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Optimization of an Inventory Model
with Demand Dependent on Selling Price
and Stock, Nonlinear Holding Cost Along
with Trade Credit Policy

Mamta Kumari , Pankaj Narang , Pijus Kanti De ,
and Ashis Kumar Chakraborty

Abstract The demand for a product is influenced by a number of factors, including
the selling price and the displayed stock level, among others. Considering this
scenario, an EOQ inventory model is developed where demand is a function of
both selling price and the inventory level which is one of the main contributions of
this research work. Holding cost is assumed to be nonlinearly dependent on stock.
Besides that, supplier grants a full trade credit policy to the retailer. This policy is
very advantageous for both the counterpart—the supplier as well as the retailer. The
supplier can attract more customers by offering a delay period whereas the latter
enjoys the benefit of getting goods without instant payment. The proposed mathe-
matical model aims to find out the optimal selling price and optimal length of the
replenishment cycle so as to maximize the total profit of the retailer per unit time.
Several theorems are well-established in order to reach to the optimal solution. A
numerical example is also presented to demonstrate the suggested inventory model,
and a sensitivity analysis is executed to highlight the findings of the inventory model
and put forward valuable managerial insights. This research work can be helpful to
the business communities facing nonlinear demand patterns. Businesses that want
to offer trade credit policies but are dealing with nonlinear holding costs may also
find it helpful. Sensitivity analysis can be useful in determining the impact of various
cost parameters on the total generated profit.
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Introduction

Majority of the inventory models presume demand rate to be constant throughout
the inventory cycle. In real life, demand is observed to be dependent on many factors
such as selling price and displayed stock level. Customers show a strong desire
to buy more products when supermarkets showcase them in huge quantities in the
showroom according to Levin et al. [15]; this frequently increases product demand.
Hence, displayed stock plays a significant role in the analysis of inventory. The
inventory model presented by Datta and Pal [7] assumes that demand is a function
of inventory level. Wu and his co-researchers [19] presented an inventory model for
non-instantaneous deteriorating products with partial backlogging as well as stock
level dependent demand.

Pricing is another key aspect that influences the demand for a product. A vital
question that arises in the inventory model is what should be an item selling price
so that the seller gains maximum benefits while satisfying customer needs. Various
researchers and academicians have formulated different inventorymodels with price-
dependent demand. Alfares and Ghaithan [1] formulated an inventory model with
price-dependent demand as well as quantity discounts where holding cost was
allowed to vary with time. Chang and his collaborators [4] portrayed an integrated
model of inventory with the policy of trade credit tied with order size and price-
dependent demand. In that same year, an integrated inventory system was framed
with trade credit to be dependent on the size of the order [18].

One another assumption that is prevalent in economic order quantity (EOQ) inven-
tory models is that the buyer should pay the seller upon receipt of goods. Small
businesses that do not have enough money to pay for the ordered goods instantly
suffer a lot due to this policy. Trade credit policy provides a chance to the buyer to
buy goods without paying instantly. The buyer is granted a trade credit period in
order to settle accounts. The trade credit policy is often utilized to stimulate demand.
Haley and Higgins [10] were the first to frame an EOQ inventory model consid-
ering allowable delay in payments. Following that, Goyal [9] investigated an EOQ
model of inventory with trade credit where the buyer is exempted from clearing
the payment and earns interest throughout the credit period. Various trade credit
policies have been developed as a result of diversification of trade and changes in
the business environment. Musa and Sani [17] constructed a model of inventory for
decaying items allowing delay in payments. After that, Khanra and his collaborators
[13] formulated an inventory model considering shortages and permissible delay in
payments for a single item where demand of customers is a quadratic function of
time. An inventory model was developed with demand dependent on stock, partial
backlogging, and nonlinear holding cost by Cárdenas-Barrón et al. [3]. The retailer
was allowed a full trade credit period to clear the debt by the supplier. Ghosh et al. [8]
constructed an inventory model with multiple advanced and delayed payment poli-
cies along with complete backordering for perishable items. Similary, other authors
have made valuable contributions to the existing literature [5, 6, 11, 12, 14].
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Some of the researchers have formulated inventory models where demand is
dependent on both selling price and displayed stock level. By taking into account
the exhibited level of stock and selling price-dependent demand, Hsieh and Dye
[11] formulated an inventory model for deteriorating items. To find out the optimal
solution, particle swarm optimization is applied. An EOQ inventory model with
demand dependent on stock and selling price for deteriorating items was analyzed
by Mishra et al. [16] where an estimation of the optimal order quantity, selling price,
and preservation technology investment was made from the retailer’s perspective.

