The exponential function model that been used to determine the light response

of plant photosynthesis is calculated as follows:

Pn Ið Þ=Pmax 1- e- αI=Pmax

� �
-Rd ð3:9Þ

In this equation, the definitions of all parameters are the same as those
described in Eqs. (3.5) to (3.8).

3.4 Light Quality

Light quality indicates the light wavelength or spectrum. The wavelengths emitted
by the sun range from 280 to 2800 nm, which is 97% of the total spectral distribution
(Kozai et al., 2015). They are classified as ultraviolet, visible light, and infrared. The
lowest wavelengths have the highest energy, indicating that ultraviolet radiation has
higher energy than infrared radiation. The wavelengths visible to humans range from
380 to 770 nm, which are referred to as visible light. The visible light is split into
violet (380–430 nm), blue (430–500 nm), green (500–570 nm), yellow
(570–590 nm), orange (590–630 nm), and red (630–770 nm).

Two prominent types of effective radiation for plants are known as (1) photosyn-
thetically active radiation (PAR) and (2) physiologically active radiation. The
physiologically active radiation is divided into five wavebands: Ultraviolet
(UV) 300–400 nm, blue light (B) 400–500 nm, green light (G) 500–600 nm, red
light (R) 600–700 nm, and far-red light (FR) 700–800 nm. Meanwhile, the
waveband of PAR ranges from 400 to 700 nm (Fig. 3.7) (Tazawa, 1999; McCree,
1981).

The green pigment in plants that absorbs PAR, chlorophyll, has two absorption
peaks: red and blue light. Plants usually absorb only a small amount of green light
and reflect it back, which is the reason most plants appear green to humans (Fig. 3.8).

Fig. 3.7 The visible light spectrum distributions

https://en.wikipedia.org/wiki/Wavelength
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Fig. 3.8 Spectrum of plant absorption, reflection, and transmission

The functions of light for food production should be to promote rapid seedling
growth, improve branching density, support the developing leaf size, and enhance
the flowering/fruiting cycle irrespective of the season to maximize production
quality and quantity. An understanding of the effects of different wavelengths of
the light spectrum on plant growth is essential to provide a proper artificial light
system for cultivating vegetables in indoor environments. Light quality not only
affects the growth and morphology of plants but also regulates metabolite accumu-
lation (phytochemicals) in plants (Fig. 3.9) (Paradiso & Proietti, 2021; Wong et al.,
2020).

3.4.1 Light Energy Use Efficiency of Lamps (LUEL)
and Plant Community (LUEP)

When estimating the photosynthesis rate or production of plants in indoor farms, all
the essential resources for plant growth, such as water, light, CO2, and temperature,
are connected (Fig. 3.10) (Kozai, 2011). Among these resources, the usage of
artificial light in indoor farming is the most costly. Hence, evaluating the light
energy use efficiency of lamps (LUEL) and plant communities (LUEP) is the primary
concern in plant production for indoor farms (Kozai, 2013).

The LUEL and LUEP are determined using the as following equations:

LUEL = fD=PARL ð3:10Þ
LUEP = fD=PARP 3:11

In these equations, f is the conversion factor from dry mass to chemical energy
fixed in dry mass (approximately 20 MJ kg-1), D is the increase in the dry mass of



whole plants or salable parts of plants in the closed plant production system (CPPS)
(kg m-2 h-1), PARL is the photosynthetically active radiation (PAR) emitted from
lamps, and PARP is PAR received at the plant community surface in the CPPS
(MJ m-2 h-1). Alternatively, LUEL and LUEP have also been calculated using the
following equations:
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Fig. 3.9 The effect of the light spectrum on plant growth and development
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Fig. 3.10 Essential resources for plants grown in indoor farms



ð Þ

3 Artificial Lighting Systems for Plant Growth and Development in Indoor Farming 35

Fig. 3.11 Light use efficiency (LUE) concept for estimating the photosynthesis rate

LUEL = bCP=PARL ð3:12Þ
LUEP = bCP=PARP 3:13

where b is the minimum PAR energy to fix 1 mol of CO2 in plants (0.475 MJ mol-1)
and CP is the net photosynthetic rate of plants (mol m-2 h-1). The ratio of PARP to
PARL is known as the “utilization factor” in illumination engineering. The LUE
models have become valuable tools for estimating vegetation productivity
(Fig. 3.11) (Gamon, 2015).

3.5 Light Duration or Photoperiod

The quantity of daily daylight hours exerts a direct effect on the growth and
flowering of many plant species. Therefore, the manipulation of daylight hours is
important for scheduling the amount of light needed for certain plants growing
indoors. A photoperiod is defined as the light duration within a specific time span,
usually a 24-h period. Photoperiod control is essential for indoor farming, especially
for the flowering process, as every plant responds differently to the relative length of
the light and dark periods (Boyle, 1992). Plants are categorized into three classes
according to the light duration needed to trigger blooming or flowering.

1. Day-Neutral Plants (DNP)
The flowering time for day-neutral plants may be any duration of the day.

Normally, they bloom after achieving specified developmental phases. Examples
include tomatoes, cucumber, hydrangea, sunflower, and pepper.
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2. Short-Day Plants (SDP)
These plants only require a short period of daylight (approximately 8–10 h).

The flowering process only occurs when the photoperiod is less than a critical day
length (Fig. 3.12). For SDP, flower blooms occur either in early spring or fall.
When the day length surpasses a certain threshold, plants discontinue flowering
and begin the vegetative phase. Examples include potato, zinnia, soybean, cos-
mos, poinsettia, and chrysanthemum.

3. Long-Day Plants (LDP)
LDP require a relatively longer time of daylight than night to bloom (usually

14–16 h). The plants only bloom when the photoperiod surpasses the critical day
length (Fig. 3.12). Late spring to early summer is the usual flowering season for
LDP. Examples include hibiscus, radish, cabbage, spinach, and lettuce.

By understanding how daylength affects plant development, we can further
manipulate the photoperiod of indoor farming to promote different stages of

Fig. 3.12 (a) The photoperiodic response in long- and short-day plants. (b) The photoperiodic
regulation of flowering in long- and short-day plants



development in photoperiod-responsive crops. Furthermore, flowering in plants is
more responsive to dark periods than to light periods. Thus, manipulation of the
photoperiod benefits growers in planning the flowering process for their plants and
ensuring that they produce the flower even if it is not during their flowering period. If
growers need the LDP to bloom, they can extend the light period into the night,
which is known as night interruption control.
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3.5.1 Daily Light Integral (DLI)

Often, the light duration or photoperiod of plant growth is related to the daily light
integral (DLI). The DLI is the total number of photons of PAR accumulated in a
particular area received by plants in 24 h. It is an important index that combines both
the light intensity and photoperiod (Xu et al., 2021). DLI exerts significant effects
not only on plant growth and development but also on plant yield and quality, as it
ensures that the plants perceive the optimum amount of light according to their
growth cycle (Xu et al., 2021).

The DLI is a simple metric to calculate for indoor farming compared to cultiva-
tion outdoors, since light intensity and photoperiod remain constant in each stage of
cultivation. In outdoor cultivation, calculating the DLI becomes trickier due to the
atmosphere and seasonal changes that occur during the 24-h period. The DLI is
calculated as follows:

DLI mol=m2 d
� �

=
PPFD μmol=m2 sð Þ× Photoperiod h=dð Þ× 3600 s=hð Þ

106
ð3:14Þ

By determining the DLI in indoor farming, growers can strategize their artificial
lighting operation so that it meets the specific requirements corresponding to the
plants’ growth cycle and stage.

3.6 Artificial Lights for Plants Growth

A significant increase in the number of studies conducted on the use of lighting in the
fields of plant and animal production has been observed during the last several
decades. Different types of lighting, light wavelength ratios, and light intensities on
various species of plants have been the research focus for improving plant growth,
particularly in indoor horticulture fields. Studies have reported that even when
equivalent light treatments are applied, the growth outcomes vary depending on
the plant species.

Generally, artificial light sources are categorized into three main types according
to the principle of light emission: incandescence, discharge light emission, and
electroluminescence (Kozai et al., 2015; Tazawa, 1999) (Fig. 3.13).



38 M. H. Hamidon and T. Ahamed

Fig. 3.13 Classification of artificial light sources

3.6.1 Incandescent Lamps

The incandescent lamp was one of the pioneering artificial light sources used for
indoor farming before any other lights were developed. Incandescent light sources,
as the name indicates, create light by incandescence, which is the emission of light
due to heat. An incandescent light bulb is generated by placing a filament in a
vacuum or inert-gas-filled container called a bulb. When an electric current is passed
across the filament, it will heat up and glow with blackbody radiation and finally
achieve incandescence. The filament must be placed in a bulb to prevent the metal
from oxidizing and overheating. Instead of a vacuum, inert gas helps delay the
evaporation of the heated filament.

In the early years, incandescent light bulbs were used as indoor lighting since they
only need a power supply to operate without any supplementary equipment. The
production costs are also relatively inexpensive and may operate on either alternat-
ing current (AC) or direct current (DC). However, they are very inefficient due to the
intrinsic physics of blackbody radiation and are thus much less suitable for plant
growth compared to other grow lights. A substantial amount of the input energy
utilized to generate light is wasted as heat. When contemplating their usage to grow
plants, the high heat generation of incandescent lights may be harmful to plants.

Incandescent lights are not recommended to be placed closer than 24 inch to a
plant to avoid damage. However, this minimum operating distance established for
safety reasons may prevent the plants from receiving proper light intensity and
eventually affect their growth. Additionally, incandescent lights emit more toward



the red spectrum, depriving plants of blue light (Fig. 3.14) (Trinklein, 2016; G2V
Optics Inc., n.d.).
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Fig. 3.14 Spectrum of the incandescent lamp

3.6.2 Fluorescent Lamps

Another trendy type of lamp that is used for indoor farming is fluorescent lamps. A
fluorescent lamp generates light by transferring energy via a gas contained within a
tube. It generates visible light using the physical principles of optical fluorescence
via a low-pressure mercury-vapor gas discharge. Fluorescence occurs when elec-
trons return from an excited singlet state to their ground state.

Fluorescent lights outperform incandescent bulbs in producing the light required
for a variety of plants, particularly vegetables grown inside, since the lights are far
more efficient and produce light mainly in the visible spectrum (Fig. 3.15)
(Trinklein, 2016). Moreover, fluorescent lights come in a variety of colors and
generate lower temperatures. Another advantage is that they typically have a long
lifespan. Despite their advantages over incandescent bulbs, they require additional
equipment, a ballast, which is a device that restricts the amount of current flowing
through a circuit, for their operation. The ballast is needed to maintain the light at the
proper voltage and current level. In addition, they also do not last very long, are
delicate, bulky, and have limitations in providing a high lumen intensity.

3.6.3 High Intensity Discharged (HID) Lamps

HID lamps have been traditionally used to supplement indoor farm lighting that
requires greater light intensities than fluorescent lighting. They are also known as



high-pressure discharge lamps, which operate at very high pressure and temperature
(Dutta Gupta & Agarwal, 2017). A series of high voltage electrical pulses are
transmitted between two electrodes at the end of the tube to generate the HID
light. Similar to a fluorescent lamp, an HID lamp also requires ballast, as it provides
a high voltage to generate light and sustains a sufficient electrical current flow to
the bulb.
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Fig. 3.15 Spectrum of the
fluorescent lamp

Two main popular types of HID lamps are used for indoor farming: high-pressure
sodium (HPS) and ceramic metal halide (MH) lamps. Both HPS and MH lamps use a
gas discharge lamp with a combination of various vaporized metals, each of which
has a distinct color range. The HPS lamps mostly emit a fairly monochromatic
yellow–orange light, while the MH fixtures tend to produce a blue–white color of
light (Fig. 3.16) (U.S. Department of Energy, 2017).

3.6.4 Light Emitting Diodes (LED)

LEDs are more robust and have longer lifespans than other traditional light sources,
such as incandescent and fluorescent lamps. The color of light emitted from the LED
is determined by the semiconductor material composition of an LED, which defines
the total wavelength of the photon light emissions. With the currently available
cutting-edge technology, LEDs can be customized to emit a certain wavelength and
generate either narrow- or wide-band light that matches a specific plant requirement
for maximum growth (Fig. 3.17) (Xu et al., 2016).

For instance, red and blue LEDs are frequently used because they span the
spectrum where plants most efficiently absorb light. Nevertheless, some studies
have shown that certain plants also utilize some parts from green and yellow regions,
suggesting that grow light producers must develop LEDs with broader radiation.
Additionally, some wavelengths outside the 400–700 nm range may also exert
beneficial effects on plant growth. As a result, some manufacturers have modified



LEDs such that they also deliver light that encompasses areas below 400 nm or
above 700 nm.
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Fig. 3.16 Spectra of the HPS and MH lamps

Fig. 3.17 Spectra of LEDs

As mentioned above, most of the grow light sources not only produce light but
also produce heat, which may be harmful to the plants. Depending on the grow light
types, plants may experience heat stress and localized low humidity if they are
positioned too close to those lights. LED lights generate far less heat. Unlike HID,
placing LEDs closer to the plants may help maximize the light intensity and
spectrum received by the plants without overheating them. Additionally, LEDs are
environmentally friendly, work without a ballast and have extended lamp lifetimes.
Due to their effectiveness and affordability, LED grow lights are increasingly
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(continued)

replacing other grow lights, such as fluorescent lights and HIDs, in indoor farming
operations (Fig. 3.18).
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Fig. 3.18 Example of the usage of LEDs for growing lettuces indoors

3.7 Effect of Using Artificial Light on Plants Grown Indoor

Types of
plants

Light
duration

Leafy
vegetables

Chinese cabbage Red + Blue + White
LED (130 μmol m-

2 s-1)

18 h day-
1

Optimal growth of leaf
length and weight.

Duc et al.
(2021)

Fluorescent lamps 14 h day-
1

High glucosinolate
content.

Lettuce
(“Cheongchima”)

External electrode
fluorescent lamps
(150 μmol m-2 s-1)

20 h day-
1

Increased fresh weight,
dry weight, leaf area,
and daily biomass
accumulation rate.

Cho et al.
(2020)

Sweet basil Red (663 nm) + Blue
(435 nm) LED

8 h day-1 Increased the growth
yield.

Rihan et al.
(2020)

Water spinach Red LED (200
± 15 μmol m-2 s-1)

14 h day-
1

Enhanced water spin-
ach growth without
causing intumescence.

Kitayama
et al. (2019)

Lettuce (“Frillice
Crisp”)

Far-red (700–-
800 nm) + Red
(600–700 nm) + Blue
(400–500 nm) LED

– Promoted the growth
and increased macro-
and micro-nutrient
content.

Pinho et al.
(2017)

Fruit vege-
table/fruits

Tomato
(“Dometica”)

HPS lamps + LED
(30 mol m-2 day-1)

18 h day-
1

Increased fresh weigh
of fruits.

Verheul et al.
(2022)

Tomato and red
pepper

Coolwhite LED+ sup-
plemental Far-red
LED (200 μmol m-

2 s-1)

16 h day-
1

Increased hypocotyl
length.

Hwang et al.
(2020)

Tomata
(“Merlice”)

HPS lamps
(20 μmol m-2 s-1)

16 h day-
1

Increased leaf tempera-
ture, photosynthetic
rate, transpiration rate,

Kim et al.
(2019)
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and plant tissues water
content.
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Types of
plants

Light
duration References

Tomata
(“Komeett”)

Far-red (730nm)+Red
(638 nm) + Blue
(450 nm) LED

16 h day-
1

Increased plant growth,
accelerated flowering,
and increased fruit
yield.

Kalaitzoglou
et al. (2019)

Strawberry
(“Maehyang”)

Mint-white LEDs
(180 μmol m- 2 s-1)

16 h day-
1

Increased leaves num-
ber and area, top/root
dry weight ratio, and
number of newly
formed runners/
propagule.

Lee et al.
(2020)

Everbearing
strawberry
(“Elan”)

White LED
(300 μmol m-2 s-1)

24 h day-
1

Increased yield, TSS,
ascorbic acid, anthocy-
anin, and crop
productivity.

Maeda and
Ito (2020)

Capsicum seed-
lings (“CAU-
24”)

White LED (with
Red + Blue ratio)
(250 μmol m-2 s-1)

12 h day-
1

Increased seedlings
biomass, chlorophyll
content, and
photosynthetic rate.

Liu et al.
(2019)

Microgreens Kale, Cabbage,
Arugula, and
Mustard

Red + Blue LED light
(100–600 μmol m-

2 s-1)

16 h day-
1

Fresh and dry weight
increased as light inten-
sity increased, but
decreased hypocotyl
length and hue angle
linearly.

Jones-
Baumgardt
et al. (2019)

Soybean sprout White fluorescence
light (100 μmol m-

2 s-1)

14 h day-
1

Reduced hypocotyl
length but increased the
diameter of hypocotyls.

Yuan et al.
(2015)

Common buck-
wheat sprouts

Blue LED
(12.41 μmol m-2 s-1)

– Increased hypocotyl
length.

Lee et al.
(2014)

Flowers Peony (“Da
Fugui”)

Red + Blue LED light
(200–220 μmol m-

2 s-1)

14 h day-
1

Increased number of
flowers, enhanced
blooming rate, flower
diameter, and
florescence.

Wan et al.
(2020)

Digitalis
purpurea

Red + Blue LED light
(150 μmol m-2 s-1)

18 h day-
1

Increased micro- and
macro-elements as well
as cardenolides
accumulation.

Verma et al.
(2018)

https://en.wikipedia.org/wiki/Digitalis_purpurea
https://en.wikipedia.org/wiki/Digitalis_purpurea
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3.8 Conclusion

In conclusion, this chapter has provided adequate information on principles of light
(light intensity, quality, and photoperiod) and their importance as main indicators
that must be considered when using artificial lighting in indoor farms. Higher
irradiance is often associated with faster development in most plants because it
produces more photons to drive photosynthesis and enhance biomass accumulation.
However, irradiance greater than 300 μmol m-2 s-1 may have reached the light
saturation limit. As a result, photosynthetic efficiency decreases and affects the light
consumption efficiency.

Despite having many diverse types of light, LEDs are currently the preferred light
source for indoor farming lighting. With appropriate lighting control, they provide
sufficient flexibility in altering the spectrum range of artificial lights. This approach
may appropriately influence the biological and physiological attributes of a plant’s
growth. Furthermore, intelligent dimming may also be used to offer a seamless
transition between photoperiods while achieving the required plant irradiance,
depending on the time of the day.

The photoperiod is an environmental indicator that regulates flowering and has
been manipulated to adjust the process of flowering for indoor ornamental crops.
Photoperiod requirements will be adjusted based on plant types, mostly for flowers
of either long-day or short-day plants. However, research on the effect of the
photoperiod on leafy vegetables cultivated indoors is relatively less prominent.
Compared to the light quantity and quality, photoperiod exerts less of an effect on
the growth of and phytonutrient accumulation in leafy vegetables. The photoperiods
(14–18 h light) that are normally used for leafy vegetables are currently at the
optimal level. Hence, any changes in the common photoperiod of the leafy vegeta-
bles will not provide any substantial advantages for their growth.

By knowing the light information, growers using indoor cultivation can select and
choose the best light intensity and light quality to achieve the preferred growth
characteristics of their plants. Furthermore, this knowledge will also enable light
producers to invent more ideal lighting devices, depending on the market targeted for
consumption and the morphological attributes desired by indoor farming growers.
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Chapter 4
An IoT-Based Precision Irrigation System
to Optimize Plant Water Requirements
for Indoor and Outdoor Farming Systems

Mohammad Hussain Seyar, P. D. Kahandage, and Tofael Ahamed

Abstract Irrigated agriculture plays a crucial role in fulfilling global food demands
since it is reliable in some parts of the world, particularly in arid and semiarid
regions, for meeting plant water requirements. Considering the increasing water
shortage due to the effects of climate change, water management in agriculture is the
key to securing water for water consumers, including agriculture, municipal, indus-
trial, and daily utilizations. Thus, efficient and robust irrigation management and
controlling technologies should be adopted. Integrating precision irrigation into drip
and sprinkler irrigation systems in greenhouses and open fields may represent a
promising approach for water saving systems. The irrigation operation is carried out
based on soil, plant, and atmospheric monitoring. The advances in technology have
provided growers with better opportunities for irrigation management and control.
Therefore, the aim of this chapter is to explore a precision water management system
that optimizes plant water requirements through sensing and perceptions from indoor
to outdoor environments. In the case of the outdoor environment, multiple factors,
such as the field capacity and evapotranspiration, are considered while noting the
best practices for saving water. In this regard, a concise review is presented to
determine the scopes of IoT-based systems for precision application. Through this
review, we have found that in implementing IoT-based irrigation systems, better
water use efficiency can be achieved. Furthermore, if these systems are incorporated
with computer algorithms such as neural networks, fuzzy logic systems and hybrid
systems, water loss can be minimized, while the production level has the opportunity
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for a significant increase in the production of crops and vegetables. Thus, precision
irrigation systems are outlined with a number of networks and integrated with
intelligent IoT-based drip and sprinkler irrigation systems to save water and promote
the implementation of reuse systems in irrigation projects.
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Keywords Precision irrigation · IoT · Irrigation scheduling · Water shortage ·
Indoor and outdoor cultivation systems · Sensors · Artificial intelligence

4.1 Introduction

Considering the rapid population growth, which is projected to reach ten billion by
2050 (de Pascale et al., 2019), and water scarcity, an immediate requirement for
producers to develop innovative and efficient methods of production to feed the
increasing global population while using the limited available water has been noted.
The problem of water scarcity, which is a global concern and has the chance to
increase further due to climate change and increasing global food demands, requires
serious attention over the coming years. In addressing this problem, water consumers
should be identified. Generally, four categories of water consumption have been
noted, including agricultural, industrial, municipality, and daily utilization. Of these,
agriculture constitutes a large proportion of water use and accounts for over 70% of
global freshwater usage. This trend is expected to increase due to the effects of
climate change. Furthermore, less than 20% of the land worldwide is allocated to
irrigated agriculture (Adeyemi et al., 2017), but it provides 40% of the global food
supply, which highlights the importance of irrigation in global food security. Given
the increasing water shortage, enhancing water use efficiency in agricultural systems
such as irrigation is the key in securing water for agricultural, industrial, municipal,
and daily utilization purposes (Buttaro et al., 2015). Therefore, practicing precision
irrigation might not only help to save a significant amount of water but also increase
productivity.

In the case of meeting global food demands, the implementation of precision
irrigation systems in the protected environment where the condition is fully con-
trolled and plants will be provided with ideal conditions of growth is essential.
Protected agriculture has become popular over the last 30 years (Elaydi, 2017) and is
rapidly increasing worldwide (Hemming et al., 2019). In this type of agriculture,
almost all parameters are controlled, and producers can provide their plants the
optimal environment throughout the growing season. In addition to the advantages
of serving as a promising approach in terms of both quality production and
addressing water shortages, it may also protect plants from unfavorable conditions
such as strong wind, pests, intense rainfall, bird damage, and low temperature. Aside
from other parameters, irrigation management is vital for successful production.
Over-or under-irrigation is usually associated with adverse effects. Therefore, apply-
ing an optimal amount of irrigation is essential for reasonable production. Protected
cultivation has been practiced in many forms, including greenhouses, indoor farms
and under screens or screenhouses, which can save a significant proportion of water,



up to 37% in screenhouses (Pirkner et al., 2014) and 20–40% in greenhouses
(Nikolaou et al., 2019). Mindful of the water shortage, it is a reliable system for
the intensive production of vegetables, fruits, and flowers. Notably, the efficiency of
protected agriculture in terms of water savings mainly depends on the type of
irrigation systems used. For example, employing microirrigation systems such as
drip and sprinkler irrigation, which are associated with high water application
efficiency and low water loss, usually result in better water use efficiency. These
systems are mostly practiced in greenhouses due to good water productivity. Incor-
poration of automation into these systems adds further benefits to the production
system by which irrigators achieve full control over the greenhouse plants’ growth
factors, such as irrigation. In precision irrigation systems, the proper amount of water
is managed and applied at the correct time, which leads to better water productivity
and environmental sustainability.
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Precision irrigation management has been carried out using Internet of Things
(IoT) (Kodali et al., 2017), machine learning (Sidhu et al., 2020), a combination of
IoT and machine learning (Goap et al., 2018), digital solutions (Mohamed et al.,
2021), and remote sensing (Belaqziz et al., 2013). IoT-based precision irrigation is
usually practiced by employing sensors due to its low cost, accuracy and overall
profitability (Van Iersel et al., 2013). Precision irrigation combined with IoT tech-
nology further facilitates real-time monitoring, processing, and applies irrigation on
demand. The IoT has been widely used in different sectors, including agriculture
(irrigation), where sensors are deployed in the field to sense the data from the field
and send it to the microcontroller. Two types of technology are commonly used to
monitor the water status in crops, soil, and the environment: wireless and wired
technologies. Each is deployed under specific conditions. Recently, wireless tech-
nology utilization has increased due to the ease of installation, economic consider-
ations, and reliable performance. Wireless-based technology has been employed in
different areas of agriculture, including precision agriculture, horticulture, cattle, and
crop monitoring, as well as environmental monitoring, which are the main classes of
agricultural IoT and wireless technology-based applications (Khriji et al., 2021).

IoT-based precision irrigation systems have been investigated and reviewed in
several articles. However, a comprehensive review of IoT-based precision irrigation
along with artificial intelligent systems in both indoor and outdoor cultivation
environments has not been conducted. Therefore, we have performed an extensive
review of the recent developments in the application of IoT- and intelligent-based
irrigation, monitoring, and controlling. The main objective of this article is to
provide a comprehensive literature review on different precision irrigation manage-
ment practices in both greenhouse and open field cultivation systems along with their
advantages and drawbacks.
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4.2 Precision Irrigation Management

The irrigation operation is carried out to meet crop water requirements while
substantially increasing crop yields. In other words, the overall goal of irrigation is
to maintain the soil water balanced between irrigation/rainfall and evapotranspira-
tion (Fig. 4.6). In irrigation management, two questions should be answered: when
should irrigation be applied and how much water should be applied. However,
answering these questions is not an easy task and requires careful consideration
because several factors exert direct and indirect effects on plant water requirements
and they vary based on plant type, environment, and type of soil. Furthermore, over-
irrigation may lead to water loss, fungal diseases, CO2 emissions, N2O emissions,
soil nutrient leaching, soil salinization, energy wastage, and low crop yields, while
under-irrigation will result in water stress to plants and low crop yields.

Precision irrigation is defined as the precise management of applying the appro-
priate amount of water at the correct time and minimizing adverse environmental
impacts. This irrigation system, in addition to enhancing water use efficiency, also
improves both crop quality and quantity and reduces energy costs and adverse
environmental impacts (Swarup et al., 2013). The time or frequency and volume
of water to be applied depend on the types of plants and soil, environmental
conditions, water availability and economic considerations. For instance, in sandy
soil, frequent irrigation is usually applied, while in clayey soil, the irrigation interval
might be longer. Two methods for measuring how much water the plants need or
how much water to apply have been developed: direct and indirect methods. The
direct method measures the plant and soil water contents, while the indirect method
measures environmental parameters, such as the light intensity, air temperature,
relative humidity, wind speed, and rainfall.

With the advances in technology and the emergence of new and cheap sensors,
sensors are currently quite easy to employ to monitor the moisture content in the soil,
plants, and atmosphere by implementing precision irrigation systems. Precision
irrigation systems enable irrigators to obtain real-time field-monitoring data and
perform irrigation on demand.

4.2.1 IoT Technologies for Precision Irrigation Systems

Different technologies have been developed in recent years either in terms of
communication or controlling systems, each of which has been employed in various
sectors, including agriculture and precision irrigation. However, these technologies
have their own specifications based on the data transmission rate, frequency band,
power consumption, security considerations, and bandwidth. This section introduces
the recent IoT-based advanced technologies that have potential for widespread
utilization.
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4.2.1.1 IoT Networking Backbone

The Internet of Things has been used in numerous fields, including agriculture and
irrigation. Generally, IoT-based irrigation systems consist of five layers: sensor
node, network, gateway, cloud, and application layers (Fig. 4.1). The first layer is
the sensor node, which consists of sensors and actuators. The sensors monitor the
water status in the soil and plant and the evapotranspiration rate, while actuators turn
the solenoid valve/water pump on/off. The second layer is called the communication
or network layer, where various networks, such as radio-frequency identification
(RFID), ultrawideband (UWB), Bluetooth, Wi-Fi, ZigBee, Ethernet, 2G/3G/4G/5G,
LoRaWAN, Sigfox, and NB-IoT, are employed to connect fields with cloud and
application layers. The application of each network differs based on the range of
communication, data transmission rate, security consideration, power consumption,
and frequency of communication. For instance, for short-distance purposes, RFID,
UWB, and Bluetooth are used; for medium-distance purposes, Wi-Fi and ZigBee are
used; and for long-distance purposes, 2G/3G/4G/5G/LoRaWAN and NB-IoT have
been employed. Wireless technology plays a pivotal role in IoT-based systems. The
use of low-cost wireless sensors enhances the efficiency of precision irrigation
systems. Wireless sensor networks have been employed successfully and have
achieved an 80% cost reduction compared to hardwired approaches (Khriji et al.,
2021). Thus, the use of the aforementioned networks based on our purpose makes
monitoring, analysis, and control much more robust and efficient.

Another layer is the gateway layer, which functions as a bridge to connect the
sensor node with the application layer. The gateway layer helps form and makes the
long range and wide area network possible. Cloud servers store the data for a long
time, where the irrigators can access the collected data from any part of the world
using a smartphone or computer if they have an internet connection. The final layer
is the application layer, which runs the overall irrigation operations. In fact, it is the
main layer of the IoT-based irrigation system that performs the analysis of collected
data from the field and implements actions accordingly.

End Node            Communication           Gateway                  Cloud         Application layer

3G/4G/5G

Bluetooth

LoRa

Ethernet

Zigbee

Wi-Fi

3G/4G/5G

Fig. 4.1 Scheme of five layers of IoT-based precision irrigation
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4.2.1.2 IoT: Irrigation Control System

Irrigation systems are controlled using either conventional methods or intelligent
systems. In the conventional approach, the majority of the work is performed by
humans, while in intelligent systems, most of the work is performed by machines
and robots. Over time, conventional systems have been replaced by automatic and
intelligent technologies. In some parts of the world, timer-based irrigation systems
are practiced, which facilitate watering tasks. In developed countries, mostly intel-
ligent irrigation control systems are employed due to the ease of control and precise
water application. Adopting advanced irrigation control systems helps growers
apply a proper amount of water at the right time, enhance water use efficiency,
increase yield, reduce environmental impacts, and save labor (Owen et al., 2016).

The development of computer science has led to extensive application of pro-
gramming in training and predicting, as well as controlling various machines. By
training the machine and applying algorithms, the machine characterizes human
thinking and executes specific actions. The machine has the potential to analyze
complex problems and perform several tasks simultaneously, making the machine
smarter. We have focused more on the fuzzy logic, artificial neural network, and
hybrid systems that are widely implemented and recommended by researchers.

4.2.1.2.1 Fuzzy Logic-Based Control System

The fuzzy logic system is the traditional Boolean logic extension that has the
potential to express logical values between false and true and explain problems in
the world that are nonlinear and uncertain (Croock Al-Janabi et al., 2018). In
irrigation operations, several factors are usually involved, which make the system
complex and require a comprehensive model to consider many factors at the same
time. In this case, the application of a mathematical model is impractical, and
employing an advanced model such as a fuzzy logic-based model provides a
substantial benefit. Fuzzy logic-based systems run based on inputs and produce
one or several outputs (Krishnan et al., 2020). This system has been proven to be
effective in precision irrigation management due to the high accuracy of the water
requirement calculation, resulting in increased water use efficiency. However, this
accuracy mainly depends on the individual’s knowledge and skills.

A fuzzy logic system is practiced both in indoors and outdoors. Pacco (2022)
used a fuzzy logic-based system to simulate temperature and predict irrigation timing
in the greenhouse. In another study, Azaza et al. (2016) investigated the performance
of a fuzzy logic system in controlling the microclimate inside a greenhouse and
found that a system integrated with a wireless data monitoring platform resulted in
significant energy and water savings. Similarly, Selmani et al. (2019) developed a
solar-powered irrigation system based on fuzzy logic in a greenhouse, where the
model consisted of two devices. The first device used environmental parameters to
calculate the watering duration, while the second device used the actual resource



level to examine the pump potential. The authors concluded that the use of this
system was effective in scheduling watering.
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4.2.1.2.2 Artificial Neural Network-Based Control System

An artificial neural network is an algorithm that processes information similar to how
information is processed by the human brain (Abioye et al., 2020). It has been
applied in controlling precision irrigation because of its learning potential and
adaptability based on different conditions. Generally, it consists of three or more
layers (Fig. 4.1). As shown in Fig. 4.1, the first layer is called the input layer, where
several parameters serve as inputs and then undergo a long process; ultimately, a
single output or several outputs will be achieved. In the case of precision irrigation,
the typical inputs include temperature, relative humidity, light intensity, rainfall, soil
moisture content (Gu et al., 2021), wind speed, and soil physical properties such as
texture and the crop coefficient. Artificial neural networks have been investigated in
several studies and have been suggested to be a reliable tool for precision irrigation
control. Trajkovic et al. (2022) investigated the radial basis function network for
forecasting reference evapotranspiration, where they used environmental parameters
such as temperature, sunshine, wind speed, and relative humidity as inputs and found
that the neural network is useful as a robust tool for forecasting evapotranspiration.
Similarly, Trajkovic (2005) studied temperature as a single input in the radial basis
function network and compared the results with other standard methods used
worldwide, including reduced Penman–Monteith, Hargreaves, and Thronthwaite
methods. They also concluded that the neural network predicts evapotranspiration
accurately. The benefit of employing neural networks for predicting the water
requirements of plants is that they enable growers to predict the amount of water
needed for the plants for the upcoming hours, days or even weeks. The system may
be further improved by combining it with other intelligent models or systems. The
typical input and output data of AI-based control system is presented in Fig. 4.2.

4.2.1.2.3 Hybrid Control System

In hybrid systems, two or more machine learning algorithms are usually involved.
For example, in an intelligent system, the combination of an artificial neural network
along with a fuzzy logic system or other algorithms is considered a hybrid system. In
this system, IoT is used for collecting information and monitoring the field, while
artificial intelligence is used for comprehensive and precise control. Several studies
have highlighted the importance of hybrid systems compared to single control
systems. The hybrid system has been investigated in reservoir operation (Deka &
Chandramouli, 2009), pan daily evaporation modeling (Kişi, 2006), soil moisture
prediction (Tseng et al., 2018), and other irrigation planning and operation pro-
cedures. Moghaddamnia et al. (2009) studied the estimation of evapotranspiration
using an artificial neural network and adaptive fuzzy logic system and found that this



system produced much better results than empirical formulas. Similarly, Falamarzi
et al. (2014) estimated evapotranspiration using temperature and wind speed data as
inputs using an artificial neural network and wavelength neural network, and the
results showed that both algorithms predict evapotranspiration at an acceptable
accuracy level. This system is employed both in indoor and outdoor cultivation
systems. Wang et al. (2017) estimated the leaf area index inside a greenhouse with a
combined backpropagation neural network, genetic algorithm and autoregressive
exogenous model, and concluded that the estimation of transpiration under indoor
conditions provides better results than those under outdoor conditions.
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Fig. 4.2 Schematic representation of artificial neural network

4.2.2 Indoor Precision Watering Management

Indoor agriculture has been widely practiced due to the advantages of off-season
production and water use efficiency, as well as the possibility of providing plants
with ideal growth conditions. These advantages are because microclimate parame-
ters, including temperature, humidity, light intensity, carbon dioxide, and soil
moisture contents, which exert tremendous effects on plant growth and yields, can
be controlled under indoor conditions (de Pascale et al., 2019), making indoor
farming very important. In indoor farming, high-value crops such as vegetables
are usually produced since they will exhibit maximum yields and outcomes in these
environments.
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Proper watering management is one of the key factors for optimal production and
increasing water use efficiency since these environments have no rainfall, and
irrigation is the only water source. Excessive application of water results in NO3

leaching (Incrocci et al., 2020), while underwatering leads to decreased yields.
Considering the shortage of water, growers should employ approaches where
water loss is minimized while the production level is maximized. However, growers
usually apply water based on their past experiences. To this end, the adoption of
science-based watering scheduling methods that increase water productivity is
pivotal. Furthermore, employing these methods enables growers to obtain real-
time data on the moisture content and plant water status and perform the watering
operations accordingly. The timing/frequency and quantity of water to be applied are
determined through the watering scheduling process. This process affects plant
water productivity, plant yields, and quantity. Over the last few years, different
methods for watering scheduling have been developed and practiced around the
world. Of which, watering based on the soil moisture content and plant water status
has been widely practiced and highlighted in several studies. The integration of IoT
with the aforementioned methods further facilitates the watering operation in which
monitoring the soil moisture content or plant water status and applying water are
conducted remotely. In this type of system, the water application and moisture
content are monitored and controlled using sensors.

4.2.2.1 Soil Moisture-Based Scheduling

In this method, the soil moisture content or soil matric potential are monitored. The
properties of soil are monitored using sensors. Sensors that measure the volumetric
water content or dielectric properties of soil are widely employed because of their
low cost and ease of operation.

The advent of new and inexpensive sensors further facilitated the monitoring of
the soil moisture content and deployment of more sensors in agriculture. The soil
moisture sensor senses the volumetric water content in the soil, while the other type
is called the matric potential sensor, which senses the matric potential of the soil.
Both types of sensors are used worldwide (Van Iersel et al., 2013). The volumetric
soil moisture sensors measure the water content based on volume, while the soil
matric potential sensors measure how easily the water is extracted by the plant.
Volumetric soil moisture sensors have the potential to provide growers with infor-
mation on how much water and when to apply it to plants. The soil matric potential
sensors measure the availability of water in the soil but do not provide information
on how much water should be applied; they are also reliable sensors (Thompson
et al., 2007).

The soil matric potential may differ for different crops and in various regions due
to soil texture and crop characteristics. For instance, in clay soil, matric potentials of
-30 and -40 kPa were used as thresholds and compared with the -10 kPa
threshold, resulting in 35% and 45% water savings, respectively, especially in
tomatoes and cucumbers (Nikolaou et al., 2019). IoT-based systems facilitate



watering operations since most of the monitoring and control is performed using soil
moisture sensors.
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These sensors usually have high accuracy, and the reading error ranges from ±1%
to ±5%. Some researchers suggest that depending on sensors alone is not a wise
method for watering scheduling. However, the sensor accuracy can be increased by
performing in situ calibration and employing outlier removal techniques such as
MZscor, GESD, Zscor, and Chauvenet. Using real soil moisture data, 90.4% water
savings have been achieved, while 89.3% water savings have been achieved by
applying MZscore and Zscore to the soil moisture data (Campos et al., 2020).

The application of an IoT-based system additionally enhances agricultural out-
comes. Lichtenberg et al. (2013) investigated wireless sensors in greenhouse and
nursery environments, where the time of production and crop loss decreased by half
or more. As shown in Fig. 4.3, different wired or wireless sensors are deployed in the
greenhouse, where they sense the moisture content in the soil or monitor the plant
water status and send the information to the microcontroller, which is then forwarded
to the cloud server (Fig. 4.4). For carrying the watering operation, a threshold should
be defined, in which it triggers the system when to start watering and when to stop
watering. Technologies such as LoRa, NB-IoT, Bluetooth, ZigBee, and Wi-Fi
communication systems are employed in indoor cultivation. The general flowchart
of this method is presented in Fig. 4.5.

4.2.2.2 Plant Water Status-Based Scheduling

Monitoring the plant water status is another key method of applying water in
greenhouses or protected agriculture. Plant physiology or traits such as the stem
diameter, amount of transpiration, leaf water potential, leaf thickness, canopy tem-
perature, and crop reflectance have been widely used as indices for watering
scheduling. Among these traits, canopy temperature has been researched and
implemented mostly indoors and outdoors due to its low cost and easy installation.
Various sensors are deployed to monitor each of these properties. For example, sap
flow sensors for measuring crop transpiration, ZIM probes for measuring the turgid-
ity of leaves, and infrared temperature sensors for monitoring canopy temperature
have been used. In the case of canopy temperature measurements, the difference
between the climate inside the canopy of the plant and the atmosphere is usually
considered. Plants transpire water from stomata in the leaves, and this process
influences the canopy temperature. Whenever plants do not experience water stress,
the temperature inside the canopy will be lower, while the stomata will close under
conditions in which plants experience water stress, and the temperature inside the
canopy may increase. Generally, the plant water status-based method does not
directly provide information on plant water requirements; therefore, it should be
used in combination with other methods, such as the soil moisture-based method.
Prenger et al. (2005) developed an irrigation system using plant canopy temperature
as a method for turning the irrigation system on or off, while an ET model was
developed for the purpose of determining how much water to apply. The IoT-based



or automation of this method has proven to be more efficient in terms of water
savings. Seelig et al. (2012) used leaf thickness as a watering scheduling tool and
saved 25–45% of water with an automated irrigation system.
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Fig. 4.4 Scheme of real-time data handling in the cloud server
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4.2.3 Outdoor Precision Irrigation Management

In outdoor environments, the source of water may be irrigation/rainfall or capillary
rise, while in the greenhouse, irrigation is the main water source for meeting crop
water requirements since there is no rainfall. Water is added to the soil through
irrigation, rainfall, or capillary rise, which originates from groundwater, especially in
areas where the water table is not deep (Fig. 4.6).

Some proportion of the added water will evaporate from the soil surface or
transpire from the plant surface, while the remaining proportion will infiltrate into
the soil, among which parts of the infiltrated water join the ground water through a
deep percolation process and the remaining water will move into the horizontal
direction (percolation) to be either absorbed by plant roots or retained in the soil
pores. Runoff is also common in some irrigation schemes, where the water is lost
from the soil surface in the form of running water and leaches soil nutrients, creating
small ditches. Irrigation management, especially in arid and semiarid regions where
rainfall does not replenish plant water requirement, is the key to agricultural pro-
duction. Therefore, precise management of irrigation in agriculture by employing
low-cost technologies by which water is managed as effectively as possible is
essential for food security and meeting global food demands. Various approaches
for saving water have been employed, including mulches, deficit irrigation and drip
and sprinkler irrigation systems. However, these methods have been recognized to
require extensive labor, a large volume of water and a significant amount of
economic input. IoT-based irrigation systems have been used with minimum labor
and water requirements to overcome the aforementioned problems.
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4.2.3.1 IoT-Based Irrigation Scheduling

Irrigation scheduling is the approach by which irrigation managers understand how
much and when to apply water to help save a significant proportion of water. Three
methods for irrigation scheduling have been developed, plant water status-based,
soil moisture-based, and weather-based, each of which can be employed at specific
times and under specific conditions (Fig. 4.7).

The use of each method varies based on the climate condition, type of plant, data
availability, skills of the researcher, accuracy, economic considerations, and appli-
cability of the approaches. However, the combination of all these methods is usually
recommended to carry out irrigation operations. In the IoT-based approach, sensors
are deployed to monitor the water content of the soil, plants, and amount of water
lost into atmosphere.

4.2.3.1.1 Soil Moisture-Based Irrigation Scheduling

In this method, irrigation is applied by monitoring the moisture content or water
potential in the soil. As illustrated in Fig. 4.8, plants may undergo three stages of
water conditions in the soil: saturation, field capacity, and permanent wilting point
states. Under saturated conditions, plants wilt due to excess water that they cannot
use, while under field capacity conditions, an ideal amount of moisture is present in
the soil, and all of the moisture is available for plant consumption. At the permanent
wilting point level, plants are no longer able to extract water from the soil, and they
may subsequently wilt permanently.
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Fig. 4.7 IoT-based irrigation scheduling methods
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The application of sensor technologies in irrigation paved the way for better water
management in agriculture (Domínguez-Niño et al., 2020). This system follows a
series of steps. For the first step, a threshold should be defined where the irrigation
operation will be initiated by comparing data collected from the field with the
predefined threshold. This is usually performed using the water balance equation
by which irrigation deficit; which is the proportion of water which takes the soil back
to field capacity, can be calculated.

SWDt = SWDt- 1 þ ET- Ie -Pe ð4:1Þ

where SWDt is the soil water deficit for the day t, SWDt-1 is the soil water deficit for
the previous day of t, ET is the evapotranspiration, Ie is the effective irrigation, and
Pe is the effective rainfall.

After calculating the soil water deficit (SWD) for a given soil under specific
period, then, critical soil water deficit (SWDc) should be determined which is the
threshold.

SWDc = Zr × PAW ×AD ð4:2Þ

where SWDc is the critical water deficit, Zr is the effective root depth, PAW is the
plant available water, and AD is the allowable depletion. Several tools and devices
for measuring the water content in the soil, such as gypsum blocks and granular
matrix blocks, tensiometers, neutron probes and sensors. Soil moisture sensors are
widely used due to their low cost and user friendliness. Soil capacitive moisture
sensors measure the volumetric water content in the soil, while soil matric potential
sensors measure how easy the water can be extracted by the plant. Research has



indicated that irrigation scheduling based on soil matric potential in clay soil where
tomato and cucumber are being cultivated may save 35–46% of water (Nikolaou
et al., 2019). In another study, an automatic irrigation system was developed based
on soil moisture and plant temperature sensors and saved 90% of water compared to
conventional irrigation systems (Gutiérrez et al., 2013). The use of the plant water
stress index and soil water methods may produce similar results both in terms of
water savings and yield (Cesari de Maria et al., 2017).
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Fig. 4.9 Schematic representation of typical IoT-based irrigation layout

Buttaro et al. (2015) studied soil water potential as an irrigation threshold using a
tensiometer, which resulted in 35–46% water savings. In China, Liao et al. (2021)
developed an automatic irrigation system using soil moisture sensor for tomato
plants inside the greenhouse and achieved an irrigation water use efficiency of
41.23 kg/m3 compared to 31.58 kg/m3 for the conventional irrigation system.

As illustrated in Fig. 4.9 sensors are deployed at different locations in the field
where they measure the moisture content in the soil and send the data to the
microcontroller. The microcontroller subsequently turns the water pump on/off
based on a predefined threshold. Recently, a more common approach has been to
send data to cloud servers that store them and allow anyone to access the data later
from any location with an internet connection. Different methods are used to collect
and send data to cloud servers, and the most widely used networks and methods are
presented in Fig. 4.1.
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4.2.3.1.2 Weather-Based Irrigation Scheduling

Weather-based methods have also been employed by many irrigation managers
worldwide. They usually require environmental parameters, including relative air
humidity, temperature, solar radiation, wind speed and rainfall, which exert direct
and indirect effects on the water depletion rate from the plant–soil–atmosphere
system. These data are collected by manual/automatic weather stations or metrolog-
ical networks in which data are uploaded in a timely fashioned to cloud servers
(Fig. 4.10).

The use of these data helps growers determine evapotranspiration, which is the
amount of water lost from soil and water, as well as plant surfaces, which is called
reference or potential evapotranspiration. In other words, the approach is associated
with a mathematical calculation to obtain the potential evapotranspiration of the
reference plant or grass, which is then multiplied by the specific-crop coefficient to
achieve crop evapotranspiration. The crop coefficient differs in terms of plant growth
stages.

Although the use of all environmental parameters to accurately achieve potential
evapotranspiration is generally recommended, some researchers use a few environ-
mental parameters to calculate reference evapotranspiration. Hargreaves et al. (1985)
utilized only temperature and extraterrestrial radiation to calculate potential evapo-
transpiration (ETo), while Jones and Richard (1990) used temperature and solar
radiation to determine ETo (Eqs. 4.2 and 4.3). The use of limited data will further

Fig. 4.10 Real-time weather data displayed in the weather cloud server
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facilitate the automatic and real-time monitoring procedure for determining
evapotranspiration.
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ETo = 0:0023Ra
T max þ T min

2
þ 17:8

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T max - T min

p ð4:3Þ

where ETo is the reference evapotranspiration (mm/day), Tmax and Tmin are the
maximum and minimum temperatures (°C), respectively, and Ra is the extraterres-
trial radiation (MJ m-2 day-1).

ETo = α1 3:87× 10- 3Rs 0:6T max þ 0:4T min þ 29ð� ð4:4Þ

where ETo is the reference evapotranspiration, Rs is the solar radiation (MJ m-2),
Tmax is the maximum temperature, and Tmin is the minimum temperature. The most
comprehensive method for calculating evapotranspiration is the FAO-Penman-Mon-
teith method, where environmental data are used as inputs:

ETo =
0:408Δ Rn -Gð Þ þ γ 900

Tþ273 u2 es - eað Þ
Δþ γ 1þ 0:34u2ð Þ ð4:5Þ

where ETo is the reference evapotranspiration (mm day-1), Rn is the net radiation at
the crop surface (MJ m-2 day-1),G is the soil heat flux density (MJ m-2 day-1), T is
the mean daily air temperature at a 1.5–2 m height (°C), u2 is the wind speed at
1.5–2 m height (m s-1), es is the saturation vapor pressure (kPa), ea is the actual
vapor pressure (kPa), es - ea is the saturation vapor pressure deficit (kPa), Δ is the
slope vapor pressure curve (kPa °C-1), and γ is the psychrometric constant (kPa °C-

1). After the calculation of reference evapotranspiration, the crop-specific coefficient
required to obtain the crop evapotranspiration is determined using the following
equation:

ETc =ETo ×KC ð4:6Þ

where ETc is the crop evapotranspiration, ETo is the reference evapotranspiration,
and KC is the crop coefficient factor. The crop coefficient factor varies in terms of
the types of plants and stages of growth. Researchers often employ irrigation
experiments based on evapotranspiration, especially in outdoors. This work is
conducted for several reasons, such as greater reliability, feasibility, and ease of
application in advanced and automated research approaches. Goap et al. (2018)
developed an IoT-based irrigation system using the soil moisture content, air
temperature, relative humidity, precipitation, and UV to frame an algorithm through
which irrigation operations are run. The calculation of evapotranspiration is also
performed using the ETo calculator or CROPWAT software, which were developed
by FAO based on the FAO 65 Penman–Monteith equation. Furthermore,
integration with a microcontroller through programming can help to calculate ETo

automatically.
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4.2.3.1.3 Plant-Based Irrigation Scheduling

In plant-based methods, irrigation managers use measurable physiological plant
traits such as canopy temperature, leaf water potential, sap flow, and stem shrinkage
to monitor the plant water status and the time of irrigation. Steppe et al. (2008)
successfully integrated the plant stem and diameter into a mathematical model to
continuously predict apple tree water requirements. The crop water stress index has
also been used by researchers to estimate plant water requirements by studying
canopy-temperature and vapor pressure deficit relationships and has produced sat-
isfactory results (Steppe et al., 2008). O’Shaughnessy et al. (2017) investigated the
combined applicability of the plant water stress index and neutron probe readings to
provide solid feedback for irrigation scheduling, especially in arid regions. This
method is sometimes not feasible for monitoring plant symptoms, where in some
cases, it may be too late to recover the plant from water stress. In plant-based
methods, devices usually monitor the symptoms designated by the plants. Some-
times, it takes a long time until the plant exhibits any symptoms.

As shown in the study by Cremona et al. (2004), irrigation scheduling based on
the water stress index is quite similar to irrigation scheduling based on the water
content both in terms of yield and water use efficiency. In Spain, the application of
automatic irrigation systems using plant transpiration to irrigate tomato inside the
greenhouse reduced water consumption by 20% (Pawlowski et al., 2017). Irrigation
scheduling for monitoring plants in the greenhouse and in the open field (Osroosh
et al., 2015) has produced good results. De la Rosa et al. (2015) investigated plant
water stress as an irrigation base for scheduling with the intention of increasing water
use efficiency and resulted in 17%, 15%, and 37% water savings in 3 successive
years (2009, 2010, and 2011), respectively. Some researchers used a constant value
as the irrigation threshold, while others used an adaptive irrigation threshold based
on the theoretical crop water stress index (Osroosh et al., 2015). Gu et al. (2017)
developed a new crop water stress model based on the RZWQM2 scenario, which
saved 30.5%, 17.3%, and 7.1% in low-frequency irrigation, whereas in high-
frequency irrigation, 35%, 30%, and 16% of water was saved in successive years.

4.3 Discussion

Through an extensive review of outdoor and indoor monitoring, control and irriga-
tion systems in recent years, IoT- and intelligent-based monitoring systems play a
crucial role in increasing water use efficiency, increasing yields, saving energy and
quality production, and reducing adverse environmental impacts. IoT-based tech-
nologies assist with remote, real-time, and robust monitoring and collection of data
to make the irrigation operation efficient and effective. Deploying different sensors
provides real-time monitoring data that significantly minimize water loss, enabling
better control of the amount of water in the root zone, plant, and evapotranspiration
rate and maintain the moisture content within an ideal range of growth. The other



part, which is intelligent protocols, helps control the irrigation application or predict
plant water requirements for the upcoming hours, days, or weeks. This system
enables growers to achieve on-demand control of irrigation operations and to predict
the future moisture content in the soil, water status in plants and the proportion of
water that will be lost due to various factors over the coming periods. However,
many challenges remain to be addressed through further studies to ensure that the
systems more cost-beneficial for researchers and growers. Challenges include stan-
dardizing the IoT-and intelligent-based system protocol. More specifically, the
system should be user friendly, secure, require low power consumption (battery-
operated), and use precalibrated sensors. Sometimes both researchers and growers
may find the systems confusing. Regarding security problems, for example, if we
consider LoRaWAN technology, connecting the end nodes with the gateways may
sometimes be mixed with or receive nearby LoRa Node data, and thus the system is
unsuitable. In future studies developing long-range protocols, security issues should
be considered.
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Calibration is another major challenge that requires in situ adjustment because it
may vary in terms of the soil texture and presence of organic matter. This issue
should be the focus of future studies. On the other hand, through this review, we also
found that most of the technologies are employed in greenhouses rather than open
fields. The abovementioned technologies should also be utilized in outdoor farming
systems.

4.4 Concluding Remarks

Considering the increased food demands and water scarcity, water management
within irrigation systems is the key to securing water for industrial, municipal and
daily utilization, as well as meeting world food demands. Through this review, we
realized that precision irrigation systems are evolving, and their application makes
irrigation management more efficient and convenient. Practicing precision irrigation
whenever it is incorporated with IoT where different sensors are deployed in the field
to monitor and collect the data and send them to microcontrollers and cloud servers
further facilitates real-time irrigation monitoring and leads to increased water use
efficiency. When controlling irrigation systems, which is a challenge worldwide, the
use of advanced technologies such as artificial intelligence is important to take
irrigation operations to the next level. An artificial intelligent control system enables
smart control of irrigation operations, which minimizes water loss. The system will
become more comprehensive and robust when combined with IoT-based irrigation
systems, especially under conditions where the laborers are aging and smart and
remote-control systems are immediately needed. However, further research is
required to devise new instruments with high accuracy and low cost to make the
irrigation operation much more user friendly and robust.
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Chapter 5
Strategic Short Note: Artificial Intelligence
and Internet of Things: Application
in Urban Water Management

Martin Anda, Roberta Fornarell, and Stewart Dallas

Abstract AI and machine learning techniques have already demonstrated signifi-
cant outcomes in various water industry applications such as water quality monitor-
ing, chemical dosing, prioritising active leakage detection areas, intelligent network
optimisation, and the prediction of water pipe failure. Can these techniques be
extended from water utility operations (Anda, 2017) into home and commercial
water usage (Schmack et al., 2019)? The introduction of a reward credit system to
those residents who actively save energy-intensive mains water and wastewater,
whilst optimally managing aquifer recharge, can support localised, hybrid water
sources at residential and community scale (Fornarelli et al., 2019). While currently,
machine-learning algorithms are being used to detect inaccuracies or anomalies in
water meter data, in the future, AI and machine learning techniques can be used to
better manage the use of alternate water sources in cities to achieve sustainable
hybrid water systems (Fornarelli et al., 2021).

Keywords Artificial intelligence · Internet of things · Urban water · Smart meter ·
Hybrid water systems · Water trading

5.1 Introduction

AI and machine learning techniques have already demonstrated significant outcomes
in various water industry applications such as water quality monitoring, chemical
dosing, prioritising active leakage detection areas, intelligent network optimisation,
and the prediction of water pipe failure. Can these techniques be extended from
water utility operations (Anda, 2017) into home and commercial water usage
(Schmack et al., 2019)?
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The rapid rate of global development in ultrasonic, revenue grade advanced
metering technology is allowing the emergence of a new cost-effective approach
to smart urban water management (Haning & Anda, 2016). In particular, it can
enable hybrid water systems—those utilising alternative and non-potable water
sources (Byrne et al., 2019)—to be accurately quantified in a continuous manner
without meter fouling. This in turn paves the way for hybrid water systems to be
utilised in urban water trading—a novel market-based approach to a specified band
of water use to enable higher levels of water efficiency (Fornarelli et al., 2019).

The introduction of a reward credit system to those residents who actively save
energy-intensive mains water and wastewater, whilst optimally managing aquifer
recharge, can support localised, hybrid water sources at residential and community
scale (Fornarelli et al., 2021). While currently, machine-learning algorithms are
being used to detect inaccuracies or anomalies in water meter data, in the future,
AI and machine learning techniques can be used to better manage the use of alternate
water sources in cities to achieve sustainable hybrid water systems.

5.2 Methods

Over 60 ultrasonic smart water meters were deployed in 2018–2019 across 40 par-
ticipating households within the City of Fremantle, Perth, Western Australia as part
of the RENeW Nexus project (Resilient Energy and Water Systems) which is a
federally-funded initiative being delivered under the national Smart Cities and Sub-
urbs program (Fornarelli et al., 2019). The approach adopted for the water compo-
nent of RENew Nexus integrates the smart metering of hybrid water systems,
household participation, and data analytics at the residential scale within the tradi-
tional centralised urban water network (Fornarelli et al., 2021) (Fig. 5.1).

5.3 Results

Since installation, water volume data has been recorded every 30 min with each
meter uploading this data daily via the Telstra NB-IoT network to a dedicated data
management platform. The water usage data is then analysed and water balance
modelling undertaken (Fornarelli et al., 2019). The water balance quantifies the
volume of water used by source (rainwater, groundwater, greywater, mains), the
volume of wastewater produced, as well as the amount of local abstraction and
recharge to aquifer. This in turn enumerates mains water savings, reductions in
discharge to sewer, and abstraction/discharge to aquifer for each site (Fornarelli et
al., 2021).
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Rainwater and greywater in a single residential dwelling by a one-week period
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Fig. 5.1 Example of smart metering output (five meters deployed) from a Fremantle residence
maximising alternative water sources

5.4 Conclusion

In all the aspects analysed in this paper (e.g., community engagement, water
efficiencies, water value and water tariff), the role of digital technologies in the
water sector is vital to assist with the new shift from centralised water networks to a
community-empowered, integrated, centralised-hybrid water system (Fornarelli et
al., 2021).
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Chapter 6
Purification of Agricultural Polluted Water
Using Solar Distillation and Hot Water
Producing with Continuous Monitoring
Based on IoT

P. D. Kahandage, Mohammad Hussain Seyar, Ryozo Noguchi,
and Tofael Ahamed

Abstract Considerable number of people are still suffering from the scarcity of
clean drinking water as most of the available surface water bodies are already
polluted. The difficulty is severe, especially in underdeveloped countries in which
majority is facing for energy crisis as well. Therefore, when finding the solutions, it
is very important to pay attention for both problems as water purification and
management is always bound with energy. Even though many of household water
purification methods have been invented, solar water distillation is a simple and
affordable for many countries which are blessed with sufficient solar power and
concern on energy. Continuous monitoring of water quality is an important task of a
purification system as the keeping of quality of water within a recommended range is
the main goal. IoT devises such as sensors, controllers, communication, and cloud
flat forms facilitate the real-time monitoring of water quality and quick responding
remotely with smart phone applications. Most of the domestic level water purifica-
tion systems can be more advanced with IoT technology. Different water quality
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sensors such as pH sensors, Temperature sensors, Turbidity sensors, Dissolved
Oxygen (DO) sensors, Conductivity sensors, Salinity sensors, and Total Dissolved
Solids (TDS) sensors are available and possible to be controlled by popular control-
ler types such as Arduino microcontroller board or Raspberry Pi minicomputer
board. This chapter covers the concept of designing and fabrication of a solar system
which can be used for two purposes as water distillation and hot water producing and
controlled by IoT technology with real time data monitoring. Temperature of the
water and air of the solar still, pH, and TDS of water were measured using relevant
sensors and monitored. The solar still of the system is also acting as the storage tank
by insulating the glass top when the system is working as a hot water system. The
evaporation capacity of the still were improved by several strategies such as
connecting a flat plate collector, placing sponge cubes in the still and placing a
sand layer under the still. The performance of the solar water distillation system with
each strategy was evaluated separately and the combined effect of all the strategies
was also checked. All the introduced evaporation enhancement methods have
performed well, and the maximum distillation capacity was 3.98 L/m2/day, and it
has been achieved when the system was running with all the strategies together. The
maximum water temperature was also achieved when all the strategies are deployed,
and it was recorded as 58 °C by indicating the potential for using the system for
making hot water for domestic purposes such as washing and cleaning. The mea-
sured water quality parameters show that the purified water by the system is suitable
for drinking.
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Keywords Continuous monitoring of water quality · Hot water producing · IoT ·
Solar water distillation · Water quality

6.1 Introduction

The application of the IoT in water management is an innovative trend that brings
many advantages for both consumers and administrators. Ensuring the availability
and sustainable management of water and sanitation for all is one of the Sustainable
development goals (SDGs) adopted by all United Nations Member States in 2015 to
alleviate poverty and improve livelihood (United Nations, 2020). Water is recog-
nized as an essential factor for better health and as a key factor in many sectors, such
as poverty reduction, and improved food security, peace and human rights, ecosys-
tems, and education. However, many developing countries still face a considerable
challenge in finding sufficient clean water throughout the year for drinking and
sanitation purposes. In many agricultural countries, agricultural pollutants are the
major sources of surface water pollution, especially in rivers and streams. Addition-
ally, groundwater may be polluted due to the leaching of pesticides and fertilizers
into aquifers. The irresponsible overuse of fertilizers and other agrochemicals in
farming areas to enhance yield accounts for this pollution. Consequently, there is a
high concentration of heavy metal ions such as As, Cd, Cu, and Zn in groundwater.
The accumulation of nutrients in water bodies leads to eutrophication, threatening



Water source Description

aquatic biodiversity by increasing the biological oxygen demand. Another water-
related problem is the hardness of the water due to the presence of calcium and
magnesium ions. This occurs when water percolates over banks of limestone, chalk
or gypsum. Although it is generally safe to drink, the taste is unpleasant due to the
excess minerals.
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Table 6.1 Accessibility of people for drinking water in 2020

Number of
people

Safely managed
services

Improved water sources, available anytime, free from
contaminants

5.8 billion

Basic services Improved water sources, located within a round trip of
30 minutes

1.2 billion

Limited services Improved water sources, located within a round trip of more
than 30 minutes

0.282 billion

Unprotected
sources

From wells and springs 0.368 billion

Untreated surface
water

From lakes, ponds, rivers, and streams 0.122 billion

The total amount of available water on Earth is estimated to be 1.4 billion km3, of
which approximately 97.5% is seawater, while only 2.5% is clean water (Modi &
Modi, 2019). As reported by the World Health Organization, nearly 2.1 billion
people do not have access to safe drinking water, 3.4 million people die each year
due to water-related issues, and millions of women and children spend 3–6 h each
day collecting water from distant water sources, even those that are not in good
condition for consumption (WHO, 2022). Although ensuring equitable access to
clean and affordable water is targeted by the SDGs, a considerable number of people
still do not have access to clean drinking water and use polluted and unprotected
sources without any treatments for their water requirements. Table 6.1 shows the
accessibility of drinking water for people in 2020 (WHO, 2022).

Treated water services are classified under three categories: safely managed,
basic, and limited services. Safely managed services are characterized by having
drinking water from improved sources on the premises and available anytime as well
as free from fecal and chemical contaminants. The sources of basic services are
almost the same as those of safely managed services, but they are located within a
round trip of 30 minutes. In limited services, improved water sources are located far
away, and collection takes more than 30 minutes. Contaminated drinking water is a
major burden on human health, and there is the greatest risk of waterborne diseases
among infants and young children, weakened people and elderly individuals, espe-
cially when living in unhygienic conditions (Gorchev & Ozolins, 2011).

Therefore, available hard water and contaminated water must be purified to cater
to the water demand in many countries that suffer from water scarcity. Thus, efficient
and sustainable utilization of existing surface water sources with the support of
advanced available technologies are essential.
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The available water purification methods, such as reverse osmosis (RO) and
vapor compression, are not appropriate for domestic levels in rural areas of devel-
oping countries. Water distillation is a purification method that can remove heavy
metals and other impurities from water. Many tropical countries with sufficient solar
energy throughout the year have a higher likelihood of utilizing free energy for
distilling both hard and contaminated water.

Energy is also a word that is always bound together with water management, as
pumping, purification, storage, and delivery depend on electricity. Ensuring afford-
able, reliable, and sustainable energy is also one of the sustainable development
goals (United Nations, 2020). Therefore, promoting the use of solar energy in water
management is highly justifiable, as it provides emission-free, reliable, freely avail-
able, and renewable energy. A solar water distillation unit requires simple technol-
ogy, no requirement of highly skilled labor for maintenance work and low energy
consumption; hence, it is a great alternative for obtaining fresh water from hard
water. The most beneficial advantage of solar energy is low operation and mainte-
nance costs due to zero fuel cost energy, but it requires more space for its collection
and high initial investments (Tiwari et al., 2003). Nevertheless, it is the best solution
for water purification in remote areas and small communities in dry zones with a lack
of drinking water.

As even low-price sensors allow for easy measurement of water quality and other
parameters and the possibility of using available communication technologies with
few configurations, IoT-based water purification and management systems can be
considered low-cost solutions, which facilitate distant monitoring and regulation
(Singh & Ahmed, 2020). Therefore, the goal of this chapter is to discuss the
possibilities to use IoT techniques for continuous monitoring and implementation
of decisions in solar water purification and hot water systems.

6.2 The Architecture of the Proposed IoT-Based Solar
Water Distillation and Hot Water System

The main purpose of this chapter is to discuss the possibility of using IoT technology
in solar water purification and hot water production. Therefore, the main concept of
employing IoT improvement technologies with the support of recently carried out
relevant studies and the results of evaluating some components of the system is
discussed. Figure 6.1 shows the conceptual diagram of the IoT-based solar water
distillation system and hot water system.

The most salient feature of this concept is switching the system between purifi-
cation by distillation and hot water production based on the requirements and
remotely measured parameters by the sensors. As the main purpose of this system
is purification, it contains a water basin, solar preheating system, cooling system,
distilled water collection tank, and various sensors for water quality and water level
determination.
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Fig. 6.1 Schematic diagram of the solar water distillation unit with IoT devices

In this IoT-based purification and hot water system, distillation with solar power
has been selected as the purification technique so that obtaining hot water for
domestic purposes is also facilitated with solar power. The flat plate solar collector,
which is one of the major components of a solar water heating system, is suggested
to connect with the solar still of the distillation system to increase water evaporation.
The double-sloped water basin is connected to a continuous supply of water from the
source, and the supply is under control with the support of a flow control valve. The
water inside the basin is allowed to flow continuously through the flat plate solar
collector mounted on the outside, increasing its temperature to facilitate evaporation.
This flow is a natural phenomenon that occurs with only the difference in water
density with temperature. The preheated water in the basin constantly evaporates due
to solar heat, and the evaporated water condenses again by hitting the glass cover
above the basin. To facilitate the condensation process, the glass cover is regularly
cooled by the cooling system powered by a pump operating with solar power, and
the distilled water deposited on the glass cover is freely collected into the distilled
water collector with the assistance of gravity.

In contemplation of switching the system for hot water production, the glass
cover cooling system is shut off and covered by insulation allowing the water basin
to work as a hot water storage tank. At the same time, the basin should be filled with
water. The switching process is expected to monitor the water levels and other
parameters of the system with the support of IoT. The IoT system comprises thermal
sensors and ultrasonic water level sensors, Wi-Fi communication through a Rasp-
berry Pi minicomputer, and cloud storage controlled by a smartphone application.
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6.3 Basic Architecture of an IoT-Based Water Purification
System

The main components of an IoT-based system are sensors, controllers, communica-
tion systems, and IoT platforms. The main purpose of a water purification system is
to maintain water quality within the purest range by removing externally accumu-
lated impurities. Therefore, continuously monitoring the water quality is essential to
confirm that the system is working properly. IoT technology facilitates this require-
ment with different water quality sensors. The basic architecture of the IoT-based
water purification system is shown in Fig. 6.2.

The most important water quality parameters to be measured continuously are
pH, temperature, turbidity, dissolved oxygen (DO), conductivity, salinity, and total
dissolved solids (TDS) (Singh & Ahmed, 2020). Table 6.2 gives the information on
the water quality parameters, reference values, and sensors used to measure them.

As several possible communication systems, controllers, and IoT flat forms are
available, and they can be selected considering the requirements.

The Arduino microcontroller board or Raspberry Pi minicomputer controller is
preferable in this system as the controller. External hardware is required to connect
to the internet when an Arduino microcontroller board is used.

Fig. 6.2 Basic architecture of the IoT-based water purification system



Description Sensors used

6 Purification of Agricultural Polluted Water Using Solar Distillation. . . 81

Table 6.2 Basic water quality parameters of a water purification system and sensors in use

Water
quality
parameter

Recommended
value/range for
drinking water

pH Measures the degree of acidity
or basicity of water using a
scale from 0 to 14. The pH
value of normal water should
be 7 indicating the neutrality

6.5–8.5 pH sensors
Ex: Combination pH sensors,
differential pH sensors, labo-
ratory pH sensors, process
pH sensors

Temperature An important factor for
growth of organisms
(ex. legionella) in water

20–50 °C
Most preferable
-30 °C

Temperature sensors
Ex: Thermocouples, resistive
temperature devices (RTDs,
thermistors), infrared radia-
tors, bimetallic devices, liq-
uid expansion devices,
molecular change of state
devices, silicon diodes

Turbidity Turbidity is the criterion that
determines the clarity of
water. It is measured by
Formazin Nephelometric Unit
(FTU) and Nephelometric
Turbidity Unit (NTU)

Less than
5 NTU

Turbidity sensors
Ex: Nephelometric sensors,
suspended solid sensors,
absorption sensors

Dissolved
Oxygen
(DO)

Amount of gaseous oxygen
present in water

6.5–8.0 mg/L Dissolved oxygen sensors

Conductivity Measures the capability of
water to pass a flow of electric
current. It gives an idea about
how much of substances,
chemicals, and minerals are in
the water

400 μS/cm Water conductivity sensors

Salinity Measures how much of salt is
dissolved in water

Less than
200 ppm

Salinity sensors
Ex: Electrode sensors, induc-
tive sensors

Total
Dissolved
Solids
(TDS)

TDS is the total amount of
organic and inorganic sub-
stances present in the water

500 mg/L TDS sensors

6.4 Water Purification Methods and the Possibility
of Using IoT

Water purification is the process of removing contaminants from raw water to make
it suitable for drinking. Dirt, parasites, bacteria, algae, viruses, fungi, and minerals,
including heavy metals, are removed from the water during the purification process.
Boiling, chlorination, filtration, coagulation and sedimentation, ion exchange, solar



treatments, distillation, and combined treatment systems are some of the small-scale
purification methods in use at the domestic level (Agrawal & Bhalwar, 2009).
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The boiling point of water is 100 °C at sea level and is highly influenced by the
surrounding pressure. A vast range of waterborne pathogens is vulnerable to
destruction when water is boiled. However, during the pasteurization process,
heating to 60 °C for 10 min also destroys most of the waterborne pathogens.

Therefore, heating the water to the desired level and maintaining it for a consid-
erable duration can minimize the energy utilization for boiling. Therefore, there is
good potential for using IoT techniques to monitor the temperature and duration of a
water heating system to control the use of energy and maintain water quality.

Chlorination is the most affordable and easy water purification method, especially
when a large quantity of water is purified. In this process, a measured amount of
chlorine (Cl) or chlorine compounds, such as sodium hypochlorite, is added to water
and allows for a specified contact time (30 min) to destroy pathogens such as
bacteria, viruses, and cysts. As the lethal effect of chlorine is determined by pH,
temperature, and contact time, IoT technology can be applied to monitor these
parameters in real-time (WaterProfessionals, 2022).

Filtration is a physical method of eradicating suspended particles, some patho-
gens, and algae from water to make the water safer and cleaner. Sand, charcoal,
membrane, and ceramic filters are used to filter the water. Although the lifetime of a
filter is determined by several factors, the total volume of the water filtered and the
level of impurity of the water are major determinants of the lifetime. Therefore,
sensors and IoT devices can be deployed to monitor filters.

In both coagulation and sedimentation methods, separation of suspended solid
particles is anticipated. Coagulation is the phenomenon that increases the particle
size of solid particles by combining them and allowing them to accumulate on the
bottom of the tank. In sedimentation, solid particles are supposed to settle on the
bottom of the tank due to their weight. Allum potash is one of the coagulation agents
that can be effectively used to control cholera (Khan et al., 1984). As this process is
time-consuming and excess coagulant agent gives the water an unpleasant taste,
water quality sensors can be used to determine the exact quantity of required
coagulant, and IoT devices can be used to provide coagulant precisely and on time.

Ion exchange is one of the most effective technologies to remove dissolved
inorganic ions. In this process, ionic contaminants are removed from water using
another tolerable ionic substance. This method has been widely used to remove the
water hardness due to the presence of Ca and Mg ions. As regular maintenance and
cleaning are essential for ion exchange purification systems, IoT technology can be
used to monitor and determine the required maintenance (Mazille, 2020).

In combined treatment systems, two or more purification methods discussed
above are combined.
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6.5 Solar Water Distillation and Potential for Improvement
with the Latest Innovations

Nature utilizes solar energy to convert saline water into freshwater by heating water
from oceans, lakes, rivers, and other large bodies of water in the hydrologic cycle.
Vapors are generated by increasing the temperature of water transported by wind to
distant places, which condense and precipitate in the form of rain. This natural
phenomenon can be achieved in an artificially constructed system, and condensed
water can be collected easily for day-to-day uses (Sanserwal et al., 2020). Solar
distillation is a promising and alternative method to supply water for small commu-
nities in rural areas. The major component of a solar water distillation system is the
solar still, which contains water for distillation and provides conditions to absorb
solar energy to make water vapor for desalination. The black paint inside the solar
still improves the solar energy absorption, and the glass top (transparent cover) of the
solar still allows the short wavelength of sunlight to enter the solar still while
blocking the longwave infrared radiation reflected by the water surface, conse-
quently increasing the temperature inside the solar still. The transmitted radiation
into the solar still is partially reflected and absorbed by the water, increasing its
temperature compared to the glass top. The absorbed radiation finally reaches the
black painted surface, generally known as the basin inside layer, where it is largely
absorbed. Then, most of the thermal energy is transmitted to the water, and a small
quantity may be lost to the atmosphere by conduction. Due to this, the temperature
difference between the water and glass top is increased. Therefore, transferring heat
from water to the glass top commences via three modes of heat transfer, radiation,
convection, and evaporation from the water surface. The evaporated water is depos-
ited on the inner surface of the glass top and is condensed after releasing the latent
heat. The condensed water stream into the collecting pipes is provided at the lower
ends of the glass top under gravity. The collected water is distilled water and ready
for further use. The thermal energy received by the glass cover, through radiation,
convection, and latent heat, is lost to the ambient environment by radiation and
convection (Tiwari et al., 2003). A perforated tube can be used to provide water flow
on the upper surface of the glass top to accelerate the cooling process of the glass top
to accelerate the evaporation process inside the solar still. Figure 6.3 shows two
types of solar stills, a single slope and a double slope, with their basic functions.

