
Software Defect Prediction Survey
Introducing Innovations with Multiple
Techniques

M. Prashanthi, G. Sumalatha, K. Mamatha, and K. Lavanya

Abstract The software is applied in various areas, so that the quality of the software
is very important. The software defect prediction (SDP) is used to solve the issues in
the software and enhance the quality. Even if SDP is very helpful in testing, predicting
the defective modules is not always easy. Different problems impede smooth perfor-
mance and use of model defect prediction. The prediction of software defects was an
interest of investigation, as early stage prediction of defects improves software quality
with reduced cost and effective managing of software. Researchers from different
fields help to propose different approaches that help effectively and efficiently. A
number of approaches, frameworks, methods, and modeling were proposed using
different data sets, metrics, and assessment strategies, in order to remove unneces-
sary and erroneous details from defect-prone modules. Defects in software systems
are common and may cause software users various problems. During the develop-
ment of different methods, the most probable defect location in large code bases was
quickly predicted. Prediction of software faults is an important and beneficial way
of improving software quality and reliability. The ability to predict which compo-
nents in a large software system will contain the most faults in the next release
contributes to better management projects, including an early estimation of possible
release delays, and a “correcting guide for improving the software’s quality. The
identification of bugs/defects at the early stages of the software life cycle reduces the
software development effort needed. A lot of research in software fault prediction
using machine learning methods has been advanced. There are mainly two problems
in the prediction of software defects, dimensional reduction, and imbalances of class.

Keywords Software defect prediction · SDP techniques · SDLC · SLDeep ·
Support vector machine (SVM) · COSTE

M. Prashanthi (B) · G. Sumalatha · K. Mamatha · K. Lavanya
CMR Engineering College, Hyderabad 501401, India
e-mail: prashanthi.m@cmrec.ac.in

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
A. Kumar et al. (eds.), Advances in Cognitive Science and Communications,
Cognitive Science and Technology, https://doi.org/10.1007/978-981-19-8086-2_75

783

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-8086-2_75&domain=pdf
mailto:prashanthi.m@cmrec.ac.in
https://doi.org/10.1007/978-981-19-8086-2_75


784 M. Prashanthi et al.

1 Introduction

Nowadays, for every task, the need for software is rapidly growing [1]. The software
is applied in various areas, such as traffic signal command, biopharmaceutical engi-
neering, and banking systems, due to the progression of the network society. Hence,
the quality of the software products is very important, and the important five quality
aspects are effectiveness, maintainability, availability, understandability, and relia-
bility [2]. The advanced software systems are very complex, which cause various
harmful negative impacts on the robustness and reliability of the software applications
[3, 4]. Therefore, the software testing process in required for every software devel-
opment project, which is a costly and critical process to examine the effectiveness
of the resulting product. The major points considered to test the software is the total
number of staff, the time required to complete the testing, and total amount need for
testing [5]. The reliability and quality of the software mainly depend on the software
testing, so that it is a necessary part of the whole software development procedure
[6]. Anyhow, the major problems of software testing are resource-intensive activity,
required processing time, and the budget need for testing [7]. There are two ways to
perform software testing, such as the linear and cyclical approaches. The waterfall
model is used in the linear approach, and agile, iterative, and incremental models are
used in the cyclical approach [8]. The methods used to solve the issues in software
testing and enhance the quality of software are called the software defect prediction
(SDP) techniques [1].

The mistakes in the software development process are called software defects,
which cause collapse, failure, faults, endanger human life safety, and property [2].
SDP is used to find the errors in the software before distributing it, which ensures
the software quality [9]. Also, it is the major part of software development and a
very expensive and complex part [10]. Moreover, it helps in the identification of the
potential bugs and guides the resources for debugging [11]. So that it is helpful for
enhancing the reliability and quality of the software that leads to robust and safer
software artifacts [12]. The main aim of the software quality assurance (SQA) is for
controlling the software development lifecycle (SDLC) and to make sure the present
model meets the expectations. SQA contains various applications, like SFP, software
testing, and code walkthroughs [13–15]. There are various approaches developed
in recent years, which are used in the software development process. It helps the
developers to assign the finite resources testing for the defective module [16–18].

