
Authorization and Access Control
for Different Database Models:

Requirements and Current State
of the Art

Aya Mohamed1,2(B), Dagmar Auer1,2, Daniel Hofer1,2, and Josef Küng1,2

1 Institute for Application-Oriented Knowledge Processing (FAW), Johannes Kepler
University (JKU), Linz, Austria

{aya.mohamed,dagmar.auer,daniel.hofer,josef.kueng}@jku.at
2 LIT Secure and Correct Systems Lab (SCSL), Linz Institute of Technology (LIT),

Johannes Kepler University (JKU), Linz, Austria

Abstract. Traditional SQL-based data stores have been the market
leaders for decades. However, they have drawbacks with today’s mas-
sive and highly connected data due to their low flexibility in terms of
data structures. NoSQL database models (i.e., key-value, column, doc-
ument, and graph) are designed for unstructured data in large quanti-
ties. However, they currently lack fine-grained dynamic security support,
with respect to authorization and access control, in contrast to relational
database management systems. We define advanced authorization and
access control requirements which are applicable for any database model
regardless of the application and access control scenario. According to
our discussion on existing access control features versus the requirements
in the context of each database model, we conclude whether the require-
ments are satisfied or not, and provide a corresponding overview.

Keywords: Authorization · Access control · Requirements ·
Relational database model · NoSQL database models

1 Introduction

Today, NoSQL databases are increasingly used in business and security-critical
domains, especially due to their ability to deal with big interconnected data [30].
Although NoSQL database systems have many advantages including scalability
and availability, security features, especially authorization and access control
to protect sensitive information, were not the primary focus and are not yet
considered. Our initial motivation for addressing security issues in this context
comes from our research on knowledge graphs, which rely on NoSQL data stores.

Authorization and access control are recognized as the most important secu-
rity issues in big data [26]. Authorization is the specification of access rights
in terms of who (subject) can perform which action on what (resource). Access
control is crucial for internal as well as external security in enterprise systems
to regulate and check the flow of information. It prevents access to data by
unauthorized users.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
T. K. Dang et al. (Eds.): FDSE 2022, CCIS 1688, pp. 225–239, 2022.
https://doi.org/10.1007/978-981-19-8069-5_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-8069-5_15&domain=pdf
https://doi.org/10.1007/978-981-19-8069-5_15


226 A. Mohamed et al.

In fact, there is no general solution that applies to all database models. This
is because each database model has different access control requirements to pro-
tect information based on the kind of data (i.e., structured, semi-structured,
or unstructured) regardless the underlying data store. Besides, the fine-grained
access control (FGAC) solutions developed in the relational database manage-
ment system (RDBMS) cannot be reused in non-relational data stores due to
the schemaless nature of many NoSQL models.

The objective of this work is to guide researchers and practitioners in iden-
tifying authorization and access control requirements, features, and limitations
of the selected database model. In this literature work, we aim to answer the
following research questions:

RQ1 What are the general requirements to apply fine-grained dynamic autho-
rization and access control in databases?

RQ2 Do these general requirements vary with the database model?
RQ3 Which requirements are satisfied by each database model?
RQ4 Are these requirements applicable to typical application scenarios for the

various database systems with different models?

The remainder of this paper is organized as follows. We give an overview
of related work in Sect. 2. In Sect. 3, we identify the general access control
requirements used throughout this work. Furthermore, we discuss the relational
and NoSQL database models (i.e., key-value, column, document, and graph) in
Sects. 4 to 8 respectively. For each of these models, we give an overview followed
by a discussion of the authorization and access control requirements ending with
the features that are either supported in databases or published in research
works. We then provide an overall discussion in Sect. 9. The paper concludes
with a summary in Sect. 10.

2 Related Work

There are currently many survey works in the literature addressing the topic
of security in databases, especially the NoSQL database management systems
(DBMSs). For example, the work in Sicari et al. [25] is one of the very recent
literature researches discussing security and privacy in the context of NoSQL
database models selecting one for each category, i.e., Redis, Cassandra, Mon-
goDB, and Neo4j for key-value, column, document, and graph respectively. They
compare their security features and considerations with respect to encryption,
authentication, authorization, and auditing. They also provide an overview of
the RDBMS and compare it with the NoSQL in terms of schema, redundancy,
atomicity, consistency, isolation, durability, scalability, and query language.

In Alotaibi et al. [3], access control models in different NoSQL databases
are reviewed highlighting the lack of fine-grained access control. Dindoliwala
and Morena [13] surveyed several NoSQL databases (i.e., MongoDB, Cassandra,
GemStone, db4o, and Objectivity/DB) comparing the existing authentication,
authorization, auditing, and data encryption features.