When the glass top of the solar still is inclined on one side, as shown in Fig. 6.3a.
The solar still is known as a single-slope solar still. As shown in Fig. 6.3b, the glass
top of the double-slope solar still is inclined on two opposite sides. When a solar
tracking mechanism is not available, the single-slope stills are more efficient in
one-half of the day, while the double-slope stills show fairly constant efficiency
throughout the day.
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Fig. 6.3 (a) Single-slope and (b) double-slope solar stills

6.5.1 Active and Passive Solar Distillation

Based on solar energy utilization, solar distillation units or solar stills can be
classified into two categories: active solar stills and passive solar stills. In passive
solar stills, only the solar energy directly falling into the solar still contributes to
water evaporation. In an active solar still, an external apparatus such as a flat plate
solar collector, an inverted absorber, or an additional condenser is connected to the
solar still to harness additional solar energy so that a faster rate of evaporation is
assured compared to the active solar stills (Ansari et al., 2013). As shown by Alawee
et al. (2021), the external heating process of active solar stills can be accomplished
by using a flat plate collector, solar concentrator, heat pipes and mini solar ponds. In
passive solar stills, the solar energy can be effectively harnessed to increase the basin
water temperature using internal and external reflectors that reflect the sunlight on
the absorption plate (Alawee et al., 2021). The efficiency and productivity of both
active and passive stills can be increased by increasing the surface area of the solar
distillation unit (Refalo et al., 2016). As shown by Aziz et al. (2017), several factors,
such as solar intensity, wind velocity, ambient temperature, water-glass temperature
difference, free water surface area, absorber plate area, glass angle, depth of water,
and temperature of inlet water, affect the productivity of a solar still (Arunkumar
et al., 2019a; Aziz et al., 2017). Figure 6.4 shows the schematic diagrams of active
and passive solar stills.

Solar stills can be classified based on design and configurations as basin type,
wick type, and special design such as hemispherical, spherical, concave, v shape,
tubular conical, and pyramid type. The performance of these systems is determined
by their design, elementary setup, and materials used to fabricate the distillation
system (Sanserwal et al., 2020).
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Fig. 6.4 (a) Active single-slope solar still and (b) passive single-slope solar still

6.5.2 Possible Innovations to Improve Vapor Generation
in Solar Stills

The solar water distillation method is not popular as it is highly uneconomical
because the distillation capacity of a simple basic solar still is very low, between
2 and 5 L/m2/day (Manokar et al., 2018; Murugavel et al., 2010). Several studies
have been conducted to improve the efficiency of vapor generation in solar stills
concerning a higher output of distillation (more than 5 L/day). Experiments have
shown that the use of solar concentrators internally and externally can increase
evaporation in solar stills. Plain mirrors and parabolic reflectors can be used here
to concentrate solar energy to improve productivity (Dev et al., 2011). Another
method to improve a solar distillation system is using phase change material to store
additional heat in the still. Here, different phase change materials, which can store
heat as latent heat, can be applied. Paraffin wax and nanoparticle-enhanced paraffin
are mostly used as latent heat storage materials (Kabeel & Abdelgaied, 2016).

In addition to latent heat storage, sensible heat storage materials can also be used
in solar stills to increase productivity. Fins, sand, sponges, marbles, pebbles, iron
scrap, wicks, charcoal, corrugated absorbers, black cotton, jute, clay, mild steel, and
black gravel granite are used for sensible heat storage (Arunkumar et al., 2019b).
Several studies have shown that the use of nanofluids in solar stills helps to increase
evaporation. Mixing nanoparticles of Al2O3 and Cu2O in wastewater still results in a
significant improvement in distillation capacity (Omara et al., 2015).

Heat absorbing materials such as PV panels, black cotton and jute can be used as a
higher heat-gaining material in solar stills to achieve a higher distillation (Manokar



et al., 2018; Pal et al., 2017). Several studies have been carried out by changing the
design of the solar still to improve productivity. Among them, one study has shown
that stepped-type solar stills can increase the absorbing area to improve the distilla-
tion output (Abdullah, 2013). Air blowers can be used to create a bubbling effect in
the still to increase the evaporation rate by distributing heat energy equally through-
out the basin (Joy et al., 2018). A condenser can be installed to improve the
condensation process to accelerate distillation. A bank of tubes immersed in flowing
fresh water is typically used as a condenser in solar stills (Refalo et al., 2016). One
study, which was conducted by integrating a compression heat pump with a solar
still in such a way that immersing the condenser in water and installing the evapo-
rator in the air of the still to provide two sources of heat and two places for
condensation, considerably improved the distillation capacity (Ben Halima et al.,
2014).
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6.6 Solar Water Heating Systems and Data Monitoring

Solar hot water systems or thermal systems have been designed specifically to
harness the heat energy of the sun and transfer it to water to increase the temperature
and store the warm water in an insulated tank while permitting the water to circulate
through the system until it reaches the desired temperature. Waterflow can naturally
occur due to the phenomenon of the water density changing with temperature or
otherwise controlling the flow forcefully with the support of a pump. When a pump
is in operation in the system, photovoltaic electricity from a solar panel is a good
option to provide power for both the pump and the controlling system. Unlike using
a natural flow system, when a controlled system is used, it is exceptionally easy to
maintain the preferred water temperature by monitoring the system parameters with
the assistance of thermal and flow sensors. Figure 6.5 gives a schematic illustration
of a solar hot water system.

Two types of solar water heating collectors can be used in this system: evacuated
tubes and flat plate collectors. Evacuated tubes are a bank of glass tubes mounted on
a frame, and flat plate collectors are a bank of glass or metal tubes installed in an
insulated absorbing box with a transparent top.

The day’s solar intensity, ambient temperature, water temperatures at the lower
and upper parts of the tank, lower and upper ends of the flat plate collector, and the
outlet are important parameters to check regularly. Temperature sensors can be used
to monitor the important temperature values in the system. Figure 6.6 shows how
continuous data monitoring of a solar water heating system with IoT technology can
be used to control the temperature of water output.
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Fig. 6.5 A schematic diagram of a simple solar water heating system

6.7 IoT-Based Solar Water Distillation and Hot Water
System

6.7.1 Study Conducted to Test the Performance of Solar Stills
Under Different Improvement Strategies

The solar water distillation system comprised several units, such as a solar still or
basin on a sand layer to store and evaporate water, a cooling system for condensation
of distilled water, a flat plate solar collector to preheat the water, and a frame to carry
all the components together. Materials were selected for fabricating each component
based on the designed factors, such as simplicity, reliability, and stability. The basin
was 0.072 m3 in capacity with a 0.5 m2 effective evaporation area and was composed
of a double-sloped glass top and a water supply pipe with a floater valve. All the



surfaces of the basin were fabricated with stainless steel and painted black for higher
absorption of a large amount of solar radiation and very low transmissivity of solar
energy. The sidewalls of the basin were insulated with 50 mm extended polystyrene
to obtain the advantages of sensible heat storage (Abu-Hijleh & Rababah, 2003).
Sponge cubes with dimensions of 60 mm × 60 mm × 30 mm were placed in the basin
water to increase the wetted surface area and reduce the water surface tension. A
river sand layer with a height of 2 cm was incorporated under the solar still to store
the additional heat. A cooling system was installed to support the condensing
process. The flat plate solar collector, which comprises a bank of copper tubes,
was designed to increase the temperature of the basin water by preheating to increase
the rate of distillation. Figure 6.7 shows a schematic diagram of the solar still with all
the new features and sensors.
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Fig. 6.6 Connection of sensors and IoT devices to control the temperature of output water of a solar
water heating system

Plates 6.1, 6.2, and 6.3 show how sponge cubes, flat plate collectors, and sand
layers have been set in the distillation system.
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Fig. 6.7 Schematic diagram of the solar water distillation system with improved features

6.7.2 Performance Evaluation of the Solar Still

The solar still performance was evaluated under five conditions to estimate the
contribution of each introduced feature separately.

In this study, only the passive solar still without a flat plate collector, sponge
cubes and sand layer was considered as T1. The solar still with only the flat plate
solar collector was considered T2. The solar still with only the sand layer was
considered T3. The solar still with only sponge cubes was taken as T4, and the
solar still with all the features of flat plate collector, sand layer and sponge cubes was
considered as T5.

The total average distilled output, maximum and average air temperatures of the
solar still, maximum and average water temperature of the solar still, and increase
percentage of each treatment compared to T1 are demonstrated in Table 6.3.

Both basin air and basin water temperatures increased to the maximum just after
noon because the absorption of heat was higher than the losses to the atmosphere. In
the early hours of the morning, the difference in glass temperature and the water
temperature was smaller, which caused lower productivity. This is because of the
small amount of energy absorbed by the water during these periods. Figure 6.8
shows the variation in the distilled output of all the treatments throughout the day.
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Plate 6.1 Arrangement of
sponge cubes in the solar
still

The highest output value and temperature values were observed in T5. Since the
flat plate solar collector more efficiently absorbs heat than the solar still, the basin
water temperature markedly increased, giving a higher production. When the sand
bed was incorporated under the metal solar still, it absorbed heat energy from water
so that the water and air temperatures inside the solar still decreased, resulting in
lower production in the morning. However, during the afternoon period, the sand
bed retained more heat energy due to its high thermal capacity. Therefore, during the
afternoon period, the distilled output and air and water temperatures increased more
conspicuously than during the morning period. In T3, the height of the sponge cubes
exposed above the water surface was 1 cm. Abu-Hijleh & Rababah (2003) showed
that at shorter exposure heights, more water rose to the top of the sponge by capillary
forces, thus increasing the evaporation rate of the solar still. Applying sponge cubes
increased the wetted surface area for evaporation and reduced the surface tension
between water molecules with the help of small openings in the sponge cubes; thus,
it was easier for the water molecules to evaporate. The graph in Fig. 6.8 clearly
shows that the distilled output increased in the morning even at low basin air and
water temperatures.
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Plate 6.2 Connection of
flat plate collector with solar
still

6.7.3 Water Quality Results

Table 6.4 shows the measured pH, EC, and TDS values of water before and after all
the treatments compared to the laboratory distilled water.

As the water used for the experiment was obtained from the public water supply,
all the water quality parameters of the water before treatments were within the
standard range recommended by the World Health Organization (WHO). According
to the water quality results, the initial EC and TDS values of water considerably
decreased by solar water distillation, but they were still within the recommended
range. Therefore, this improved solar water distillation system can also be used for
highly polluted water.

Several studies based on the application of IoT in water purification were carried
out with different IoT devices. Table 6.5 shows some of the previous studies related
to this study and IoT devices that were used in those studies along with major
findings.



Treatment
Total distilled output
(L/m2/day)

Improvement
percentage (%)
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Plate 6.3 Laying of a sand
layer under the solar still

Table 6.3 Air temperature, water temperature, distilled output, and improvement percentage

Water
temperature (°
C)

Air temperature
(°C)

Max. Average Max. Average

T1 48.0 38.85 51.6 40.80 1.67 –

T2 58.6 45.50 61.6 48.10 2.87 72.9

T3 52.6 41.10 54.6 41.45 2.01 19.9

T4 49.5 48.60 55.3 42.20 2.47 48.2

T5 58.3 43.60 64.3 46.30 3.98 138.3
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Fig. 6.8 Variation in the distilled output throughout the day

Table 6.4 pH, EC, and TDS values of the water with WHO standards

Quality
parameter

Before
Treatment

After treatment Laboratory
distilled water

WHO
standardT1 T2 T3 T4 T5

pH 7.38 6.90 7.06 7.12 7.22 7.21 7.66 6.5–8.5

EC (μS/cm) 431 8.17 7.22 6.69 6.60 7.01 1.41 Max. 750

TDS (ppm) 207.9 3.47 3.41 3.22 3.19 3.43 0.61 Max. 500

6.8 Conclusions

Solar water distillation can be used efficiently for small-scale water purification for
drinking. There is considerable potential for using IoT technology in many water
purification methods to save energy and increase efficiency by reducing human
involvement. There is a possibility to integrate solar water distillation and solar
water heating systems, as the essential components and requirements of both sys-
tems are interchangeable. In the conducted experiment, all the evaporation enhance-
ment strategies introduced for the distillation unit contributed to increasing the
distilled capacity of the system. The distilled production of the newly designed
distillation unit of 0.5 m2 increased by 138% with the combined effect of the sand
layer, flat plate solar collector, and sponge cubes. The flat plate solar collector is
suitable for increasing basin water temperature and basin air temperature. The
calculated improvement of the flat plate solar collector over the passive solar still
type was 72.9%. The river sand layer can store more heat energy during the morning
period due to its high thermal capacity and release during the afternoon period. The
efficiency of the distilled output increased by 48.2% when sponge cubes were



Study IoT devices Findings

incorporated into the solar still because the area for water evaporation increased and
the surface tension of the water molecules was reduced. The total average daily
production of the improved solar water distillation unit was 3.98 L/m2/day. The
production increased by increasing the area of the basin according to the require-
ment. The distilled output has safe pH, EC, and TDS levels so it is suitable for
drinking purposes.
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Table 6.5 Studies on IoT based water purification systems

Purification
method

IoT-based performance
analysis of hybrid solar
heater-double slope solar
still (Benghanem et al.,
2022)

Solar
distillation

Sensors—Temper-
ature, Humidity,
Water level
Controller—
Arduino Mega
2560
Communication—
WiFi
IoT Platform—
ThingSpeak

Distilled output—12 L/
m2/day
User can easily check
whether the system
works correctly or not

Water Purifier Quality
Monitoring Using IOT
(Deshmukh et al., 2020)

UV lamp along
with s reverse
osmosis or car-
bon block filters

Sensors—pH,
Temperature, Tur-
bidity
Controller—
Arduino
Communication—
WiFi

Water qualities are mon-
itored real time and
updated to the authorized
person

An IoT based Control Sys-
tem for a Solar Membrane
Distillation Plant used for
Greenhouse Irrigation (Gil
et al., 2019)

Solar membrane Sensors—Temper-
ature, Humidity,
Solar radiation,
CO2 concentration
Controller—MPC
Communication—
WiFi
IoT Platform—
Orion

Development of a model
predictive control strat-
egy in combination with
an IoT platform and a
smart grid framework

Cloud and IoT based smart
architecture for desalina-
tion water treatment
(Alshehri et al., 2021)

Dual nano
membrane
filtration

Sensors—Water
level, pH, Turbid-
ity, Conductivity
Controller—Rasp-
berry Pi
Communication—
WiFi

The desalination capacity
was 0.47 m3/l of fresh-
water from a saline con-
centration of 10 g/l, at
8.31 KWh/m3



6 Purification of Agricultural Polluted Water Using Solar Distillation. . . 95

References

Abdullah, A. S. (2013). Improving the performance of stepped solar still. Desalination, 319, 60–65.
https://doi.org/10.1016/j.desal.2013.04.003

Abu-Hijleh, B. A., & Rababah, H. (2003). Experimental study of a solar still with sponge cubes in
basin. Energy Conversion and Management, 44, 1411–1418.

Agrawal, V. K., & Bhalwar, R. (2009). Household water purification: Low-cost interventions.
Medical Journal Armed Forces India, 65(3), 260–263. https://doi.org/10.1016/S0377-1237(09)
80019-1

Alawee, W. H., Mohammed, S. A., Dhahad, H. A., Essa, F. A., Omara, Z. M., & Abdullah, A. S.
(2021). Performance analysis of a double-slope solar still with elevated basin— Comprehensive
study. Desalination and Water Treatment, 223, 13–25. https://doi.org/10.5004/dwt.2021.27125

Alshehri, M., Bhardwaj, A., Kumar, M., Mishra, S., & Gyani, J. (2021). Cloud and IoT based smart
architecture for desalination water treatment. Environmental Research, 195, 110812. https://doi.
org/10.1016/j.envres.2021.110812

Ansari, O., Asbik, M., Bah, A., Arbaoui, A., & Khmou, A. (2013). Desalination of the brackish
water using a passive solar still with a heat energy storage system. Desalination, 324, 10–20.
https://doi.org/10.1016/j.desal.2013.05.017

Arunkumar, T., Ao, Y., Luo, Z., Zhang, L., Li, J., Denkenberger, D., & Wang, J. (2019a). Energy
efficient materials for solar water distillation - A review. Renewable and Sustainable Energy
Reviews, 115, 109409. https://doi.org/10.1016/j.rser.2019.109409

Arunkumar, T., Raj, K., Rufuss, D. D. W., Denkenberger, D., Tingting, G., Xuan, L., & Velraj,
R. (2019b). A review of e ffi cient high productivity solar stills. Renewable and Sustainable
Energy Reviews, 101, 197–220. https://doi.org/10.1016/j.rser.2018.11.013

Aziz, S. N. S., El-Hadad, O., Rahim, S. A., & Chew, F. N. (2017). Solar still; unrevealed facts and
reasons causing its low productivity. Journal of Engineering Research, 5(1), 181–199.

Ben Halima, H., Frikha, N., & Ben Slama, R. (2014). Numerical investigation of a simple solar still
coupled to a compression heat pump. Desalination, 337(1), 60–66. https://doi.org/10.1016/j.
desal.2014.01.010

Benghanem, M., Mellit, A., & Emad, M. (2022). IoT-based performance analysis of hybrid solar
heater-double slope solar still. Water Supply, 22(3), 3027–3043. https://doi.org/10.2166/WS.
2021.414

Deshmukh, T., Lokhande, H. N., Raj, M., & Sadegaonkar, R. (2020). Real time internet of things
(IoT) based water quality. International Journal of Innovative Research in Technology, 7(2),
78–83.

Dev, R., Abdul-Wahab, S. A., & Tiwari, G. N. (2011). Performance study of the inverted absorber
solar still with water depth and total dissolved solid. Applied Energy, 88(1), 252–264. https://
doi.org/10.1016/j.apenergy.2010.08.001

Gil, J. D., Munoz, M., Roca, L., Rodriguez, F., & Berenguel, M. (2019). An IoT based control
system for a solar membrane distillation plant used for greenhouse irrigation. In Global IoT
summit, GIoTS 2019 - Proceedings. https://doi.org/10.1109/GIOTS.2019.8766370.

Gorchev, H. G., & Ozolins, G. (2011). WHO guidelines for drinking-water quality. WHO Chron-
icle, 38, 104–108. https://doi.org/10.1016/S1462-0758(00)00006-6

Joy, N., Antony, A., & Anderson, A. (2018). Experimental study on improving the performance of
solar still using air blower. International Journal of Ambient Energy, 39(6), 613–616.

Kabeel, A. E., & Abdelgaied, M. (2016). Improving the performance of solar still by using PCM as
a thermal storage medium under Egyptian conditions. Desalination, 383, 22–28. https://doi.org/
10.1016/j.desal.2016.01.006

Khan, M. U., Khan, M. R., Hossain, B., & Ahmed, Q. S. (1984). Alum potash in water to prevent
cholera. The Lancet, 3(4), 1032. https://doi.org/10.1177/004051756203200411

Manokar, A. M., Winston, D. P., Kabeel, A. E., & Sathyamurthy, R. (2018). Sustainable fresh water
and power production by integrating PV panel in inclined solar still. Journal of Cleaner
Production, 172, 2711–2719. https://doi.org/10.1016/j.jclepro.2017.11.140

https://doi.org/10.1016/j.desal.2013.04.003
https://doi.org/10.1016/S0377-1237(09)80019-1
https://doi.org/10.1016/S0377-1237(09)80019-1
https://doi.org/10.5004/dwt.2021.27125
https://doi.org/10.1016/j.envres.2021.110812
https://doi.org/10.1016/j.envres.2021.110812
https://doi.org/10.1016/j.desal.2013.05.017
https://doi.org/10.1016/j.rser.2019.109409
https://doi.org/10.1016/j.rser.2018.11.013
https://doi.org/10.1016/j.desal.2014.01.010
https://doi.org/10.1016/j.desal.2014.01.010
https://doi.org/10.2166/WS.2021.414
https://doi.org/10.2166/WS.2021.414
https://doi.org/10.1016/j.apenergy.2010.08.001
https://doi.org/10.1016/j.apenergy.2010.08.001
https://doi.org/10.1109/GIOTS.2019.8766370
https://doi.org/10.1016/S1462-0758(00)00006-6
https://doi.org/10.1016/j.desal.2016.01.006
https://doi.org/10.1016/j.desal.2016.01.006
https://doi.org/10.1177/004051756203200411
https://doi.org/10.1016/j.jclepro.2017.11.140


96 P. D. Kahandage et al.

Mazille, F. (2020). Disaster situations: Planing and preparedness, water purification, ion
exchange. Retrieved June 22, 2022, from https://sswm.info/sswm-university-course/module-6-
disaster-situations-planning-and-preparedness/further-resources-0/ion-exchange

Modi, K. V., & Modi, J. G. (2019). Performance of single-slope double-basin solar stills with small
pile of wick materials. Applied Thermal Engineering, 149, 723–730. https://doi.org/10.1016/j.
applthermaleng.2018.12.071

Murugavel, K. K., Sivakumar, S., Ahamed, J. R., Chockalingam, K. K. S. K., & Srithar, K. (2010).
Single basin double slope solar still with minimum basin depth and energy storing materials.
Applied Energy, 87(2), 514–523. https://doi.org/10.1016/j.apenergy.2009.07.023

Omara, Z. M., Kabeel, A. E., & Essa, F. A. (2015). Effect of using nanofluids and providing
vacuum on the yield of corrugated wick solar still. Energy Conversion and Management, 103,
965–972. https://doi.org/10.1016/j.enconman.2015.07.035

Pal, P., Yadav, P., Dev, R., & Singh, D. (2017). Performance analysis of modified basin type double
slope multi–wick solar still. Desalination, 422, 68–82. https://doi.org/10.1016/j.desal.2017.
08.009

Refalo, P., Ghirlando, R., & Abela, S. (2016). The use of a solar chimney and condensers to
enhance the productivity of a solar still. Desalination and Water Treatment, 57, 23024–23037.
https://doi.org/10.1016/j.enconman.2014.05.021

Sanserwal, M., Kumar Singh, A., & Singh, P. (2020). Impact of materials and economic analysis of
single slope single basin passive solar still: A review. Materials Today: Proceedings, 21,
1643–1652. https://doi.org/10.1016/j.matpr.2019.11.289

Singh, M., & Ahmed, S. (2020). IoT based smart water management systems: A systematic review.
Materials Today: Proceedings, 46, 5211–5218. https://doi.org/10.1016/j.matpr.2020.08.588

Tiwari, G. N., Singh, H. N., & Tripathi, R. (2003). Present status of solar distillation. Solar Energy,
75(5), 367–373. https://doi.org/10.1016/j.solener.2003.07.005

United Nations. (2020). The sustainable development goals report 2020. United Nations Statics
Division. Retrieved from https://unstats.un.org/sdgs

WaterProfessionals. (2022). Water purification and chlorination. Retrieved June 22, 2022, from
https://www.waterprofessionals.com/learning-center/chlorination/

WHO. (2022). Drinking-water. Retrieved June 23, 2022, from https://www.who.int/news-room/
fact-sheets/detail/drinking-water

https://sswm.info/sswm-university-course/module-6-disaster-situations-planning-and-preparedness/further-resources-0/ion-exchange
https://sswm.info/sswm-university-course/module-6-disaster-situations-planning-and-preparedness/further-resources-0/ion-exchange
https://doi.org/10.1016/j.applthermaleng.2018.12.071
https://doi.org/10.1016/j.applthermaleng.2018.12.071
https://doi.org/10.1016/j.apenergy.2009.07.023
https://doi.org/10.1016/j.enconman.2015.07.035
https://doi.org/10.1016/j.desal.2017.08.009
https://doi.org/10.1016/j.desal.2017.08.009
https://doi.org/10.1016/j.enconman.2014.05.021
https://doi.org/10.1016/j.matpr.2019.11.289
https://doi.org/10.1016/j.matpr.2020.08.588
https://doi.org/10.1016/j.solener.2003.07.005
https://unstats.un.org/sdgs
https://www.waterprofessionals.com/learning-center/chlorination/
https://www.who.int/news-room/fact-sheets/detail/drinking-water
https://www.who.int/news-room/fact-sheets/detail/drinking-water


Chapter 7
Long Range Wide Area Network
(LoRaWAN) for Oil Palm Soil Monitoring

Yee Nie Goh, Diyana Jamaludin, Hazreen Haizi Harith,
Alfadhl Yahya Alkhaled, Nurul Adilah Abdul Latiff,
and Samsuzana Abd Aziz

Abstract As the global agricultural sector gradually moves towards industry 4.0,
the implementation of the Internet of Things (IoT) in precision agriculture allows
farmers to improve the overall management with real-time monitoring. With wire-
less sensor networks (WSN), information regarding variability of soil electrical
conductivity (EC) and pH that crucially affect nutrient uptake are easily monitored.
However, the challenge of adopting these technologies in agriculture is the need for a
scalable and wide coverage wireless communication system. IoT implementations in
agriculture are restricted by limited network coverage, for example, in oil palm
estates that are vast and usually located in rural areas with limited internet access.
This study aims to propose a system design based on long range wide area network
(LoRaWAN) communication protocol to monitor soil EC and pH in an oil palm
nursery. The template for LoRaWAN network is laid out in four parts; sensor node,
gateway, network server, and application server. LoRaWAN is perfect for outlying
regions without cellular network coverage or for establishing private networks
covering long distances with minimum power consumption and maintenance. It
provides long range communication of small amounts of data with high immunity to
interference under low-power consumption. In this chapter, LoRaWAN is
implemented as the transmission protocol that meets the need of the IoT services
in oil palm nurseries to monitor soil EC and pH of growing mediums. A comparison
of LoRaWAN performance in a young oil palm plantation, an oil palm nursery, an
urban area and a greenhouse nursery shows that strong LoRaWAN transmission is
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achievable with higher gateway elevation and clear line of sight. LoRa transmission
successfully covered the entire oil palm nursery area of 6 hectare (ha) and reached up
to more than 1 km distance in the urban area. For wider areas, this setup can be
duplicated or scaled up. Both young oil palm plantation and nursery achieved strong
LoRa transmission with received signal strength indication (RSSI) close to -100
and signal-to-noise ratio (SNR) values that are considered very minimally corrupted.
From this study, the feasibility of LoRaWAN as a network protocol to be used in oil
palm nurseries for soil EC and pH monitoring is proven to be successful.
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Keywords Internet of Things (IoT) · Precision agriculture · Wireless sensor
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7.1 Introduction

The agricultural sector particularly in Asia is gradually improving as farmers are
encouraged to use modern techniques to increase yield and cut down on input cost.
Precision agriculture is a farming management concept that uses technology to
provide site specific care by observing, measuring and responding to inter and
intra-field variability in crops. This approach applies information technology
(IT) to ensure crops and soil receive all they need for optimum health and produc-
tivity. Furthermore, the use of modern technology not only increases crop produc-
tivity, but also helps in saving resources while keeping the environment clean and
safe (Pierce & Nowak, 1999). Precision agriculture includes monitoring crops from
various sensor nodes placed in agricultural fields using Internet of Things (IoT) and
wireless sensor networks (WSN) to provide solutions based on collected data (Mohd
Kassim et al., 2014).

Particularly in Malaysia and Indonesia, as the oil palm is the main contributing
crop to the economy, efforts have been focused to modernise the farming techniques
for higher productivity. In oil palm nurseries, monitoring electrical conductivity
(EC) and pH levels of growing mediums are essential to provide crops with an
optimum quantity of water and fertilisers based on their requirement to produce high
quality seedlings. However, current fertigation systems in oil palm nurseries lack
real-time crop requirement information as systems are monitored and controlled
manually. In large oil palm nursery estates, the use of IoT is challenging as the
coverage areas are vast and they are located in rural areas where internet access is
limited and expensive, hence, making it less feasible for adoption. Long range wide
area network (LoRaWAN) offers a very compelling combination of long range,
low-power consumption, and secure data transmission. It provides the ability for
sensors to connect at a range relatively further than other types of wireless sensor
networks. LoRaWAN is expected to provide long range communication in large and
outskirts oil palm nursery areas. Parameter data collected from sensors in growing
mediums with the help of a LoRaWAN gateway are stored in the cloud which could
be utilised for further analysis and automation to reduce labour while increasing



productivity. This chapter aims to provide real-time crop monitoring of EC and pH
of growing mediums that is accessible through the cloud. The specific objectives
were (1) to develop a soil EC and pH monitoring system based on LoRaWAN
communication protocol, (2) to test the feasibility of LoRaWAN to transmit soil EC
and pH data in different oil palms setups, and (3) to monitor and collect EC and pH
data in growing medium of oil palm seedlings.
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7.2 Internet of Things (IoT) in Agriculture

IoT refers to sensors, processing ability, software, and other technologies that
connect and exchange data with other devices and systems over the Internet or
other communication networks, which is a crucial component of digital advance-
ment in precision agriculture. An IoT system consists of several functional blocks to
facilitate various utilities to the system such as, sensing, identification, actuation,
communication, and management. Agricultural IoT framework is a six-layered
concept which includes hardware facilities, internet and communication technolo-
gies, IoT middleware, cloud services, big data analytics, and farmer experience (Ray,
2017) (Fig. 7.1).

Some of the domains of IoT for agriculture are farm monitoring, irrigation
management system, pest and disease control, and animal tracking (Ray, 2017).
As crop requirement varies throughout the field, real-time ecological information
gathered remotely from agricultural surroundings provides precise input of location,
timing, and amount required.

7.3 Wireless Sensor Network in Agriculture

Suitable communication technology for data transmission is important to ensure
successful implementation of IoT in agriculture. WSNs, which is the network of
sensors and actuators, are employed as a cost-effective application to increase
agricultural yield. Sensor nodes communicate wirelessly through a communication
protocol, forwarding data to an application server through a gateway. As more
sensor nodes are added to WSN, parameters of agricultural monitoring and network
scalability increase. Communication protocols form the backbone of IoT systems
that enable network connectivity and coupling to applications. However, the limita-
tions of most wireless communication technologies are high power consumption and
short transmission distance that fail to meet the requirement of WSN applications in
agriculture (Brewster et al., 2017).

To overcome this barrier, a low-power wide area network (LPWAN) is the recent
solution in the communication sector. Three representative technologies of LPWAN
that compete for large-scale IoT are long range (LoRa), narrow-band Internet of
Things (NB-IoT), and Sigfox. In agriculture, devices only update sensed data a few



times per hour as the environmental conditions do not radically change. LPWAN
does not focus on enabling high data rates per device; rather, the key performance
metrics defined for LPWAN are energy efficiency, scalability, and coverage where
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Fig. 7.1 IoT architecture framework in agriculture



Sigfox and LoRa are ideal for this application. NB-IoT is the least favourable
solution to use in agriculture, as it requires cellular coverage which many farms do
not have (Mekki et al., 2019).
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Sigfox has a slightly longer network coverage and range than LoRa, however,
LoRa performs better in battery life and latency (Jawad et al., 2017). Besides, LoRa
technology operates in the unlicensed frequency band, where end users are free to set
up LoRa gateways that are similar to house-owned WiFi routers (Song et al., 2017).
Therefore, LoRa technology is perfect for outlying regions without cellular network
coverage or for establishing private networks covering long distances with minimum
power consumption and maintenance.

7.4 Soil Electrical Conductivity (EC) and pH in Oil Palm

Oil palm (Elaeis guineensis) is one of the most important crops used for biodiesel
production and is a major cash crop income for ASEAN countries such as Indonesia
and Malaysia. To ensure optimum growth and high yield of oil palm, balanced and
adequate supply of fertilisers are required. Since fertiliser recommendations are
based on calibrated soil and crop requirement, therefore it is essential to monitor
the variability of EC and pH level in soil (Behera et al., 2017). Fertigation systems
provide balanced nutrition level to crop by monitoring and modifying pH and EC
level of water mixed fertilisers with respect to soil parameters (Samsuri et al., 2010).

EC is a measure of the total amount of salts in the growing medium. High soil
salinity restricts the crop’s ability to uptake water from soil while high EC levels
have a toxic effect on plant’s metabolism (Hanlon & Bartos, 1993). On the other
hand, pH is a measure of acidity or alkalinity that affects the availability of macro
and micronutrients in the growing medium (McCauley et al., 2009). Almost all crops
prefer a slightly acidic pH between 5.4 and 6.0. Soil EC values less than 1000 mhos/
cm and pH values more than 4.0 are categorised in the desirable range of soil
properties for oil palms (Goh et al., 2016). Furthermore, pH values above 5.5
correlate to high soil fertility for oil palm cultivation (Mutert, 1999). Thus, regular
monitoring of EC and pH of growing medium in oil palm nursery is essential to
prevent almost all nutrient-related problems during oil palm growth.

7.5 LoRaWAN System Design for Soil EC and pH
Monitoring

LoRaWAN defines the medium access control (MAC) communication protocol and
the system architecture for the WSN network, standardised by the LoRa Alliance
(Fremont, CA). The template for LoRaWAN network is laid out in four parts;
(1) nodes, (2) gateways, (3) network servers, and (iv) application servers. In this



study, a soil EC and pH monitoring system was proposed and developed based on
LoRaWAN architecture as shown in Fig. 7.2. In the time of development, this setup
was built on an Arduino based node and a single channel gateway in The Things
Network (TTN) V2.
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Fig. 7.2 LoRaWAN network architecture for soil EC and pH monitoring in oil palm plantation

(a)                                                        (b)

EC SensorpH Sensor LoRa node

Power bank

Fig. 7.3 (a) A LoRa node and (b) sensors connected to a LoRa node

A LoRaWAN node is an endpoint physical hardware device that contains sensing
capabilities, some computing power and a radio module for translating data into a
radio signal. These end devices can send data to the gateway and also receive data
via LoRa wireless protocol. The connection between a node and a gateway is
bi-directional with very low bandwidth, between 0.3 and 50 kbps. The hardware
components (Fig. 7.3) to setup a prototype node module in this study are as follows:



7 Long Range Wide Area Network (LoRaWAN) for Oil Palm Soil Monitoring 103

1. Arduino UNO Rev3
2. Dragino LoRa Shield 915 Mhz
3. DFRobot Analog Electrical Conductivity (EC) Sensor
4. DFRobot Analog pH Sensor

To build the LoRa node, LoRa shield is stacked onto Arduino UNO with an
antenna installed (Fig. 7.3a). An EC sensor is connected at analog pin A1 and pH
sensor at analog pin A0 of the Arduino UNO at the node. The LoRa node firmware is
set up by importing LoraWAN-MAC-in-C (LMIC) and EC sensor libraries into the
complete node sketch in Arduino IDE software.

The flow chart in Fig. 7.4 elaborates the algorithm flow at the node. Initial settings
like pin assignments for both sensors, baud rate and frequency are set according to a
standard requirement. The frequency for this system is set to 921.2 Mhz which is
within the allowable unlicensed frequency band for LoRa in Malaysia; from the
range of 919 to 923 Mhz. Since the algorithm uses serial communication, availability
of serial pins and acknowledgement from the gateway is checked to indicate
successful communication between the LoRa node and the gateway.

The LoRa packet messages received from nodes are forwarded by a physical
machine called gateway to the network server via the internet. These messages are
converted to an array of bits that can be sent via the traditional internet protocol
(IP) networks. The gateway is connected to The Things Network (TTN), a global
collaborative IoT ecosystem that creates networks, devices and solutions using
LoRaWAN to which it transmits all the messages. The hardware components to
setup the single channel gateway module are as follow:

1. Raspberry Pi 3 Model B+
2. Dragino LoRa GPS HAT 915Mhz

To build the LoRaWAN gateway, LoRa HAT is stacked onto the Raspberry Pi
with the antenna installed as shown in Fig. 7.5. The Raspberry Pi runs on Raspbian,
the free operating system based on Debian, optimised for the Raspberry Pi hardware.
The software for the single channel LoRa gateway is cloned from GitHub
(zakibakar75/single_chan_pkt_fwd). The pin configuration in globalconf.json file
is set as so; “pin_nss”: 6, “pin_dio0”: 7, “pin_rst”: 0. Then, the server is defined as
13.66.213.36 (router.us.thethings.network), spreading factor is set to SF7 and the
frequency is configured to 921.2 MHz in the main.cpp file. After the code is
compiled, the gateway is executed to obtain Gateway ID: b8:27:eb:ff:ff:c8:55:a1.

Figure 7.6 elaborates the algorithm flow at the server side from receiving broad-
cast messages and sending back acknowledgement to the same LoRa node. The baud
rate and frequency are set with the application programming interface (API) key
which is exposed by the handler selected; ttn-handler-brazil. Data is checked con-
tinuously as it is displayed in the TTN application data window.

The TTN ecosystem provides the network for IoT devices based on LoRaWAN
standards. It is based on an open community of developers, where LoRa gateways
and applications are registered for free. The TTN Server receives data packets from
the LoRa Gateway stored temporarily in TTN and reachable via Internet. The



network servers can be used for both uplink (i.e., sensor to application) or downlink
(i.e., application to sensor) communication.

104 Y. N. Goh et al.

ACK no serial data

ACK no reply

ACK received failed

Start

Assign EC and pH data pins

Set serial transmission at b d rate 115200 

and quency 921.2 MHz

Check serial data 
No

No

No

Yes

Yes

Yes

avail bilbility tty 

Get EC and pH values and send to gateway

Check avail

gateway

Check if node

received reply

ACK received

End

fre

able 

a

au

Fig. 7.4 Flowchart for LoRa node communication set up

A user account is registered at https://www.thethingsnetwork.org. To set up the
node in TTN, an application is created, and the device is registered under activation
by personalisation (ABP). The two session keys generated for this device, network

https://www.thethingsnetwork.org


session key and application session Key together with the device address are then
hardcoded into the complete node sketch. To set up the gateway in TTN, the
Gateway ID obtained previously from the gateway module is filled at gateway
Extended Unique Identifier (EUI) (a 16-digit alphanumeric code that uniquely
identifies a gateway in a LoRaWAN network) of the new registered gateway. The
frequency of 921.2 MHz is set and “ttn-router-asia-se” is selected. Upon successful
node and gateway registration, TTN data displays received packets from the LoRa
node in the application data window. The payload shown in raw bytes in the
application data window is decoded to display in ASCII format (Fig. 7.7). The raw
byte data is taken and then a string that contains all of the characters corresponding to
each byte is returned.
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Fig. 7.5 LoRa gateway
with an antenna

The LoRaWAN network server is then interfaced with the application server, in
which application-specific processes are performed on cloud. Application server is
where the data collected from the end devices, are available to browsers for viewing,
manipulated and sent back out to nodes over the network server. The last segment of
the system is the visualisation of received data using Node-RED, which is a flow-
based development tool for visual programming developed originally by IBM for
wiring together hardware devices, APIs, and online services as part of the IoT. The
Node-RED has extensions to get data from TTN and functions for dashboard user
interface (UI). Figure 7.8 shows the browser-based flow editor for board voltage,
board temperature, soil EC, and soil pH data obtained from TTN. Data from TTN are
downloaded, modified into charts and gauges to be displayed in the dashboard UI.

The visualisation of the received data sensed by the node module is displayed in
the dashboard UI. Figure 7.9 shows the results obtained from the LoRa node as EC
and pH sensors are placed into the soil. The soil EC and pH readings of growing
medium are obtained in real time. From this dashboard, users can easily track and
monitor their crop condition to make better decisions for further controls.



106 Y. N. Goh et al.

Start

Set serial transmission at baud rate 115200 

and frequency 921.2 MHz

API Key of The Things Network

A

End

Call TTN

Is data available? 
ACK “Nothing to 

receive”

Get data from node and 

display result at payload

No

Yes

Fig. 7.6 Flow chart for receiving broadcast messages and sending back acknowledgement to the
LoRa node

7.6 Signal Propagation Tests

A series of small-scale deployments was carried out to test the signal transmission
feasibility of the developed LoRaWAN system within different environmental
setups. The tests aimed to measure and compare the signal propagation performance
through some foliage environments; a young oil palm plantation (Fig. 7.10), an oil
palm nursery (Fig. 7.13), and an urban area (Fig. 7.15). All tests are carried out in
Selangor, Malaysia. The gateway and the end-node device hardware of the system
are battery powered. Hence, this portability allowed the experiment to be tested in
various kinds of environments. From these experiments, relevant signal quality
parameters such as the received signal strength indication (RSSI) and signal to
noise (SNR) values together with the distance of each node from the gateway are
extracted.
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Fig. 7.7 Screenshot of TTN V2 payload data

Fig. 7.8 Node-RED browser-based flow editor
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Fig. 7.9 Node-RED dashboard for soil EC and pH readings

7.6.1 Signal Propagation Test in a Young Oil Palm
Plantation

The test area was at Universiti Putra Malaysia (UPM) Oil Palm Plantation, with a
total area of four hectares. In total 850 7-year-old, around 5 m tall oil palm trees are
planted in this block. The gateway is stationary and placed at 2.988439, 101.723713
on a 7 m high building. The ground elevation of the building is 81 m, hence the total
elevation inclusive of building height is 88 m. The test is carried out by positioning
the end-node device at different distances to test the maximum range of signal
received.

The RSSI is the received signal power in milliwatts and is measured in dBm. This
value is used as a measurement of how well the receiver (gateway) can “hear” a
signal from the sender (node). RSSI values are negative and the closer it is to zero,
the stronger the signal. For LoRa transmission, RSSI values from -30 dBm to -
120 dBm are considered strong while values below -120 dBm are categorised as
weak signals. On the other hand, SNR is the ratio between the received power signal



and the noise floor power level. The noise floor is an area of all unwanted interfering
signal sources which can corrupt the transmitted signal and therefore retransmission
will occur. Normally the noise floor is the physical limit of sensitivity, however,
LoRa works below the noise level. Typical LoRa SNR values are between -20 dB
and +10 dB. Signals closer to +10 dB indicates that the received signal is less
corrupted. LoRa can demodulate signals which are -7.5 dB to -20 dB below the
noise floor. In all measurements (Fig. 7.11), the red colour points at zero does not
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Fig. 7.10 (a) Environment in a young oil palm plantation with oil palms around five metres tall, (b)
the LoRa gateway placement, and (c) the nodes and gateway locations in the oil palm plantation



indicate the value zero but rather an indication of signal loss at that specific point
location.
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Fig. 7.11 (a) Received Signal Strength Indication (RSSI) and (b) Signal to noise ratio (SNR) in a
young oil palm plantation

To effectively cover long ranges and achieve a good link budget, it is important to
establish a direct line of sight between the transmitter and receiver as often as
possible. In radio transmission, specific spatial areas in between the line of sight
are referred to as Fresnel zones (Fig. 7.12). If there are objects in these zones, they
can have a negative influence on the wave propagation, even when there is visual
contact between the transmitting and receiving antennas. For each object located in
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– –

the Fresnel zone, the signal level is lowered, and the range is reduced (Jebril et al.,
2018).
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Fig. 7.12 Fresnel zone between transmitter and receiver

Table 7.1 LoRa transmission result in young oil palm plantation

Distance
from
gateway
(m)

Height (m)

Ground
Elevation
(m)

Approximate
Surrounding Tree
Height (m)

Total
Height
(m)

Y1 2.989326,
101.723095

121.16 76 5 81 -101 -5

Y2 2.989889,
101.722742

192.58 67 5 72 -101 -4

Y3 2.990331,
101.723019

223.04 66 5 71 -102 -6

Y4 2.989674,
101.722206

217.27 60 5 65 -102 -3

Y5 2.989009,
101.721890

212.98 59 5 64 -102 -5

Y6 2.989030,
101.721305

276.51 53 5 58

Based on the results for LoRa transmission in the young oil palm plantation, the
RSSI values were almost constant as distance increased. Five of the points were in
the range of strong LoRa signals except for point Y6 which has packet loss
(Table 7.1). It is observed that there is a large variation in topography as ground
elevation ranges from 81 m at the gateway to 53 m at where point Y6 is located.
Since Y6 is at a lower elevation, the signal is disrupted before reaching the gateway
as the signal must pass through a wide canopy and fronds of oil palm trees that were
of similar height to the gateway. Thus, there is no clear line of sight between the node
and the gateway. The area was secluded and the foliage attenuated LoRa signal
propagation quite heavily. Signals that propagate through the oil palm trees are
greatly affected by the distributed wide fronds that cause attenuation, scattering,
diffraction and absorption of the radiated propagating waves (Ahmad et al., 2018).

In the experiment, the gateway placement was limited to a 7 m building which
was the tallest building in that area. For LoRa transmission to reach further areas in



the young oil palm plantation, the gateway should be placed at a higher elevation for
direct line of sight. The furthest point tested that received signal was as far as
223.04 m. The SNR values for all five points had negative values showing that
noise level is higher than signal level throughout the transmission but is still within
the range of a good signal. The transmission is affected by the nature of the
plantation environment where large oil palm fronds attenuate LoRa signals.
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7.6.2 Signal Propagation Test in an Oil Palm Nursery

The next test area was at Malaysian Palm Oil Board (MPOB) Nursery, Bangi with a
total area of six hectares (Fig. 7.13). The oil palm seedlings are about 12–18 months
old, ranging from 1–2 metres tall. The gateway is stationary and placed at 2.928454,
101.765041 on a 2.5 m high hut. The ground elevation of the hut is 22 m, thus the
total elevation inclusive of hut height is 24.5 m. The test is carried out by positioning
the end-node device at different distances to test the maximum range of the signal
transmission.

In the oil palm nursery, typically there were no tall buildings and the seedlings
had an average height of one to two metres as shown in Fig. 7.13a. As there were no
attenuation factors, LoRa transmission at every node point was successful without
packet loss, covering the whole area of six hectares (Table 7.2). For these distances,
even with small obstacles like small storage buildings and oil palm seedlings, the
transmissions were successful. In this nursery, communications with distance up to
261.01 m can easily be achieved even when the gateway is placed on a 2.5 m hut.
However, within a similar distance, at 276.51 m of point Y6 in the young oil palm
plantation, there were no signals received. This strongly proves that a clear and direct
line of sight is required for successful LoRa transmission.

Based on the RSSI vs. distance graph in Fig. 7.14, as distance increases, RSSI
gradually decreases from -91 to -104 dBm. All node points have positive SNR
with higher received power signal than noise except for point N6 having negative
SNR value indicating signal being lower than noise. This probably could be caused
by the storage building at N1 which is directly in the line of sight between N6 and the
gateway. Even at N4 there were few rows of 7 m high oil palm trees, the signal was
still good because there was a clear line of sight as trees were planted sparsely with
ample space for penetration. From this experiment, the feasibility of LoRaWAN as a
network protocol is justified as the whole oil palm nursery area was successfully
covered with strong LoRa transmission.

7.6.3 Signal Propagation Test in an Urban Area

In this test, the signal propagation performance is carried out in the urban area
surrounded by tall buildings, houses and trees around UPM campus and Sri Serdang



town with an estimated total area of 225 hectares (Fig. 7.15). The gateway is
stationary and placed at 3.008647, 101.721345 on a 50 m (11 storeys) high building.
The ground elevation of the building is 46 m, thus the total elevation inclusive of
building height is 96 m above sea level. The test is carried out by positioning the
end-node device at different distances to test the maximum range of signal
transmission.
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Fig. 7.13 (a) Environment in the Malaysian Palm Oil Board (MPOB) oil palm nursery, Bangi, (b)
the LoRA gateway placement at a station building, and (c) the nodes and gateway location in the oil
palm nursery

In the urban area, the gateway was placed at a much higher elevation than in both
the young oil palm plantation and nursery as it was easier to get access to higher
buildings. The gateway was placed indoors beside a window on the 11th floor at



Point Coordinates
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(dBm)

SNR
(dB)

about 50 m high. Therefore, LoRa transmission successfully reached up to 1.1 km in
a city neighbourhood surrounded by trees, houses and some tall buildings that were
made of a variation of materials. At point U6, though it was just 646.66 m away from
the gateway, the signal was blocked by a seven storey UPM Engineering Faculty
building. Point U3 had a similar distance of 1.1 km as U9, however, had signal loss
due to the dense housing area surrounding U3. Furthermore, coverage radius was
limited as the gateway was placed indoors. Almost all points transmitted data at
negative SNR with RSSI lower than -100 dBm (Fig. 7.16) indicating there was
higher interference in the transmission (Table 7.3).
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Table 7.2 LoRa signal transmission results in oil palm nursery

Distance
from
Gateway
(m)

Height (m)

Ground
Elevation
(m)

Approximate
Surrounding
Tree Height (m)

Total
Height
(m)

N1 2.9278347,
101.76529435

73.62 22 1 23 -91 8

N2 2.92640933,
101.76537634

227.58 23 1 24 -100 4

N3 2.92627145,
101.76467087

241.57 23 1 24 -96 6

N4 2.92642459,
101.76386446

261.01 21 7 28 -99 4

N5 2.92633962,
101.7660182

256.75 21 1 22 -95 7

N6 2.92681377,
101.76570588

194.66 23 1 24 -104 -3

N7 2.92740759,
101.76496567

115.84 23 1 24 -96 6

N8 2.92789339,
101.76479844

67.68 23 1 24 -93 8

N9 2.92850714,
101.76577265

80.36 20 2 22 -98 5

N10 2.92815334,
101.76593863

103.77 20 1 21 -101 2

The attenuation of signal happens due to it having to pass through or around
several materials harder than wood (Rudd et al., 2014). Thus, in an urban environ-
ment, there is a heavy dependency on the placement of both gateway and end-node
as a single house can have a large effect on the signal quality. This problem can be
avoided by placing the gateway at higher elevations to reduce path loss by going
around objects rather than through them. Height has a great impact on performance
when there is free line of sight and the Fresnel zone is clear of obstacles. By applying
this elevation in the young oil palm plantation and oil palm nursery, performance
would very likely improve drastically.
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Fig. 7.14 (a) Received Signal Strength Indication (RSSI) and (b) Signal-to-noise ratio (SNR)
across distances in oil palm nursery

7.7 Calibration of EC and pH Sensors

The calibration of EC and pH sensors were carried out to validate measurement
accuracy. Errors are estimated during normal operation of a sensor and corrected by
a suitable feedback mechanism of the calibration code.

For the EC sensor, a two-point calibration is done using standard buffer solutions
of 1413 μS/cm and 12.88 mS/cm. The EC calibration code is uploaded to the
Arduino board and commands are input into the serial monitor to view and calibrate
electrical conductivity readings. The sensor probe is washed with distilled water,
dried with paper and inserted into 1413 μS/cm standard buffer solution (Fig. 7.17).
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Fig. 7.15 (a) The LoRa gateway placement at the building and (b) the nodes and gateway location
in the urban area
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Fig. 7.16 (a) The received signal strength indication (RSSI) and (b) the signal-to-noise ratio (SNR)
across distances in the urban area
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The probe is stirred gently in the solution, until the values are stable as the
programme automatically identifies buffer solution 1413 μS/cm. After the first
point calibration is completed, relevant parameters are saved and the second point
calibration for buffer solution 12.88 mS/cm is performed.
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Table 7.3 LoRa signal transmission in an urban area

RSSI
(dBm)

SNR
(dB)

U1 3.006262, 101.719660 333.51 45 -101 -3

U2 3.000516, 101.717129 1026.92 54 -102 -6

U3 3.004829, 101.711426 1194.04 41

U4 3.007306, 101.715167 712.52 47 -101 -8

U5 3.004845, 101.722722 455.51 46 -104 -1

U6 3.003334, 101.719087 646.66 47

U7 3.002631, 101.721258 679.38 48 -103 0

U8 3.001333, 101.721528 822.46 58 -104 -3

U9 2.998801, 101.723629 1124.55 77 -105 -7

U10 2.996780, 101.720701 1322.66 81

Fig. 7.17 EC sensor and conductivity buffer solutions

For the pH sensor, buffer solutions 4.00, 7.00 and 10.00 are used to calibrate for
neutral, acidic and alkaline solutions (Fig. 7.18). The buffer solutions are measured
with a handheld pH meter to check pH value accuracy of the buffer solutions
(Fig. 7.19).

The pH electrode is washed with distilled water and placed into the 7.00 buffer
solution (Fig. 7.20). The pH calibration code is uploaded to the Arduino and the error
of the pH value is printed on the serial monitor is compared with 7.00. The value



difference of 0.11 is input at “#define Offset” of the calibration code. Then the pH
electrode is placed into the 4.00 buffer solution and waited for about 1 min. Then the
potential gain of the sensor board is adjusted until it reaches 4.00 and the readings are
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Fig. 7.18 pH buffer solutions

Fig. 7.19 (a) Ionix Instruments Premium Line Testers Series 5, (b) pH measurement



allowed to stabilise. After the acidic calibration is completed, alkaline calibration is
then performed using 10.00 buffer solution.

7 Long Range Wide Area Network (LoRaWAN) for Oil Palm Soil Monitoring 119

Fig. 7.20 pH sensor calibration

7.8 Soil EC and pH Measurement Test

To test the practicality of using this system in an indoor environment to monitor soil
parameters, a soil EC and pH measurement test is carried out in the UPM Transgenic
Greenhouse (2.993361, 101.719596) (Fig. 7.21). A total of 60 oil palm seedlings of
9 months old are planted in this 78.04 m2 greenhouse. Four different types of
treatment are given to the oil palm seedlings in the greenhouse; uninoculated with
water deficit; uninoculated and well-watered; inoculated and well-watered; and
inoculated with water deficit. In this measurement test, five seedlings from each
bench are monitored for soil EC and pH readings. The gateway is placed at five
different points in the greenhouse (Fig. 7.22).

Soil EC (Fig. 7.23) and pH (Fig. 7.24) both show smooth line graphs for each
seedling indicating stable sensor measurement and data transmission. Both EC and
pH graphs display the differences in soil EC and pH values of seedlings in different
growing conditions. Further observations and experiments can be carried out with
the data obtained from soil monitoring to conduct plant health analysis. One of the
factors which may affect soil salinity is the evapotranspiration rate. Seedlings
located nearer to a ventilation fan will experience higher evapotranspiration rate.



Based on both charts, a healthy seedling that is uninoculated and well-watered has an
average EC value of 419.2 uS/cm and an average pH value of 5.5.
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Fig. 7.21 (a) Environment in greenhouse, (b) sensor node, and (c) EC and pH sensors placed in
soil in the polybag of an oil palm seedling

Both the gateway and the node were placed in the greenhouse to evaluate the
RSSI and SNR in an indoor environment while monitoring soil EC and pH of five
different oil palm seedlings. According to Table 7.4, RSSI decreases as distance



between gateway and node increases. Overall, the average RSSI of -63 dBm and
SNR of 9 dB are considered as strong and good LoRa transmission. In the green-
house, the oil palm seedlings were arranged with relatively wide spacing between the
seedlings. The transmission did not face much interference as the signals from the
node did not need to penetrate any walls to reach the gateway.
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Fig. 7.22 Layout of greenhouse benches, gateway positions and tested seedlings Layout of
greenhouse benches, gateway positions and tested seedlings
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Fig. 7.23 Soil EC measurements of different treated oil palm seedlings transmitted using LoRa
network in a greenhouse nursery
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Fig. 7.24 Soil pH measurements of different treated oil palm seedlings transmitted using LoRa
network in a greenhouse nursery

Table 7.4 Node RSSI and
SNR at various gateway loca-
tions inside a greenhouse

S1 S2 S3 S4 S5

Gateway/sensor node (RSSI)

G1 -37 -59 -65 -65 -76

G2 -56 -68 -75 -64 -68

G3 -65 -80 -57 -60 -66

G4 -66 -60 -54 -51 -55

G5 -75 -67 -64 -65 -62

Gateway/sensor node (SNR)

G1 10 9 9 9 10

G2 10 10 9 9 10

7.9 Conclusion

A soil EC and pH monitoring system based on LoRaWAN protocol was successfully
developed. In this study, a performance evaluation of the LoRaWAN network was
conducted and from this evaluation, limitations of the performance in different
environments were analysed. LoRaWAN transmission was able to cover the entire
oil palm nursery area of 6 ha in this study with a maximum distance of 261 m. In the
young oil palm plantation, as the area was secluded with wide canopy and fronds, the
signal strength weakened as distance increased therefore achieving only a maximum



distance of 223 m. This problem can be circumvented by elevating the gateway or
device to the point with free line of sight as proven in urban areas achieving up to
more than 1 km distance. As for the test in the greenhouse setup (78.04 m2), the
transmission did not face much interference and LoRaWAN communication gave
stable measurements throughout the experiment (10.00 am until 2.00 pm) with an
average EC of 419.2 uS/cm and an average pH of 5.5. From this study, the feasibility
of LoRaWAN as a network protocol to be used in oil palm nurseries for soil EC and
pH monitoring is proven to be successful. The use of LoRaWANwill benefit farmers
and overcome the restrictions for IoT implementation in the agriculture sector.
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7.10 Recommendation

The scalability of LoRaWAN can be improved by increasing the spreading factor
(SF) values. In this study, SF7 was used throughout the whole experiment. By
increasing the SF, the bit rate will be slower but energy per data set becomes higher
thus resulting in higher range. Furthermore, there should be optical visibility
between the transceiver and receiver antennas by placing the gateway at a higher
elevation for clear line of sight. The range can be improved by increasing the height
of the antennas to achieve optical visibility between them.

For future investigation into this subject, more case studies are needed as this one
is limited to short-term tests and conducted under similar weather conditions for all
cases. For further application of the system, a fully automated fertigation system can
be developed based on the LoRaWAN protocol. Complete data analytics can be
performed by incorporating information from a weather station and sensor nodes to
send feedback (downlink) to the actuator in fertigation systems. Another improve-
ment to the current system is to add additional features such as resistance to the
environment with waterproof, surge and lightning protection.

References

Ahmad, K. A., Salleh, M. S., Segaran, J. D., & Hashim, F. R. (2018, February). Impact of foliage on
LoRa 433MHz propagation in tropical environment. In AIP Conference Proceedings (Vol.
1930, No. 1, p. 020009). AIP Publishing LLC.

Behera, S. K., Suresh, K., Rao, B. N., Ramachandrudu, K., Manorama, K., & Harinarayana,
P. (2017). Soil fertility and yield-limiting nutrients in oil palm plantations of north-eastern
state Mizoram of India. Journal of Plant Nutrition, 40(8), 1165–1171.

Brewster, C., Roussaki, I., Kalatzis, N., Doolin, K., & Ellis, K. (2017). IoT in agriculture: Designing
a Europe-wide large-scale pilot. IEEE Communications Magazine, 55(9), 26–33.

Goh, K. J., Mahamooth, T. N., Ng, H. P., Teo, C. B., & Liew, Y. A. (2016). Managing soil
environment and its major impact on oil palm nutrition and productivity in Malaysia. Advanced
Agriecological Research Sdn. Bhd.

Hanlon, E. A., & Bartos, J. M. (1993). Soil pH and electrical conductivity: A country extension soil
laboratory manual. Circular (USA). no. 1081.



124 Y. N. Goh et al.

Jawad, H. M., Nordin, R., Gharghan, S. K., Jawad, A. M., & Ismail, M. (2017). Energy-efficient
wireless sensor networks for precision agriculture: A review. Sensors, 17(8), 1781.

Jebril, A. H., Sali, A., Ismail, A., & Rasid, M. F. A. (2018). Overcoming limitations of LoRa
physical layer in image transmission. Sensors, 18(10), 3257.

Kassim, M. R. M., Mat, I., & Harun, A. N. (2014, July). Wireless Sensor Network in precision
agriculture application. In 2014 International conference on computer, information and tele-
communication systems (CITS) (pp. 1–5). IEEE.

McCauley, A., Jones, C., & Jacobsen, J. (2009). Soil pH and organic matter. Nutrient Management
Module, 8(2), 1–12.

Mekki, K., Bajic, E., Chaxel, F., & Meyer, F. (2019). A comparative study of LPWAN technologies
for large-scale IoT deployment. ICT Express, 5(1), 1–7.

Mutert, E. (1999). Suitability of soils for oil palm in Southeast Asia. Better Crops International,
13(1), 37.

Pierce, F. J., & Nowak, P. (1999). Aspects of precision agriculture. Advances in Agronomy, 67,
1–85.

Ray, P. P. (2017). Internet of things for smart agriculture: Technologies, practices and future
direction. Journal of Ambient Intelligence and Smart Environments, 9(4), 395–420.

Rudd, R., Craig, K., Ganley, M., & Hartless, R. (2014). Building materials and propagation (Final
Report, Ofcom, 2604).

Samsuri, S. F. M., Ahmad, R., & Hussein, M. (2010, May). Development of nutrient solution
mixing process on time-based drip fertigation system. In 2010 Fourth Asia international
conference on mathematical/analytical modelling and computer simulation
(pp. 615–619). IEEE.

Song, Y., Lin, J., Tang, M., & Dong, S. (2017). An internet of energy things based on wireless
LPWAN. Engineering, 3(4), 460–466.



Chapter 8
Strategic Short Note: Application of Smart
Machine Vision in Agriculture, Forestry,
Fishery, and Animal Husbandry

Kai-Rong Chang, Tsung-Hsiang Ma, and Yan-Fu Kuo

Abstract Food production is an increasingly important topic worldwide due to
factors such as population increase and workforce aging. In conventional agriculture,
which consists of forestry, fishery, and agriculture, and animal husbandry, manual
observation is the main method used by farmers to monitor field and animal
conditions. However, the younger generation is reluctant to engage in farming due
to the high labor requirements and low wages. To solve this problem, smart machine
vision, which is the combination of deep learning and machine vision, is applied for
managing farms and increasing production. In this section, the architectures of smart
machine vision applications are highlighted. Several examples of the applications
are shown.

Keywords Food security · Convolutional neural networks · Recurrent neural
networks · Artificial intelligence · Machine learning · Deep learning

8.1 Introduction

Food security is always one of the top priorities globally. As estimated by the United
Nations, the global population will reach 9.7 billion in 2050 (United Nations, 2022).
However, climate change makes food production more challenging by reducing
farmable land and worsening the environment for animal husbandry. In addition,
food production is facing issues of labor shortage and aging workforce (United
Nations, 2022). Nowadays, few in the young generation are willing to work in
agriculture, forestry, fishery, and animal husbandry because of the harsh working
environments and disproportionate wages.
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Past advances in farming have yielded new equipment and facilities designed to
improve farming efficiency (e.g., tractors and greenhouses). However, the observa-
tion of farming or animal conditions still relies on manual observation. For example,
farmers have to patrol in the field to check the growth condition of crops. In animal
husbandry, farmers have to patrol regularly to monitor animal conditions. This is
because the environments for crops and animal husbandry are usually complex.
However, manual observation is slow and requires experience. More automatic
monitoring approaches are needed.

In recent years, due to breakthroughs in computing speed, deep learning has
become more popular as a method to solve complex machine vision problems in the
fields of agriculture, forestry, fishery, and animal husbandry. The application of deep
learning algorithms in machine vision is referred to as smart machine vision.
Convolutional neural networks (CNNs) and recurrent neural networks (RNNs;
Rumelhart et al., 1985) are the common types of deep learning algorithms that are
employed in smart machine vision. The use of smart machine vision is regarded as
an automatic solution in the aforementioned fields.

This section introduces the workflow and applications of smart machine vision in
agriculture, forestry, fishery, and animal husbandry. Firstly, different types of CNNs
in various applications are introduced. Next, four components of smart machine
vision applications are introduced. Last but not least, several examples of smart
machine vision in agriculture, forestry, fishery, and animal husbandry are shown.
These studies demonstrated how smart machine vision can help to resolve the food
security problem.

8.2 Tasks of Smart Machine Vision

Smart machine vision applications can be categorized into static and dynamic tasks
(Fig. 8.1). Static tasks include classification, localization and classification, semantic
segmentation, and instance segmentation. Dynamic tasks are usually behavior rec-
ognition tasks. Typically, static tasks use images as the input. On the other hand,
dynamics tasks use videos as the input.

Various types of CNNs are used for static tasks. For classification, CNNs
containing convolution layers, pooling layers, and fully connected layers are used.
These CNN models are usually referred to as backbone CNNs. Commonly used
backbone CNNs include AlexNet, VGG, ResNet, etc. (Alzubaidi et al., 2021). For
localization and classification, CNN models are usually composed of backbone
CNNs, necks, and heads. Commonly used localization and classification CNN
models include Fast R-CNN, YOLO, etc. (Liu et al., 2020). For semantic segmen-
tation and instance segmentation, CNNs with encoder–decoder architectures are
typically used. The commonly used semantic segmentation and instance segmenta-
tion CNNs include U-Net (Garcia-Garcia et al., 2018), YOLACT (Tian et al.,
2021), etc.
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Fig. 8.1 Tasks of smart machine vision

Dynamic tasks are typically fulfilled using the combination of CNNs and RNNs.
CNNs extract features from video frames, and RNNs determine the output by
considering the features in consecutive frames of videos. A commonly used RNN
is gated recurrent units and long short-term memory (Alzubaidi et al., 2021).

8.3 The Components of Smart Machine Vision

Typical smart machine vision applications in agriculture, forestry, fishery, and
animal husbandry include four important components: image acquisition, machine
learning, database, and user access (Fig. 8.2). Image acquisition is the first step in
machine vision implementation. Images are collected by using cellphones manually
or by using stationary cameras automatically. Typically, if the application requires
only one image, cellphones are used for image acquisition. By contrast, if the
application requires videos, stationary cameras are used for image acquisition.

The component of machine learning includes five steps, namely image collection,
image augmentation, model architecture selection, model training, and model per-
formance evaluation. To train a deep learning model, it is recommended to acquire at
least 500 images for each category. The images are next annotated. The annotated
images are then split into training, validation, and test with a ratio of typically 8:1:1.
Image augmentation (e.g., flipping and rotation) is subsequently applied to the
annotated training images to generalize the images and improve the robustness of
the model to be trained. A CNN model for a specific task (e.g., classification,
localization and classification, semantic segmentation, and instance segmentation)
is then chosen. The training of the model involves hyperparameter selection. Typical



hyperparameters include learning rate and weight decay. Appropriate
hyperparameters improve the performance of the model to be trained. After the
model is trained, test images are applied to the trained model to evaluate the model
performance. The aforementioned procedure completes the component of machine
learning.
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Fig. 8.2 Machine vision in agriculture implementation flow

A database is usually used in smart machine vision applications too. The database
is an essential component because the data for model training (acquired images and
labels of images) are stored in the database. The database can be used to store the
images uploaded by end users too.

Another essential component of smart machine vision is user access. Typically, a
microservice is established to serve as a bridge between the internal system (i.e., the
trained model and database) and end users. Through the microservice, the trained
model and database can be accessed by both internal and end users. The end users
can also provide new data through user access.

8.4 Examples of Smart Machine Vision in Agriculture,
Forestry, Fishery, and Animal Husbandry

Smart machine vision has been applied to the fields of agriculture, forestry, fishery,
and animal husbandry. This is especially an increasing trend. Smart machine vision
alleviates the issue of labor shortage. With smart machine vision, work patterns are
changed, and work loadings are reduced. Below are some examples of smart
machine vision.
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Crops are vulnerable to pests and diseases, environmental changes, and storage
conditions, resulting in economic losses. The application of smart machine vision is
an easier and faster solution to control the quality of crops. Numerous studies have
applied smart machine vision to identify plant diseases and pests (Abade et al., 2021)
and superficial damages (Li et al., 2020). These applications help farmers to reduce
economic loss and increase production.

Forests play an essential role in food security and daily necessities (Sunderland
et al., 2013). People who live near tropical forests can acquire food surrounding
specific tree species and even on the tree. Also, different trees can be made into a
wide variety of daily necessities. Studies were conducted to identify consumable
wood species. Yang et al. (2019) differentiated between morphologically similar
species in genus Cinnamomum (Lauraceae). The species C. osmophloeum yields
cinnamaldehyde and is used as a herbal plant. Pelletier et al. (2019) and Schiefer
et al. (2020) identified tree species and mapped tree species in a forest, respectively
(Hamedianfar et al., 2022), which can help those living nearby to reliably acquire
food and earn a living.

Fish is a major source of protein globally. However, the biological sustainability
of oceans has been brought to attention in recent years. Smart machine vision was
applied to identify species of marine organisms to prevent overfishing or inadvertent
illegal fishing (Aguzzi et al., 2020). Also, the length and species of harvested fish,
which is required by some fisheries management organizations, can be estimated and
recorded using smart machine vision (Tseng & Kuo, 2020; Tseng et al., 2020).
Aquaculture is another way to raise seafood. Certain studies evaluated the frequency
of fish feeding using smart machine vision (Zhao et al., 2021). Shrimp body length
was estimated for feeding management using smart machine vision (Lai et al., 2022).

Economic animals are another major source of protein. Smart machine vision can
be applied to alleviate the need for patrols and manual observation in animal
farming. Related studies include a monitoring system for detecting sick chickens
(Ojo et al., 2022), an observation system for identifying the tail-biting behaviors of
pigs (Chen et al., 2021), an automatic monitoring of newborn piglets tracking and
lactating frequency of sows (Ho et al., 2021), and an inspection system for identi-
fying lameness behaviors of cows (Mahmud et al., 2021).

8.5 Conclusion

Food production is now affected by labor shortage globally. To meet the demand of
food, smart machine vision is applied in agriculture, forestry, fishery, and animal
husbandry to develop automatic solutions that can replace human power. The whole
process can be simplified as image acquisition, machine learning, database, and user
access. With the application of smart machine vision, farmers can manage their fields
efficiently, harvest richly, and thereby improve food security worldwide.



130 K.-R. Chang et al.

References

Abade, A., Ferreira, P. A., & de Barros Vidal, F. (2021). Plant diseases recognition on images using
convolutional neural networks: A systematic review. Computers and Electronics in Agriculture,
185, 106125.

Aguzzi, J., Chatzievangelou, D., Company, J. B., Thomsen, L., Marini, S., Bonofiglio, F., Juanes,
F., Rountree, R., Berry, A., Chumbinho, R., Lordan, C., Doyle, J., del Rio, J., Navarro, J., De
Leo, F. C., Bahamon, N., García, J. A., Danovaro, P. R., Francescangeli, M., . . ., Gaughan,
P. (2020). The potential of video imagery from worldwide cabled observatory networks to
provide information supporting fish-stock and biodiversity assessment. ICES Journal of Marine
Science, 77(7–8), 2396–2410.

Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J.,
Fadhel, M. A., Al-Amidie, M., & Farhan, L. (2021). Review of deep learning: Concepts, CNN
architectures, challenges, applications, future directions. Journal of Big Data, 8(1), 1–74.

Chen, C., Zhu, W., & Norton, T. (2021). Behaviour recognition of pigs and cattle: Journey from
computer vision to deep learning. Computers and Electronics in Agriculture, 187, 106255.

Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., Martinez-Gonzalez, P., &
Garcia-Rodriguez, J. (2018). A survey on deep learning techniques for image and video
semantic segmentation. Applied Soft Computing, 70, 41–65.

Hamedianfar, A., Mohamedou, C., Kangas, A., & Vauhkonen, J. (2022). Deep learning for forest
inventory and planning: A critical review on the remote sensing approaches so far and prospects
for further applications. Forestry: An International Journal of Forest Research, 95, 451.

Ho, K. Y., Tsai, Y. J., & Kuo, Y. F. (2021). Automatic monitoring of lactation frequency of sows
and movement quantification of newborn piglets in farrowing houses using convolutional neural
networks. Computers and Electronics in Agriculture, 189, 106376.

Lai, P. C., Lin, H. Y., Lin, J. Y., Hsu, H. C., Chu, Y. N., Liou, C. H., & Kuo, Y. F. (2022).
Automatic measuring shrimp body length using CNN and an underwater imaging system.
Biosystems Engineering, 221, 224–235.

Li, Z., Guo, R., Li, M., Chen, Y., & Li, G. (2020). A review of computer vision technologies for
plant phenotyping. Computers and Electronics in Agriculture, 176, 105672.

Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X., & Pietikäinen, M. (2020). Deep
learning for generic object detection: A survey. International Journal of Computer Vision,
128(2), 261–318.

Mahmud, M. S., Zahid, A., Das, A. K., Muzammil, M., & Khan, M. U. (2021). A systematic
literature review on deep learning applications for precision cattle farming. Computers and
Electronics in Agriculture, 187, 106313.

Ojo, R. O., Ajayi, A. O., Owolabi, H. A., Oyedele, L. O., & Akanbi, L. A. (2022). Internet of Things
and Machine Learning techniques in poultry health and welfare management: A systematic
literature review. Computers and Electronics in Agriculture, 200, 107266.

Pelletier, C., Webb, G. I., & Petitjean, F. (2019). Temporal convolutional neural network for the
classification of satellite image time series. Remote Sensing, 11(5), 523.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1985). Learning internal representations by
error propagation. California Univ San Diego La Jolla Inst for Cognitive Science.

Schiefer, F., Kattenborn, T., Frick, A., Frey, J., Schall, P., Koch, B., & Schmidtlein, S. (2020).
Mapping forest tree species in high resolution UAV-based RGB-imagery by means of
convolutional neural networks. ISPRS Journal of Photogrammetry and Remote Sensing, 170,
205–215.

Sunderland, T., Powell, B., Ickowitz, A., Foli, S., Pinedo-Vasquez, M., Nasi, R., & Padoch,
C. (2013). Food security and nutrition. Center for International Forestry Research (CIFOR).

Tian, D., Han, Y., Wang, B., Guan, T., Gu, H., & Wei, W. (2021). Review of object instance
segmentation based on deep learning. Journal of Electronic Imaging, 31(4), 041205.



8 Strategic Short Note: Application of Smart Machine Vision in Agriculture,. . . 131

Tseng, C. H., & Kuo, Y. F. (2020). Detecting and counting harvested fish and identifying fish types
in electronic monitoring system videos using deep convolutional neural networks. ICES Journal
of Marine Science, 77(4), 1367–1378.

Tseng, C. H., Hsieh, C. L., & Kuo, Y. F. (2020). Automatic measurement of the body length of
harvested fish using convolutional neural networks. Biosystems Engineering, 189, 36–47.

United Nations. (2022). Revision of world population prospects. Author. Retrieved from https://
population.un.org/wpp/

United Nations. Department of Economic and Social Affairs, & United Nations Conference on
Trade and Development. (2022). World economic situation and prospects 2022. Author.

Yang, H. W., Hsu, H. C., Yang, C. K., Tsai, M. J., & Kuo, Y. F. (2019). Differentiating between
morphologically similar species in genus Cinnamomum (Lauraceae) using deep convolutional
neural networks. Computers and Electronics in Agriculture, 162, 739–748.

Zhao, S., Zhang, S., Liu, J., Wang, H., Zhu, J., Li, D., & Zhao, R. (2021). Application of machine
learning in intelligent fish aquaculture: A review. Aquaculture, 540, 736724.

https://population.un.org/wpp/
https://population.un.org/wpp/


Chapter 9
Artificial Intelligence in Agriculture:
Commitment to Establish Society 5.0:
An Analytical Concepts Mapping for Deep
Learning Application

Victor Massaki Nakaguchi and Tofael Ahamed

Abstract Artificial intelligence (AI) was defined as a key component for the
establishment of the Society 5.0. AI’s rapid ascension and incorporation in all
sectors of human activities is becoming the background of innovation. Therefore,
the solution for many complex problems specially regarding to agri-food industry
dynamics and climate change. Society 5.0 is an approach of the future society
considering a projection over global population and the aspects related to sustain-
ability and social welfare. AI is not a novel theme as it has been discussed from many
decades ago. However, Big Data associated with highly efficient algorithms and
powerful processing units are pushing AI into our reality. Prosper societies were
built up above a solid agricultural base with well-organized systems of production
and distribution, including all phases of industrial revolution as well. The advent of
climate change and its consequences over crops is demanding innovative solutions
to keep on increasing yield while mitigating the adverse effects on the ecosystem.
The aim of this chapter is to provide an analytical concept mapping and framework
about AI-based learning systems, in a quasi-philosophical way to establish Society
5.0 centered on deep learning techniques for agricultural solutions, specially
addressing labor shortages and management of limited bioresources worldwide.