Different machine learning algorithms for software defect prediction have been
shown in Fig. 1. The SDP is one of the important phases of the software testing
in SDLC. It is used to identify the defects in the software, and the resources are
efficiently used without violating the constraints. There are various existing methods
are developed for the prediction of software defects, in which some challenges are
identified.



Software Defect Prediction Survey Introducing Innovations … 785

Fig. 1 Machine learning algorithms for SDP

2 Literature Review

The various existing methods used for the SDP are discussed in this section.
Majd et al. [1] developed a statement-level software defect prediction using deep-

learning model (SLDeep) on static code features for predicting the software defects.
This method minimized the hardships linked in pointing out the fault positions and
also provided high-quality software with less effort and time. However, the effect of
various nodes and layers, which are available in the long short-termmemory (LSTM)
network, was not exactly known.

Qiao et al. [3] devised a deep learning-based approach for predicting the defects
in the software models. This method had high accuracy and attained maximum
performance than the conventional methods. Anyhow, the total predictions from
the change level were not known accurately.

Shi et al. [11] developed an unsupervised representation learningmethod for SDP,
named multi-perspective tree embedding (MPT embedding). The program coding
of this method was better than the conventional methods. However, this method was
not used for some software, like code completion and clone detection.

Shao et al. [19] modeled a SDP model using the correlation weighted class asso-
ciation rule mining (CWCAR). This method was addressed the feature weights and



786 M. Prashanthi et al.

class imbalance of the SDP. Anyhow, this method was not applicable in real-world
applications, like credit scoring and text classification.

Feng et al. [16] developed an oversampling technique named Complexity-based
Over Sampling Technique (COSTE) to predict the defects in the software. This
method was used to detect the diverse nature of synthetic instances, but it was not
used in case of unsupervised and semi-supervised learning research.

Cai et al. [2] developed a hybrid multi-objective cuckoo search under-sampled
software defect prediction model based on SVM (HMOCS-US-SVM). This method
was used to remove the class imbalance (CIB) problem in data sets and used to select
the parameter of SVM. However, some of the parameters of non-defective modules
and SVM were not yet solved.

Ding and Xing [7] modeled a pruned histogram-based isolation forest method
to predict the defects in the software. This method had a fast convergence rate and
enhanced prediction performance using ensemble. The drawback of this method was
the isolation features selection was carried out in a random way.

Sun et al. [20] devised a model to find the new defects data in the software, named
collaborative filtering-based sampling methods recommendation algorithm (CFSR).
This method was more effective and feasible in numerous cases to predict software
defects. Anyhow, this method was not applicable in finding the differences between
the homogeneous data, when the new data and historical data had similar software
metrics.

Yucalar et al. [5] devised a Combining Predictors method, which is based on
the multiple classifiers for the prediction of software defects. In this method, the
performance was enhanced by reducing the effort needed for finding the software
defects. However, this method was not compared with the empirical studies.

Zhao et al. [10] developed a cost-sensitive model, named Siamese parallel fully-
connected neural networks (SPFCNN) for SDP. This method was used to solve the
limited data and high dimensional problems, but it was not applicable for some forms
of software defects.

Xu et al. [12] modeled Learning Deep Feature Representation (LDFR) for SDP.
This method was useful in reducing the class imbalance problems of SDP. However,
it was difficult to predict the reasons for defects in software modules.

Tumar et al. [8] devised an intelligent approach, named Binary Moth Flame
Optimization (BMFO) with Adaptive synthetic sampling (ADASYN) for SDP. This
method was useful in solving the class imbalance problems and finding the suitable
features selection. Anyhow, the output was affected by the classifiers used in this
method.



Software Defect Prediction Survey Introducing Innovations … 787

3 Different Models and Approaches

3.1 Soft Computing

Several soft computing methods have been recommended in the past for the predic-
tion of software defects. Soft computing is a keyword of reference for aggregating
different mechanisms related to computer science, such as AI methods, machine
learning methods, and several other mechanisms which includes soft computing:

• “Artificial Neural Network”
• “Neural Network”
• “Support Vector Machine”
• “Swarm Intelligence: Ant Colony, Particle Swam Intelligence”
• “Machine learning techniques”
• “Probabilistic Reasoning”
• “Decision Tree”
• “K-Nearest Neighbors”
• “Evolutionary Computation”
• “Evolutionary Algorithm: Genetic Algorithm”
• “Fuzzy Logic”
• “Bayesian Belief Network”.