The objectives of this study are as follows:

• Majority of the existing works are based on the assumption that demand always
remains constantwhich is far from reality.Many factors influence demand, notably
selling price, displayed goods, and so on. The aim of this study is to build an
inventorymodel that considers demand as a function of selling price and displayed
stock.

• Recent review of the literature suggests that holding cost is considered to be
linearly dependent on stock which need not to be always. It totally depends on the
nature of the item. In this paper, we have considered holding cost to be nonlinearly
dependent on stock. Besides that, the supplier-retailer relationship is analyzed
where the supplier offers a full trade credit period to the retailer.

• The main goal of the proposed study is to find out the optimal selling price at
which goods are to be sold and the optimal replenishment length of the cycle
so as to maximize the retailer’s total generated profit considering demand to be
nonlinear, nonlinear holding cost along with the trade credit policy. A numerical
example is also presented to demonstrate the findings, and a sensitivity analysis
is done to highlight the results.

The paper is further organized as follows: Section “Assumptions and Nota-
tions” proposes the assumptions and notations required to establish the inventory
model mathematically. Section “Mathematical Model” constructs the mathemat-
ical model considering demand to be nonlinear, nonlinear holding cost, and trade
credit. Section “Theoretical Results and Optimization Procedure” discusses some
important theoretical results and optimization procedures necessary to reach to the
optimal solution. Section “Numerical Example” illustrates a numerical example. In
Section “Sensitivity Analysis”, sensitivity analysis is done by changing one param-
eter at a time and keeping rest of the parameter’s constant. Section “Managerial
Insights” highlights some important results. Finally, Section “Conclusion” concludes
the findings as well as suggests some important future research directions.
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Assumptions and Notations

Assumptions

1. The inventory system’s planning horizon is infinite.
2. Demand is assumed to be a function of stock level and selling price given by

D(t) = α(a − bp)[q(t)]β when q(t) ≥ 0

3. Holding cost is nonlinearly dependent on stock. It is represented as follows:

H(t) = h[q(t)]γ when γ > 0

If γ = 1, then holding cost is considered to be linearly dependent on stock.
4. Rate of replenishment is instantaneous with negligible lead-time.
5. Retailer is granted a full trade credit period by the supplier.

Notations

See Table 10.1.

Table 10.1 Notations used to establish the inventory model

Parameter Unit Description Parameter Unit Description

c $/unit Purchasing price
per unit

M unit time Trade credit
period offered by
the supplier to the
retailer

o $/order Ordering cost per
order

Ip %/unit time Interest paid by
the retailer

h $/unit/unit time Holding cost per
unit item per unit
time

γ Holding cost
elasticity; γ > 0

β Demand elasticity
rate; 0 ≤ β < 1

α Demand rate scale
parameter

Decision variables

Ie %/unit time Interest earned by
the retailer

p Selling price per
unit item

TP(p, T ) $/unit time Total profit per
unit time

T Replenishment
cycle length
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Mathematical Model

An inventory model is formulated where the cost of holding goods varies nonlinearly
with stock. Initially, Q units of product exist in the inventory of retailer. Demand
is dependent upon the level of stock carried in the inventory and selling price. The
level of inventory decreases due to demand during the interval [0, T ]. At time t = T ,
it drops down to zero. After that, again a replenishment order of Q units is placed.
The beginning of the next inventory cycle is marked by the arrival of products.
The supplier also offers a full trade credit period M to the retailer additionally. The
inventory situation is best described by the following differential equations:

dq(t)

dt
= −α(a − bp)[q(t)]β, 0 ≤ t ≤ T (10.1)

With the following boundary conditions: q(0) = Q and q(T ) = 0. Solving
the differential equation (10.1) with the above-mentioned boundary conditions, the
following results are obtained:

q(t) = [
Q1−β − α(a − bp)(1 − β)t

] 1
1−β , 0 ≤ t ≤ T (10.2)

Q = [α(a − bp)(1 − β)T ]
1

1−β (10.3)

Various costs related with the proposed inventory model are as follows:

(1)

Ordering cost = o (10.4)

(2)

Purchasing cost = c[α(a − bp)(1 − β)T ]
1

1−β (10.5)

(3

Sales revenue collected = p[α(a − bp)(1 − β)T ]
1

1−β (10.6)

(4)

Inventory holding cost = h

T∫

0

[q(t)]γ dt

= h

T∫

0

[
Q1−β − α(a − bp)(1 − β)t

] γ

1−β dt
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= h
[α(a − bp)(1 − β)T ]

γ+1−β

1−β

α(a − bp)(γ + 1 − β)
(10.7)

Since the supplier offers a full trade credit period to the retailer, following two
sub-cases arise:

Case-1: M ≤ T
Case-2: M ≥ T .