Keywords Artificial Intelligence · Deep learning · Digital agriculture · Autonomous
machinery · Society 5.0
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9.1 Introduction

Global overpopulation is a big concern for agricultural production considering it is
necessary to enhance yield besides considering the effects of climate change over
crops and its impacts on the ecosystem. In addition to it, the rural population is aging
and not being replaced at the same rate, which represents an opportunity for
innovation especially in the fields of management and automation of machinery.
During the last two decades, data and information have been exponentially created
and processed in a speed that have never seen before, besides that fast connectivity
between countries and regions has overcome physical barriers, thus creating an inter-
dependency among them including high flux of materials, goods, and people.
Artificial intelligence (AI) came into hype and its rapid adoption in all sectors of
our daily lives is transforming the lifestyle of people around world. Recommenda-
tion systems, virtual assistants, specific tasks robots, smart gadgets, and fully
connected systems creating meta data all the time are just a few examples of the
presence of this global trend, which also represents the change in habits and
mentality of our society as well.

Historically, all human societies were developed based on local food security, and
the improvement of agricultural production has been representing an upgrade ver-
sion of that societies. The first one was composed of people able to hunt and collect
fruits, the society 2.0 were made of agrarian communities able to grow their own
food and exchange the excess, in the society 3.0, agricultural goods and natural
resources were transformed in manufactured products in large scale (industrial
society), and the contemporary society (information society) was established side
by side with green revolution, responsible to provide food, fibers, and energy for the
booming population (Fig. 9.1).

The agriculture of the twenty-first century is passing through a digital transfor-
mation where processes and management are being fully automatized and the

Society 1.0
• Hun�ng Society
• Small groups able to 

hunt and collect food
• Primi�ve tools 

Society 2.0
• Agricultural Society
• Small to medium 

communi�es able to 
exchange food, fibers 
and tools. 

• Commercial routs

Society 3.0
• Industrial society
• Big Ci�es
• Scale produc�on
• Intensive migra�on
• Colonialism
• Culture exchange 

Society 4.0
• Informa�on Society
• Popula�onal Boom
• Globaliza�on
• Informa�on 

Technology
• High Produc�vity

Society 5.0
• AI centered systems
• Automa�on of 

machinery
• Big data
• IoT
• Robo�cs

Fig. 9.1 From society 1.0–5.0, the main characteristics of each in a historical context



immediate effect is a high gain efficiency yield, costs reduction and by consequence,
the sustainability of production. By incorporating the industry 4.0 elements inside
farms, customers around the world can be aware of important aspects of the foods
and fibers they are consuming, especially regarding traceability, quality, and stan-
dardization. On the other hand, farmers can compensate labor shortages by using
robots, autonomous machines, and computational management systems. Moreover,
by associating geo statistics methods, sensors (proximal and remote), and informa-
tion technology (IT), the entire management of farming in real time can be done
taking in consideration the spatial and temporal variability, which is contributing for
precise use of inputs and bioresources in agriculture production (precision
agriculture).
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In this sense, the Society 5.0 has been proposed by the government of Japan
(CSTI, 2016) as a prospect plan for the global society linked with sustainability and
community-based welfare to reduce social gaps and improve life quality of the
people (Fukuda, 2020), in this concept AI-based technologies innovations, IoT
(internet of things), Big Data, and Blockchain, are fundamental components to its
establishment.

Several challenges are involved in the implementation of this fifth version of our
global community, principally those related to diminishing differences among coun-
tries development. In most of African countries, for instance, the last green revolu-
tion has not fully arrived yet and people are still dying by starvation, while in
developed countries farming is getting into a completely industrial plants such as
vertical farms and agribusiness stock market. Another challenge is to disrupt the AI
paradigm, which means to make AI-based technologies a tool to be used for
improvement of human’s life quality including all people in the process equally,
for example, since the first systems are being programed and trained by humans,
some applications may contain human inherit cultural behavior like preconception,
racism, and political stands.

AI-associated technologies may sound like a magic box, where the solution
comes from after a single touch, however, it is not so easy as it looks like, the
advancements in this field are being made gradually. In fact, deep learning (DL) is
mainly responsible to bring AI to the edge, machines mounted with computer vision
(CV) systems can perform tasks such as navigation systems for self-driving vehicles,
object detection, mapping of behavior patterns, natural language processing (NLP),
and augmentation and virtualization of the reality (as a part of Society 5.0). AI-based
learning technologies produced a set of new applications to make possible a new
revolution in agriculture. Due to its high capacity to process a great amount of data in
real time, this is one of the eligible innovations to keep on upsetting Malthusian
theory of population, once it permits through data management the improvement of
sustainable production of food, fibers, and energy besides enhance the logistics and
customer experiences for the coming years.
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9.2 AI Mapping Concept

AI is a discipline inside Computer Sciences intended to develop systems able to
mimic human’s ability to resolve problems, its origin is traced from the middle of the
last century as a theoretical area discussed by philosophers, mathematicians, and
computer scientists. When AI was proposed by early 1950s, not enough technology
was available at the time to bring it to the spotlight, nevertheless, the exponential
progress in microelectronics, informatics, and engineering over the last decades, has
allowed the arising of big data, high power processing units and advanced heuristic
algorithms, a combination of these three made AI overcome its last winter and
started to bloom for countless tasks and utilities.

AI aggregates many fields of study such as neural networks (NNs), evolutionary
computation, and fuzzy logic. The employment of these fields we can find in data
mining, CV, NLP systems, and autonomous machinery. AI’s core uses machine
learning (ML) algorithms which have revolutionized data analytics, especially for
unstructured and multidimensional data, that by the way, represents the majority
volume of data transferred throughout the internet. The output of ML algorithms is a
model (Fig. 9.2), and the models of ML can be created by using at least one of three
types of learning mechanisms: Supervised learning (predictive models),
unsupervised learning (descriptive models), and reinforcement learning models.

Supervised learning in mathematical ways refer to classification or regression
operations, the learning process is composed by two phases, training and testing as
we are going to see further in this chapter, but in an effortless way to understand the
concept, it has the presence of the “supervisor” character (labeled data), responsible
to guide the learning process.

As for unsupervised learning method, the model is generated from a description
of the whole data by using Association, Grouping (Clustering), Outliers Detection,
Standard sequences, and Summarization algorithms, it requires post-analysis of the
model to understand what the machine has learned, for unstructured data such as big
data, and multidimensional data from radiometric sensors for instance, unsupervised
learning algorithms are powerful tools.

Reinforcement learning is a class of ML algorithms where the system learns from
its own experience due to interaction with the environment, this self-exploratory

Fig. 9.2 Definition of
model in ML



approach is based on penalties and rewards as guidance according to each assertive
and failure behavior, respectively, when the machine is learning is trying to reach the
given objective.
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DL is a concept when applying NNs-based decision support systems, it can be
seen as a variation approach of ML based algorithms, the main difference from ML
methods remains in the fact that DL algorithms generate a model by self-learning the
entire process, including the steps of feature extraction of inputs, adjustment of
weights and bias. Thus, it is specially used to deal with big data analysis such as
image classification, object detection, object segmentation, and natural speech
processing.

In fact, ML techniques look after ways to solve problems by applying principally
statistics and linear algorithms, on the other hand, DL looks like a human based
approach dealing with nonlinear problems. For agriculture and livestock production,
several applications including DL solutions are related especially for CV applica-
tions, for example, autonomous machinery, plant phenotyping, and unmanned aerial
vehicles (UAVs) image analysis, cattle management, and animal welfare
establishment.

9.3 Deep Learning (DL) and Neural Networks (NNs)

NNs are the main topic of study in DL, Artificial Neural Networks (ANNs) is a
common name when referring to NNs for computer systems, it was summarized by
Robert Hecht-Nielsen (1992) as a parallel and distributed processing structure
consisting of elements connected unidirectionally where the information is
processed from external inputs. ANNs emerged in a context where complex prob-
lems could no longer be solved by using pre-determined algorithms, e.g., image
classification, where a small angle variation in the same image may change the
whole values of pixels.

The ANNs was inspired by studies regarding the connection mechanism of the
biological neuron (Synaptic connections), McCulloch and Pitts (1943), proposed a
mathematical model for biological neurons with which are connected each other
receiving and transmitting information as electrical pulses with some level of
processing, consequently depending on the processing result the next neuron may
either be activate or not (threshold logic). In 1958 Frank Rosenblatt introduced a
model called perceptron (Fig. 9.3), which was designed to mimic some of the
principles of intelligent systems in general. This model became the basis of future
generations of ANNs, as recurrent neural networks (RNNs) and convolutional neural
networks (CNNs) among others, besides that it is considered one of the very first
feedforward NNs.

The working processing of an artificial neuron can be seen in Fig. 9.3, analog to
biological neuron synapses, the result from the aggregate function produces a value
that feeds the step-function (Eq. 9.1) from which may give an output (Exciting
synapse) or not (Inhibition synapse), the weights are responsible to amplify or reduce



the input signal to the step-function, the process of adjusting weights is called
“Training.”
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Fig. 9.3 One-layer perceptron model proposed by Rosenblatt (1958). u = the linear function as
described, Ɵ is called bias, is the factor that represents the threshold for trigging the activation
function

f xð Þ= 0, for x< 0
1, for x≥ 0

� �
ð9:1Þ

The one-layer perceptron is a good model to solve linear problems, however, for
nonlinear problems such as simple xor logic, it cannot predict output values, since it
is impossible to segregate correspondent values in only one dimension. The solution
in these cases was the insertion of multiple layers, or also called hidden layers
[multilayer perceptron (MLP)], in this type of ANNs the output value of one neuron
may feed the input of the next neuron (Fig. 9.4). Besides that, other activation
functions were introduced for better modeling the output of neurons such as sigmoid
function (Eq. 9.2), hyperbolic tangent (Eq. 9.3), rectified linear unit (ReLU—
Eq. 9.4), leaky ReLU (Eq. 9.5), and so on.

The choice of activation functions depends on what prediction value the ANN is
being trained for, different activations functions can be used in the same architecture,
for example, the hyperbolic tangent (tanh) is usually used in the hidden layers due to
its range from -1 to 1, while the sigmoid function is often used for probabilities
outputs, ReLU is nowadays one of the most used activation functions in ANN
intended for images recognition systems due to their highly computational efficiency
to not activate neurons with negative values.
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Fig. 9.4 MLP model with three hidden layers. In MLPs each input value connects with other
neurons or layers depending on the result from activation function

f xð Þ= 1
1þ e- x ð9:2Þ

f xð Þ= ex - e- xð Þ
ex e- x ð9:3Þ

f xð Þ= 0, for x< 0
x, for x≥ 0

� �
ð9:4Þ

f xð Þ= ax, for x< 0
x, for x≥ 0

� �
ð9:5Þ

9.3.1 Principles of the ANN Learning Process

ANNs are supervised learning models, therefore, it can be simply understood as a
heuristic system that learns by doing mathematical equations and adjusting its results
to reach the correct answer. The overall objective is to provide mechanisms for a
computational system to extract, recognize, and classify patterns in
multidimensional data with satisfactory level of accuracy.

The learning process can be divided into two steps or phases: training and testing
(Fig. 9.5). Different datasets must be used as input values to feed each step, however,



in both cases we have labeled data (Images, sounds, etc.) that contains information
about type, name, and position of the object that ANN is being modeling for. The
labeled data are examples provided by humans to machines, like teaching kids by
showing them an object and telling its respective name, e.g., when kids see, touch,
and try the object, on the next time they see a similar one, based on their previous
experiences, they can recognize it by associating the shapes, colors, textures, even
the taste. As for ANNs these experiences are the adjustments of weights and
extraction of features.
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Fig. 9.5 Supervised learning chart flow, notice that blocks represent only the process, not the
neurons associated with

The training step is the tuning process to adjust the parameter “weights” to fit the
inputs to the “correct answers” (Labeled data—“Supervisor”). The testing process is
regarding the verification of the model assertiveness, this step “says” to the ANN
how much the prediction is correct, and on which “direction” should the ANN goes
to reduce the error. So basically, we say that an ANN have learned when the system
has achieved a high precision ability to predict an object class or when it has
decreased the assessment error at the minimum.

The most of ANNs are trained using backpropagation algorithm, besides that, the
original work introduced backpropagation algorithm as a NN too, it consists of a
sequence pace to update the weights after calculating the overall error (we call the
cost function, which is the difference between “correct answer” or predicted value of
true class and the obtained output value) the error is then multiplied by the slope of
the activation function and finally backpropagated to the previous layers.

The aim of this algorithm is to reduce the cost function at each interaction
(or epoch in DL language), backpropagation algorithm is seen as a descent algorithm
as it looks to find the direction where the slope is minimum (Fig. 9.6). Here, two
parameters are important to control how much should the weights be adjusted and
for what direction (either backward or forward from the previous calculated weigh) it
should go to: learning rate and momentum, the first one is regarding the “step size”
that next weights should be decreased or increased for (As far from the minimum
point on the gradient the learning rate should be big, as closer to the minimum it
should be small). The momentum is about the direction the weights should go
(vector moment) to reach the minimum slope. Note that the angular variation to



calculate the step size is defined according to the primary derivative of a point in
relation to the previous one, that is how learning rate is adjusted in practice.
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Fig. 9.6 Learning process using backpropagation algorithm

We should point out that a model pursuit should be able to generalize an object
with a certain level of accuracy, good models are those capable of recognizing an
unseen object as well as humans do. However, depending on complexity conditions
of exposure, including occlusions and distortions, some objects are difficult even for
us to do so, in other words, we should not have an ANN model to fit 100% in the
training dataset, in DL language we do not want the model to overfit the training data
during the learning process. When the model overfit the training dataset, it means the
machine learned how to exactly describe the dataset given to it but in practice it may
fail to predict new inputs. We need a model that can predict the objects of study
based on similar characteristics among them.

DL techniques are specially used for image classification, detection, and segmen-
tation (Fig. 9.7) as mentioned before. However, the challenge of program computer



systems able to mimic human vision is not new, and the field of CV has been
explored from decades ago, including several studies on mammals’ vision proposed
by Hubel and Wiesel (1959), which in fact, constituted the basis to understand the
vision processing and hierarchy model of imaging recognition.
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Fig. 9.7 Distinct types of models for image recognition. Classification models predict the class
name. Detection models find the object inside the image and draw a box on it. Segmentation models
in this case, instance segmentation, put together segmentation of a pixel and object detection to
individualize objects in the image

Kunihiko Fukushima (1980) proposed an ANN that he called Neocognitron, it
was an updated version of his previous work Cognitron (Fukushima, 1975), in both
works, the idea was to develop a system able to learn how to recognize image
patterns, his hypothesis was that a successful computer vision would open the gates
for further comprehension on human’s vision. He considered in his work an asso-
ciation of previous hypothesis on patterns hierarchical recognition such as proposed
by Hubel and Wiesel (1962, 1965), Gestalt theory (Wertheimer, 1938), and others.
The main idea was that a biological brain recognizes an image by associating
features of them layer by layer, from simple presence/absence of light and shapes
to complex figures in the output layers.

Many years after K. Fukushima’s work, Lecun et al. (1998) introduced a com-
puter vision system able to recognize with a proficient level of accuracy written-
digits, using CNN and gradient-based learning algorithm (Backpropagation), their
work introduced a new generation of NNs once it could get over traditional CV
methods for image classification based on ML and statistics approaches. Thus,
reopened the interest and investments for DL industrial applications for images
recognition through automatic learning instead of hand-designed algorithm. Cur-
rently, CV is a field of study in DL that reunites different science expertise (Fig. 9.8).
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Fig. 9.8 Computer vision system is a field in DL that reunites several sciences

9.4 DL at the Edge with CNNs

Cameras are the most popular type of sensor present in our daily life; they are present
in almost every place we can imagine. Over the years, the technology involved in
these devices grew up exponentially, the improvement on spatial and radiometric
resolution became a paradox for CV systems. The good side is regarding the
exploratory opportunity for documentation details, especially to capture wide angles
and several wavelength frequencies beyond human’s vision capacity such as infra-
red bands. On the other hand, as for high resolution types ensure to capture images
with millions of pixels, further sophisticated methods including best algorithms and
faster processing power units to analyze the images are continually under
on-growing demand. Comparing LeNet-5 in 1998, for instance, the input images
had a dimension of 28 × 28 pixels, but currently, a 5 Mega Pixel camera for instance
(common camera aboard on any ordinary Smartphone) can produce an image with
2592 × 1944 pixels, becoming a challenging factor to imaging processing. Fortu-
nately, fresh solutions to get around these issues have been proposed during the last
two decades, including new generations of graphic processing cards and better
ANNs as well.

In CV systems, cameras are the source of data (input data) and actively participate
in the training and deployment of AI-based systems. Over the years cameras has
become accessible for everyone at an affordable price, the cost to produce self-
datasets of images is too high, due to time consuming and storage costs, leading DL
players to use common sources of data to train their applications. There are several
free use dataset images available on the internet to serve as a parameter to evaluate



performance of CNNs models, the notorious and most appreciated are ImageNet
(Stanford vision Lab), MS COCO (Provided by Microsoft®), and Open Images
(Google LLC.).
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Image classification and object detection are the most exciting areas of CV these
days, in truth, this is the area where most of the efforts in DL have been concentrat-
ing so far. Enormous advancements have been made during the last 10 years since
AlexNet (a type of CNN developed by Alex Krizhevsky et al., 2017) won the 2012
ImageNet Large Scale Visual Recognition Challenge (ILSVRC). By using
the approach of multiple graphic processing units (GPUs) for parallel processing,
the ReLUs activation function for modeling the neurons outputs and by increasing
the training dataset by using image augmentation, their work became the turning
point for the new generation of NNs that followed in sequence.

CNN is an ANN with many layers where convolutional operations are applied in
some of that to extract features and produce a model that can predict an object with
certain level of accuracy (Classification) or a position of an object inner an image or
frame (object detection). By convolution, it is defined as a mathematical operation
between two functions that produces a third function, in DL it stands for matrix
multiplications (each pixel has a value associated to it, each value varies from 0 to
255 for each RGB color band).

In image classification algorithms, CNN is used to extract features of objects on
each frame during the training process. The mechanism of feature extractions is done
by applying “filters” (called Kernels), these filters can highlight main characteristics
of pictures such as contours, edges, shadows, lines, and so on.

In the convolutional layers a grid of pixels is multiplied by the Kernel and the
matrix resultant is used as input values to create the “feature maps,” this one is a
special layer that contains the relevant information to classify each class of image the
CNN is being trained for (Fig. 9.9).

From 2012, year by year improvements were made, introducing new advance-
ments in CNNs architectures such as ZFNet (Zeiler & Fergus, 2014), VGGNet
(Simonyan et al., 2014), GoogLeNet “Inception” (Szegedy et al., 2015), and
MobileNet (Howard et al., 2017). In 2015, ResNet (Kaiming He et al., 2016) was
introduced and until now is one of the most used CNNs for object detection around
the world. It won some competitions on ILSVRC reaching the minimum of 3.57% of
error rate.

Many other CNNs are available for CV applications and the choice depends on
the final goal, type of dataset, and power processing hardware. Historically, CNNs
are heavy, and the computing is dense, not suitable for ordinary computers. Consid-
ering that, at the present, the greatest challenge for CNN architecture is to make it
portable and suitable for low-end devices such as smartphones and nano computers.
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Fig. 9.9 CNN common architecture. In this example, a CNN with two convolutional and two fully
connected layers. A kernel 3 × 3 is applied on the first layer, in AlexNet, for example, they used a
11 × 11 kernel

9.5 Deep Learning Algorithms for Object Detection

Image classification using CNNs proved to be faster comparing to other classifica-
tion algorithms such as K-Nearest Neighbors (KNN), recently, specialized algo-
rithms for image classification and object detection have been proposed to support
CNNs to learn faster, especially when dealing with dense processing (huge datasets).
A revolution for classification/object detection using CNNs was the region-based
CNN or R-CNN (2014) and its family, including fast R-CNN (Girshick, 2015), these
innovative approaches introduced the selective search method to generate region
proposals before computation of feature maps, these region proposals hold the object
to be classified (has the bounding box “b-box” included), that means it contains the
object of interest inside one of the 2000 regions the image was divided into (the
regions in this case represent the image cut in 2000 parts, each part is one region).
The problem with these novel approaches was the low speed, making it impossible
to execute real-time applications. However, a new generation of R-CNN called faster
R-CNN (Ren et al., 2015), which does not use the region selective search method
before CNN, was released to enhance the speed, it has introduced the region
proposed network (RPN), which is a type of extra-CNN aggregated to the CNN to
obtain the feature maps after CNN calculation (See details in Chap. 7).

The introduction of faster R-CNN makes possible the development of navigation
systems supported by real-time CV, although this model requires high performance
devices such as powerful GPUs and a lot of physical memory, the models provided
by faster R-CNN are one of the most accurate available now (something strongly



desirable especially for autonomous navigation). For agriculture purposes, espe-
cially in orchards, navigation systems based on CV are becoming the best alterna-
tives to overcome limitations of systems based on traditional Global Navigation
Satellite Systems (GNSS), especially under closed canopy (bad precision due to
interference and scintillations of radio wavelength signals).
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Fig. 9.10 Faster R-CNN object detection associated with thermal camera under different light
conditions for navigation systems in a Japanese pear orchard

Fig. 9.11 Mask R-CNN instance segmentation for Apple harvesting automation in orchard

Guidance mechanisms based on CV are important for agricultural machines to
defeat one of the most limitations imposed by the environment: the light depen-
dency. Machines equipped with navigation systems including IR sensors can operate
at night (Fig. 9.10), this characteristic allows gain in crop calendar, and autonomous
night work shift, therefore optimizing the harvesting season.

By 2017 Mask R-CNN (He et al., 2017) came upon the stage presenting semantic
segmentation and object detection joint together as Instance segmentation
(Fig. 9.11), this new model is being explored in diverse tasks including harvesting
robotic arms systems (see details in Chap. 11) and cattle monitoring for livestock
management.
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Fig. 9.12 YOLOv4 Object Detection in Apple Orchard for Apple Harvesting Vision Machine

Currently, the state of the art for image classification and object detection is the
“You Only Look Once” (YOLO) neural network algorithm, YOLO is a model
proposed in 2015 by Joseph Redmon, its concept is similar to the R-CNN regarding
the region proposing, however, YOLO visualize the entire image during training and
detection steps and compute the bounding boxes directly in the image using regres-
sion algorithms, YOLO introduces the idea of dividing the frame into S × S number
of grids, so basically, if the probability of object of interest is higher to be in a cell
grid, this cell grid becomes responsible for prediction of the object (see details in
Chap. 9). Since its release in 2015 YOLO has reached several versions, being one of
the most stable, accurate, and fast models for object detection (Fig. 9.12). Wang et al.
(2022) listed six basic characteristics of a system to be considered as state of the art
in deep learning, which includes faster and strong networks, effective integration
methods, accuracy, robust loss function, efficient label assignment technique, and



training efficiency. The community of DL developers around the world have been
improving YOLO family and releasing new upgraded versions online periodically.
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Fig. 9.13 Deep learning algorithms common architecture for object detection

It is important to note that CNNs are ANNs used for extraction of inputs features
while DL algorithms for object detection such as Faster R-CNN, Single Shot
Multibox Detector “SSD” (Liu et al., 2016), YOLO (Redmon et al., 2016) are
specialized DL algorithms for object detection. In other words, CNNs and Classifi-
cation/Object Detection/Segmentation models are two separated blocks that work
together as part of an algorithm, that’s why we say CNN is the “backbone” of DL
algorithms.

Object detection algorithms architectures can be grouped into dense predictions
and sparse prediction types, the common architecture of an object detection algo-
rithm is composed by similar blocks for clear understanding (Fig. 9.13).

Object detection applications are limitless as it can be employed in every real-
time CV system when tasks involve detecting objects, sorting, and tracking. Count-
less operations such as quality control, grading (Fig. 9.14) and packing of fruits,
vegetables, eggs, and animal parts can be fully automatized in post harvesting
procedures. Besides that, CV based on-the-go machines can distribute inputs (fer-
tilizers, pesticides) directly on targets, as localized treatments, contributing to sus-
tainability of agricultural production.

Another great opportunity to enhance the administration of rural properties is the
adoption of DL based CV in central control management systems, as well as
implemented in cities to monitor cars traffic and detect abnormal behavior of people
it can be incorporated in agricultural fields to detect abnormal movements of animals
or people inside lands, presence of wild bodily and individual monitoring of animals
in flock, thus associate with animal welfare to stablish precision livestock farming
(PLF).

Moreover, CV platforms can also assist traffic control of machines (Fig. 9.15)
using tracking algorithms, best logistic planning can be enabled automatically by
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Fig. 9.14 YOLOv4 object detection in Quail eggs industry for quality management and grading
automation

Fig. 9.15 YOLOv4 object detection application for machine traffic control systems. In this
example, YOLOv4 is used to qualify the distance between harvesting machines and truck trans-
porter to prevent accidents



concentrating management tasks such as machines status, displacement, and main-
tenance prevention based on data of engines and mechanisms, all broadcasted in real
time.
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Systems designed to control traffic of vehicles, including tractors traffic are
important to establish the concept of “rail” roads on production fields, as much
bigger machines have become over time, the weight associated to them highlighted
the problem of soil compaction. The idea of traffic control is important to reduce soil
loss, and by consequence reduce heavy machinery operations like plowing and
subsoiling. The direct plantation system introduced a few decades ago in big crops
such as corn and soybeans in systematic rotation of cultivations have contributed to
reduce the number of tractor operations in the same field, however, several machin-
ery operations are fundamentally mandatory, including sowing, spraying, and
harvesting, this last one usually is responsible to most of damage onto soil structure
because often are made in partnership with truck trailers that often use normal set of
tires, non-adequate to farm fields.

9.6 Conclusions: DL Serving a New Agriculture Revolution

The Society 5.0 consists of the first guidelines to a prospective future that have
already began, if considering that we are currently living in the transition phase from
the information society to AI-based society, many aspects of our daily life are still
under debates and development such as privacy of data, monetary foundation, and
autonomous machine safety protocols.

Global issues such as overpopulation, climate change, and environmental degra-
dation are topics that demand immediate attention and active plans. Fortunately,
these thematic have one common variable: the agriculture. There is a global con-
sensus that best practices in agriculture can lead to the solution of those problems
once setting up production to high efficiency use of bioresources and inputs we may
reduce adverse impacts on the ecosystem caused principally by deposit of wastes and
bad management of fields.

AI in agriculture is a vast topic that includes many fields of science, DL methods
have gained attention recently due to its human vision sense approach. Countless
innovations are being reported for machinery automation and management of fields.
Regardless DL is quite a new advancement in the field of AI, it has already achieved
astonishing improvements for CV, besides that, commercial solutions are being
created and getting better continually. Innovations related to intelligent
decision-making platforms, robotics and autonomous vehicles using DL base sys-
tems represents an opportunity to overcome the labor shortages in addition to
enhance efficiency of agriculture production around the world, moreover, it stands
for our best strategy to reach sustainability yield for the next decades.

Researchers, companies, and industries are gradually developing solutions
supported by AI associated technologies to agricultural tasks. There are considerable
challenges for implementation of such intelligent systems, especially regarding legal



limitations imposed to systems and applications, robustness, adaptability, connec-
tivity, safety, and technical support as well. Moreover, the interaction between
human–machine is a real concern since it will continue demanding at least a few
of human supervision to “instruct” the machine to operate inside the fields or
properties, so the role of human as supervisor is important to avoid machine
decision-making modeling based on mislead bias datasets.
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The movement of AI community for the next years is to create applications less
specialists, with which final users would be able to customize features such as
software, robots, and machines to their own necessities, for example, autonomous
tractors able to mount implements and perform real-time adjustments to several tasks
like sowing, spraying, and harvesting in different crops, orchards within a minimum
human intervention. Another global tendency for technology companies especially
hardware manufacturing industry is to reduce the cost for low-end AI deployment
devices along with development of friendly user frameworks to make DL accessible
to non-computer specialists, allowing common customers to emerge solutions for
local scale problems, therefore meeting the requirement to establish the Society 5.0.
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Chapter 10
Potentials of Deep Learning Frameworks
for Tree Trunk Detection in Orchard
to Enable Autonomous Navigation System

Ailian Jiang, Ryozo Noguchi, and Tofael Ahamed

Abstract The outdoor environment is more complex and uncertain than the indoor
environment, resulting in the identification of natural landmarks remaining a chal-
lenge in the automation process. In the orchard, tree branches not only affect the
signal accuracy of the global navigation satellite system (GNSS), but also affect the
light conditions of the camera, making the recognition accuracy decrease. Thermal
camera has the potential under low illumination, it can be used to recognize tree
trunks using a deep learning system in different light conditions. Therefore, the
objective of this study was to use a thermal camera to detect tree trunks at different
times of the day under low-light conditions using deep learning. Thermal images
were collected from the dense canopies of two types of orchards (conventional and
joint training systems) under high-light (12–2 PM), low-light (5–6 PM), and no-light
(7–8 PM) conditions in August and September (summertime) in Japan. Thermal
imagery datasets were augmented to train, validate, and test using the faster R-CNN,
YOLO-v3, and CenterNet deep learning model to detect a tree trunk. A total of
12,876 images were used to train the model, 9270 images were used for training,
2318 images were used to validate, and 1288 images were used to test the model.
The mAP of the Faster R-CNN model was 0.8378, YOLO-v3 was 0.4077 and
CenterNet was 0.9370 for the testing process. In the comparisons, CenterNet was
achieved the highest accuracy in the three methods in tree truck detection using
thermal camera. However, based on the analysis of the actual image results,
CenterNet may have missed the target. Therefore, results showed that Faster
R-CNN was the most suitable method can be used to recognize objects using thermal
images in orchards under different lighting conditions.
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10.1 Introduction

Between 1995 and 2010, Japan’s agricultural labor force has gradually declined
from 4.14 to 2.39 million, and its average age increased from 59.1 to 65.8 years
(Dong, 2018). Therefore, agricultural robotics have the potential to support agricul-
tural labor shortages and increase agricultural productivity in this critical stage of
transformation (Vadlamudi, 2019). In agricultural automation and robotics applica-
tions, vehicle navigation is important in outdoor environments, which are complex
and uncertain compared to indoor conditions (Bergerman et al., 2016). Open field
navigation has significant success using Real Time Kinematic Global Navigation
Satellite System (RTK-GNSS) with higher accuracy (Takai et al., 2010). However,
orchard navigation is the most complex, and interruption of RTK-GNSS signals due
to high and dense canopies is frequently reported (Li et al., 2009). Because Japanese
orchards have net and dense branches, GNSS signals may be affected, and many
farmland orchards do not have base stations set up to use GNSS directly. In addition,
the performance of GNSS-based navigation depends highly on GNSS signal quality.

Therefore, orchard-based navigation systems remain a challenge for the devel-
opment and application of agricultural robots. Light Detection and Ranging
(LiDAR) is used to scan the surrounding environment in real time and returns
accurate distance information using the time-of-flight principle, it can overcome
the limitations of low light and interruption of RTK-GNSS signal. Laser sensors
have been used for agricultural position detection and automatic coupling using
artificial landmarks concrete and grass surface ground for navigation (Tofael
Ahamed et al., 2006a, b, 2009) or crop fields (Malavazi et al., 2018) by processing
point clouds for crop and weed detection. However, LiDAR can only obtain distance
and angular orientation information, cannot provide information about the object’s
type. To develop an intelligent robust system, LiDAR may not be sufficient for
low-light conditions. Using a camera as a sensor is advantageous, due to its low cost
and ease of installation in agricultural robots. Camera sensors are widely used in
navigation systems in various ways, such as using color information to segment
paths in citrus groves for vehicle navigation (Subramanian et al., 2006), or focusing
on color information of shadows and soil texture, to distinguish traversable areas
(furrows) from impenetrable areas (ridges) for navigation (Takagaki et al., 2013).
However, common RGB cameras are easily affected by light, particularly in
orchards, where the light differs between shaded and non-shaded areas, and the
cameras typically experience exposure phenomena, making target identification
unclear. Furthermore, low light is one of the most difficult aspects to create effective
vision systems for agricultural robotics (Zhang et al., 2018). RGB cameras have
high-light requirements and work with low accuracy or are even unsuitable for
low-light environments (Guo et al., 2021).
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A thermal sensor measures the temperature of an object and the amount of the
heat it emits, based on this imaging principle, thermal camera was used to assess the
health of tree trunks and detect damage in the interior (Abdullah & Mücahit Taha,
2021). Additionally, thermal camera has a detection function that is not affected by
visible light; thus, this study uses a thermal camera to detect tree trunks in orchards
for target detection. The target can be used to position a robot during navigation. In
addition to thermal imagery, advancements in artificial intelligence and deep learn-
ing can be used for tree trunk detection to enable vehicle navigation under different
lighting conditions. Similar targets may have the same range of temperatures that
emit and can easily localize the target using computer vision-based deep learning
approaches (Hespeler et al., 2021).

When convolutional neural networks (CNN) were successful in target detection
(Krizhevsky et al., 2012), deep learning was attracted great attention because CNN
can not only extract better expressive and more abstract features, but also integrate
the functions of extraction, classification, and selection in one model. There are two
main algorithms: one is the R-CNN (Regions with CNN features) series based on
classification and the other is YOLO (You Only Look Once) based on regression.
Those target detection methods first list the potential target location and then
classify. CenterNet as an anchor-free target detection network, reduces the detect
time by using key point estimation to find the center points and regress to other
object properties, such as size, 3D location, orientation, and even pose (Zhou et al.,
2019).

This study describes a solution for low-light conditions in orchards that allows the
use of an effective vision system for vehicle navigation, which requires accurate
target detection at low machine operating speeds. Therefore, this study uses Faster
R-CNN, YOLO, and CenterNet for target detection after training using the same
dataset. These three deep learning methods use different structures and have the
potential to identify thermal images in low and no light conditions for agricultural
orchard applications to improve efficiency. Thermal cameras use infrared informa-
tion to detect targets in orchards. The purpose of this study is to use thermal camera
for trunk detection as a target object, compare the results of Faster R-CNN, YOLO,
and CenterNet to select a suitable method to develop an autonomous speed sprayer
navigation system.

10.2 Materials and Methods

10.2.1 Field Data Collection

The FLIR ADK® thermal camera has a resolution of 640 × 512, and images were
collected from pear orchards at the Tsukuba-Plant Innovation Research Center,
University of Tsukuba, Tsukuba, Ibaraki (36°06′56.8″ N, 140°05′37.7″ E). In this
study, two types of pear orchards were used for data collection: (1) a conventional
pear orchard, and (2) a joint tree training pear orchard (Fig. 10.1). Images were



collected three times under high-light (12–2 PM), low-light (5–6 PM), and no-light
(7–8 PM) conditions in both orchards (Table 10.1). Thermal images under different
light conditions, such as no-, high-, and low-light conditions, were then analyzed
(Fig. 10.2).
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Fig. 10.1 Aerial view of experimental pear orchards: (a) conventional planted pear orchard and (b)
joint tree training pear orchard in the Tsukuba-Plant Innovation Research Center, University of
Tsukuba, Japan

Table 10.1 Dataset collec-
tion times and light conditions
in orchards

Date Time Light condition

2021.8.24 19:00–20:00 No light

2021.8.26 13:00–14:00 Strong light

2021.9.06 17:00–18:00 Low light

10.2.2 Data Preparation

10.2.2.1 Image Frames from Videos

MATLAB® (Matrix Laboratory, Natick, Massachusetts, USA) was used to capture
images every 15 frames and remove images that were blurred and that did not
contain tree trunks. In total, 5313 images were analyzed, and the number of images
of trunks in different periods was similar.

10.2.2.2 Labeling

LabelImg® was used to label datasets while preparing visual object classes (VOC)
and COCO datasets. When the position of the tree trunk on the image was selected,
information such as the image name, object classification, and pixel coordinates
were recorded in an .xml and .txt file. .xml files were used to train Faster R-CNN
model, and .txt files were used to train YOLO and CenterNet.
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Fig. 10.2 Analysis of thermal images under different lighting conditions (a, b) no-light conditions
(7–8 PM). (c, d) high-light conditions (12–2 PM). (e, f) low-light conditions (5–6 PM)

10.2.2.3 Data Augmentation

To obtain a larger database and improve training accuracy, the original 5313 images
were randomly flipped and rotated at random angles to obtain 7563 new images, and



the labeling boxes of the images were also changed and saved as new .xml and .txt
files.
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10.2.2.4 Data Splitting

After labeling was completed, the data were divided into three sets: training,
validation and testing. Training was conducted to adjust the model parameters, and
the classifier was adjusted to increase accuracy. Validation was performed to check
the state and convergence of the model developed during training, and validation
sets were used to adjust hyperparameters and determine which set of
hyperparameters was the most suitable. Testing was performed to evaluate the
generalizability of the model, which was used for the validation set to determine
the parameters.

10.2.3 Training Model Structure

10.2.3.1 Faster R-CNN (Faster Region Based Convolutional Neural
Networks)

The faster R-CNN model was based on Fast R-CNN. Replacing the selective search
in Fast R-CNN with Region Proposal Network (RPN), to achieve more accurate
regional proposals, reduce the redundancy of network computation, and improve
detection speed. The primary part of the model has convolutional layers, RPN,
region of interest (ROI) pooling, and classification. In the Faster R-CNN model,
the image's feature maps were got through convolution layers. RPN created region
proposals and sent to Region of Interest (ROI) pooling. ROI pooling combine the
feature maps and proposals to extract proposal feature maps. Classification part
distinguished the classification of proposals and decided the exact location of
bounding boxes (Fig. 10.3, 10.4).

Fig. 10.3 Faster R-CNN structure for tree truck detection used in this research
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Fig. 10.4 Faster R-CNN network structure focusing regional proposal network for feature map

10.2.3.1.1 Convolutional Layers

As a CNN network target detection method, faster R-CNN first used a set of basic
convolutional + ReLU + pooling layers to extract feature maps of images for training
datasets. The feature maps were shared for subsequent RPN layers and fully
connected layers. The feature extraction process in Faster R-CNN is the same as
that in CNN and can be done using some common structures, such as the commonly
used VGG and ResNet (Mahmud et al., 2021). In this study, VGG16 model was be
used, which was a convolutional neural network model that was proposed
(Simonyan & Zisserman, 2014). VGG can be divided into six configurations (A,
A-LRN, B, C, D, E) according to the size of the convolutional kernel and the number
of convolutional layers. This study used the D configuration with 13 convolutional
layers, 3 fully connected layers, and 5 pooling layers. The convolutional layer and
fully connected layer had weight coefficients called weight layers (Fig. 10.5).

The convolutional layer was used to extract features. A 3 × 3 convolutional kernel
was used to slide over the image, and the output changed the image size because both
the stride and padding setting value were 1. Because the linear model cannot solve
all problems, the ReLU layer was used to add nonlinear factors to simulate more
subtle changes (Oostwal et al., 2021). The pooling layer compressed the input
feature map to make the feature map smaller and simplify the computational
complexity of the network, and feature compression was used to extract the primary
features. The pooling layer used a 2 × 2 convolutional kernel with a stride of 2 to
perform the max pooling in the feature map. Therefore, the output feature map size
was reduced by half. Finally, a fully connected layer connected all of the feature
maps and transmitted the output to the softmax classifier.

In this VGGNet, there were five convolutional segments, all of which used 3 × 3
convolutional kernels because the 3 × 3 convolutional kernels can have fewer



parameters and have more nonlinear transformations to increase the CNN’s ability to
learn features (Simonyan & Zisserman, 2014).
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Fig. 10.5 VGG16 for target of tree trunk detection

10.2.3.1.2 RPN

This network model was a new structure proposed by Faster R-CNN, which deter-
mines the approximate position of the target from the feature maps. RPN first
generates many anchors (the candidate boxes) on the feature map. Then, the RPN
network was divided into two lines: the upper line distinguished whether it is a tree
trunk by softmax classification and the lower line was used to calculate the bounding
box regression offset for the anchors to obtain an accurate proposal (Li et al., 2021).
The final proposal layer combined the anchors of the tree trunk, and the
corresponding bounding box regression offsets to obtain the proposals and eliminate
the proposals that were too small or out of bounds.

10.2.3.1.3 ROI Pooling

After the RPN network had created the proposals, ROI pooling was applied to the
proposals, and the feature maps were generated by the last layer in the VGG16
network. Also, a fixed-size proposal feature map was obtained and sent to localiza-
tion and recognition.

10.2.3.1.4 Classification

Softmax was used to classify the target objects of tree trunk detection. The output
classification contained the probability of being the target as a tree trunk. Bounding



box regression offset each proposal and was used to predict the target detection box
more accurately.

10 Potentials of Deep Learning Frameworks for Tree Trunk Detection in. . . 161

The total loss function of Faster R-CNN consisted of classification loss and
regression loss. The classification loss was calculated by softmax in the RPN
classification layer, which was used to classify the anchors as positive and negative
for training the network. Conversely, regression loss was calculated by the RPN
bounding box regression layer and used to train the bounding box regression
network. Therefore, the total loss function can be expressed as Eq. (10.1):

Lðfpig,ftigÞ= 1
Ncls

X
i

Lclsðpi,p�i Þ þ λ
1

Nreg

X
i

p�i Lregðti,t�i Þ ð10:1Þ

where i is the anchor index, pi represents the positive probability of anchor I, pi
* is

the ground-truth label (if pi
* is 1, the anchor is positive; if pi

* is 0, the anchor is
negative), t is the predicted bounding box, ti is the vector representing the four
parameterized coordinates of the predicted bounding box, and ti

* is a positive anchor
associated with the ground-truth box.

Ncls is the trunk image during the training process, and Nreg is the number of
anchor locations. As the difference between Ncls and Nreg was too large in the real
process, the parameter λ was used to balance the two parameters. Therefore, the
network total loss calculation process was considered for two types of losses: Lreg is
the regression and Lcls is the classification loss function for the detection of trunks.
The smooth function (L1) was used to estimate regression loss (Lreg), which is
calculated and expressed as Eq. (10.2):

Lreg ti, t
�
i

� �
=

X
i2 x, y, w, hf g

smoothL1 ti - t�i
� � ð10:2Þ

The smooth function is defined as Eq. (10.3):

soomthL1 xð Þ= 0:5x2
1
σ2

jxj≤ 1
σ2

jxj- 0:5 otherwise

8<: ð10:3Þ

where x is the prediction error of the bounding box and the parameter σ is used to
control the smoothing area.

For the bounding box regression, we used the four coordinates in the following
parameterized expressions (10.4)–(10.11):

tx =
x- xað Þ
wa

ð10:4Þ
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ty =
ðy- yaÞ

ha
ð10:5Þ

tw = log w=wað Þ ð10:6Þ
th = log h=hað Þ ð10:7Þ

t�x =
x� - xað Þ
wa

ð10:8Þ

t�y =
y� - yað Þ
ha

ð10:9Þ

t�w = log w�=wað Þ ð10:10Þ
t�h = log h�=hað Þ ð10:11Þ

where x, y, w, and h denote the center coordinates of the box and its width and height,
respectively. The variables x, xa, and x* are used for the predicted box, the anchor
box, and the ground-truth box, respectively, which can be considered a bounding
box regression from the anchor box to the nearby real box.

10.2.3.2 YOLO (You Only Look Once)

YOLO’s CNN network segments the input image into S × S grids, and predict the
bounding boxes and the confidence score (Fig. 10.6). The confidence score
contained two aspects, one was the probability of this bounding box containing
the target, and the other was the accuracy of this bounding box. The confidence score

Fig. 10.6 The workflow of YOLO



reflected the probability that the target in the bounding box belongs to each category
and how closely the bounding box matches the target.
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In Chaps. 9 and 11 of this book, the structure of YOLO has been explained in
detail, this chapter does not repeat.

10.2.3.3 CenterNet

CenterNet was an anchor-free target detection network, which was faster and more
accurate because it located the detected target to a single point, saved the time and
operation of listing bounding box. Compared with CornerNet, the same anchor-free
detection method, CornerNet needed to perform two key point detection (upper left
point and lower right point) to determine the position of the object, while CenterNet
only needed to perform one key point detection (center point) to determine the
position, which was simpler than CornerNet.

The structure of CentetNet was very simple (Fig. 10.7). The input image was
scaled to 512 × 512 and then inputted into convolution neural network (e.g. Resnet,
Hourglass), and the feature maps extracted by the neural network were sent to center
point, offset, boxes size three branches for prediction to obtain the results.

The center got from the feature map as shown in Fig. 10.8, which will be
transformed to a heatmap (Fig. 10.8(a)), the location of the object which had the
highest value was the center (Fig. 10.8(b)). The center should be surrounded, the
offset was used to assess the deviation of centers between the feature map and the
original image (Fig. 10.8(c)) (Zhao & Yan, 2021).

Fig. 10.7 The structure of CentetNet

a) keypoint heatmap            (b) local offset              (c) object size

Fig. 10.8 (a–c) The workflow of CenterNet
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The input image was denoted as I 2 RW × H × 3, W is the width of our image, the
height is H, and 3 means picture RGB channels. The heatmap of the center keypoint
is bY 2 0, 1½ �WR × H

R ×C , R is the downsampling rate, C is the number of classes, in this
research, just has one class of tree. bYxyc = 1 means that the point is center keypoint
for class C, bYxyc = 0means it is not detected or it is background. As show in Fig. 10.8
(a), the darker the color, the closer to the object.

The ground truth (GT) trained by CenterNet is a little different from other target
detection networks, it is more similar to the segmentation network, the input GT is a
feature map generated based on the target box. For example, the center point p of the
ground truth needs to be calculated, p= x1þx2

2 , y1þy2
2

� �
, where x and y are the

coordinates in the GT. But the feature map was downsampled, p is also
downsampled by using R, ep= p

R

� �
. ep is the center point of truth data in the feature

map. To make the training process smoother, a Gaussian kernel was used to do the
smoothing of GT, where the size of the Gaussian-processed values of the pixels
around p points is

Yxyc = exp -
x- epxð Þ2 þ y- epy� �2

2σ2p

 
ð10:12Þ

where σp is the standard deviation obtained by adapting to the size of the current
target p.

10.2.4 Training Platform and Validation

The hardware environment used in this study included Windows 10, Intel(R) Core
(TM) i7-10750H CPU @ 2.60 GHz, 32.0 GB of RAM, and an NVIDIA GeForce
RTX 2060. The software environment included Anaconda 3, Python 3.5, and
TensorFlow-GPU 1.13.1. In the experiment, a total of 12,876 infrared images of
orchard trunks were used for training, 9270 images in the training datasets, and 2318
images in the validation datasets.

10.2.5 Model Testing

To verify model reliability and stability, 1288 images were selected as the test set for
validation after the model was trained. In this paper, the precision-recall curve was
obtained by calculating precision and recall to highlight the trade-off between
precision (P) and recall (R) of the classification model. The area under the curve
was calculated to obtain the average precision (AP) of the model. Because there was



Z

only one category in this experiment, AP was the same as mAP (mean average
precision). The P, R, and AP can be expressed as expressions (10.13)–(10.15):
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P=
TP

TPþ FP
ð10:13Þ

R=
TP

TPþ FN
ð10:14Þ

AP=
1

0
PdR ð10:15Þ

where TP is the true positive value (i.e., the correct detection box); FP is the false-
positive value (i.e., the false detection box that predicts the background as the target);
and FN is the false negative value (i.e., the missed detection box). During testing,
1288 images were used as testing datasets in the three model.

10.3 Results

10.3.1 Faster R-CNN Testing

The number of iterations were 40,000, and the losses were reported as total loss,
bounding box loss, classification loss, regional proposal network (RPN) classifica-
tion loss, and RPN bounding box loss (Fig. 10.9). According to Fig. 10.9, the total
loss function dropped to approximately 0.6 and oscillated near 0.6 when training
reached 40,000 iterations, effectively reaching convergence. Also, both the
bounding box loss and classification loss converged; thus, training was stopped at
40,000 iterations.

The mAP of the Faster R-CNN model was found to be 0.8378 (Fig. 10.10). The
images for testing were considered based on the training results conducted for the
high-, low-, and no-light conditions (Fig. 10.11). Two images were selected at
different time periods.

10.3.2 YOLO Testing

Same as Faster R-CNN, YOLO’s loss were tend to be smooth after 40,000 iterations.
The training was stopped at 40,000 iterations and the loss value were decreased to
0.7 (Fig. 10.12). Precision-recall curve of YOLO is shown in Fig. 10.13, and its
accuracy was only 0.4. The same images were selected for testing (Fig. 10.14), and it
was found that YOLO could not detect tree trunks in no-light condition, and only
some tree trunks in high-light and low-light can be found, and in the joint tree
orchard, YOLO cannot be used at all.
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Fig. 10.9 Faster R-CNN loss images. (a) Total loss. (b) Bounding box loss. (c) Classification loss.
(d) Regional Proposal Network classification loss. (e) Regional Proposal Network bounding
box loss
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Fig. 10.10 Precision-recall curve of Faster R-CNN

10.3.3 CenterNet Testing

Different from the iteration times of Faster R-CNN and YOLO, CenterNet training
was done by epoch. The training was set 60 epochs, and the loss had become
smoothly at the end of the training (Fig. 10.15). CenterNet automatically saved the
best result during training, and the best result was obtained at the 45th epoch in this
study, the loss was 0.78. The precision-recall curve obtained with the best results is
shown in Fig. 10.16, and its accuracy was reached at 0.94. Selected the similar
images for testing, CenterNet also could accurately identify tree trunks (Fig. 10.17).

10.4 Discussion

Machine vision typically analyzed RGB imagery and can thus not manage low-light
conditions to recognize natural landmarks. Conversely, GNSS suffered signal inter-
ruptions due to dense canopies inside the orchards. LiDAR also had difficulties
recognizing tree trunks because the large scanning range decreases the mistake of
recognizing tree trunks. To increase the robustness of these methods, this study used
a thermal camera combined with deep learning to identify fruit tree trunks under
high-, low-, and no-light conditions. The loss function shown in the results section
represents the difference between the predicted value of the model and the training
samples. A smaller value indicates that the closer the predicted sample is to the real
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Fig. 10.11 Image results of Faster R-CNN test: (a–d) no-light conditions, (e–h) high-light
conditions, and (i–l) low-light conditions



sample, the more robust the model was. In contrast, a larger value indicated that the
difference between the predicted and real samples was larger (Zhang et al., 2020).
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Fig. 10.11 (continued)

By training Faster R-CNN, YOLO, and CenterNet with the same dataset, through
plotting precision-recall and testing the same images, it can be found that YOLO was
less accurate in thermal images in this study, and Faster R-CNN and CenterNet can
accurately identify the target. In the testing results in the conventional and joint
orchards, this model was able to recognize tree trunks accurately.

Although the precision-recall curve showed that the accuracy of Faster R-CNN
was lower than that of CenterNet, Faster R-CNNN was able to find more targets with
higher target accuracy than CenterNet by image testing. In the joint tree orchard, the
tree trunk covered by the shelf is detected by Faster R-CNN (Fig. 10.11g, h), but not
by CenterNet (Fig. 10.17g, h). Faster R-CNN sometimes had detection errors, as in
Fig. 10.11d, Faster R-CNN detected the orchard net as a target, but the detection
error probability of Faster R-CNN was smaller compared to the targets missed by
CenterNet. By the above comparison, Faster R-CNN was more suitable to be applied
in this study.

However, results showed that the converged losses did not reach below 0.1, while
other studies had less than 0.1 (Jiang et al., 2021); these results likely occurred was
because the two types of trees (conventional and joint) were investigated in this
study, which differ markedly in shape. Also, in the conventional orchard, the trees
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Fig. 10.12 YOLO-v3 loss
image



differed markedly in size, with some trees being 30 cm wide and some less than
5 cm, which led to a larger loss convergence result. In addition, randomly selected
images were used to prepare the validation set. According to the validation results,
the model works properly to detect the tree trunk in conventional and joint orchards
under high-, low-, and no-light conditions, and had a higher accuracy rate. The poles
and shelves in the orchards can be distinguished from the fruit tree trunk. In the
rotated images, the trunk could be identified accurately.

10 Potentials of Deep Learning Frameworks for Tree Trunk Detection in. . . 171

Fig. 10.13 Precision-recall curve of YOLO-v3

In the joint tree system, using a thermal camera had more flexibility to detect the
tree trunk due to the uniform shape of the tree and growth in rows. However, natural
orchards have different types, and the shapes of the field and canopy coverages can
be markedly different. Traditionally, orchard growers in Japan control pruning and
training according to their heights of operations, which makes using machinery
inconvenient. Joint tree training systems have the advantage of uniform growing
and machinery automation systems. Therefore, the thermal camera used in the
research has a high application potential in join tree training systems to use for
orchard navigation in combination with other positional sensors such as LiDAR.
In previous studies, LiDAR was able to detect artificial landmarks and cones for use
in positional algorithms in orchard navigation (Thanpattranon et al., 2015, 2016). In
future research, a thermal camera and LiDAR are planned to be used to navigate
speed sprayers in an orchard.
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Fig. 10.14 Image results of YOLO-v3 test: (a–d) no-light conditions, (e–h) high-light conditions,
and (i–l) low-light conditions
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Fig. 10.14 (continued)

10.5 Conclusion

Thermal imagery had the potential to detect natural landmarks under different
lighting conditions. This study proposes using the Faster R-CNN, YOLO-v3 and
CenterNet for thermal images to detect pear tree trunks to enable navigation under
various lighting conditions in orchards. Conventional and joint tree training system
orchards were considered for dataset collection. The accuracy and reliability of the
model was verified by training and testing the thermal images, indicating that target
detection could be performed in high-, low-, and no-light conditions using a thermal
camera. In this study, all 640 × 512-pixel images and videos were used. CenterNet
had higher accuracy compared to YOLO-v3 and Faster R-CNN using the same
dataset, but Faster R-CNN could detect more objects and was most suitable in this
study. The model could distinguish poles and shelves even they are same size with
tree trunk, indicating that the thermal camera can be used for orchard navigation to
detect tree trunks under different light conditions, and using this system can allow
machinery to operate in orchards at any time. Therefore, the thermal camera can be
used in high-, low-, or no-light conditions inside orchards to detect tree trunks using
deep learning algorithm. However, due to the unavoidable error in labeling, the



recognition accuracies decreased after 20m, such as omissions and identification
errors. As the thermal camera is a monocular camera, distance measuring must be
assisted by other sensors. In future research, an autonomous speed sprayer is planned
to be used by installing the thermal camera and combine with LiDAR for orchard
navigation under different light conditions to provide solutions in orchard automa-
tion to increase productivity.
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Fig. 10.15 CenterNet loss image

Fig. 10.16 Precision-recall curve of CenterNet
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Fig. 10.17 Image results of CenterNet test: (a–d) no-light conditions, (e–h) high-light conditions,
and (i–l) low-light conditions
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Chapter 11
Real-Time Pear Fruit Detection
and Counting Using YOLOv4 Models
and Deep SORT

Addie Ira Borja Parico and Tofael Ahamed

Abstract This study aimed to produce a robust real-time pear fruit counter for
mobile applications using only RGB data, the variants of the state-of-the-art object
detection model YOLOv4, and the multiple object-tracking algorithm Deep SORT.
This study also provided a systematic and pragmatic methodology for choosing the
most suitable model for a desired application in agricultural sciences. In terms of
accuracy, YOLOv4-CSP was observed as the optimal model, with an AP@0.50 of
98%. In terms of speed and computational cost, YOLOv4-tiny was found to be the
ideal model, with a speed of more than 50 FPS and FLOPS of 6.8–14.5. If
considering the balance in terms of accuracy, speed, and computational cost,
YOLOv4 was found to be most suitable and had the highest accuracy metrics
while satisfying a real time speed of greater than or equal to 24 FPS. Between the
two methods of counting with Deep SORT, the unique ID method was found to be
more reliable, with an F1count of 87.85%. This was because YOLOv4 had a very low
false negative in detecting pear fruits. The ROI line is more reliable because of its
more restrictive nature, but due to flickering in detection it was not able to count
some pears despite their being detected.

Keywords YOLO · YOLOv4 · Deep SORT · Object counting · Real time · Object
detection · Fruit detection
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11.1 Introduction

Pear farmers in typically count their yield manually and tend to have higher post-
harvest losses due to short perishability and packaging arrangements. In addition,
quicker decision making is necessary in an extreme climatic event situation. To
make this process easier for farmers, a mobile phone-based application for counting
pears in real time was conceptualized to support the logistics management of pears.
However, this would require a fast and accurate detection method that is not
computationally expensive. Taking a video from under the trees would require
robustness due to challenges such as illumination and occlusion.

Deep learning algorithms have proven to be the most robust way for object
detection (Kamilaris & Prenafeta-Boldú, 2018a, b). Considering accuracy and
speed, YOLOv4 (You Only Look Once) (Bochkovskiy et al., 2020) has been the
top performer for object detection models recently. YOLOv4 runs two times faster
than a recent state-of-the-art object detection model, EfficientDet, at a similar
accuracy. More importantly, YOLOv4 was designed to enable training on a single
conventional GPU, unlike other models. After the development of YOLOv4, Wang
et al. (2020a) modified the structure of YOLOv4 to enable scaling for different
applications. YOLOv4-tiny was designed to maximize speed and to achieve the
minimum computational cost possible. Then, YOLOv4-CSP and other larger ver-
sions of YOLOv4 were developed to maximize accuracy with varying computa-
tional requirements. In this study, the authors evaluated the speed-accuracy-memory
tradeoff among YOLOv4, YOLOv4-tiny, and YOLOv4-CSP on detecting pear
fruits.

One can use detection alone for counting objects. However, some of the most
common problems in detection systems are flickering, failure to detect the object
under occlusion and challenging illumination. Therefore, relying completely on the
number of detections for the pear count could lead to errors, especially in a pear
orchard scenario where the abovementioned challenges are common. For that
reason, a back-up system should cover for this limitation to ensure accuracy in
counting, which can be through object tracking. With object tracking, a unique ID
can be assigned to a detection, thus, giving a more reliable measure of object count
just in case the detection system fails. Deep SORT (Simple Online Realtime
Tracking with Deep Association Metric) has been proven to be one of the fastest
and most robust algorithms for multiple object tracking (Wojke et al., 2017). Deep
SORT was found to have runtime speed of 25–50 FPS using recent conventional
GPUs (Wojke et al., 2017). Due to its suitability for real-time tracking and robust-
ness, Deep SORT was selected as the tracking algorithm in this study for counting
the pear fruits in real time.

Several studies have utilized YOLO-based models for fruit detection and have
demonstrated that YOLO models have a huge potential in accurate real time
detection of fruits in an orchard (Koirala et al., 2019; Liu et al., 2020; Yan et al.,
2021; Lawal 2021; Fu et al., 2020; Gai et al., 2021; Kang & Chen, 2020; Kuznetsova
et al., 2020a; Kuznetsova et al., 2021; Wu et al., 2021). However, there were some



concerns found among these studies. First, no study simultaneously considered the
parameters of detection accuracy, inference speed, and computational cost, which
are very important for the optimization of the detection algorithm. Second, most of
the studies did not report loss curves for their models, thus, it is difficult to verify if
overfitting or underfitting of their dataset occurred. It is also difficult to confirm if
they had truly achieved the highest possible performance metrics exhaustively
without overfitting. Finally, reported research only focused on detection and did
not address the possibility of counting the objects in real time, which is a completely
different matter.
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There was one study found where YOLO was combined with a classical tracking
algorithm (Kalman filter) for counting the fruits with an F1 score of 0.972 (Itakura
et al., 2021). However, the speed of the counting system was not mentioned. In
addition, it was not stated if the information processing was done in one batch or
sequentially. Thus, it is difficult to confirm if their system is truly applicable in
real time.

Considering these limitations in related studies, the main contribution of this
study was to develop a real time fruit counting system through detection and tracking
while evaluating the computational cost. The concept is that the pear counter counts
the pear fruits from a video taken in real time based on a two-part system with a state-
of-the-art detection algorithm YOLOv4, and a leading tracking algorithm Deep
SORT. To do that, detection performance, inference speed, and computational cost
were considered concurrently as target metrics for optimizing the detection
algorithm.

Furthermore, a comprehensive, systematic, and pragmatic guide in performing an
object detection study in an agricultural or life sciences application was provided.
First, target metrics were clearly defined. Then, a modified data splitting scheme was
proposed for cases where data mismatch existed between the available training and
test datasets. Next, this research also provided a methodological training strategy
that can guide the researcher to objectively diagnose problems that exist during
training, such as overfitting, and under fitting. With the systematic guide provided in
carrying out object detection research, high quality and reproducible results are
ensured.

This article provides the problem statement and contributions to the agricultural
production system for minimizing post-harvest losses in Sect. 11.1. In Sect. 11.2,
more details about the YOLO models, Deep SORT, and other related studies are
discussed. Section 11.3 lays out the systematic methodology in preparing the data,
defining the target metrics, carrying out the training, validation, and optimization of
the detection models, comparison of the YOLOv4 models (YOLOv4, YOLOv4-
CSP, and YOLOv4-tiny), integration with the tracking algorithm and, finally,
evaluation of the pear counting system. In Sect. 11.4, the results of the training,
error analysis, model comparison, and evaluation of the pear counting system are
presented. Finally, Sect. 11.5 outlines the conclusion and future directions of the
study.
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11.2 Related Works

11.2.1 You Only Look Once (YOLO)

Deep learning algorithms have been shown to be one of the most robust ways for
approaching object detection (Kamilaris & Prenafeta-Boldú, 2018b). Considering
accuracy and speed, YOLOv4 (Wang et al., 2020a) has been the top performer for
object detection models recently. Joseph Redmon in 2016 developed the predecessor
of YOLOv4, You Only Look Once (YOLO), which was considered one of the first
convolutional neural networks (CNNs) with real-time speed. Its speed was attributed
to its one-shot detection mechanism, where it simultaneously predicted the bounding
box coordinates and class probabilities from an image (Redmon et al., 2015); YOLO
divides an input image into S × S grids then predicts bounding boxes with
corresponding confidences of having detected an object of class C (Fig. 11.1). A

Fig. 11.1 (Top) General workflow of YOLO; (Bottom) YOLO Architecture



threshold value is set to eliminate bounding boxes of low confidence. Therefore,
probabilities that are greater than the threshold value are considered detections.
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However, the YOLO had its downsides. It had difficulties in detecting small
objects and objects with unusual aspect ratios. It also made more localization errors
compared to the state-of-the-art object detection model, fast R-CNN. In 2017, a more
accurate counterpart of YOLO was introduced, which was called YOLOv2. The
accuracy improvements in YOLOv2 were mainly due to the use of anchor boxes in
predicting the location of objects in an image, batch normalization in the
convolutional layers, and high-resolution classifier. Because of these improvements,
YOLOv2 was able to outperform some state-of-the-art models such as Faster
R-CNN with a mAP of 78.6% and an inference speed of 40 FPS on a Pascal VOC
2007 dataset and an mAP0.5:0.95 of 21.6% on an MS COCO test-dev 2015
(Redmon & Farhadi, 2017).

Then, a year after, several improvements were applied to YOLOv3. In this
version, the previous backbone network of YOLOv2 (Darknet-19) was replaced
with Darknet-53. Other than that, the following were also integrated into the system:
(1) binary cross entropy in loss calculations, (2) use of logistic regression in
predicting the “objectness score” for each bounding box, and (3) feature extraction
at three different scales inspired by FPN (Lin et al., 2016; Redmon & Farhadi, 2018).
Because of these enhancements, compared to YOLOv2, YOLOv3 had a better AP of
28.2% on an MS COCO dataset, which was on par with SSD but three time faster.
However, the increased accuracy had some cost on the inference speed.

In early 2020, Bochkovskiy et al. introduced YOLOv4, which is more accurate
and faster than YOLOv3 by 10% and 12%, respectively. YOLOv4 runs two times
faster than a recent state-of-the-art object detection model, EfficientDet, at a similar
accuracy. More importantly, YOLOv4 was designed to enable training on a single
conventional GPU, unlike other models. The efficiency and increase in accuracy of
YOLOv4 in object detection result mainly from several improvements incorporated
into the model, which are: (1) cross-stage partial connections (CSP) in the new
CSPDarknet53 inspired by CSPNet (Wang et al., 2020b), (2) use of Mish and leaky
ReLU as an activation function (Maas et al., 2013; Misra, 2019), (3) adoption of a
Path Aggregation Network (Liu et al., 2018) in place of the FPN that was used in
YOLOv3, and (4) use of Spatial Pyramid Pooling (Huang et al., 2020) as a plug-in
module.

After the development of YOLOv4, Wang et al. (2020a) modified the structure of
YOLOv4 to enable scaling for different applications. YOLOv4-tiny was designed to
maximize speed and to achieve the minimum computational cost possible. Then,
YOLOv4-CSP and other larger versions of YOLOv4 were developed to maximize
accuracy with varying computational requirements. In this study, the author com-
pared the performances of YOLOv4, YOLOv4-tiny, and YOLOv4-CSP on detecting
pear fruits.

Some common problems for detection systems are flickering and failure to detect
the object under occlusion and challenging illumination. Therefore, relying
completely on the number of detections for the pear count would be erroneous,
especially in a pear orchard scenario where the mentioned challenges are common.



For that reason, a back-up system should cover for this limitation to ensure accuracy
in counting, which can be through object tracking. With object tracking, a unique ID
can be assigned to a detection, thus, giving a more reliable measure of object count in
case the detection system fails.
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11.2.2 Simple Online and Real Time Tracking
with Convolutional Neural Networks (CNNs)

Among the algorithms for multiple object tracking, deep SORT has proven to be one
of the fastest and most robust approaches (Wojke et al., 2017). It started as the
Simple Online and Real time Tracking (SORT) algorithm (Bewley et al., 2016),
which was developed to have a minimalistic approach in detection-based online
tracking, which focused on efficiently associating object detections on each frame. It
took advantage of the high reputation of convolutional neural networks in accurately
detecting objects. In addition, two classic methods in motion prediction and data
association, the Hungarian algorithm (Kuhn, 1955) and Kalman filter (Kalman,
1960), were implemented as the tracking components. Due to its modest complexity,
SORT was 20 times faster than other state-of-the-art trackers (Bewley et al., 2016).
Using Faster R-CNN (Ren et al., 2017) as the detector, it also had better performance
compared to the traditional online tracking methods in the MOT (multiple object
tracking) Challenge 2015 (Leal-Taixé et al., 2015).

The main drawback with SORT was occlusions and when viewpoints change. To
solve this issue, Wojke et al. (2017) developed Deep SORT, which is an extended
version of SORT (illustrated in Fig. 11.2). In Deep SORT, instead of relying only on
motion-based metrics in data association, it also integrated a deep appearance-based
metric derived from the convolutional neural network. This change resulted higher
robustness from occlusion, change in viewpoint, and in using a nonstationary camera
for lower identity switches. Using a modern GPU, Deep SORT was found to have a

Fig. 11.2 Architecture of Deep SORT (Simple online and real time tracking with deep association
metric)



runtime speed of 25–50 FPS using recent conventional GPUs (Wojke et al., 2017).
Due to its suitability for real-time tracking and robustness, Deep SORT was selected
as the tracking algorithm in this study for counting the pear fruits in real time.

11 Real-Time Pear Fruit Detection and Counting Using YOLOv4 Models. . . 185

11.2.3 Fruit Detection Using YOLO

Several studies have utilized YOLO-based models for fruit detection. Koirala et al.
(2019) performed real time mango fruit detection with their Mango-YOLO model
that exhibited an F1 score of 0.968, AP of 98.3% and an inference speed of 14 FPS
on a NVIDIA GeForce GTX 1070 Ti GPU. Liu et al. (2020) and Lawal (2021) also
proposed their own YOLOv3-based tomato detection systems that showed similarly
remarkable AP values of 96.4% and 99.5%, respectively, and a faster speed of
around 19 FPS for both studies using an NVIDIA GeForce GTX 1070 Ti GPU
and an NVIDIA Quadro M4000 GPU, respectively, but this was still not sufficient
for real time detection (≥24 FPS). Li et al. (2021) also developed Lemon-YOLO for
detecting lemon fruits, where they replaced Darknet-53 with an SE_ResGNet34
network. Their system had an AP of 96.28% and a detection speed of 106 FPS on the
high-powered Tesla V100 GPU. Other studies also evaluated the performance of
YOLO-based models on detecting other fruits such as apple, lemon, banana, and
cherry (Fu et al., 2020; Kang & Chen, 2020; Kuznetsova et al., 2020a, b; Gai et al.,
2021; Kuznetsova et al., 2021; Wu et al., 2021; Yan et al., 2021).

It is important to note that most of the studies did not report loss curves for their
models, thus, it is difficult to verify if overfitting or under fitting of their dataset
occurred. It is also difficult to confirm if they truly achieved the highest possible
performance metrics exhaustively without overfitting.

11.2.4 Real-Time Fruit Counting Using YOLO and an Object
Tracking Algorithm

Only one study combined YOLO with a multiple object tracking algorithm for
counting fruits. Itakura et al. (2021) used YOLOv2 and Kalman filter to count
pear fruits from a video to achieve an AP of 97% in detection and an F1 score in
counting of 0.972. However, the speed of their counting system was not mentioned.
It was also not stated if the tracking algorithm approach was online (current pre-
dictions rely only on past information) or offline (processes all information in one
batch). Online tracking is more suitable for real time counting. Although offline
tracking (also called batch tracking) can be more accurate, processing only occurs
after all observations are obtained, thus making it an unattractive option for real time
counting. Because of the lack of information about their tracking approach, it is
difficult to confirm if their system is truly applicable in real time.
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11.3 Materials and Methods

11.3.1 Field Data Collection

RGB video acquisition was done using two different cameras: a DJI Osmo Pocket,
with a 12 MP, 1/2.3″ CMOS sensor and field of view of 80° F2.0, and a mobile
phone camera (16 MP, 1/2.6″ BSI CMOS Sensor, F1.9 lens, with OIS). Video
acquisition was done in a 0.15 ha joint-tree pear orchard (as seen in Fig. 11.3) in
the Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba,
Ibaraki (36°06′56.8″ N, 140°05′37.7″ E) on a cloudy day and a partly cloudy day.
The videos were taken from the bottom side of the trees. The details regarding the
videos are outlined in Table 11.1.

11.3.2 Data Preparation

11.3.2.1 Videos Were Converted into Image Frames

Videos were converted into image frames using the “Scene video filter” of VLC. An
automatic screenshot of the video was taken at an interval of half a second. For
example, if the video had a frame rate of 60 FPS, one image frame was taken every
after 30 frames. For a 30 FPS video, one image frame was taken every 15 frames.

Next was the elimination of images without pear fruits from the dataset. After
that, the remaining image frames were 314 of 4k resolution images and

Fig. 11.3 Aerial view of the joint-tree pear orchard (left). Joint-tree pear orchard in the Tsukuba-
Plant Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki (right)

Table 11.1 Details of video acquisition of pear fruits in the joint-tree pear orchard in the Tsukuba-
Plant Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki

Date Time Weather condition Device Resolution, FPS

29 July 2020 12–1 p.m. Cloudy Mobile Phone Camera 1920 × 1080, 30

6 August 2020 9–10 a.m. Intermittently cloudy DJI Osmo Pocket 3840 × 2160, 60



134 of 1920 × 1088 resolution images, giving a total of 448 images. The dataset was
further expanded through augmentation.
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11.3.2.2 Labelling

Bounding box labelling was done using Supervisely® (Github, n.d.). Its labeling
interface allows precise and efficient labelling, reducing the possibility of human-
error in labelling ground truth data. However, the export format of the labels was
only in Supervisely format (JSON). Other open-source Python-based annotation
tools that export directly in YOLO format include LabelImg (Tzutalin LabelImg,
2021) and OpenLabeling (Cartucho et al., 2018).

Roboflow® was used to convert the Supervisely format labels to the desired
frameworks (such as Darknet, Tensorflow™, PyTorch, etc.). An alternative to
Roboflow is an open-source method of converting Supervisely labels to YOLO
format (Shorten & Khoshgoftaar, 2019).

11.3.2.3 Data Augmentation

It is essential to make the pear fruit detection system more robust to different
scenarios through diverse representation of pear fruits in joint-tree systems in
one’s dataset. However, there may be unavoidable bias present in the dataset that
may not be obvious to the researcher, which can cause overfitting on the training
dataset. To mitigate this possible concern, there is an assumption that more infor-
mation can be extracted from the training dataset if the images are transformed in
different ways. This is called data augmentation, which may simulate a wider
representation of pear fruit data in orchards, thus avoiding possible overfitting to
the training dataset. However, how does one decide which data augmentation
techniques should be used?

There are two types of data augmentation: pixel-level and spatial-level. Pixel-
level transformations change the images themselves but leave the bounding boxes
unchanged. Some examples of pixel-level transformations are blurring, changing the
brightness or exposure, adding noise, Cutout, Cutmix, and so on. This is useful if the
researcher wants to preserve the bounding boxes themselves and intends to not
distort the shape of the target object. Spatial-level transformations, on the other hand,
change both the image and the bounding box, which makes the transformation
slightly more complicated to code compared to pixel-level transformations. How-
ever, spatial-level transformations were shown to be more effective in improving the
performance of object detection systems (Shorten & Khoshgoftaar, 2019). In this
study, both kinds were used.

The following image transformations were done to the 4k images.

• Random flip (horizontal or vertical.)
• Random brightness adjustment from -25% to +25%.
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• Random adjustment of gamma exposure from -20% to +20%.
• Coarse Dropout: up to 6% of the image’s pixels were subject to noise.

Images were resized to the following sizes: 416 × 416, 512 × 512, and 608 × 608.
The aspect ratios of the images were preserved by adding black padding to avoid
distorting the aspect ratio of the pear fruits. Through augmentation, the dataset was
expanded from 448 images to 1337 images.

11.3.3 Data Splitting

As mentioned in the previous section, the dataset was comprised of 1337 images. We
adapted a rule-of-thumb in data splitting for dataset sizes from 100 to 10,000, which
was 70:30 for training and validation sets. This is typical for datasets that have even
distribution, meaning the training and validation set are not too different from each
other. However, in this study, the dataset had uneven distribution. High-resolution
images were used in training the neural networks to enable them to detect smaller
objects. Then, the trained neural networks were tested on the target application of
this study, which were lower resolution mobile phone images. One may think that
validating the trained model with a dataset that has a different distribution does not
truly evaluate the performance of the trained model. However, how can the “learn-
ing” performance be truly measured?

Considering the uneven distribution, the dataset was split into four parts in a 70:
10:10:10 ratio: training, training-validation, validation and test set. The training and
training-validation set contained the high-resolution images. The training-validation
was the unseen high-resolution images, and was used to check if the trained model
had overfit the training images. Again, the main target of the detection was pear
counting using mobile phones. Thus, the validation and test sets were comprised of
mobile phone images. The validation set’s purpose was to check if there was a huge
data mismatch between the Osmo images and the mobile phone images. The test set,
on the other hand, was used to determine if the model had overfit the validation set.

11.3.4 Setting the Target Metric

Before training a network, it is important to set the desired error rate or accuracy. The
whole point of training, validation, and optimization is to achieve the desired error
rate or accuracy in detection. The desired error rate can be set at the same level as the
human-level error in application. In pear fruit counting, the error rate was close
to zero.