Authorization and Access Control for Different Database Models 227

Moreover, the work presented in Zahid et al. [29] performs an assessment
to evaluate the security of sharded NoSQL stores in Cassandra, MongoDB,
CouchDB, Redis, and HBase. The assessment criteria are authentication, access
control, secure configurations, data encryption, and auditing. The security fea-
tures of the same databases are analyzed again in Dadapeer and Adarsh [12]
along with defining the main security issues in NoSQL database.

In Sahafizadeh and Nematbakhsh [23], more NoSQL stores (i.e., HyperTable,
Voldemort, DynamoDB, and Neo4j) are included in the comparison besides the
five DBMSs used in [12,29]. For each database, a summary of whether the defined
security features are supported or not is provided.

However, these works have a broader focus on security-related features with
little consideration for authorization and access control. Furthermore, they select
the popular NoSQL stores to compare and analyze the existing features. On the
contrary, we focus on the database model rather than a specific DBMS.

3 Authorization and Access Control Requirements

Access control systems have to consider specific requirements to provide fine-
grained dynamic access control, e.g., attribute-based access control (ABAC). In
this section, we define five authorization and access control requirements below.

R1 Authorization policies can be described at different levels of the data model
hierarchy.

R2 Fine-grained authorization policies can be defined and enforced based on
content.

R3 Custom authorization policies can be defined.
R4 Authorization is supported at different layers.
R5 Context information can be specified in authorization policies.

The significance of requirement R1 originates from the demand to directly
access data at different granularity levels in applications, i.e., from sets of data
objects to portions of a single one. Thus, concise authorizations specification and
mechanisms to control access at varying granularity levels of data are needed [5].

The requirement R2 concerns the ability to formulate content-based access
rules for specific parts of the data storing unit in a database model. For instance,
a document is the unit of storing data in document-oriented databases consisting
of fields with keys and values. In this case, only fields satisfying certain criteria
specified in the authorization policy should be accessed. Defining and enforcing
fine-grained authorization policies in NoSQL data stores is challenging due to the
schema-free structure such that different data are stored in one huge database.

Requirement R3 is about defining rules with custom attributes, roles, or
labels based on the implemented access control model rather than only using
the built-in ones. Regarding requirement R4, the access control system should
also be able to support external authorization. External authorization is about
specifying and enforcing the authorization policy independent of the application
and the underlying DBMS. Generally, external authorization can be handled



228 A. Mohamed et al.

either in the application, which is not scalable and hard to maintain, or using
policy languages like the eXtensible Access Control Markup Language (XACML)
as an external decision-making and enforcement mechanism.

In requirement R5, the context information in the authorization policy is
associated with not only subject users requesting access, but also the resources to
be accessed. Context-aware authorization policy addresses the dynamic varying
user privileges affected by the frequent changes of context. Although the database
model has no impact on the user context (e.g., time, location, and history), not
all the database systems, especially non-relational ones, support context-based
authorization policies and access control.

The identified requirements are not only implemented differently, but also
the definition could vary from one database model to another due to the nature
of the data stored in these systems, query language, and structure of the data
model. For instance, the data model hierarchy, fine-grained level, and resource
context are not the same for all database models. Requirements R1, R2, and R5
are also identified as access control requirements for the access control model
proposed in Kulkarni [16]. We additionally discuss the proposed requirements
in the context of each database model along with the existing access control
features in the upcoming sections.

4 Relational Data

The first relational database management system (RDBMS) evolved in the 1970s
and is based on the rigid scientific fundamentals of the relational data model
developed by Edgar F. Codd [30]. Figure 1 shows the relational model hierarchy.
The data are stored in tables, also referred to as relations. The table columns
and rows are called attributes and tuples respectively. The relation has a schema
(i.e., metadata) which defines the attribute names along with their data type in
addition to the instances representing the tuples at a given instant. The RDBMS
relies on static schemas for controlling data type to maintain data integrity
and evaluates each change to avoid introducing errors or maintenance issues.
Furthermore, it supports only structured data and is managed by the common
declarative query language SQL.