Case-1: Trade Credit Period Is Less Than or Equal
to the Cycle Length (M ≤ T)

The trade credit period granted by the supplier to the retailer is less than or equal
to the cycle length in this scenario. After the end of credit period, the retailer has
to bear the interest charges and needs to pay interest during the interval [M, T ].
Consequently, the amount of interest paid is computed as follows:

IP =
cIp

[
[α(a − bp)(1 − β)(T − M)]

2−β

1−β

]

α(a − bp)(2 − β)
(10.8)

The retailer earns interest during the credit period up to t = M .

IE = pIe

[
M[α(a − bp)(1 − β)T ]

1
1−β + 1

α(a − bp)(2 − β)
{
{α(a − bp)(1 − β)(T − M)} 2−β

1−β − {α(a − bp)(1 − β)T } 2−β

1−β

}]
(10.9)

The total profit per unit time is calculated as follows:

TP1(p, T ) = SR + IE − o − PC − HC − IP

T

Therefore,

TP1(p, T ) =
[
1

T

][
p[α(a − bp)(1 − β)T ]

1
1−β

+ pIe
[
M[α(a − bp)(1 − β)T ]

1
1−β

+ 1

α(a − bp)(2 − β)

{
{α(a − bp)(1 − β)(T − M)} 2−β

1−β

−{α(a − bp)(1 − β)T } 2−β

1−β

}]
− o
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− c[α(a − bp)(1 − β)T ]
1

1−β − h
[α(a − bp)(1 − β)T ]

γ+1−β

1−β

α(a − bp)(γ + 1 − β)

−
cIp

[
[α(a − bp)(1 − β)(T − M)]

2−β

1−β

]

α(a − bp)(2 − β)

⎤

⎦ (10.10)

Problem 1
Maximize TP1(p, T ) = S1

T

where S1 = SR + IE − o − PC − HC − IP

subject to M ≤ T .

Case-2: Trade Credit Period Is Greater Than or Equal
to the Cycle Length (M ≥ T)

In this case, the trade credit period granted to the retailer by the supplier is greater
than or equal to the cycle length. In this scenario, the retailer does not need to pay
interest. Therefore,

IP = 0 (10.11)

The retailer earns interest during the credit period up to t = M .

IE = pIe

[

M[α(a − bp)(1 − β)T ]
1

1−β − [α(a − bp)(1 − β)T ]
2−β

1−β

α(a − bp)(2 − β)

]

(10.12)

The total profit per unit time is computed as follows:

TP2(p, T ) = SR + IE − o − PC − HC − IP

T

Therefore,

TP2(p, T ) =
[
1

T

][
p[α(a − bp)(1 − β)T ]

1
1−β + pIe

[
M[α(a − bp)(1 − β)T ]

1
1−β

− [α(a − bp)(1 − β)T ]
2−β

1−β

α(a − bp)(2 − β)

]

− o − c[α(a − bp)(1 − β)T ]
1

1−β

− h
[α(a − bp)(1 − β)T ]

γ+1−β

1−β

α(a − bp)(γ + 1 − β)

]

(10.13)
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Problem 2
Maximize TP1(p, T ) = S2

T

where S2 = SR + IE − o − PC − HC − IP

subject to M ≥ T .

Theoretical Results and Optimization Procedure

The problem is solved using the following theorem of generalized concave functions.
If f (x) is non-negative, differentiable, and strictly concave, and g(x) is positive,
differentiable and convex, then the real-valued function

z(x) = f (x)

g(x)
(10.14)

is strictly pseudo-concave in nature. The detailed proof can be seen in Cambini and
Martein [2].

M ≤ T

Theorem 1 For any given p,

(a) TP1(p, T ) is a strictly pseudo-concave function in T , hence there exists a unique
maximum solution T ∗

1 .
(b) If M ≤ T ∗

1 , then TP1(p, T ) subject to M ≤ T is maximized at T ∗
1 .

