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Abstract. Face recognition is one of the most popular applications in
video surveillance systems and computer vision. The researches of face
recognition in recent years have been shown that their applications are
widely used in practice. Particularly, during the pandemic of Covid-19,
there were a lot of researches relating to face recognition with and with-
out mask. The accuracy of the face recognition algorithms is depended on
technical issues, implemented solutions and models of data processing. In
this paper, we propose an improved method for face recognition based
on deep learning techniques and data augmentation. Our contribution
of the proposed method is focused on the following steps: (1) obtaining
and pre-processing data for training dataset based on image processing
techniques (i.e. noise removal, mask wearing). (2) Creating a trained
model of new dataset based on the Inception Resnet-v1. (3) Building an
application for face recognition in timekeeping of a company. We use the
two popular face datasets which are open source and publicity available:
Casia-WebFace [1] for training and LFW [2] for validation. Comparing
the several methods, the accuracy of our method is higher in case with
mask and the processing time is very fast in the real time.

Keywords: Face detection · Face recognition · Deep learning · CNN
models · Inception-resnet data augmentation

1 Introduction

The research and application of computer vision, computer graphics, image pro-
cessing and machine learning in recent years brings us a lot of advantages [3–6].
They are applied in many fields like 3D simulation, game industry, medical
diagnostics or digital heritages. These knowledge and solutions are also pop-
ular and widely used in the systems of security, access control, check-in and
check-out, objects tracking and monitoring, identify verification services, etc.,
and proved usefully and efficiently. The researches in face recognition system
have been becoming popular along with development of artificial intelligence
and deep learning techniques [7,8]. A facial recognition system is an application
capable of matching a human face from a digital image or a video frame of a
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camera with a given image in the database system. Using the machine learn-
ing methods and deep learning techniques are best solutions to obtain the high
accuracy and adapt real time processing. Transfer learning and image augmen-
tation are additional techniques in image processing and machine learning that
can help improving precision of the face recognition systems.

The existing identify systems like fingerprints, palm recognition, ID and pass-
words, etc., are developed and widely used in practice. However, these methods
existed limitations such as fake images of fingers and palms, or missing the user
name and password to check-in. Therefore, the needs for using face recognition
system is increasing recent years because of its accuracy and necessary in both
security system and objects monitoring system.

In order to build a facial recognition system, the training dataset plays an
important role in implementation of the system. Numerous facial datasets have
been published online so that anyone can download them for free testing. These
datasets are very huge, containing millions of images of various peoples. There-
fore, researchers can skip the data collection phase and concentrate on training
the model. The computer hardware is also getting more and more powerful to be
able to train models. Wearing a face mask is now commonly used as part of stan-
dard to prevent infection during the pandemic of COVID-19. This is requirements
for us in public spaces or on the means of transportation. Therefore, a system that
recognizes people with face mask is necessary in any organizations or companies.

The system ought to be real-time and robotized. One suitable solution for these
requirements is deep learning. This technology can help us recognize people with
face mask automatically. Although the numerous facial datasets are available and
free for accessing in the several researches. However, the facial dataset with mask
is not available at present. In this research, we apply the image processing tech-
niques to wear a mask on each face of the existing facial data. The dataset is then
used for training data of our model. After reviewing the state-of-the-art methods,
we propose a method for face recognition in both mask and without mask. Our
contribution focus on data creation and data augmentation. The improved points
have been shown the accuracy in face recognition with mask.

The remainder of the paper is structured as follows. Section 2 presents the
state-of-the-art methods, several applications, tools and techniques for build-
ing application in practice. Section 3 describes in detail our proposed method
including system design of the application. We present the implementation and
obtained results in Sect. 6. Section 5 includes discussion and evaluation. The last
section is our conclusion and future work.