Accuracy is important in counting fruits. However, a machine that is adept in
counting would be deemed useless if the speed was not real time. Moreover, for
mobile phone use, it is important to consider if the inference should be done using
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the phone’s local computational resources or through cloud computing. For exam-
ple, if the inference is desired to be done on the device itself, the pear fruit counter
should not require too much computational power. Therefore, for a pear fruit counter
using mobile phones, the aim is to have maximum accuracy that satisfies the
minimum speed requirement, while considering the GPU consumption.
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Thus, the goal was the following:

• Maximize the accuracy metric given the time-constraints, hardware, and dataset
size available.

• Determine the inference speed of the YOLOv4 family and find out which one has
inference speed close to real time (≥24 FPS).

Find out the GPU consumption of the YOLOv4 family in terms of FLOPs. The
CPU and GPU consumption is proportional to the number of FLOPs used (Sehgal &
Kehtarnavaz, 2019).

11.3.5 Evaluation Metrics for the Detection

The performances of the models were evaluated based on the metrics used in
the Pascal VOC Challenge (Everingham et al., 2010), which are listed in
Table 11.2. The first metric is Intersection over Union (IoU), which is the proportion
of the overlapping area and combined area of the bounding boxes of the prediction
and the ground truth object.

True positive, false positive, and false negative values are prerequisites of the
other performance metrics. A detection is considered a true positive (TP) detection if
the IoU is equal to or greater than 0.5. False positive (FP) predictions are those
having IoU with values below 0.5. False negative (FN) detections were the ground
truth objects that were not detected at all, or those assigned with low confidence in
predictions (eliminated by a certain threshold, which was considered 0.25 in this
research). After calculating TP, FP, and FN, recall, precision, F1 score, and average
precision can be derived. Recall is the sensitivity of the detection system. This metric
is the ratio of true positive detections to total ground truth objects. Precision is the

Table 11.2 Performance
metrics that were used to
evaluate the YOLOv4 models
are described below. This
evaluation is based on the
Pascal VOC Challenge
(Everingham et al., 2010)

Performance metrics

Intersection over Union IoU = area of overlap
area of union

Recall R = TP
TP FN

False Negative Rate (FNR) = 1.00 - R

Precision P = TP
TP FP

False Positive Rate (FPR) = 1.00 - P

F1 score= 2�P�R
P R

Average Precision AP = 1
11 Ri

P Ri

TP true positive, FP false positive, FN false negative



Model name Backbone Neck

correctness of the predictions, which is the ratio of the true positive detections to all
positive detections. Next is the F1 score, which summarizes the overall performance
of detection by incorporating both precision and recall. Finally, average precision
(AP) is the area under the precision-recall curve interpolated from 11 points of recall
and precision at different confidence thresholds. It is similar to the F1 score in the
sense that it is one metric that summarizes the accuracy of a model. However, AP
considers the confidence level of the predictions. Thus, this metric is more often used
as a target metric for evaluating the performance of the models during training, and
also for decision making in choosing the best model among the YOLOv4 models.
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11.3.6 Components of the YOLOv4 Models

In this study, the authors compared the performances of YOLOv4, YOLOv4-tiny,
and YOLOv4-CSP on detecting pear fruits. Table 11.3 shows the differences among
these models in terms of their architectural components. In this section, how the
elements of these models contribute to their respective characteristics is discussed
more in detail.

11.3.6.1 Cross-Stage Partial (CSP) Connection

Cross-stage Partial (CSP) Connection is a technique to reduce computational com-
plexity, which is originally derived from CSPNet (Wang et al., 2020b). To “CSP-
ize” a network divides the feature map of the base layer into two parts then merges
the two parts through transition → concatenation → transition (see Fig. 11.4).
CSP-ization improves the accuracy and reduces the inference time through trunca-
tion of gradient flow (Wang et al., 2020a, b). Also, CSP-ization enables scaling of
the model. Because of these reasons, CSP connections were incorporated into the
backbone of the YOLOv4 models. CSPDarknet53 was chosen as the YOLOv4
backbone despite having lower accuracy in image classification compared to
CSPResNext50 (Bochkovskiy et al., 2020). The next section explains why.

Table 11.3 Comparison of YOLOv4, YOLOv4-CSP, and YOLOv4-tiny in terms of their archi-
tectural elements

Plug-in
module

YOLOv4 CSPDarknet53 + Mish
activation

PANet + Leaky activation SPP

YOLOv4-
CSP

CSPDarknet53 + Mish
activation

CSPPANet + Mish
activation

CSPSPP

YOLOv4-
tiny

CSPOSANet + Leaky
activation

FPN + Leaky Activation –
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Fig. 11.4 Cross-Stage Partial Connection Block in YOLOv4-CSP

Fig. 11.5 One shot aggregation (OSA)

11.3.6.2 CSPDarknet53: YOLOv4 and YOLOv4-CSP’s Backbone

Despite CSPResNext50’s better performance in image classification, it was not the
case for object detection. CSP-ization of Darknet53 led to higher accuracy in object
detection due to the following (Wang et al., 2020a):

Higher input network size, which led to the ability to detect more small-sized
objects. More convolutional layers 3 × 3, which led to a larger receptive field to
cover the increased input network size. Larger number of parameters for greater
capacity to detect multiple objects of different sizes in a single image.

Other than CSP-ization, several techniques were used to improve the performance
of CSPDarknet53 without putting a burden on the computational requirement:
(1) data augmentation techniques such as CutMix (Yun et al., 2019) and Mosaic
(Bochkovskiy et al., 2020), (2) DropBlock (Ghiasi et al., 2018) as a regularization
method, and (3) Class label smoothing (Bochkovskiy et al., 2020). Then, the
following techniques were used to make the use of expensive GPUs no longer
necessary in training: (1) Mish (Misra, 2019) as the activation function (further
explained in Sect. 11.3.6.4), and (2) Multi-input weighted residual connections
(Sandler et al., 2018).

11.3.6.3 YOLOv4-tiny’s Backbone: CSPOSANet

For YOLOv4-tiny, it is important to make the computations efficient and fast
without sacrificing much the accuracy. Thus, one shot aggregation (OSA) (shown
in Fig. 11.5), which is derived from VoVNet (Lee et al., 2019), was implemented
between the calculation modules of YOLOv4-tiny’s backbone CSPOSANet for



smaller computation complexity. This resulted in the reduction of the size of the
model and the number of parameters through the removal of an excess amount of
duplicate gradient information. A leaky rectified linear unit was used as the activa-
tion function for CSPOSANet due to its faster speed in convergence (Maas et al.,
2013).
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11.3.6.4 Why Were Leaky Rectified Linear Unit and Mish Used
as the Activation Functions for the YOLOv4 Models?

The leaky rectified linear unit (or leaky ReLU) is a modified version of ReLU. The
difference is that the former allows a small nonzero gradient over its entire domain,
unlike ReLU (Fig. 11.6). Deep neural networks utilizing leaky ReLU were found to
reach convergence slightly faster than those using ReLU. However, leaky ReLU is
slightly less accurate, but has lower standard deviations compared to its more novel
counterparts (Misra, 2019). However, leaky ReLu has better performance with under
a 75% IoU threshold and with large objects and has lower computational cost due to
lower complexity (Misra, 2019).

Mish, on the other hand, is a smooth, continuous, self-regularized, nonmonotonic
activation function that enables smoother loss landscapes which helps in easier
optimization and better generalization. It has a wider minimum, and thus can achieve
lower loss. Because of these benefits, neural networks implementing Mish led to
higher accuracy and lower standard deviations in object detection. Moreover, it
retains the feature of its predecessors (Swish and leaky ReLU) in terms of
unbounded above and bounded below. The former avoids saturation (which gener-
ally causes training to slow down), whereas the latter results in stronger regulariza-
tion effects (fits the model properly).

Thus, leaky ReLU would be more suitable if the goal was to maximize speed
without sacrificing much of the accuracy. Then, if accuracy should be maximized,
Mish would be the better option. Table 11.4 summarizes the activation functions
used and their corresponding effects on each YOLOv4 model.

Fig. 11.6 Activation functions. (Left) Rectified Linear Unit (ReLU); (Center) Leaky ReLU;
(Right) Mish
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Table 11.4 Summary of activation function used and the reason why the specified activation
functions were used

Model Activation function Effect

YOLOv4 Mish + Leaky ReLU Balanced accuracy and speed

YOLOv4-CSP Mish Maximized accuracy

YOLOv4-tiny Leaky ReLU Maximized speed and Minimum computational cost

Fig. 11.7 Architecture of PANet, which inspired the path aggregation in YOLOv4’s neck. (a) FPN
backbone; (b) bottom-up path augmentation; (c) adaptive feature pooling; (d) box branch; (e) fully
connected fusion (concatenation is done instead of addition for YOLOv4)

11.3.6.5 YOLOv4’s Neck: Path Aggregation Network (PANet)

Path aggregation (shown in Fig. 11.7), originally proposed by Liu et al. (2018), was
used as the neck for YOLOv4 and YOLOv4-CSP in place of FPN (which was used
in YOLOv3). This technique aggregates parameters from different backbone levels
for different detector levels through bottom-up path augmentation and adaptive
feature pooling. Bottom-up path augmentation shortens the information path and
enhances the feature pyramid by making fine-grained localized information available
to top layers (the classifiers). On the other hand, adaptive feature pooling recovers
the broken information path between each proposal and all feature levels (cleaner
paths are created). It fuses the information together from different layers using an
element-wise max operation. Thus, PANet ensures that important features are not
lost. For these reasons, PANet was used as the neck for YOLOv4 and
YOLOv4-CSP.
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11.3.6.6 YOLOv4’s Plug-In Module: Spatial Pyramid Pooling (SPP)

Spatial pyramid pooling (or SPP) is another feature of YOLOv4 and YOLOv4-CSP
that eliminates the need for a fixed-size input image, making them more robust and
practical. SPP is added on top of the last convolutional layer of YOLOv4 and
YOLOv4-CSP. SPP pools the features and generates outputs with fixed length,
which are then fed into the classifier layer (Fig. 11.8). In this study, the pooling
was done through the spatially division of feature maps into different scales of d × d
equal blocks, where d can be {1, 2, 3, . . .}. These different scales of division forms

Fig. 11.8 Spatial Pyramid Pooling in YOLOv4



Model name Anchors

are called spatial pyramids. Then, max pooling was done for each level of division to
produce a concatenated 1D vector (originally). SPP works similarly in the YOLOv4
models, but the difference is the input feature map size is equal to the output feature
map size through padding.
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11.3.7 Training, Validation, and Optimization

The complete training process was composed of two stages: stage-1 training and
stage-2 training.

11.3.7.1 Stage-1 Training

The Darknet framework (Redmon et al., 2019) was used to train the YOLOv4
models within the Google Colab™ Notebook environment. The GPU used for
training, validation, and inference was Tesla T4. Custom anchors were calculated
using k-means clustering (Table 11.5 for the custom anchors used). Training-time-
augmentation was enabled. The total number of iterations for stage-1 training
was 6000.

Table 11.5 Anchors of the YOLOv4 models

Anchor mask indices

First Second Third

YOLOv4-
tiny-416

8, 8, 17, 17, 35, 27, 40, 42, 60, 50, 77, 72 5 0, 1, 2,
3, 4

–

YOLOv4-
tiny-512

8, 8, 15, 15, 28, 25, 46, 42, 66, 58, 93, 85 4, 5 0, 1, 2, 3 –

YOLOv4-
tiny-608

12, 12, 28, 24, 44, 45, 66, 54, 82, 78, 117, 100 4, 5 0, 1, 2, 3 –

YOLOv4-416 5, 5, 9, 9, 14, 14, 22, 19, 29, 33, 52, 22, 42, 40, 56,
53, 80, 67

0,
1, 2, 3

4, 5, 6, 7 8

YOLOv4-512 7, 8, 12, 12, 18, 18, 28, 25, 39, 43, 61, 29, 56,
54, 81, 69, 102, 97

0,
1, 2, 3

4, 5, 6 7, 8

YOLOv4-608 8, 9, 15, 15, 26, 22, 37, 34, 24, 60, 61, 43, 63,
64, 85, 78, 117, 100

0, 1, 2 3, 4, 5 6,
7, 8

YOLOv4-
CSP-512

7, 8, 12, 12, 18, 18, 28, 25, 39, 43, 61, 29, 56,
54, 81, 69, 102, 97

0,
1, 2, 3

4, 5, 6 7, 8

YOLOv4-
CSP-608

8, 9, 15, 15, 26, 22, 37, 34, 24, 60, 61, 43, 63,
64, 85, 78, 117, 100

0, 1, 2 3, 4, 5 6,
7, 8
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11.3.7.2 Hyperparameters

Stage-1 training used the linear warmup policy for the first 1000 iterations and multi-
step decay (other terms: piecewise constant decay, stepwise annealing) as the
learning rate schedule policies. The update rule for the multi-step learning rate
schedule was as follows:

LRnþ1 =
d � LRn, if n in steps½ �
LRn, otherwise

�
ð11:1Þ

where n is the iteration step, LRn is the previous learning rate, d is the decay rate
(d 2 ℝ j 0 < d < 1), and [steps] is the set of iterations when to decrease the learning
rate. For this study, d = 0.1, [steps] = [4800, 5400], LR0 = 0.001 for YOLOv4 and
YOLOv4-CSP and 0.00261 for YOLOv4-tiny. The learning rate schedules for the
YOLOv4 models are illustrated at Fig. 11.9.

Regarding the optimizer, Nesterov Accelerated Gradient, momentum, and weight
decay were implemented. The momentum and weight decay were set as 0.949 and
0.0005, respectively, for all the YOLOv4 models. The localization loss was based on
Complete IoU (CIoU) (Zheng et al., 2020), which is illustrated in Fig. 11.10. A
complete list of the hyperparameters is shown in Table 11.6.

Fig. 11.9 Learning rate schedule of YOLOv4, YOLOv4-CSP, and YOLOv4-tiny, where maxi-
mum iteration = 6000. For the first 1000 iterations, a linear warm up policy was done, which is a
slow rise of the learning rate. After the 1000th iteration, a multistep decay policy was done
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Fig. 11.10 (Left) The complete YOLOv4 Loss Function; (Right) details of the localization loss
based on Complete Intersection-over-Union loss

Table 11.6 Hyperparameters of the YOLOv4 models

Initial learning
rate

YOLOv4-tiny 64 16 0.9 0.0005 0.00261

YOLOv4 or YOLOv4-
CSP

64 16 0.949 0.0005 0.001

11.3.7.3 Stage-2 Training

Stage-2 training involved a fine-tuning process, which confirms if the weights with
the best mAP from stage-1 training had reached its maximum value. The details of
the fine-tuning process can be found in Algorithm 11.1.
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11.3.7.4 Error Analysis

For a supervised learning algorithm, the best performance achieves low bias and low
variance. In typical 70:30 data splitting, the purpose of the error analysis is to
determine if the model has achieved the highest possible accuracy without
overfitting to the training data.

However, the aim of data splitting at 70:10:10:10 is to train on high resolution
images (for more robustness) with the goal of having good performance on low
resolution images. Thus, through comparison of each pair of errors in Fig. 11.11, the
error analysis answers the following questions:

• Has the model achieved the lowest possible bias?
• Did the model overfit on the training data?
• Does the train-validation set have high mismatch in data distribution compared to

the validation set?
• Did the model overfit on the validation set?

To avoid data mismatch at Stage C (Fig. 11.11, Table 11.7), data augmentation
was done to the training-validation set to simulate a lower image quality, like that of
a mobile phone image. After passing all the stages in the error analysis, the
optimized models were compared based on their performance on the test set.

11.3.8 Model Comparison

After going through training, validation and optimization, the model that satisfied the
following criteria on the test set was chosen to be the YOLOv4 model for the pear
counting stage of this study. First, it should be the highest in all evaluation metrics

Fig. 11.11 Error analysis to achieve the best possible performance for the model from Stage A to
Stage D. The goal of the error analysis is to reduce the gap on each pair of errors by performing the
strategies found in Table 11.7. The target error (also called Bayes error) is the lowest possible
detection error, which in this case can be considered as the human error rate in detecting pears



and second, the inference speed should be close to real-time (≥24 FPS). Lastly, the
authors noted the GPU consumption of the chosen model to consider if in-device
inference or cloud computing inference would be ideal for mobile phone platform
implementation.
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Table 11.7 Strategies in reducing error gap in the error analysis. The stages were defined in
Fig. 11.11

Stage How to reduce the gap?

A.1 • Train longer

• Train a bigger model

• Use more effective optimization algorithms

• Momentum, RMS Prop, Adam

• Try other neural network architectures or hyperparameters

B.1 • Add more to training set

• Perform regularization methods to improve generalizing ability

• L2, Dropout, Data augmentation

• Try other neural network architectures or hyperparameters

C.1 • Make training data more similar to val/test set

• Collect more data similar to val/test set

• Consider generating synthetic dataset

• Note: overfitting to the synthetic dataset is a risk

D.1 • Increase the val set size

11.3.9 Pear Counting Using the Selected YOLOv4 Model
and Deep SORT

The best performing YOLOv4 model that satisfied the criteria in the model com-
parison was converted to the Tensorflow™ format. Deep SORT, in combination
with YOLOv4, was implemented locally to track the pears in an unseen test mobile
phone video of resolution 1920 × 1080, 32 s long, with a frame rate of 30 FPS. The
hardware specification was as follows: Quad-core Intel® Core™ i7-7700HQ @
2.80 GHz, 16.0 GB RAM and NVIDIA GeForce GTX 1060.

Two counting methods were compared in this study: (1) region-of-interest (ROI)
method and (2) unique object ID method. The ROI method was based on the number
of unique object centroids tracked by Deep SORT that would cross the ROI, which is
a horizontal line. Different ROIs were tested, and 50% of the height of the video was
deemed to be the optimal ROI. For the second method, the counts were based on the
number of unique object IDs generated by Deep SORT’s tracking mechanism.
Figure 11.12 illustrates the pear counting system.
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Fig. 11.12 Pear counting system based on YOLOv4-512 and Deep SORT using the ROI-line
method. The number on the top left is the number of objects that crossed the horizontal ROI line.
Unique IDs can be seen on the top left corner of each bounding box

Table 11.8 The performance metrics used to evaluate the pear counting methods. This evaluation
is based on the CLEAR MOT Challenge (Bernardin & Stiefelhagen, 2008)

Performance metrics

Rcount = TP
TP FN

FN Ratecount = 1.00 - R

Pcount = TP
TP FP

FP Ratecount = 1.00 - P

F1count = 2�P�R
P R

MOTA= 1- FNþFPþmismatches
total count

TP true positive, FP false positive, FN false negative, MOTA multiple object tracking accuracy

11.3.10 Evaluation Metrics for the Pear Counting

The performance metrics for pear counting are similar to the detection’s evaluation
metrics. However, the authors used the subscript count to denote metrics associated
with pear counting. Additionally, metrics from CLEAR Multiple Object Tracking
(MOT) (Bernardin & Stiefelhagen, 2008), as seen below, were used but modified in
the case of this study. The metrics for pear counting are summarized in Table 11.8. In
this study, the objects themselves were not moving, thus, mismatches = 0.



Model name
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11.4 Results and Discussion

The goal of the study was to compare YOLOv4, YOLOv4-tiny, and YOLOv4-CSP
in terms of accuracy, speed, and memory usage. After evaluating which YOLOv4
model had the best performance in combination with Deep SORT, they were also
evaluated for pear counting use.

11.4.1 Training Details

Table 11.9 outlines the details about the training of the YOLO4 models. YOLOv4-
tiny took less than half an hour for 1000 iterations for all the input sizes. This is
because smaller models take less time in training due to less computational com-
plexity. In total, it took around 1.4 h to train YOLOv4-tiny completely, which is a
remarkably short time. On the other hand, YOLOv4 had a different training speed to
that of YOLOv4-CSP despite the similar size. The latter was able to train from 2.0 to
2.8 h for 1000 iterations, compared to YOLOv4, which spanned from 2.0 to 3.1 h.
This difference is due to the CSP-ized PAN and SPP architecture of YOLOv4-CSP,
which effectively reduced 40% of the computation (Wang et al., 2020a).

However, examining the loss curves in Fig. 11.13, one gets a clue if the models
have achieved minimum losses and maximum mAP. Based on the loss graphs,
YOLOv4-tiny converged in a quicker manner compared to YOLOv4 and
YOLOv4-CSP. This may be due to the fact that it had a higher learning rate and it
used the leaky ReLU as the activation function. Among the models, YOLOv4-CSP
seemed to converge the slowest which may be due to the computational cost of
CSPization and the use of Mish as the activation function. Upon seeing the

Table 11.9 Details regarding training YOLOv4 models

Average training time per 1000
iterations (h)

GPU memory usage in
training (GB)

Weight sizes
(MB)

YOLOv4-
tiny-416

0.22a 2.22a 22.96

YOLOv4-
tiny-512

0.23a 2.34a 22.97

YOLOv4-
tiny-608

0.23a 2.45a 22.97

YOLOv4-416 2.00 3.08 249.986

YOLOv4-512 2.24 3.18 249.998

YOLOv4-608 3.10 3.34 250.016

YOLOv4-
CSP-512

1.91 3.06 205.298

YOLOv4-
CSP-608

2.80 4.52 205.316

a Subdivisions = 16



differences in convergence rate within 6000 iterations, YOLOv4 and YOLOv4-CSP
were further trained following the fine-tuning algorithm from Algorithm 11.1 to get
the best possible weight.
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Fig. 11.13 Average Loss and Mean Average Precision (mAP) over 6000 iterations for each of the
YOLOv4 models

After the fine-tuning process, error analysis was done, and the results are shown
in Table 11.10. It can be observed that there is an increasing pattern among the
average precision values. Comparing the AP50 train-val and AP50 val, it can be
concluded that the data mismatch between the high-resolution data and lower
resolution data was overcome. Looking at the AP50 val and AP50 test, the values
were also increased. This is a good sign that no overfitting occurred on the validation



set. Confirming from the error analysis, it is possible to perform comparisons
between the performances of the models on the test dataset.
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Table 11.10 Average precision for the training-validation set (train-val), validation set (val), and
test set (test) IoU threshold = 50% and Confidence Threshold = 0.5

Model Name AP50 Train-Val AP50 Val AP50 Test
YOLOv4-tiny-416 83.78 92.91 94.09

YOLOv4-tiny-512 86.23 93.08 93.53

YOLOv4-tiny-608 87.61 92.11 94.19

YOLOv4-416 90.39 93.72 93.76

YOLOv4-512 92.86 94.61 96.64

YOLOv4-608 91.32 95.39 96.76

YOLOv4-CSP-512 92.74 93.48 97.16

YOLOv4-CSP-608 92.60 94.51 98.32

11.4.2 Model Performance Comparison

To reiterate, the authors set the following goals:

• Maximize the detection performance metrics, which were mentioned at
Table 11.2.

• Determine which YOLOv4 family has an inference speed close to real time
(≥24 FPS).

• Find out the GPU consumption of the YOLOv4 models.

YOLOv4, YOLOv4-tiny, and YOLOv4-CSP were compared based on the
criteria above. Table 11.11 shows the detection performance of the YOLOv4 models
in terms of P, FPR, R, FNR, F1, and Average IoU on the test dataset. YOLOv4-CSP-
608 exhibited the best performance among the metrics. This may be due to the Mish
used as the activation function and higher network resolution. Thus, the intricate
features of the object could be learned at a deeper sense compared to models at lower
network resolution.

Interestingly, in terms of P and FPR, most of the models performed well,
including YOLOv4-tiny. This shows that even the smallest model had promising
accuracy. The second in place in the performance ranking were YOLOv4-512 and
YOLOv4-608. An unexpected outcome was that YOLOv4-512 performed better
compared to YOLOv4-CSP-512.



Model Name P FPR R FNR F1 Average IoU

YOLOv4-tiny-416 1.00 0.00 0.87 0.13 0.93 83.06

YOLOv4-tiny-512 0.98 0.02 0.88 0.12 0.93 83.13

YOLOv4-tiny-608 1.00 0.00 0.89 0.11 0.94 85.85

YOLOv4-416 0.98 0.02 0.90 0.10 0.94 82.37

YOLOv4-512 1.00 0.00 0.94 0.06 0.97 85.77

YOLOv4-608 1.00 0.00 0.94 0.06 0.97 86.75

YOLOv4-CSP-512 1.00 0.00 0.92 0.08 0.96 86.16

YOLOv4-CSP-608 1.00 0.00 0.95 0.05 0.98 87.18
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Table 11.11 Performance metrics of the YOLOv4 models in terms of Precision (P), False Positive
Rate (FPR), Recall (R), False Negative Rate (FNR), F1 score and average Intersection-over-Union
(IoU) on the test dataset. Ranking is indicated by color, where green is first, yellow is second, and
orange is third best

Fig. 11.14 Comparison of YOLOv4 models in terms of the frequency of True Positive, False
Positive, and False Negative detections. The specific values are in Table 11.12

In counting fruits, FNR was deemed to be better compared to FPR. Looking at
Fig. 11.14, consistent with the results from Table 11.11, the top performing models
were YOLOv4-CSP-608, YOLOv4-512, and YOLOv4-608. However, it is difficult
to ignore the fact that YOLOv4-tiny-608 had comparable performance to YOLOv4-
416 with less false positive detections. This shows the potential of YOLOv4-tiny if a



higher network resolution is set. It is possible that YOLOv4-tiny may have satisfac-
tory performance if the network resolution is increased.
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11.4.3 Speed-Accuracy Tradeoff in the YOLOv4 Models

Figure 11.15 shows the tradeoff in speed and accuracy in terms of AP50 on the test
dataset. The specific values can be found in Table 11.12. YOLOv4-512, 416, and
YOLOv4-tiny satisfied the requirement for real-time speed. However, YOLOv4-
CSP seemed to have traded off high accuracy with some speed, although it is a good
thing to note that the speed of YOLOv4-CSP-512 was very close to real time, which
was 21.4 FPS. Another observation was that YOLOv4-608 satisfied the real time
speed requirement of ≥24 FPS at 26.4 FPS. Thus, so far, the best model in terms of
accuracy while satisfying the real-time speed requirement was YOLOv4-608. The
next thing to consider are the metrics in computational power.

11.4.4 Average Precision at Different Thresholds

Average precision (AP) became more widely used as an accuracy metric because of
the PASCAL VOC Challenge and COCO Challenge. AP@0.50 is officially used by
the PASCAL VOC Challenge whereas AP@0.75 is considered the “strict metric” for
the COCO Challenge. Huang et al. (2017) compared different convolutional object

Fig. 11.15 Comparison of the YOLOv4 models in terms of accuracy (in this case, average
precision at 50% intersection-over-union threshold) and inference speed (frame per second)
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detectors in terms of mAP@0.50 and mAP@0.75. Their results showed that their
models with low AP at more restrictive IoU thresholds (mAP@0.75) always showed
low AP at less restrictive IoU thresholds (mAP@0.50).
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Fig. 11.16 Average precision (AP) of the YOLOv4 models at 25%, 50%, and 75% Intersection-
over-Union (IoU) thresholds for the test set. The specific values are in Table 11.12

However, for the YOLOv4 models, this seemed not to be the case (see
Fig. 11.16). A possible reason for the different pattern is the differences in receptive
field. Based on observations among state-of-the-art object detection models, the
increase in receptive field was found to be associated with higher classification
accuracy (Araujo et al., 2019). Increase in the receptive field is a natural consequence
of a higher number of layers, so this is one possible reason why YOLOv4 and
YOLOv4-CSP had higher AP.

Nevertheless, it is important to note that receptive field size is not the only
contributing factor to the differences in the AP values of the YOLOv4 models.
Another factor that may have affected the performance could be the presence of
residual connections. As seen in Fig. 11.16, YOLOv4-tiny-608 performed better, if
not on par, with YOLOv4-416. Other than an increased receptive field caused by the
higher network resolution, the use of a one-shot aggregation technique in pooling
data in YOLOv4-tiny and CSP connections could have contributed hugely to its
competitive performance. Thus, if YOLOv4-tiny was trained at network resolutions
higher than 608 × 608, it might have very satisfactory accuracy metrics while
maintaining low computational cost.
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11.4.5 FLOPS Analysis

Other than metrics measuring the correctness and sensitivity of detection, another
important thing to consider is the computational cost of the YOLOv4 models. The
inference GPU memory usage for each model was noted and can be seen in
Fig. 11.17. To also take into account a platform-independent measure of computa-
tion, FLOPS (floating point operations per second) was plotted against the inference
GPU memory usage data. As confirmed from the FLOPs vs. GPU memory usage
plot, YOLOv4-tiny had significantly lower computational requirement compared to
YOLOv4 and YOLOv4-CSP. The bigger models YOLOv4 and YOLOv4-CSP had
comparable computational requirements.

In addition, FLOPs was plotted against the inference speed, where the speed-
memory tradeoff was observed. YOLOv4-CSP had the slowest inference speed and
was observed to have lower FLOPs values at similar network resolutions compared
to YOLOv4, which had relatively higher memory consumption but faster speed.
YOLOv4-tiny had the best values in terms of speed and computational cost. A
similar pattern is seen in Fig. 11.18, where instead of FLOPs, the GPU memory
usage was plotted against the inference speed of the YOLOv4 models.

11.4.6 YOLOv4 Models on Illumination and Occlusion
Challenges

In an orchard environment, interobject occlusion naturally occurs. Thus, it is impor-
tant to be able to detect pears despite this challenge. Moreover, in joint tree systems,
data acquisition was done from the bottom side of the trees, which caused a high
contrast characteristic for the images, making pear detection challenging even for
humans.

Fig. 11.17 Relationship of Floating Point Operations per Second (FLOPs) with Inference GPU
Memory Usage (left) and Inference Speed (right) for each YOLOv4 model. The specific values are
given in Table 11.12
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Fig. 11.18 Comparison of YOLOv4 models in terms of speed and GPUmemory usage at inference
time. The specific values are in Table 11.12

As seen from some sample detections in Fig. 11.19, where there is some slight
occlusion and potentially challenging illumination, all the YOLOv4 models suc-
cessfully detected the pears in the image despite having a considerable density of
leaves in the background. With higher degrees of occlusion, the differences became
more evident. In a still challenging illumination condition, but with a moderate
degree of occlusion in Fig. 11.20, YOLOv4-CSP-608 and YOLOv4-tiny-406 (inter-
estingly) successfully detected all the pears. However, in a good illumination
condition and with a high degree of occlusion, only the YOLOv4-CSP models
were able to successfully detect the pears (Fig. 11.21). YOLO is known to have
some difficulty in detecting small objects (Du, 2018). From an image with pears that
appear smaller and with some degree of occlusion, it was confirmed that YOLOv4-
608 and 512 overcame this limitation of YOLO (Fig. 11.22). However, the limitation
of YOLO in detecting small pears was exacerbated by the presence of occlusion for
the other models.

11.4.7 Comparison of the Pear Counting Methods

Two methods of pear counting were evaluated: through an ROI line and through
counting the unique IDs. The differences between the two method’s performances
are summarized in Table 11.13. The unique ID-based method performed better for
most performance metrics in counting, specifically on MOTA, FN rate, Recallcount
and F1count. Since the unique ID-based method has a less restrictive nature, it is more
sensitive in counting, thus, had lower false negative rate and higher recall. However,



the ROI line-based method filtered out false positive detections effectively, as shown
by its FP rate of 1.89%. Due to its more restrictive nature, it also more correct
detections than the unique ID-based method, as shown by its higher FP rate and
Precisioncount. However, the lack of sensitivity of the ROI-line based method was too
disadvantageous, resulting in a very low Recallcount of 58.49%. Thus, overall, the
unique ID-based method had the best sensitivity and correctness tradeoff, as shown
by its higher F1count of 87.85%.
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Fig. 11.19 Example detections from the different YOLOv4 models using an image with slight
occlusion, potentially-challenging illumination and considerable density of leaves
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Fig. 11.20 Example detections from the different YOLOv4 models using an image with moderate
degree of occlusion and potentially challenging illumination

11.4.8 Breakdown of the False Negative Counts in the ROI
Line-Based Counting

The ROI line-based method had a low sensitivity in its counts but a very high
correctness. How can we improve the sensitivity of an ROI line-based system? The
authors observed the behavior of the pear objects that were detected by YOLOv4 but
missed by the ROI line, which is summarized in Fig. 11.23. Of the false negative
counts, 73% were actually detected by YOLOv4. Of the false negative counts 50%
were detected only after passing the ROI Line. This might be due to the limitation of
the computational resources, which might have been overcome using a higher-end



GPU device. Twenty-three percent of the false negative counts were detected just
before or while crossing the line, and this could be attributed to the limitation of
Deep SORT’s tracking ability in challenging illumination and increased occlusion
due to its reliance on appearance information in tracking. To tackle this limitation, it
is recommended to switch the priority to motion information instead of appearance
in challenging illuminations to achieve better performance and robustness.
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Fig. 11.21 Example detections from the different YOLOv4 models using a close-up image with a
high degree of occlusion but good illumination
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Fig. 11.22 Example detections from the different YOLOv4 models using a nonclose-up image
with a moderate degree of occlusion

11.5 Conclusions

This study aimed to produce a robust real-time pear fruit counter for mobile
applications using only RGB datasets with state-of-the-art object detection models
(YOLOv4 models) and the MOT algorithm Deep SORT. In addition, we provided a
systematic and pragmatic method for choosing the most suitable model for a desired
application in agricultural sciences for further application. In terms of accuracy,
YOLOv4-CSP was the optimal model with an AP of 98%. In terms of speed and
computational cost, YOLOv4-tiny showed a very promising performance at a
comparable rate with YOLOv4 at the lower network resolutions. If considering the
balance in terms of accuracy, speed and computational cost, YOLOv4 was found to



be the most suitable, with an AP > 96%, inference speed of 37.3 FPS and FN Rate of
6%. Thus, YOLOv4-512 was chosen as the detection model for the pear counting
system with Deep SORT. Between the unique ID method and ROI Line method in
counting, the former was found to be more reliable compared to the ROI-line method
in counting the pears, as characterized by its F1count of 87.85%. It is important to note
that this is the case because YOLOv4 had very low false negative detections. The ROI
line could be more reliable because of its more restrictive nature, but due to flickering
in detection it was not able to count some pears despite their being detected.
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Table 11.13 Pear counting performance metrics of the pear counting system based on YOLOv4
and Deep SORT on a 1920 × 1080 video between the two approaches in counting: unique-ID based
and region-of-interest (ROI) based. Values in bold face are the higher ones between the counting
approaches

Counting metrics

%

Unique-ID based ROI-line based

MOTA 75.47 56.60

FN rate 11.32 41.51

FP rate 13.21 1.89
Precisioncount 87.04 96.88
Recallcount 88.68 58.49

F1count 87.85 72.94

Fig. 11.23 Breakdown of the false negative counts in the region-of-interest line-based counting
method

To fully maximize the accuracy of detection, cloud computing is recommended
with YOLOv4-CSP in mobile applications instead of using the local resources of the
mobile phone. If the cost of running a cloud computing service is the concern,
Amazon’s cloud services (AWS) support YOLOv4, where 1 million inferences is
charged USD 1.362 (2 h) using the server inf1.xlarge in the us-east-1 region. The
downside would be requirement to have an internet connection. If on-device infer-
ence is preferred, training YOLOv4-tiny at higher network resolutions may be the



best option. However, even YOLOv4-tiny requires at least about 2 GB of GPU; thus,
low-end mobile phones would not be able to utilize it.
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To combat possible flickering problems of the tracking algorithm, counting the
unique IDs that tracked for a specific lifespan duration, such as more than 80% of the
lifespan, is recommended.
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Appendix

Algorithm 11.1 Pseudocode of the Fine-Tuning Process in Stage
2 Training of the YOLOv4 Models

i = 0 for 1st training, 1 for 2nd training
LRi = learning rate for (i + 1)thtraining
mAPi = best mAP for (i + 1)thtraining
N = iteration with the best mAP
wi = weights with the best mAP for (i + 1)thtraining
d = decay rate
step1=first time the learning rate was decreased
if No < step1 then
train at LR1 = d × LR0 for No + 1000
if mAP0 < mAP1 then

train at LR1 = d2 × LR0 for N1 + 1000
if mAP1 < mAP2 then
select w2

else then
select w1

else then
select w0

else then
train at LR1 = d2 × LR0 for No + 1000
if mAP0 < mAP1 then

select w1

else then
select w0

https://doi.org/10.3390/s21144803
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Chapter 12
Pear Recognition System in an Orchard
from 3D Stereo Camera Datasets Using
Deep Learning Algorithms

Siyu Pan and Tofael Ahamed

Abstract In orchard fruit picking systems for pears, the challenge is to identify the
full shape of the soft fruit to avoid injuries while using robotic or automatic picking
systems. Advancements in computer vision have brought the potential to train for
different shapes and sizes of fruit using deep learning algorithms. In this research, a
fruit recognition method for robotic systems was developed to identify pears in a
complex orchard environment using a 3D stereo camera combined with mask
region-convolutional neural networks (Mask R-CNNs) deep learning technology
to obtain targets. This experiment used 9054 RGBA original images (3018 original
images and 6036 augmented images) to create a dataset divided into a training,
validation, and testing sets. Furthermore, we collected the dataset under different
lighting conditions at different times which were high light (9–10 am) and low light
(6–7 pm) conditions at JST, Tokyo Time, August 2021 (summertime) to prepare
training, validation, and test datasets at a ratio of 6:3:1. All the images were taken by
a 3D stereo camera which included PERFORMANCE, QUALITY, and ULTRA
models. We used the PERFORMANCE model to capture images to make the
datasets; the camera on the left generated depth images and the camera on the
right generated the original images. In this research, we compared the performance
of different types with the R-CNNmodel (Mask R-CNN and Faster R-CNN), and we
also compared the performance of same types of instance segmentation model (Mask
R-CNN and YOLACT) the mean Average Precisions (mAP) of Mask R-CNN,
Faster R-CNN and YOLACT were compared in the same datasets with the same
ratio. Each epoch in Mask R-CNN was set at 500 steps with total 80 epochs, Faster
R-CNN was set at 40,000 steps, the YOLACT was set at 400,000 iterations for
training. For the recognition of pears, the Mask R-CNN, had the mAPs of 95.22%
for validation set and 99.45% was observed for the testing set. On the other hand,
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mAPs were observed 87.9% in the validation set and 87.52% in the testing set using
Faster R-CNN. The mAPs of YOLACT was 87.07% in validation set, 97.89% in
testing set. The different models using the same dataset had differences in perfor-
mance in gathering clustered pears and individual pear situations. Mask R-CNN
outperformed Faster R-CNN and YOLACT when the pears are densely clustered at
the complex orchard. Therefore, the 3D stereo camera-based dataset combined with
the Mask R-CNN vision algorithm had high accuracy in detecting the individual
pears from gathered pears in a complex orchard environment.
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12.1 Introduction

Modern fruit harvesting is mainly conducted by human labor and is roughly the same
in different regions of the world. However, it requires human involvement and thus,
complexity and labor hiring from overseas. The globalization of the COVID-19
pandemic and its economic impact has wreaked havoc on all economies around the
world, pushing many into recession and possibly even economic depression (Barua,
2020). Furthermore, the aging and availability of labor are concerns. Among com-
mon fruits, the pear stands out as an essential fruit type for daily life. For example,
the Japanese pear (such as Pyrus pyrifolia Nakai) is one of the most widely grown
fruit trees in Japan and has been used throughout the country’s history (Saito, 2016).
Regardless of the harvest season, due to the need for a large number of laborers for
picking and a shortage of labor, the cost of pear picking has gradually increased.

The world labor force is predicted to decline by approximately 30% between
2017 and 2030 (Schrder, 2014). With the development of agricultural machinery,
modern agricultural technology has gradually evolved from manual planting and
picking to full automation and intelligence. Since the 1990s, with the development of
computers and information technology, artificial intelligence and machine vision in
agricultural machinery have become more effective and popular (Wei et al., 2014).
Since most agricultural work involves repetitive content operations, one of the most
popular agricultural robots is the picking robot. Over time, most countries in the
world have developed intelligent picking robots through different methods and
techniques to load and unload agricultural products and detect fruit and positioning
issues (Bechar & Vigneault, 2016). Therefore, for relatively delicate and soft fruits
such as pears, the use of picking robots can greatly increase productivity. However,
in recent studies, object detection in picking robots was reported to cause injuries
due to grasping or using shear to detach the fruit from the branch (Hannan & Burks,
2004). The successful picking of soft pears depends on the recognition of the shape
of the pears to understand the curved surface of the fruit. In classical image
processing, it is challenging to recognize fruits, as shapes and sizes vary in orchards.
In addition, illumination is a concern in dense canopies. Variability occurs in the
detection of pears due to their size, shape, and illumination. Therefore, a large



number of training datasets including size, shape, and illumination variabilities are
needed to address the challenges of pear detection in complex orchard environments.
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Deep learning has become a potential method to overcome the limitation of
conventional segmentation in image analysis. It is one of the subfields of machine
learning and has now developed a variety of different architectures (Ertam & Aydın,
2017). Self-Organizing Feature Map (SOFM) is the ability of the discussed neural
network to determine the degree of similarity that occurs between classes. It is also a
method that belongs to deep learning. Among other things, SOFM networks can be
used as detectors that indicate the emergence of a widely understood novelty. Such a
network can also look for similarities between known data and noisy data (Boniecki
& Piekarska-Boniecka, 2004). Additionally, deep learning includes artificial neural
networks (ANNs) (LeCun et al., 2015) and neural networks extracted by
convolutional neural networks (CNNs) by fully connected layers (FCNs), where
CNNs preserve the spatial relationships between pixels by learning internal features
using small pictures of the input data (Krizhevsky et al., 2012).

Intelligent robot vision processing of target plants has become an indispensable
step in agricultural intelligence and many excellent target detection methods are now
widely used in the development of agricultural robots as target detection continues to
develop. The first types was two-stage method (detection and segmentation)
included Fast R-CNN (Girshick, 2015) and Faster R-CNN (Ren et al., 2015),
which have roughly the same principle of selecting the region of interest by region
feature network (RPN) (He et al., 2017) and then transmitting to the head layer to
generate the edges as well as the species. With the demand for accuracy in target
detection, Mask R-CNN (He et al., 2017) was introduced, which adds FPN (He et al.,
2017) to the backbone layer based on Faster R-CNN and adds a new branch in the
head layer to generate more accurate masks. The second type is one-stage detection
included You Only Look Once (YOLO) (Redmon et al., 2016) and You Only Look
At Coefficient Ts (YOLACT) (Bolya et al., 2019) which focuses on the detection of
targets; all detection results are lower than the above models but faster than the above
models. However, due to the demand for accuracy in target detection, the Mask
R-CNN detection speed is slower than that of other detection models (Dorrer &
Tolmacheva, 2020).

Some identification techniques identify by evaluating, extracting, and recogniz-
ing color, because, in the food industry, color is an identifier used by producers and
processing engineers as well as consumers and is the most direct way of identifica-
tion (Sobol et al., 2020). Therefore, color extraction is also widely used in identifi-
cation technology. Boniecki et al. (2010) analyzed the classification ability of
Kohonen-type neural models learned using “unsupervised” methods. Classification
of three selected apple varieties frequently found in Polish orchards was carried out.
The neural classification was based on information encoded in the form of a set of
digital images of apples and dried carrots. Representation in the form of a palette of
the main colors occurring in fruits and dried vegetables and selected shape coeffi-
cients were used as a basis for the classification (Boniecki et al., 2010).

However, it is not enough for deep learning. Most of the deep learning methods
were limited to RGB images which have a limitation of depth information. In a



recent study, a thermal camera was used to detect tree trunks in a complex orchard.
However, in comparing a tree trunk to some fruit, there is more complexity in
detecting and measuring the distance for picking information (Jiang et al., 2022).
A 3D stereo camera has further advantages in addition to conventional camera
sensors. The 3D stereo camera mimics and imitates the human eye imaging princi-
ple. With the powerful visual system of the human eye, the perception of the third
dimension (depth) is derived from the difference between the image formed by the
left eye and the right eye. Because of this difference, the human eye visual system
introduces the third dimension (depth), and the 3D stereo camera receives biological
inspiration to detect the depth information of an object by extracting three dimen-
sions of information from the digital image and using it for 3D reconstruction. In
addition, the camera perceives the depth of objects in the range of 1–20 m at 100 FPS
(Ortiz et al., 2018). By detecting complex situations in orchards with a 3D stereo
camera combined with Mask R-CNN vision algorithms, specified fruits can be
detected.
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Mask R-CNN is conceptually simple and was proposed by He et al. (2017). It is a
flexible, pass-through object instance segmentation framework. This method can
efficiently detect objects in images while generating high-quality segmentation
masks for each instance. Mask R-CNN was also used for instance segmentation of
detected objects and the evaluation of human poses (He et al., 2017). Several studies
have shown that Mask R-CNN can be used for the detection of some fruits. Jia et al.
(2020) used a series of apple images with a size of 6000 × 4000-pixel resolution
under natural light using a Canon camera for cloudy and sunny weather conditions
(Jia et al., 2020). Yu et al. (2019) proposed a Mask R-CNN-based algorithm to detect
and quantify wild strawberries, and the fruit detection results of 100 test images
showed an average detection accuracy of 95.78% and a recall rate of 95.41%
(Yu et al., 2019). All of the above results showed that Mask R-CNN can be used
for instance segmentation. In the above study, RGB images were used, which did not
cover the depth information of the distance. However, Mask R-CNN with a 3D
stereo camera can be further used for complex canopy and the weight files produced
by the dataset produced by the common dataset. However, the 3D stereo camera has
problems such as recognition errors and difficulty in obtaining depth information
when detecting in real time. If the additional function has the depth information of
the garden, then masking in terms of shape and size is still possible.

Mask R-CNN extended the object detection framework of Faster R-CNN by
adding an additional branch at the end of the model, thus achieving instance
segmentation for each output suggestion frame using a fully connected layer (Cai
& Vasconcelos, 2019). Unlike ROI-Pooling of Faster R-CNN, ROI-Pooling inputs
an image and multiple regions of interest (ROIs) into a feature map of fixed size,
which was then mapped to a feature vector by a fully connected network (FCN)
(Krizhevsky et al., 2012). However, ROI-Align in Mask R-CNN canceled the
quantization of ROI-Pooling twice and retained the decimals, and then used bilinear
interpolation (Kirkland, 2010) to obtain the image values on pixel points with
floating-point coordinates. This was because although the quantization did not affect



the classification in the work, it had a significant negative impact on predicting the
exact mask for pears in the orchard (He et al., 2017).
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However, the complexity of orchards causes difficulty in detection, such as the
presence of leaf shading, overlapping fruits, insufficient light, interruption of light
due to nets over the canopy, and more shadows in orchards, which affect the
detection results. Faster R-CNN was used to detect peppers, melons, and apples
using multiple vision sensors (Sa et al., 2016), and although high detection accuracy
was achieved, the detection of overlapping fruits was greatly reduced. Mask R-CNN
has the potential to help overcome problems with size, shape, and illumination.
Since the Mask R-CNN uses instance segmentation, it can over detect different
individuals of the same species, so overlapping parts of the fruit can also be detected
precisely and variability in shape can be adjusted, thus improving the accuracy of
detection. Therefore, the purpose of this research is to develop a pear recognition
system using instance segmentation based on a Mask RCNN from 3D camera
datasets. The expected recognition of pears can be implemented as a fruit picking
mechanism with fewer injuries to the surface with the recent advancements of
manipulators and robots.

12.2 Materials and Methods

12.2.1 Field Data Collection

In this study, a 3D stereo camera named ZED (Stereolabs Inc. San Francisco, CA,
USA) was used to collect 3018 (4-channel) original pictures from the T-PIRC (36°
07′04″ N, 140°05′45″ E) on a sunny day. The video shot with the ZED camera
simulated the movement of the trajectory of the manipulator, and the observation
distance from the pear was less than 50 cm. The video was trimmed into a frame-by-
frame binocular image through the ZED camera protocol. The right side of the
camera was showed the images in depth images, and the left side was 4-channel
RGBA images.

Considering the influences of different light intensities in the natural environment
and the camera parameters, in this research, 4 videos were taken at 9–10 am and
4 video were taken at 6–7 pm from Tsukuba-Plant Innovation Research Center
(T-PIRC). The videos were taken during pears were at the fruit stage grown in the
orchards covered with nets (Fig. 12.1a, b). The total number of original images used
was 3018 in the training, validation, and testing process. Among these datasets, there
were 1818 images used for training, 900 images for validation, and 300 images for
testing. As mentioned before, that we collected the data from different times with
different light intensities included high light and low light conditions (Table 12.1).
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Fig. 12.1 Aerial view of orchards for data collection located at the Tsukuba-Plant Innovation
Research Center (T-PIRC), University of Tsukuba, Tsukuba, Ibaraki. (a) Satellite view of Tsukuba-
Plant Innovation Research Center (T-PIRC); (b) the view of pear orchard in T-PIRC

Table 12.1 Dataset collec-
tion times and light conditions
in the complex orchard

Date Time Light condition

24 August 2021 9:00–10:00 High light

24 August 2021 18:00–19:00 Low light

12.2.2 Instance Segmentation

Image segmentation techniques consisted of object detection, semantic segmenta-
tion, and instance segmentation. Object detection solved the problem of identifying
the content and location of images. Semantic segmentation was used to label each
object with classes. However, instance segmentation was a combination of object
detection with boundaries and semantic segmentation with classes (Fig. 12.2). In the
case of instance segmentation, the object pear fruit was recognized as individual
pears inside the same class compared to semantic segmentation. Many instance
segmentation methods were based on segmentation proposals (He et al., 2017).
Deep-Masks (Sa et al., 2016) proposes segmentation candidates followed by Fast
R-CNN for classification. These methods were very slow and inaccurate. Mask
R-CNN performs parallel prediction based on the masks and labels, making its
instance segmentation method simpler and faster (He et al., 2017).

12.2.3 Mask R-CNN

Segmentation algorithm was gradually developed. There were two different methods
of segmentation algorithm. One was single-stage (detection). A model that directly
obtained the classes and boxes information of the objects presented in the input
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image (YOLO and YOLACT), while the other was two-stage (detection + segmen-
tation). First it located the frame of the target object and then segmented the target
object within the frame (Faster R-CNN and Mask R-CNN). In the Mask R-CNN
process, three main parts were followed: first, the backbone network extracts feature
maps from the input image; second, the feature map outputs from the backbone
network were sent to the region proposal network (RPN) (Ren et al., 2015) t
generate regions of interest (ROIs); third, the ROI maps were output from the
RPN, mapped to the shared feature maps to extract the corresponding target features,
and then output to the FC and full convolutional networks (FCN) for target classi-
fication and instance segmentation (Fig. 12.3). This process generated classification
scores, bounding boxes, and segmentation masks. With the evidence of the
presented research, Mask R-CNN was used to detect the fruit.
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Fig. 12.2 Different segmentation in pear detection using 3D camera datasets, (a) original image;
(b) semantic segmentation; (c) object detection; and (d) instance segmentation

The original images enter the backbone network for selection and screening to get
the feature maps. Then, the foreground and background are extracted in the RPN
network, enter the ROI-Align network for standardization, and finally enter the head
network to generate classes, boxes, and masks for pear detection.
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Fig. 12.3 Mask R-CNN structure for pear quantity in orchards from 3D camera datasets
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12.2.4 ZED AI Stereo Camera

This research used a stereo camera as the main camera for data collection. The stereo
camera was an integrated binocular camera that used advanced sensing technology
based on a stereo vision to provide video acquisition, depth information, real-time
location information, and other technologies. It has been applied to target recon-
struction, position acquisition, and other fields (Tran et al., 2020). A stereo camera
was used to obtain the distance of the pear through its depth functions, such as a 3D
point cloud map. Therefore, the distance between the target fruit with the mask to the
camera is measured and transmitted to the upper computer. Then, to realize the
simulated grasping of the robot, Mask-RCNN was used for apple pickings and
implemented in the intelligent platform.

12.2.5 Data Preparation

12.2.5.1 Deep Learning Environment

This experiment used a processor 11th Gen Intel(R) Core (TM) i7-11700F
@2.50 GHz(16CPUs), ~2.5 GHz, 16,384 MB RAM, and Nvidia GeForce RTX
3060 GPU with Windows® 10 home edition™, CUDA 10.0, cuDNN 7.4, and Visual
Studio™ 2019 as the training base. The environment configuration was created
based on Mask R-CNN environment under anaconda, where the TensorFlow version
was used in TensorFlow-gpu2.14.0, Keras 2.6.0, and Python 3.6.

12.2.5.2 Video to Image Conversion

The videos were taken with a stereo camera and images were converted to a specific
format. Since the stereo camera came with its own shooting software, ZED
Explorer™, which could shoot videos in three modes (ULTRA, PERFORMANCE,
and QUALITY), the PERFORMANCE mode was chosen for this experiment,
shooting a number of videos in HD720 stored in SVO format. The ZED protocol
was used to trim the images to PNG format, and the image resolution was
1280 × 720.

12.2.5.3 Image Annotation

LabelMe® was used as the image annotation tool for semantic segmentation written
in JavaScript for online labeling (Russell et al., 2008) The difference from
LabelImg® was that the target was plotted in detail, and then a target mask was
generated in LabelMe. LabelMe labeled all targets under the software interface, and



different classes were named as different label tags and different entities of the same
class were named at once in order.
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12.2.6 Data Splitting

The dataset consisted of 3018 images taken at different times of the day. The Mask
R-CNN dataset was divided into training, validation, and testing sets, with the ratio
set at 6:3:1.

In earlier experiments, three sets of videos with 1080 P resolution and .avi format
were taken with an iPhone™ 11 mobile phone. We observed that the training set
taken with the ZED camera made it difficult to test the videos and images taken with
the mobile phone. This was due to the different camera calibration modules used on
the stereo and the mobile phone camera as well as the different apertures and light
transmission of the cameras making accurate identification difficult. This was why
all of the experiments were conducted using stereo cameras to produce the dataset
and test set. Second, as in the video taken by the stereo camera, different colors of
pears existed in different shadows, so the individual pears in the dataset also showed
three colors: bright yellow, yellow, and dark yellow. In this study, all colors of pears
were calibrated and placed in the training set and the validation set to achieve
adaptation to each angle and each color of pears.

Additionally, due to the homogenization of the original dataset, the shape of the
pears and leaves tended to be similar under the dark light condition. Therefore, we
decided to perform data augmentation on this dataset. Since the shape of the pear is
similar to a sphere, and the shape of the leaf was irregular, we flipped and rotated
each image of the original dataset so that the pear still tended to be spherical at
different angles, but the leaves presented different shapes at different angles. The
data set was expanded to 9054 images with the training set having 5054 images, the
validation set having 2700, and the testing set having 900 at the ratio of 6:3:1 by data
augmentation. We also rotated each image of the original dataset by 30° and flipped
each image by 180° with the same method.

12.2.7 Training Process of Mask R-CNN

12.2.7.1 Feature Extraction (Backbone: ResNet101 + FPN)

A deep convolutional network referred to a network with different depths that could
be constructed by constructing different weights. This was widely used in image
feature extraction. However, with further deepening of the convolution network, the
more convolution layers, the higher the corresponding training error. For the original
network, simply increasing the depth led to gradient dispersion or exploding gradi-
ents. To address this issue, we represented this layer as an input-based learned
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residual function. Experiments showed that residual networks were easier to opti-
mize and improved accuracy by adding considerable depth (He et al., 2016).
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Fig. 12.4 The inner structure of ResNet101 as an example of second layers (C2): (a) is conv block
and (b) is identity block. The images which were inputted into the ResNet have changed the
channels. Conv block is the first stage of each layer, and the identity blocks and conv blocks were
combined to the ResNet

Residual networks (ResNet) were widely cited in the backbone networks of
Faster R-CNN and Mask R-CNN, with ResNet50 and ResNet101 being the most
common for Mask R-CNN. The Mask R-CNN using ResNet101 outperforms all
previous basic variants of the state-of-the-art model (He et al., 2017), including the
single-model variant of G-RMI (Huang et al., 2017) (Fig. 12.4).

These figures showed the different residual modules in a stage. The basic
structure of these two modules met the standard residual structure. The difference
between the convolutional block and identity block was that the convolutional block
had a 1 × 1 conv layer. The shortcut of the convolutional block needed to go through
a 1 × 1 conv for converting the number of channels. The identity block was directly
connected to the upper output level. Therefore, ResNet101 was chosen as the
backbone for the Mask R-CNN in this research.

The feature pyramid network (FPN) (Lin et al., 2017) as an elaborate multiscale
detection method, had a structure consisting of three parts: bottom-up, top-down,
and lateral connections. This structure allowed the features of each layer to be fused
so that they had both strong semantic and strong spatial information. Feature
extraction using the ResNet-FPN backbone for Mask R-CNN showed a great
improvement in accuracy and speed (He et al., 2017). The structure of Mask-
RCNN feature extraction was based on ResNet 101 and FPN (Fig. 12.5).

Top-down: no difference from the traditional feature extraction process, ResNet
was used as the skeleton network and then divided into five stages according to the
size of the feature map. These were named Stage 1, Stage 2, Stage 3, Stage 4, and
Stage 5. In the convolution process, Conv2, Conv3, Conv4, and Conv5 are defined
as C2, C3, C4, and C5. Next, the stage passes through the FPN on the right side from
top to bottom and from left to right. Sampling starts from the last layer and samples
to the nearest upper layer. The results of the previous layer were connected



horizontally by a layer conv 1 × 1, which was used to reduce its channels, and the
results of all sampled layers were set to the same channels, fixed at 256. From there,
it was processed through a layer of conv 3 × 3 to eliminate the aliasing effect. P2, P3,
P4, P5, and P6 from FPN were used as RPN inputs, and P2, P3, P4, and P5 were used
as subsequent Mask R-CNN inputs (Huang et al., 2017).
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Fig. 12.5 ResNet101 + FPN for pear quantity recognition
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12.2.7.2 Region Proposal Network (RPN)

RPN, as a fully convolutional network (FCN) (Girshick et al., 2015), was specifi-
cally targeted for the task of generating detection suggestions and extracting candi-
date frames (Girshick et al., 2015). Based on P2, P3, P4, P5, and P6 obtained in Sect.
12.2.7.1, a series of anchors were generated in the RPN. Taking the P6 layer as an
example, the feature map size of the P6 layer was (16, 16, and 256), and its step size
relative to the original map was 64 so that each pixel point on P6 was generated with
3 transformations of anchors with aspect ratio {0.5, 1, 2}. There were a total of 1200
generated anchors (16 × 16 × 3 = 768), and by analogy, P2
(256 × 256 × 3 = 196,608), P3 (128 × 128 × 3 = 49,152), P4
(64 × 64 × 3 = 12,288), and P5 (32 × 32 × 3 = 3072); from P2 to P5, a total of
261,888 anchors were generated on the original image (Fig. 12.6).

The positive and negative classes for network training were established by the
generated anchors and 256 were selected according to intersection-over-union (IoU)
(Ren et al., 2015) for training the RPN, of which, 128 positive samples (foreground)
and 128 negative samples (background) were guaranteed. This step was performed
to calibrate the anchor box, in addition to calculating the offset between the anchor
box and the ground truth (Fig. 12.7).

The IoU represented the overlap of the two bounding boxes, where the ground
truth and the offset of the anchor box can be expressed as.

Δ�
X = x� - xað Þ=wa, Δ�

Y = y� - yað Þ=ha ð12:1Þ
Δ�

X = x� - xað Þ=wa, Δ�
Y = y� - yað Þ=ha ð12:2Þ

xa, ya represented the coordinate value of the center point of the anchor box; wa, ha
represent the width and height of the anchor box; x�, y� represented the coordinate

Fig. 12.6 RPN in Mask R-CNN for extracting proposals of original pear images



value of the center point of the ground truth; and w�, h� represented the coordinate
value of the width and height of the ground truth.
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Fig. 12.7 Generation for IoU by comparing anchor boxes with ground truth boxes. If IoU > 0.7,
then label = 1 positive; if IoU < 0.3, then label = -1 negative; others, label = 0

Next, we entered the regression and classification of the RPN, which classified
each layer of anchor into foreground and background and the four displacement
quantities of regression. For example, in the P6 layer, the size of the feature map was
16 × 16, there were 16 × 16 × 3 anchors, and the probability of each anchor as
foreground and background was calculated separately. The array was (16 × 16 × 3,
2), and the regression of offset was (16 × 16 × 3, 4). The same operation was
performed from P2 to P6, and the classification of (261,888 and 2) was obtained in
total information and the regression information of (261,888 and 4).

The scores (probabilities) corresponding to the 256 positive and negative samples
were found from (261,888 and 2); as a result, 256 positive and negative samples
were obtained. The Softmax cross-entropy loss values were calculated using the
scores and the label values of the positive and negative samples, which caused RPN
to initially extract foreground anchors as candidate regions using anchors and the
Softmax function.

The offset corresponding to the index where the 128 positive samples were
located from the (261,888 and 4) regression array was found, and this offset was
used with the offset calculated between the positive samples and the real frame to
calculate the loss value to regress the proposals from the positive samples.
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12.2.7.3 ROIs and ROI-Align

In this research, the ROI parameter was set for taking a certain amount from 261,888
anchors as the ROI during training; this parameter was set to 2000. Therefore, 2000
anchors from 261,888 anchors were taken as the ROI needed in the next stage.

Our method ranked the scores of the positive samples obtained in the previous
stage of RPN from highest to the lowest, removed the top 2000 anchors with the
highest scores, and accumulated the more accurate box coordinates by regression of
the offset of RPN. Finally, a nonmaximal suppression (NMS) (Bodla et al., 2017)
was performed on these 2000 anchors to eliminate duplicate boxes. Finally, 2000
matching ROIs were selected.

Since NMS processing was performed on the ROIs after the proposal, some of the
layers with less than 2000 ROIs had supplemental 0 processing, so the 2000 ROIs
obtained needed to be eliminated. Eliminating the ROIs filled with 0’s and elimi-
nating all the boxes with multiple objects in the ground truth at the same time, the
IoU value of each ROI was calculated. Then, we calculated the IoU value of each
ROI and ground truth, obtained 400 ROIs with positive and negative samples of 1:3,
and finally returned its 400 samples, its displacement offset, and 400 masks.

ROI-Align of the standardized ROIs was used to obtain the final required feature
maps. ROI-Align was a unique part of Mask R-CNN. Unlike ROI-Pooling in Faster
R-CNN, ROI-Pooling was a standardized operation used to extract a small feature
map from each ROI, and this feature had a fixed spatial range. This paper used 7 × 7
feature maps as fixed-size feature maps. First, the ROI of the floating-point number
was quantized into a feature map of standard size, and the quantized ROI was
quantized again to obtain an N × N integer feature map. Furthermore, for an image
whose original size was 1280 × 720, after 8 samplings and resizing, the size of the
obtained feature map was 160 × 160. Assuming that there was a 113 × 113 region
proposal, the size of the feature map was 14.125 × 14.125 (113/8). At this time, after
the first quantization, the region proposal size on the feature map was 14 × 14.
Assuming that it eventually became a 7 × 7 fixed-size feature map, the feature map
needed to be divided into 49 regions, and the size of each region was 14/7 = 2. At
this time, the second quantization was performed, and the final small area size was
2 × 2. Finally, the maximum pixel quality was selected in each small 3 × 3 area to
form a 7 × 7 fixed-size feature map.

Although ROI-Pooling did not change the categories in the data in the two
quantization while it generated the mask, omitting the very small floating-point
number also affected the area and size of the mask. Mask R-CNN canceled the
two in ROI-Pooling-quantization operations and preserved floating-point numbers
(He et al., 2017). For example, images were taken at a size of 1280 × 720. After
8 samplings, the size of the feature map (8 × 8) was obtained. Another 113 × 113
region proposal was also assumed to be mapped to the feature map. The size then
changed to 14.125 × 14.125. The operation at this time was different from the above
ROI-Pooling. The quantization operation was directly canceled, and the floating-
point number was reserved. Assuming that the final required transformation was a



7 × 7 feature map, 49 small areas needed to be planned in the feature map with a
feature map of 14.125 × 14.125. Since the size of each small area was changed to
14.125/7 = 2.018, the final minimum area was 2.018 × 2.018. Assuming that the
number of sampling points was four, bilinear interpolation was used for calculation
so that the pixel values of the four points could be obtained. The quantization
operation was eliminated, and the errors were greatly reduced (Fig. 12.8).
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Fig. 12.8 Bilinear interpolation in ROI-Align was used to obtain fixed feature maps for pear
recognition. P represents pixel coordinates that ROI-Align wanted to obtain after bilinear interpo-
lation. Q11, Q12, Q22, and Q21 represent the four coordinates of known pixel points around point P

The process of ROI-Align simply described and calculated the edge lengths of
each ROI but does not round them. Each ROI region was divided into K × K bins,
and the size of each bin was not rounded. The value of each bin was obtained by
bilinear interpolation of the four values of the most adjacent feature map. Max
pooling was used to obtain a feature vector of fixed length. Mask R-CNN uses
bilinear interpolation, which is a useful operation that can be used to interpolate
two-dimensional images to compare different pixel sizes or image spacings, which
be used to remove ROI-Align in Mask R-CNN. Thus, the pixel values of four
adjacent pixel points were obtained. For example, if the number of sampling points
were 4, this could be expressed as follows: for each small area, the average was
divided into four points, the center point position was taken for each part, and the
pixel value of the center point position at this time was bilinear. The interpolation
method was used for calculation. Through this method, the pixel values of the four
points were obtained, thereby eliminating the need for two quantization operations
and generating the corresponding mask for pear recognition.

12.2.7.4 Mask RCNN for Classification and Regression

The ROIs obtained after entering ROI-Align needed to pass the head architecture to
perform category of classification, regression, and mask generation operations,



which had two main branches. The upper branch indicated category classification
and regression, and the lower branch generated the mask for each pear in each
feature map.
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Fig. 12.9 Flow diagram of feature maps to produce boxes, classes, and masks for each pear in each
fixed-size feature map after ROI-Align

After the ROI of the previous layer, a 7 × 7 × 256 feature map was generated, and
another branch was aligned to a 14 × 14 × 256 feature map (Fig. 12.9). Since the
outputs of P2, P3, P4, P5, and P6 were all 256, the final channel was still 256 after
ROI-Align.

The branch of left side in Mask R-CNN had the same principle of classifying
targets and generating frames with Faster R-CNN. The Faster R-CNN also calcu-
lated which category each proposal belongs to and outputs the classification result
through the fully connected layer. Additionally, the position offset of each proposal
was obtained by bounding box regression which was used to return a more accurate
target detection frame. The branch of right side was based on the Faster R-CNN, and
the full convolutional layer branch was added to obtain a more accurate mask. The
difference between FCN and CNN is that the final FCN was replaced by a
convolutional layer. Unlike the classical CNN, which uses FCN after the convolu-
tion layer to obtain a fixed-length feature vector for classification (fully connected
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layer + Softmax output), FCN accepted an input image of arbitrary size and used
deconvolution to sample the feature map of the last convolution layer to restore it to
the same size as the output image. The feature map of a fixed size of the ROI region
was generated by the ROI-Align operation. After 4 convolution operations, a 14 × 14
feature map was generated. Then, a 28 × 28 feature map was generated by
up-sampling. Finally, a 28 × 28 feature map with a depth of 80 was generated by
the deconvolution operation to obtain the exact mask.
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12.2.7.5 Loss Function

The loss functions of the Mask R-CNN were divided into two main parts. The first
part was the RPN loss function, which was similar to the Faster R-CNN. The RPN
loss function consisted of two parts: the classification loss (L_CLS) and the
bounding box regression loss (L_BOX).

The general formula was as follows (Girshick et al., 2015):

L= LRPN þ LMASK ð12:3Þ
LRPN = LCLS þ LBOX ð12:4Þ
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Ncls: Since the anchor generated in the RPN stage was only used to classify
foreground and background and was set to 256, the value of Ncls is 256.

pi was the probability of predicting the target, p�i was the group truth (GT) label.
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Nreg was the size of the feature maps, and λ 1
Nreg

was used as the normalized weight to

balance the classification loss and regression loss, which was taken as 1
256 in the

RPN training phase,



t = {t , t , t , t } was a vector that represents the offset used for prediction in the
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RPN training phase,
t�i was the actual offset of the group truth corresponding to the positive anchors.
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R was the smoothL1function

smoothL1 xð Þ= 0:5x2 if jxj< 1
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LMASK was the loss function resulting from adding the mask branch to the Mas
R-CNN and had the functional expression
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In this research, we conducted a discussion of the pseudo-code of Mask R-CNN
for different datasets included training set (TRD), validation set (VAD), and testing
set (TSD). We gave a brief logical explanation in the tabular format of the
pseudocodes of the modified Mask R-CNN (Table 12.2).

12.2.7.6 Model Metrics Function

The results of the model prediction values were classified into four categories: true
positive (TP), indicating a positive sample detected correctly; false negative (FN),
indicating a negative sample predicted incorrectly; true negative (TN), a negative
sample predicted correctly; and false positive (FP), a positive sample predicted
incorrectly.

In this thesis, only pears needed to be detected, so pears were used as the only
category. The task of Mask R-CNN was to detect the number of pears present in the
pictures. Therefore, TP indicated the result that Mask R-CNN detected pears as pears
in each image of the test set in the testing phase. FN pears were not identified. There
was a missed identification: TN indicated that the part that was not identified as a
pear, and FP indicated that the background or the leaves were identified as a pear
(Figs. 12.7 and 12.10).
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Table 12.2 Pseudocodes in pear recognition usingMask R-CNN, Faster R-CNN, and YOLACT in
training and testing phases. Algorithm1 Training phase using Mask R-CNN; algorithm2 Testing
phase using Mask R-CNN; algorithm3 Training phase using Faster R-CNN; algorithm4 Testing
phase using Faster R-CNN; algorithm5 Training phase using YOLACT; algorithm6 Testing phase
using YOLACT

Algorithm1 Training Phase using Mask R-CNN
1.Inputs:

2. Dataset_train:TRD= Imageif gMi= 1,

3. Datset_val: VAD= Imagej
N

,where M, N are the number of images.

4. if mode = “training”

5. Get object index in Imagei, Imagej
6. Extraction from ResNet101 to FPN

7. Anchor generation from P2, P3, P4, P5, P6

8. BG and FG generation from RPN via (Eqs. 12.1 and 12.2)

9. Calculated the LRPN via (Eqs. 12.4–12.9)

10. ROIs Generation from ROI - Align

11. Masks, boxes, classes Generation from the Head

12. Calculate the loss of the head layer LMASK via (Eq. 12.12)

13. Save_logs_weights(mask _ rcnn _ shapes. h5)

14.Return:
15. logs _ weights, LRPN, LMASK, L

Algorithm2 Testing Phase using Mask R-CNN
1.Inputs:

2. Dataset_Test:TSD= Imageif gMi= 1, where M is the number of images.

3. GPU_COUNT = 1

4. IMAGES_PER_GPU = 1

5. if mode =” inference”

6. Model.load_weights(mask _ rcnn _ shapes. h5)

7. For i in range (Imagei):
8. Input Anchors
9. Generated rpn _ ROIs

10. targer _ ROIs = rpn _ ROIs

11. Generated target _ class _ ids, target _ bbox, target _ mask

12. Created masks for detections

13.Return:
14. Imagei , masks, class _ id, class _ name, scores

15. Visualize.display_instances Imagei
Algorithm3 Training Phase using Faster R-CNN
1. Inputs:

2. Dataset_train:TRD= Imageif gMi= 1,

3. Datset_val: VAD= Imagej
N

, where M, N is the number of images.

4. if mode = “training”

5. Get object index in Imagei
6. Extraction from VGG16 (Visual Geometry Group Network)
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Table 12.2 (continued)

7. Region proposals generation from RPN

8. ROIs generation from ROI - Pooling

9. Classification from the Head

10. Calculated Loss

11. Save_logs_weights

12.Return:
13. logs _ weights, LRPN
Algorithm4 Testing Phase using Faster R-CNN
1.Inputs:

2. Dataset_Test:TSD= Imageif gMi= 1, where M is the number of images.

3. if mode =” inference”

4. Model.load_weights

5. For i in range (Imagei) :
6. Input Anchors
7. Generated rpn _ ROIs

8. targer _ ROIs = rpn _ ROIs

9. Generated target _ class _ ids, target _ bbox

10. Return:
11. Imagei, target _ class _ ids, target _ bbox

12. Visualize.display_instances Imagei
Algorithm5 Training Phase using YOLACT
1.Inputs:

2. Dataset_train:TRD= Imageif gMi= 1,

3. Datset_val: VAD= Imagej
N

,where M, N are the number of images.

4. if mode = “training”

5. Get object index in Imagei, Imagej
6. Extraction from ResNet101 to FPN

7. Anchor generation from P3, P4, P5, P6, P7

8. 138×138×k Masks generation form Protonet

9. Anchors generation in Feature maps from P3, P4, P5, P6, P7 in Prediction Head

10. Mask and B-box coefficients generation based on anchors

11. Anchors filtration from Fast NMS

12. Matrix multiplication of Mask coefficient and prototype in Crop & Threshold

12. Calculate the loss of LRPN, LMASK, L

13. save_loss: LRPN, LMASK, Lnet

13. save_logs_weights(yolac _ customer _ 110 _ 400000. pth

Algorithm6 Testing Phase using YOLACT
1.Inputs:

2. Dataset_Test:TSD= Imageif gMi= 1, where M is the number of images.

3. if __name__ == '__main__':

4. set_cfg(args.config)

5. if args.images is None
6. dataset = COCODetection(cfg.dataset.valid_images, cfg.dataset.valid_info,
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Table 12.2 (continued)

7. transform=BaseTransform(), has_gt=cfg.dataset.has_gt)

8. else:
9. dataset = None

10. net = Yolact()

11. net.load_weights(args.trained_model)

12. net.eval ()

13. evaluate (net, dataset,train_mode=False)

14. visualize.display_instances Imagei

Fig. 12.10 Pear prediction for determining FP, TN, TP, and FN using Mask R-CNN, (a) original
image; (b) cv_mask input image before testing and (c) mask image after testing. Precision
overreflected the proportion of correct classification in the number of positive samples classified
by the model. Its expression is

P=
TP

TPþ FP
ð12:13Þ

Recall was the ratio of the number of correct samples to the number of positive
samples, and its expression is

R=
TP

TPþ FN
ð12:14Þ

Since there was only one category of fruit in this experiment, AP = mAP. Its
value was between [0, 1], and the closer to 1, the better the model recognition effect.
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12.3 Results

12.3.1 Training Details

In this research, 9054 four-channel RGBA images (3018 images were original
images and 6036 images were augmented images) in PNG format were used, and
all images were taken by the same 3D stereo camera. The size of the validation set
was adjusted by the loss function of the validation set. Initially, the training,
validation, and testing sets were divided into a ratio of 6:3:1, that was, 5054 images
for the training set, 2700 images for the validation set, and 900 images for the test set.
The epoch was set to 80 with 500 steps in each epoch. During the experiment, since
the Mask-RCNN could only use three-channel RGB images for the predicted
images, the channels of the test set of 900 RBGA images were modified to RGB
after the error was found. The following figures showed the loss diagram of each
partial function for this study (Fig. 12.11a–f).

In this research, comparison experiments were conducted on the same datasets at
different learning rates. From the training results, when the learning rate was set to
0.001, the training loss dropped to 0.3099 and the validation set loss dropped to
0.4637. Additionally, the Mask R-CNN head bounding box loss dropped to 0.0434
in the training set and the validation loss dropped to 0.0601 and the Mask R-CNN
head class loss dropped to 0.0656 in the training set and the validation loss dropped
to 0.1119; the Mask R-CNN mask loss dropped to 0.1260 in the training set and the
validation loss dropped to 0.1310; the RPN bounding box loss dropped to 0.0677 in
the training set and the validation loss was 0.1077; the RPN class loss in the training
set was 0.0071 and the validation loss was 0.0432 (Fig. 12.11a–f).