(c) If M ≥ T ∗
1 , then TP1(p, T ) subject to M ≤ T is maximized at M.

Proof See Appendix 1.

To find T ∗
1 , for any given p, taking the first-order derivative TP1(p, T ) with respect

to T , setting the result to zero and rearranging terms we get

∂TP1(p, T )

∂T
=

[
1

T

][
(p − c)α(a − bp)[α(a − bp)(1 − β)T ]

β

1−β

− h[α(a − bp)(1 − β)T ]
γ

1−β − cIp[α(a − bp)(1 − β)(T − M)]
1

1−β

+ pIe
[
α(a − bp)M[α(a − bp)(1 − β)T ]

β

1−β

+ [α(a − bp)(1 − β)(T − M)]
1

1−β − [α(a − bp)(1 − β)T ]
1

1−β

]]

−
[
1

T 2

][
p[α(a − bp)(1 − β)T ]

1
1−β + pIe
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[
M[α(a − bp)(1 − β)T ]

1
1−β + 1

α(a − bp)(2 − β)
{
{α(a − bp)(1 − β)(T − M)} 2−β

1−β − {α(a − bp)(1 − β)T } 2−β

1−β

}]

− o − c[α(a − bp)(1 − β)T ]
1

1−β − h
[α(a − bp)(1 − β)T ]

γ+1−β

1−β

α(a − bp)(γ + 1 − β)

−
cIp

[
[α(a − bp)(1 − β)(T − M)]

2−β

1−β

]

α(a − bp)(2 − β)

⎤

⎦ = 0 (10.15)

Similarly, for any given T , taking the first-order derivative of TP1(p, T ) with
respect to p, setting the result equal to zero and rearranging terms we get

∂TP1(p, T )

∂p
=

[
1

T

][
[α(a − bp)(1 − β)T ]

1
1−β

− bα(p − c)T [α(a − bp)(1 − β)T ]
β

1−β

− h

[

−bT [α(a − bp)(1 − β)T ]
γ

1−β

(a − bp)

+b[α(a − bp)(1 − β)T ]
γ+1−β

1−β

α(γ + 1 − β)(a − bp)2

]

− cIp

[

−b(T − M)[α(a − bp)(1 − β)(T − M)]
1

1−β

(a − bp)

+b[α(a − bp)(1 − β)(T − M)]
2−β

1−β

α(2 − β)(a − bp)2

]

+ Ie

[
M[α(a − bp)(1 − β)T ]

1
1−β + 1

α(a − bp)(2 − β)
{
{α(a − bp)(1 − β)(T − M)} 2−β

1−β − {α(a − bp)(1 − β)T } 2−β

1−β

}]

+ pIe
[
−bαMT [α(a − bp)(1 − β)T ]

β

1−β

− b(T − M)[α(a − bp)(1 − β)(T − M)]
1

1−β

(a − bp)

+ b[α(a − bp)(1 − β)(T − M)]
2−β

1−β

α(2 − β)(a − bp)2

+ bT [α(a − bp)(1 − β)T ]
1

1−β

(a − bp)
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−b[α(a − bp)(1 − β)T ]
2−β

1−β

α(2 − β)(a − bp)2

]]

= 0 (10.16)

Theorem 2 For any given T > 0, if Z1 = ∂2 f
∂p2 < 0 where f =

[
p[α(a − bp)(1 − β)T ]

1
1−β + pIe

[
M[α(a − bp)(1 − β)T ]

1
1−β + 1

α(a−bp)(2−β){
{(a − bp)(1 − β)(T − M)} 2−β

1−β −[α(a − bp)(1 − β)T ]
2−β

1−β

}]
− o −

c[α(a − bp)(1 − β)T ]
1

1−β − h [α(a−bp)(1−β)T ]
γ+1−β
1−β

α(a−bp)(γ+1−β)
−

cIp

[
[α(a−bp)(1−β)(T−M)]

2−β
1−β

]

α(a−bp)(2−β)

⎤

⎦,

then TP1(p, T ) is a strictly pseudo-concave function in p, hence there exists a
unique maximum solution p∗.

M ≥ T

Theorem 3 For any given p,

(a) TP2(p, T ) is a strictly pseudo-concave function in T , hence there exists a unique
maximum solution T ∗

2 .
(b) If M ≥ T ∗

2 , then TP2(p, T ) subject to M ≥ T is maximized at T ∗
2 .