Various statistical mechanisms such as the selection of feature subsets and PCA
improve forecasting capacity in several SDP models. Software metrics play an
important role, and models are supported in accurately predicting failures.

3.2 Software Metrics

Software metric is the software unit for measuring or specifying an attribute. These
measurements are useful in determining software excellence. The quality metrics
of software are a component of software metrics which focuses on product quality,
methods and overall application features. Product metrics describe various character-
istics of products such as volume, architectural design, computational completeness,
efficiency, and quality. The process metrics of organizations are used to improve
software development and support various tasks, such as product error detection,
bug fixing during development, fault discovery during testing, and default removal
time minimization. The project measurements define features and implementation
of the projects involving software developers, recruitment patterns and price, project
plan, and efficiency in the software’s life cycle.

Various product metrics are



788 M. Prashanthi et al.

1. Chidamber and Kemerer.
2. Thequality oriented extension toChidamber andKemerermetrics suite suggested

by Tang et al.
3. Cohesion in Methods (LCOM3) suggested by Henderson-Sellers.
4. On the basis of McCabe’s complexity metric the class level metrics built.
5. Martin suggested coupling metrics.
6. The Bansiya and Davis recommended QMOOD metrics suite.
7. Lines of Code (LOC).

3.3 A General Defect Prediction Process

In order to develop a prediction model, deficiency and measurement data from the
software development efforts must be collected for use as a learning set. There is a
compromise between how well a model matches its learning set and its performance
in predicting the addition of information sets. We should therefore assess the perfor-
mance of a model by comparing the predicted deficiency of the modules in a test
against the actual deficiency. A general defect prediction process has been shown in
Fig. 2.

Fig. 2 General defect prediction process



Software Defect Prediction Survey Introducing Innovations … 789

3.4 Machine Learning-Based Models

Machine learning (ML) algorithms have proven to be very useful in solving a wide
variety of technical problems including failure, error, and defect pulses, as the soft-
ware of the system becomes more complex [21]. In cases where problem areas
are not well defined, human knowledge is limited and dynamic adaptations are
required to changing conditions for the development of efficient algorithms ML
algorithms are very useful. Machine learning comprises various types of training,
including artificial neural networks (ANNs), concept learning (CLs); Bayesian belief
networks (BBNs); strengthened training (RL), genetic algorithms (GA) and genetic
programming (GPs), and instance-based study (IBL) (AL).

3.5 The Fuzzy Logic Approach

The Fuzzy logic model builds on the concept or reasoning and develops an approxi-
mate value. It’s a step forward from traditional Boolean logic, where True or False
can exist only. The truth of any statement in the case of fuzzy logic is a degree rather
than an absolute number. The greatest advantage of Fuzzy’s logic, modeled upon the
human intuition and behavior, is that this model does not answer traditionally, but
rather gives an allotment to the human response.

The inputs of this model are placed in a series system. Then, a set of rules will be
defining how inputs are used to get the output and to find the definitive value in the
fuzzy set. The model has a set of metrics or RRML lists that are made of the available
software metrics (Fig. 3). The measurements are relevant for their respective phases
within the life cycle of software development.

Fig. 3 Fuzzy logic approach



790 M. Prashanthi et al.

3.6 Code Pattern-Based Vulnerability Detection

There are two main steps in code pattern detection technology for vulnerabilities.
During theworkout stage, control andflow techniques are used to extract key program
codes converted into a vector using the existing mainstream tool (e.g., word2vec)
that can be used for supervisory training tools in suitable neural networks. During
the detection phase, the same data processing is performed using a new software
which identifies current vulnerabilities using the learned model. Code pattern-based
vulnerability detection methods are divided into the current model training network
structures of static detection methods and dynamic detection methods, including
CNN, RNN, and LSTM.

3.7 Capture Recapture Analysis

This defect prediction technique is based on an assessment of patterns of defects
found by independent defect detection activities in a particular software artifact. The
count of latent defects is estimated by overlapping of defects identified by indepen-
dent activities or groups of testers (the amount of defects remaining in a system).
Default pooling is also called capture/recaptures techniques.