Access control approaches have been developed in relational systems ever
since the first products emerged. In SQL’89, discretionary access control (DAC)
is applied such that the relation creator in an SQL database becomes its owner.
However, SQL’89 lacks control over who can create relations. The owner can then
give access privileges (i.e., SELECT, INSERT, and DELETE ) to other users
using the grant operation in SQL which applies to base relations and views. The
DROP relation privilege is not supported in SQL’89, but included in IBM DB2.
In addition, the missing revoke operation is provided in SQL’92 to take away the
previously granted privileges with the option of cascading revocation to revoke
all the grants based on the revoked privilege. In general, DAC is prone to Trojan
Horse attacks even if the relation access is strictly controlled. For instance, a
user with SELECT privilege can violate these controls by creating a copy of the



Authorization and Access Control for Different Database Models 229

Fig. 1. Relational database model

relation. Another problem is related to access rights management such that the
privileges for performing a particular task have to be explicitly granted to each
user or group of users [24].

On the other hand, mandatory access control (MAC) is based on security
labels associated with each data item and each user. Labels on data items and
users are called security classification and clearance respectively. In relational
databases, security classifications can be assigned to data at different levels of
granularity. Assigning labels to entire relations or columns are coarse-grained.
The finest granularity is at the tuple or element level. Nevertheless, secret data
can be leaked using devious means of communication, i.e., covert channels [24].

Concerning the content-based fine-grained access control in requirement R2,
there are two categories of enforcement mechanisms in the literature: view-based
and query rewriting [9]. In view-based mechanisms, the resource authorized views
are derived according to the specified authorization policy. Then, the access is
granted to these views rather than the original data resource. On the other
hand, the query rewriting enforcement approach intercepts the query submitted
for execution to apply the authorization policy criteria.

In Bertino et al. [4], an access control model for relational databases sup-
porting permission delegation and negative authorization is proposed. Moreover,
Oracle Virtual Private Database (VPD) [7] enforces access control at the row
level by appending the expressed content-based and context-based conditions
in the authorization policy to the where clause of the SQL query. A FGAC at
the cell level is introduced LeFevre et al. [17] using dynamically generated views
nullifying the unauthorized cells. Last but not least, Agrawal et al. [2] proposed
a language supporting grant command specification at the cell level [9].

The existing authorization and access control mechanisms are advanced and
satisfy all the requirements. However, as the performance of relational databases
degrades with joins, locks and impedance mismatch, non-relational databases
emerged with various data storage models to address these limitations and han-
dle large amounts of data [13]. In the following sections, we will explain each of
the NoSQL models in detail.



230 A. Mohamed et al.

5 Key-Value Data

The key-value model uses a hash table, and is the simplest one among all NoSQL
models. It is powerful and efficient in storing schema-less data in the form of data
values associated to keys which are used as indexes for quickly finding values in
large data sets [3]. Data can be either stored as rows like structured data or JSON
objects. Redis1 and Accumulo are examples of native key-value databases.

Redis is an advanced open source data store where each key-value is a pair of
binary strings for managing different types of binary data (e.g., XML documents,
images, arrays, and bytes). It provides hashes to store and query the database
objects. In Accumulo, data is stored in a distributed sorted map. The keys are
logically divided into a row key to uniquely identify the row, a column, and
an automatically generated timestamp used for versioning [19]. Each column is
further divided into a family (i.e., the logical grouping of the key), a qualifier as a
more specific key attribute, and a visibility tag which stores a logical combination
of security labels.

According to the key-value model represented in Fig. 2, the hierarchy consists
of a collection of records identified by their unique keys (cp. R1 ). Regarding
requirement R2, the finest granularity in this model is the value of a particular
key. If the value is an object with attributed values in the form of key-value
pairs, access control should be applied at the field level.

Fig. 2. Key-value database model

The Accumulo database applies fine-grained access control at the cell level
such that security labels are assigned to key-value pairs as a new element to the
key called Column Visibility. If these labels are satisfied at query time, the respec-
tive key and value will be included in the response of the user access request. On
the contrary, Redis does not implement any access control mechanism [25]. The
work in Moreno et al. [19] proposed a model design to describe who can access
the values of specific data cells in a key-value database system. The labels may
define rules for an access matrix, role-based access control (RBAC), or multilevel
models.

1 https://redis.io.

https://redis.io


Authorization and Access Control for Different Database Models 231

When matching the requirements in Sect. 3 with the available access control
features, we find that the requirement R1 is satisfied because the model hierarchy
is simple (i.e., a table and key-value entries). Requirement R2 is not satisfied
for this model as the access to the fine-grained element is based on its security
label or the assigned role rather than the content. We consider the key-value
database model satisfying requirement R3 because at least one database system
has the option to specify custom authorization policies. For instance, custom
security labels can be specified in the column visibility or each value during
writing to Accumulo. Finally, no demonstration cases are presented for external
authorization and context-based policy in key-value databases so far.