2 Related Works

In this section, we explore the several methods for face recognition and its appli-
cation in practice. The two important points that researchers want to obtain are
accuracy and time processing. In order to improve accuracy of image classifica-
tion, Alex Krizhevsky et al. [9] (called AlexNet) presented a new CNN architec-
ture model based on increasing layers with the support of computational power.
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The advantage of this CNN architecture is that the model can extract more
features from each layer. After that, they are combined to enrich information of
the object for prediction step. Moreover, the activation function ReLU is used
as an additional computation step to speed-up the training process of the model
compared to sigmoid function. However, the limitation come from size selec-
tion (11× 11) of the first convolutional layer that can be difficult to deal with
smaller size of pictures in practice. Karen et al. [10] proposed an idea to build
templates using blocks. The VGG Block includes three parts: a convolutional
layer, an activation function, and a pooling layer. The order and number of the
block are optional. At the end, a fully connected layer and SoftMax is inserted to
make prediction. Unlike AlexNet [9], that model use 3× 3 filters to help reduce
computation, which reduces time and parameters. In contrast, they increase the
depth of CNN that lead to increase accuracy of the network model.

In the traditional approach, the neural nework layers are stacked together as
thickly as possible to create a model that can learn complex rules. However, a
very deep neural network can cause the problem of overfitting. Another problem
is vanishing gradient: the gradient is too small, that make it impossible for layers
to learn in backpropagation. Furthermore, since the picture’s information area
changes with each image, choosing the optimal kernel size is crucial. Szegedy et
al. [11] suggested a new solution for building neural networks. Instead of being
“deeper,” the network would become “wider.” Different kernels operate on the
same input. Then, to form block output, all kernel’s output are concatenated
along the channel dimension. For example, a block includes four parallel paths.
To extract information from different spatial sizes, the first three paths used
different convolutional layers from 1× 1, 3× 3, and 55. The max pooling layer
(3× 3) is used in the last path. All output must be the same size across the fourth
paths, which is a requirement for the concatenation step. Each layer must have
appropriate padding. The neural network (as previously indicated) is consuming
cost. Therefore, the authors include an extra layer 1× 1 convolution before 3× 3
and 5× 5 convolutions to reduce the number of input channels.

Kaiming et al. [12] presented another solution (namely residual block) to defeat
the vanishing/exploding gradient. Instead of making the network wider, this app-
roach introduces a technique called skip connection. It let data skip several layers
and connect directly to the output. The implementation of this block is simple.
Input x and f(x) are directly added together to create an output of block. This
kind of architecture requires x and f(x) to have the same shape. If the result x +
f(x) approximates x (can be assumed as x + f (x) = x), the residual block is easy
to learn (it means all weights and bias of the layer will be pushed to 0).

Christian et al. [11] presented a method for improving inception deep learning
model for image classification. With numerous variants of the inception network
were established, each of later versions is better compared to the previous one.
In the next research project [13], authors suggested a solution to improve the
accuracy and reduction of the computational complexity. Instead of using large
filters (e.g. 5× 5 or 7× 7), it can be expensive in computation, authors suggested
to decompose them into smaller filters.
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Considering the spatial factorization, the researchers can continue to factor-
ize n×n kernel into a combination of 1×n and n× 1 kernels. When the number
of filters is the same, 1 x n and n× 1 kernels are (1×n + n× 1)/n2 = 2/n cost
of n×n kernel. Therefore, this combination is 1− 2/n cheaper than the original
kernel. For instance, a 3× 3 convolution is divided into 1× 3 convolution fol-
lowed by a 3× 1 convolution. They found this method is 1 − 2/n = 0.3 cheaper
than the single 3× 3 convolution. In practice, they figured out that this factor-
ization does not work on early layer, but it produces incredibly good results on
the grid of medium size. In order to reduce the grid size, Christian [13] use a
pooling layer and a convolutional layer to process and combine them to pro-
duce the output of block. From these improvements, many architectural models
had been introduced: Inceptionv1, Inceptionv2, Inceptionv3, Inceptionv4. The
model in this research is based on Inception Resnet v1. The inception-resnet v1
is introduced in [14]. It is a hybrid network insprired by the inception model and
residual model. This combination increases the number of layers while keeping
the accuracy and performance.