Figure 12.11a indicates the overall loss; by 80 epochs, each epoch was trained
with 500 steps, which indicates that the model was good for this training. The Mask
R-CNN bounding box loss denoted the loss of Mask R-CNN bounding box refine-
ment, Mask R-CNN class loss denoted the head layer loss of classifier of Mask
R-CNN, Mask R-CNN mask loss denoted the head layer mask binary cross-entropy
loss of Mask, the RPN bounding box loss denoted the RPN bounding box loss, and
the RPN class loss denoted anchor classifier loss.

Classification loss indicated how close the training model was to predicting the
correct class. Mask R-CNN class loss was used as the head layer, and all objects
were covered, while RPN class loss only covered the foreground and background of
images. The border loss, on the other hand, responded to the distance between the
real boxes and the predicted boxes. The Mask R-CNN mask loss responds to how
close the model was to the predicted correct class mask. The sum of the above five
losses constituted the overall loss.
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Fig. 12.11 Mask R-CNN loss results from training losses and validation losses, (a) Total loss; (b)
Mask R-CNN head bounding box loss; (c) Mask R-CNN head class loss; (d) Mask R-CNN mask
loss; (e) RPN bounding box loss; and (f) RPN class loss
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12.3.2 Evaluation of Model Metrics

A series of weight files were obtained from the Mask R-CNN training and were used
to evaluate the Mask R-CNN training model. The weight files left from the last
training in the training process were selected to evaluate the test set.

The Precision (P), Recall (R), Average Precision (AP), and mean Average
Precision (mAP) were used as the main parameters to evaluate the model in this
research. We tested the different performances of the test set using the weights
obtained from the training set after 80 epochs at different learning rates and the
response plots of the Precision-Recall (PR) curves at a learning rate of 0.001. We
also tested the same operation on the validation set with the weight trained by
training sets, with overall mAP (IoU = 0.5). In addition, we tested different parts
of the validation set, which was divided into three sections. One was original image
datasets in the validation set, and another two were datasets after doing augmenta-
tion. We found that the results were nearly similar using the same weight tested in
three sets: the original images (89.76%), rotation augmentation (84.47%), and
flipped augmentation images (89.67%). However, while using all the datasets,
including originals and two other augmented imageries in the validation process,
the accuracy was increased (92.02%).

Table 12.3 shows the comparison of mAPs in Mask R-CNN and Faster R-CNN.
The Precision-recall curve of Faster R-CNN and Mask R-CNN from the testing set at
different learning rates after 80 epochs (Fig. 12.12).

12.3.3 Evaluation of Model Effectiveness

In this study, by creating a dataset and Mask R-CNN model using a 3D stereo
camera, we found the best weights by comparing the fit of Mask R-CNN, Faster
R-CNN and YOLACT with the same learning rate at lr = 0.001. By testing
900 images of the test set taken at different times, we obtained the following results
by comparing the different effects of aggregating pears and separating pears under
different illumination. Due to the problem of the light, branch, and leaf shading in the
orchard, this research compared the test results of Mask R-CNN, Faster R-CNN, and
YOLACT under the light intensity from multiple pears in gathering and individual
situations (Figs. 12.13 and 12.14).

Table 12.3 mAP (IoU = 50%) results from 3D camera datasets using Mask R-CNN, Faster
R-CNN, and YOLACT in the testing set and validation set

Model Validation set (%) Testing set (%)

Faster R-CNN 87.90 87.52

YOLACT 87.07 97.89

Mask R-CNN 95.22 99.45
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Fig. 12.12 (a) Precision-recall curve of Faster R-CNN at learning rate = 0.001 in the testing set
and (b) precision-recall curve of Mask R-CNN at learning rate = 0.001 in the testing set

The results showed that in the case of independent pear detection, the difference
in Mask R-CNN, Faster R-CNN, and YOLACT was that Mask R-CNN and
YOLACT generated both masks and bounding boxes, while Faster R-CNN detected
pear-only generated bounding boxes. For YOLACT, the detection in independent
pear showed the similar results while the performance of masks that generated by
YOLACT were lower than Mask R-CNN. The detection accuracy of Mask R-CNN
was significantly higher than that of Faster R-CNN and YOLACT under dark light
conditions, and the accuracy of the bounding box of Mask R-CNN was higher than
that of Faster R-CNN when pears were aggregated, or when the detection target was
incomplete pears. And the mask generation of Mask R-CNN was also higher than
that of the same instance segmentation algorithm of YOLACT. Under bright light
conditions, there was only a slight difference between Mask R-CNN and Faster
R-CNN for the accuracy of independent pears. However, in the case of aggregated
pears, Mask R-CNN had a higher correct recognition rate than Faster R-CNN.
However, the accuracy of YOLACT under strong light conditions, whether in the
case of aggregated pears or independent pears, was considerably lower than that of
Mask R-CNN.

We also tested the comparison of the recognition of pears in different situations
for both after image rotation. When the pears were separated, the accuracy of the two
only shows a small difference in the size of the borders. However, when the pears
were aggregated, Faster R-CNN failed to recognize individual pears; Mask R-CNN
had a higher recognition rate than Faster R-CNN in this case. Since the YOLACT
algorithm generated Anchors based on the color of background and pears, YOLACT
showed inaccurate recognition of pears in the recognition of rotated images. How-
ever, for the case of images with one pear present, the performance was not much
different in Mask R-CNN, Faster R-CNN, and YOLACT.
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Fig. 12.13 Results of different deep learning algorithms in different situations. Recognition of (a–
d) separated pears in low light; (e–m) aggregated pears in low light; (i–l) separated pears in strong
light, and (m–p) aggregated pears in strong light. (a, e, i, m) Original images; (b, f, j, n) testing
images in Mask R-CNN; and (c, j, k, o) testing images in Faster R-CNN; (d, h, l, p) testing images
in YOLACT
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Fig. 12.13 (continued)

12.4 Discussion

Machine vision technology has become very popular due to the robust identification
of objects and classification in industrial and agricultural technological applications.
This approach can be implemented to future fruit picking robots or mechanical
devices as machines replace human labor. Thus, the cost of population labor will
be significantly reduced; in terms of detection, with the development of vision
technology, the detection accuracy will also improve. In our study, we compared
this technology with other deep learning models. The average precision of the
YOLOv4 model for pear recognition in complex orchards was 93.76% and that of
YOLOv4-tiny for pear recognition was 94.09% (Parico & Ahamed, 2021). More-
over, by comparing the datasets using Faster R-CNN between apples, mangoes, and
oranges, the mAP of apples was 86.87%, mangoes was 89.36%, and oranges was
87.39 (Wan & Goudos, 2020). The mAPs of this research were decreased when the
camera field of view included fruit covered with leaves for the recognition of fruit
with the Faster R-CNN algorithm. Even by labeling the fruit with different shading
objects as different classes, mAPs for different classes did not significantly improve.



The mAPs of leaf-occluded fruit, branch-occluded fruit, non-occluded fruit, and
fruit-occluded fruit were 89.90%, 85.80%, 90.90%, and 84.80%, respectively (Gao
et al., 2020). By comparing the same dataset, which was taken by the same stereo
camera, we knew that the mAPs of Faster R-CNN reached 87.52% on the testing set
and 87.90% on the validation set; the mAPs of YOLACT reached 97.89% on the
testing set and 87.07% on validation set. We also found that the performance of
Faster-RCNN became less accurate when testing aggregated pears compared with
Mask R-CNN. The performance of YOLACT also became less accurate when the
strong light condition whether in the case of individual pears or aggregated pears in
orchard.
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Fig. 12.14 Results of different deep learning algorithms. Recognition of (a–d) separated pear in
low light; (e–h) aggregated pears in low light; (i–l) separated pears in strong light, and (m–p)
aggregated pears in strong light (a, e, i, m) original images; (b, f, j, n) testing images in Mask
R-CNN; and (c, g, k, o) testing images in Faster R-CNN; (d, h, l, p) testing images in YOLACT

Therefore, although Faster R-CNN achieved good results in detection,
distinguishing types of objects and individuals, the mAPs of Faster R-CNN, in the
case of identifying one type of fruit, hardly improved dramatically, even by data



augmentation. And although YOLACT was the same instance segmentation algo-
rithm as Mask R-CNN, was less accurate than Mask R-CNN in various situations
(strong and low light). Due to the complex orchard environment, for example, the
color of pears changed when the light intensity was different; it was difficult to detect
individual pears when pears and leaves overlapped due to many branches; or when
multiple pears were gathered. The accuracy of YOLACT was greatly reduced under
the condition that the color distinction was not obvious. And Faster R-CNN had
difficulty in improving the detection accuracy to a higher level and was prone to
inaccurate detection results when detecting aggregated pears, Therefore, Mask
R-CNN solves this problem perfectly, Mask R-CNN used two-stage instance seg-
mentation technology and had advanced improvements in detecting aggregated
pears and their accuracy. In this research, by using Mask R-CNN for the 3D stereo
dataset, mAP (lr = 0.001) was 99.45% in the testing set and mAP(lr = 0.001) was
95.22%, which was much higher than that of Faster R-CNN. Due to this series of
factors, Mask R-CNN has made great progress in detection. The mask generated by
the Mask R-CNN network distinguished individual pears well when there were pear
clusters in the environment.
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We chose to use a 3D stereo camera for data acquisition. Traditional monocular
cameras obtained better resolution for images; however, they had limitations in
extended measurement. Although the principle of the monocular camera measure-
ment method was simple, its accuracy was much lower than that of the 3D stereo
camera. The ZED camera was different from ordinary traditional cameras; it
obtained depth information by generating point clouds to calculate the actual
distance between the camera and the pear. Using the ZED camera with Mask
R-CNN combined instance segmentation and depth ranging to identify each of
individual pears in complex orchards and calculate their actual distance.

We compared Faster R-CNN, who belonged to two stage (detection + segmenta-
tion) algorithm with Mask R-CNN. Since Faster R-CNN did not generate masks in
prediction, it had an advantage in recognition speed as a traditional visual recogni-
tion model, while Mask R-CNN had an advantage in accuracy. We also compared
YOLACT with Mask R-CNN, which was different from Faster R-CNN, it belonged
to one-stage (detection) algorithm, so it was much faster than the previous two
methods in terms of processing speed, and it was an instance segmentation algo-
rithm, so it also generated more accurate masks in prediction, but since YOLACT
was the real-time processing, it is much better in terms of accuracy.

However, since it is real-time processing, it was much less accurate than Mask
R-CNN. Furthermore, Mask R-CNN provided an increase in accuracy based on by
adding a new mask branch. However, the disadvantage was also obvious: its
detection speed was only 5 fps and there was a delay with the agricultural picking
robots running at high speed. However, in slow picking, its effect was obviously
remarkable at the development stages with high recognition accuracy. Since the
ZED camera’s PERFORMANCE format was used, the resolution of the pictures it
took was reduced compared to that of a regular camera. Therefore, while detecting,
the dark leaves of shadows were detected as dark pears due to the influence of light.
In this respect, the dataset accuracy needs to be improved.
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However, in this study, the distance measuring module was not added, and only
the ZED camera was used to make RGBA datasets. The ZED camera measured the
distance through the depth point cloud. In future research, adding the comparison of
the ranging module can further contribute to the development of agricultural robots
for complex orchard work such as robotic picking machines using an end-effector or
manipulator.

12.5 Conclusion

In this research, we developed a method for agricultural picking robots by using
Mask R-CNN in an orchard from 3D stereo camera datasets. For the recognition of
pears, the Mask R-CNN had the mAPs of 95.22% for validation set and 99.45% was
observed for the testing set. On the other hand, mAPs were observed 87.9% in the
validation set and 87.52% in the testing set using Faster R-CNN. And mAPs were
observed 87.07% in the validation set and 97.89% in the testing set. Furthermore, the
3D stereo camera was used with the Mask R-CNN dataset of pears in complex
orchards for two different types of images: original RGBA and depth. Unlike the
images taken by a conventional camera, the images taken by the 3D stereo camera
could be used in the development of adding a distance measurement module and
training a set of depth maps as a dataset in future work. Since we obtained the mask
information of the identified pear, instead of obtaining the coordinates of the
bounding boxes, so that the center point of the pears was calculated more accurately
by the ZED camera, the accuracy of the coordinates of the center point obtained by
masks was higher than the method of the center point obtained by the bounding
boxes. This was because the positioning of the bounding boxes under different
conditions showed some deviations. Therefore, we obtained high recognition accu-
racy on videos captured with the ZED camera, which was a 3D stereo camera, and
organized them into applicable datasets using an advanced target detection model
based on the Mask R-CNN with TensorFlow, including the Keras library. We used
the ResNet101 and FPN as the backbone layer; And FCN was chosen as the head
layer in Mask R-CNN to achieve higher accuracy in detection. The mAP of the
dataset taken by the ZED stereo camera with an image size of 1280 × 720 using the
Mask R-CNN at a learning rate of 0.001 reached 0.3099 using the training weight,
and the mAP of the validation set reached 0.4637 at a learning rate of 0.001. We also
verified the test speed, although we found that YOLACT tested at 0.1132 s per image
taken by ZED camera and 1.229 s on Mask R-CNN, the average picking speed of
some current picking robots was still around 6.000 s. Therefore the detection speed
of Mask R-CNN was seen as exploitable on low-speed fruit picking mechanisms, but
was deficient on picking robots operating at high speeds. Therefore, we provided
another method to improve efficiency in agricultural production, thus solving the
difficulty of previous vision models to recognize fruits because of their overlapping.
Further research will be conducted to implement this vision recognition method for



the development of agricultural robots in picking fruits using an end-effector or a
manipulator.
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Chapter 13
Thermal Imaging and Deep Learning
Object Detection Algorithms for Early
Embryo Detection: A Methodology
Development Addressed to Quail Precision
Hatching

Victor Massaki Nakaguchi and Tofael Ahamed

Abstract Poultry production utilized many available technologies in terms of farm-
industry automation and sanitary control. However, there is a lack of robust tech-
niques and affordable equipment for avian embryo detection and sexual segregation
at the early stages. In this work, we aimed to evaluate the potential use of thermal
microcameras for detecting embryos in quail eggs via thermal images during the first
168 h (7 days) of incubation. We propose a methodology to collect data during
incubation period. Additionally, to support the visual analysis, YOLO deep learning
object detection algorithms were applied to detect unfertilized eggs; the results
showed its potential to distinguish fertilized eggs from unfertilized eggs during the
incubation period after filtering radiometric images. We compared YOLOv4,
YOLOv5, and SSD-MobileNet V2 trained models. The mAP@0.50 of the
YOLOv4, YOLOv5, and SSD-MobileNet V2 was 98.62%, 99.5%, and 91.8%,
respectively. We also compared three testing datasets for different intervals of
rotation of eggs, as our hypothesis was that fewer turning periods could improve
the visualization of fertilized eggs features, and applied three treatments: 1.5, 6, and
12 h. The results showed that turning eggs in different periods did not exhibit a linear
relation, as the F1 Score for YOLOv4 of detection for the 12 h period was 0.569, that
for the 6 h period was 0.404 and that for the 1.5 h period was 0.384. YOLOv5 F1
Scores for 12, 6, and 1.5 h was 1, 0.545, and 0.386, respectively. SSD-MobileNet V2
performed F1 score of 0.60 for 12 h, 0.22 for 6 h, and 0 for 1.5 h turning periods.

Keywords Quail eggs · Thermal imaging · Precision livestock farming · Embryo
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13.1 Introduction

Precision approaches to improve yield are currently based on sophisticated support
decision systems that include several types of sensors, powerful processing units for
multidimensional data analysis, and machinery automation. For animal production,
certain authors considered that combining precision yield techniques with intensive
farming systems constitutes the best way to enhance productivity and sustainability
(Wathes et al., 2008; Lovarelli et al., 2020). Therefore, the best practices to save
natural resources include the mitigation of losses and the systematic use of energy
inside the bioproduction ecosystem.

On breeding farms, the critical process of genetic improvement, incubation, and
hatching is processed; this type of farm is responsible for providing specialized
strains to other farms (meat and egg production) and even for supplying the
pharmaceutical industry during vaccine research and manufacturing (Yu et al.,
2019). Historically, the insufficiency of efficient, affordable, and robust technologies
has driven these farms toward low-precision hatching and culling of undesirable
strains. In conventional hatching, there is a lack of rapid, high confidence methods to
identify unfertilized eggs and dead embryos in early stages. Due to this
low-precision hatching, hidden costs are associated with a waste of energy and
physical space during incubation periods (Dong et al., 2019). For culling undesirable
genes, there is also a deficiency of real-time methods and industrial equipment for
sex segregation at the embryo level.

The most common technique for embryo detection is still candling, which
consists of using a light source against the eggshell to view the content inside the
eggs; nevertheless, it represents an inefficient, labor-consuming, and subjective
technique (Liu & Ngadi, 2013). Moreover, candling is not applied to quail eggs
because their small size and different eggshell colors render its utilization difficult.
Several nondestructive methods to assess chicken egg content in early stages have
been reported, including visible light transmission change detection (Bamelis et al.,
2002), acoustic resonance (Coucke et al., 1997), near-infrared (NIR) hyperspectral
imaging (Zhang et al., 2014), spectroscopy methods using visible (VIS)/NIR (Qin
et al., 2017; Khaliduzzaman et al., 2021), optical sensing using
PhotoPlethysmoGraphy (PPG), and deep learning classification (Yu et al., 2019).

Quail farms are well distributed worldwide as chicken farms, although the largest
producers of eggs are concentrated in East Asia and Brazil (Bertechini, 2012). The
consumption of this product represents approximately 10% of all eggs that are
globally consumed (Lukanov, 2019). Furthermore, the production of quail for
meat and eggs has been increasing as the global demand for food continues to
grow. In developing countries, quail poultry represents a viable alternative to supply
animal protein, especially because of the reduced size of birds, its high nutritional
value and its resilient avian for raising in “backyard” systems (Shanawany, 1994).
However, as quail farms have not yet been industrially established in many coun-
tries, breeding programs are not easily identified; therefore, farmers are responsible
for breeding their own flocks, which is an arduous task that can lead to genetic



depression of quail flocks caused by consanguinity, resulting in low fertility, low
productivity of eggs, and a high rate of mortality (Martins, 2002). Another recurrent
problem associated with quail egg production is the low hatchability rate; on
average, 40% of all incubated eggs do not hatch. Several factors can contribute to
this problem, the most common being long-term storage under bad climate condi-
tions, dead embryos, or unfertilized eggs (Shanawany, 1994).
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Recently, reliable methods using noncontact and nondestructive analysis in real
time represent the best opportunity for embryo detection in the poultry industry. The
advent of big data, powerful processing units, and more efficient algorithms are
considered to be responsible for bringing computer vision (CV) methods using the
deep neural network (DNN) approach to fruition. There are several types of heuristic
algorithms based on neural networks (NNs), such as convolutional neural networks
(CNNs). The ability of CNNs to address complex nonlinear problems such as image
recognition and classification is responsible for presenting machines with vision
sense and mimicking humans’ capacity to solve problems. However, one of the
greatest challenges for these algorithms is regarding speed and accuracy; sturdy
models are those able to generalize predictions of any new data with a high
confidence level similar to humans.

The You Only Look Once (YOLO) object detection algorithm is currently one of
the fastest and most accurate models for image classification. The YOLO object
detection algorithm was released by Redmon and Farhadi (2016). The breakthrough
of this algorithm was to use a single CNN to predict classes and bounding box
coordinates as a regression problem. This algorithm can also be referred to as a
Single Shot Detector in the class of one-stage detectors. Once an image is viewed by
dividing it into a grid with a size of S × S, the algorithm predicts the class and
bounding boxes for each grid cell. Two-stage object detector models, such as the
R-CNN (Girshick et al., 2014) series (including Fast R-CNN (Girshick, 2015) and
Faster R-CNN (Ren et al., 2015)), use the region proposal technique to divide the
image into regions and then classify each region according to the proposal boxes.
Although this technique effectively requires too much time for training, it is not
possible for real-time detection.

The main component of CV systems is the camera. Optical cameras capture light
wavelengths in the visible light range of the electromagnetic spectrum; nevertheless,
limitations arise due to light reflectance dependency. Thermal cameras can overcome
light dependency once they capture radiometric information transmitted through the
air by measuring the temperature of an object surface and by solving their intensity
of infrared spectral wavelengths that reach the camera. The high-cost equipment,
low resolution, reduced field of view, and low frame recording represent the main
limitations of thermal cameras (Williams et al., 2022). However, the recently
increasing demand associated with many applications, including healthy monitoring,
is enabling thermal cameras to become popular sensors, which could make them
more accessible in the near future.

The aim of this work was to investigate the potential of thermal microcameras for
fast visual, early embryo detection in quail eggs as a supportive method to improve
the hatching rate and contribute to the further development of automatic incubator



systems that are able to segregate fertilized and unfertilized eggs. Wild birds rotate
their eggs several times a day during natural incubation to improve hatchability
(Tullett & Deeming, 1987), and the rotation of eggs is essential to ensure normal
embryo development in many avian species (Yoshizaki & Saito, 2002; Wilson,
1990; Oliveira et al., 2020). The hypothesis was that longer intervals between
turning eggs could make the identification of unfertilized eggs easier using
thermal-based visual detection- systems. Since the less rotations could keep the
developing embryo static and the temperature associated to it less distributed
among the inside content, therefore facilitating the interpretation by thermal
cameras.
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13.2 Materials and Methods

13.2.1 Thermal Imaging

As a noncontact nondestructive method, thermal imaging can be defined as the sum
of the radiance emitted from a material, the environment (other material radiance),
and atmospheric transmission (Eq. 13.1). Most of the challenges associated with
thermal imaging are to interpret absolute temperatures because thermal radiometric
cameras only reads information from opaque materials; moreover, thermal imaging
may be affected by the radiometric properties of objects and the medium: transmit-
tance (τ), emissivity (ε) and reflectance (Fig. 13.1), including the body itself and
surroundings (Maldague, 2001; Lahiri et al., 2015). Another factor that influences

Atmospheric
Transmission

Infrared Reflection Infrared Heat Emittance

Environment

Quail Egg

Thermal
Camera

Fig. 13.1 Thermal camera radiance relationship among material, environment, and the atmosphere



the interpretation of radiometric images is the size of the target; small surfaces may
make the measurements difficult because the number of pixels describing the surface
is diminished.
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Rcam= τεRmatþ τ 1- εð ÞRenvþ 1- εð ÞRatm ð13:1Þ

Rcam is the radiance read by the camera, Rmat denotes the radiance emitted by the
material of interest or body, and Ratm is the radiance from the atmosphere.

13.2.1.1 Transmittance (τ)

Transmittance is the ratio of a radiant flux transmitted (Φt) to an incident flux (Φi)
(Höpe, 2014) in function of the emission wavelength (λ). Atmospheric transmittance
represents one of the greatest issues in thermal imaging analyses because it can
change the radiometric temperature measurement, thus interfering with the active
heat read by the camera (Eq. 13.2) Inside the incubator machines, humidity and
temperature influence the transmission of radiance from the eggs, low humidity
reduces the transmission of radiance, and the best strategy for enhancing the
transmission in this case is to reduce the distance from the target.

τ λð Þ= Φt λð Þ
Φi λð Þ ð13:2Þ

13.2.1.2 Emissivity (ε)

Emissivity is the effectiveness of a material to emit thermal energy compared with a
perfect absorbing energy body, a blackbody, at the same temperature. The real
values are measured on a scale from 0 to 1. The emissivity depends on material
characteristics such as format, temperature, roughness, spectral wavelength, oxida-
tion, and view angle (Höpe, 2014), and the emissivity of the Galloanserae species
eggs (chicken, quail, turkey, duck, and swan) is higher, approximately 0.98–1 (Björn
& Nilsson, 2018). The emissivity (Eq. 13.3) can be defined as the absorption light of
a blackbody minus the reflectance of the object (Re).

ε0 λð Þ= 1-Re λð Þ ð13:3Þ
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13.2.1.3 Reflectance (ρ)

Reflectance (Eq. 13.4) is the relation of radiant lux in watts between the reflected
signal (Φr) and the incident signal (Φi) (Höpe, 2014). The reflectance can directly
affect the interpretation of thermal values and is directly related to the angle of view
of the target from the camera. Short distances from the target increase the reflectance
captured by the camera; on the other hand, long distances may not be enough to
obtain information from small objects.

ρ λð Þ= Φr λð Þ
Φi λð Þ ð13:4Þ

13.2.2 Experimental Environment

An experiment was conducted in the Department of Life and Environmental Sci-
ences of the University of Tsukuba, Tsukuba, Ibaraki (36°11′19.8″N, 140°10′20.4″
E) in the laboratory of Bioproduction and Machinery during the middle of the spring
season, with which the average range daily temperature was 11–18 °C.

Japanese quail (Coturnix japonica) eggs were collected from a quail farm located
in the city of Toyohashi, province of Aichi in Japan. The eggs were aleatory
collected and shipped by mail on the same day and transported at room temperature
in an appropriate package to avoid dehydration and impacts. After they arrived, the
eggs were put in an airy place for approximately 5 h, and no kind of treatment, either
washing or wiping, was applied. By performing the procedure, we repeated the same
process performed in breeding farms. Next, we put the eggs in numerical order,
marking them from 1 to 30, and the opposite face was marked from 1′ to 30′ (for
each treatment of 30 eggs). The eggs were then placed directly inside the automatic
incubator machine.

The equipment chosen to incubate the eggs was a fully automatic incubator
machine (no brand) with 110v and automatic control of temperature, humidity,
and rotation. The temperature was set to 37.8 °C with a low variation of +/-0.3 °
C, and the humidity was maintained at 60%, varying by +/-10%.

We divided our experiment into two phases. In the first phase, a total of 60 quail
eggs were incubated twice, and 30 eggs were incubated at a time. In this step, the
objective was to define the methodology to collect data using a thermal
microcamera, such as the position of eggs and camera, including the best interval
time to collect data. Phase two consisted of the experiment. Here, we incubated
120 eggs in total, divided into 4 groups of 30 eggs each. For three groups, the eggs
were rotated in different periods: every 90 min, 6, and 12 h. The fourth groups were
composed only of unfertilized eggs bought from grocery stores. We incubated 30 of



these eggs to perform an accuracy assessment of unfertile eggs and applied these
data to train the deep learning models.
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13.2.3 Thermal Image Acquisition and Radiometric
Corrections

The thermal images were collected with a thermal microcamera FLIR® (Teledyne
FLIR LLC, Wilsonville, Oregon, U.S.) Model VUE™ 336, 6.8 mm, with a sensor
resolution of 336 × 256 pixels and a spectral band range 7.5–13.5 μm, size 2.26″
(5.74 cm) × 1.75″ (4.44 cm). This is a powerful camera especially designed to board
unmanned aerial vehicles (UAV) and can be controlled by a smartphone app named
FLIR® UAS™ 2, which is provided by the same manufacturer.

The camera was placed in a top-view position, with a distance of 10 cm from the
targets (eggs), and the egg-by-egg images were collected inside the incubator,
avoiding exposure of eggs to ambient room temperature for a long period
(Fig. 13.2). The image resolution provided by the camera was 640 pixels in width
by 487 in height. Data were manually collected every 12 h (at 9 AM/9 PM), and the
thermal camera was controlled by a SHARP® smartphone (Sharp Corporation,
Sakai, Osaka, Japan), AQUOS™ sense4 basic Model A003SH and Operational
System ANDROID™ version 11 app connected by Bluetooth. This procedure was
performed for 7 days for each group (treatment) of eggs. To collect the data, we
separately moved the eggs to the left corner of the incubator, where only one egg at a
time could fit in the frame image and moved the eggs by picking them up from the
equator borders. Radiometric images were saved in a micro-Secure Digital
(SD) Card on the camera in Joint Photographic Experts Group (JPG) format and
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Fig. 13.2 Quail egg incubation process using a thermal camera and a deep learning structure



transferred to a personal computer (PC) for data analysis. On the 8th day, the eggs
were broken to assess the embryos inside the eggs.
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For rotation of eggs, we employed a DC 12v motor embedded in the incubator.
The eggs were turned 180° every period (90 min, 6 and 12 h) for each cluster, and the
unfertile eggs were turned every 90 min. The radiometric images were corrected with
the software FLIR® Thermal Studio™; the images were filtered with Isotherms and
classified for the above temperatures; and manual adjustments of contrast and red
saturation were performed to highlight the visible features on the eggs. Isometric
transformation is a radiometric pixel classification that highlights temperatures
above, in the middle or below a threshold. For egg incubation analysis, we chose
the isotherms above the threshold, making it possible to capture features from
fertilized and unfertilized eggs.

13.2.4 Deep Learning Algorithms and Analysis Environment

YOLOv4 is embedded in the framework Darknet (neural network framework, open
source written in C programming language and CUDA). This supervised learning-
based algorithm uses a single CNN to extract features of images and to create a
model based on a training dataset to predict objects with a certain level of accuracy
and their positions on frames or pictures.

From its release in 2016, YOLO object detection family have been gradually
expanded. The fourth generation of YOLO, also referred to as the 4th version or
YOLOv4, released by Bochkovskiy et al. (2020), has been one of the fastest and
most accurate object detection models (Bochkovskiy et al., 2020). YOLOv4 uses the
Cross Stage Partial Darknet-53 (CSPDarknet-53) (Wang et al., 2020), which is a new
backbone that is capable of enhancing CNN learning, the path aggregation network
(PANet) and spatial pyramid pooling (SPP). These new additions were responsible
for enhancing speed by 12% and accuracy by 10% compared with YOLOv3
(previous version of YOLO).

The breakthrough of YOLO was its ability to visualize an entire image at once,
dividing it into a grid of S × S and then to create a map of probabilities for Region of
Interest (ROI) by regression (Fig. 13.3). The ROI tells CNN which region has a high
chance of finding the object in each frame. These characteristics was improved in
YOLOv4, thus, enabling real-time object detection implementation with more
accuracy. In addition, YOLOv4 was designed to be efficiently trained using only
one graphics processing unit (GPU).

Recently, YOLO series have been evolving and several versions are currently
available. Improvements are being done by companies, including YOLOv5 series
(YOLOv5, 2021), developed by Ultralytics®. However, no peer reviewed article
paper has being released along with them. Besides that, the community of developers
engaged on YOLO family started to complain about the usage of YOLO’s name by
companies when launching new improved versions. YOLOv5, uses the same back-
bone as YOLOv4 (CSPDarknet-53), the difference is in the neck part, which is
composed by feature pyramid network (FPN) (Liu et al., 2018) and pixel aggregation



network (PAN) (Lin et al., 2017), these additions are responsible for improvements
in accuracy and faster training process. Another modification is that YOLOv5 is
embed in PyTorch framework. YOLOv5 is qualified as faster and accurate, besides
accomplish light files which makes it suitable for low-end deployment devices.
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Fig. 13.3 (a) Input frame in the deep learning process S × S grid. (b) Class probability map from
each grid cell. (c) Predicted bounding box and confidence. (d) Final object detection

In this work, we trained an object detection model using YOLOv4 to validate our
results for embryo detection as a supportive method to assess the visual observation



of thermal imaging features and to contribute to the future development of automatic
classification equipment, in addition we trained a YOLOv5-L6 and an
SSD-MobileNet V2 to compare the performance of improvements on the algorithm.

262 V. M. Nakaguchi and T. Ahamed

As the YOLOv4 and YOLOv5 share the same base architecture. We also trained
an SSD-MobileNet V2 model to compare the performance of different architectures
when detecting unfertilized eggs using the methodology proposed in this work to
collect thermal images.

SSD-MobileNet V2 (Sandler et al., 2018) is another representant of one-stage
detectors architecture that adopts the same single shot detection (SSD) mechanism
similarly to YOLO. However, it gained popularity due to its faster performance at
low compute devices such as mobile phones (therefore, MobileNet) and low-end
computers such as development boards NVIDIA® Jetson series, Raspberry Pi, and
Google Coral. The V2 version of this deep learning algorithm introduced depth-wise
convolution layer, which reduce the number of parameters and contribute to improve
the performance, in the V2 added the expansion-filtering-compression, known as
inverted residual structure, which contribute for improvement of performance. In
this work we trained a model SSD-MobileNet V2 to compare the performance of two
SSD models, keeping in mind the potential application of our methodology on high
throughput system.

13.2.4.1 Models Training

We trained all the models using only images of unfertilized eggs and collected a total
of 420 images (30 images each period of 12 h). From these images, the same
procedure as previously described (FLIR® Thermal Studio) was performed, and
then image augmentation was performed to increase the dataset to make the model
more predictive.

13.2.4.2 Data Labeling

A short program written in Python programming language was utilized to label the
images by using the OpenCV library. We drew the bounding boxes (bbox) and saved
them into the YOLO format coordinates (Fig. 13.4). As for SSD-MobileNet V2 we
labeled the data using the LabelImg software in format PASCAL VOC XML.

13.2.4.3 Data Augmentation

The images from unfertilized eggs were augmented to enlarge the dataset and made
the models more effective in detecting unseen eggs. We applied random spatial/pixel
level transformations by rotating and changing the thermal effects of visualization.
Thus, datasets were enhanced to 1892 images in total. Image augmentation for
spatial transformation was performed in several ways: clockwise rotation 90°,



clockwise rotation 180°, and clockwise rotation 270° (Fig. 13.5). In addition, pixel
transformation was performed using grayscale conversion.
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Fig. 13.5 Quail egg image enhancement process and augmentation for dataset preparation during
incubation in isotherm processing of original images and monochrome transformation. (a) Original
images. (b–d). Augmentation of original images using 90°, 180°, and 270° rotations. (e) Original
position with pixel augmentation using monochrome transformation. (f–h) Augmentation of mono-
chrome transformed images for 90°, 180°, and 270° rotations

The images were divided into two datasets: training dataset and validation
dataset. We adopted the proportion of 70:30. In total, 1325 images were selected



for training and 567 images were selected for validation. To test the model, we used
the data from the incubation treatment (420 images for each cluster separately tested)
and then compared the precision of detection.
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Table 13.1 YOLOv4 and YOLOv5 training parameters

Batch Input size Momentum Decay Learning rate

YOLOv4 64 416 × 416 0.949 0.0005 0.0001

YOLOv5 16 416 × 416 0.937 0.0005 0.0001

The network size for training the YOLOv4 model was set to 416 × 416, and the
number of iterations was set to 4000 steps (Table 13.1). However, we stopped
training when the average loss no longer decreased. The training was performed
on a PC with 32 GB of RAM memory, an NVIDIA® GTX 1650™ 4 GB GPU and a
central processing unit (CPU) Intel® Xeon™ E5-1607, Python version 3.8.5, CUDA
10.1, cuDNN 7.6.5, and OpenCV 4.4.0.

YOLOv5 model was trained in the Google Collab cloud platform. The framework
version used was PyTorch 1.11.0 + cu102 and 16 GB GPU Tesla T4. The training
parameters are shown in Table 13.1, the epochs of training (number of iterations)
were set to 60, the source code was cloned from official Ultralytics® GitHub.

SSD-MobileNet V2 was trained using the same computational resources used for
training YOLOv4. However, we trained the model using the TensorFlow API object
detection framework, in an environment built with Tensorflow 2.3.1 and
Tensorflow-gpu 2.3.1. The input size of this model was 320 × 320 and 40,000
steps for training.

13.2.4.4 Model Evaluation

Several metrics were applied to evaluate the deep learning models, including
precision (P), recall (R), F1 score, and mean average precision (mAP). Object
detection evaluations are based on four factors: true positive detections (TP):
unfertilized eggs are correctly detected; true negatives (TN): unfertilized eggs are
not shown and are not detected; false-positive (FP): object is detected, but it does not
correspond to any class, and false negative (FN): model does not label an object but
was supposed to perform this task (Fig. 13.6).

P (Eq. 13.5) and R (Eq. 13.6) are measurements that evaluate the relevance of
detection. R returns the real relevance of the results, considering false negative
detections, while P considers false-positive detections. The F1 score (Eq. 13.7) is
a measurement that indicates the relation degree of P and R, as the higher the F1
score is, the higher the values of P and R, the more accurate the detections may be.

To categorize the truthiness of a class, the concept of intersection over union
(IoU) was applied (Eq. 13.8). This metric regards ground truth and detection
(Fig. 13.7)
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Unfertilized

(a) (b)

(c) (d)

Fig. 13.6 (a) True positive; (b) true negative (TN); (c) false-positive (FP); (d) false negative (FN)

P=
TP

TPþ FP
ð13:5Þ

R=
TP

TP FN
ð13:6Þ
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Ground truth

Predicted bbox

Ground truth

Predicted bbox

False Positive (FP) True Positive (TP)

IoU = 0.7IoU = 0.4

If IoU = 0.5

Fig. 13.7 IoU details of false-positive and true positive detection for unfertilized eggs

F1 score=
2PR
P R

ð13:7Þ

IoU=
area of overlap
area of union

ð13:8Þ

The mean average precision (mAP) is the average precision (AP) over the number
of classes (Eq. 13.10). The AP is a metric used in the PASCAL VOC challenge
(Everingham et al., 2010); it was obtained by calculating the area under the P-R
curves interpolated at 11 points (Eq. 13.9). However, the interpretation may vary
depending on the problem of classification. For instance, in COCO dataset evalua-
tion, the metric AP was considered equivalent to mAP. This metric is important for
object detection model evaluation because it considers the arrangement between
P and R and the relation of FP and FN.
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AP=
1
11

X

Ri

PRi ð13:9Þ

mAP=
1
N

XN

i= 1

APi ð13:10Þ

13.3 Results

The first two trials served the purpose of establishing the best procedure to collect
data for the experiment. The results from this trial showed that collecting data from
the upside face of eggs was more effective for the instant identification of features
than collecting data from the downside face at either the short end or the large end of
eggs. From the first trial, we collected images by removing the eggs from
the incubator machine. In the second trial, we collected images from the inside of
the incubator machine, and the second option suggest being the best for preventing
the instantaneous exchange of temperature within the environment and for improv-
ing thermal transmission. On the 8th day, the eggs were artificially hatched to assess
the presence of embryos (Table 13.2). As expected, the unfertilized eggs presented
no embryos.

13.3.1 Thermal Features of Incubating Eggs

Using isotherm filtering, we observed different feature patterns of fertilized eggs to
unfertilized eggs (Fig. 13.8).

Different periods of egg turning showed different patterns of thermal images,
although similarities were also observed. For example, the common characteristic of
most fertilized eggs was the presence of a “chamber” structure in the middle of the
dark red spot (which is related to the composition of embryo and egg structures). As
the days of incubation were passing, the chamber structure became less apparent
(Fig. 13.9) For example, through thermal analysis under isotherm classification, the

Table 13.2 Assessment of embryos on the 8th day of incubation

Period of turning eggs With embryo No embryo Number of egg w/no embryo

12 h 29 1 11

6 h 26 4 1, 11, 20, 28

1.5 h 25 5 2, 8, 14, 22, 27

Unfertilized 1.5 h 0 30 1–30



evolution of 2 eggs over 7 days is shown. The eggs were incubated for a turning
period of 12 h. It is possible to observe that after 72 h, the structures became less
apparent compared with unfertilized eggs. For unfertilized eggs, the dark spots
became larger due to the accumulation of gases from the decomposition of yolk
and dehydration.
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Fig. 13.8 Isotherm filtering for observing different feature patterns of fertilized (No. 10) and
unfertilized eggs (No. 11) during the first days of incubation

Fig. 13.9 Thermal analysis under isotherm classification for fertilized and unfertilized eggs after
turning for a 12-h period over a 7-day incubation period

Eggs turned every 6 h showed constant features during the data collection period
(Fig. 13.10). Fertilized eggs had chamber features, while the binary pair did not
show the same characteristics as eggs incubated for the 12 h rotation period.

For the eggs incubated during the 1.5 h period of turning, we observed that similar
structures were also identified; however, from visual analysis by human eyes, such
features were less clear than those of the previous two images shown above
(Fig. 13.11).

13.3.2 Training Results

The YOLOv4 model was trained for approximately 20 h, and we stopped the
training when the average loss reached less than 0.5 and the mAP was higher than



90% for the training dataset (Fig. 13.12a). YOLOv5 trained in Google Collab have
taken 1 h to be completed (Fig. 13.12b). SSD-MobilenetV2 model was obtained
after 4 h of training in the PC environment (Fig. 13.12c).
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Fig. 13.10 Thermal images or eggs incubated at turning periods of 6 h in a total 7-day incubation
period for fertilized and unfertilized eggs

Fig. 13.11 Thermal images from eggs incubated at turning periods of 1.5 h in a total 7-day
incubation period for fertilized and unfertilized eggs

The evaluation of training was performed by calculating the measurements as
described in the results (Table 13.3). To test the model on three experimental
treatments, we composed all the data of each cluster in only one image. As shown
in the table, each egg picture was cropped to 30 × 30 pixels to reduce the size for
comparing images from 12, 6, and 1.5 h (Figs. 13.13, 13.14, and 13.15 shows an
example of testing YOLOv4 model).

To compare the images, we numbered the eggs from 1 to 30 in the rows. For the
columns, we indicated the periods of data collection, from 12 h of incubation (first
day) to 168 h (seventh day). Next, we calculated the precision, recall, and F1-score
according to the detection assessment (Table 13.4 and Fig. 13.16). Note that we have
discarded the “156 h” data from the 6 and 1.5 h datasets due to errors generated while
collecting images. However, the analysis was conducted based only on the presented
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Fig. 13.12 (a) Average loss
during training of datasets
using Darknet framework
for YOLOv4. (b) YOLOv5
Training in Google Collab
using PyTorch framework.
(c) SSD-MobileNet V2
training loss in the
TensorFlow framework
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Model Dataset

data as follows; Table 13.5 presents the evaluation of metrics according to describe
in Sect. 13.2.4.4.
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Table 13.3 YOLOv4, YOLOv5, and SSD-MobileNet V2 training model evaluation using the IoU
threshold of 0.5 or 50% for the detection of unfertilized eggs

Precision
(P)

Recall
(R)

F1
score

Average IoU
(%)

mAP@0.50
(%)

YOLOv4 Validation 0.97 0.99 0.98 77.39 98.62

YOLOv5 Validation 1 0.99 0.99 –a 99.5

SSD-MobileNet
V2

Validation 1 0.94 0.96 –a 91.8

a Information not available

Table 13.3 shows the deep learning algorithms training performance, according to
the metrics explained in Sect. 13.2.4.4, the mAP@0.50 is the main evaluation
method for training models, it can be interpreted as the area under the interpolation
of P and R curves. The value 0.50 is regarding the IoU, that considers an object
detection if the overlap section overcome 50% of the ground truth (labeled object).
YOLOv5 showed better mAP@0.50, followed by YOLOv4 and
SSD-MobileNet V2.

The unfertilized eggs were assessed on the 8th day of incubation as indicated in
Table 13.2. The calculation presented in Tables 13.4 and 13.5 are based on that.

In Table 13.4 the object detection resultant from our test dataset were tabulated.
The total detections show the number of bounding boxes that were displayed for
each model and for each treatment for detection of unfertilized eggs, the 6 h dataset
displayed more bounding boxes over the three datasets. The total detection can also
be interpreted as the sum of TP and FP detections as well, according to example
given in Fig. 13.6, Sect. 13.2.4.4. TP column stands for the bounding boxes
displayed around correct unfertilized eggs; TN is the total of eggs that were neither
classified as unfertilized eggs nor the probability of being an unfertilized egg falls
below the threshold (50% for YOLOv4 and YOLOv5 and 18% for SSD-Mobilenet
V2), therefore, not detected as unfertilized eggs. FN is the quantity of unfertilized
eggs that were not detected by the object detection algorithms. FP represents the
number of bounding boxes displayed around eggs but not correspond to unfertilized
eggs indeed.

Table 13.5 results from the calculation of metrics by using the data on Table 13.4.
The P value was obtained using Eq. (13.5), it can be understood as the relation of
unfertilized eggs that were corrected marked with bounding box over the total
bounding boxes. The R is a metric the tells us the proportion of unfertilized eggs
that were not detected by the object detector but should be detected. The F1 score
stands for the balance between P and R, from this metric we can evaluate the
proportion of assertiveness of each deep learning model on unseen dataset, in our
case F1 score can tell us the proportion of unfertilized eggs detected by the
YOLOv4, YOLOv5, and SSD-MobileNet V2 algorithm.
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Fig. 13.13 Object detection of eggs turned every 12 h under no threshold
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Fig. 13.14 Object detection of eggs turned every 6 h under no threshold
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Fig. 13.15 Object Detection of eggs turned every 1.5 h (90 min) under no threshold
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Table 13.4 Testing dataset detection evaluation parameters under a threshold of 0.5 in the
YOLOv4 and YOLOv5, SSD-MobileNet V2 the threshold at 0.18 models for the detection of
unfertilized eggs

Model
Dataset
(h)

Total
detections

True
positive
(TP)

True
negative
(TN)

False
negative
(FN)

False-
positive
(FP)

YOLOv4 12 7 6 413 8 1

6 106 32 314 20 74

1.5 86 29 334 36 57

YOLOv5 12 11 11 409 0 0

6 36 24 384 28 12

1.5 23 17 397 48 6

SSD-
MobileNet
V2

12 6 6 414 8 0

6 11 7 409 45 4

1.5 6 0 414 65 6

13.4 Discussion

The embryo development of quail eggs takes 16.5 days to complete according to
Ainsworth et al. (2010). The same authors also affirms that although the incubation
period of quail eggs and hen eggs differ (21.5 days for hen’s eggs), the embryo
development stages are quite similar, making it possible to compare the development
process between them. Several studies on the characterization of avian embryo
development have been reported (Hamburger & Hamilton, 1951; Sittmann et al.,
1966; Graham &Meier, 1975; Ruffins et al., 2007). Most of the studies were focused
on understanding the biological functioning of structures and genetics. However,
due to the recent availability of sophisticated sensors and computational methods,
new approaches for poultry yield improvements have been reported. In this study,
we aimed to unleash the potential of thermal cameras to detect features that could
differentiate fertilized eggs from unfertilized eggs as a nondestructive and
noncontact technique. The overall goal was to contribute to monitoring the hatching
process for more efficient quail hatching management.

The method of incubation utilized in this study differed from most common
automatic incubator machines in industrial quail farms. For industrial incubators,
the eggs are usually allocated in the vertical position and are periodically turned 45°,
which is specifically related to facilitating labor operations on a large scale. Van de
Ven et al. (2011) compared the position of hen eggs during incubation and con-
cluded that position did not significantly interfere with the hatching rate. Oliveira
et al. (2020) compared different turning periods of hen eggs and concluded that
reducing the frequency of turning eggs affects the hatchability of chicks. In this
study, we did not evaluate the hatchability of eggs or mortality.

Thermal cameras produce images by solving the intensity of infrared wavelengths
transmitted to the thermal sensor; the major limitations of this kind of camera are low
resolution and high price (Williams et al., 2022). Reflectance, transmittance, and



emissivity are the main factors of the application of thermal cameras, and the main
use of this kind of sensor is specifically related to nocturne vision and body
temperature monitoring. In this study, we proposed the use of thermal imaging to
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Fig. 13.16 (a) Testing data
set precision comparison
between three models. (b)
Recall comparison. (c) F1
Score comparison
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observe the thermal behavior of quail eggs during incubation stages. The use of
isotherm filtering is the main point of this proposed methodology to identify
unfertilized eggs, as isotherms can cluster radiometric information under a threshold.
The variations in the eggshell due to the development of the embryo and the
transformation of the yolk sac content, allantois and air chamber were expected to
interfere with the dynamics of gases through the micropores of the shell. Therefore,
thermal imaging can capture these changes. However, the lack of a standard config-
uration of isotherm controls might be the main factor responsible for the poor clarity
of features that could facilitate the classification of embryo absence.
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Table 13.5 Evaluation of precision (P), recall (R), and F1-score in the YOLOv4, YOLOv5 and
SSD-MobileNet V2 models for the detection of unfertilized eggs

Model Dataset (h) Precision (P) Recall (R) F1-score

YOLOv4 12 0.857 0.428 0.569

6 0.301 0.615 0.404

1.5 0.337 0.446 0.383

YOLOv5 12 1 1 1

6 0.66 0.5 0.56

1.5 0.60 0.26 0.36

SSD-MobileNet V2 12 1 0.42 0.59

6 0.63 0.13 0.21

1.5 0 0 0

The deep learning-based algorithms proved to be a powerful tool for vision
systems operation in real time, and the high precision of the model showed that it
is possible to extract features of thermal images from unfertilized eggs. However, we
observed that more data are necessary to improve the robustness of the model. We
realized that classifying images using only one class might be not enough to push the
bias of the model for more precise detailed feature extractions inside the eggs. In
further research, we will address such limitations to overcome by increasing the
classes.

From the results we observed that YOLOv5 over performed the all the other
models. For training performance mAP@0.50 was smoothly higher than other two
models, and the F1 score in the testing dataset was better, that is because the model
presented less FP over all detections. YOLOv4 followed the YOLOv5, and the worst
results were obtained from SSD-MobileNet V2. The result of P shows that YOLOv5
was more precise for detecting unfertilized eggs under 50% of confidence.

We also noticed that the fertilized egg thermal profile shows similar structures
that are not dependent on the period of egg turning. However, the low resolution of
thermal cameras can compromise the recognition of features, that is, the distance and
transmittance effects can compromise the detection of features. We observed that
errors occurring during the collection of data may be responsible for poor radiomet-
ric data, and consequently, the misclassification of eggs. For the testing results, we
observed that a few numbers of unfertilized eggs in each treatment were not
sufficient to infer that different turning periods can improve the detection of a



class. However, using these datasets, we could test the deep learning model and
ensure the potential for detecting embryos (by exclusion of unfertilized eggs) in the
early stages of incubation. Most unfertilized eggs were correctly recognized,
although the error caused by false-positive detections led the precision of the
model to low values (except for the 12 h intervals, which presented a low error but
only one fertilized egg).
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This work proved that it is possible to use a nondestructive and noninvasive
method to identify embryos in the early stages of development. In addition, thermal
cameras can contribute to an enhanced hatching rate because unfertilized eggs can be
removed before incubation, which represents a gain in the contention of a waste of
resources, such as space and energy in quail breeding farms. High throughput
applications of the methodology proposed in this work are possible. However, fine
studies will be addressed for standardization of isotherms filtering, as the lack of
filtering pattern represents the main bottleneck for the methodology presented
herewith. The breakthrough methodology proposed to identify embryos in early
stages during incubation period can be extended to other avian eggs, besides that,
low-cost devices and online inference are possible as well. Further studies will be
conducted in this regard by expanding data sets and development of fine-tuning
kernels for fertilized eggs thermal imaging.

13.5 Conclusions

The methodology developed in this study was able to identify different features of
fertilized quail eggs from unfertilized eggs by using thermal microcamera and deep
learning algorithms. The use of isotherm analysis during the incubation period
associated with the YOLO object detection algorithm showed immense potential
to compose automated systems based on CV for the classification of unfertilized
eggs in early stages. Different characteristics for fertilized eggs and unfertilized eggs
were identified for all the evaluated treatments, concluding that different periods of
egg rotation do not interfere in the identification of embryos in early incubation. We
noticed that unfertilized eggs could be identified after 12 h of incubation. To test the
model, we reduced the original size and clustered all images into only one image
dataset to test the robustness of the model when fitting the model all at once. The
results showed that the model did not overfit the training dataset, as we could
observe that most of our targets were correctly classified. The results from the
evaluation of the training dataset showed high precision for the validation dataset.
However, when testing the images under each treatment dataset, the precision was
reduced. Several reasons may be responsible for the reduced precision of the testing
model, such as the short resolution of testing images and issues associated with
errors when collecting data using a thermal microcamera at each period. A further
study will be conducted to enhance the precision of detection, including enlargement
of the dataset and classification of fertilized eggs.
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Chapter 14
Strategic Short Note: Intelligent Sensing
and Robotic Picking of Kiwifruit in Orchard

Longsheng Fu

Abstract Kiwifruits are commercially grown on sturdy support structures such as
T-bars and pergolas, which has great desiring to be harvested mechanically as
unstable field labor availability and increased labor cost. Intelligent sensing and
nondestructive picking of fruit are the two main key technologies for robotic
harvesting. Deep learning technologies has been employed to train and detect
kiwifruit, which achieved good performance by improving YOLOv3-tiny with two
convolutional kernels to learn features of fruit calyx. Fruits were then classified into
five classes based on their robotic picking strategy and field occlusions, which
succeed to identify those fruits occluded by wires and branches. On the other
hand, non-destructive end-effector was developed by simulating hand picking with
a bionic mechanism. Drop distance of kiwifruit from the end-effector to container
without fruit damage was also investigated. A kiwifruit picking robot was finally
integrated with a tracked trolley, robot arm, fruit convey tube, and control system,
which can pick a fruit with 2 s.

Keywords Kiwifruit · Intelligent sensing · Deep learning · Non-destructive
picking · Robot

14.1 Introduction

China is the largest country producing kiwifruits worldwide. Harvesting kiwifruits in
this area mainly depends on manual picking, which is labor-intensive. Therefore,
introducing mechanical harvesting is highly desired. Kiwifruits are commercially
grown on sturdy support structures such as T-bars and pergolas. Automatic detection
of kiwifruit in the orchard is challenging because illumination varies through the day
and night and because of color similarity between kiwifruit and the complex
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background of leaves, branches and stems (Fu et al., 2021). Also, kiwifruits grow in
clusters, which may result in having occluded and touching fruits (Suo et al., 2021).
Intelligent sensing and nondestructive picking of fruit are the two main key tech-
nologies for robotic harvesting. Therefore, the main purpose of this research was to
develop intelligent sensing of kiwifruit and nondestructive picking of fruit using
robotic technologies.
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14.2 Intelligent Sensing of Kiwifruit

One of the hardest challenges in the orchard automation is the harvesting robot
specially for soft and delicate fruits. The fruits detection or object of recognition
from leaves, branches, and wires are most toughs works. In this regard, a fast and
accurate object detection algorithm was developed to automatically detect kiwifruits
in the orchard by improving the YOLOv3-tiny model (Fu et al., 2021). Based on the
characteristics of kiwifruit images, two convolutional kernels of 3 × 3 and 1 × 1 were
added to the fifth and sixth convolution layers of the YOLOv3-tiny model, respec-
tively, to develop a deep YOLOv3-tiny (DY3TNet) model. It takes multiple 1 × 1
convolutional layers in intermediate layers of the network to reduce the computa-
tional complexity. Testing images captured from day and night and compared with
other deep learning models, namely, Faster R-CNN with ZFNet, Faster R-CNN with
VGG16, YOLOv2, and YOLOv3-tiny with DY3TNet models achieved the highest
average precision of 0.9005 with the smallest data weight of 27 MB. Furthermore, it
took only 34 ms on average to process an image of a resolution of 2352 × 1568
pixels. The DY3TNet model, along with the YOLOv3-tiny model, showed better
performance on images captured with flash than those without. Moreover, the
experiments indicated that the image augmentation process could improve the
detection performance, and a simple lighting arrangement could improve the success
rate of detection in the orchard. The experimental results demonstrated that the
improved DY3TNet model was smaller and efficient and it could increase the
applicability of real-time kiwifruit detection in the orchard even through small
hardware devices were used.

Deep learning has achieved kiwifruit detection with high accuracy and fast speed.
However, all the kiwifruits have been labeled and detected as only one class in most
researches for robotic fruit picking, where fruits occluded by branches or wires have
been detected as pickable targets. End-effectors or robots may be damaged by the
branches or wires when they are forced to pick those fruits. Therefore, kiwifruits are
labeled, trained, and detected in multi-classes based on their occlusions to avoid
detecting fruits occluded by branches or wires as pickable targets (Suo et al., 2021).
Fruits are classified into four classes and five classes according to robotic picking
strategy and field occlusions, respectively. Well-known YOLOv3 and recently
released YOLOv4 are employed to do transfer learning for multi-classes kiwifruit
detection. Results show that mAP (mean average precision) of fruits in the



five-classes was higher than that in the four-classes, while mAP of YOLOv4 was
higher than YOLOv3.
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14.3 Nondestructive Picking of Fruit

Fruit nondestructive picking is the other the key technologies of developing picking
robot. Firstly, based on the artificial way of kiwifruit picking and the biology
characteristics of kiwifruit stem, a fruit picking method for robot was proposed,
which need to separate the fruit from stem and hold the fruit to prevent it dropping.
Then, the picking method was verified by a special designed separation test of fruit
and its stem. After that, an end-effector was designed and manufactured based on the
fruit picking method, which approached a fruit from the bottom, and enveloped and
grabbed the fruit from two sides, and then rotated up to separate the fruit from stem
(Fu et al., 2015). In the end, the performance of end-effector prototype was tested on
the most common cultivar “Hayward” at the Meixian Kiwifruit Experimental Station
of Northwest A&F University. The results showed that the proposed picking method
could separate the fruit successfully with the least force of 1.3 N when the angle
between fruit and stem was set as 60°, which is not significantly different from the
manual picking of which the angle between fruit and stem is approximately to 90° in
normal. The end-effector was tested on 68 samples (28 in the morning, 25 in the
noon, and 15 in the night). All of them were successfully picked and held by the
end-effector. Among them, two samples were picked with stem which might be
caused by the reason of that the fruit is not ripe enough to be harvested. All the
picked fruit were free of damage until ripen for eating. In all, the end-effector could
effectively solve the problems of separating the adjacent fruits, grab a single fruit
with an accuracy of 100%, and pick and hold it nondestructively.

14.4 Kiwifruit Picking Robot

The above two key technologies were integrated with a tracked trolley, robot arm,
fruit convey tube, and control system to develop a kiwifruit picking robot, which can
pick a fruit with 2 s. It can be improved by adding more arms and end-effectors and
working long hours, although it is slow than human picking. Another study has been
conducted to investigate the drop distance of kiwifruit from the end-effector to
container without fruit damage (Wu et al., 2022) (Figs. 14.1 and 14.2).



286 L. Fu

Fig. 14.1 Kiwifruit detected as five classes by YOLOv4 based on occlusion types

14.5 Conclusions

Open field autonomous robots have been advanced tremendously with the GNSS
application for wase multiple satellite operations. In addition to Lidar brings the
further application ease for obstacle avoidances. However, the orchard automation
still requires significant attention to bring it in the field levels. There are significant



scopes opened with the development of deep learning and AI application that over
common conventional image processing shortcomings. This research efforts shows
deep learning based light model can be used for orchard application picking of
harvesting robots.
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Fig. 14.2 Developed kiwifruit picking robot
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Chapter 15
Low-Cost Automatic Machinery
Development to Increase Timeliness
and Efficiency of Operation for Small-Scale
Farmers to Achieve SDGs

Arkar Minn and Tofael Ahamed

Abstract Sustainable development goals (SDGs) aim to increase productivity and
utilization of resources in the agricultural sector. However, the agricultural sector is
currently confronted with the effects of climate change and workforce shortages. The
population has risen such that food security has become vital. Furthermore, the
global agriculture industry is struggling with issues such as labor and farmer scarcity
as well as rising labor costs. To bring a solution to this current trend, the problems of
agricultural labor forces, automation, sensor advancements, artificial intelligence,
and IoT that can support more young farmers are highly required. The innovations
and implementation of advanced machinery can be stratified based on regional
demand and population engagement in the agriculture sector both in developed
and developing nations. There are six degrees of mechanization and automation
are significant noted: Level 0 refers to no automation, Level 1 is assistance in
automation, Level 2 outlines partial automation, Level 3 is conditional automation,
Level 4 is high automation, and Level 5 is full automation considering the sensing
system lateral and longitudinal control of machinery. Therefore, the purpose of this
chapter is to discuss the application levels of mechanization to support labor
shortages and increase productivity in developed and developing countries. This
article solely describes the current trend in agricultural machinery adoption and the
levels of mechanization that can be recommended for appropriateness globally. In
addition to level selection, this article introduces sensors and transformation stages
with low-cost automation, specifically shifting toward autonomous machinery
development in the future spectrum.
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15.1 Introduction

The agricultural sector is currently confronted with the effects of climate change and
workforce shortages. Climate change has a direct impact on food productivity. The
population has risen such that food security has become vital. Furthermore, the
global agriculture industry is struggling with issues such as labor and farmer scarcity
as well as rising labor costs. Between 1950 and 2000, the number of family farm
laborers in the USA fell by 7.60 to 2.06 million, while the number of hired farm
employees fell by 2.33 to 1.13 million (Tassell, 2022). Between 2005 and 2020, the
number of agricultural workers in EU-N13 fell by 13 million to 7 million (EC, 2017).
In Japan, the total number of people employed in agriculture decreased by 2.42
million to 2.08 million between 2009 and 2015, with the 65+ age group making up
48% of the agricultural labor force (Statistic Bureu of Japan, 2016). The agricultural
labor force has considerably declined in other Asian nations, such as China, India,
Pakistan, Bangladesh, Thailand, Indonesia, Malaysia, and Myanmar. To bring a
solution to this current trend in agricultural labor forces, automation, advancements
in sensors, artificial intelligence, and IoT can support and motivate more young
farmers and entrepreneurs. Aryal et al. (2021) state that farm mechanization has the
potential to increase the income of agricultural households, improve food security,
and reduce poverty, thereby contributing to the fulfillment of the SDGs. Automation
of farm machinery has become increasingly important. For example, rice transplan-
tation in wetlands has become difficult due to the climate and frequent interruption of
rainfall. Labor transformation to industry also makes a difficult point for
transplanting, broadcasting, and harvesting at the peak agricultural season. Hence,
farmers prefer to use machines with semi automation or partial automation because
automation is reliable and precise and increases the timeliness and efficiency of their
operations.

Additionally, due to the increase in labor cost and plant disease factors, farmers
noticed farm machinery automation, and they wanted to introduce that machine to
their business. Furthermore, field sensing explored the significance of enabling
precision farming to maximize production efficiency with minimum environmental
impact. In this regard, there are four major steps to adopt the machinery in current
agricultural trends with innovation and climate adaptation. Through these steps, the
mechanization needs to incorporate with Big Data and artificial intelligence, smart
IoT, and field sensing. Each nation uses the step differently depending on the
availability of technology resources with innovative approaches. In recent trends,
small units of low-cost intelligent/automation systems can utilize and further
develop locally with their technological resources. Therefore, the recent advance-
ment of low-cost automation can help in the agriculture sector of small-scale
farmers.
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The innovations and implementation of advanced machinery can be stratified
based on regional demand and population engagement in agriculture in both devel-
oped and developing nations. In addition, challenges of socioeconomic and safety
concerns must be considered. With all these considerations, several potential mech-
anization levels have been identified as prospective solutions (Sims & Kienzle,
2017) (FAO, sustainable agricultural mechanization, 2017). The core concept of
the theory of induced innovation is that technical advancement is critical to enhanc-
ing agricultural productivity; thus, it is not exogenous to the development process
(Hayami & Ruttan, 1971). There are six degrees of mechanization and automation
that are significant and are noted as follows: Level 0 refers to no automation, Level
1 is assistance in automation, Level 2 outlines partial automation, Level 3 is condi-
tional automation, Level 4 is high automation, and Level 5 is full automation
considering the sensing system lateral and longitudinal control of machinery. There-
fore, the purpose of this chapter is to discuss the application levels of mechanization
to support labor shortages and increase productivity in developed and developing
countries. Thus, this article solely describes the current trend in agricultural machin-
ery adoption that can be transformed into different levels of mechanization for
appropriateness globally.

15.2 Current Agricultural Trends

In the current trend, farm automation has transformed from a higher mechanical to an
autonomous system at different levels through contributions from research institutes
and industries. The automation of farm machinery systems has been developed with
several basic principles to adapt to the implementation.

15.2.1 Control and Navigation System

Navigation systems have been created utilizing navigation sensors. Farm equipment
has a position and a heading, and the sensors can be used to determine the equip-
ment’s posture. Lateral and longitudinal control of machinery has the major points to
control machines in operation. The position information is the key that enables
absolute (global navigation satellite system, GNSS) and relative positioning (local
sensing). The development of GNSSs with higher accuracy and lower cost makes
this score more vibrant across nations.



292 A. Minn and T. Ahamed

15.2.2 Vehicle Motion Models

The components of vehicle motion models mainly refer to dead reckoning, kine-
matic, and dynamic models for forward and backward motion and turning the
vehicles. The vehicle motion model has significant roles at the different levels of
machinery automation.

15.2.3 Navigation Planner

A navigation planer can be used to track location, follow an implement, and drive
straight up on the global or local map. In the planning process, an obstacle avoidance
system is also established based on the reference navigation planner using an
advanced sensing system. Inertial navigation has also been developed based on
landmark-based navigation and line navigation to follow the vehicle on the map.

15.2.4 Steering Controllers

Steering control has significantly improved at different application levels. The
steering system control covers the open loop, proportional integral derivative
(PID), and fractional proportional integral derivative (FPID) controllers, among
others that can be used to steer agricultural vehicles. Trajectory controls have
challenges for enabling navigation using Cartesian and polar-based coordinates.

15.2.5 Field Sensing, Recognition, and Sensor Data Fusion

Vision-based sensors, environment ranging sensors, time-of-flight range sensors,
and image sensors are the main contributing sensors in automation and intelligent
control systems. In vision sensing, line-scan cameras and area-scan cameras, includ-
ing LiDAR and 3D depth cameras, have significant applications worldwide. A
similar concept of sensor fusion involves processing sensor data and controlling
vehicle movements based on a changing operating environment around the vehicle
and sensor data from a set of sensors with varying degrees of accuracy (Baillie et al.,
2018). Increased production is currently required to make automated robotic systems
(ARS) economically justifiable and to enable their use at the commercial-scale level
(Goense, 2005). Satisfactory performance of ARS within unstructured environments
requires that both productivity and work quality are significantly higher than with
conventional methods and equipment, including semiautomated systems (Bechar &
Vigneault, 2016). Variable-rate technology (VRT) is the system most expected to



reduce agricultural inputs such as chemical fertilizers, pesticides, herbicides, irriga-
tion water, and precision placements of seeds.
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15.2.6 Variable-Rate Technologies

VRTs are new technologies for determining nonuniform farm inputs, such as seeds,
fertilizers, and pesticides, to be applied at different rates across a field, without
manually changing rate settings on equipment or having to make multiple passes
over an area. The VRT is one of the three most common components for site-specific
crop management (SSCM). The equipment used to perform variable-rate applica-
tions is commonly called variable-rate technology or VRT (Ahamed et al., 2014).
There are two types of VRT: GPS-based systems and local sensor-based systems. A
GPS-based system is a map-based system and historic approach. A local sensor-
based system is a real-time system, and no maps are needed. A map-based system
(GPS-based) can be adjusted with the application rate based on an electronic map of
field properties. Another type is referred to as local sensor-based systems, which use
real-time sensors to perform on-the-go measurements and then control the input in
the same path. There are advantages and disadvantages between map-based and
local sensor-based systems (Fig. 15.1). Modern farm machinery, such as sprayers
and spreaders, have VRT-capable machinery. Most of the time, it is possible to
modify current machinery and equipment. Most tractor navigation systems can be
integrated with VRA map reading and signal control abilities for site-specific control
of agricultural inputs.

No real-time sensor is

needed.

Higher cost --need GPS for
location sensing and GIS for
data processing.

Total application 

amounts can be decided 

in advance.

Time lag permit
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processing algorithms.
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Fig. 15.1 Comparison of map-based and local sensor-based systems in VRT
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15.2.7 Communication Protocols

The controller area network (CAN) bus communication protocol based on ISOBUS
systems has the advantages of configuring machinery and implements from a wide
range of dealers and manufacturers. ISOBUS is an international communication
protocol that sets the standard for agriculture electronics. Farm equipment manufac-
turers decided on ISOBUS as the common protocol for electronic communication
between tools, tractors, and computers under the International Standards Organiza-
tion (ISO). It can communicate between sensors, actuators, and controllers, facili-
tating this standard to switch data between tractors, implements and onboard
controllers. Currently, ISOBUS-compatible implements are available in the farm
machinery market. Through standardized ISOBUS components, it is intended to
provide plug-and-play functionality for every combination, enabling the machine to
control any device or application. The ISOBUS universal protocol has several
simplification benefits with a display that interacts with multiple implements and
machines. In addition to simplicity, the user-friendly control setting reduces down-
time and minimizes installation and interface issues. Easy connections with the
standardized connector between different components and automation can be
performed with the ISOBUS system to increase the efficiency and reduce fatigue
of the operator.

Therefore, farm mechanization has the scope of considering the abovementioned
controllers, sensors, and navigation planners for guiding agricultural vehicles to
address labor shortages in a different scheme based on the requirements for each
country. This scope can be outlined with different levels of mechanization starting
from Level 0 to Level 5 (SAE, 2021) (Fig. 15.2).

Fig. 15.2 Levels of automation referring to machinery control, lateral control, and navigation
planning
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15.3 Levels of Automation in Farm Machinery

The development of Level 0, Level 1, and Level 2 automation in small-scale farm
machinery are emphasized considering low-cost autonomous machinery develop-
ment. Levels 3, 4, and 5 of automation are focused on medium- to large-scale farm
machinery automation systems. The following sections discuss levels 0–5 in more
detail with the transformation potentials.

15.3.1 Level 0: No Automation

Most farm tasks are carried out by humans at the Level 0 stage. This level is still
present in developing countries. Farmers used utility tractors with a simple hydraulic
system, a mini-tiller, and a power tiller. Small-scale farm machinery with a small
single-cylinder engine is the primary power source. The transformation is also
required to automate the small-scale machinery starting with the power tiller,
specifically riding types. Sophistication in automation can be performed for the
power tiller with some consideration of low-cost actuators, sensors and GNSS
systems. One of the examples of transformation and its recommendations to use
low-cost equipment for automation on power tillers is described.

15.3.1.1 Transformation of Automation on a Power Tiller

Most developing countries in Asia use power tillers extensively in their food
production. The advantages of a power tiller include its low cost, lightweight, ease
of maintenance and repair, and simplicity of operation. However, it also has draw-
backs, including mass vibration, pollution, and risky operation. When using a power
tiller, farmers need to pay close attention. The following suggestions are added to
modify the ordinary power tiller (Fig. 15.3) with automation.

Main clutch lever All moving parts of the power tiller are controlled by the main
clutch. The operator can control it manually with the main clutch lever. For the
automation assistance, it can be replaced by an electric linear actuator or a servo
motor with a controller.

Steering mechanism Steering is manually controlled by side clutch levers; it can be
replaced by two electric linear actuators.

Engine stop mode The engine stop mode can be transformed with a servo motor.
For the petrol engine, a servo motor can be used to operate the engine switch to turn
on and off, and for the diesel engine, a servo motor can operate the fuel valve.
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Fig. 15.3 Automated power tiller

Implement mode The implement mode can be attached to the power tiller for the
tillage and driving operations. An electric linear actuator can raise and lower the
implement programmability.

Vision control Low-cost RGB, 3D depth camera or LiDAR can serve as the vision
of the power tiller. Object detection and obstacle avoidance can be performed by the
program.

Monitoring The radio transmitter module, Wi-Fi module or Bluetooth module has
the opportunity to perform as the mobile control unit of the operator. The operator
can contact the machine stages via mobile devices such as smartphones, tablets, and
computers. Sensors can be used for machine stages such as fuel level and engine
temperature.

Machine Control mode The operator can control the power tiller via a joystick
controller. A microcontroller-based control system can be used as a remote-control
system over a wireless platform.

Power source All electric and electronic devices obtain power from the battery, and
the battery can be recharged from the alternator.

15.3.2 Level 1: Assisted Automation

In the Level 1 stage, farmers use utility tractors with hydraulic control systems. In
rice cultivation, an ordinary rice transplanter with a mechanical function is used. In
harvesting operations, threshers are also widely used. One of the examples of
transformation and its recommendations to use the low-cost equipment for automa-
tion on the seed broadcaster are referred to in the following section.
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15.3.2.1 Transformation of Automation for Seed/Fertilizer
Broadcasting Device

Most seed and fertilizer broadcasting operations are performed with tractor-mounted
broadcasters/spreaders. Precision broadcasters are now available in the market, but
they are not affordable for small-scale farmers. There are two types of broadcasters:
centrifugal disk type and pendulum type. The farmers most commonly used
centrifugal-type fertilizer spreaders due to their robustness, simplicity, low cost,
and large working widths (Antille et al., 2015; Villette et al., 2017). For the
development of automation for centrifugal spreaders at the small-scale level, some
of the sensors and attachments can be installed for semi-autonomous or autonomous
vehicles (Fig. 15.4). The following suggestions are added to set up the spreader with
automation.

Embedded system-based design A microcontroller serves as the
operator (Harmanda et al., 2019). The programmer can set up the operation pro-
cedures for the specific operations. The microcontroller receives data from the
sensors and computes and makes a decision using the program. Currently,
low-cost high-technology microcontrollers are available, such as Arduino.

Substitution with electric devices Former control systems were made by mechan-
ical control systems such as linkage and lever. Electric devices and attachments can
replace the mechanical system, as they have more benefits, such as lightweight,
quietness, and precision. Some electric devices are electric linear actuators, servo
motors, stepper motors, and rotary encoders.

Adjustable opener design A programmable opening system can reduce the waste of
seed/fertilizer, save usage, maintain a constant rate, and select the material dosage.
Moreover, it can be programmed according to crop types such as paddy, wheat,
maize, and pulses.

Headland control system The programmable control system of the broadcasting
mechanism has the scope of effectiveness at the headland in the field. It can save the

Fig. 15.4 Small-scale multi-crop seed broadcasting machine (a) CAD design (b) Prototype
fabrication



seed and equal the distribution pattern. This program is arranged by the RTK GPS
(real-time kinematic global positioning system) and optical sensor (Camera,
LiDAR).
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Narrow space adjustment Narrow space adjustment can be arranged by the diffus-
ing mechanism. The diffuser can be attached to the broadcasting outlet of the device
so that the seed will not spread away from the spreading pattern. This adjustment is
effective, saves the seed, and avoids spreading outside of the pattern.

Environment sensing This arrangement is set up by the sensors and IoT-based
programs, such as methodological data from weather stations, for real-time environ-
ment operation. In broadcasting operations, the prevailing wind is the main obstacle
to operation in the fields. If the program obtains weather data (wind speed and
direction), the program can arrange the motor speed of the spreading mechanism.
This arrangement has the advantage of saving the seed and equal distribution
patterns in the field.

15.3.3 Level-2: Partial Automation

In the Level-2 stage, the prime mover is the utility tractor with an electronic control
system. The hydraulic position control system is attached to the rice transplanter.
Combine harvesters became popular in this stage. Few examples of transformation
and its recommendations to use the low-cost equipment for automation for partial
automation are described.

15.3.3.1 Transformation of Partial Automation

Hydraulic systems have been developed in agricultural tractors. Most utility tractors
have auxiliary hydraulic hoses to control the rear attached implements in operation.
With the assistance of an auxiliary hydraulic system, farmers can handle multiple
implements in single operations (for example, tandem/gang arrangement of the
implements) and can achieve a wide range of tillage. Additionally, hydraulic pump
technology was developed and has resulted in less occupation of pump fitting and
more power in controlling implementation.

Hydrostatic transmission (HST) allows a vehicle to convert mechanical energy
into hydraulic power and then back to mechanical energy. HST technology has been
developed in agricultural machinery so that farmers can operate their work without
worrying about machine slippage and digging in the mud. Crawler tractors, some
combine harvesters that work in muddy fields and farm multipurpose carriers are
fitted with HST drives (Fig. 15.5).
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Fig. 15.5 (a) HST drive fitted on a combine harvester (b) HST drive system for crawler or wheel

15.3.4 Level 3: Conditional Automation

Technology plays an important role in the development of the crop production sector
and has the potential key drivers of sustainable agriculture. Recently, new sensors
have been developed with less weight and size, low cost, and high performance.
Sensors can be applied and combined in production systems, accepting an increase
in data and ultimately increases in information. This technology is of great impor-
tance for supporting digital transformation, precision agriculture, and smart farming
to obtain high productivity and maintain sustainable agriculture. In the Level-3
stage, sensing technology and a global positioning system (GPS) have been devel-
oped. Most of the implements are fitted with sensors for controlling and monitoring
operations. An autosteering system was developed with the aid of sensors and
navigation systems.