6 Column-Oriented Data

The column-oriented database is also referred to as column-family store. It is
considered as an evolution of key-value stores where data are also represented
as hash maps, but with more than one indexing level [1]. The meta model for
column-oriented databases is illustrated in Fig. 3. Each column consists of a
key and a value. The column-family is a set of rows equivalent to a table in the
relational databases. A set of column-family is defined as a key space. This model
is typically used in data mining and web applications because of its ability to
deal with massive data and complex datasets in distributed systems. However,
it is less flexible than key-value and document-oriented models because of the
column-family that must define a schema at the application level. Examples of
column-oriented databases are Cassandra2 and HBase.

Fig. 3. Column-oriented database model

According to the column-oriented database model and requirement R1,
authorization policies should specify constraints at the level of key space, column-
family, row, and column. For requirement R2, FGAC should allow to limit access
to a specific column values within a row.
2 https://cassandra.apache.org.

https://cassandra.apache.org


232 A. Mohamed et al.

Cassandra supports RBAC at the key space or column-family level according
to the user role(s) and privileges. It also uses the GRANT/REVOKE security
paradigm to manage permissions on database resources, which are assigned to
roles [13]. The resource could be key space, role, table, index, or function. In
Cassandra, access control at the object level is not available [12]. HBase enforces
authorization using access control list (ACL). Kulkarni [16] proposed a fine-
grained key-value access control (K-VAC) model where authorization policies can
be specified at the level of column-family, key space, column, or row. However,
this model is implemented as a library and restricted to specific databases, i.e.,
Cassandra and HBase.

Based on the research works and available access control features in column
databases, it is possible to specify custom authorization policies at different levels
(refer to R3 ). Additionally, the work in Kulkarni [16] claims to enforce content-
based FGAC. It also provides three examples to apply context-based access
control (R5 ) by describing user location and time of the day in the authorization
policy. Since existing policy languages have no direct support for column-oriented
data structures, this database model fails to meet requirement R4.

7 Document-Based Data

The document-based database model is the most commonly used NoSQL data
model as it can manage structured, semi-structured (e.g., XML files), and
unstructured (i.e., text) data. In this model, data is stored as schema-less docu-
ments with one or more fields as key-value pairs or nested documents as depicted
in Fig. 4. Documents are analogous to records in the RDBMS and the term col-
lection is equivalent to table, but without a pre-defined schema. Each document
is identified by a unique key which is not only used to manipulate (i.e., insert,
delete, and update) document data, but also for linking different documents. For
fast data retrieval, indexing on specified fields can be added. Document data
stores are typically used for blog software and content management systems due
to their flexibility, high performance, and horizontal scalability. Examples are
MongoDB and Couchbase.

MongoDB is a distributed general-purpose database that stores data in the
form of JSON documents without schema definition. It has collections as an
additional organization level for grouping similar documents and provides its own
query language, i.e., MongoDB Query Language (MQL). MongoDB is the first
ranked NoSQL database due to its strengths including the support of all indexing
techniques in relational databases for data sorting and faster searching [25].

The finest granularity in this database model is at the level of document fields
(cp. R1 ), however, authorization policies should consider the rest of the hierarchy
including document, collection, and up to the database level. Field-level policies
control access to fields of a document with any structure level including a field
of a document field (i.e., nested document) or an element of an array of fields.



Authorization and Access Control for Different Database Models 233

Fig. 4. Document-based database model

Document data stores support role-based access control (RBAC). Couchbase
implements 46 predefined roles with specific privileges on the entire collection3.
Most of these roles are exclusive to the enterprise version; only three roles can
be used in the community version. MongoDB has built-in and user-defined roles
that grant privileges to perform the specified actions on a given resource (i.e.,
database, collection, set of collections, or cluster). Users have no access to the
system if they are not assigned to at least one role. The first user created in the
database should be a user administrator who has the privileges to manage other
users4. Although MongoDB is adopted in many solutions due to its dynamic
structure, there is no standardization of authorization and access control.

In Colombo and Ferrari [8], the RBAC model in MongoDB is enhanced to
support purpose-based policy specification at the document level. However, the
proposed approach is limited to MongoDB. Then, the same authors refined the
granularity level of access control in MongoDB to support content-based and
context-based policies at the field level [10]. They eventually generalized the con-
cept to enforce fine-grained ABAC into document data stores at the document
or field level without prior knowledge of the document structure [11]. In Kacimi
and Benhlima [14], the work presents an architecture applied to MongoDB for
purpose-based access control policies written in XACML.