Another research namely FaceNet is introduced by Florian et al. [15]. The
purpose is to represent faces in Euclidean space, where the distance can used to
compare similarity. The architecture of FaceNet is described as follows. A batch
of images fed into a deep architecture (this architecture is designed to turn
images into vectors). These vectors are then normalized to unit vectors using
the L2 method. The pictures (as vector form) is then processed through triplet
loss to distributed embedding the notation of similarity and dissimilarity. To the
face-mask recognition, Warot Moungsouy et al. [16,17] proposed a method based
on residual inception networks. Authors introduced a masked-face dataset based
on the Casia-WebFace dataset [1]. It consists of 2236161 masked-face images.
Then, both Casia-WebFace dataset and new dataset are combined to train the
model. The proposed method was based on FaceNet using Inception-Resnet-v1
architecture. They test with several model and the best model was the fine-
tuned FaceNet with the retrain Inception Block A on the new dataset. This
model achieved 99.2% accuracy on masked-face test dataset. They also figure
out that adding masked-face image into training data, it improve the accuracy
of the model 0.6%

Besides, the transfer learning is known as a machine learning form where a
model is built for a specific task and then reused on a second task as the starting
point to be modified. It is used in deep learning as a pre-trained model in com-
puter vision and natural language processing tasks to develop neural network
models on these problems. The transfer learning is very useful in deep learning
problems because most real-world problems usually have billions of labeled data,
and this requires complex models. It is an effective technique for optimization,
time saving and achieving better performance. Developers can use transfer learn-
ing to merge different applications into one. They can quickly train new models
for complex applications. Moreover, transfer learning is a good tool to improve
the accuracy of computer vision models. At the end of this research work, we
present a facial recognition application for attendance system based on a deep
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learning model. We utilize transfer learning by using three pre-trained convo-
lution neural networks and train them on our data which contains 10 different
classes where each class includes 20 facial images. The three networks showed
very high performance in terms of high prediction accuracy and reasonable train-
ing time. Therefore, face recognition based on deep learning can greatly improve
the recognition speed and accuracy. The last and not lead, many existing API,
Libraries, tools and techniques can help us to implement our application like
OpenCV, TensorFlow, PyTorch.

3 Our Proposed Method

3.1 Overview

This section present our proposed method. We create an effective model for
both recognizing masked faces and without masked faces. As mentioned in the
Introduction, the method consist of three steps. In the first step, we obtain the
datasets from the publish sources Casia-WebFace [1] and LFW [2]. They are the
face images without face masks. Therefore, after pre-processing these data (i.e.
noise removal) we use the image processing techniques to wear a mask on each
face. In the second step, we use the new datasets for building our training data
model based on inception resnet-v1. The last step is creating an application for
testing our face recognition system. The detail of each step is described in the
following sections.

3.2 Pre-processing Data

Cleaning Data: The dataset Casia-WebFace [1] is used for face verification
and face identification tasks including 494414 face images of 10575 peoples. Each
image has a size of 250× 250 × 3 (width × height × channel) and saved as a
jpg file. To avoid any noise in the image, an algorithm iterates through all images
and detects face coordinates. Thus, the face in the image will be extracted from
the background. In this section, the MTCNN model is used for face detection.
This model includes three nets: P-Net, R-Net and O-Net to process and obtain
the coordinates of the bounding box as a rectangle. Finally, we apply an image
processing method to format, resize image to have a uniform of width and height,
change the color to RGB and save image into a new folder (see Fig. 1). The
algorithm (Algorithm 1) below is proposed to clear data.

Creating Mask: After cleaning process, a new dataset of faces is created,
however these faces do not have masks. Thus, we now create a mask on each
face image. Firstly, a list of mask images will be retrieved from the internet that
contain ten different mask images. All of them are processed by using an edited
photo application to filter out the background. The purpose is to randomly select
masks, thereby creating diverse images when feeding them into the model. The
functions of application allows process the picture. Using a certain threshold to
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Fig. 1. Using MTCNN to clean data

Algorithm 1. Algorithm for clearing dataset
Input: the dataset from Casia-WebFace [1]
Output: Our new dataset

1: for each image in the dataset do
2: image = openImage(each file)
3: list face coordinates = MTCNN.detect faces(image)
4: if length(list face coordinates) == 1 then
5: [xmin, ymin, xmax, ymax] = list face coordinates[0]
6: face image = image[ymin:ymax, xmin:xmax]
7: face image = resize(image)
8: save(face image)
9: else

10: print(the number of faces is incorrect)
11: continue
12: end if
13: end for

enable the mask separated from the background and obtain a mask image. In
order to determine the coordinates points on the face for processing, a technique
called facial landmark [18,19] is used. This technique will mark important points
of the face according to sixty-eight coordinates. We based on this information
to wear mask on the face. Many solutions can be applied to cover a mask on the
face like determining points around mouth, nose or chin, etc.