(c) If M ≤ T ∗
2 , then TP2(p, T ) subject to M ≥ T is maximized at M.

Proof See Appendix 2.

To find T ∗
2 , for any given p, taking the first-order derivative TP2(p, T ) with respect

to T , setting the result to zero and rearranging terms we get

∂TP2(p, T )

∂T
=

[
1

T

][
(p − c)α(a − bp)[α(a − bp)(1 − β)T ]

β

1−β

− h[α(a − bp)(1 − β)T ]
γ

1−β + pIe[α(a − bp)

M[α(a − bp)(1 − β)T ]
β

1−β − [α(a − bp)(1 − β)T ]
1

1−β

]]

−
[
1

T 2

][
p[α(a − bp)(1 − β)T ]

1
1−β

+ pIe
[
M[α(a − bp)(1 − β)T ]

1
1−β

− [α(a − bp)(1 − β)T ]
2−β

1−β

α(a − bp)(2 − β)

]

− o − c[α(a − bp)(1 − β)T ]
1

1−β

− h
[α(a − bp)(1 − β)T ]

γ+1−β

1−β

α(a − bp)(γ + 1 − β)

]

= 0 (10.17)
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Similarly, for any given T , taking the first-order derivative of TP2(p, T ) with
respect to p, setting the result equal to zero and rearranging terms we get

∂TP2(p, T )

∂p
=

[
1

T

][
[α(a − bp)(1 − β)T ]

1
1−β

− bα(p − c)T [α(a − bp)(1 − β)T ]
β

1−β

− h

[

−bT [α(a − bp)(1 − β)T ]
γ

1−β

(a − bp)

+b[α(a − bp)(1 − β)T ]
γ+1−β

1−β

α(γ + 1 − β)(a − bp)2

]

+ Ie
[
M[α(a − bp)(1 − β)T ]

1
1−β

− [α(a − bp)(1 − β)T ]
2−β

1−β

α(a − bp)(2 − β)

]

+ pIe
[
−bαMT [α(a − bp)(1 − β)T ]

β

1−β

+ bT [α(a − bp)(1 − β)T ]
1

1−β

(a − bp)

−b[α(a − bp)(1 − β)T ]
2−β

1−β

α(2 − β)(a − bp)2

]]

= 0 (10.18)

Theorem 4 For any given T > 0, if Z1 = ∂2 f
∂p2 < 0 where

f =
[
p[α(a − bp)(1 − β)T ]

1
1−β +pIe

[
M[α(a − bp)(1 − β)T ]

1
1−β

− [α(a−bp)(1−β)T ]
2−β
1−β

α(a−bp)(2−β)

]
−o − c[α(a − bp)(1 − β)T ]

1
1−β −h [α(a−bp)(1−β)T ]

γ+1−β
1−β

α(a−bp)(γ+1−β)

]
,

then TP2(p, T ) is a strictly pseudo-concave function in p, hence there exists a
unique maximum solution p∗.

For any given p, let us define the discriminant term

� =
[
1

M

][
(p − c)α(a − bp)[α(a − bp)(1 − β)M]

β

1−β

− h[α(a − bp)(1 − β)M]
γ

1−β

+ pIe
[
α(a − bp)M[α(a − bp)(1 − β)M]

β

1−β

−[α(a − bp)(1 − β)M]
1

1−β

]]
−

[
1

M2

]

[
p[α(a − bp)(1 − β)M]

1
1−β + pIe
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[

M[α(a − bp)(1 − β)M]
1

1−β − [α(a − bp)(1 − β)M]
2−β

1−β

α(a − bp)(2 − β)

]

− o − c[α(a − bp)(1 − β)M]
1

1−β

−h
[α(a − bp)(1 − β)M]

γ+1−β

1−β

α(a − bp)(γ + 1 − β)

]

(10.19)

Theorem 5 For any given p,

(1) If � > 0, then the total profit is maximized at T ∗
1 .

(2) If � = 0, then the total profit is maximized at M.
(3) If � < 0, then the total profit is maximized at T ∗

2 .

Proof See Appendix 3.

Numerical Example

The proposed inventory model is illustrated with a numerical example. The aim is to
find out the optimal selling price p∗ and optimal replenishment length of the cycle
T ∗ so as to maximize the overall profit earned by the retailer per unit time. The input
values of various parameters are as follows:

a = 90; b = 0.5; Ip = 12%/year; Ie = 7%/year; M = 180/365 year; α = 0.4;
o = $200/order; h = $10/unit/year; c = $50/unit; γ = 1.1; β = 0.4.