According to the existing access control features for the document-based
database model, we can say that at least one document data store satisfies each
of the proposed requirements except R4. Although the work in [14] uses XACML
in access control as a service (ACCAAS) with MongoDB, further implementa-
tion is needed to map the defined policy attributes to database values. Hence,
the solution is application-specific, but it uses a policy language to express the
authorization policy and decide whether the access request is authorized or not.

3 https://docs.couchbase.com/server/current/rest-api/rbac.html.
4 https://www.mongodb.com/docs/manual/core/authorization.

https://docs.couchbase.com/server/current/rest-api/rbac.html
https://www.mongodb.com/docs/manual/core/authorization


234 A. Mohamed et al.

8 Graph-Structured Data

The data is stored in the form of graphs having object nodes as vertices con-
nected by edges representing the relationships between them. A graph database
has no predefined schema and can be seen as a special kind of document-oriented
database where some documents act as the relationships connecting other doc-
uments [25]. It is scalable and uses shortest path algorithms for improving the
efficiency of data queries, but is more complex to manage. There are different
graph models, but the property graph (see Fig. 5) is the most common model in
graph databases.

Fig. 5. Property graph database model

Graph databases are mainly used in recommendation systems and social net-
works, however, there is no standard language for inserting data and traversing
graphs yet. Neo4j [21] is the top ranked native graph database5 with its declar-
ative query language Cypher.

Fine-grained access control in the context of graph-structured data is about
protecting nodes and edges along with their properties (i.e., attributes). However,
one of the key problems is how to describe the object of a permission [15]. This is
because usually nodes and edges are not isolated and even contexts in the graph
model can be used as an object of a permission, so protecting a single element
ignoring the related surroundings results with allowing access to specific subjects
although their connecting path could be unauthorized. In some cases, it is also
desired to permit/deny specific connections to a particular object. Hence, a way
to describe paths or subgraphs to which access rights apply is required. Another
problem concerns permission propagation among objects.

Currently, native (e.g., Neo4j) and non-native (e.g., Microsoft Azure Cos-
mosDB [28] and ArangoDB [22]) graph databases provide RBAC. Neo4j sup-
ports RBAC with predefined roles (i.e., reader, editor, publisher, architect, and
admin) in addition to subgraph and property-level access control [6]. It also has
a special database (i.e., system database) for storing the defined privileges.

5 https://db-engines.com/en/ranking/graph+dbms.

https://db-engines.com/en/ranking/graph+dbms


Authorization and Access Control for Different Database Models 235

A model-based approach is introduced in Morgado et al. [20] using metadata
with authorization rules to control access in applications that use graph-oriented
databases. It provides a predefined schema for the graph nodes and supports data
definition language (DDL) and data manipulation language (DML) operations.
This model only allows the specification of positive permissions that have to be
defined for each node. The work did not show how the model handles conflicts.
In Valzelli et al. [27], the authors proposed an initial solution towards protecting
knowledge graphs. A knowledge graph contains all the world’s main entities along
with their relations. The work introduces a property graph model to specify open
and closed policies using authorization edges between subjects (i.e., user and user
group) and resources (or resource category). However, they focus only on DAC,
MAC, and RBAC which are not sufficient to enforce FGAC. These works provide
conceptual approaches that need to be implemented on top of the graph model.

Last but not least, the work in Mohamed et al. [18] tries to couple ABAC with
a new declarative language for fine-grained, attribute-based authorization pol-
icy, named XACML for Graph-structured data (XACML4G) [25]. Even though
additional path-specific constraints in terms of graph patterns can be described,
the policy rules require specialized processing and the enforcement mechanism
needs to be adapted to work in a specific graph data store.

Current access control in graph databases does not meet the requirement R1.
For instance, the RBAC privileges in Neo4j are limited to reading/updating the
database, managing resources (i.e., databases, users, roles, and privileges) as well
as editing node labels, relationship types, and property names. Up to the best
of our knowledge, content-based FGAC cannot be applied in the existing graph
databases (R2 ). The achieved authorization in the enterprise edition of Neo4j is
specifying privileges using static commands in terms of actions to be performed
(e.g., traverse, read, and match) on particular node labels or relationship types
within graphs. These privileges are then granted or denied to custom-defined
roles. Requirement R4 is satisfied since authorization policies can be specified
and enforced in the database layer as well as externally (refer to [18]). Finally,
existing graph databases and even the recent policy language XACML4G did
not show rule specification and enforcement taking user context information,
e.g., access time and location of the user, into account.