3.8 Expert Opinions

When experts are available, they use them for predictions based on their experience,
the fastest and easiest method of defect prediction. The disadvantage of this method-
ology is its subjective nature and its inability to degrade correctly in lower granularity
levels. This method may be useful if defect predictions at project or large component
level are to be carried out, and if experts have experience of forecasting them, but
if defect predictions are to be made at lower granularities (sub-systems, functions,
files, etc.), this method does not scale down. This method should not be used.

3.9 Causal Model

Causal models try to establish causal relations with the expected number of defects or
number of latent system failures, between software process and product attributes.
Fenton and Neil criticize the application of statistical software defect prediction
models for the lack of causal link modeling (BBNs). In very early stages in soft-
ware projects, Bayesian Nets were used to demonstrate their application to defect
forecasting.



Software Defect Prediction Survey Introducing Innovations … 791

3.10 Analogy-Based Predictions

Analog estimates are based on measurements between past and current projects
collected and compared in an analogy in order to determine the most analogous
project (s). Typically, size, application type, functionality complexity, and other
parameters for predictions of a software defect are used to identify like projects for
estimating. The analysis could be carried out at the level of the project, sub-system,
or component.

3.11 Multivariate Regression

Models based on regression use statistical regression to make predictions of defects
using software metrics or changing code as predictor variables. In a software project
or modules (sub-systems/functions, etc.), multiple linear regression can be used to
estimate the number of expected defects. As independent variables in regression-
based models, a variety of software processes and product metrics have been used.
Code complexity metrics and source code evolution (change) metrics are most
common.

3.12 Constructive Quality Model (COQUALMO)

The model is used to build a quality model referred to as COQUALMO by expertly
determined introductions and removals sub-models. The first estimated use of the
sub-model Deficiency Introduction (DI) under this model was the number of non-
trivial demands, design, and coding defects introduced. The DI sub-model uses
the estimation of software size and other project and process attributes (platform,
personal, etc.).

4 Automatic Software Program Repair

The primary purpose of early automating patching technology was to prevent worms
from spreading that slowly penetrated all aspects of computer software safety through
technological development.

The three phases of patching process are software failure, patch generation, and
patch assessment. The location of software defects is a requirement for automatic
repair and is primarily used to identify potential program defects or vulnerabilities.
Common fault location technologies today are divided into two categories: static fault
location technology and dynamic fault location technology. Data dependence and



792 M. Prashanthi et al.

data dependence relationship for program code tested is obtained by engineering for
the location of the static defect generated mainly via program analysis technologies
for confirming and locating the fault location. By running the default test case, a
dynamic location technology receives information on the program execution and
locates the default state position in the testing program by analyzing the execution
flow of the program.

5 Conclusion

Early detection of software defects plays an important role in the software develop-
ment cycle. In the automotive sector, development of software has largely adopted
themodel development paradigm that enables the easier integration ofmulti-provider
functionality. Deficiencies are detected early and the intended functionality, robust-
ness and compliance with model safety standards is verified and validated exten-
sively—the quality and confidence of automotive software can be substantially
improved. Effective approaches and instruments support cost reduction and reduction
in development time. SDP is now dignified as a developing research zone using ML
technologies. It is a challenging task to detect software failures during the first phase
of SDLCS, as well as to finance high-quality software systems. Themain highlight in
this paper were several methods for predicting defects such as integrated approach,
cross-project model, and machine learning algorithms. On the basis of the analysis,
the best solution can be selected to analyze, predict, and avoid all mistakes and their
limitations.