In this case, we map the mask to corresponding points on the face using the
homography algorithm. Each face has different features and situation, applying
this algorithm gives us a better result because the mask is rotated and resized
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based on the shape of face. We want to overlay both cheeks and nose with a mask,
so the corresponding points in this case from 1 to 15 and 29. Figure 2 illustrates
how the points on the face and the mask are connected. If the coordinates of the
face change, the coordinates of the mask also change, so the mask will fit more
close to the face (see Fig. 2). The next algorithm (Algorithm 2) show the way to
wear a mask on the face:

Fig. 2. Creating a mask for the face

3.3 Creating Trained Model

In this section, we apply the FaceNet concept to create our model. As mentioned
in [15], the picture is converted into 128-D embedding using triplet loss function.
In the very first model, triplet loss function is used to train the model, but
the result is bad. The loss value decreases gradually and the model eventually
corrupts. The problems come from batch size and the label of each batch. The
Casia-WebFace dataset has 10575 labels with a batch size of 512. Therefore,
there is a small chance for images of the same person to exist in one batch, while
triplet loss function requires triplets (anchor, positive, and negative). For this
reason, we apply the FaceNet concept to convert image into embedding; but other
factors like loss function and model architecture will be changed. After training,
we will remove the last layer (dense net 10575) and add an l2 normalizer to
the model. The final model for embedding is described as in Fig. 3. We use the
Inception-resnet-v1 [14] to train our model. The model is added more Batch
Normalization Layers to normalize input data and modify the last layer to get
the 128-element embedding. This model is a stack of Stem, Inception-Resnet-A,
Reduction A, Inception-Resnet-B, Reduction-B, Inception-Resnet-C. The cross-
entropy is chosen to train the model, so the last layer must encode the image into
an n-number vector, where n is equal to the number of people in the dataset.
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Algorithm 2. Algorithm for wearing a mask on the face
Input: The data without mask
Output: The data with mask

1: for each face image in the dataset do
2: image = openImage(each file)
3: xminM, xmaxM, yminM, ymaxM //M: mouth
4: landmarks = detect 68 landmarks and mouth(image)
5: if (landmarks is not null) and (len(landmarks) = 68) then
6: coord points face = ([point[0], point[1]] for points in landmarks[1:16])
7: coord points face.append(landmarks[29][0], landmarks[29][1])
8: mask image = choose a random mask()
9: coord points mask = get coord points mask()

10: matrix HG = findHG(coord points mask, coord points face)
11: mask image HG = cv2.warpPerspective(mask image,matrix HG,imageSize)
12: image with mask = wear mask HG(image, mask image HG)
13: save(image with mask)
14: else
15: mask image = choose a random mask()
16: mask image = resize(xmaxM - xminM, ymaxM - yminM)
17: image&mask = wear mask default(image, mask image, xminM, yminM)
18: save(image&mask)
19: end if
20: end for

Due to the requirement of cross entropy, dense net has 10575 units before going
to loss function because there are 10575 different persons in the dataset and one
image belongs to only one person. But we do not want to classify 10575 people
in a dataset or train again each time we add a new person. Therefore, we keep a
dense net with 128 units to learn the features of the face before going to a dense
net of 10575 (see Fig. 4).

Training Process: Although the dataset has 10575 people, but the image
number of each person are not the same that lead to generate noise. To solve
this problem, for each epoch, a training dataset must be created in which each
person has the same number of images. After that, each person includes fifteen
images are chosen from the “no mask” dataset and fifteen images are chosen from
the “mask” dataset. We apply processing techniques to augment the data. This
will help the model predict better in different conditions (e.g. angle, light, size).
Because the data is processed at random, we make a double of data to increase
the amount of data in one epoch. Currently, we have 634500 (30× 10575×2)
images in the training dataset. We use several functions like change contrast,
change brightness, flip, and crop an image, then combine them together to gen-
erate new images.