9 Discussion

In the previous sections, we provide the current state of the art of authorization
and access control features supported within DBMSs or introduced by research
works in relational as well as NoSQL database models. We now relate the require-
ments defined in Sect. 3 with the previously discussed features taking into consid-
eration that the data model hierarchy in requirement R1 is structured differently
and the term FGAC in requirement R2 is defined differently for each database
model (see RQ2 ).

The relational model has the most sophisticated authorization and access
control mechanisms in comparison to all NoSQL models. However, it is not scal-
able to deal with big interconnected data. The fine-grained content-based model



236 A. Mohamed et al.

ABAC can be enforced in the access control systems for relational databases
taking environmental conditions into account. Moreover, custom rules can be
specified at different levels within the database (e.g., using views) or externally
using a policy language such as XACML.

As opposed to relational databases, NoSQL databases trade consistency and
security for performance and scalability [13]. The access control approaches avail-
able in the literature are specific to certain database models or even data stores.
This is due to the lack of a reference model and multiple implementations of
the same data model [9]. To address RQ3, we summarize the assessment of the
requirements for each database model in Table 1.

Table 1. Requirements for each database model

Database model R1 R2 R3 R4 R5

Relational � � � � �
Key-Value � × � × ×
Column � � � × �
Document � � � × �
Graph × × � � ×

The key-value model is the simplest with respect to structure and hierarchy,
however, it has the least information security support, i.e., basic authorization
using labelling, compared to the column, document, and graph models. The
column-oriented and document-structured database models received the most
attention among the NoSQL ones. The existing access control features together
with the research works addressed most of the authorization and access control
requirements. It is still challenging to meet the missing requirements and come up
with an authorization policy language and enforcement model that fits within
one or more non-relational database models. This is because of the lack of a
common query language and consistent support that made it hard to switch
from one NoSQL data store to another.

Regarding access control for graph databases, Neo4j is more advanced than
other graph databases. However, the existing access control features still need
to be enhanced to not only provide fine-grained access control for nodes and
relationships on the attributes level, but also protecting the graph while travers-
ing it. The proposed research works have two main drawbacks: (1) not generally
applicable because graph data stores have different query languages, and (2)
extra implementation is required upon changing or adding new policies.

For any application, there is an underlying database within a DBMS either
having a specific database model or implementing several ones. For example,
ArangoDB is a native multi-model database managing different data models
(i.e., key-value, document, or graph) with one declarative query language. There
is no access control solution that applies to all database models so far, but it is



Authorization and Access Control for Different Database Models 237

possible to enforce an access control approach in different DBMSs with a specific
model due to similar structure or a specific DBMS with different models because
of the common query language. To answer RQ4, the defined requirements are
generally applicable to typical application scenarios for various DBMSs even
with different database models if structural differences are taken into account.

10 Conclusion

Access control ensures information security and protection by enforcing autho-
rizations in terms of which users are permitted (or denied) to perform what
operations on which organizational resources. Authorization and access control
are open issues in the NoSQL data stores because these database models (i.e.,
key-value, column, document, and graph) are designed to focus on handling
new data sets with less consideration on security. Unlike NoSQL models, the
relational model has robust access control mechanisms to protect sensitive infor-
mation. However, RDBMSs are inefficient in storing and handling big data.

The traditional relational model data is structured into tables with fixed
schema where each data entry is equivalent to a row having values for the
columns. On the other hand, non-relational models have different forms. Firstly,
the key-value model is represented as a hash table with key-value entries. In the
column-oriented model, records hold a collection of dynamic columns that are
grouped into column families within a key space. The document-based model
consists of collections having document entries in the form of key-value pairs
or nested documents whereas the graph data structure is solely based on ver-
tices and edges. In this paper, we address authorization and access control, with
respect to requirements and features within existing DBMSs or research works,
for all database models.

To answer our research questions, we start with defining five requirements
to generally apply fine-grained dynamic authorization and access control for dif-
ferent database models regardless of the application scenario (refer to RQ1 and
RQ4 ). Due to the different hierarchy and fine-grained access control (FGAC)
definition for each database model in requirements R1 and R2 respectively, we
discuss them in the context of these database models along with an overview
including the meta model structure, authorization and access control features
ending with a summary matching the state-of-the-art features with the require-
ments (RQ2 ). The resource context in requirement R5 is also different for some
data structures (e.g., graph).

According to our results in Table 1, we indicate whether the requirements are
satisfied or not for the relational as well as each of the NoSQL database models
(RQ3 ). It can be concluded that the relational database model has advanced
authorization and access control features while with the NoSQL models, we can
only specify custom authorization policies on different levels, except for the graph
model. There it is not yet possible to define policies for individual elements and
their properties. However, a policy language for specific NoSQL models is only
proposed for graph databases. Last but not least, FGAC based on content and
context are currently supported by document and column models only.