15.3.4.1 Transformation of Conditional Automation

A real-time kinematic (RTK) GNSS system was developed for farm vehicle navi-
gation, and RTK-GNSS provides precise accuracy of the vehicle location so that
farmers can operate with hands-free steering and take control of the operations tasks.
Moreover, machine data such as vehicle location and task information can be shared
with others to improve operational performance and can perform precision agricul-
ture. In recent years, low-cost RTK-GNSS has independently developed. Further-
more, a hybrid navigation system with a combination of inertial measurement units
(IMUs) and GNSSs has also been introduced (Rinnan et al., 2009). This system is
not only easy to switch between agricultural machines, but IMU can also be placed
in the vicinity of the GNSS antenna to obtain a more accurate position, and direction
calculation can be performed (Ahamed et al., 2014). To obtain high accuracy and
high-rate positioning, the azimuth detection method improved the accuracy of
agricultural work even in irregular fields and made it a high-speed output navigation
sensor. Based on hybrid navigation that takes advantage of GNSS and IMU, by



utilizing machine information (vehicle speed and steering angle of this machine,
traveling condition of this machine generated from map information). This operation
can perform unique optimum calculations according to each driving condition
(Fig. 15.6). Achieving high-rate detection and high accuracy positioning (within
3 cm) and azimuth angle (within 1°) with various operation patterns, including
turning, completes the navigation sensor suitable for automatic agricultural machine
travel (Ahamed et al., 2014).
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Fig. 15.6 Tractor navigation system with IMU+RTK-GNSS

15.3.5 Level 4: High Automation

Level 4 is sensing and IoT-based farm machinery development. Farmers can access
their operations through mobile devices. Electromechanical drives became popular
in this stage. A critical labor shortage threatens the ability of farmers to produce and
harvest their crops. Migrant labor availability is subject to political forces outside of
the power of the agricultural community. However, farmers are taking proactive
steps to address this issue. They are teaming with technology companies to develop
new automated harvesting technologies and more. There are three main technologies
in future trends of automatic farm machinery: electrification, automation, and arti-
ficial intelligence (Fig. 15.7). Some of the examples described include electrification,
automation, artificial intelligence and IoT-based components.

15.3.5.1 Transformation of Automation for Machinery

Electrification Most agricultural equipment, such as prime movers, are widely used
internal combustion engines as power sources. Currently, fossil fuel has been
decreasing in production, and engines release carbon dioxide. Well-known manu-
facturers have also changed the trend to use other energy sources, such as electrifi-
cation. In farm machinery operations, electrification uses batteries as a power source.
Batteries connect electrical drives such as electric motors that have heavy torque at
low speeds, are more powerful, are more reliable, have lower noise, are lightweight,



and are compact so that motors can replace engines and hydraulics. Another
advantage of using electrification is zero emissions.
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Fig. 15.7 Transformation at the level of high automation

Automation Currently, many well-known manufacturers are producing autono-
mous prime movers. The autonomous prime mover makes real-time automatic
adjustments in farming operations. Some autonomous prime movers use electric
drives so that they help to reduce soil compaction more than conventional prime
movers. An electric drive has no operation emissions, low noise, and low wear and
maintenance costs. In power transmission technology, John Deere Co. changed their
new tractor in conventional continuously variable transmission (CVT) to electrome-
chanical power split (Deere, n.d.).

Artificial intelligence (AI) Based on sensors and artificial intelligence, the system
recognizes the difference between the desired work and environment to operate
individual tasks. There are many methods for using artificial intelligence, such as
machine learning, deep learning, and neural networks. Currently, this technology is
used in farming operations not only in land preparation operations but also in soil
management, crop management, plant disease management, and weed management.
Moreover, postharvest and food processing operations have also used this
technology.

15.3.6 Level 5: Full Automation

In the Level 5 stage, all farm machinery operations consider the full autonomy
including remote operations (Fig. 15.8). Autonomous machines and intelligent
systems are the core things of the stage.



302 A. Minn and T. Ahamed

Fig. 15.8 Full automation

15.3.6.1 Transformation of Automation Systems

Some perspectives of small-scale autonomous farming vehicles and equipment are
as follows. In the small-scale unit, Fendt from the AGCO company produced the
Fendt Xaver sowing robot. That robot can operate precision planting, and it is a fully
autonomous vehicle. The Xaver company intends to install a sowing robot with
sensors for soil moisture measurements, temperature, humidity, and plant residues in
the future (Fendt Xaver, 2020). Global unmanned spray system (GUSS) sprayers can
be remotely supervised by a single operator, allowing growers to spray orchards and
vineyards more quickly and consistently, using fewer resources and reducing costs
by eliminating operator error and downtime (Oitzman, 2022). The machines also
control application rates and sprayer speeds across entire fields and in variable
terrain with adjustable software parameters (Deere, n.d.). AutoSpraySystems pro-
duced an R150 sprayer and attached the JetSprayer™ airflow sprayer system. This
machine is small-scale, autonomous, and all-in-electric drives (AutoSpraySystems,
n.d.).

Autonomous performance on rice transplanters has been developed by Japanese
manufacturers such as Kubota and Yanmar. Yanmar produced the YR8D model, and
Kubota produced the Agri Robo Rice Transplanter. Kubota has developed automa-
tion on rice transplanters but still needs to be operated under human supervision.
Kubota expects to develop a completely unmanned operation of the machine in the
future. Yanmar launched the YR8D series rice transplanter commercially in 2019,
and the rice transplanter also needs to be performed under the guidance of people.

https://www.growingproduce.com/nuts/next-generation-of-orchard-sprayers-is-autonomous/


Sr. Manufacturer Model Power type

Yanmar announced that to create sustainable agriculture, they intend to continue to
develop autonomous technology and incorporate it into an array of products and
services.
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Table 15.1 Autonomous tractor listed in 2022

Automation
level

1 John Deere 8R Tractor Engine type Fully
autonomous

2 CASE iH ACV Engine type Fully
autonomous

3 New Holland NHDrive Concept Autonomous Tractor Engine type Fully
autonomous

4 Massey
Ferguson

MF NEXT Concept Tractor Engine type Fully
autonomous

5 ClASS AgBot Engine type Fully
autonomous

6 Fendt FendtX concept Engine-
electric

Semi-
autonomous

Fendt Fendt e100 Vario Electric type Semi-
autonomous

7 Yanmar Concept tractor YT01 Engine type Fully
autonomous

Robot Tractor (YT488A/498A/4104A/
5113A)

Engine type Fully
autonomous

8 Kubota Kubota Concept Tractor Electric type Fully
autonomous

AgriRobo Tractor Engine type Fully
autonomous

Self-propelled multi-function machine is a complete set of an implementation of
the operations. It can perform tillage, seeding, inter-weeding, spraying, and
harvesting operations in a single unit. However, this type of machine has a very
complicated system and high cost. This type of machine has significant potential for
future development. Autonomous tractors are operator-less tractors that use sensors
and perception technology to provide higher effectiveness and reduce human inter-
ference. Future research and development need to align with performance monitor-
ing that extends to general-purpose tractor operations (Baillie et al., 2018). In many
parts of the world’s agricultural sector, there is a constant challenge of skill labor
finding during the peak use seasons. Thus, automation and sensing technology can
solve this problem. Large manufacturers are researching autonomous tractors and
their operations. There are two types of autonomous tractors in agriculture:
upgrading automation on existing tractors (engine type) and electric vehicles (elec-
tric type). Some of the autonomous tractors and their manufacturers series up to 2022
(Table 15.1). Furthermore, according to the land preparation to harvest task referring
to Level 0 to Level 5, summarized information provides present trends and future
development potentials (Table 15.2).
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15.4 Discussion

The levels of mechanization are solely dependent on different countries’ present
needs and the social status of labor shortages. In referring to the several levels, smart
farming came up from Level 2 or onward with the application of different sensors.
Smart denotes sustainable mechanization and adaptation through resilient tech-
niques. In smart farming, farms that are managed by information and communication
technologies are used to increase the quantity and quality of products while opti-
mizing the human labor needed. In the conversion of conventional farming to smart
farming, we need to convert analogical or mechanical technology to digital data and
information acquisition. In addition, smart farming provides benefits in the focus
areas for site-specific management to ensure productivity. The productivity of
agricultural machinery significantly increases through automation due to increased
efficiency, reliability, and precision and a reduced need for human mediation (Burks
et al., 2005; Schueller, 2014). Therefore, efficiency adopts new ideas to farm
smarter. Performance is measured by capturing farm data and investing in precision
agriculture (right source, right rate, right place, and right time) (Baillie et al., 2017).
Finally, profitability can be achieved by strategically choosing crops and markets.

The potential for efficiency advantages from more precise tractor control as well
as the time-consuming, systematic nature of machine operations are two factors
driving the relatively advanced state of autonomous vehicle technology in agricul-
ture (Bechar and Vigneault, 2016). With automation, manufacturers and farmers
want to address many issues. The majority of products on the market are large-scale
sizes since manufacturers desire to produce their goods in enormous
quantities (Baillie et al., 2018). However, small-scale farmers, particularly those in
developing nations, require automated small-scale machinery. Currently, sensor and
sensing technology has improved rapidly, and low-cost high-precision sensors are
available on the market. In farm machinery operations, farmers can utilize sensors in
various types of applications. There are machine control applications, crop and soil
monitoring applications, seeding, and harvesting applications. Sensor utilization in
the agricultural vehicle automation system is shown in Fig. 15.9.

Particularly in developing countries, most farmers work on small plots of land,
and they rely heavily on automation development in small-scale farming equipment.
Commonly, they utilized small-scale farming equipment such as power tillers and
garden tractors. Power tillers are among the machines that are commonly employed
for both land preparation and prime moving tasks such as transport, threshing, and
water lifting in many developing countries.

Small-scale farmers, especially in developing countries, face challenges in
transforming from conventional farming to smart farming. They do not have expe-
rience in assessing components, device design, sensor calibrations, and expertise in
the case of data transmission. Most of the farmers are in poor connectivity environ-
ments with high transmission costs, making it difficult to obtain equal data access
and processing measurements for feedback in data storage and analysis. Further-
more, there is a lack of feedback and implementation: there is a lack of assessment in



smartphones, remote locations with mobile devices, and IoT generation of their
countries’ situations.
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Fig. 15.9 Agricultural vehicle automation system

15.5 Conclusion

The development of the automation of farm machinery for small-scale farmers is
very important because the agriculture sector faces problems with cultivation areas,
increasing populations, and addressing the challenges of climate change and labor
shortages. Therefore, the sustainability of automation related to farm machinery and
its level of implication is a prominent point for increasing productivity. Most
manufacturers are intended not only to develop the automation of agriculture but
also to practice sustainable agriculture. Automation machinery has advantages and
can outline through Level 0–5 mechanization stages for transformation. Addition-
ally, future automation has the chance to shift manual labor that currently necessi-
tates a large number of workers in different production field and food industries.
Automating farm equipment relieves laborious tasks and paves the way for more
sustainable food production.

In conclusion, developing countries should start transforming automation on their
small-scale farm machinery to Level 2 because most of the developing countries are
still at Level 0 and/or Level 1. Transforming the automation of their existing



small-scale farm machinery will increase the timeliness and efficiency of their
farming operations. Furthermore, transforming automation enhances the benefits:
increased productivity, reduced injury, time and cost savings, solved labor shortage
problems, and improved sustainability and food safety. The transformation of
low-cost automation systems on small-scale farm machinery can significantly ensure
SDG goal-2: end hunger, achieve food security and improve nutrition and promote
sustainable agriculture, goal-9: build resilient infrastructure, promote inclusive and
sustainable industrialization and foster innovation, and goal-10: reduce inequality
within and among countries.
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Chapter 16
Vision-Based Leader Vehicle Trajectory
Tracking for Multiple Agricultural Vehicles

Linhuan Zhang, Tofael Ahamed, Yan Zhang, Pengbo Gao,
and Tomohiro Takigawa

Abstract The aim of this study was to design a navigation system composed of a
human-controlled leader vehicle and a follower vehicle. The follower vehicle auto-
matically tracks the leader vehicle. With such a system, a human driver can control
two vehicles efficiently in agricultural operations. The tracking system was devel-
oped for the leader and the follower vehicle, and control of the follower was
performed using a camera vision system. A stable and accurate monocular vision-
based sensing system was designed, consisting of a camera and rectangular markers.
Noise in the data acquisition was reduced by using the least-squares method. A
feedback control algorithm was used to allow the follower vehicle to track the
trajectory of the leader vehicle. A proportional–integral–derivative (PID) controller
was introduced to maintain the required distance between the leader and the follower
vehicle. Field experiments were conducted to evaluate the sensing and tracking
performances of the leader–follower system while the leader vehicle was driven at
an average speed of 0.3 m/s. In the case of linear trajectory tracking, the RMS errors
were 6.5, 8.9, and 16.4 cm for straight, turning, and zigzag paths, respectively.
Again, for parallel trajectory tracking, the root mean square (RMS) errors were
found to be 7.1, 14.6, and 14.0 cm for straight, turning and zigzag paths, respec-
tively. The navigation performances indicated that the autonomous follower vehicle
was able to follow the leader vehicle, and the tracking accuracy was found to be
satisfactory. Therefore, the developed leader–follower system can be implemented
for the harvesting of grains, using a combine as the leader and an unloader as the
autonomous follower vehicle.
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16.1 Introduction

Multiple autonomous vehicles can improve the efficiency of agricultural operations
by performing labor-intensive tasks such as transporting, plowing, sowing, fertiliz-
ing, spraying, and harvesting (Iida et al., 1999; Noguchi & Barawid Jr, 2011). The
simultaneous control of multiple robotic vehicles has received attention from several
researchers. For example, multiple moss-harvesting robotic tractors were
commanded and monitored by a human driver, who also functioned as the leader
(Johnson et al., 2009). To enable navigation under complex road conditions, an
autonomous follower tractor could change formation with the human-driven leader
tractor to avoid obstacles based on commands from the leader (Zhang et al., 2010).
The FOLLOW and GOTO algorithms were developed to control multiple vehicles in
a flexible way, both in formation and independently (Noguchi et al., 2004). When
considering the farming task style, a common operational method of multiple
autonomous vehicles should be effective when an autonomous or a human-driven
leader vehicle can lead one or more follower vehicles. Furthermore, following a
trajectory identical or parallel to that of the leader is important in outdoor farm
conditions. For example, while driving along a narrow road with obstacles, followers
can adopt an in-line formation with the leader for safety, whereas while working on
farmland, followers in a parallel formation with the leader could follow trajectories
parallel to that of the leader, allowing the farming task to be performed without
overlap or missed areas. For such a target, integrity model involving leader motion
information, such as steering and the speed of the leader, could allow for precise
tracking (Morin et al., 2008; Ou et al., 2013; Peng et al., 2014). However, the
transmission of the leader motion information to the follower through a wireless
device creates the risk of wireless distribution or failure. Aiming to solve this
problem, the leader’s position and velocity were estimated based on local sensors
(Kise et al., 2004), and a neural network (NN)-based extended Kalman filter (EKF)
was designed to estimate leader speed and accommodate modeling errors (Johnson
et al., 2004). By cooperating with GPS location, a time-delayed leader tracking
model was established and showed excellent tracking performance (Goi et al., 2010).

In any event, the follower vehicle needs to continually update its relative position
with respect to the leader to fulfill the tracking task. Regarding safety, absolute
sensors such as those employing GPS are not suitable for the tracking task because
they may lose the satellite signal and are subject to multipath interference. Local
sensors, such as cameras and laser range finders (LRF), are considered to be better
approaches and have been successfully applied for tracking under both indoor and
outdoor conditions (Abe et al., 2005; Ahamed et al., 2006, 2009; Espinosa et al.,
2011). Compared with LRFs, camera vision can provide more information than data
obtained via LRF scanning with less cost and has thus been wildly utilized for
navigation, mapping, and tracking (Caballero et al., 2009; Courbon et al., 2010; Han
et al., 2004). For tracking control of multiple robotic vehicles, a camera vision-based
leader–follower relative position estimating method has been designed, recognizing
a leader vehicle using features of the leader vehicle (Hasegawa et al., 2000; Kannan



et al., 2011). However, this method was sensitive to lighting conditions and was
distance-limited as well as time-intensive. A common and effective method for
solving those problems was to use an artificial marker to identify the leader and
estimate the leader–follower relative position using pre-known geometry or color
information of the markers (Krajník et al., 2014). The advantages of the marker-
based method are that it could support stable recognition, accurate position estima-
tion, and fast calculation. Moreover, it ensures the tracking accuracy and tracking
safety for a leader–follower trajectory tracking system. In this research, to avoid
using GPS and wireless devices, the designed control law of the follower vehicle for
leader trajectory tracking only relied on the relative leader–follower position, which
was obtained from the camera vision. This study aimed to develop a vision-based
feedback controller designed to track a leader vehicle trajectory while maintaining an
in-line or parallel formation. Thus, the objectives of this research were as follows:
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1. To establish an autonomous vehicle as a follower vehicle able to conduct tracking
tasks.

2. To construct a robust and accurate monocular vision system able to estimate the
relative position between a leader and a follower.

3. To develop a control algorithm able to realize accurate leader vehicle trajectory-
tracking for multiple agricultural machinery combinations, with a human-driven
leader and an autonomous follower.

16.2 Materials and Methods

An electronic vehicle (CHIKUSUI EJ-20, CANYCOM, Tokyo, Japan) was modi-
fied into an autonomous vehicle, i.e., the follower vehicle. Both the leader and the
follower vehicle had a 60 cm wheel base length and 49 cm drawbar length. Major
subsystems of the autonomous vehicle included steering control, speed control,
power, and sensor units. The sensory data and control status were transmitted to
an upper level controller through parallel communication. The basic instrumentation
system for the autonomous vehicle is depicted in Fig. 16.1a. A Pro 9000Web camera
(Logitech, Lausanne, Switzerland) with two million pixels and a 70 ˝ view angle,
was mounted on the autonomous follower vehicle to provide vision information. A
LMS 511 LRF (SICK, Waldkirch, Germany) was utilized as an assist device to
provide reference data and recorded trajectories during tracking. Steering control of
the autonomous vehicle was conducted using an electronic cylinder
(LPF040L2.0VK2J, TSUBAKIMOTO CHAIN, Osaka, Japan). The length of the
piston rod was 200 mm and the maximum speed was 40 mm/s. It could provide
stable thrust power up to 400 N. Figure 16.1b shows components of the robot
vehicle.
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Fig. 16.1 The autonomous follower in the leader–follower system. (a) Sensors arrangements in the
autonomous unit; (b) Hardware components of the autonomous follower tracking system

16.2.1 Leader–Follower Relative Position and Camera–
Marker Sensing System

Figure 16.2a describes the relative position between the leader and follower. By
identifying the relative heading angle β, relative distance D, and orientation angle α



16 Vision-Based Leader Vehicle Trajectory Tracking for Multiple. . . 315

Fig. 16.2 Geometrical disposition between the leader and the follower (a) Leader–follower relative
position. (b) Relative position between camera and marker plane. (c) Servo motor implemented
with the camera–marker system



of the leader relative to the follower, the follower vehicle could identify the leader
position. The leader–follower relative position was obtained from the camera–
marker system (Fig. 16.2b), in which the camera was mounted on the rear wheel
center point P1 of the follower vehicle, the marker was installed perpendicular to the
centerline of the leader vehicle and the position of the middle square of the marker
was at the rear wheel center point P0. The side length of each square H and the
interval between square centers L were 0.2 and 0.4 m, respectively. In the leader–
follower system, the following steps were followed to develop the relative position-
ing system: camera servo systems, marker detection, marker positioning, and esti-
mation of offset of the roll angle between camera and marker.
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16.2.1.1 Camera Servo System

Losing the target was a severe problem during the tracking of the leader vehicle; it
potentially occurred owing to the limitations of the camera view field, especially on a
large-curvature path. To overcome this problem, a camera servo system was
designed to keep the marker in the center of the camera view field. The camera
servo system comprised a GWS servo motor and a rotary encoder with a camera
(Fig. 16.2c). By responding to the angle αs from the middle square center to the
camera optical axis, the servo motor could rotate the camera directly to the marker
center. The rotation angle αEn between the optical axis and the centerline of the
follower vehicle could be monitored by a rotary encoder installed above the camera.
The existing follow relationship can be expressed as:

α= αs þ αEn ð16:1Þ

16.2.1.2 Marker Detection

The marker was detected based on its pre-known geometry information, including its
square shape features and relative spatial relationship between squares in the marker
plane. The image processing flow comprises the following four steps: transforming
an original RGB image into a grayscale image and then enhancing the contrast ratio,
extracting contours, finding rectangles from the contour images, and determining the
marker (Fig. 16.3).

Pre-known geometry information could reduce the computational cost and benefit
real-time detection. Additionally, the high contrast ratio between the black squares
and the white background enabled the generation of acutance contours and created
stability for the detection of the marker. However, contour extraction was still
influenced by illumination conditions. Low illumination conditions or strong sun-
light under an outdoor environment would reduce the contrast ratio of the image and
corrode the contour of squares, causing failure of marker detection. To expand the
scope to adapt to various illumination conditions, a commonly used normal



� �

distribution of the image histogram method was utilized to enhance image contrast.
Affected by posture changes of the vehicles, squares projected on the image plane
would show the shapes of rectangles. Thus, rectangles were recognized and selected
in the contour image. Relying on the relative spatial relationship between the three
squares, false targets with rectangular shapes, such as rooms and windows, could be
filtered, and only squares formed by the marker could be extracted.
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Fig. 16.3 Image processing for marker detection. (a) Contour image; (b) Detected marker

16.2.1.3 Marker Positioning

Given that the vision data were obtained from a single camera and the relative
position between the marker and the camera was estimated based on the known side
length of the marker squares, the position of each square in the marker plane could be
described by its center point. The pitch angle of the vehicle body was neglected,
meaning that the sides of squares in the vertical direction would not be affected by
the posture changes of the leader and follower vehicles when projected onto the
image plane. For this reason, the centerline of the squares in the vertical direction
could be used to estimate the relative position between the camera and marker plane.
Utilizing the geometric relationship between similar triangles under a perspective
model (Fig. 16.4), the position of the square center PC in camera-based coordinates
could be estimated as follows:

XC =
x- cx
f x

ZC ð16:2Þ

ZC =
H
h
f ð16:3Þ

α= arc tan
Xc

Zc
ð16:4Þ



where the coordinates of the square center under the image coordinate and camera-
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Fig. 16.4 Camera perspective model

based coordinate systems could be written as pc(xc, yc, f ) and PC(XC,YC,ZC), respec-
tively. f and fx represent the focal length, and cx is the shift of the optical axis
obtained from camera calibration; h is the height of squares in the image plane.

16.2.1.4 Offset of Roll Angle between Camera and Marker

On uneven farm ground, rolling of the camera or the marker plane would occur and
affect the leader–follower relative position observation accuracy. The calculation of
the leader–follower relative position should offset the rolling effect of the camera or
the marker plane. For example, suppose the leader vehicle is driven on a horizontal
surface, while the follower vehicle forms a roll angle γ around its optical axis from
the horizontal surface (Fig. 16.5). PCN(XCN,YCN,ZCN) are the coordinates of square
centers based on the camera coordinate system and PHN(XHN, YHN,ZHN) are the
coordinates of square centers with respect to the horizontal surface (Fig. 16.5).
Clearly, the position of PCN represents the relative position between the camera
and the marker plane, and the position PHN represents the relative position between
the follower and the leader vehicles. Thus, the relationship between PCN and PHN

could be written as



ð Þ
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Fig. 16.5 Model for offsetting vehicle roll effect

XCN =XHN cos γ- YHN sin γ ð16:5Þ
ZCN=XHN 16:6

Because the relative position between the leader and the follower vehicle only
corresponds to the X-Z coordinates, the square centers can be assumed to lie on the
horizontal surface. Then, Eq. (16.5) can be rewritten as

XHN =
XCN

cos γ
ð16:7Þ

� �� �0 1
γ= tan - 1

3
P3
n= 1

xcnycn -
P3
n= 1

xcn
P3
n= 1

ycn

3
P3
n= 1

x2cn -
P3
n= 1

x2cn

� �2

BBB@
CCCA ð16:8Þ

where (xcn, ycn) represent coordinates of the square centers pc(xc, yc, f ) in the plane.

16.2.1.5 Transformation of Coordinates and Relative Positioning
of the Marker

The transformation of coordinates between the camera and the follower vehicle
could be expressed as follows (Fig. 16.2c):



ð Þ
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XVN =
XCN

cosγ
sin αEn þ ZCN cos αEn ð16:9Þ

YVN =
XCN

cosγ
cos αEn þ ZCN sin αEn ð16:10Þ

where PVN(XVN,YVN) are the coordinates of the square centers in the follower-based
local coordinates. The relative distanceD and relative angle β between the leader and
the follower vehicle could be calculated as:

D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

V2 þ Y2
V2

p
ð16:11Þ� �� �0 1

β= tan - 1

3
P3
N= 1

XVNYVN -
P3
N= 1

XVN
P3
N= 1

YVN

3
P3
N= 1

X2
VN -

P3
N= 1

XVN

� �2

BBB@
CCCA ð16:12Þ

Then, the relative position between the leader and the follower vehicle could be
written as

xl F =XV2 ð16:13Þ
yl F = YV2 ð16:14Þ
θl F = β 16:15

where xl_F, yl_F represents the local position of the leader based on the follower and
θl_F is the local heading angle of the leader based on the follower.

16.2.2 Camera Vision Data Estimation and Smoothing

Limited by the monocular vision method, the observed leader–follower relative
position was noisy under the worst farm conditions. In some cases, large observed
errors would occur or there was even a failure to detect the marker plane. The
estimation and smoothing of the observation data were necessary to ensure the
accurate tracking of the leader vehicle and also to improve the motion stability of
the follower vehicle. Because the motion of the two vehicles was continuous, the
variation of relative distance and angle between the leader and the follower vehicle
was also continuous. The commonly used method of least-squares was introduced to
estimate and smooth the relative distance D and the relative heading angle β between
the leader and the follower vehicle by fitting a quadratic curve separately. During the
process of data estimation and smoothing, estimated data could be obtained by fitting



ð

ð Þ ð Þ

the stored latest n points of observation data to a quadratic curve using the least-
squares method. In this study, the quadratic curve could be written as:
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q nð Þ= an2 þ bnþ c ð16:16Þ

where n denotes observation times used to store and fit the data and q(n) is the vector
of the stored observation data sequence, including the relative distance and the
relative heading angle. q(n) is defined as

q nð Þ= D nð Þ
β nð Þ

� �
ð16:17Þ

To ensure the fitting effect, avoid collapse of the least-squares method and
maintain the original transfer tendency of the leader–follower relative position, the
data stored for fitting required appropriate handling. The estimation and smoothing
process was realized through two steps: first, once a new camera observation was
available, the sequence of the stored observation data would be updated and the
latest stored data after updating was temporarily determined as follows:

q ið Þ= q iþ 1ð Þ iE 0, 1 . . . ::n- 1ð Þ 16:18Þ

q nð Þ= qC obs
q n- 1ð Þ

n qE 1 > qTh
qE 1 < qTh

ð16:19Þ

qE 1
= jq n- 1ð Þ- qC obs

j ð16:20Þ

Second, after fitting to the quadratic curve using the least-squares method, the
latest stored data and the current leader–follower relative position could be deter-
mined as follows:

q nð Þ= qC obs

qFit

n qE 2 >
qTh

qE 2 <
qTh

ð16:21Þ

qE 2 = jqC obs - qFitj ð16:22Þ
qEst = q n 16:23

Where qC _ obs is the vector of the current camera observed data, qFit is the vector
of the fitted current relative distance and relative angle using the stored n times of
observation data, qEst is the vector defining the current relative distance and relative
angle, q(i) is the vector of the stored ith observation, qE _ 1 is the vector of the
distance between the current observation and last observation, qE _ 2 is the vector of
the distance between the current observation and fitted observation, and qTh is the
vector of the threshold values, set as (1 m 40°).



322 L. Zhang et al.

16.2.3 Design of Control Law for the Leader Trajectory
Tracking of Follower Vehicle

In this study, only the leader–follower relative position information was used by the
follower vehicle to track the leader trajectory. The absence of information exchange
and absolute reference positions made the leader trajectory thoroughly uncertain for
the follower vehicle, and the tracking position for the follower vehicle was ambig-
uous. A feedback control method based on the leader–follower relative position was
proposed to track the trajectory of the leader.

As described in Fig. 16.6, the required position of the follower vehicle is set at P2,
with a distance d01 from the leader vehicle rear axis and an angle Φ01 with the leader
vehicle rear axis. Assuming the leader vehicle is driven with a straight trajectory, the
position of P2 in the leader-based local coordinates could be written as:

Fig. 16.6 Relationship and coordinate transformation between the leader and the follower vehicles



" # " #

Þ ð
ð Þ ð Þ
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xreq L

yreq L

θreq L

=
d01 cosΦ01

d01 sinΦ01

0
ð16:24Þ

To improve the control freedom of the follower vehicle to realize the tracking of
the uncertain leader vehicle trajectory, a control point C, located on the centerline of
the follower vehicle, was introduced. Moreover, the distance from the rear wheel
axial center to the control point C was defined as

lC = k0l ð16:25Þ

where l the length from the front wheel axial center to the rear wheel axial center; lC
is the length from the rear wheel axial center to the control point C; the parameter k0
is used to determine the location of control point C. The position of the control point
C in leader-based local coordinates could be written as:

xc L

yc L

θc L

" #
=

cos β sin β 0
- sin β cos β 0

0 0 1

" #
xl F

yl F

θl F

" #
þ

lc cos β
- lc sin β

0

" #
ð16:26Þ

Combining with Eqs. (16.13), (16.14), (16.15), (16.24), (16.25), and (16.26), the
control point C-based position tracking error between the follower vehicle and its
requirement position could be calculated as:

xe c

ye c

θe c

" #
=

xc L

yc L

θc L

" #
-

xreqL
yreqL
θreqL

" #
= -

cos β sin β 0
- sin β cos β 0

0 0 1

" #
XV2

YV2

β

" #

þ
lc cos β
- lc sin β

0

" #
-

d01 cosΦ01

d01 sinΦ01

0

" #
ð16:27Þ

A simple steering strategy for responding to longitudinal and heading tracking
error is given as

δ= k1ye c þ k2θe c þ k3 sin θe c

� � ð16:28Þ

A PID controller was designed to maintain the required distance between the
leader and the follower vehicle; control of the follower velocity could be given as

vt = vt- 1 þ kD et - et- 1ð Þ þ kIet þ kp et - 2et- 1 þ et- 2ð 16:29Þ
e= D- d01 16:30

where k1, k2, k3 are control parameters corresponding to required distance d01 and
angle Φ01, kD, kI, kp are parameter of the PID controller adjusted during field



experiments. Notice that once the required values of distance d01 and angleΦ01 were
altered, the control parameters also needed to be adjusted.

324 L. Zhang et al.

16.3 Field Experiments

Experiments for verifying the stability and accuracy of the camera–marker sensing
system and leader trajectory tracking accuracy were conducted at the Agricultural
and Forestry Research Center, University of Tsukuba (Ibaraki, Japan). The camera–
marker sensing system evaluation experiments included both a static and a dynamic
evaluation experiment. The static evaluation experiment was intended to verify the
stability and accuracy of the designed observation method and optimize the camera
coefficients. The dynamic evaluation experiment was designed to determine the
threshold values for data estimation and smoothing, analyze the observation stability
and accuracy, and verify the effectiveness of the least-squares method-based data
estimation and smoothing solution. A SICK LMS 511 LRF was used to provide
reference data, and the relative position from the LRF to the marker plane was used
as reference data to evaluate the camera observation accuracy (Fig. 16.7a).

In the tracking accuracy evaluation experiments, linear and parallel tracking
experiments were conducted on straight, turning, and zigzag paths. Cylindrical
markers were mounted above the rear wheel centers of the leader and follower
vehicles (Fig. 16.7b) to facilitate the LMS 511 LRF in recording their trajectories
at a frequency of 25 Hz. The leader vehicle was driven at a velocity of 0.3 m/s. The
required distance d01 between the leader and the follower vehicle was 4 m in linear
tracking. In parallel tracking, the required lateral and longitudinal offsets of the
follower vehicle were set at 4 m and 2 m from the leader vehicle so that the trajectory
of the follower vehicle could parallel that of the leader vehicle at a 2 m interval.

Fig. 16.7 Field experiments of the leader–follower system. (a) Evaluation of the camera–marker
system; (b) tracking of a trajectory of the leader vehicle
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16.4 Results and Discussion

16.4.1 Evaluation of Camera–Marker Observation System

In the static evaluation experiment, the maximum distance from the camera to the
marker was approximately 6 m and the relative angle that formed between the
marker and the camera axis ranged from -40° to 40° (Fig. 16.8). Using the LRF
data as reference, the accuracy of the leader–follower relative position obtained from
the camera–marker system could be evaluated (Fig. 16.9). Linear regression analysis
showed that the orientation angle and distance between the leader and follower
vehicles obtained from the camera–marker system were stable and had high accu-
racy (Fig. 16.9a, e). Meanwhile, the leader–follower relative angle obtained from the
camera–marker system was unstable (Fig. 16.9c). Compared with the accuracy of
the orientation angle (Fig. 16.9f), the accuracy of the distance and relative angle
obtained from the camera–marker system degraded as the relative distance from the
camera to the marker increased (Fig. 16.9b, d). This phenomenon was mainly caused
by the limitation of the camera; the pitch angle of the vehicle also potentially caused
an observation error of the uneven ground.

The RMS errors of the leader–follower relative distance, relative angle, and
orientation angle observation were calculated. When the distance between the
camera and the marker was 6 m, the RMS errors of the leader–follower relative
distance, relative angle and orientation angle observation were 5.8 cm, 5.07°, and
0.228°, respectively. At 4 m, the RMS errors of the leader–follower relative distance,
relative angle, and orientation angle observation were 3.63 cm, 3.01°, and 0.239°,
respectively. Considering that the orientation angle obtained from the camera–
marker system was stable and had high accuracy, data estimation and smoothing
was only conducted for the distance and relative angle observed. In the dynamic
evaluation experiment, the leader vehicle was driven along a zigzag path and the
follower vehicle was controlled in remote mode to follow the leader. The camera

Fig. 16.8 Position of the marker. (a) Location of the marker. (b) Relative angle between the marker
and the x-axis



observation data before estimation and smoothing, the estimated and smoothed data
obtained through least-squares-based curve fitting, and the LRF observation data
were recorded during driving.

326 L. Zhang et al.

(a) (b)

(c) (d)

(e) (f)

y = 1.0052x - 0.4923 
R2 = 0.9997 

y = 0.9133x + 2.1779 
R2 = 0.9519 

y = 0.9732x + 0.1332 
R2 = 0.998 

Fig. 16.9 Linear Regression and Accuracy analysis of the camera observation referenced with the
laser observation. (a) Distance; (b) Relative angle; (c) Orientation angle; (d) Distance error; (e)
Relative angle error; (f) Orientation angle error

The results showed that both the camera data before estimation and smoothing
and the estimated and smoothed camera data closely matched the LRF data
(Fig. 16.10). The RMS errors of the camera observation before estimation and
smoothing were 4.7 cm and 3.15° for the relative distance and relative angle,
respectively. These coincided with the results under static conditions, meaning that



b

b

the motion of the marker and the camera had little effect on the observation accuracy.
During the experiment, the camera-observed data were smoothed by fitting a curve
using the least-squares method. After data estimation and smoothing, the camera
observation data were observably smoothed, as shown in the dotted rectangle
(Fig. 16.10). Furthermore, the accuracy of the leader–follower relative position
observation was improved after data estimation and smoothing, and the RMS errors
of the relative distance and relative angle were reduced to 4.6 cm and 2.87°,
respectively (Fig. 16.11). Compared with the camera observation data before esti-
mation and smoothing, the dispersion of the estimated and smoothed data were also
reduced, with the standard deviations of the relative distance and relative angle
reduced from 4.9 to 4.2 cm and 3.74 to 2.55°, respectively (Fig. 16.12). Those
performances showed the potential for stable and accurate observation when applied
to real-sized tractors, being clearly insensitive to the uneven ground and having
stable motion characteristics compared with the small-sized vehicles.
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Fig. 16.13 Leader trajectory tracking on a straight path. (a) Linear tracking; (b) Parallel tracking

16.4.2 Tracking Performance

Tracking accuracy was evaluated using the interval space between the leader and
follower vehicle trajectories; the trajectory segments AB and CD were used to
calculate this interval space. The follower vehicle could adjust its state and arrive
at its required position relative to the leader rapidly and smoothly (Figs. 16.13, 16.14
and 16.15).

The tracking error between the leader and follower vehicle trajectories is shown
in Figs. 16.16, 16.17 and 16.18. During tracking on a straight path, a very low
tracking error between the trajectories of the leader and follower vehicles was
observed; the maximum and RMS tracking errors between these trajectories were
12.5 and 6.5 cm for linear tracking and 14.1 and 7.1 cm for parallel tracking,
respectively (Fig. 16.16). During tracking on a turning path, the maximum and
RMS tracking errors between the trajectories were 18.2 cm and 8.9 cm for linear
and 29.0 cm and 14.6 cm for parallel tracking, respectively (Fig. 16.17). During
tracking on a zigzag path, the maximum and RMS tracking errors between the
trajectories were 35.0 cm and 16.4 cm for linear and 24.5 cm and 14.0 cm for



parallel tracking, respectively (Fig. 16.18). In comparison with the straight path, the
turning and zigzag path tracking showed higher error. From trajectories of the leader
and follower vehicles, it can be observed that a larger variation of the direction of the
leader vehicle would result in a larger tracking error (Figs. 16.14 and 16.15). This
error remained at a low level when the leader vehicle was driven on a
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Fig. 16.14 Leader trajectory tracking on a turning path. (a) Linear tracking; (b) Parallel tracking

Fig. 16.15 Leader trajectory tracking on a zigzag path. (a) Linear tracking; (b) Parallel tracking

Fig. 16.16 Tracking error between leader and the follower trajectories during tracking on a straight
path. (a) Linear tracking; (b) Parallel tracking



constant-curvature path. Considering road space and agricultural operations, the
tracking accuracy was sufficient to ensure safe tracking and precision operation.
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Fig. 16.17 Tracking error between the leader and the follower trajectories during tracking on a
turning path. (a) Linear tracking; (b) Parallel tracking

Fig. 16.18 Tracking error between the leader and the follower trajectory during tracking on a
zigzag path. (a) Linear tracking; (b) Parallel tracking

16.5 Discussion

The driverless follower is the key of this research, which confirmed the high
accuracy in following the human-driven leader and the performance of the control
system. Experiments were conducted using a specially built robot as follower to
confirm the accuracy of tracking and develop a control system without any built-in
communication between the leader and the follower. The traveling courses were
chosen according to standard agricultural operations, such as straight, turning, and
zigzag paths. The tracking performance between the leader and the follower was
satisfactory under regular field conditions. Undulating terrain and adverse climatic
conditions were ignored in the field experiments. The experiments were conducted
mostly under daytime conditions. The camera marker system was assisted with the
LRF for cross checking the accuracy of the marker positions both in static and



dynamic conditions. The LRF was utilized as an assist device to provide reference
data and recorded the trajectories during tracking. The contour extraction was
influenced by illumination conditions. Low illumination conditions or strong sun-
light under an outdoor environment would reduce the contrast ratio of the image and
affect the contour of squares, causing marker detection failure. To expand the scope
to adapt to various illumination conditions, the image contrast was enhanced using a
histogram method that ensured stable observation under various light conditions
while conducting experiments during the daytime. The vertical vehicle’s movement
or pitch angle of the vehicle body was not considered, as there was not much effect
of posture changes of the leader and follower vehicles when projected onto the image
plane while traveling on regular ground. This was one of the limitations of this
research. However, to overcome such limitations, the centerline of the squares in the
vertical direction was used to estimate the relative position between the camera and
marker plane. The experiments were conducted with the prototype robot to confirm
the accuracy and develop suitable control systems. The validation was done with a
human-driven small vehicle as leader and the autonomous prototype robot as
follower. Definitely in an agricultural environment an actual size autonomous unit
can be used as follower by implementing the proposed camera marker sensing and
control systems. The productivity would definitely be higher, by reducing labor
through enabling the human-driven leader and autonomous follower system.
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16.6 Conclusions

In this study, a human-driven leader and automatic follower trajectory-tracking
system was developed. A low-cost camera servo system, comprising a web camera,
encoder, and a servomotor, was implemented. An effective camera–marker detection
method was developed to follow the leader, which was controlled by an operator. A
solution for enhancing image contrast that involved using the histogram method,
offsetting vehicle roll angle, and estimating and smoothing the camera observation
using the least-squares method ensured a stable and accurate monocular vision
system that was able to estimate the relative position between the leader and the
follower vehicles with high accuracy. A feedback control rule and a PID controller
were also developed and exhibited good performance for linear and parallel leader
trajectory tracking. The estimation and smoothing of the camera observation data
reduced camera noise and yielded relative positional information between the leader
and the follower vehicle with high accuracy. As a result, a stable velocity and
steering angle of the follower vehicle and high accuracy of the trajectory tracking
was established. Thus, a low-cost, reliable navigation system for a leader and
follower vehicle tracking system was demonstrated. In further research, the leader
should be converted to a remote control unit to make it unnecessary for the operator
to be on-board the leader vehicle. Additionally, to overcome the limitations of the
prototype leader–follower system, such as guidance in the adverse climatic condi-
tions are required to consider for agricultural operations.
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Chapter 17
Autonomous Robots in Orchard
Management: Present Status and Future
Trends

R. M. Rasika D. Abeyrathna and Tofael Ahamed

Abstract This chapter aims to explore the opportunities and challenges in orchard
management regarding the automation of orchard automation from preharvest to
postharvest systems. Labor shortages and dependency on expert growers have
become challenging in developed and developing countries. Furthermore, extensive
dependence on seasonal labor, which is scarce, and rapidly increasing labor costs
have sparked interest in the use of automated machines in orchard operations, which
in turn is crucial for improving the quality of high-value fruit crops. Reasons for
commercial implementation failure include high initial and maintenance costs.
Architectural differences in the fields render trajectory planning and manipulator
operations impractical. Newly introduced orchard architectures enable robotic plat-
forms to successfully achieve the desired robotic manipulation. Task-specific robotic
manipulators and grippers with few degrees of freedom robotic arms in combination
with developed neural networks and classification methods are innovations for
achieving the commercialization of orchard automation and low-cost roboticization
of medium-scale orchard crops.
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17.1 Introduction

Fruit cultivation is one of the key subsectors of horticulture and plays a vital role in
human nutrition. Fruits are highly nutritious, making them essential for human
health. A large variety of fruit crops are grown worldwide. Tree fruits are one of
the important subcategories in the fruit industry and contribute significantly to global
fruit production. Of the 887 million tons of estimated fruit production worldwide in
2020, tree fruit crops (i.e., apples, grapes, oranges, mangoes, pears, etc.) accounted
for 50% of the total production (FAO, 2020).

Tree fruit crops are usually referred to as orchard crops. An area that is often
enclosed and devoted to fruit cultivation is usually denoted as an orchard. Since
orchard fruit production is highly competitive, growers are pursuing more effective
methods to manage their orchard operations precisely and automatically. However,
the orchard fruit market also remains competitive in the global market due to its
uniformity, taste, lack of injuries, and optimum harvesting time and methods.
Furthermore, insufficient labor availability coupled with rapidly increasing labor
costs and, more importantly, the risk of dependence on seasonal human labor has
sparked interest in the use of automated machines and the scope of the utilization of
robots in orchard operations, which in turn is crucial for improving the quality of
high-value fruit crops.

During the past few decades, substantial improvements in field robotic systems
have been reported due to technological advancements in high-tech computers and
sensors with high processing power. Furthermore, the availability of cheap electron-
ics provides more practical situations worldwide. Therefore, current methods of
production of most field crops, such as corn, wheat, and soybean, mainly rely on
machinery and automated systems with the support of the Global Navigation
Satellite System (GNSS). However, GNSS has limitations due to interruptions and
complex canopies. The positioning of sensors for vision and perception have more
reliability in orchard-based automation. In principle, these developed technologies
might be adapted to orchard fruit production. However, due to cultivation and
morphological differences between fruit crops and field crops, some management
options that are unique in orchard fruit production (i.e., pruning, thinning, training,
and harvesting) have made the task more difficult. For instance, automating fruit
harvesting requires unique applications due to the irregular distribution of fruit on
trees, uneven maturity of the fruit and the requirement for high-quality harvested
fruits. Meanwhile, the implementation of several operations in orchard fruit produc-
tion, such as fertilizer and pesticide application and irrigation, is similar to that of
field crops. However, these operations require specific mechanisms that comply with
the morphological features and management practices. Moreover, the natural mor-
phological features of orchard crops have increased the difficulty of applying
manipulator kinematics in orchard operations.

Amidst these complications in adaptation and implementation, during the last few
decades, several researchers have attempted to mechanize orchard operations,
among which most of them are dedicated to one specific task (i.e., harvesting or



spraying), and several robot prototypes have been developed and deployed. How-
ever, the mechanization in tree fruit production is still far from the expectation and
orchard management relies primarily on human labor. Few or no commercially
viable automation options are available for orchard crops at present.
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In fact, automated robots that emulate human labor are essential for automating
different operations in orchard management. The essential components that should
be incorporated into developed robotics to accomplish automation of these tasks
include a vision system, a moving mechanism (i.e., autonomous vehicles) and a
special mechanism to achieve the designated tasks (manipulators and grippers).

Previously, scientists attempted to achieve orchard automation that would coor-
dinate with the existing tree canopy structure. However, they later realized that the
most efficient and economical method of achieving orchard automation is to change
the tree structure to be fitted into the robotic platform. This approach is the only
method that can reduce the number of degrees of freedom in the robotic arms, which
will lead to simple, low-cost, and quick manipulations. Thus, the attention of the
researchers has been diverted toward changing the orchard architecture to facilitate
simple manipulator operations, and thus the development of financially affordable
automation options for tree crops seems to be the next goal to ensure increased
efficiency in orchard operations.

Within the context discussed above, the focus of this chapter is to first introduce
vision systems for orchard robotic operations, followed by an account of the existing
orchard operation robots and their operating principles based on orchard pruning,
thinning, spraying, and harvesting orchard operations. The chapter proposes con-
structive suggestions for improving orchard automation through simplified robotic
operations.

17.2 Vision Systems for Autonomous Orchard Robots

One of the most important components not only in the agricultural robot but also in
any type of working robot is the vision system that detects the autonomous move-
ments of the other two main components of a robot; the manipulator and the robotic
platform rely on the data generated from the vision system. More importantly,
without obtaining accurate information from the sensors, which are basically cam-
eras, neither manipulators nor robotic platforms perform predetermined tasks accu-
rately. Data acquired from the sensors are then processed by a controller (i.e.,
microcontroller, programmable logic controller or computer) before being fed to
the actuators to perform the predetermined task.

The vision technology has been used for different orchard operations, such as
analyzing the growth of orchard trees; identifying pests, diseases, and weeds;
applying chemical or biofertilizers; harvesting fruits; pruning branches; removing
excess flowers and fruits; and navigating autonomous vehicles inside the orchard.

For robotic applications, either individual or different combinations of cameras
have been used to improve the accuracy by obtaining more details. State-of-the-art



2D and 3D vision systems are commonly used to identify objects under real-world
conditions. Spectral waves such as ultrasound, light, infrared, and light have been
used to obtain depth information, but optical techniques have become more popular
because of fast data acquisition, safety, and the ability to obtain a high lateral
resolution (Büttgen et al., 2005). However, 3D images have x, y, and z coordinates
and thereby generate more details than 2D images, which consist of x and
y coordinates. Therefore, the use of 3D images has become popular as it is more
useful in manipulating robotic arms to achieve the desired tasks.
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Fig. 17.1 Illustration of 3D vision techniques used in agricultural robotics: (a) time-of-flight (ToF)
technique, (b) Michelson interferometer principle, (c) light beam triangulation technique, and (d)
stereo vision triangulation technique

Detection of the target fruit in the 3D orientation has the potential to determine the
efficiency of the whole robotic platform. In 3D imaging, different basic techniques
have been used for acquiring depth values, as illustrated in Fig. 17.1. The time-of-
flight (ToF) technique (Fig. 17.1a) measures the wave receiving time compared to
the wave generated time when the speed of light is known. The different wave
modulation methods that have been applied include pseudo noise modulation, pulse
modulation and continuous wave modulation. In this technique, the distance to
object x is obtained from Eq. (17.1), where t is the traveling time of the light
pulse. Figure 17.1b illustrates the interferometry principle, which is used to obtain
the depth at the nanometer level accuracy. Here, the distance or depth x is propor-
tional to n number of fringes and wavelength of the light (λ), as calculated using
Eq. (17.2) (Lange, 2000). Figure 17.1c shows the triangulation technique using a
light beam, and Fig. 17.1d shows the same technique using passive illumination. In
these two techniques, the distance x is obtained by measuring the location that hits



the receiving image sensor (d, d1, or d2) or obtaining the angle of the incoming and
reflecting light beams, which are calculated using Eqs. (17.3) and (17.4) (F is the
focal length, y is the baseline) (Schwarte et al., 1999; Jähne et al., 1999; Vázquez-
Arellano et al., 2016).

17 Autonomous Robots in Orchard Management: Present Status and Future Trends 339

Fig. 17.2 Typical apple orchard spacing between rows for autonomous vehicle navigation
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The sensor readings may change depending on the light conditions received by
the camera sensors. The lighting conditions basically depend on environmental
factors such as weather variability and time, especially in temperate countries.
Retinex principle and wavelet transform techniques are used to enhance the image
qualities and overcome the effect of varying light conditions (Wang et al., 2017).
The effect of obstacles such as branches and fruits is another factor that hinders the
sensor reading. Figure 17.2 shows the typical inter row navigation pathway between
apple rows, and it further illustrates how hard it is to reach apples even by hand
without collision with other fruits and branches.

Therefore, the vision systems should be sufficiently accurate to detect the obsta-
cles and proceed with the robotic arm operations. New canopy structures were
proposed to have only one fruit on one stem by improving fruit tree genetics to



avoid the hindrances generated by extra fruits. In this case, the machine vision
system easily detects and localizes fruits. With the introduction of v-terraces con-
cepts, the effect of obstacles created by branches and reaching the fruits in the deep
canopy and fruit clusters can be avoided in orchard operations. Different studies
have used different methods, such as their color, shape, texture, size, and edge
features, to detect fruits. Tabb et al. (2006a, b) and Silwal et al. (2017) used a
Bayesian classifier along with neural networks to improve detection, which requires
different classification techniques and thresholding levels. The convex hull method
was introduced to identify single fruits and to detect the center point of the citrus
fruits (Changhui et al., 2017).
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Manipulation of the end effector based on camera coordinates may vary. One
method is to use the traveling salesman problem (TSP) technique, which finds the
minimum distance to the target location. However, this method requires the help of
other algorithms (Silwal et al., 2017).

The other robotic arm manipulation method is the global camera system, where
the camera is mounted at a fixed position and captures images at the beginning of one
harvesting cycle. After fruit detection and localization, the manipulator moves to all
the fruits detected in the images by starting at the first one in the sequence; the order
of reaching toward the fruits is determined by the manipulator parameters, and the
inverse kinematic is used to calculate the manipulator position each time or the
manipulator moves to homing positions each time and recalculate the next target.
Once the manipulator finishes reaching all the targets in the frame, the camera
captures images for the second round. Previous studies suggest that the camera
must coordinate with a precisely calibrated end effector or manipulator to achieve
this task, and the error between two coordinates may result in problems for the next
cycle as well (Tabb et al., 2006a, b).

The autonomous movement of robotic platforms and manipulators depends on
the data generated and processed by the vision system. The use of the Global
Navigation Satellite System (GNSS) is one of the commonly applied methods.
However, this method is not useful when disturbances appear in the orchard while
the vehicle is moving through orchards. Similarly, the global positioning system
(GPS) is unable to identify obstacles in the field. Real-time kinematic (RTK)
technology has been used to overcome these problems. However, the use of vision
systems in combination with artificial and machine vision is more reliable and has
become more technologically advanced. Obstacles, artificial markers, and field
structures have been used as field markers and identified by vision systems. In
machine vision, recent image processing techniques include instance segmentation
and object detection through training, validation and testing of large datasets using
neural networks, convolutional neural networks (CNNs), and deep neural networks
(DNNs) to increase the accuracy of detection.

The research and applications help produce different CNN-based neural networks
to increase the accuracy of object detection and semantic segmentation. For exam-
ple, a study has been conducted to localize apples by integrating CNNs (Häni et al.,
2018), similar to mango identification and localization using deep learning (Stein



et al., 2016). Furthermore, a deep learning pipeline was used to count apples and
oranges after detection based on a blob detector (Chen et al., 2017).
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Integration of vector machines was developed to distinguish and classify apple
fruits, leaves, and branches with the support of a genetic algorithm (Yongting & Jun,
2017). The calculation of the time required for one robotic cycle is essential in terms
of productivity (Silwal et al., 2017); when the weight of the components increases,
the inertia is high, and energy usage also increases, resulting in low robotic arm
performance. Most robotic arms use steppers and servo motors, which use DC power
from batteries or power from generators. Hydraulic motors and actuators might also
represent a novel approach; the difficulty lies in sensing angles and distances
accurately, where more precision is needed, and the weight of the parts is greater.

17.3 Autonomous Robotic Pruning in the Orchards

Physical removal of branches and limbs is known as pruning, which is one of the
orchard management operations that is second to harvesting in terms of labor
requirements, while it requires 20% or more of the total production cost per year
(Gallardo et al., 2011; Hansen, 2011). Additionally, it is a cumulative process that
requires skilled workers to perform it.

Penetration of sunlight inside the canopy creates high productivity in each
branch, resulting in high-quality fruits. In orchard management for robotic opera-
tions, the most important goal is to produce fruits of equal size without pests and
diseases, which facilitates easy robotic manipulations and picking, to achieve equal
treatments for each part of the tree. Pruning in combination with thinning helps to
achieve the balance between vegetation growth and reproductive growth. Pruning is
an essential practice and always follows some protocols, depending on the plant
species, to achieve the desired shape.

In fruit orchard management, the final goal is to obtain continuous production
during each cropping season while improving the yield and maintaining the eco-
nomic balance each harvesting season; the horticultural balance of the orchard
should be maintained to achieve this goal. The reproductive and vegetative growth
of trees depends on the canopy balance. Hence, maintaining the canopy balance is an
important task for both maintaining a good healthy tree and continuous production in
terms of fruit size and quality (Schupp et al., 2017). Training and pruning manage-
ment practices are essential to achieve strong and healthy orchard conditions (Feucht
& Larsen, 2009), which is particularly important for orchards that use robotic
operations. Figure 17.3 shows the well-maintained fruit orchard systems in
Tsukuba-Plant Innovation Research Center (T-PIRC Farm) at the University of
Tsukuba.

Maintaining a safe and healthy workforce is a challenging task in orchard
operations to ensure continuous maintenance and production because repetitive
motion causes muscle pains, back pains, injuries caused by tools, slips from ladders
and eye injuries in laborers (Fetzer, 2017). Replacing skilled labor with a machine is



a challenging task for researchers and orchard owners, and impressive developments
have been achieved in the past few years. Pruning is an inspiring task, and robotic
pruning operations are even more impressive. The rapid development of sensors,
cameras, and neural networks has helped researchers replace laborers with pruning
robots.
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Fig. 17.3 (a) “Two-arm” orchard tree training system, (b) hedgerow orchard tree training system,
(c) single curtain and double curtain orchard training system, and (d) Guyot orchard fruit training
system

Mechanical pruning is one of the techniques used by orchard owners to reduce the
canopy size and maintain the shape of trees. Hedging is the mass removal of biomass
from the trees that requires hand pruning again as a follow-up process to remove
unwanted dead branches, which is sometimes integrated with chemical pruning.
Several factors determine the proper method for pruning, including the plant age,
species, canopy shape, height, cutting time, and planting density ( Sansavini, 1976) .
Dormant pruning is conducted to remove unproductive tree parts and to obtain more
space for other growing parts and maintain plant health, and powered shears and
manual loppers are used for this operation (He & Schupp, 2018). Mechanical
pruning is already automated, but nonselective pruning is performed.

Pruning is performed in the winter and summer seasons, and robotic pruning has
been mainly chosen for winter because the vision systems can easily identify the
pruning points. The implementation of orchard systems such as those shown in
Figs. 17.4, 17.5, and 17.6 is a labor-intensive task, and the architecture has the ability



to facilitate easy autonomous vehicle movements between tree rows, the easy
identification of target fruits by the vision system and easy manipulator movements
to the canopy with fewer collisions. This system creates a getaway for researchers to
develop manipulators with a smaller number of degrees of freedom for easy orchard
operations. As illustrated in Fig. 17.7a, a normal orchard pruning robot for normal
orchard pruning requires a manipulator with a higher number of degrees of freedom
to reach the target locations. Figure 17.7b shows the pruning robot in a well-
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Fig. 17.4 (a) Side view and (b) front view of a V-trellis fruit tree training orchard

Fig. 17.5 (a) Side view and (b) front view of a vertical axis fruit orchard system

Fig. 17.6 (a) Side view and (b) front view of espaliers training of apple trees



maintained vertical axis orchard system; the robotic manipulator can perform the
desired task using a smaller number of movements.
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Fig. 17.7 Scopes of robotic pruning: (a) higher DoF robotic arms and (b) simple robotic arms

However, pruning is frequently a challenging task, as the gripper must generate a
higher force for pruning and the robotic arm should withstand the counterforce.
Under real-world conditions, the collision of other branches with the robotic manip-
ulator, fruits and flowers becomes a problem, restricting the gripper from moving to
the target position. Additionally, environmental factors such as varying light condi-
tions cause some errors in vision systems, and wind sometimes shakes the whole
tree, which affects manipulator movements.

Normal orchard trees do not grow in the same shape, and the inconsistency in the
size of crop rows and trees prevents the easy application of precision techniques and
automation. Well-maintained orchard systems, which are more unique and simpli-
fied, with tree training help machine vision systems to identify and detect the fruits
and branches easily using developed neural networks and uses simple robotic
kinematics to reach the target locations (Karkee et al., 2014). Training of orchard
trees for robotic operations is becoming popular, but the main aim of this manage-
ment practice is to maintain a uniform tree structure year-round.

Grape vine branch detection has become popular because of its uniform canopy
structure. A 3D camera was used to determine the exact cutting site for pruning on
the branches by measuring the branch length, and the algorithm accuracy was 96.8%
(Mahdi & Abdolabbas, 2017).

A robotic manipulator for pruning should have a specific end effector; it may be a
cutting blade or blades with a scissor motion (Lehnert, 2012). Pruning robots are
more complex than harvesting robots because after detecting the branches, the
algorithms should calculate the specific points for pruning based on pruning rules,
and then the manipulator should move to specific locations while placing the end
effector cutting point perpendicular to the branch; the cutting angle is not always
perpendicular. LiDAR (Light Detection and Ranging) sensors have been used to
overcome GPS inaccuracy and as a support method for object detection. LiDAR uses



pulsed light waves to assess the surroundings, which can be used for many orchard
and agricultural applications.
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Table 17.1 Some of robotic orchard pruning applications/3D model developments

Orchard application Sensors and algorithms

Apple tree dormant pruning (Medeiros
et al., 2017)

Time-of-flight camera, Laser scanner split-and-merge
clustering algorithm, the robust fitting algorithm

Fruit (Apple) tree traits measurements
(Tabb & Medeiros, 2017)

Color cameras, Robotic System for Tree Shape Esti-
mation (RoTSE), outdoor environment

Apple tree dormant pruning (Akbar
et al., 2016)

Kinect2 sensor, 3D reconstruction, and modeling-based
algorithm (Akbar et al., 2016)

Apple tree dormant pruning
(Chattopadhyay et al., 2016)

Kinect2 sensor (KinectFusion software), semicircle fit
model created

Apple tree shape sensing (Karkee &
Adhikari, 2015)

Time-of-Flight (ToF) camera

3D modeling of apple tree (Elfiky
et al., 2015)

Skeleton-based Geometric (SbG) features based, model
accuracy 96.0%, algorithm—(circle-based-layer-aware
modeling)

Apple pruning branches identification
(Karkee et al., 2014)

ToF 3D camera, based on developed pruning rules

The use of LiDAR sensors for biomass mapping in forests is a popular method.
3D reconstruction is required to perform this task, and the “Simple Tree” tool was
developed as a cloud-based 3D tree reconstruction method for forest inventories
using laser-scanned trees, with a 0.965 coefficient of determination, indicating its
effectiveness (Brandtberg et al., 2003).

Another study was conducted to identify primary branches and diameters for
dormant pruning. The system identified the branches with 98% accuracy and the
diameters with 0.6 error, and a laser sensor was used for this study (Medeiros et al.,
2017). However, the LiDAR sensor combined with the reconstruction algorithm was
used to generate a 3D model of the canopy structure by achieving a 0.78 correlation
with branch length and a 0.99 correlation with branch diameter (Bucksch & Fleck,
2011). Meanwhile, 3D cameras were also used to develop 3D models for orchard
tree thinning and pruning (Cheng et al., 2007).

LiDAR, laser scanner sensors, and 3D camera images have been used to develop
3D models and then make the decision based on that model using artificial intelli-
gence. The decisions are always dependent on predetermined pruning principles for
the target tree. For the grape vines, a similar technique was used to determine the
pruning points. Table 17.1 illustrates some of the developed 3D models and the use
of 3D models for orchard pruning.

The development of 3D models for pruning applications has become popular
because these pruning models have been used for the identification of pruning points
in tress and robotic manipulations. A 3D model was developed for existing tree
structures to operate passive robots (Edan et al., 1991). When developing tree
models in 3D space, a simulation procedure for the geometric features based on
the L-Systems method was introduced (Prusinkiewicz et al., 1990). For Buckeye



Gala apple tree pruning, a pruning severity index was introduced, the limb-to-trunk
ratio (LTR) index, which was used for 3 consecutive years and achieved promising
results (Schupp et al., 2017). Similarly, the geometric features of the fruit trees are
described with the help of geometric transformation. The Markov chain method was
introduced to analyze fruit tree architectures (Costes et al., 2006). The development
of this model is based on three methods: 3D scanning (Méndez et al., 2014), visual
images (Santos & Ueda, 2013), and mechanical sampling of points (Edan et al.,
1991).
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Meanwhile, thinning is important as pruning to balance the reproductive growth
of fruit orchard systems. Maintaining an equal fruit size is much more important for
robotic harvesting during the harvesting period and for maintaining fruit quality,
appearance and preferability. The removal of extra flowers to facilitate the desired
size and yield is known as thinning, and manual labor and chemicals are used for this
purpose. The use of robotic platforms is possible with the existing developed neural
networks by detecting and counting flowers. This process is completed with high
accuracy in developed, well-trained orchard systems. 3D stereo cameras have been
used to determine the 3D locations of the flowers after detecting flowers based on
color and shape features, followed by robotic manipulation to the target location to
spray chemicals or remove the flowers using finger grippers.

A mechanical string thinner was developed to reduce the flower density in peach
orchards and tested for more than two seasons in different orchard systems with
promising results (Schupp & Baugher, 2011). The mechanical thinning efficiency
depends on the angle of the string thinner and the speed of rotation. Table 17.2
illustrates some of the research conducted in orchard flower identification and
thinning.

Based on the evidence available, mechanical string thinning is a promising
solution for reducing flower density. Meanwhile, it can be developed for area-
specific mechanical string thinning, as some of the studies have proven its success
(Fig. 17.8). The developed neural networks, sensors, and developed orchard struc-
tures will lead to manipulator-based flower thinning, which has been reported by
some scientists.

17.4 Pollination of Orchards Crops Using Autonomous
Robots

Mechanical pollination is another important application of orchard robotics that may
reduce labor costs and reduce the time required for intensive operation. The detec-
tion of flowers is the main objective of a bud simulation. With the help of neural
network detection models such as YOLO (You Only Look Once) and Mask-RCNN
(Region-Based Convolutional Neural Network), this task becomes achievable, but
real-time detection and movement of the manipulator or bud simulation mechanism
is challenging.
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Table 17.2 Orchard flower detection and thinning applications

Orchard application Application

Apple orchard (Dias et al.,
2018)

Novel CNN-flower detection, precision and recall more than 90%

Peach orchard (Horton et al.,
2017)

Unmanned aerial vehicles (UAV)—multispectral camera, aver-
age detection 84.3%/peach flowers emerged before leaves

Almond orchard
(Underwood et al., 2016)

LiDAR, color camera, based on flower and fruit distribution-yield
prediction

Pear orchard (Wouters et al.,
2015)

Multispectral camera-detect flower buds, use of near-infrared
wave bands, canonical correlation analysis—spectral discrimi-
nant model, detection around 87%

Peach orchard (Lyons et al.,
2015)

Thee brush end effector, selective thinning

Apple orchard (Hočevar
et al., 2014)

Still and industrial color camera, (hue, saturation, luminance)-
based flower cluster identification, hypothetical based spraying

Apple orchard (Gebbers
et al., 2013)

Stereo camera, real-time flower density based thinner adjustment

Peach orchard (Yang, 2012) Table-top thinning robotic arm

Peach orchard (Nielsen et al.,
2012)

Correlation-based stereo algorithm, nighttime-flash illumination
operations, outdoor mapping of flower locations

Peach orchard (Aasted et al.,
2011)

Mechanical thinning, perpendicular V-orchard system-LiDAR
sensor for autonomous navigation rotating thinner

Apple orchard
(Aggelopoulou et al., 2011)

Chemical thinning, predicting yield based on images at tree full
bloom

Peach orchard (Emery et al.,
2010)

Laser-based 3D images, dynamical scanning approach, (indoor),
robotic guide thinning

Fig 17.8 (a) Mechanical string thinning of flowers. (b) Robotic string thinning of identified parts of
the orchard trees by the robotic manipulators with a lower number of degrees of freedom
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However, after UAVs (unmanned aerial vehicles) were integrated in robotic
operations, spraying liquids and granules became easy operations. Compared with
the ground operation pollination vehicles, UAVs have more advantages in terms of
canopy coverage. A novel pollination method has been established by developing
robotic bees for pollination to simulate environmental conditions and assess real
orchard conditions (Abutalipov et al., 2016). For spraying, pollen must be mixed
with another liquid that helps to deposit it on the flowers, and it should be used in a
powdered form. Mechanical spraying of liquid and powders is a challenging task for
many reasons, while precision spraying is even more thought-provoking and
requires a precision nozzle system, pressure control system for liquid and powders
to have the desired application pressure at various places, boom length that is
automatically adjusted according to the canopy structure, and a consideration of
environmental factors (ex-wind speed) and vehicle running speed.

Meanwhile, several studies have been performed to develop a kiwifruit autono-
mous pollination system with a manipulator operation. For example, in harvesting
robots, the manipulator is attached to an autonomous platform, and a 70% flower
detection is achieved using a CNN-based image recognition model. The results
reveal that the pollination percentage is 80% (Barnett et al., 2017). Parallel work
was conducted by Washington State University to examine the effect and produc-
tivity of pollination by suspending pollen in sucrose and boron solutions. Automated
pollination was compared with natural pollination, and the results showed that this
novel method is three times more effective than pollination by bees (Whiting, 2016).
Electrostatic chemical spraying is an achievable task, and more studies of electro-
static pollination are needed to determine a reliable method.

17.5 Use of Fertilizer and Liquid Chemical Application
Autonomous Robots in Orchards

Fertilizers and pesticides become very critical when they are applied at larger
concentrations on the plants; spending extra money on excess chemicals is not
profitable or economical. Most of the time, the farmers do not follow the instructions
on the label when applying chemicals manually, and they do not even care about the
physical parameters such as the canopy density of the plants. Pesticides and herbi-
cides are harmful to human health.

When applying these chemicals to orchards, workers should wear protective
equipment for a long time, which is a tedious task. Moreover, an excessive dosage
may also be harmful to plants and the environment (Fig. 17.9). With the develop-
ment of new mechanical and robotics systems, this pesticide spraying work can now
be performed using robots. Nevertheless, the dose adjustment of chemicals based on
the canopy structure and environmental conditions is a critical factor to consider in
autonomous application. Site-specific chemical application is one of the processes
that evolves after the mass application method, and thus this method can reduce the



amount of chemicals used and the chemical cost at the same time. Furthermore, it
reduces the harmful effect on the environment.
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Fig. 17.9 Mass chemical application in an apple orchard using autonomous navigation sprayers
under normal orchard conditions

A vision system based on a neural network model is essential to detect the target
location for site-specific spraying, and a grape cluster detection algorithm (GDA)
was developed. This GDA identifies and distinguishes grape clusters from other
parts of the grape vine. Similarly, the Foliage Detection Algorithm (FDA) was
developed to detect grape leaves, and with these developments, the identification
of specific locations of grape vine became a possibility. Real-time detection was
performed using an RGB camera, and the spraying distances were calculated using
distance sensors. The decision was made based on machine vision, and the spray
nozzles were operated as actuators. The results ensure that the system saves 45% of
pesticide use (Berenstein & Edan, 2018).

Hyperspectral images have been used to analyze plant health. This method is used
to apply fertilizer by determining plant health, and this technology was used in the
RIPPA (Bogue, 2016) and Ladybird robots (Underwood et al., 2015). The same
technology may be applied to identify fruit health during the development of fruit
growth, which helps to improve yield by applying different treatments. Scientists
realize that when farmers spray chemicals, they should also consider the physical
nature of each tree because if all those trees are at the same maturity level, dimen-
sional and structural aspects may change. Based on these findings, researchers
concluded that humans cannot identify those indices on their own. A developed
machine vision system must also identify those indices when spraying chemicals,
and the method of spraying is also not controlled by humans. Therefore, automatic
adjustments must be incorporated into the nozzle to achieve precision spraying. The



area-specific chemical spraying robot with a minimum number of degrees of
freedom for robotic applications can be further developed to provide a solution for
site-specific chemical application (Fig. 17.10). Spot spraying through UAVs has
achieved significant progress in reducing chemical application to fruit orchards.
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Fig. 17.10 Area-specific chemical application with a robotic arm with smaller degrees freedom in
the V-trellis apple orchard system

The use of unmanned aerial vehicles (UAVs) has become popular in farm
management (Fig. 17.11); for large orchard management, UAVs are an essential
tool, and UAV multispectral cameras effectively calculate the normalized difference
vegetation index (NDVI). The models have been used as a reference to identify
uneven orchard parameters, such as irrigation conditions and soil conditions. Then,
precautions can be taken to apply fertilizer and irrigate water and pesticides. Earlier
satellite images were used to analyze orchard conditions, but UAVs now fly at low
altitudes without any interference from clouds because if clouds are present, the
satellite images become unproductive (Kim et al., 2019).

A study was conducted to understand the dimensional parameters of vineyards in
terms of chemical applications. Chemical penetration to the canopy depth and losses
may depend on the dimensional parameters of the tree (Maccarrone & Scienza,
1998). A similar study has been performed to analyze the nozzle dose adjustments
based on size parameters of the target tree parts, but under real conditions, it fails to
achieve desired levels because of the effect of environmental parameters (e.g., wind)
(Walklate et al., 2004).

Initially, chemical spraying robots were designed for the orchard to obtain an
understanding of the distances from autonomous vehicles to orchard trees. Ultra-
sonic sensors were used to measure the distances and feed to the main controller,
while hydraulic spraying was performed based on the signals sent from the main



n
controller (Giles et al., 1987, 1988). As an innovation in orchard chemical spraying
robots, an air-assisted chemical method (Balsari & Tamagnone, 1998) and a
automatic flow adjustment spraying method (Martn et al., 2001) were developed.
Although research and development in automated orchard chemical and liquid
fertilizer application have been achieved to a certain extent, other areas still require
attention.
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Fig. 17.11 (a) Unmanned aerial vehicles (UAV) mass chemical spraying of a normal orange
orchard and (b) a V-trellis apple orchard system

The most used non-imaging sensors for characterizing the structural properties of
the canopy are ultrasonic sensors and LIDAR sensors. Infrared sensors were also
used to obtain the canopy structure, and these sensors analyze the canopy volume
and depth (Jeon et al., 2011). Laser scanners are also being used to analyze canopy
structures, and the results have been obtained with a 6.8% coefficient of variance
(Liu & Zhu, 2016).

Several autonomous systems have been developed and introduced for spraying
chemicals in orchards. Some were able to achieve the purpose of minimizing the
wastage of high-cost agrochemicals (i.e., herbicides and pesticides), as these
machines are deployed to spray chemicals only to the targeted areas while avoiding
nontarget areas with the use of a well-developed vision-based system (Berenstein
et al., 2010). For instance, autonomous vehicles that were developed to apply
pesticides to control pests in grapevines save 92% of chemicals compared to a
manual broadcasting sprayer (Kang et al., 2012). Similarly, the results of another
study that aimed to apply chemicals to control grape canopy powdery mildew
disease using autonomous vehicles showed that the mechanism reduces chemical
wastage by 35% at an accuracy level of 85–100% (Oberti et al., 2016). Table 17.3
shows the robotic spraying of chemicals/fertilizers in orchard management.



Robot Vision system Navigation
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Table 17.3 Existing orchard robots for fertilizer and liquid chemical application

Orchard
application

Bly-c-agri (Sarri et al.,
2019)-Hexacopter

Grape
orchard—
chemical
weeding

Multispectral IMU and GPS

Camera, normalized difference
vegetation index (NDVI)

Robotic sprayer
(Berenstein & Edan,
2018)-4WD

Grape
orchard—
chemical
weeding

RGB camera and laser
(Foliage Detection Algorithm—
(FDA) and Grape clusters Detec-
tion Algorithms—(GDA)
algorithms)

–

SAVSAR (Adamides
et al., 2017)-4WD
autonomous vehicle

Grape
orchard—
chemical
weeding

RGB camera and LiDAR (Light
Detecting and Ranging) (FDA and
GDA algorithms)

–

AgriRobot (Adamides
et al., 2017)-4WD
autonomous vehicle

Grape
orchard—
chemical
weeding

RGB camera and LiDAR (FDA
and GDA algorithms)

–

Bly-c-agri (Turner
et al., 2011)-UAV-
Octocopter

Grape
orchard—
chemical
weeding

– GNSS (Global
Navigation Sat-
ellite System)

Cäsar (Anon., n.d.)-
4WD autonomous
vehicle

Vineyard—
multipurpose

Obstacle detection—Ultrasonic
sensor

(Real-Time
Kinematic)-
RTK GNSS
GPS

Ted (Anon., n.d.)-4WS
autonomous vehicle

Grape
orchard—
mechanical
weeding

RGB camera RTK/GPS
(Centimetric
precision)

With the progress in new research, machine vision and robotic technologies are
slowly becoming more reliable and human friendly. With all precautions, robotic
systems with deep neural networks using a combination of machine vision will
replace humans and generate promising results by considering the factors discussed
above.