Prediction Process: This model was inspired by the FaceNet model. It means
the model learns to distinguish between different people and group the images
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Fig. 3. Stem block

Fig. 4. Our proposed architectural model

of the same people into the same cluster. This approach is more efficient and we
do not need to train our model again each time a new image is added. In detail,
we generate an embedding of a new person and save it. To recognize an image,
the model converts the image to embedding and uses a function to measure the
similarity of this embedding with database embedding. The obtained result is a
pair with the most similarities.

3.4 Building an Application

In this section, we build an application for testing our model. It is served as a
real application to test and evaluate our model. Our application is performed
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Fig. 5. Our application for testing and evaluating

on a single Laptop (MacBook Pro 8-Core CPU, 14-Core GPU) and its camera.
The user interface of the application is created as follows (see Fig. 5).

4 Implementation and Results

In this section, we implement our proposed method and application for face
recognition system. We perform our method by using Python, TensorFlow. The
model and data are trained on Google Collab Pro. The application is then built
based on our model to describe how it is used in the face recognition system.
We implement all functions based on Python API to process data, to augment
images, to train the training data. The Inception-Resnet v1 is implemented
using Keras. To wear a mask on each face image, we use the API “FacialMask-
DataSet.py”. The output of this step is presented as follows: The face detection
is performed by using existing source code in [20]. The obtained result is matched
with data in the database (see Fig. 6 and Fig. 7)
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Fig. 6. Wearing a mask on each face image [1]

Fig. 7. Face recognition is worked well with both masked face and non-masked face

5 Discussion and Evaluation

In order to evaluate our model, we test and run with many times of epochs.
After running 49 epochs (see Fig. 8a), The loss value decrease dramatically in
the first ten epochs; after that, this value decreases slowly and is stable from 35
to 49. The goal is to evaluate how our model can process both the face with
and without mask. We combine the “no mask LFW” and “mask LFW” into one
dataset. The obtained result is plotted in Fig. 8b. The accuracy increases after
each epoch. Starting from the epoch twenty, accuracy increase insignificantly,
staying around 90%.

To compare with the existing method, the FaceNet-PyTorch [21] in python
library includes several versions of the FaceNet model. In this research work, we
use the Casia-Webface version. This model is trained with the same dataset that
we used. The dataset LFW and its variants will be reused in this experiment.

Our model will be the model at epoch 49, which is the latest model. At first,
two models will convert images from the “no mask LFW” dataset into database
embedding. Each label will have only one embedding. Then two models will
predict data in two cases: LFW (with mask) and LFW (without mask). In this
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Fig. 8. Evaluation of the stable and accuracy of our model

test we do not use a threshold to maximize the accuracy of two models, so the
unknown answer will be zero (see Table 1).

Table 1. Comparison of the precision, recall, accuracy and F1 between our model and
the existing methods

Model (training dataset) Data type Precision Recall Accuracy F1

Facenet pytorch (Casia-Webface) Without mask 0.9875 0.9961 0.9758 0.9918

With mask 0.5860 0.1697 0.1632 0.2632

Facenet pytorch (VGGFace2) Without mask 0.9969 0.9993 0.9957 0.9981

With mask 0.7024 0.4844 0.4772 0.5734

Our model Without mask 0.9740 0.9896 0.9268 0.9817

With mask 0.9644 0.9817 0.8992 0.9730

Comparing to other models, the accuracy of our model is better in case with
mask and a little lower in case without mask. In order to improve for both cases
(with and without mask), we can increase the number of epochs to run until
meet the accuracy of our expectation.

6 Conclusion and Future Work

In this research work, we explore the several methods for face recognition and
their application in practice. The methods are based on machine learning tech-
niques are very popular and suitable for almost cases in practical applications
nowadays. We proposed a method that is based on the Inception Resnet-v1 to
implement our model. The obtained results have been shown the accuracy of
our model (see Table 1). It is higher than the existing methods in case with
mask. It can be adapted with real context of pandemic of Covid-19 at present.
Besides, we built successful an application that will be applied in the company
for timekeeping. This application can help the company to check-in, check-out
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and control their staffs every days. The work in the future can be extended an
applied in other security systems as mentioned in the Introduction.
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