238 A. Mohamed et al.

As NoSQL data stores are increasingly used today, a lot of research and
development have already been focusing on providing more sophisticated autho-
rization and access control features. Still more research is needed for the NoSQL
models to achieve a similar maturity level for authorization and access control
to that in the relational model.

Acknowledgement. The research reported in this paper has been partly supported
by the LIT Secure and Correct Systems Lab funded by the State of Upper Austria. The
work was also funded within the FFG BRIDGE project KnoP-2D (grant no. 871299).

References

1. Abadi, D.J., Boncz, P.A., Harizopoulos, S.: Column-oriented database systems.
Proc. VLDB Endow. 2(2), 1664–1665 (2009). https://doi.org/10.14778/1687553.
1687625

2. Agrawal, R., Bird, P., Grandison, T., Kiernan, J., Logan, S., Rjaibi, W.: Extend-
ing relational database systems to automatically enforce privacy policies. In: 21st
International Conference on Data Engineering (ICDE 2005), pp. 1013–1022 (2005).
https://doi.org/10.1109/ICDE.2005.64

3. Alotaibi, A., Alotaibi, R., Hamza, N.: Access control models in NoSQL databases:
an overview. JKAU 8(1), 1–9 (2019)

4. Bertino, E., Samarati, P., Jajodia, S.: An extended authorization model for rela-
tional databases. IEEE Trans. Knowl. Data Eng. 9(1), 85–101 (1997). https://doi.
org/10.1109/69.567051

5. Bertino, E., Ghinita, G., Kamra, A.: Access Control for Databases: Concepts and
Systems. Now Publishers Inc. (2011)

6. Borojevic, I.: Role-based access control in Neo4j enterprise edition (2017). https://
neo4j.com/blog/role-based-access-control-neo4j-enterprise. Accessed Aug 2022

7. Browder, K., Davidson, M.A.: The virtual private database in oracle9ir2. Oracle
Technical White Paper, Oracle Corporation 500(280) (2002)

8. Colombo, P., Ferrari, E.: Enhancing MongoDB with purpose-based access control.
IEEE Trans. Dependable Secure Comput. 14(6), 591–604 (2015). https://doi.org/
10.1109/TDSC.2015.2497680

9. Colombo, P., Ferrari, E.: Fine-grained access control within NoSQL document-
oriented datastores. Data Sci. Eng. 1(3), 127–138 (2016)

10. Colombo, P., Ferrari, E.: Towards virtual private NoSQL datastores. In: 2016 IEEE
32nd International Conference on Data Engineering (ICDE), pp. 193–204 (2016).
https://doi.org/10.1109/ICDE.2016.7498240

11. Colombo, P., Ferrari, E.: Towards a unifying attribute based access control app-
roach for NoSQL datastores. In: 2017 IEEE 33rd International Conference on Data
Engineering (ICDE), pp. 709–720 (2017). https://doi.org/10.1109/ICDE.2017.123

12. Dadapeer, N.I., Adarsh, G.: A survey on security of NoSQL databases. Int. J.
Innovative Res. Comput. Commun. Eng. 4(4), 5250–5254 (2016)

13. Dindoliwala, V.J., Morena, R.D.: Survey on security mechanisms in NoSQL
databases. Int. J. Adv. Res. CS 8(5) (2017)

14. Kacimi, Z., Benhlima, L.: XACML policies into MongoDB for privacy access con-
trol. In: Proceedings of the Mediterranean Symposium on Smart City Application,
SCAMS 2017. Association for Computing Machinery, New York (2017). https://
doi.org/10.1145/3175628.3175646

https://doi.org/10.14778/1687553.1687625
https://doi.org/10.14778/1687553.1687625
https://doi.org/10.1109/ICDE.2005.64
https://doi.org/10.1109/69.567051
https://doi.org/10.1109/69.567051
https://neo4j.com/blog/role-based-access-control-neo4j-enterprise
https://neo4j.com/blog/role-based-access-control-neo4j-enterprise
https://doi.org/10.1109/TDSC.2015.2497680
https://doi.org/10.1109/TDSC.2015.2497680
https://doi.org/10.1109/ICDE.2016.7498240
https://doi.org/10.1109/ICDE.2017.123
https://doi.org/10.1145/3175628.3175646
https://doi.org/10.1145/3175628.3175646