17.6 Autonomous Robots for Harvesting Fruits
in Orchards

Manual fruit picking is a tedious task in regard to large-scale orchard harvesting.
Successive repetition of the same task causes musculoskeletal pain, disorders, and
back pain in labors. If the canopies are high, laborers must use ladders; then, the risk



of accidents is high because they must come down the ladder each time the bucket is
full to ensure that the fruits remain in the collector (Fathallah, 2010).
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Currently, semiautomated vehicles have been used for orchard fruit harvesting,
which facilitate a platform for human laborers to easily harvest the fruits by shaking
and collection. The other type is an autonomous human-driven vehicle with a robotic
platform to harvest the fruits. The third type is a fully autonomous vehicle and
robotic platform. For juice making, the ideal method is to shake the tree and collect
the fruits that are already commercialized (Zhang, 2017). The robotic harvesting of
fruits without damage is more suitable for the fresh market.

Robotic harvesting of orchard fruits is a challenging task, and the identification
and recognition of fruits in canopies are very important. Localization of individual
fruits helps manipulators easily pick fruits; fruits, especially apples, grow in clusters
under real environmental conditions (Baeten et al., 2008; Bulanon et al., 2002).

The primary task of robotic harvesting is to detect the target fruit under real
conditions. For this task, different features have been used, for example, color,
texture, shape, size, and edge detection. These parameters are then analyzed using
neural networks and classification methods (Silwal et al., 2014). However, the main
problems have occurred in the real-time detection of fruits and branches. Designing
grippers for a single fruit is a common practice based on the physical shape and the
properties of the fruit, but the problem is how to address fruit clusters.

The convex hull technique was introduced to identify individual citrus fruits from
fruit clusters and individual fruit center points as a method to overcome fruit
clustering (Changhui et al., 2017) . In addition to fruit clustering, the other main
challenge is the operation of the robotic arm under variable lighting conditions. As a
form of remediation, different techniques have been introduced for image segmen-
tation and classification, and Retinex theory is an innovative method to minimize
lightning problems (McCann, 2014). Using this approach, the image enhancement
method combines the Retinex principle and wavelet transform (Wang et al., 2017).
Table 17.4 illustrates some of the fruit detection methods and their results in terms of
specific applications and techniques.

The fruit canopy is a complex structure, and occlusion is another point at which
robotic manipulators fail, although the identification is accurate. Figure 17.12 shows
the apple harvesting robot performing the manipulation task under normal orchard
conditions with a robotic arm with a high degree of freedom. Reaching the detected
fruits inside the canopy is challenging, and the robotic arm either misses the target
fruit or fails to complete the manipulator operation because of the branches and fruit
clusters. As a solution, pruning is the practice of maintaining a simple standard
orchard structure, which helps manipulators easily reach the detected target fruit.

The reduction of several degrees of freedom and the complexity of the robotic
structure may lead to an easy operation, low cost, and easy maintenance. Fig-
ure 17.13 illustrates the harvesting robot with a smaller number of degree freedom
robots that operated in a well-maintained orchard with specially trained trees.

Meanwhile, trained orchard systems help with manual labor as well. Y-trellis tall
spindle orchard training systems have been developed to improve the productivity of
labor and yield. These orchard architectures help laborers perform all management



tasks in the field while providing high-quality fruits (Robinson et al., 2007;
Bergerman et al., 2012).
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Table 17.4 Some of the fruit detection and identification methods and their accuracy

Application Machine vision system Accuracy of identification

Apple detection (“Gala”
and “Blondee”) (Chu
et al., 2021)

Novel suppression Mask R-CNN F1—0.905 detection time
0.25 s per frame

Identification of cutting
points of grape clusters
(Luo et al., 2018)

Segmentation algorithm, geometric
model, profile analysis, computa-
tional method-for identify the cutting
points

Average recognition
accuracy—88.33%
Cutting points detection
(double overlapping
clusters)—81.66%

Detection of cheery
branch shaking locations
(Amatya et al., 2017)

Bumblebee® XB3 camera, (ToF)
based 3D camera—depth values,
branch pixel, and cherry pixel-based
detection of branches

Three shakings of target
branches—Y-trellis
system—efficiency of
92.3%

Vertical trellis—efficiency
86.4%

Detection of pears and
apples (Font et al., 2014)

Minoru 3D USB Webcam, laser
pointed red cross method

Average distance error—
4% to 5%

30% average diameter error

Red apple separation
from the image (Ji et al.,
2012)

Image segmentation based on region
growth and color feature (classifica-
tion algorithm—support vector
machine)

Recognition—89%

Average recognition time—
352 ms

Identification of green
apples (Linker et al.,
2012)

Color and smoothness-based model Identification—85%

Identify and count green
citrus (Kurtulmus et al.,
2011)

Eigenface algorithm (Sirovich &
Kirby, 1987) (color intensity, satura-
tion combine with circular Gabor
texture)
Blob analysis

Citrus fruit detection—
75.3%

Outdoor apple detection
in canopy images
(Stajnko et al., 2009)

Circular Hough Transform (CHT) Apple detection—89%

Accurate and precisely determining harvesting indices is important to harvest
fruits with less damage, which in turn assures the economic stability of the orchard,
as high-quality fruits sell for higher prices in the market. However, most of the
existing fruit harvesters (i.e., target fruit harvesters) fail to achieve this purpose. As a
remediation method, scientists have developed yield estimation robots to identify the
yield before harvesting (Table 17.5).

An autonomous robotic harvester is usually comprised of a vision system for
detecting and locating the fruit; a manipulator that moves the gripper to the identified
target; and an end effector, usually a gripper, which is designed for detaching the
fruit. To date, several researchers have attempted to develop autonomous harvesters



with different grippers and manipulators using vision systems. These applications
have their limits. Despite the considerable efforts made by both the government and
private sector in developing commercially successful harvesters for orchard crops,
research and development in this area are gradually but steadily progressing.
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Fig. 17.12 Orange harvesting using multiple robotic arms with a higher number of DoFs

Once the manipulator successfully reaches the target fruit based on 3D coordi-
nates from the sensors, the gripper or the end effector should detach the fruit without
causing any damage. The fruits are not always equal in size, and the skin may be
fragile; therefore, the key features of the gripper should be minimizing the damage
and detaching the fruit from the stem. Silicon rubber bionic concept-based soft
robotics have become popular because of their adaptive ability and infinite freedom.
Soft gripping of fruit is a key task because the final goal of robotic harvesting is to
obtain undamaged fruits, providing support for newly emerging 3D printing com-
bined with super-elastic silica gel to create new soft grippers (Pi et al., 2021).

Another novel apple gripping technique was introduced by the Abundant Robot-
ics Company, which used a vacuum suction gripper. The suction gripper sucks the
apples with high pressure; however, due to the high suction pressure, it also sucks
the leaves that touch the fruits (Simonite, 2017).

It is essential to identify the target fruits for harvest must be identified before the
use of robotic arms for harvesting. Table 17.6 shows some of the fruit identification
applications and their success rates. If the detection point is readable, x, y, and
z coordinates are shown, then the robotic arm with the gripper is moved to that target
point. A citrus harvesting robot has been developed after several attempts (Rabatel



et al., 1995). Table 17.7 illustrates some orchard fruit harvesting robots and their
applications.
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Fig. 17.13 Possible methods for harvesting oranges using multiple robotic arms with fewer DoFs

17.7 Discussion

Different climatic conditions and management options in different regions are some
of the critical factors that hinder the development of common harvesters. Moreover,
robotic applications for biological materials are far more complicated, as biological
materials do not act as we expected. For example, the analysis of fruit size by the
robotic platform developer may deviate under real conditions due to the presence of
obstacles such as branches, overlapping fruits, and fruit orientation. Therefore,
recent developments in machine vision and artificial intelligence programs have
focused more on identifying and distinguishing obstacles in robotic harvesting. The
combination of machine vision and artificial intelligence is an innovative approach
to address the labor shortage while training robots as skilled laborers.

If the manipulator operation can be simplified by reducing the number of degrees
of freedom, then the operation time for one cycle will be reduced, the maintenance



Robot Vision system Navigation

cost is decreased, and the safe operation for both people working in the orchard and
for robots will be safer. Therefore, the overall efficiency, effectiveness, and robust-
ness will be increased and economically feasible for commercial manufacturing, as
indicated in the 3D view shown in Fig. 17.14. The combination of 3D vision and
newly introduced horticultural architectural training methods, such as trellis systems,
allows smooth guidance of the machine vision and robotic manipulators to the target
fruits.
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Table 17.5 Existing yield estimation robots

Orchard
application

Kubota farm
vehicle (Lowe
et al., 2021)

Grape-
yield
estimation

LiDAR GPS and IMU

Continuous-Time Simultaneous
Localization and Mapping (SLAM)

Agrob V16
(Reis et al.,
2018)

Grape-
yield
estimation

RGB-D and RGB cameras RTK/GPS/(Inertial
Navigation System)-
INS and LiDAR

Local Binary Pattern-histogram
(hLBP) and Support Vector Machine
(SVM)-algorithms

Shrimp (Bargoti
& Underwood,
2017)

Apple-
yield
estimation

RGB camera (multilayer perceptron)-
MLP and CNN algorithms

–

Agrob V14
(Santos et al.,
2016)

Grape-
yield
estimation

RGB camera LiDAR

Support Vector Machine (SVM)-
algorithm

VINBOT
(Lopes et al.,
2016)

Grape-
yield
estimation

RGB and (near-infrared) NIR
cameras-NDVI algorithm

RTK, DGPS, and
LiDAR

AgriBOT
(Abrahão et al.,
2011)

Orange-
yield
estimation

RGB camera GPS/INS

VineRobot
(Anon., n.d.)

Grape-
yield
estimation

RGB camera –

Ultrasonic sensors

FA-Sense LEAF, FA-Sense ANTH

Specifying robotic arms for a specific task is the next task, as discussed in the
preceding sections. Of course, the robotic arms should be specific to pruning,
thinning, spraying, and harvesting, but here, the focus is the possibility of specifying
robotic manipulators in each individual section where the canopy is fully maintained
under standard orchard architectural conditions.

17.8 Conclusions

Orchard management practices extensively depend on seasonal labor, which is
costly and scarce. Improvement in task-specific robots, which are robust, econom-
ically, and technically achievable for at least medium-scale orchard farmers, is



Gripper/end effector

essential for replacing manual labor. Adapting robotic platforms that may replace the
use of human laborers will avoid this problem while achieving greater efficiency and
productivity in orchard operations. Recently, robotic applications for orchard man-
agement have increased rapidly along with the development of new, robust technol-
ogies. Both the government and organizations in the private sector are trying to
develop low-cost robotic applications that can be adopted at the field level and are
compatible with farmers. However, difficulties encountered in simplifying the
robotic operations to the level that is easily managed by the farmers have hindered
the commercial success of automated orchard management. As discussed in the
preceding sections, pruning, thinning, spraying, and harvesting are major manage-
ment practices involved in orchard management. The manipulator and the end
effector are the critical operational units that should be specific for orchard opera-
tions. The existing technologies may lead the robotic manipulators to the unstruc-
tured thick canopy to reach the target locations, but the robotic system may become
complex with an additional degree of freedom and sensors. Meanwhile, those
systems require huge computational capacities for processing data in real time,
which would not be a method to commercialize them for farmers or medium-scale
operations. The identification of target locations has now become easy with the
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Table 17.6 Examples of the end effectors developed or orchard fruit grasping

Orchard
application

Gripper to analyze the forces (bending, cutting resistant) (Bu et al., 2020) Apple
Harvesting

Soft finger-based gripper (Kang et al., 2020) Apple
Harvesting

Bite mode end effector, pneumatic operation (Wang et al., 2019) Orange
Harvesting

Gripper with four fingers (Onishi et al., 2019) Apple
Harvesting

Pneumatic operated, 3D-printed soft end effector (Hohimer et al., 2019) Apple
Harvesting

Vacuum Suction gripper (Simonite, 2017) Apple
Harvesting

Bionic gripper, operated using stepper motor (Longtao et al., 2017) Kiwifruit
Harvesting

Opening span type, tendon-driven fingers, three fingers, soft polyurethane
pads, and springs in the joints for return action (Silwal et al., 2017)

Apple
Harvesting

Three fingers (Davidson et al., 2016) Apple
Harvesting

Spooned shaped gripper, two fingers, shear cutting, three sensors—collision,
pressure, position sensors (De-An et al., 2011)

Apple
Harvesting

Pendule holder with fingers/Fuji apples (Bulanon & Kataoka, 2010) Apple
Harvesting

Flexible gripper, silicone funnel shaped (10.5 cm diameter), vacuum suction
(Baeten et al., 2008)

Apple
Harvesting



Robot Vision system Manipulator

17 Autonomous Robots in Orchard Management: Present Status and Future Trends 359

Table 17.7 Existing orchard fruit harvesting robots

Orchard
application

Apple harvesting robot
(Kang et al., 2020)

Apple
harvesting

RGB-D camera, Dasnet,
3D-SHT, and Octree

6-DoF

Operation
time for one
cycle—7s

F1: 0.81

Kiwi fruit harvesting—
multiple robotic arms
(Williams et al., 2019;
Barnett et al., 2020)

Kiwi fruit
harvesting

Baslar ac1920-40uc USB 3.0
stereo cameras, fully
convolutional network
(FCN), semantic segmenta-
tion, blob detector, devel-
oped novel dynamic
scheduling algorithm

Four, 3-axis articu-
lated robotic arms

Harvesting
success
51.0%

Average
cycle time
of 5.5s

Apple harvesting robot
(Silwal et al., 2017)

Apple
harvesting—
the success
rate of 84%

Circular Hough Transforma-
tion (CHT), Blob Analysis
(BA)

6-DoF with pris-
matic base

Average
localization
time 1.5 s

Apple prioritization—trav-
eling salesman problem
(TSP) with the Nearest
Neighbor algorithm. Global
camera system. Circular
Hough Transformation
(CHT). CCD (Charged
Couple Device) and color
camera (Prosilica
GC1290C, AVT
Technologies)

Average
picking time
6 s

Citrus harvesting robot
(Mehta & Burks, 2014)

Citrus
harvesting

Two color CCD cameras
(KT & C, KPCS20-CP1),
Lyapunov-based stability
analysis-manipulator control

7-DoF

Apple harvesting robot
(De-An et al., 2011)

Apple
harvesting

Image-based Vision Servo
(IBVS), CCD camera, vector
median filter, Hue Intensity
and Saturation (HIS) model,
feature extraction—Rotation,
Scale, and Translation (RST)

5-DoF structure

Success
rate 77%

Average
cycle time
15 s

Autonomous Fruit Picking
Machine (AFPM) (Baeten
et al., 2008)

Apple
harvesting

Camera mounted center of
the gripper, image
processing—Halcon
software

Industrial robot
(Panasonic
VR006L), mounted
on four-wheel
tractor

Success
rate 80%



development of 3D sensor systems and the integration neural networks and classi-
fication methods. In the case of harvesting, few robotic arms are attached to a single
autonomous platform, and each robotic arm covers different areas or covers specific
tasks with a smaller number of degrees of freedom, which has immense potential to
be adopted with the prime mover as attachments with lower costs and less complex-
ity. The total system should be available as an attachment to a four-wheel tractor or
an autonomous platform with task-specific interchangeable manipulators. Therefore,
simple robots with a smaller number of degrees of freedom seem to be the most
promising solution.
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Fig. 17.14 3D views of a robotic arm with (a) multiple degrees of freedom and (b) a lower number
of degrees of freedom
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Chapter 18
Strategic Short Note: Comparing Soil
Moisture Retrieval from Water Cloud
Model and Neural Network Using
PALSAR-2 for Oil Palm Estates

Veena Shashikant, Abdul Rashid Mohamed Shariff, Aimrun Wayayok,
Md Rowshon Kamal, Yang Ping Lee, and Wataru Takeuchi

Abstract It is essential to have the soil moisture retention at the optimal level in
order to maintain high yields in oil palm estates. Furthermore, conventional methods
for determining soil moisture are difficult, time-consuming, and challenging in the
rural estate areas. In this study, synthetic aperture radar (SAR), L-band images, and
in situ observations were conducted at an oil palm plantation to employ water cloud
model (WCM) inversion for retrieving soil moisture from HH (Horizontal-
Horizontal) and HV (Horizontal-Vertical) polarized data. WCM was evaluated by
comparing leaf area index (LAI), leaf water area index (LWAI), and normalized
plant water content (NPWC), to understand the effects of vegetation on backscat-
tering coefficients. Adding on, neural network (NN) technique was employed to
understand capabilities of soil moisture retrievals using mentioned data. Effects of
vegetation in the WCM and NNmodels were then investigated using the k-fold cross
validation method to understand the difference in the in situ observations and
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modelled results. The results demonstrated that HV polarization efficiently approx-
imated the backscatter coefficient compared to HH polarization, while the best fit
was achieved by using the LAI as a vegetation descriptor in the WCMmodel with an
accuracy of at least R2 = 0.9460 with RMSE of 0.036 m3/m3 whereas the NN model
was able to improvise soil moisture content with R2 = 0.9638 and RMSE of
0.012 m3/m3.
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Keywords Backscatter coefficient · Soil moisture retrieval · LAI · NN · HH and HV
polarization

18.1 Introduction

Oil palm trees requires year-round high temperatures and rainfall where prolonged
dry periods of 2–3 months can affect yield output (Oettli et al., 2018). Gravimetry to
evaluate soil moisture is a highly reliable method but only reflect a small region that
changes around the sampling sites. Active remote sensing using SAR sensors, on the
other hand, are employed in this study, to measure soil moisture over large areas and
due to its ability to penetrate to a depth of approximately 5 cm below the surface as
seen in Fig. 18.1. WCM is preferred for its simple technique where it defines the
overall backscatter coefficient obtained by the PALSAR-2 over vegetated surfaces as
the incoherent sum of the effects of vegetation and soil; thus, enabling retrieval of
soil moisture in the oil palm estates (Shashikant et al., 2021). Adding on, single-layer
NN approach was built to understand the capabilities of artificial intelligence in
retrieving soil moisture in the oil palm estates using the HH and HV polarization
with the incidence of PALSAR-2 as seen in the Fig. 18.2.

This study’s objective was to retrieve soil moisture from oil palm fields and
evaluating the suitable vegetation indicator to be considered in WCM implementing

Fig. 18.1 The concept of retrieving soil moisture from oil palm estates using WCM approach



the k-fold cross validation. Secondly, the NN was evaluated with similar cross
validation k-fold technique to enable a comparison of the soil moisture retrievals.
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Fig. 18.2 The concept of retrieving soil moisture from oil palm estates using Neural Network
(NN) approach

18.2 Retrieval of Soil Moisture Content in Oil Palm Fields

PALSAR-2 signals can strongly penetrate the cloud layer as well as the vegetation
layer therefore important as oil palm crop have a large canopy to bypass to under-
stand the amount of water present in the soil. As a result, estimating the water content
of the soil at the size of an entire field using radar remote sensing is of utmost
significance of this study. Numerous studies have shown that the vegetation type, the
geometric structure of its cover (including height, branch and leaf shapes, and
density distribution), and the water content of the plant canopy all influence radar
backscattering and radar wave transmittance in the plant canopy (Liu et al., 2019). In
this study, multitemporal SAR data inversion was utilized to assist eliminate the
effects of the plant layer on the radar backscatter to decrease mistakes in the soil
moisture content data. Overall, HV polarization, utilizing LWAI as vegetation
descriptor yielded an R2 value of 0.951 with an RMSE of 0.046 m3/m3, while LAI
yielded a smaller error with an RMSE of 0.036 m3/m3 and an R2 value of 0.946 in the
testing dataset using k-fold technique as seen in Table 18.1. In contrast, the highest
RMSE was obtained in the scenarios utilizing LAI with constant 1, where the RMSE
was 0.059 m3/m3 in the testing dataset. For the NN model results as shown in
Fig. 18.3 the soil moisture retrievals were more accurate with RMSE= 0.012 m3/m3.
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Table 18.1 The retrievals of soil moisture using SAR vs. field soil moisture in the testing data set
using proposed V1 and V2 as the vegetation indicator in WCM

Note: *According to the Global Monitoring for Environment and Security (GMES) standards and
requirement of RMSE less then 0.05 m3/m3 is accepted for soil moisture retrievals using remote
sensing approach.

Fig. 18.3 The retrievals of soil moisture using NN vs. field soil moisture in the testing data set
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18.3 Conclusion

In summary, the cross-polarized HV backscatter coefficient is revealed to be more
vulnerable than the co-polarized backscatter HH in utilizing theWCMmodel. On the
other hand, NN has been able to predict soil moisture content directly using
PALSAR-2 images in oil palm estates. This research gives a useful and novel
contribution on soil moisture for oil palm cultivation using PALSAR-2 sensor
data. This research will help oil palm estates to prepare for climate-related droughts
and optimizing soil moisture by showcasing the capabilities of the WCM and
NN. This study demonstrated the Global Monitoring for Environment and Security
(GMES) criterion was met in the LAI, LWAI, and NPWC in the HV polarization. In
addition, NN technique has able to fulfill the GMES criteria for soil moisture
retrievals.
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Chapter 19
Development of a Recognition System
for Spraying Areas from Unmanned Aerial
Vehicles Using a Machine Learning
Approach

Pengbo Gao, Yan Zhang, Linhuan Zhang, Ryozo Noguchi,
and Tofael Ahamed

Abstract Unmanned aerial vehicle (UAV)-based spraying systems have recently
become important for the precision application of pesticides using machine learning
approaches. Therefore, the objective of this research was to develop a machine
learning system that has advantages of high computational speed and good accuracy
for recognizing spray and non-spray areas for UAV-based sprayers. A machine
learning system was developed using the mutual subspace method for images
collected from a UAV. Two target lands: agricultural croplands and orchard areas
were considered in building two classifiers for distinguishing spray and non-spray
areas. The field experiments were conducted in target areas to train and test the
system using a commercial UAV (DJI Phantom 3 Pro) with an onboard 4K camera.
The images were collected from low (5 m) and high (15 m) altitudes for croplands
and orchards, respectively. The recognition system was divided into offline and
online systems. In the offline recognition system, 74.4% accuracy was obtained for
the classifiers in recognizing spray and non-spray areas for croplands. In the case of
orchards, the average classifier recognition accuracy of spray and non-spray areas
was 77.0%. On the other hand, the online recognition system performance had an
average accuracy of 65.1% for croplands and 75.1% for orchards. The computational
time for the online recognition system was minimal, with an average of 0.0031 s for
classifier recognition. The developed machine learning system had an average
recognition accuracy of 70%, which can be implemented in an autonomous UAV
spray system for recognizing spray and non-spray areas for real-time applications.
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19.1 Introduction

With the development of unmanned aerial vehicle (UAV) technologies, the use of
UAVs has rapidly expanded to different applications such as aerial photography to
monitor vegetation, survey mapping, and scouting with wireless networking (Zhang
et al., 2018a). UAVs have potential for use in agricultural applications and are ideal
for precision agriculture compared to aerial mapping and satellite remote sensing.
The use of UAVs is not only more efficient but also more cost-effective than areal or
high-resolution commercial satellite datasets (Zhang et al., 2018a; Peteinatos et al.,
2014; Manfreda et al., 2018; Bandini et al., 2017; Zarco-Tejada et al., 2012). They
can help monitor crops in real time and provide high-resolution images of the field
and canopy for crop growth and production. High-resolution and machine vision
images are used for the identification of weeds and non-weed areas using ground-
based conventional sprayers (Hung et al., 2014; Rebetez et al., 2016). In recent
advancements, sprayers have been attached to UAV systems to deliver spray in the
field. However, as the payload of a UAV with a sprayer makes it heavier, it becomes
difficult to fly in the field while carrying large quantities of liquid chemicals. The
process of spraying agricultural crops with liquids needs to be very efficient to avoid
spraying non-crop areas. Similarly, the orchard spray system needs to fly at a high
altitude to spray chemicals on the top of the canopy. High payloads of chemicals in
the tank also cause problems. Large tank sizes require more power and generate
more safety concerns while flying. It is very important to recognize the spray area
above orchard and non-orchard areas to ensure precise application of spray
chemicals. For autonomy of UAV-based spraying systems, the ability to recognize
crop and orchard areas is significantly important. Most autonomous and artificial
intelligence systems need to be trained on data prior to application. Training pro-
vides confidence in operations. Machine learning systems have the potential for
training and testing on datasets to add artificial intelligence for different agricultural
operations. In the spraying system, a machine learning system is required to discern
spraying spots and non-spraying spots in operational environments of UAVs prior to
implementing an autonomous spraying system. Ground-based vehicles can function
as image processing systems with advantages for housing onboard sprayers
(Peteinatos et al., 2014; Lee et al., 2012). However, ground vehicles have local
mapping systems without predetermined field coverage. UAVs have the advantage
of identifying the field coverage in advance with good trained datasets and machine
learning systems.

Most studies using UAV have employed limited dataset collection and machine
learning systems. Some research has reported that aerial applications result in only
50% of targets being sprayed from altitudes less than 1 m (Pimentel & Burgess,
2012). To the best of our knowledge, UAV-based sprayers were introduced to the
market and largely implemented in mountains and crop areas to enable spraying with



precision. Most commercial UAVs with sprayers are operated under regulations in
many countries. As the technology is tending to develop toward autonomous
systems, it is likely that UAV spray systems will have a high potential for autono-
mous spraying applications. To increase the flight time, UAV manufacturers have
improved the endurance of systems by increasing the battery capacity and reducing
the total weight of UAVs. In this regard, the application efficiency of chemicals to
the spray area from a high altitude must be improved. The height of operation greatly
influences how orchard areas can be covered in the minimum amount of time. A
similar consideration in selecting the height of operation pertains to croplands.
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Unmanned aerial systems (UASs) have mounted sensors that offer an extraordi-
nary opportunity to bridge the existing gap between field observations and tradi-
tional air and space-borne remote sensing by providing high spatial detail over
relatively large areas in a cost-effective way. UAV systems also have enhanced
temporal retrieval for natural and agricultural ecosystem monitoring in order to
identify future directions, applications, developments, and challenges (Manfreda
et al., 2018). Small UAVs (approximately 1.5 kg) are capable of measuring the
range to a water surface using a global navigation satellite system (GNSS) receiver
with radar, sonar, and an in-house developed camera-based laser distance sensor
(CLDS) for determining the water level (orthometric height) (Bandini et al., 2017).
The remote detection of water stress in a citrus orchard was also investigated using
leaf-level measurements of chlorophyll fluorescence and photochemical reflectance
index (PRI) data, seasonal time-series of crown temperature and PRI, and high-
resolution airborne imagery (Zarco-Tejada et al., 2012). These researches have the
significant impacts on the application of UAV in agriculture and hydrology. Also
opened further avenues to introduce machine learning systems from remote sensing
applications for UAV-based sprayers.

How to generate quantitative remote sensing products using rotating-wing and
fixed-wing UAVs equipped with commercial off-the-shell (COTS) thermal and
narrowband multispectral imaging sensors was also evaluated for vegetation mon-
itoring. Radiometric calibration, atmospheric correction, and photogrammetric
methods were employed, which are required to obtain accurate remote sensing
products that are useful for vegetation monitoring (Berni et al., 2009a, b). The
growing research community comprises tech-enthusiastic hydrologists that aim to
design and develop their own sensing systems and adopt a multi-disciplinary
perspective to tackling complex observations, often using low-cost equipment
intended for other applications to build innovative sensors for measurement (Tauro
et al., 2018). A previously reported UAV system was integrated with optical sensing
to allow quantitative characterization of surface flow phenomena to yield accurate
surface flow maps of sub-meter water bodies (Tauro et al., 2016). Vegetation
monitoring and surface flow phenomena help in further confirmation of UAV
application for recognition of classifiers. These researches significantly increase
the scope of using UAV applications in the research community.

UAVs equipped with inexpensive thermal and narrowband multispectral imaging
sensors have been used for agricultural applications and yielded comparable estima-
tions (Berni et al., 2009a, b). Relying on UAV-based remote sensing and imaging



techniques, high-throughput field phenotyping (HTFP) was conducted using thermal
imaging for field phenomics of poplar and other tree species for accelerating forest
tree genetic improvement against abiotic stress (Ludovisi et al., 2017). HFTP and
genetic improvement against abiotic stress also increase further application of
machine learning systems. Several machine learning systems have been introduced
in ground-based sprayers using deep learning, neural networks and Bayesian clas-
sifiers (Carrio et al., 2017; Majidi & Bab-Hadiashar, 2005; Tellaeche et al., 2008).
Most machine learning systems have high complexity data training and large time
requirements for real-time application. In our previous research, we found that the
kernel mutual subspace method (KMSM) has a high potential to recognize features
and actions of tracking with accuracy greater than 80% in real time (Zhang et al.,
2018b). Furthermore, the KMSM along with the Hankel matrix were used for action
recognition of machinery operator with a processing time of 0.07 (Zhang et al.,
2018b). The subspace method has been used for the recognition of human faces and
objects (Sakano et al., 2005; Fukui & Yamaguchi, 2005; Fukui & Yamaguchi,
2007). Therefore, the subspace method has a highly promising capability in machine
learning systems for recognizing features of agricultural environments. In on-board
spraying applications using UAVs, the recognition of features with minimum time
and high accuracy can be performed using mutual subspace method (MSM).
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Therefore, the objective of this research is to develop a machine learning system
for recognizing the features of spraying and non-spraying areas for applying
UAV-based sprayers in agricultural croplands and orchards. It is expected that
MSM machine learning systems can be employed, offering advantages of low
computational complexity and good accuracy in feature recognition systems for
real-time applications.

19.2 Materials and Methods

19.2.1 Mutual Subspace Method (MSM)

The MSM was introduced to the field of pattern recognition, a well-known method
for object recognition based on image set (Maeda & Watanabe, 1985). MSM is an
extension of the Subspace Method (SM) that classifies a set of input pattern vectors
into several classes based on multiple canonical angles between the input subspace
and the class subspaces (Fig. 19.1). The input subspace is generated from a set of
input patterns as a class (Maeda & Watanabe, 1985; Watanabe & Pakvasa, 1973).
The SM has high performance in pattern recognition and was developed indepen-
dently as CLAFIC (class-SELFIC method: the original version of the subspace
model) (Iijima et al., 1974) and the multiple similarity method (Yamaguchi et al.,
1998). It classifies an input pattern vector into several classes based on the minimum
distance or angle between the input pattern vector and each class subspace, where a
class subspace corresponds to the distribution of pattern vectors of the class in high-
dimensional vector space (Fukui & Yamaguchi, 2014).
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Fig. 19.1 Subspace method
(SM)

θ
Input Vector P Subspace

We considered that the input vector P and m class subspaces belong to a k-
dimensional vector space; the similarity is defined by the length or the minimum
angle between the input vector P and the ith class subspace, where the length of P is
often normalized to 1.0. The angle-based similarity can be derived as follows:

cos 2θ=
Xd

i= 1

P � φið Þ2
Pk k2 ð19:1Þ

where d is the dimension of the class subspace, and φi is the ith k-dimensional
orthogonal normal vector (PCA). First, the conventional PCA operates by diagonal-
izing the covariance matrix C from k feature vectors xj

! (a = 1, 2, . . ., k) in an
n-dimensional feature space, R n,

C=
1
k

Xk

j= 1
xj
!� xj!T

� �
ð19:2Þ

It gives an eigen decomposition of the covariance matrix by PCA to obtain the
principal components νi

! i= 1, 2, . . . , k of the distribution:

λ ν
→ =C ν

→ ð19:3Þ

However, we assume that all data here were calculated from the data centroid.
This principal component describes the direction of the largest data variation under a
linear approximation. The above characteristic equation can be transformed as
follows:
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→ ð19:4Þ
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Fig. 19.2 Comparison between two sets of images using MSM
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Because ν
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is in {x1. . ., xk }, we obtain
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→ ð19:6Þ

where xa⃗ is a feature vector.
The MSM has been used to compare small variations in training data and

recognition target data and results in a powerful recognition technique when the
data distribution can be linearly approximated, which occurs when multiple data can
be used as recognition target image inputs. In the subspace method, a subspace that
has d-dimensional vectors is selected according to a criterion such as the cumulative
contribution rate from the eigenvectors, which are obtained using PCA on the
entered images (Fukui & Yamaguchi, 2007; Yamaguchi et al., 1998; Schölkopf
et al., 1998). Then, the similarity between subspaces is defined according to the
angle θ between eigenvectors P = {μi⃗} (registered as a dictionary) and the
eigenvectors Q = {νj⃗} (obtained from the input data) (Fig. 19.2).

According to eq. (1), the angle θ between subspaces is given as the maximum
eigenvalue (Fukui & Yamaguchi, 2005; Fukui & Yamaguchi, 2007).

cos θ= max
μi
!2P

max
νi
!2Q

μ
→ T

ν
→ ð19:7Þ

where μi
!T

μi
!= νj

!T
νj
!= 1, μi

!T
μj
!= νi

!T
νj
!= 0, i ≠ j, 0 < i, j ≤ d, and d is the

dimensionality of the subspace used for recognition.
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19.2.2 Research Design for Classifiers and MSM

The classifiers are required to be established before the MSM application. The MSM
research approach involves two steps: offline recognition and online recognition
systems. The offline recognition system was used to validate the model and the
accuracy of the recognition of classifiers (Fig. 19.3). The online recognition system
was proposed to understand the computational times to enable in the real-time
system. In offline recognition, videos must be captured using the UAV and
converted through a JPG converter. For offline recognition, selected images were
taken for training and testing the classifiers from different datasets of crops and
orchards. For online recognition, a new video stream was captured. From the stream
video, 1 frame was chosen out of 20 frames from a new video stream. Considering
the restricted computational time required by a real-time system, Red-Green-Blue
(RGB) images were converted to the gray scale. While testing using the online
recognition system, a sliding window was used to obtain four consecutive frames,
and principal components analysis (PCA) was applied using the subspace method. In
the subspace method, multiples images were required, and we noted that four frames
were optimal for use in the subspace method.

In the following sections, details of field experiments for training and testing
different datasets and the offline and online recognition systems are described.

Training
Datasets

Training
Datasets

MSM

Spray and
Nonspray

Offline Evaluation
of Training Data

Online Evaluation
Results

Recognition of
Classifier: Spray

and Nonspray area

Decision
of Spray

Offline Recognition System

Online Recognition System

Spray and
Nonspray

MSM

Testing Datasets

Testing Datasets

Sliding
Window

Machine Learning Method

Classifiers

Noise
Reduction

Noise
Reduction

Video
Stream

Video to Image

Video to Image

Video
Stream

New Video
Stream

Classifiers

Recognition of
Classifier: Spray

and Nonspray area

Dictionary

Fig. 19.3 Research framework establishing the classifiers and the MSM
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19.2.3 Field Experiment for Training and Testing
with Datasets

In order to implement the MSM for feature recognition, different crops, orchards,
and fields are required for training the subspace patterns and verifying the recogni-
tion accuracy. While selecting the datasets for training, image acquisition at close
range is preferable for agricultural croplands. On the other hand, for orchards, a high
altitude allows the canopy to be covered in a minimum time. Generally, close-range
spraying can effectively reduce the drift and waste of chemicals.

However, UAV sprayer payload and battery operational time are major concerns
in enabling autonomous spraying. In this study, two working patterns are defined
depending on the flying height. The corresponding work areas are described as
follows: for cropland (i.e., carrot, cabbage, and onions), plant height was less than
5 m, and image acquisition was performed using a UAV from a height of 5 m. In the
case of orchards or plantations (i.e., chestnut, persimmons, and tall trees), we
considered the height of orchards to be less than 15 m, and thus, the acquisition of
images was conducted from a height of 15 m from the ground (Table 19.1). Two
classifier datasets were collected for cropland spray area recognition: one dataset for
spray areas (carrot, cabbage, onions) and one dataset for non-spray areas (inner farm
roads, ridges, bare soil). Similarly, two classifier datasets (spray and non-spray areas)
were also collected for orchards: one dataset for orchard areas (chestnuts and
persimmon) and another dataset for trees that included structured areas (farm houses,
green house structure, farm buildings). The classifier datasets were captured using a
commercial UAV (DJI Phantom 3 Pro) with an onboard 4K camera with 1/2.3″
CMOS and FOV 94° 20 mm f/2.8 lens.

Table 19.1 Training and testing with datasets classified into two categories for offline and online
recognition systems

Data sets Training image numbers Testing image numbers

Non-
Offline
(spray + non-
spray)

Online
(spray + non-
spray)

Offline
(spray + non-
spray)

Carrot 120 120 First half
(60 + 60)

All
(120 + 120)

Last half
(60 + 60)

New video
(89)

Cabbage 198 198 First half
(99 + 99)

All
(198 + 198)

Last half
(99 + 99)

New video
(298)

Onion 107 107 First half
(53 + 53)

All
(107 + 107)

Last half
(54 + 54)

New video
(204)

Chestnut 97 97 First half
(48 + 48)

All (97 + 97) Last half
(49 + 49)

New video
(180)

Persimmon 94 94 First half
(47 + 47)

All (94 + 94) Last half
(47 + 47)

New video
(210)

Trees and
structure

118 118 First half
(59 + 59)

All
(118 + 118)

Last half
(59 + 59)

New video
(141)
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The 4K videos were collected and converted to images using a JPG converter at
the preprocessing stage. The images were collected in the morning from 10 am to
12 pm to ensure uniform lighting while the UAV flew over the croplands and
orchards. Days with clear skies were generally chosen for collecting the videos by
the flying UAV. The classifiers were segmented from the videos according to flight
heights for croplands and orchards (Table 19.1). Three field experiments were
conducted with the UAV in three randomly selected zones; a rural farm with a
combination of structures and orchards (L1), a farm with different croplands with
orchards (L2) and a research farm with croplands and orchards (L3) (Fig. 19.4).
MATLAB 2015a® (MathWorks, California) was used to develop the user interface
and training and testing datasets for offline and online recognition systems.

19.2.4 Offline Recognition System

The offline recognition system consisted of learning and recognition phases. The
learning phase was started by collecting training image datasets of each class m2
{1,. . .,M} and inputting them into the system. For offline experiments of each land
type, we used one of the videos with the first half for training and the last half for
testing. The recognition phase was confirmed to begin once the learning phases of
the classifiers using scene sequences were completed (Fig. 19.5). Then, PCA was
applied to establish the linear subspace as a reference subspace for each class. The
training phase was completed in three stages. First, all the collected testing images of
I_j2{1,. . .,J} were input into the system, and each I had frames of {f_1,. . .,f_n}.
Second, the PCAwas applied to establish the linear subspace for testing the subspace
for each class I_j. Finally, the canonical angles between the current testing subspace
and each reference subspace were calculated. The current image was assigned to the
class with whom it shared the smallest canonical angles, which indicated that it had
the highest similarity when referenced to the training datasets. In an offline exper-
iment setting, the UAV was flown 5 m above the cropland.

The first half of images for training (99 images, spray and 99 images, non-spray)
and the last half of images for testing ( 99 images, spray and 99 images, non-spray)
were selected for cabbage fields (Table 19.1). The first half of images for training
(53 images, spray and 53 images, non-spray) and the last half of images for testing
(54 images, spray and 54 images, non-spray) were selected for onion fields. Simi-
larly, the first half of images for training (60 images, spray and 60 images,
non-spray) and the last half of images (60 images, spray and 60 images,
non-spray) were selected for testing carrot fields. A height of 15 m was chosen for
flying over the orchard areas to collect the first half of images for training (48 images,
spray and 48 images, non-spray) and the last half of images for testing (49 images,
spray and 49 images, non-spray) for chestnut trees.

Again, the first half of images for training (47 images, spray and 47 images,
non-spray) and the last half of images for testing (47 images, spray and 47 images,
non-spray) were used in the case of persimmon fields. Finally, the first half of images
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Fig. 19.4 Training and testing datasets for building the classifiers for recognizing spray areas and
non-spray areas. (a) L1: Cropland: Carrot, Spray Area. (b) L1: Cropland: Non-spray Area. (c) L1:
Orchard: Persimmon, Spray Area. (d) L1: Orchard: Non-spray Area. (e) L2: Cropland: Cabbage,
Spray Area. (f) L2: Cropland: Non-spray Area. (g) L2: Orchard: Chestnut, Spray Area. (h) L2:



for training (59 images, spray and 59 images, non-spray) and the last half of images
for testing (59 images, spray and 59 images, non-spray) were used for trees and
structures. The accuracy analysis of offline recognition system was compared with
the true positive and true negative values (Table 19.2). For further confirmation, the
extended datasets were considered to check the recognition accuracy of classifiers
using MSM.
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19.2.5 Online Recognition System

The subspace patterns were trained during the offline recognition process. These
patterns were used for the online recognition development of classifiers. A sliding
window was used to select four images that were converted to four vectors through
resizing and reshaping. The gray scale images were resized to 8 × 8 and reshaped to
one column vector using MATLAB®. A test subspace was generated using PCA for
creating a matrix from the vectors. The online recognition progress was completed in
the following stages. First, each video from each target crop or orchard was
preprocessed, and one image was extracted from every 20 frames. Among the
extracted images, there were several frames captured that did not belong to either
class during takeoff and landing or that included other plants during entry and exit.
Such images were marked as noise images and removed to improve recognition
accuracy. In the experiment, two datasets were collected for each target land. For the
online experiment, we used all of the frames (removed noise) from one of the videos
as training, and we used another video for testing (the video was not directly read;
rather, the video was extracted to image frames, and noise was removed). In the
second step, we classified the set of sequential images using the MSM classifier.
Finally, the spray areas were recognized based on the training datasets (Fig. 19.6). In
the datasets, 198 images (spray) and 198 images (non-spray) were collected from a
5 m height for training, and a reference subspace was built for use in the online
experiment for cabbage. In case of testing, a new video was taken where one frame
was selected out of 20 frames. There were a total of 298 frames used for testing for
cabbage. Similarly, 107 images (spray) and 107 images (non-spray) were selected
for training in online experiments, and the new video stream was used with a total of
204 images for onion. In the case of carrot, 120 images (spray) and 120 images
(non-spray) were used for training, and a new video stream with 89 images was used
for testing the datasets. For orchard categories from a height of 15 m, two classifiers
were trained using 97 images (spray) and 97 images (non-spray); 94 images (spray)
and 94 images (non-spray); 118 images (spray) and 118 images (non-spray) for
chestnut, persimmon and trees, respectively. For testing the datasets of each target, a

⁄�

Fig. 19.4 (continued) Orchard: Non-spray Area. (i) L3: Cropland: Onion, Spray Area. (j) L3:
Cropland: Non-spray Area. (k) L3: Orchard: Trees, Spray Area. (l) L3: Orchard: Non-spray Area
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new video stream was taken with a total of 180 images extracted for chestnut,
210 images for persimmon and 141 images for trees.
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Fig. 19.5 Image sets in classifier recognition in the learning and recognition phases for MSM
application

Table 19.2 Accuracy analysis for the offline recognition system

True condition (offline
recognition)

Spray Non-spray ∑Total

Predicted condition (tested by recogni-
tion phase)

Spray True
positive

False
positive

Total
positive

Non-
spray

False
negative

True
negative

Total
negative

Accuracy
P

True Positiveþ
P

True Negative

19.3 Results

19.3.1 Offline Recognition Performance

In the offline recognition system, the accuracy was 80.5% in the cropland classifiers
for spray and non-spray area recognition in the first experimental areas (L1). In the
case of orchards, the spray and non-spray area recognition was 75.0% (Table 19.3).
In the second experimental area (L2), the recognition accuracy was 70.4% and
86.1% for croplands and orchards, respectively. Finally, mixed crop and orchard
areas (L3) were chosen for offline recognition by classifiers. The recognition accu-
racy was 72.3% and 70.0% for croplands and orchards, respectively. The overall



accuracy was 74.3% (croplands) and 77.0% (orchards) for the L1, L2, and L3
locations, which had a combination of croplands and orchards (Table 19.3). Wide
crop canopy or orchards had the advantage of higher recognition by classifiers. The
high accuracy of the recognition system was obtained using the MSM for training
and testing using datasets from the three different types of experimental fields.
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Fig. 19.6 Online recognition system for classification of spraying based on MSM classifiers
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Table 19.3 Offline classifier recognition and accuracy analysis

True condition (offline
recognition)

Location
(croplands,

Work
patterns

Non-
spray

Non-
spray

Predicted condition (tested by
the recognition phase)

L1 Spray 74 21 35 9

Non-
spray

16 79 13 31

Accuracy 80.5% 75%

L2 Spray 38 11 41 2

Non-
spray

18 31 10 33

Accuracy 70.4% 86.1%

L3 Spray 56 0 37 18

Non-
spray

31 25 15 40

Accuracy 72.3% 70.0%

Table 19.4 Extended datasets for training and testing of classifiers using offline recognition system

Training image
numbers

Testing image
numbers

Non-
spray

Carrot 256 256 First half
(128 + 128)

Last half
(128 + 128)

73.79

Cabbage 440 440 First half
(220 + 220)

Last half
(220 + 220)

81.25

Onion 210 210 First half
(105 + 105)

Last half
(105 + 105)

66.32

Chestnut 224 224 First half
(112 + 112)

Last half
(112 + 112)

77.31

Persimmon 248 248 First half
(124 + 124)

Last half
(124 + 124)

70.94

Trees and
structures

216 216 First half
(108 + 108)

Last half
(108 + 108)

64.58

Further confirmation, frame numbers were increased for training and testing of
datasets, whether there were significant differences in recognition accuracy of
classifiers. Extended datasets confirmed the accuracy of MSM method did not
change much even if the frames were increased to double for testing and training
of datasets in offline recognition system (Table 19.4).
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19.3.2 Online Recognition Performance

The developed user interface had the advantage of real-time online information that
included the current cropped image, the tested image sets using a sliding window,
the predicted category, the recognition rate (the correct classifications were known
during the test), the computational time, and the similarity plot. For the cropland
classifiers, the UAVwas flown at a 5 m height, and the recognition rate was observed
to be 65.5% for L1 experimental areas. The computational time was only 0.0031 s
for classifier recognition (Fig. 19.7a–c). The flying height was 15 m for orchard
classification, and recognition was observed at 69.1% with a computation time of
0.0031 s for each classifier. In the second experimental flying areas (L2), the
recognition accuracy of classifiers for noted spray and non-spray areas was 60.8%
and 82.2% for croplands and orchards, respectively. The computational time was
only 0.0031 s for recognition by the classifiers, and orchard classifier recognition
also required only 0.0031 s for each classifier (Fig. 19.8a–c). In the third experi-
mental location (L3), the online recognition rate by classifiers reached 69% in
0.0048 s for each classifier and 71.7% in 0.0031 s for each classifier in croplands
and orchards, respectively. The online recognition system had an average accuracy
of 65.1% and 75.1% for croplands and orchards, respectively, with a recognition
time of 0.0031 s (Table 19.5).

19.4 Discussion

The field experiments were conducted in different types of fields to increase dataset
variety for the selection of spray and non-spray areas inside the croplands and
orchards. The offline recognition system shows the MSM effectiveness for training
and testing the datasets for croplands and orchards. The classifiers were used for
croplands and orchards and were limited to being trained and tested on datasets
acquired in the late fall season. The MSM has the flexibility to increase the number
of classifiers, which may increase the computational time requirement. As UAV
spraying is performed at higher speeds, we tend to focus on minimizing the com-
putation time to reduce the computational burden for decision making to recognize
the spray and non-spray areas in croplands and orchards. UAVs operating at high
speed with limited battery life and a small payload of liquid chemicals demand high
computational speed and fast operation with good recognition accuracy. With this
consideration, the online recognition system provided some advantages, although its
accuracy was not as high as that of the offline recognition system. The system needs
further training data to increase accuracy, especially for the identification of crop-
lands less than 5 m high and orchard areas from 15 m high.
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Fig. 19.7 Online recognition performance of a classifier of croplands from a 5 m height. (a)
Cropland: Carrot. (b) Crop field: Cabbage. (c) Cropland: Onions



19 Development of a Recognition System for Spraying Areas from. . . 389

Fig. 19.7 (continued)

In the online experiment setting, similar environments resulted in increased
recognition, while adding different categories of orchards reduced recognition. It
was very challenging to test the datasets from a fast UAV operating speed at a high
altitude. Classifiers were trained and tested on datasets acquired from three different
locations to confirm the recognition accuracy. However, complex canopy systems
were not present in the features. This MSM system had a limitation in recognizing
classifiers in complex canopies of crops or orchards. We could not collect images of
complex crop canopy, and we assume that in such canopy systems, upward and
downward image acquisition is required to identify the spray and non-spray areas
under different lighting conditions. Lighting is a key point that needs to be carefully
considered, especially interception through the canopy. It would be ideal to train the
UAV features of spray and non-spray areas on a large field to obtain higher accuracy
in precision applications ranging from usual to complex canopies of crops. Further
studies are required to deal with such complexity of canopies, very large datasets in
different lighting conditions, the processing of images to remove noise using
extended Kalman filters in onboard UAV systems.
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Fig. 19.8 Online recognition performance of a classifier of orchards from a 15 m height. (a)
Orchard: Chestnut. (b) Orchard: Persimmon. (c) Orchard: Trees and Structures
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Fig. 19.8 (continued)

Table 19.5 Online classifier recognition and accuracy analysis

Crop/land Flying height (m) Accuracy (%) Recognition time of classifier (s)

Carrot 5 65.51 0.0031

Cabbage 5 60.88 0.0048

Onion 5 69.00 0.0031

Chestnut 15 69.10 0.0031

Persimmon 15 82.21 0.0031

Trees and structures 15 74.10 0.0031

19.5 Conclusion

A machine learning system was developed using MSM for images collected by a
UAV in different types of farm fields and orchards. The machine learning system
was developed to train and test two classifiers, one for agricultural croplands and one
for orchard areas, on different datasets to distinguish spray and non-spray areas for
the development of autonomous spraying systems in the future. Images were
collected from low (5 m) and high altitude (15 m). The accuracy of the offline
recognition system was found to be 74.4% and 77.0% for low and high altitude
systems, respectively. On the other hand, the online recognition system performance
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had an average accuracy of 65.1% and 75.1% for low altitude and high altitude
image acquisition systems, respectively. The computation time for online recogni-
tion systems was observed to have a minimum of 0.0031 s (on average) for reporting
classifier recognition for the frames in the sliding window. The developed machine
learning system for recognizing by classifiers can be implemented in the autonomous
UAV spray system for recognizing spray and non-spray areas with minimum
computation in real time. In our future experiments, we will improve the training
and testing system by incorporating an artificial neural network (ANN) and deep
learning to develop a UAV-based autonomous spraying unit for croplands and
orchards.
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Chapter 20
Basal Stem Rot Disease Classification by
Machine Learning Using Thermal Images
and an Imbalanced Data Approach

Izrahayu Che Hashim, Abdul Rashid Mohamed Shariff,
Siti Khairunniza Bejo, Farrah Melissa Muharam,
and Khairulmazmi Ahmad

Abstract Oil palm has become a commodity of global strategic importance due to
its rapid expansion. Palm oil is widely utilised in food and as a biodiesel precursor.
The oil boosts several countries’ economies, especially Malaysia’s. However,
Ganoderma boninense causes basal stem rot (BSR), the most severe disease of oil
palms. BSR management controls remain to be ineffective at the moment. There is
currently no cure for BSR disease, and the only practical option is to extend the life
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of the oil palm tree. Thus, we demonstrate how a thermal image technique can be
used to distinguish between healthy and BSR-infected trees. We assessed the
feasibility of using WEKA standard machine learning algorithms (ML) such as
Naive Bayes (NB), multilayer perceptron (MLP), and random forest (RF) to classify
healthy and BSR-infected trees. Additionally, we emphasise the data imbalance
technique in this study because, in reality, the number of healthy and
BSR-infected is not uniform. Therefore, imbalanced data approaches such as random
under-sampling (RUS), random over-sampling (ROS), and synthetic minority
oversampling (SMOTE) are employed in this classification. In order to evaluate
and compare various algorithms and imbalanced approaches, we described the
receiver operating characteristic (ROC) curve region (AUC), the precision-recall
curve (PRC), and the confusion matrix as an alternative in terms of the success rate
of the non-infected and BSR-infected tree. We expect that our technique will assist
non-expert users in identifying appropriate machine learning algorithms, resulting in
improved performance for accurately predicting BSR disease.
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20.1 Introduction

Diseases and pests are an essential concern to the oil palm industry at the moment.
Crop yields can suffer significantly while afflicted with diseases and pests that
compete for nutrients with palm oil and cause tree destruction. This is critical to
avoid considerable crop damage, mainly owing to severe diseases such as basal stem
rot (BSR) disease caused by Ganoderma boninense (G. boninense).

Various control strategies or approaches have been used or produced to limit the
disease’s economic effect, including removing or eradicating diseased palms,
treating infected palms, and protecting young or healthy palms that have not yet
been afflicted (Chung, 2011). However, G. boninense disease currently lacks an
effective cure (Siddiqui et al., 2021). The majority of control strategies are only
effective in reducing disease occurrence and extending the productive life of dis-
eased palms, not entirely curing the disease.

In what follows, we demonstrate how BSR can be viewed as a problem that
results in a drop in oil palm yields and negatively impacts Malaysia’s economy
(Sect. 20.2). Additionally, we demonstrate that based on the formulation of this
problem, a thermal data approach (Sect. 20.3) utilising machine learning (Sect. 20.4)
and imbalance data approach (Sect. 20.5) can provide an accurate classification of
the healthiness of oil palm trees in a reasonable of time. We next identified healthy
and BSR-affected trees using three algorithms plus an imbalance technique from the
WEKA open-source package (Sect. 20.6), demonstrating that combining algorithms
and imbalance approaches yielded models that performed better than conventional
algorithm selection alone (Sect. 20.7). More precisely, we demonstrate that combin-
ing the best thermal selection feature with an algorithm and an imbalance technique



makes it possible to differentiate healthy palm trees and those affected with BSR
(Sect. 20.8).
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This chapter is based previous paper published in the Agronomy, an Open Access
Journal by MDPI in 2021 (Hashim et al., 2021a).

20.2 Basal Stem Rot (BSR)

Basal stem rot (BSR) is an oil palm root disease that attacks the basal stem. BSR in
oil palm typically expresses itself externally, as visible in the foliage, which occurs
when at least 50% of the cross-sectional area of the stem base has been damaged.
The rot would hinder nutrients and water transport to the aerial parts, causing
symptoms similar to the nutritional deficit and water stress (Rebitanim et al.,
2020). Thus, visual signs alone are insufficient to identify BSR, as other water stress
causes, including dryness, higher soil water salinity, or hyperacid soils, can produce
close foliage signs (Saeidi et al., 2019).

Internal tissues at the stem base or root bole get drily rotted due to the infection.
The affected palm runs the possibility of its root or stem bole breaking at any stage of
BSR, finally resulting in the palm collapsing. Internal signs include dry and brown
rot lesions on the hole and stem, generally with visible mycelial development, and
tissues with black bands separating the light brown lesions. Outside the major border
of the lesion region, the uninfected tissues are often yellow-pigmented, indicating a
host-resistance response to infection (Ariffin et al., 1989). Even before signs of stem
or foliar lesion are apparent, the root tissues will be infected, with several sapro-
phytic microbes colonising them. After a significant infection period, BSR’s
basidiomata will form at the base of the stem or will arise from infected roots. The
growing stem’s soft tissues gradually decay in younger palms, and it is uncommon
for the BSR basidiomata to form before the palm dies (Singh, 1991).

BSR is a severe challenge to the sustainability of oil palm production, particularly
in Southeast Asia, and has resulted in economic losses for the worldwide oil palm
business (Rebitanim et al., 2020). This disease has a detrimental effect on yields and
completely destroys palm stands. This results in income loss and puts the oil palm
industry in Southeast Asian nations such as Indonesia andMalaysia under significant
pressure (Murphy et al., 2021). Between 2009 and 2011, BSR was detected on
approximately 3.71 percent of Malaysia’s land area (59,148 hectares out of
1,594,286 hectares) (Kamarudin et al., 2016). G. boninense disease has ruined
221,000 hectares of oil palm plantations in Malaysia, resulting in an annual loss of
around RM1.5 billion (New Straits Times, 2021). Thus, information on Ganoderma
prevalence in oil palms is crucial for disease prevention and treatment.
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20.3 Detection of BSR Disease

Due to the disease’s difficulties in being diagnosed early, it spreads rapidly during
the field’s earliest stages of oil palm production. Generally, methods for detecting
and controlling BSR in its early phases are ineffectual and inaccurate (Chong et al.,
2017; Fowotade et al., 2019). Early identification is difficult because of the absence
of visible symptoms, which had become a significant impediment to controlling
BSR disease. While BSR is incurable, having an early identification tool for infected
palms is crucial for economically maintaining the condition.

Numerous researches have been done to develop methods for early detection of
the disease, including the Ganoderma Selective Medium (GSM) (Ariffin & Idris,
1993), the Polymerase Chain Reaction-DNA (PCR-DNA) method (Idris et al.,
2003), the Enzyme-Linked Immunosorbent Assay-Polyclonal Antibody (ELISA-
PAb) method (Idris & Rafidah, 2008), and the Headspace Solid-Phase
Microextraction (HS-SPME) method integrated with Gas Chromatography-Mass
Spectrometry (Zainol Hilmi et al., 2019). Nonetheless, the techniques outlined
above are tedious, costly, and inefficient for vast planting zones. A system that is
optimum for infection diagnosis involves meticulous planning, swift execution, and
non-destructive methods.

Apart from laboratory-based techniques, many remote sensing (RS) approaches
have been developed for detecting G. boninense in the field. The application of RS
technology was a non-destructive technique that may potentially save time. RS
includes many platforms and sources, some of which are invisible to the naked sight.

20.3.1 Remote Sensing Techniques for G. boninense Disease
Detection

RS is a non-contact method of obtaining information about an object by measuring
the electromagnetic radiation reflected/backscattered or emitted by the Earth’s sur-
face (Gomarasca, 2010). Currently, agriculture industry device system development,
such as an RS, is being used to monitor real-time disease. RS is a type of art and
science that collects information about an object without requiring direct physical
touch. Despite the time-consuming nature of the methodologies, BSR was measured
and detected utilising RS methods (Khosrokhani et al., 2018). The applications of
RS methods are classified as non-imaging or imaging sensor-based as shown in
Fig. 20.1. Radiometers-spectroradiometers (positioned on high platforms, tractors,
or portable) and fluorescence radiometers are non-imaging sensors. Hyperspectral
(narrowband) imaging sensors, multispectral (broadband) imaging sensors, terres-
trial laser scanning, thermal infrared imaging sensors, and microwave synthetic
aperture radar (SAR) are all variations of imaging sensors.

Early detection and non-destructive disease identification methods, particularly
for perennial plants, are critical for smart agriculture and sustainable agricultural



management (Balasundram et al., 2020). Plant diseases and stress may be monitored
using RS approaches (Gogoi et al., 2018; Mee et al., 2017; Naidu et al., 2009; Yang,
2020; Zhang et al., 2019). Recent research has expanded this technology’s use to
agricultural diseases on a large scale and in real time in field conditions (Bock et al.,
2020; Huang et al., 2007; Liu & Wang, 2021; Sighicelli et al., 2009). Additionally,
RS approaches may be developed for identifying BSR infections on both the local
and major scales within oil palm plantation regions. This approach was chosen
because it provides dependable, quick, and real-time surveillance for control and
management. Early diagnosis of BSR infection is viewed as a critical source of
information for promptly controlling and curtailing it and preventing its spread in
plantation regions.
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Fig. 20.1 Detection of Ganoderma disease utilising RS methods

20.3.2 Detection of G. boninense Using Thermal Imaging

Thermal imaging detects temperature variations in plants due to water stress. The
temperature of the plants reduces owing to the latent heat of evaporation when
transpiration occurs and water is evaporated from the plants. Transpiration is a
thermodynamic endo-energetic process. Plants’ stomatal conductance drops when
water-stressed in the soil, resulting in reduced transpiration. This suggests that plants
growing on soils with limited water availability will experience a rise in canopy
temperature. Thus, by monitoring the canopy temperature in the infrared band,
thermal imaging may be utilised to calculate stomatal conductance and plant evapo-
transpiration (Jones, 1999, 2004; Merlot et al., 2002). According to research on



various plants, the potential for thermal imaging in BSR detection may be investi-
gated and utilised further, as BSR damages the roots of the trees, affecting water
transportation and leading to water stress in the oil palm trees.
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Although a previous study has been undertaken to detect BSR-infected trees
using a thermal technique (Bejo et al., 2015; Johari et al., 2021), our research is
unique in terms of camera parameters used to capture and process tree images. This
study is novel in terms of camera parameters used to capture tree images since it
considers the impacts of various radiation sources, such as emissivity, reflection
temperature, and other environmental variables (atmospheric temperature, environ-
mental humidity, and camera proximity), in contrast to previous studies that used the
default camera’s thermal camera parameters. The default camera settings utilised in
the previous investigation were emissivity values of 0.98, the atmospheric temper-
ature of 20 °C, reflected apparent temperature (RAT) of 20 °C, and relative humidity
of 50%. While we retained the emissivity value of 0.98 for this study, the RAT value
was changed to match the value reflected by the reflector. The reflector is placed
within the infrared camera’s field of view, and the reflector’s emissivity determines
its temperature. The reflector temperature is used to determine the RAT value.
Meanwhile, environmental temperature and relative humidity were monitored
every 30 min and found to be between 24–30 °C and 67–92%, respectively.
Additionally, earlier research standardised the image temperature scale between
24 and 34 °C to ensure that the pixel intensity matched the actual temperature
representation, in contrast to this study, which evaluated each thermal image by
concentrating on temperature variance. In this regard, we are enhancing current
techniques and developing novel methods for detecting BSR disease in oil palm
fields.

20.4 Machine Learning in Crop Disease

Smart farming is a new concept that uses high-precision algorithms to make agri-
culture more efficient and effective. It is driven by ML, the scientific field that allows
machines to learn without being explicitly programmed. It provides new ways to
measure, resolve, and comprehend data-intensive processes in agricultural opera-
tional contexts and high-performance computing and big data technology.

Instead of relying on equations defined as models, ML algorithms compute
information directly from data (Chang et al., 2018). ML algorithms have been
employed in a variety of applications in the recent decade, including land cover
mapping (Abdi, 2020; Jamali, 2020; Pan et al., 2020), forest monitoring (Lee et al.,
2018; Li et al., 2013; Liu et al., 2018), and agricultural monitoring (Mirani et al.,
2021; Liakos et al., 2018; More & Singla, 2019; Rakhra et al., 2022). Precision
farming, also known as digital farming (Liakos et al., 2018), has benefited from ML
technologies. Controlling pests and diseases are a significant problem in digital
agriculture. ML algorithms have also been employed to classify remote sensing
data and identify plant diseases (Sharma et al., 2021).



Reference

20 Basal Stem Rot Disease Classification by Machine Learning Using. . . 401

20.4.1 Machine Learning in BSR Disease Detection

Due to its ability to forecast, predict, and classify phenomena related to biology, the
ML algorithm has become an accepted technique for agricultural researchers. ML
has emerged in facilitating strategic management processes by monitoring and
observing early information on plant health. Several researchers have investigated
BSR disease detection using ML.

Table 20.1 summarises the ML algorithms used to detect and categorise the
degree of BSR infection in oil palms. Numerous input data sets were employed,
and several ML approaches were used to achieve various accuracy levels.

20.5 Imbalanced Data Approach

In machine learning, the derivation of classifiers is in minimising misclassified errors
and maximising predictive performance (Wang & O’Boyle, 2018). The underlying
assumption in these classification methods is that the dataset under investigation
comprises a generally balanced number of examples for each specified class. Thus,
prior probabilities are expected to be comparable (Guo et al., 2008). Nonetheless, in
a number of real-world fields, such as precision medicine, most classification data
tends to tilt towards negative class values. The data is considered imbalanced if one

Table 20.1 List of ML algorithms employed for BSR detection

Type of data
used

ML
algorithm

Capability for severity level
classification

Accuracy
(%)

Odour LDA No 100 Abdullah et al.
(2012)

Spectral image kNN Yes 97 Liaghat et al.
(2014)

ANN Yes 100 Ahmadi et al.
(2017)

RF No 91 Santoso et al.
(2017)

SVM Yes 54 Santoso et al.
(2019)

Electrical
properties

QDA Yes 80.79 Khaled et al.
(2018)

Thermal image SVM No 89.2 Bejo et al.
(2018)

SAR image MLP Yes 77 Hashim et al.
(2021b)

Points cloud KNB Yes 85 Husin et al.
(2020)



of the target variable values has a significantly lesser number of instances than the
others.
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Skewness was used to describe imbalanced class problems (Longadge et al.,
2013). The authors stated that the issue occurs when a dataset is skewed severely,
leading to a high false negatives (FN) rate. Class imbalance is a fundamental
problem that affects a wide variety of real-world applications, including fraud
detection (Warghade et al., 2020), text classification (Padurariu & Breaban, 2019),
image and facial recognition (Huang et al., 2020), and clinical diagnosis (Fotouhi
et al., 2019). In addition, a study highlighted the uneven class impacts of oil
pollution monitoring systems employing SAR to detect and prevent the conse-
quences of oil spills on the environment and prevent illegal dumping (Ouyang
et al., 2017). Nevertheless, the database has far fewer oil spill images than those
without oil spills, based on only 10% of the spills originating from the sea beds. This
further creates challenges linked to data processing results interpretation (Guo et al.,
2008).

20.5.1 Data-Level Approaches

Data-level techniques that deal with imbalanced datasets can maintain balanced
distribution through the performance of some alteration or modification in the
number of minority and majority class instances (Spelmen & Porkodi, 2018).
Resampling reduces imbalance by changing the number of instances of each class
type which often uses sampling methods like under-sampling, oversampling, or a
combination of both (Ali et al., 2013). Resampling approaches are more flexible
since they are independent of the classifier employed (López et al., 2013).

20.5.1.1 Under-Sampling

In the case of unbalanced data, under-sampling is one of the most straightforward
solutions. To balance the dataset, the principal under-sampling approach randomly
excludes cases from the majority class (Tahir et al., 2009) Under-sampling the
majority class, most usually done as random under-sampling (RUS), is the simplest
yet most effective approach.

The RUS randomly discards the majority class instances until a more balanced
distribution is achieved (Hoens & Chawla, 2013). Consider the following scenario:
you have a dataset with 50 samples of the majority group and 20 samples of the
minority group. By removing 30 majority group samples at random, the RUS
attempts to generate an equal group distribution. The final dataset will have 40 sam-
ples: 20 minority and 20 majority groups.
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20.5.1.2 Oversampling

When dealing with an imbalanced class problem, another typical sample technique is
oversampling. Random oversampling (ROS) and synthetic sampling are some of the
oversampling approaches available (Chawla et al., 2002; Estabrooks et al., 2004).

Minority group samples are duplicated and reproduced in the dataset by ROS
until an equal distribution is achieved. As a result, if there are 50 samples of the
majority group and two samples of the minority group, typical oversampling might
duplicate the two minority group samples 24 times. There will be 100 samples in the
created dataset: 50 samples from the majority group and 50 samples from the
minority group (i.e., 25 from the two minority group samples each). Only those
minority group values with samples that fall on the border between the majority and
minority group values are resampled in targeted oversampling.

20.5.1.3 Synthetic Minority Oversampling Technique (SMOTE)

SMOTE is a sampling technique in which synthetic examples are used to generate
more samples from the minority group (Chawla et al., 2002). These new artificial
minority class instances were created by interpolating between samples taken from
tight proximity to the minority population. SMOTE generates a random minority
class representative and finds its nearest minority class neighbour. The synthetic
instance is created using a random selection of one of the k-next neighbours, B, and
joining A and B in space attributes to make a line segment. Two samples, A and B,
are convexly combined to form the synthetic samples (He & Garcia, 2009). Finally,
new instances of minority classes are generated.

The study’s key novelty and contribution is an investigation into the link between
the degree of class imbalance and the performance of the related ML algorithm. In
agriculture, however, this is not thoroughly researched. In spite of the fact that many
individuals are aware that class imbalance causes problems, no in-depth studies into
the precise effects of class imbalance have been carried out.

20.6 Experimental Methodology

The research method is a crucial part of any study. It indicates the study approaches
used to collect, pre-process, and analyse data to achieve a suitable result. In this
study, the research method consists of four different processes. This process refers to
field data collection for thermal images, image processing for thermal data, statistical
analysis of data, and finally, the classification employed to discriminate between the
non-infected and BSR-infected trees.
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20.6.1 Thermal Data Acquisition

Data were collected using a FLIR T620 IR thermal imaging camera (FLIR Systems,
Inc., Wilsonville, OR). Each tree section’s trunk images were randomly captured
from three distinct angles. The tree was 13 years old and was more than 4 m high.
The thermal camera is positioned at the height of 1 m above the ground and a
distance of 1 m from the tree’s trunk. There were two separate morning and
afternoon sessions to gather images of trunk sections. The morning session ran
from 7:30 to 10:00 AM. Meanwhile, the images from the afternoon session were
taken between 4:30 and 7:00 PM. This selection process is based on the progressive
solar thermal energy absorption by crop plants during daytime hours. Furthermore,
when the environmental temperature increases throughout the day, these objects
become less distinguishable from other warm objects detected and highlighted by the
camera’s sensor. Figure 20.2 illustrates the camera position for trunk image
acquisition.

We selected 92 oil palm tree samples at random for this study. According to their
health status, the samples were divided into two groups: non-infected (55 samples)
and BSR-infected (37 samples). The BSR-infected trees were assessed by an expert
from the Malaysian Oil Palm Board according to the visual signs.

It is possible to derive the object’s temperature (Tobj) using Eq. (20.1). Temper-
ature measurements are performed by various camera manufacturers using similar

Fig. 20.2 Position of the
thermal camera when
capturing the image trunk



equations (Frank E. Liebmann, 2010). The camera, or software, needs several
variable inputs to properly determine the object’s temperature to solve Eq. (20.1).
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Tobj =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

W tot - 1- εobj
� � � τatm:σ � T refð Þ4 - 1- τatmð Þ � σ � Tatmð Þ4

εobj � τatm � σ
4

s

ð20:1Þ

where εobj denotes the emissivity of the object, Tref denotes the temperature of the
reflected, τatm denotes the transmittance of the atmosphere, and Tatm denotes the
temperature of the surrounding atmosphere. The transmittance of the atmosphere is
often determined by the distance between the object and the camera as well as the
relative humidity. Commonly, the value is close to one. Due to the fact that the
emittance of the atmosphere is near zero (1 - τatm), this feature has a minor
influence on temperature readings. The emissivity of the object and the reflected
temperature, on the other hand, have a considerable influence on temperature
measurement and must be precisely determined.

20.6.1.1 Emissivity Measurement

An emissivity coating approach was used to assess the emissivity of the oil palm
tree’s surface in this experimental investigation (Usamentiaga et al., 2014). If a part
of the surface under study can be coated with a black paint with a known emissivity,
the emissivity of the surface may be determined by adjusting the emissivity setting
on the device until the surface temperatures measured on the coated and uncoated
surfaces are comparable (Buchlin, 2010). Black electrical tape has also been used
instead of black paint in several past studies (Avdelidis & Moropoulou, 2003;
Bazilian et al., 2002; Cerdeira et al., 2011; Fokaides & Kalogirou, 2011). The
configuration of the emissivity is then changed until the actual temperature is
measured. The emissivity configuration is then modified until the actual temperature
is determined. The final configurable emissivity is equal to the object’s emissivity.
As an outcome, the temperature of the oil palm tree and the temperature of the tape
recorded by the thermal camera were the same at emissivity of 0.98.

20.6.1.2 Reflected Apparent Temperature (RAT)

It is important to calibrate the reflected apparent temperature to get an accurate
measurement. Aluminium foil crumpled and re-flattened is a frequently used alter-
native (Usamentiaga et al., 2014). To calculate the temperature of the reflector, we
use an emissivity of one and a distance of 0 in conjunction with the infrared camera’s
viewfinder. Repeat the test using the reflector’s temperature as the reflector. The
resulting temperature value is the final reflected temperature.
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20.6.1.3 Atmospheric Temperature and Humidity

It is also possible for a camera to consider the influence of environmental temper-
atures. The camera’s design indicates that transmittance is a function of the relative
humidity in the surrounding environment. Every half hour, the temperature and
humidity of the environment were measured with a TFA Dostmann Digital Thermo-
Hygrometer (30.5002). (TFA-Dostmann.de., Wertheim-Reicholzheim, Germany).

20.6.1.4 Object-to-Camera Distance

In order to capture the fruiting body of G. boninense on the basal trunk of a palm
tree, we fixed the distance between the object and the camera’s front lens to 1 m and
focussed the camera at the height of 1 m.

20.6.2 Pre-processing of Thermal Images

The variation of temperature for each of the thermal images was analysed using the
camera manufacturer’s software, FLIR ResearchIR Max (FLIR Systems, Inc., Ore-
gon, United States). This study utilises two primary image processing processes:
image enhancement and identifying the region of interest (ROI).

Image enhancement aims to increase the perceived benefits of images for human
viewers or aid in the computer processing of other image-based approaches. Scale
Limits From Image and Plateau Equalisation were employed in this study (PE).
Scale Limits From Image’s purpose is to examine the complete image in order to
identify the scale’s minimum and maximum values; in contrast, PE allows for good
contrast in virtually all settings. The PE slider will enable users to adjust the
algorithm’s aggressiveness and the intensity of the image improvements. Figure 20.3

Fig. 20.3 The difference between the images before and after the image-enhancing technique



illustrates the difference between the images before and after the image-enhancing
technique.
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Fig. 20.4 The ROI ith fusion and grayscale temperature polygon for oil palm trees

The next consideration is that the oil palm trunk region must be segregated from
its surrounding area. The procedure begins by identifying areas that are most likely
to contain foreground objects within the image. The current software defines these
regions using the box, ellipse, line, bendable line, polygon, freehand, spot cursor,
and measurement cursor forms. This study represented the region of interest (ROI)
by a polygon due to the oil palm tree’s irregular trunk surfaces. The ROI temperature
polygon for oil palm trees is shown in Fig. 20.4.

20.6.3 Thermal Image Feature Extraction

Feature extraction is a process for reducing the dimension of an image by efficiently
representing its most notable components as a compact feature vector. FLIR Tools in
the FLIR ResearcherIR environment software were used to extract features from
each thermal image. The following features were extracted from the ROI of the
thermal images that represent the oil palm trees: maximum temperature of the oil
palm trunk (Tmax), minimum temperature of the oil palm trunk (Tmin), the centre
temperature of the oil palm trunk (Tcenter), mean temperature of the oil palm trunk
(Tmean), and standard deviation temperature of the oil palm trunk (Tsd). Each
characteristic retrieved from three images was averaged. The statistical Analysis of
Variance (ANOVA) was performed on each temperature feature to discover which
one was the most significant in distinguishing between non-infected and
BSR-infected trees.
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20.6.4 Statistical Analysis

The following ANOVA tests were used in this study; (1) to determine the temper-
ature characteristics of non-infected and BSR-infected trees during the morning and
evening sessions; and (2) to determine the relationship between non-infected and
BSR-infected trees and the thermal camera’s characteristic temperature.

20.6.5 Machine Learning Approach

The Waikato Environment for Knowledge Analysis (WEKA) version 3.8.5 was
utilised to distinguish between non-infected and BSR-infected trees throughout the
process of classification. Three ML approaches were used:

1. Naive Bayes (NB) is a generative probabilistic model based on the notion of
predictor feature conditional independence (Frank et al., 2000). It enables the
estimation of class-conditional probabilities for the sample data, which may be
determined straight from the training data instead of evaluating all feature
possibilities (Christopher M. Bishop, 2006).

2. Multilayer perceptron (MLP) is a feed-forward artificial neural network model
that maps input datasets to a collection of acceptable outputs. MLPs are formed
when numerous layers of nodes are joined (Marius et al., 2009). Each node, with
the exception of the input nodes, is a neuron (or processing element) with a
nonlinear activation function. The MLP employs a supervised learning approach
termed backpropagation to train the network (Stańczyk, 2013). MLP is a variation
of conventional linear perception that is capable of discriminating between
non-linearly separable inputs.