References

1. Majd A, Vahidi-Asl M, Khalilian A, Poorsarvi-Tehrani P, Haghighi H (2020) SLDeep:
statement-level software defect prediction using deep-learning model on static code features.
Exp Syst Appl 147:113156

2. Cai X, Niu Y, Geng S, Zhang J, Cui Z, Li J, Chen J (2020) An under-sampled software defect
prediction method based on hybrid multi-objective cuckoo search. Concurr Comput Pract Exp
3(5):e5478

3. Qiao L, Li X, Umer Q, Guo P (2020) Deep learning based software defect prediction.
Neurocomputing 385:100–110

4. Bowes D, Hall T, Petrić J (2018) Software defect prediction: do different classifiers find the
same defects? Softw Qual J 26(2):525–552

5. Yucalar F, Ozcift A, Borandag E, Kilinc D (2020) Multiple-classifiers in software quality
engineering: combining predictors to improve software fault prediction ability. Eng Sci Technol
Int J 23(4):938–950

6. Lee SH, Lee SJ, Shin SM, Lee EC, Kang HG (2020) Exhaustive testing of safety-critical
software for reactor protection system. Reliab Eng Syst Saf 193:106667

7. Ding Z, Xing L (2020) Improved software defect prediction using pruned histogram-based
isolation forest. Reliab Eng Syst Saf 204:107170



Software Defect Prediction Survey Introducing Innovations … 793

8. Tumar I, Hassouneh Y, Turabieh H, Thaher T (2020) Enhanced binary moth flame optimization
as a feature selection algorithm to predict software fault prediction. IEEE Access 8:8041–8055

9. Yu Q, Jiang S, Zhang Y (2017) A feature matching and transfer approach for cross-company
defect prediction. J Syst Softw 132:366–378

10. Zhao L, Shang Z, Zhao L, Zhang T, Tang YY (2019) Software defect prediction via cost-
sensitive Siamese parallel fully-connected neural networks. Neurocomputing 352:64–74

11. Shi K, Lu Y, Liu G, Wei Z, Chang J (2020) MPT-embedding: an unsupervised representation
learning of code for software defect prediction. J Softw Evol Process e2330

12. Xu Z, Li S, Xu J, Liu J, Luo X, Zhang Y, Zhang T, Keung J, Tang Y (2019) LDFR: learning
deep feature representation for software defect prediction. J Syst Softw 158:110402

13. Johnson AM Jr,MalekM (1988) Survey of software tools for evaluating reliability, availability,
and serviceability. ACM Comput Surv (CSUR) 20(4):227–269

14. Wang H, Khoshgoftaar TM, Napolitano A (2010) A comparative study of ensemble feature
selection techniques for software defect prediction. In: 2010 Ninth international conference on
machine learning and applications. IEEE, pp 135–140

15. Hall T, Beecham S, Bowes D, Gray D, Counsell S (2011) A systematic literature review on
fault prediction performance in software engineering. IEEE Trans Softw Eng 38(6):1276–1304

16. Feng S, Keung J, Yu X, Xiao Y, Bennin KE, Kabir MA, Zhang M (2020) COSTE: complexity-
based oversampling technique to alleviate the class imbalance problem in software defect
prediction. Inf Softw Technol 129:106432

17. Limsettho N, Bennin KE, Keung JW, Hata H, Matsumoto K (2018) Cross project defect
prediction using class distribution estimation and oversampling. Inf Softw Technol 100:87–102

18. Nagappan N, Ball T, Zeller A (2006) Mining metrics to predict component failures. In:
Proceedings of the 28th international conference on software engineering, pp 452–461

19. Shao Y, Liu B, Wang S, Li G (2020) Software defect prediction based on correlation weighted
class association rule mining. Knowl Based Syst 105742

20. SunZ,Zhang J, SunH,ZhuX (2020)Collaborative filtering based recommendation of sampling
methods for software defect prediction. Appl Soft Comput 90:106163

21. SongQ, Jia Z, ShepperdM,YingS, Liu J (2010)Ageneral software defect-proneness prediction
framework. IEEE Trans Softw Eng 37(3):356–370


	 Software Defect Prediction Survey Introducing Innovations with Multiple Techniques
	1 Introduction
	2 Literature Review
	3 Different Models and Approaches
	3.1 Soft Computing
	3.2 Software Metrics
	3.3 A General Defect Prediction Process
	3.4 Machine Learning-Based Models
	3.5 The Fuzzy Logic Approach
	3.6 Code Pattern-Based Vulnerability Detection
	3.7 Capture Recapture Analysis
	3.8 Expert Opinions
	3.9 Causal Model
	3.10 Analogy-Based Predictions
	3.11 Multivariate Regression
	3.12 Constructive Quality Model (COQUALMO)

	4 Automatic Software Program Repair
	5 Conclusion
	References