Authorization and Access Control for Different Database Models 239

15. Kalajainen, T., et al.: An access control model in a semantic data structure: case
process modelling of a bleaching line. Department of CS and Engineering (2007)

16. Kulkarni, D.: A fine-grained access control model for key-value systems. In: Pro-
ceedings of the Third ACM Conference on Data and Application Security and
Privacy, CODASPY 2013, pp. 161–164. Association for Computing Machinery,
New York (2013). https://doi.org/10.1145/2435349.2435370

17. LeFevre, K., Agrawal, R., Ercegovac, V., Ramakrishnan, R., Xu, Y., DeWitt, D.:
Limiting disclosure in hippocratic databases. In: 30th International Conference on
Very Large Databases, VLDB Endowment, Toronto, Canada, pp. 108–119 (2004)

18. Mohamed, A., Auer, D., Hofer, D., Küng, J.: Extended authorization policy for
graph-structured data. SN Comput. Sci. 2(5), 1–18 (2021)

19. Moreno, J., Fernandez, E.B., Fernandez-Medina, E., Serrano, M.A.: A security pat-
tern for key-value NoSQL database authorization. In: Proceedings of the 23rd Euro-
pean Conference on Pattern Languages of Programs, EuroPLoP 2018. Association
for Computing Machinery, New York (2018). https://doi.org/10.1145/3282308.
3282321

20. Morgado, C., Busichia Baioco, G., Basso, T., Moraes, R.: A security model for
access control in graph-oriented databases. In: 2018 IEEE International Conference
on Software Quality, Reliability and Security (QRS), pp. 135–142 (2018). https://
doi.org/10.1109/QRS.2018.00027

21. Neo4j: Neo4j documentation (2022). https://neo4j.com/docs/. Accessed Aug 2022
22. Oasis: Access control in ArangoDB (2019). https://www.arangodb.com/docs/

stable/oasis/access-control.html. Accessed Aug 2022
23. Sahafizadeh, E., Nematbakhsh, M.A.: A survey on security issues in big data and

NoSQL. Adv. Comput. Sci. Int. J. 4(4), 68–72 (2015)
24. Sandhu, R.: Relational database access controls. Handb. Inf. Secur. Manag. 95,

145–160 (1994)
25. Sicari, S., Rizzardi, A., Coen-Porisini, A.: Security&privacy issues and challenges in

NoSQL databases. Comput. Netw. 206, 108828 (2022). https://doi.org/10.1016/j.
comnet.2022.108828

26. Tankard, C.: Big data security. Netw. Secur. 2012(7), 5–8 (2012). https://doi.org/
10.1016/S1353-4858(12)70063-6

27. Valzelli, M., Maurino, A., Palmonari, M., Spahiu, B.: Towards an access control
model for knowledge graphs (2021)

28. Weiss, T., et al.: Azure role-based access control in azure cosmos DB (2022).
https://docs.microsoft.com/en-us/azure/cosmos-db/role-based-access-control.
Accessed Aug 2022

29. Zahid, A., Masood, R., Shibli, M.A.: Security of sharded NoSQL databases: a
comparative analysis. In: 2014 Conference on Information Assurance and Cyber
Security (CIACS), pp. 1–8 (2014). https://doi.org/10.1109/CIACS.2014.6861323

30. Zugaj, W., Beichler, A.: Analysis of standard security features for selected NoSQL
systems. Am. J. Inf. Sci. Technol. 3(2), 41–49 (2019)

https://doi.org/10.1145/2435349.2435370
https://doi.org/10.1145/3282308.3282321
https://doi.org/10.1145/3282308.3282321
https://doi.org/10.1109/QRS.2018.00027
https://doi.org/10.1109/QRS.2018.00027
https://neo4j.com/docs/
https://www.arangodb.com/docs/stable/oasis/access-control.html
https://www.arangodb.com/docs/stable/oasis/access-control.html
https://doi.org/10.1016/j.comnet.2022.108828
https://doi.org/10.1016/j.comnet.2022.108828
https://doi.org/10.1016/S1353-4858(12)70063-6
https://doi.org/10.1016/S1353-4858(12)70063-6
https://docs.microsoft.com/en-us/azure/cosmos-db/role-based-access-control
https://doi.org/10.1109/CIACS.2014.6861323

	Authorization and Access Control for Different Database Models: Requirements and Current State of the Art*-12pt
	1 Introduction
	2 Related Work
	3 Authorization and Access Control Requirements
	4 Relational Data
	5 Key-Value Data
	6 Column-Oriented Data
	7 Document-Based Data
	8 Graph-Structured Data
	9 Discussion
	10 Conclusion
	References