3. Random forest (RF) algorithm is a classification method that provides a collection
of stochastic decision trees. Each tree is trained using a unique bootstrap sample
drawn from the original datasets. A majority vote derived from an ensemble of
trees generated using the RF approach is used to assign the dataset (Immitzer
et al., 2012). Significant benefits include excellent predictive performance, resis-
tance to noise, and effectiveness when dealing with an imbalanced sample
(Breiman, 2001; Guo et al., 2008; Rodriguez-Galiano et al., 2012).

20.6.6 Imbalance Data Approach

We are concentrating on the minority group. This analysis was hampered by a data
imbalance caused by the lower number of BSR-infected samples compared to
non-infected ones. A data-level method will be used to overcome this problem. In
terms of data-level imbalance management, the incidence of the two classes is
algorithmically equalised to increase the imbalance ratio.



Imbalanced approach
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Table 20.2 A description of the parameters that were utilised in the imbalanced methods

Imbalanced approach Technique Parameter

Data sampling RUS distributionSpread = 1

ROS biasToUniformClass = 1

noReplacement = false

SMOTE classValue = 0

nearestNeighbors = 5

percentage = 50

Table 20.3 A pre-processed dataset for non-infected and BSR-infected trees using an imbalanced
approach

Training Testing

Non-infected BSR-infected Non-infected BSR-infected
(majority) (minority) (majority) (minority)

Single (without data
imbalance approach

38 25 17 12

RUS 25 25 12 12

ROS 31 31 14 14

SMOTE 38 38 17 17

RUS, ROS, and SMOTE resampling techniques were used in this investigation.
For resampling, WEKA, an open-source machine learning application, was used.
The resampling parameters were obtained prior to classification and are summarised
in Table 20.2.

For testing reasons, we partitioned the dataset into 70% training data and 30% test
data. The technique utilised to pre-process the dataset for non-infected and
BSR-infected trees is illustrated in Table 20.3.

20.7 Experimental Evaluation

In order to identify between healthy and BSR-affected palm trees, we analysed the
outcomes of integrating algorithms and imbalance methodologies.

20.7.1 Time Session Selection

The two-way ANOVA was used to assess the main effects of status (non-infected
and infected with BSR) and session (morning and evening) on the mean temperature
of the oil palm trees and their interaction effects.

The effects of status and session were statistically significant at p < 0.005., as
shown in Table 20.4. The main effect for the status generated an F ratio of



F (1,180) = 9.70, p < 0.002, demonstrating a substantial difference between
non-infected and BSR-infected oil palm trees. The main effect for the session
resulted from an F ratio of F (1,180) = 284.851, p < 0.001, showing a significant
difference between the morning and evening sessions. The interaction effect was
statistically significant F (1,180) = 18.596, p < 0.001. Based on these results, it can
be inferred that data collection for the thermal image acquisition process in the trunk
area can take place in the morning and evening.
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Table 20.4 ANOVA summary table for mean temperature extracted from the thermal images

Source df Mean square F Sig. Partial eta squared

Status 1 20.382 9.700 0.002 0.051

Session 1 598.529 284.851 0.000 0.613

Status * Time 1 39.073 18.596 0.000 0.094

Error 180 2.101

Total 183

*Factor interactions, df degrees of freedom, F variance ratio, Sig. significant

Figure 20.5a depicts the relationship between feature temperature (Tmean) and the
health of oil palm trees; Fig. 20.5b depicts the relationship between feature temper-
ature (Tmean) and the session of a thermal image; and Fig. 20.5c depicts the
interaction effect of feature temperature (Tmean) with the health of oil palm and
session.

The microclimate of insects, parasites, fungi, and other organisms is influenced
by the temperature of a tree’s trunk. For a plant’s survival and to help regulate its
temperature, water is taken up from the soil by its roots and transported to its leaves
via the xylem. Cooling and maintaining the plant’s temperature and transferring
nutrients to the leaves for photosynthesis are two of the most significant tasks of
transpiration (Sterling, 2005). The trunk’s surface temperature changes almost
instantly in response to the surrounding environment. In contrast, the temperature
may take some time to follow the surface at a large depth in the trunk. Oil palm trees
infected with BSR have lower transpiration rates as a result of the damaged basal
tissue. The infected BSR tree’s temperature is higher than that of the non-infected
tree because the plant is unable to cool itself down (Harun & Noor, 2006).

Due to the contradicting conclusion that the evening temperature of BSR-infected
trees is lower than that of non-infected trees, this phenomenon can be elaborated by
referencing Omran (2017), who found peanut leaf spots. Because leaf tissue that is
dead or seriously injured has a lower thermal capacity than normal tissue, it can be
heated more easily and emits more light. However, dead leaf tissue can be cooled
more quickly than healthy tissue. This explains the increased brilliance of the
diseased plant in the afternoon, which corresponds to the fall in air temperature.

As stated previously, the properties of non-infected and infected BSR trees vary
significantly between the morning and evening sessions. The morning (7:30–10:
00 AM) and evening (6:00–10:00 PM) thermal imaging sessions are deemed optimal
for determining the health state of oil palms (4.30–7:00 PM). In this study, however,



we only analysed data from the morning session, as thermal cameras are often more
effective in the morning than in the afternoon.

20 Basal Stem Rot Disease Classification by Machine Learning Using. . . 411

Fig. 20.5 (a) The relationship between feature temperature (Tmean) and the status of the oil palm
trees. (b) The relationship between feature temperature (Tmean) and the session captured in thermal
image. (c) The interaction effect of feature temperature (Tmean) with the healthiness of oil palm and
session

20.7.2 Selection of Feature Temperature

Table 20.5 contains a summary of the ANOVA test findings. The significance of the
ANOVA result can be observed in all of the feature temperatures, Tmean, Tsd, Tcenter,
Tmax, and Tmin. The feature temperatures are then deemed to be suitable for further
categorisation of the oil palm trees.



412 I. C. Hashim et al.

Table 20.5 The results of an
ANOVA that compared the
mean values of Tmean, Tsd,
Tcenter, Tmax, and Tmin for
non-infected and
BSR-infected oil palm trees

Feature P value Significance

Tmean <0.0001 Yes

Tsd <0.0001 Yes

Tcenter <0.0001 Yes

Tmax <0.0001 Yes

Tmin 0.0392 Yes

Feature
NB MLP RF

Single RUS ROS SMOTE Single RUS ROS SMOTE Single RUS ROS SMOTE
Tmean 0.787 0.722 0.797 0.801 0.806 0.766 0.785 0.823 0.665 0.710 0.800 0.734

Tsd 0.588 0.555 0.649 0.573 0.629 0.522 0.628 0.627 0.529 0.435 0.754 0.512

Tcenter 0.754 0.692 0.758 0.793 0.791 0.718 0.745 0.801 0.682 0.658 0.838 0.760

Tmax 0.765 0.638 0.762 0.796 0.833 0.752 0.797 0.846 0.881 0.798 0.921 0.899

Tmin 0.811 0.780 0.808 0.835 0.799 0.762 0.780 0.815 0.696 0.680 0.838 0.744

Tmean, Tsd 0.738 0.721 0.802 0.767 0.811 0.755 0.759 0.815 0.677 0.674 0.855 0.748

Tmax, Tmin 0.823 0.774 0.827 0.846 0.806 0.718 0.810 0.816 0.801 0.750 0.907 0.844

Tmean, Tsd, 

Tcenter, 

Tmax, Tmin 

0.796 0.736 0.826 0.807 0.789 0.739 0.801 0.811 0.766 0.706 0.920 0.845

FAIL POOR ACCEPTABLE EXCELLENT OUTSTANDING

Fig. 20.6 The area under the curve (AUC) for the NB, MLP, and RF classifiers with respect to the
temperature feature

Feature
NB MLP RF

Single RUS ROS SMOTE Single RUS ROS SMOTE Single RUS ROS SMOTE
Tmean 0.784 0.697 0.760 0.771 0.777 0.721 0.737 0.791 0.648 0.659 0.78 0.728

Tsd 0.632 0.596 0.657 0.600  0.685 0.557 0.623 0.637 0.556 0.489 0.739 0.558

Tcenter 0.749 0.692 0.769 0.776 0.758 0.667 0.718 0.767 0.673 0.634 0.811 0.711

Tmax 0.782 0.634 0.736 0.783 0.814 0.724 0.764 0.827 0.864 0.758 0.902 0.877

Tmin 0.798 0.75 0.776 0.822 0.765 0.709 0.726 0.775 0.680 0.646 0.816 0.729

Tmean, Tsd 0.748 0.704 0.782 0.748 0.806 0.712 0.716 0.776 0.671 0.638 0.828 0.727

Tmax, Tmin 0.802 0.751 0.782 0.831 0.766 0.679 0.772 0.791 0.765 0.705 0.885 0.811

Tmean, Tsd, 

Tcenter, 

Tmax, Tmin 

0.770 0.710 0.772 0.785 0.764 0.702 0.771 0.784 0.724 0.652 0.902 0.806

FAIL POOR ACCEPTABLE EXCELLENT OUTSTANDING

Fig. 20.7 The area Precision-Recall Curve (PRC) for the NB, MLP, and RF classifier with respect
to feature temperature

20.7.3 Classification Analysis of Feature Temperature

The thermal image features were classified into non-infected and BSR-infected trees
using the imbalanced data methods RUS, ROS, and SMOTE, as well as without an
imbalanced data method using numerous classification techniques, including NB,
MLP, and RF. Figures 20.6, 20.7 and 20.8 show the AUC, PRC, and success rate
(%) of non-infected and BSR-infected trees, respectively.
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N I N I N I
Single 92.11 44.00 84.21 72.00 73.68 36.00

RUS 88.00 44.00 84.00 72.00 72.00 52.00

ROS 90.32 48.39 77.42 74.19 70.97 90.32

SMOTE 92.11 55.26 84.21 71.05 65.79 52.63

Single 94.74 32.00 94.74 24.00 60.53 52.00

RUS 92.00 24.00 88.00 24.00 44.00 48.00

ROS 93.55 29.03 90.32 35.48 70.97 80.65

SMOTE 94.74 23.68 86.84 39.47 57.89 50.00

Single 92.11 48.00 89.47 56.00 73.68 52.00

RUS 92.00 48.00 80.00 56.00 72.00 52.00

ROS 90.32 48.39 77.42 67.74 83.87 90.32

SMOTE 92.11 55.26 86.84 65.79 76.32 71.05

Single 92.11 36.00 84.21 72.00 86.84 80.00

RUS 92.00 36.00 84.00 60.00 80.00 72.00

ROS 93.55 48.39 90.32 74.19 87.10 100.00

SMOTE 94.74 42.11 81.58 76.32 84.21 81.58

Single 94.74 63.63 86.84 64.00 73.68 56.00

RUS 84.00 64.00 76.00 64.00 64.00 60.00

ROS 87.10 67.74 80.65 70.97 74.19 90.32

SMOTE 89.47 65.79 84.21 65.79 71.05 65.79

Single 94.74 44.00 81.58 64.00 73.68 56.00

RUS 92.00 36.00 84.00 68.00 72.00 72.00

ROS 93.55 41.94 74.19 77.42 77.42 93.55

SMOTE 94.74 42.11 84.21 71.05 76.32 68.42

Single 89.47 44.00 86.84 60.00 84.21 76.00

RUS 88.00 44.00 76.00 64.00 76.00 80.00

ROS 90.32 61.29 83.87 74.19 87.10 100.00

SMOTE 89.47 57.89 84.21 63.16 84.21 81.58

Single 92.11 44.00 84.21 60.00 84.21 68.00

RUS 88.00 40.00 80.00 64.00 76.00 68.00

ROS 90.32 48.39 83.87 74.19 83.87 96.77

SMOTE 92.11 52.63 84.21 65.79 84.21 81.58

Tmax, Tmin

Tmean, Tsd,  

Tcenter, Tmax, 

Tmin 

Tmean

Tsd

Tcenter

Tmax

Tmin

Tmean, Tsd

Feature IA
Classification model

NB MLP RF

POOR MODERATE ROBUST

Fig. 20.8 Non-infected (N) and BSR-infected (I) feature temperature success rates (%)



Source DF F Ratio Prob > F DF F Ratio Prob > F
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Table 20.6 ANOVA for the effect of features, imbalanced approaches, and classifiers on AUC and
PRC across non-infected and BSR-infected trees

AUC PRC

Sum of
squares

Sum of
squares

Feature 7 0.451 139.611 <0.0001a 7 0.254 95.663 <0.0001a

Imbalance
Approach

3 0.135 97.435 <0.0001a 3 0.135 118.367 <0.0001a

Classifier 2 0.003 3.394 0.0430a 2 0.002 2.935 0.0641

Feature* Imbal-
ance Approach

21 0.026 2.691 0.0031a 21 0.018 2.279 0.0114a

Feature*
Classifier

14 0.068 10.496 <0.0001a 14 0.056 10.610 <0.0001a

Imbalance
Approach*
Classifier

6 0.067 24.031 <0.0001a 6 0.080 34.975 <0.0001a

Error 42 0.019 42 0.016

C. Total 95 0.769 <0.0001 95 0.561 <0.0001
aThe mean difference is significant at the 0.05 level

The results of the AUC and PRC are fairly consistent (Fig. 20.6 and 20.7). The
Tmax feature with the RF classifier and ROS method had the best AUC and PRC
(outstanding) values at 0.921 and 0.902. The Tmax features increase AUC and PRC
over a single (without an imbalanced data technique) by combining the RF classifier
with the ROS approach. The AUC and PRC are the lowest when using the RUS
technique on all features and classifiers.

Figure 20.8 depicts the success rates of each feature for the three classifiers NB,
MLP, and RF. In contrast to the other two classifiers, NB is less effective at
classifying BSR-infected trees. The Tmax feature has the highest overall success
rate across the three classifiers, whereas the RF classifier has the highest success rate
for categorising non-infected and BSR-infected trees. Meanwhile, the ROS tech-
nique has a maximum success rate of 87.10% for non-infected trees and 100.00% for
BSR-infected trees in terms of the imbalanced approach employing RF classifier.

The findings of the ANOVA model for the effect of features, imbalanced
methods, classifiers, and two-way interaction (Feature*Imbalance Approach,
Feature*Classifier, and Imbalance Approach*Classifier) on AUC and PRC for
non-infected and BSR-infected trees are presented in Table 20.6. At the α = 0.05
level, two major factors (feature and imbalance approach) and their two-way inter-
action are statistically significant for the AUC and PRC response variables. One
major factor, “Classifier,” was determined not to be significant for PRC.

Considering that each of the major components is statistically significant, Tukey’s
HSD test was run to discover which levels of these factors result in significantly
different performances than the other levels of that factor. The first section of
Table 20.7 presents the HSD test results for the major factors characteristic. This
factor has eight levels (the eight temperature features used for classification), and
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Table 20.7 A comparison of the mean values of AUC and PRC obtained from Tukey’s HSD test
based on features, imbalanced approaches, classifiers, and the interaction between imbalance
approach and classifier

AUC Mean PRC Mean

Feature

Tmax, Tmin 0.810a Tmax 0.789a

Tmax 0.807a Tmax, Tmin 0.778ab

Tmean, Tsd, Tcenter, Tmax, Tmin 0.795ab Tmean, Tsd, Tcenter, Tmax, Tmin 0.762bc

Tmin 0.779bc Tmin 0.749cd

Tmean 0.766cd Tmean, Tsd 0.738cd

Tmean, Tsd 0.760cd Tmean 0.737cd

Tcenter 0.749d Tcenter 0.727d

Tsd 0.583e Tsd 0.611e

Imbalanced approach

ROS 0.799a ROS 0.772a

SMOTE 0.777b SMOTE 0.759a

Single 0.751c Single 0.741b

RUS 0.698d RUS 0.674c

Classifier

MLP 0.764a NB 0.742a

NB 0.754ab MLP 0.737a

RF 0.751b RF 0.730a

Imbalance approach*Classifier

ROS-RF 0.854a ROS-RF 0.833a

SMOTE-MLP 0.794b SMOTE-MLP 0.769b

Single-MLP 0.783b Single-MLP 0.767b

ROS-NB 0.779b SMOTE-NB 0.765b

SMOTE-NB 0.777b Single-NB 0.758bc

ROS-MLP 0.763b ROS-NB 0.754bc

SMOTE-RF 0.761b SMOTE-RF 0.743bc

Single-NB 0.758b ROS-MLP 0.728cd

RUS-MLP 0.717c Single-RF 0.698de

Single-RF 0.712cd RUS-NB 0.692e

Means that do not share a letter are significantly different. Each of these factor levels is associated
with a grouping letter. If any factor levels have the same letter, then the multiple comparison method
did not determine a significant difference between the mean response. For any factor level that does
not share a letter, a significant mean difference was identified. For example, from Imbalanced
Approach factor level, we see each of Imbalance Approach has a different letter, i.e., no groups
share a letter. Therefore, we can conclude that all four Imbalanced Approach resulted in statistically
significant different mean in AUC. Furthermore, with the order of the means also provided from
highest to lowest, we can say that ROS resulted in the highest mean in AUC followed by SMOTE,
then Single, then Feed RUS
* Means in the same column with different letters according to group types are substantially
different at p < 0.05



each is allocated a letter based on its average performance (across all the other
factors). The results of all response variables demonstrate a generally consistent
result for AUC and PRC. The Tmax, Tmin combination feature exceeds all other
features in the AUC, whereas Tmax surpasses all other features in the PRC. Tukey’s
HSD result demonstrates that the combination of temperature features Tmax, Tmin did
not differ statistically from the Tmax feature and the combination Tmean, Tsd, Tcenter,
Tmax, Tmin, but it did differ substantially from the other temperature feature in AUC.
In PRC, however, the Tmax feature was not statistically distinct from the Tmax, Tmin

combination feature, but it was significantly distinct from the other temperature
features. The Tsd feature, on the other hand, is shown to be lower than the statistically
significant margin of all other temperature features.
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The major factor levels of the four imbalance techniques perform significantly
differently, with the ROS approach surpassing the three other ways in AUC and
PRC. Nonetheless, the RUS approach is lower than all other imbalance approaches
by a statistically significant margin.

In terms of AUC, MLP did not differ statistically from NB; however, it did differ
significantly from RF. There is no statistically significant difference between the
three classifiers in PRC’s major factor.

The mean AUC and PRC values for the imbalance technique and classifier
interaction are also shown in Table 20.7. ROS-RF had a higher mean value for the
imbalance approach and classifier and significantly deviated from other interactions.
RUS-RF was the lowest performance in terms of AUC and PRC.

20.7.4 The Effect of Classifiers on Model Performance

These three ML algorithms employed in this research perform similarly in
distinguishing non-infected and BSR-infected trees according to the AUC, PRC,
and success rate. To maximise each classification system, we must comprehend their
output.

Both of the following should be taken into account prior to implementing an
algorithm: (1) Performance: while choosing a classification or regression algorithm,
the overall output of the algorithm is an important factor to consider. (2) Robustness:
while evaluating performance, it is critical to examine the robustness of the appli-
cation instead of the consistency of the fitting. In this case, we rule out the possibility
of over-generalisation. Restricting the number of models an algorithm can suggest
can help to mitigate this. In this context, MLP and RF can both be deployed, and
each offers a distinct set of benefits in addition to certain drawbacks. Furthermore,
each of these methods is competent in dealing with ambiguity and over-fitting. In
contrast to NB, this approach estimates the conditional probability of each class
value while classifying a new instance. As the expected class, it chooses based on the
highest probability. The approach estimates the necessary probability values using
training data. In order to make calculation manageable, this method uses the naive



assumption that almost all input variables are conditionally independent of the class
value.
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In reality, each of these three classifiers can be used for a variety of purposes.
There is no single algorithm that will work throughout each situation, according to
ML. A lack of a single approach consistently surpasses all others, resulting in a wide
variation in the results of an algorithm based on its applicability and dataset sizes. As
a result, the best learning algorithm may be determined by comparing the results of
various algorithms. In order to maximise the benefits of each model’s strengths while
minimising its weaknesses, it is beneficial to integrate models generated using a
variety of methodologies.

20.7.5 The Effect of Data Imbalance on Classification

As a supervised learning process, classification relies heavily on the training dataset.
Training level has a significant impact on the accuracy of the resulting classifier. In
this circumstance, the imbalanced aspect of the datasets is a significant drawback.
Due to the infrequent occurrence of minor classes, the classifier’s training is insuf-
ficient, resulting in erroneous predictions. In the case of multiclass classifiers, this
imbalance results in the underrepresentation of entries, leading to their complete
disregard. The majority of classifiers implicitly assume their data to be balanced;
therefore, standard classifiers have a majority bias.

Countering data imbalance is typically one of the most important research topics
in real-time categorisation. The fundamental assumption of classifiers that operate on
data is that the data are balanced. Therefore, the weight assigned to each sample is
equal. However, in the presence of imbalanced data, this form of operation results in
a classifier that favours the majority classes. Minority groups can even be
disregarded during the rule-making procedure if the level of imbalance is sufficiently
great. For this case, data balancing methods have been developed. Modifying
existing algorithms to improve the weightage of minority classes, boosting their
contribution levels, or sampling might be used to manage data.

This research explores the RUS, ROS, and SMOTE imbalanced techniques for
addressing the imbalance issue. Even though this is not a comprehensive list, it
serves as a good starting point for further research. This research indicates that the
ROS technique outperforms the single (without class imbalance) approach. It is more
effective at categorising non-infected and BSR-infected oil palm trees. Furthermore,
no single technique or model is optimal across all issues, so it is highly suggested to
test a variety of strategies and models to see which one is most effective.
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20.8 Conclusions

In conclusion, by simply employing the Tmax feature, RF can predict BSR disease
with a level of accuracy that is comparatively outstanding compared to MLP and
NB, which have a level of acceptable accuracy. The potential use of thermal data and
an unbalanced data method are two significant benefits extracted from this research.
These approaches can be used in conjunction with ML algorithms to categorise oil
palm trees that have been infected with G. boninense. In the future, investigations
with samples of varying degrees of severity will be utilised to investigate tempera-
ture features and identify oil palm trees that have been infected with BSR disease.
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Chapter 21
Early Detection of Plant Disease Infection
Using Hyperspectral Data and Machine
Learning

Aiman Nabilah Noor Azmi, Siti Khairunniza-Bejo, Mahirah Jahari,
and Ian Yule

Abstract Basal stem rot (BSR) caused by Ganoderma boninense (G. boninense)
fungus is one of the most destructive diseases within oil palm plantations in
Southeast Asia that result in losses of up to USD500 million annually. Breeding
programmes to develop planting materials resistant to G. boninense involve a
manual census to monitor the progress of the disease development associated with
various treatments. It is prone to error due to a lack of experience and subjective
human judgements. This current research is aimed to detect early G. boninense
infections using visible-near-infrared (VIS-NIR) hyperspectral images where there
are no BSR symptoms present. A total of 28 samples of oil palm seedlings at
5 months old were used whereby 15 of them were inoculated with the G. boninense
pathogen. Five months later, spectral reflectance oil palm leaflets taken from fronds
1 (F1) and 2 (F2) were obtained from the top view of VIS-NIR hyperspectral images.
The significant bands were identified based on the high separation between
uninoculated (H) and inoculated (U) seedlings. The results indicated that the differ-
ences were evidently seen in the NIR spectrum. It was also demonstrated that there
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was no requirement to separate F1 and F2 during the data pre-processing stage since
the use of both fronds together produced acceptable classification accuracy. Various
significant bands were later used as datasets for the development of detection models
using various types of machine learning classifiers. Results have shown a large
number of bands achieved a high level of classification accuracy of up to 100%,
while a small number of bands achieved a slightly lower level of classification
accuracy. In view of the economical aspect of hardware development, a linear
support vector machine (SVM) which was developed using a single-band reflectance
at 934 nm was identified as the best model for detection since it was not only
economical, but also demonstrated a high score of accuracy (94.8%), sensitivity
(97.6%), specificity (92.5%), and an area under the receiver operating characteristic
curve (AUC) (0.95). The findings of these studies have the potential to significantly
benefit the oil palm industry by successfully detecting asymptomatic G. boninense
infection at an early stage, allowing for prevention of disease spread.
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21.1 Basal Stem Rot (BSR) Disease due to G. boninense
Infection

Oil palm (Elaeis guineensis) is a palm species that has been extensively planted in
Southeast Asia, primarily in Indonesia and Malaysia to attempt to fulfil the global
demand for vegetable oil due to increasing population, income, and the growing
biofuel market. Nevertheless, the production of oil palm in Southeast Asia has been
affected by the never-ending basal stem rot (BSR) disease caused by the
G. boninense pathogen. The symptoms of BSR are difficult to recognise at the
early stages since there are no significant characteristics that can be visually detected
by the naked eye (Govender et al., 2017; Rakib et al., 2019; Wulandari et al., 2018).
The earliest visual symptom of G. boninense infection in oil palm seedlings can be
seen by the presence of fruiting bodies at the bole, followed by partial yellowing of
the leaves or mottling of the basal fronds and necrosis when more than 50% of the
stem base has been internally destroyed (Naher et al., 2015). Proper management,
including the use of planting materials (seedlings) that are resistant to G. boninense,
can reduce the effects of the disease on the plant (Turnbull et al., 2014). Improving
yields through better management and more disease-resistant cultivation not only
prevents the spread of BSR disease in plantations and subsequent economic losses
(Turnbull et al., 2014; Idris, 2009), but also reduces and sustains the pressure to
expand plantation areas, which thus can build towards sustainable palm oil produc-
tion. Since it is of utmost importance to distinguish between different levels of
susceptibility and resistance to plant diseases, it is important to perform pathogen
artificial inoculation at the nursery level to create an early screening test (Breton
et al., 2009). Current nursery practice uses manual inspection which relies heavily on



the visible symptoms of the disease to monitor the progression of various treatment-
related illnesses (Parker & Gilbert, 2007; Chung, 2012) and is performed by humans.
This method is prone to error due to inexperience, subjective assessment, and
asymptomatic cases. A lab-based method (Ariffin & Seman, 1993; Idris & Rafidah,
2008; Kandan et al., 2010; Madihah et al., 2014) is believed to be reliable for early
detection of G. boninense. However, the procedure involves the collection of stems,
which can lead to plant damage and eventual destruction. Other proposed methods
include an electronic nose (e-nose) (Markom et al., 2009; Kresnawaty et al., 2020),
electrical impedance (Khaled et al., 2018a, b), tomography (Mazliham et al., 2008;
Arango et al., 2016), thermal images (Bejo et al., 2018; Mohd Johari et al., 2021),
multispectral images (Bejo et al., 2018; Santoso et al., 2011), spectroscopy or
hyperspectral data (Ahmadi et al., 2017; Azmi et al., 2020; Izzuddin et al., 2013;
Lelong et al., 2010; Liaghat et al., 2014), and ground laser scanners (Bejo et al.,
2018; Husin et al., 2020a, b, c; Nur et al., 2021). A comprehensive review of the
sensors used to detect BSR by (Maryam et al., 2018) found that the scores differed in
terms of accuracy and limitations of each method. Based on a detailed review of a
near-infrared (NIR) spectroscopy sensor (Mohd Hilmi Tan et al., 2021), it can be
concluded that G. boninense can be detected accurately using NIR spectra. In
addition, spectroscopic techniques have proven to be more reliable than chemical
and imaging techniques in reactions involving organic tissues. However, the spec-
troscopy approach has a limitation whereby the instrument can only make one
measurement at a time for a small sample spot, requiring a longer data acquisition
period. In contrast, hyperspectral cameras can cover a large area in a single imaging
session, reducing the data acquisition time.
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21.2 Hyperspectral Imaging

Hyperspectral imaging is a technology that integrates conventional spectroscopy and
imaging techniques to obtain both spatial and spectral information about a scene.
Hyperspectral imaging sensors measure the light reflected from each pixel of a
two-dimensional area in narrow and contiguous wavelengths. The hyperspectral
image data is in the form of a three-dimensional structure with one spectral and
two spatial dimensions or a look-like “cube.” Therefore, every pixel in the
hyperspectral image contains a complete spectral signature equal to the number of
cube bands, as shown in Fig. 21.1. Such signatures provide sufficient information to
classify and analyse existing materials within an image.

In earlier times, hyperspectral imaging was often used for military space-borne
mapping and detection (Dale et al., 2013). Later, the application of hyperspectral
imaging has been extended to the agricultural field. The spectral reflectance of
vegetation in the electromagnetic spectrum of 400–2500 nm may contain unique
characteristics and information (Goetz et al., 1985). For example, the 400–675 nm
range (the visible spectrum) is only suitable for examination of surface features due
to the lack of penetration capability. The 675–1000 nm (the NIR spectrum) has a



better penetration capability hence the range is suitable for internal quality assess-
ment while 1000–2500 nm [short-wave infrared (SWIR)] is sensitive to the moisture
content of the sample (Huang et al., 2007).
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Fig. 21.1 Example of a hyperspectral image data cube. Each pixel consists of a complete reflection
spectrum at its band

Hyperspectral imagery has been clearly proven acceptable for evaluating crop
conditions by collecting enormous quantities of raw data that require further
processing to facilitate a wide range of applications. For example, the imagery
may be used to investigate water status (Ezenne et al., 2019), vigour assessment
(Zhang et al., 2020), biomass estimation and yield prediction (Li et al., 2020), post-
harvest (Torres et al., 2019), and disease monitoring (Abdulridha et al., 2020). This
technique has not yet been used extensively in the detection of BSR in Malaysia.

21.3 Machine Learning

Machine learning is a combination of the scientific research of algorithms and
statistical models to perform a detailed analysis that depends on patterns and
inferences (Mitchell, 1997). There are two types of machine learning algorithms;
supervised learning and unsupervised learning. Supervised learning develops math-
ematical models using a training dataset and generates an inferred function to allow
the estimation of output values. After sufficient training, the system is able to provide
predictions for any new inputs. In contrast, unsupervised learning only includes the
inputs from a dataset and discovers any structure in the dataset using grouping or
clustering data points. The cluster usually consists of samples with identical prop-
erties over the entire dataset (Behmann et al., 2014). Thus, unsupervised learning
could be used as the first step before the supervised learning process.

Furthermore, there are two types of machine learning algorithms, namely para-
metric and non-parametric. Parametric algorithms require prior knowledge to



regulate the relationship between predictors and targets. These algorithms have a
fixed structure, are faster to train and require fewer data points, but may not be as
powerful. In contrast, non-parametric algorithms do not require prior knowledge.
However, these algorithms are slower to train and have a higher model complexity
depending on the number of training data points but can result in more powerful
models (Kotlar et al., 2019). Examples of parametric algorithms are logistic regres-
sion, discriminant analysis, and Naïve Bayes. In contrast, nearest neighbour, deci-
sion trees, radial basis function (RBF) kernel SVMs, and ensemble are considered as
non-parametric algorithms due to the application of kernel matrix by computing the
pair-wise distances between the training points.
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Fig. 21.2 Visual representation of training/testing split and cross-validation

In practice, there are two types of datasets used for machine learning, namely
training and testing datasets. The training dataset is used by learning classifiers to
construct a model, while the testing dataset (also known as a validation dataset) is
used to evaluate the performance of the predictive model. The K-fold cross-valida-
tion technique can be introduced to reduce bias and variance in the training dataset.
This cross-validation method splits the training dataset into equal size K subsets
(Fig. 21.2). In each iteration, one subset is reserved as a testing dataset while the
remaining k-1 subsets left over are used as training data. Hence, each subset becomes
a testing set exactly once and becomes a training set k-1 times. Additionally, this
cross-validation method may also improve the effectiveness of the model.

Machine learning (ML) has been applied in various fields in agriculture including
crop yield estimation (Su et al., 2017), disease detection (Ferentinos, 2018), weed
detection (Pantazi et al., 2017), crop quality (Hu et al., 2017), species recognition
(Grinblat et al., 2016), animal welfare (Matthews et al., 2017), livestock production
(Morales et al., 2016), water management (Feng et al., 2017), and soil management
(Morellos et al., 2016). It can be used to facilitate strategic plantation management
by providing early plant health information, and for improving the accuracy of
disease severity classification from 80% (Husin et al., 2020a, b) to 85% (Husin
et al., 2020c). Various types of machine learning (ML) techniques have been used to



detect G. boninense infection both in the nursery and in plantation fields using
different types of datasets such as odour, electrical impedance, laser scanning data,
spectral reflectance, and synthetic aperture radar (SAR) data. Differences in accuracy
assessments are due to different types of datasets and situations, as well as different
classifiers with different properties, and different types of classifiers are sensitive to
different parameter optimisations (Husin et al., 2020a, b, c).
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21.4 Research Design

This paper presents progress work on the early detection ofG. boninense infection in
oil palm seedlings using hyperspectral data and machine learning (ML) techniques
(Fig. 21.3). It started with the identification of suitable wavelengths and was then
followed by the detection process using ML techniques. Support vector machine
(SVM), a well-knownML technique for disease detection, was first used by applying
various numbers of bands as datasets. After that, the capability of seven ML
classifiers was tested. In order to overcome the economic issues, the capability of
a small number of bands was later used as datasets for SVM models.

Therefore, the research commenced with sample preparation for the uninoculated
seedlings, defined as healthy seedlings (H) in this research; and seedlings inoculated
(U) with G. boninense. This was followed by the experimental setup of the image
acquisition which included all considerations to minimise the effects of uneven
environmental illumination, the spectral extraction of the leaflets of frond
1 (F1) and frond 2 (F2) and removal of outliers. It continued with spectral analyses
of the extracted raw spectra, which also identified the significant bands using t-test
statistical analysis. Finally, it also included the methods used to develop machine
learning models for the classification of the H and U seedlings using SVM, seven
ML classifiers and finally SVM with band reduction.

Fig. 21.3 Progress work on the early detection of G. boninense infection in oil palm seedlings
using hyperspectral data and Machine Learning techniques
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21.4.1 Research Area

The research was conducted at the UPM Transgenic Greenhouse (2°59′33.10″N
101°43′19.16″E), Serdang, Malaysia, from 24 January 2019 to 24 June 2019. The
greenhouse had dimensions of 12 m length × 6 m width × 4 m height and was made
up of polycarbonate to provide protection against UV light, and was equipped with
air conditioners, humidifiers, thermal screens, humidity, and temperature sensors.
The temperature and humidity inside the greenhouse were set at 27 °C and 90%,
respectively, following the procedure proposed by Oettli et al. (Oettli et al., 2018).

21.4.2 Preparation of Samples

A total of 28 oil palm seedlings (commercial standard crosses of Dura x Pisifera,
DxP) at the age of 4 months old were obtained from Sime Darby Plantation Research
Sdn. Bhd., Banting, Malaysia. During 2 h of travelling to UPM, every seedling was
wrapped in individual plastic and transported in a box to maintain the quality of the
seedlings. As soon as the seedlings arrived, the seedlings were allowed to acclima-
tise to the greenhouse condition for 1 month before inoculation. Only 28 oil palm
seedlings were used in this research due to the limitation of the greenhouse size.
Every seedling was arranged according to standard nursery practice to ease the
maintenance of the greenhouse. Two of the 28 oil palm seedlings were used for
the laboratory-based G. boninense infection confirmation test, resulting in 26 oil
palm seedlings available for complete analysis.

21.4.2.1 Artificial Inoculation

Fifteen out of the 28 oil palm seedlings were transplanted with rubberwood blocks
(RWBs) colonised with G. boninense pathogen, referred to as inoculated seedlings.
Two of the 15 inoculated seedlings were used for the polymerase chain reaction
(PCR) confirmation test. Meanwhile, the remaining 13 seedlings were transplanted
with uncolonised RWBs referred to as uninoculated seedlings. The seedlings were
transplanted at 5 months old. The transplanting process was achieved following the
method of Naidu et al. (Naidu et al., 2018). After transplanting, the seedlings were
arranged according to the standard triangular arrangement of the oil palm nursery
with a spacing of 1 m. All seedlings were watered 1 L daily at 10.00 am using a drip
irrigation system and fertilised every month using 50 g nitrogen (N), phosphorus (P),
and potassium (K) fertiliser.
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21.4.2.2 Polymerase Chain Reaction (PCR)

A polymerase chain reaction (PCR) test was used to confirm the G. boninense
infection after 2 months of inoculation, whereby two inoculated seedlings were
sent to the Bacteriology Laboratory, Faculty of Agriculture, UPM. The Polymerase
chain reaction (PCR) is a molecular technique to detect and identify pathogens by
amplifying the specific or targeted parts of a Deoxyribonucleic Acid (DNA)
sequence. The part needed for the test was the root because the G. boninense
infection starts at the roots of the oil palm. Figure 21.4 shows an example of an
infected seedling and the associated PCR result. As shown in Fig. 21.4a, the infected
seedling did not show any visible symptoms related to G. boninense infection such
as fungal mass or foliar symptoms such as yellowing of leaves despite testing
positive with the G. boninense pathogen. The positive result indicated that the
G. boninense pathogen had penetrated and infected the tested roots. The specific
band size was approximately 160 to 170 bp (Fig. 21.4b) that were obtained from the
roots, which authenticated the presence of the G. boninense infection. Further
confirmation was conducted using gene sequencing analysis between the specific
bands and G. boninense (taken from the GenBank dataset). The result showed 99.5
to 100% similarity index.

21.4.3 Hyperspectral Imaging

21.4.3.1 Image Acquisition

The image acquisition process was conducted inside the greenhouse. The
hyperspectral camera used in this research was a FireflEYE S185 snapshot camera
manufactured by Cubert GmbH, Ulm, Germany. The camera provided wavelengths
ranging from 450 nm to 950 nm that covered the visible (blue, green, and red) to NIR
regions. The spectral was 125, with a spectral sampling of 4 nm. The snapshot

Fig. 21.4 Sample of an infected seedling. (a) Condition of an infected seedling without symptoms
i.e., no fruiting bodies or of older leaves. However, the disease was confirmed by the (b) PCR
amplification using a specific primer of G. boninense



acquisition mode was operated by two charge-coupled devices (CCD) with a pinhole
and prisms for spatial and spectral separation.
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Fig. 21.5 Illustration of hyperspectral image acquisition setup inside the greenhouse

The camera was mounted horizontally on a custom tripod and was positioned 2.6
m from the ground level, as shown in Fig. 21.5. The system was controlled by Cube-
Pilot software (Cubert GmbH, Ulm, Germany) supplemented by the manufacturer.
The top view images of the oil palm seedlings at an age of 5 months after the
inoculation process were taken on a sunny clear day from 11:00 am to 2:00 pm local
time to receive natural illumination.

The camera was calibrated with white and dark references before each image
acquisition to reduce the effects of illumination and detector sensitivity. The inte-
gration times were almost the same. A dark calibration was performed by closing the
lens of the camera, while the white calibration was performed by placing a provided
white rectangular board (99% light reflection) flat and close to the lens. Each
collected spectrum was calibrated as:

Reflectance=
Image-Dark
White-Dark

ð21:1Þ

The white and dark calibration was tested before the actual image acquisition to
ensure good output image quality. It was achieved by observing the spectral reflec-
tance of the white reference board. If the reflectance of the white reference board was
stagnant at 100% in all bands, the calibration was accepted, and the image acquisi-
tion process could be continued. One seedling was imaged at a time, and the sample



was put on a 2 m × 2 m black background board. Since black reflects no light, the
light captured by the camera sensor while taking the image was purely reflected by
the fronds of the seedling. Figure 21.6 shows a sample of an image taken from the
top view of the seedlings to imitate the actual application in a plantation, which uses
an unmanned aerial vehicle (UAV) to capture the image.
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Frond 2
Frond 1

Fig. 21.6 Sample image taken from the top view of a seedling using a hyperspectral camera

Fig. 21.7 Spectral extraction using a Cube-Pilot of (a) frond 1 and (b) frond 2

21.4.3.2 Spectral Extraction

The acquired hyperspectral images were processed to obtain the spectra of the
uninoculated (H) and inoculated (U) leaves from the leaflets of frond 1 (F1) and
frond 2 (F2). Both fronds were clearly visible in the aerial view images because they
were at the top of the list of fronds. The inclination of the fronds could be used to
distinguish Frond 1 and Frond 2 because F1 is the youngest expanded frond and thus
less inclined than F2. The spectra were extracted randomly from the first four leaflets
on the left and right sides of F1 and F2 (Fig. 21.7). In order to minimise spectral



reflectance variations caused by frond inclinations, only four leaflets were included
in this research (Rapaport et al., 2014). Each frond yielded an average of 20 spectral
readings. As a result, the spectra collected from F1 were 558 (263 for H seedlings
and 295 for the U seedlings), while F2 was 564 (277 for H and 287 for the U
seedlings).
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21.4.3.3 Significant Bands for BSR Detection

The average spectra of the H and U seedlings from F1 and F2 were calculated and
plotted against reflectance to reveal visible and near-infrared spectrum patterns, as
well as the differences between the H and U. One spectral reflectance consisted of
125 bands. However, not all of them contain information relevant to the research,
whereby some may contain content redundancy and irrelevant information. There-
fore, the bands were filtered based on the first 35 bands (30% of the total) that
provided high separation values between the H and U. These bands were then
subjected to a result of a t-test statistical analysis, achieved using SPSS statistical
software (IBM SPSS Statistics 25, IBM, New York, USA), where the means of H
and U treatments were compared using hypothesis testing to determine whether the
treatments were different from each other at these bands. The bands that obtained
P ≤ 0.05 were considered significant as they contained the most information
concerning differences between the H and U seedlings and were thus used as input
to develop the machine learning classification models.

Figure 21.8 shows the result of reflectance analysis for the H and U seedlings
sampled from leaflets of F1 and F2 at week-20 after inoculation. As shown in this
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1(F1) and frond 2 (F2)



number Significant band (nm)

figure, F1 and F2 yielded almost similar reflectance patterns for both the H and U
seedlings. The U seedlings presented lower reflectance compared to H at the near-
infrared (NIR) range (750–950 nm), with maximum differences of 15.4% and 17.3%
for F1 and F2, respectively. The reflectance pattern generated by the U seedlings was
typical for diseased plants, with low reflectance in the NIR wavelengths due to the
destruction of xylem, which thus reduced chlorophyll pigments and caused water
deficiency.
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Table 21.1 Significant bands of frond 1 (F1) and frond 2 (F2) as identified by t-test statistical
analysis

Frond
Total
significant
bands

F1 35 810, 814, 818, 822, 826, 830, 834, 838, 842, 846, 850, 854, 858,
866, 870, 874, 878, 882, 886, 890, 894, 898, 902, 906, 910,
914, 918, 922, 926, 930, 934, 938, 942, 946, 950

F2 35 814, 818, 822, 826, 830, 834, 838, 842, 846, 850, 854, 858, 862,
866, 870, 874, 878, 882, 886, 890, 894, 898, 902, 906, 910,
914, 918, 922, 926, 930, 934, 938, 942, 946, 950

F12 35 814, 818, 822, 826, 830, 834, 838, 842, 846, 850, 854, 858, 862,
866, 870, 874, 878, 882, 886, 890, 894, 898, 902, 906, 910,
914, 918, 922, 926, 930, 934, 938, 942, 946, 950

The reflection patterns of F1 and F2 were about the same for the H and U, but H
for F2 produced slightly higher reflectance than H for F1 in the NIR spectrum. This
may indicate that the older leaves produced higher reflectance than the younger
leaves. This idea was supported by Rapaport et al. (2014), who found an increases in
NIR reflectance of Cabernet Sauvignon in the second week when the fourth leaf
(young) of the control treatment moved to the eighth nodal position (old leaf
position), which concluded that age variability mainly influenced the differences in
reflectance spectra. Furthermore, the higher reflectance of H in F2 presented higher
differences between H and U of F2, indicating higher degradation of the mesophyll
cell wall, which was similar to symptoms ofG. boninensementioned by Naidu et al.,
2018 and Nisfariza et al. (Nisfariza et al., 2010), where old leaves showed symptoms
earlier than young leaves.

A new dataset, named F12 was then introduced to identify the band based on the
separation values of the H and U seedlings, which were later confirmed using
statistical test analysis. The F12 dataset took both the reflectance values of F1 and
F2. Table 21.1 summarises the 35 significant bands obtained from F1, F2, and F12 at
450–950 nm. Based on the table, some bands were significant only in F1 and vice
versa. Considering only 35 bands instead of 125 bands could make future hardware
design easier and more economical by avoiding analytical problems with unwanted
bands.
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21.5 BSR Detection

21.5.1 BSR Detection Using SVM

Different support vector machine (SVM) kernel functions namely linear, Gaussian
RBF, and polynomial together with the significant bands of F1, F2, and F12 were
used to develop classification models to differentiate between H and U seedlings
(Azmi et al., 2020). After the classification models were constructed, an optimisation
process was carried out to determine the optimal number of bands that could classify
H and U seedlings with a high accuracy as shown in Fig. 21.9. If the accuracy was
greater than 85%, the current number of significant bands was reduced by 50%.
Otherwise, the current number of significant bands was increased by 50%. Separate
classification models were developed using F1, F2, and F12 to determine the suitable
fronds to differentiate between the seedlings. As a result, the number of bands was
optimised from 35 bands to 18, 9, 14, or 5 bands. Figures 21.10 and 21.11 show the
classification accuracy of SVM models developed using the significant bands of F1,
F2, and F12.

The results of F1 as shown in Fig. 21.10 indicate that SVM models developed
using 35 and 18 bands had achieved 100% accuracy when differentiating H and U
seedlings. Overall, linear SVM, fine Gaussian SVM, and medium Gaussian SVM
were the good F1 classifiers that scored 100% accuracy for 35 and 18; and 98.6% for
9 and 5 bands. This demonstrated that these models were not sensitive to band
reduction because they still provided high classification accuracy even when using
9 and 5 bands with a finely detailed distinction between H and U. On the other hand,
the Quadratic SVM and Coarse Gaussian SVM were very sensitive to the band

Fig. 21.9 Flowchart of band number optimisation process for reflectance dataset



reduction, whereby the use of 9 bands reduced the accuracy by at least 3%. However,
the usage of 5 bands slightly increased the classification accuracy, which indicated
5 bands were better at classifying the H and U than 9 bands.
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Fig. 21.11 Classification accuracies obtained using a different number of significant bands of F2

For F2, as shown in Fig. 21.11, fine Gaussian SVM obtained the highest accuracy
of all bands with 92.6% accuracy when using 35 bands. All models achieved
classification accuracies greater than 90% for 35 bands, except the Cubic SVM
model, which had a classification accuracy of 89.1%. Classification accuracy when
using 18 bands was slightly lower than 35 bands. For example, although Fine
Gaussian SVM gained the highest classification accuracy for 18 bands, its perfor-
mance was lowered by 2% compared to when using 35 bands, making it the classifier
with the highest percentage of loss. In contrast, the Cubic SVM was the only
classifier that maintained the same accuracy as 35 bands, with an accuracy of



89.1%. However, this kernel performed less accurately than others. The optimisation
of bands from 18 to 9 significantly impacted the accuracy of the Cubic SVM, which
dropped from 89.1% to 46.8%. In contrast, the other models only experienced a
slight decrease in classification accuracy except for the linear SVM and coarse
Gaussian SVM, which maintained the same accuracy as the 18 bands.
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Fig. 21.12 Classification accuracies obtained using a different number of significant bands of F12

For F12, as shown in Fig. 21.12, the highest classification accuracy of 95.3% was
achieved by linear SVM and fine Gaussian SVM when using 18 bands. Meanwhile,
the majority of the models achieved a classification accuracy of more than 90%, with
half of the models achieving 94.9% accuracy when using 35, 18, and 14 bands. Only
the 9 bands of the coarse Gaussian SVM model outperformed the 14 bands with
0.4% increases in classification accuracy. As for the Cubic SVM, the classification
accuracy achieved gradually decreased as the number of bands decreased, initially
94.3% for 35 bands, 91.7% for 18 bands, then reduced to 78.2% for 9 bands and
increased to 88.9% for 14 bands.

In a nutshell, the results demonstrated the NIR wavelengths had a high potential
to distinguish healthy and asymptomatic G. boninense seedlings with up to 100%
accuracy. Furthermore, the number of bands affected the classification accuracy of
the SVM models as the models developed using a high number of bands tended to
yield high accuracy, which ensured better prediction. In terms of frond number, the
SVM models developed with F1 produced more than 97% accuracy, whereas
models developed with F2 only produced a classification accuracy of more than
90%. Meanwhile, the classification accuracy obtained by F12 outperformed the
accuracy of F2 with an average difference of 4.8%, which showed that the F12
data could improve the accuracies obtained by F2, and thus confirmed that the
combination of both fronds could be used to detect the G. boninense infection in
oil palm. This result was consistent with Shafri et al. (Shafri et al., 2011), who used a
maximum likelihood classification technique with a combination of F1 and F2 to
determine the health status of oil palm seedlings and obtained a net accuracy of 82%.



However, our F12 method achieved more than 90% accuracy even when fewer
bands were used, e.g., 9 bands. Combining F1 and F2 reflectance would simplify the
process of BSR disease detection using an aerial view approach since both fronds
can be seen clearly from the top view image, and no image pre-processing process
would be needed to separate the fronds.
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21.5.2 BSR Detection Using Various Types of ML

This section presents the capability of 23 ML classifiers to classify the H and U
seedlings using 35 significant bands (Azmi et al., 2021). These bands were extracted
from F12, as listed in Table 21.1. The optimisation process was carried out to
determine the optimal number of bands to improve the classification accuracy
obtained by the ML models. Exploration runs were applied where significant
bands were reduced and increased during the optimisation process as shown in
Fig. 21.13. If there was improvement of the average accuracy of 23 models, the
number of bands in the next classification process was reduced by 50%. However, if
the accuracy was decreased, the number of bands was increased by 50%. The
optimisation process ended if the number of bands became greater than 35 or there
was no improvement in the average accuracy for at least two neighbouring band
reduction processes. The performance time for each model for each significant band
was also recorded in order to assess the capability of the model.

Table 21.2 shows the results of the ML models with F-scores greater than 95% in
the 35, 18, 14, 11, and 9 bands with their performance times. The 35, 18, and

Fig. 21.13 Flowchart of optimisation of number of bands for reflectance dataset
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14 bands each have four models that obtained an F-score above 95%, whereas the
11 and 9 bands each have only one model. A high F-score indicated that the model
was less sensitive to band optimisation, implying that high classification accuracy
may be achieved even when the model was developed with a small number of
datasets. Since several models achieved high F-score values, the best model was
determined based on the performance time. It was observed that the type of algo-
rithm and the number of bands used had an effect on model performance. For
example, the cubic SVM took the longest time to develop models for 35, 18, and
14 bands as compared to the other algorithms. In addition, the quadratic SVM
provided the longest performance time with 11.6320 s, even when using only
11 bands. Overall, the best model for classifying the H and U seedlings was a
coarse Gaussian SVM with 9 bands because it had the shortest performance time of
1.7124 s.
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Table 21.2 Classification models that achieved more than 95% F-score with their performance
times

Performance time (s)

Number of significant bands

Classification model 35 18 14 11 9

Linear SVM – 4.0248

Quadratic SVM 11.6320 –

Fine Gaussian SVM 6.1060 4.6642 3.8789

Medium Gaussian SVM 4.8147 – 3.7307

Coarse Gaussian SVM 1.7124

Medium kNN 5.7937 4.8772 3.9551

Cubic kNN 8.9532 6.1620 4.8110

Table 21.3 The five most
significant bands of F12

Total significant bands Significant band (nm)

5 926, 930, 934, 938, 942

4 930, 934, 938, 942

3 930, 934, 938

2 934, 938

1 934

21.5.3 BSR Detection Using SVM and a Small Number
of Bands

This section presents the capability of a small number of bands for BSR detection
Khairunniza-Bejo et al. (2021). The five most significant bands extracted from F12
as shown in Table 21.3 were used as datasets. The number of bands was later
reduced to 4, 3, 2, and 1. The performance of the classification models was assessed
using a confusion matrix where accuracy, sensitivity, and specificity were



calculated. Furthermore, the performance of the classification models was further
evaluated using the receiver operating characteristic (ROC) and the area under the
ROC curve (AUC). A ROC curve illustrates the performance of a classification
overall categorisation thresholds. Meanwhile, the AUC quantifies the area beneath
the ROC curve A model with 100% correct predictions would have an AUC of 1.0,
while one with 100% incorrect predictions would have an AUC of 0.0. An AUC less
than 0.5 cannot discriminate between positive and negative class values.
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Fig. 21.14 Performance of each SVM model for AUC in each reduction in the number of
wavelengths

Figure 21.14 shows the performance of each SVM model for AUC in each
reduction number of wavelengths. Based on this figure, the SVM models performed
exceptionally well in classification, with an average AUC of 0.91 to 0.96, except for
the cubic SVM, which had the lowest average AUC value of 0.42. This means that
there is a high chance that most of the models were able to distinguish between the H
and U seedlings. Since the models performed well in terms of classification, the
accuracy, sensitivity, and specificity of each model were assessed using a coefficient
of variance (CV) to determine the data dispersion. In general, almost all models
yielded a good classification accuracy of over 90% in average accuracy, sensitivity,
and specificity.

Overall, as summarised in Table 21.4, the linear SVM model had the lowest
average CV for accuracy and specificity, as well as the second-lowest value for
sensitivity. The lowest CV score of the linear SVM indicated that the reduced
number of wavelengths did not affect the consistency of the model to detect a
G. boninense infection. The linear SVM models maintained excellent accuracy
(94.80%), sensitivity (97.60%), specificity (92.50%), and AUC (0.95), even when
the number of wavelengths was optimised to 1. As a result, the best detection model
was found to be the linear SVM with datasets from 934 nm. The model could
distinguish between healthy and infected seedlings excellently and improved the
classification accuracy obtained by Azmi et al. (Azmi et al., 2020) by 1.80%.
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Table 21.4 Mean (x) and coefficients of variations (CV) for accuracy, sensitivity, and specificity of
each SVM model

Accuracy Sensitivity Specificity

Mean, x
(%)

Mean, x
(%)

Linear 94.58 0.16 91.98 0.38 97.00 0.00

Quadratic 85.58 7.34 88.18 8.20 83.50 15.48

Cubic 47.28 30.32 44.55 49.06 49.50 21.16

Fine Gaussian 94.58 0.26 91.83 0.60 97.00 0.00

Medium Gaussian 94.43 0.16 90.65 0.45 97.50 0.59

Coarse gaussian 94.55 0.35 90.68 0.57 97.75 0.51

Fig. 21.15 Summary of the findings for the research of the early detection of G. boninense
infection in the oil palm seedlings using hyperspectral data and machine learning techniques

21.6 Conclusion

This chapter presents the capability of hyperspectral imaging to detect an early stage
of G. boninense infection in oil palm seedlings using machine learning techniques.
In this research, the seedlings showed no visible symptoms after 20 weeks of
inoculation, which indicated an early stage of G. boninense infection. However,
the PCR test conducted after 4 weeks of inoculation confirmed the infection in the
seedlings. Figure 21.15 summarises the findings of this research. The hyperspectral
reflectance showed significant differences where the U seedlings yielded low reflec-
tion in the NIR spectrum as compared to the H seedlings. The NIR spectrum is



superior in detecting disease for asymptomatic infection due to its capability to
obtain information of the interior tissues, compared with VIS which can only obtain
exterior information that is invisible at the early stage of infection. The result also
demonstrated that the F12 could be used for early detection ofG. boninense infection
in oil palm seedlings since F12 produced slightly lower classification accuracy than
F1 but higher than F2. Therefore, it is acceptable for not separating between F1 and
F2 during the pre-processing stage. This information is useful because this approach
can be expanded to the more practical application using an unmanned aerial vehicle
(UAV) where the identification of fronds could be challenging in aerial images.
Indeed, SVM was identified as the best ML classifier in detecting BSR using various
types of datasets extracted from NIR. Furthermore, a large number of bands (35 and
18) could achieve 100% accuracy, while a small number of bands achieved a slightly
lower level of classification accuracy. Considering the economic aspect for hardware
implementation in the future, a linear SVM which was developed using a single-
band reflectance at 934 nm was identified as the best model for detection with a high
score of accuracy (94.8%), sensitivity (97.6%), specificity (92.5%), and the area
under the receiver operating characteristic curve (AUC) (0.95). The findings of this
research have the potential to significantly benefit the oil palm industry by success-
fully detecting asymptomatic G. boninense infection, allowing for adequate treat-
ment time and preventing disease spread. As a result, improved plantation
management could result in higher yields, increased sustainability of palm oil
production, and protection of the environment and communities in palm
oil-producing regions. For future work, the method developed in this research
could be implemented in an open environment or a real nursery to confirm its
reliability for field application.
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Chapter 22
Strategic Short Note: Development of an
Automated Speed Sprayer for Apple
Orchards in Japan

Ryozo Noguchi

Abstract Pesticide application is essential for stable fruit production in Japan.
Pesticide application in orchards is often performed by Speed Sprayers (SS),
which is equipped with a large column tank and spraying system from underneath
the canopy. However, there is risk in long time operation for the operator and as well
as the environment due to a large amount of spraying of pesticides. Therefore,
automated driving of SS and automated pesticide application technology in smart
agriculture are important in addressing the decrease in the number of farm workers
and freeing them from pesticide exposure due to pesticide spraying using advanced
sensors. Thus, it was aimed to improve the stability of straight driving control and
turning control by using not only GNSS but also optical markers, image processing
using camera images, and LiDAR. In this chapter, the development of an automated
speed sprayer for apple orchards in Japan was discussed with recent advances in
sensors and its perceptions. Therefore, the digitalization and feedback of the
spraying condition provides an opportunity to enable a shift to environment- and
ecosystem-friendly agriculture for orchard-based systems.

Keywords ArUco marker · Autonomous control · GNSS · LiDAR · RGB camera ·
Speed sprayer

22.1 Introduction

22.1.1 Apple Production and Pesticide Spraying

The current production of apples in Japan is approximately 750,000 tons. There is a
high demand for Japanese apples overseas, and approximately 50,000 tons are
exported to Taiwan and other countries. Aomori Prefecture produces the most apples
of any prefecture in Japan, with an area of approximately 20,000 ha and an annual
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production volume of approximately 450,000 tons. In Aomori Prefecture, a shift is
underway from conventional regular tree cultivation to dwarf cultivation and high-
density dwarf cultivation to improve the efficiency and productivity of apple farm
operations (Fig. 22.1).
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Fig. 22.1 Apple cultivation methods (from left to right: normal tree cultivation, cropped tree
cultivation, and high-density cropping, with target yields of approximately 40 t/ha, 50 t/ha, and
60 t/ha at maturity, respectively) (Apple Research Institute)

Apple cultivation requires a large amount of agricultural work throughout the
year, including fertilization, pollination, flower, and fruit picking, pest control,
bagging, weed management, weeding, limbing, pole setting, bagging, reflective
sheeting, leaf plucking, fruit turning, harvesting, fruit selection, pruning, and
rough skin scraping. Pest control by spraying agricultural chemicals, which takes
place from April to August, needs to be done about 12 times a year. In addition, in
recent years, Aomori Prefecture has seen many outbreaks of black star disease, and
pesticide application time has increased due to the need for careful pest control.

In many cases, pesticide application by using speed sprayers (SS) without a cabin
requires the wearing of pest control clothing, which increases both temperature and
humidity, making SS operators significantly uncomfortable. In addition, there are
reports of a shortage of SS operators due to the aging of the workforce, pesticide
exposure of operators, hearing impairment due to noise, fatigue due to vibration, and
fatal accidents due to collisions with tree branches and fruit tree trellis wires.
Furthermore, apple cultivation requires good drainage and sufficient solar radiation
to improve sweetness, and many sloping fields located in mountainous areas cause
the accident in turning over of SS (Fig. 22.2). In addition, SS is generally operated by
men. As a result, there are many cases of family farmers abandoning their apple
orchard operations due to SS accidents; then there are high expectations from the
field for automated pesticide spraying technology.

22.2 Past Efforts to Automate SS and Development Goals

In the past, an automated SS had achieved the same level of chemical application
efficiency as like manned SS by applying electric current to an induction cable
placed underground and using a sensor to detect the magnetic field generated.
However, this technology has not been widely used due to the occurrence of cable



breakage caused by rodents and the high cost of installation. In addition, markers
laid on orchard surfaces are easily destroyed or lost due to weed control or plowing.
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Fig. 22.2 Pesticide
application in a sloping field
(Soma Village, Aomori
Prefecture)

On the other hand, the spread of high-precision satellite positioning enabled
inexpensive and highly accurate automation in outdoor vehicles, contributing greatly
to the automation of agricultural machinery. However, it has been suggested that in
orchards, stable use of high-precision satellite positioning is difficult due to the
influence of fruit tree branches and leaves. Therefore, we aimed to improve the
stability of straight driving control and turning control by using not only GNSS but
also optical markers, image processing using camera images, and LiDAR.

Since orchards, where conventional SS are used, have a variety of fruit tree
species and cultivation methods, the orchard environment has a significant impact
on the development policy of automated SS. In this project, with the cooperation of
the Aomori Apple Research Institute, we focused on the automation of pesticide
application in the cultivation of dwarf trees. With an eye toward practical applica-
tion, the SSA-V1002CDX (Maruyama Co., Ltd.) was used as the first prototype, and
the SSA-V602C-DX (Maruyama Co., Ltd.) as the second prototype, to perform
automated driving and spraying using SS vehicles currently in use.

22.3 GNSS Application

A multi-band high-precision satellite positioning device capable of transmitting
reference station signals via specified low-power communications was fabricated.
In addition, we have confirmed that the signal-receiving performance is good during
the period when the fruit tree branches and leaves are at their peak growth stage in
the apple orchard at the Apple Research Institute. Furthermore, we confirmed that
the receiving performance was satisfactory on all driving paths even in the apple
orchard that had been flattened by cutting down the slope. Therefore, it was
confirmed that self-position estimation by GNSS alone was sufficient for driving
accuracy. Furthermore, it was found that the system can precisely reproduce the



driving route, driving speed, timing of pesticide spraying, etc., by learning teacher
signals in advance at the Apple Research Institute by workers who specialize in SS,
and it is clear that driving with sufficient accuracy for practical use is possible
(Fig. 22.3).
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Fig. 22.3 Speed sprayer (SSA-V602C-DX (Maruyama Co., Ltd.)) tested in the experiment, and
scenes of automatic driving, automatic spraying, and pillow turning by self-position estimation
using GNSS in a dwarf apple orchard (Aomori Apple Research Institute)

Fig. 22.4 Speed sprayer (SSA-V1002CDX (Maruyama Co., Ltd.)) used in the experiment and
automatic water application in a jointed pear orchard (T-PIRC farm, University of Tsukuba)

22.4 ArUco Markers and GNSS Application

An RTK-GNSS base station was installed in the T-PIRC farm at the University of
Tsukuba, and ArUco markers were installed in a joint pear orchard, which was close
to the row of fruit trees in the apple orchard for autonomous driving experiments
(Fig. 22.4).

First, the potential use of ArUco markers for self-location estimation in orchards
was examined. The results showed that the recognition rate of ArUco markers by the
RGB camera was 79% at 15 m, 92% at 10 m, and 99% at 5 m from the mounting
position. In addition, ArUco markers were recognized with an accuracy of more than



90% regardless of forward or backlight. However, the recognition rate dropped to
less than 25% in backlit conditions where sunlight directly hit the lens and caused
white-out.
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Fig. 22.5 Traveling paths and trajectories in a joint-tailored pear orchard

Next, automatic SS driving was examined using GNSS signals. When single-
band high-precision satellite positioning was available, the GNSS, ArUco marker,
and azimuth angle by azimuth sensor were used, and when the ArUco marker
indicating the start of turning was recognized, the SS shifted to turning. As a result,
the average difference in distance from the ideal path was 0.14 m in the driving
experiment in a joint-tailored pear orchard, confirming sufficient driving accuracy
(Fig. 22.5).

22.5 LiDAR Application

LiDAR is a sensor that measures the position of obstacles by the reflection time of an
infrared laser. Among them, 2D LiDAR has the advantages of low disturbance in
outdoor environments, relatively low cost, and low computational complexity. In
this study, a two-dimensional LiDAR (Hokuyo Electric, UST-10LX) was installed
in front of an SS to investigate automatic driving by generating a path using the
potential method (Khatib, 1990). The use of the potential method in this study was to
determine the path based on the position information of obstacles (fruit trees), so the
potential method could not be used during turning. Therefore, in addition to the
algorithm of the potential method for straight driving, a turning algorithm was added
to move to the next orchard driving path and return to straight driving. As a result,
the mean square deviation was 0.21 m and the maximum error was 0.36 m on the
orchard test course. Since the vehicle width of the SS used in this study was 1.45 m
and the orchard targeted was approximately 3.20 m wide, the driving path had a



margin of approximately 0.85 m on either side of the vehicle, which was sufficient
for adequate accuracy (Fig. 22.6).
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Fig. 22.6 Driving paths and trajectories on the orchard test course

22.6 Future Tasks

The development of automated SS in this task to date has shown a sufficient potential
to achieve automated driving and spraying in orchard fields. However, in the use of
SS in orchard fields, if the SS in operation needs to be replenished with chemicals, it
will be necessary to travel from the location where the pesticide application is
interrupted to the location where the replenishment of chemicals was interrupted.
In addition, to reduce the amount of extra pesticide application as much as possible,
it is necessary to add functions such as collection and storage of pesticide application
operation data and real-time remote data transmission. In addition, there are issues to
be addressed for practical application, such as how to use information from LiDAR
to determine the level of branches and leaves that are safe for collision with the SS
when they are extending into the driving path in the orchard. Furthermore, it is still
being confirmed whether LiDAR can safely stop an automated SS while the SS is
confronted by humans or other sudden obstacles.
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Chapter 23
The Spectrum of Autonomous Machinery
Development to Increase Agricultural
Productivity for Achieving Society 5.0
in Japan

Tofael Ahamed

Abstract Automation levels have different definitions across the Japanese,
European, and US standards. Japanese automation starts with Level 0, which is the
guidance referring to the full control of humans over the machine. Level 1 is called
function-specific automation and refers to guidance; it is the first involvement of a
vehicle controlling any function such as acceleration, steering, and braking through
the system. Level 2 refers to the optimization and coordination with multiple
functions controlled by the vehicle at the same time through an adaptive cruise
control system and lane-keeping assistance (combine function automation). Level
3 refers to the most functions controlled by the vehicle and human assistance if
needed. This level is referred to as assisted autonomy. One of the common examples
is operator-assisted autonomy with one manned tractor backing up an unmanned
tractor. Advancing from supervised autonomy to full autonomy is referred to as
Level 4, which is a significant progress for Japanese companies. The safety regula-
tions from the Japanese government need to meet at the same time to adopt full
autonomy in Japanese agriculture.

Keywords Automation level · Function-specific automation · Combine function
automation · Operator- assisted autonomy · Unmanned tractor · Full autonomy

23.1 Introduction

The agricultural field in Japan is facing a critical problem when it needs to consider
aging farmers whose average age is 67 without replacement by successors (Jöhr,
2012; The Japan Times, 2018). Despite standing in the top ten largest agricultural
businesses, with billions of dollars coming from exporting numerous products such
as traditional cuisines, Japan’s agricultural labor sector shrank 22% in the last
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10 years (Goedde et al., 2016). More specifically, the number of full-time farmers
was 1.7 million in 2014, declining from 2.2 million a decade earlier. This explains
the rise in abandoned farmland to 420,000 hectares, which is twice that in the
previous 20 years (Japan Today, 2016). The rapid labor decline phenomenon has
also led to the doubling in workload for each farmer regardless of the low safety,
possibly caused by elderly health (Qiu et al., 2014). Considering this circumstance of
labor shortages in the near future among farmers’ communities in Japan, the
Japanese government is urgently moving toward technology solutions, which refer
to autonomous machinery such as self-driving tractors (Torii, 2000; Li et al., 2009).
The machine is designed with a high-technology combination of sensors, cameras,
and internet applications to take over some primary and hard work, such as steering,
harvesting, and sorting (Mousazadeh, 2013). For instance, the government focuses
on deploying the introduction of self-driving tractors by hoping that such machines
will help farmers deal with the fieldwork and reduce the tasks at hand.
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Generally, both government and the agricultural machinery industry’s anticipa-
tion of the new technology is reducing the workload and production costs while
boosting productivity and uniformity. These benefits eventually strengthen the
competitiveness of Japanese agriculture regardless of the aging population. More-
over, most of the machines produced by Japanese manufacturers aim at rice culti-
vation and hopefully can be exported to countries with the same culture, for instance,
Southeast Asia and China (Yaoming et al., 2005). The market for autonomous
machinery in agricultural applications is expanding rapidly, creating opportunities
for domestic and international competition. Therefore, this chapter highlights the
spectrum of autonomy to address the current state of development, challenges,
industrial anticipation, and outlook to bring the technologies to the market at a
certain level of autonomy to address the acute labor shortages in agricultural field
operations.

23.2 Autonomous Machinery: Japanese Spectrum
and Current State of Development

The autonomous spectrum in Japan is essential for innovation guidance, as the low
range is conclusively a significant barrier to the development in the country and its
product’s strength in the global market. Slightly different from the USA, the
Japanese spectrum refers to five ascending levels of autonomy from zero to four
corresponding to the percentage of automated control capacity (Fig. 23.1).
According to the guideline for autonomous vehicles mentioned in the METI report
of Japan Ministry of Economy, Trade, and Industry in 2014: Driverless tractor
development is already advanced in the US, where John Deer, CASE, AGCO, and
others have working technology that can send tractors on preprogrammed routes. In
Japan, the development of autonomous machines is emerging rapidly (Japan
Ministry of Economy, Trading and Industry, 2015). The effort to realize the aim is
supported in many ways. If referred to the ascending levels of autonomy (US), the



development of autonomous machines in Japan is between levels (3) operator-
assisted autonomy and (4) supervised autonomy.
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Fig. 23.1 The development direction of the autonomous spectrum of agricultural machinery in
Japan

Japanese tech companies ranging from small scales to large firms, including
Mitsubishi, Fujitsu, and Panasonic, are racing into research development investment
to gain the best opportunities and profits in both the domestic and global markets.
India and the Asia-Pacific countries are regarded as the most excitable and potential
places for sales (The Japan Times, 2018). The autonomous machine market is
already being exploited by the vegetable-growing industry. The “agri-tech” business
has featured both Japanese and international media, with reports of indoor “vertical
farms” and automated greenhouses gaining the most coverage (Goto, 2012; Kozai
et al., 2015). The ongoing process emphasizes robotic automation using continu-
ously updated IT systems and sensors to manipulate environmental factors, evidently
enhancing work efficiencies and crop yield and product quality. For example, in
all-robot farms, all operations are performed by robots from replanting young
seedlings to the end of harvesting crops.
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23.3 Solution Developments

Although Kubota has started selling the country’s first autonomous tractors on a trial
basis, the machines still need to be monitored as Level 3 of the autonomy. Kubota
assumes that farmers will operate two tractors at a time, one with a driver and the
other unmanned. In addition, the monitoring is aligned with the developed safety
guidelines available that only allow the usage of autonomous machinery with on-site
human monitoring (Kubota, 2017). The Ministry of Agriculture, Forestry and
Fisheries (MAFF) has set objectives for achieving the commercialization of auton-
omous driving systems on farming lands and unmanned remote monitoring systems.
However, to put these methods into practical use, many hurdles remain. Therefore,
the next step is to use artificial intelligence (AI) to transform the agricultural robot
into a smart robot through a deep learning process guided by farmers with support
from technical experts (Yanmar, 2017). In addition, the challenges remaining for the
most difficult technique are making the tractor turn without colliding and reducing
the time for the exact time. Additionally, safety guidelines also need to be prepared
for remote monitoring. It is difficult for the industry to achieve the target set by the
government, and at the same time, it is making significant progress in putting the
machine into practical use and remote monitoring. The work or any instruction for
autonomous machines first needs to be preprogrammed. The machinery, which
depends on GPS and other wireless technologies, is available to locate its position.
It has been equipped with front/rear/left obstruction detection sensors, and the
installation of a safety system, such as sounding an alert, slowing down, and
stopping if an obstruction is detected within a specified distance (Zhang et al.,
2018). The evolution of machines into smart robots is robust due to AI technology
that utilizes machine intelligence and human-thinking ability to process various data
to make predictions, recommendations, and decisions.

23.4 Industrial Anticipation and Outlook

Japanese manufacturers are aiming at fully automated machines that successfully
support labor savings with high productivity. Moreover, intensive human supervi-
sion is not required but is a priority authorized with remote control. Their business
model is continually releasing new technology for new businesses and keeping up
with the trend. Technology companies are expected to automate many agricultural
tasks according to 1 year of cultivation work in an integration system. This sophis-
ticated idea is developed with the combination of cameras, GNSS, and AI learning
processes. The increasingly complex and powerful software and hardware allow
machines to achieve better interactions and full automation. A wide range of
equipment has been introduced to support their customers doing the work with the
best-trusted quality. In machinery control, the ISOBUS integrated system is for full
control over and helps the machine achieve its task. The operation program is



designed to relieve work stress and provide a better overview of the work process. In
the case of optimization, the precision of work such as seeds, fertilizers, and
pesticide applications is improved to obtain the optimal result most comfortably.
Autonomous operation replicating farmers will be the best target for machines.
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23.5 Market Commercialization with Geographic
Application Targets

Market commercialization by the major Japanese manufacturing companies is
steadily adapting GNSS guidance and autosteering systems. However, smart agri-
cultural machinery market size and forecasting show that the major contributing
parts, such as software support, including complex environmental support, produc-
tion support, and cultivation support software, must be properly addressed. Further-
more, marketing support solutions and management support solutions need to be
ensured once the autonomous units are ready for use by the farmer. Additionally,
technology support should cover GNSS guidance, autosteering, vehicle robot system
and precision agriculture technology. The development phases of market commer-
cialization have expanded from 2010 when it was only autosteering and GPS
guidance. Autonomous applications need to be more reliable under human supervi-
sion. Therefore, market commercialization targets more unmanned systems under
supervised support with the help of artificial intelligence (Fig. 23.2).

Kubota, the leading machinery manufacturer, aims to provide an autonomous
tractor model for small tractors. The existing autonomous tractor developed between
60 and 100 hp., and these tractors are aimed at lowland cultivation, such as rice
plantations, while upland and dry-field farming is supported by the M7 series. The
M7 series tractor is a flagship model with a powerful engine of between 130 and
170 horsepower (Kubota, 2017). This is due to the expansion of large-scale farmers
and farming operations. Kubota aims to expand the large-scale dry-field agricultural
equipment business in Europe and North America. The newM7models also won the
Good Design Award 2016 and are excellently equipped with an autosteering func-
tion lining up with the Farm Pilot series supported by GPS.

23.6 Conclusions

A significant shortage of the agricultural labor force is threatening Japanese sustain-
able development in agriculture and food production. This circumstance highly
motivates mechanization transformation, which creates a large market opportunity
for autonomous machinery companies. To meet market demands, Japanese firms
aim to develop integrated autonomous systems for crop plantation and prediction
that will bring the best value to users as well as financial and technical support for



ensuring long-term productivity. In addition, the Japanese government’s full support
for autonomous machinery development in agriculture applications is also expected
to meet new safety standards for supervised autonomy. Leading firms by Kubota
Corp are close to half of the current market value running for establishing completely
autonomous tractors. Assisting the development, the spectrum of autonomous
machines consisting of five ascending levels acts as a guideline for both government
and companies to further develop new products and establish a flexible legal system.
In addition, industrial sectors have solutions for the market, which can be maximized
for increasing machine productivity, user benefits, and conformation.
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Fig. 23.2 Industrial anticipation and outlook for commercialization of autonomous solution
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