Since � > 0, it falls into the category 4.1. Hence, the optimal solution is

p∗ = 113.696; T ∗ = 3.07143; Q∗ = 205.796; TP∗(p, T ) = 2708.96. The profit
function is concave in nature as shown in Fig. 10.1.

Sensitivity Analysis

The illustrated numerical example is used to study the impact of under or overesti-
mation of input parameters on the optimal values of selling price (p∗), replenishment
cycle length (T ∗), order quantity (Q∗), and the total profit per unit time (TP∗(p, T ))
of the inventory system. The sensitivity analysis is carried out by changing the input
parameters from − 20 to 20%. It is done by changing the input parameters one
at a time and keeping the other parameters constant. The results are presented in
Table 10.2. From Table 10.2, following results are obtained:

(1) With the increase in purchasing price c, the optimal selling price (p) increases.
It is also observed that the optimal replenishment cycle length (T ), optimal
order quantity (Q), and the total profit per unit time (TP(p, T )) decreases. It
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Fig. 10.1 Change in the profit function with respect to p and T

is obvious that if the purchasing price of goods increases, the selling price will
also increase.

(2) As holding cost h increases, optimal replenishment cycle length (T ), optimal
order quantity (Q), and the total profit per unit time (TP(p, T )) decreases.
Selling price (p) remains constant up to some time and then increases. With
the increase in holding cost, inventory carrying cost increases, and hence profit
decreases.

(3) With the increase in the value of γ , the optimal replenishment cycle length
(T ), optimal order quantity (Q), and the total profit per unit time (TP(p, T ))
decreases whereas selling price (p) increases. With the increase in the value of
γ , holding cost increases, hence retailer’s order quantity decreases, and total
profit decreases.

(4) As a increases, it is observed that optimal selling price (p), optimal replenish-
ment cycle length (T ), optimal order quantity (Q), and the total profit per unit
time (TP(p, T )) increases. With the rise in the value of b, optimal selling price
(p), optimal replenishment cycle length (T ), optimal order quantity (Q), and
the total profit per unit time (TP(p, T )) decreases.

(5) As the value of β increases, optimal replenishment cycle length (T ), optimal
order quantity (Q), and the total profit per unit time (TP(p, T )) increases. As
α increases, order quantity (Q) and the total profit per unit time (TP(p, T ))
increases. It is observed that as ordering cost increases, total profit per unit time
decreases.

(6) As Ip increases, total profit per unit time decreases. It is observed that as the
value of Ie increases, total profit per unit time increases. As M increases, the
retailer has the chance to sell more goods and collect sales revenue. The retailer
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Table 10.2 Sensitivity analysis with respect to input parameters

Parameter % Change in parameter Change in optimal values

p∗ T ∗ TP∗ Q∗

c − 20 109.464 3.39286 3507.8 269.317

− 10 110.875 3.23214 3088.72 240.166

10 116.518 2.91071 2363.57 175.005

20 117.929 2.75 2050.39 153.346

h − 20 113.696 3.55357 2990.11 262.408

− 10 113.696 3.23214 2840.04 224.054

10 113.696 2.91071 2591.97 188.163

20 115.107 2.75 2486.34 165.14

γ − 20 113.696 7.08929 4410.35 829.608

− 10 113.696 4.51786 3466.79 391.522

10 115.107 2.10714 2163.59 105.955

20 116.518 1.625 1778.25 66.2433

a − 20 101 2.75 917.614 83.1708

− 10 105.232 2.91071 1669.58 145.258

10 123.571 3.39286 4099.84 294.543

20 132.036 3.71429 5902.13 418.713

b − 20 136.268 3.875 4873.87 339.656

− 10 123.571 3.39286 3608.74 258.273

10 106.643 2.75 2049.78 155.914

20 101 2.58929 1556.68 126.736

β − 20 115.107 2.58929 1702.19 99.6341

− 10 115.107 2.75 2112.68 132.749

10 115.107 3.39286 3602.23 305.972

20 113.696 3.71429 5024.96 511.158

α − 20 115.107 3.23214 1879.38 149.027

− 10 113.696 3.07143 2280.27 172.653

10 113.696 3.07143 3163.33 241.226

20 113.696 3.07143 3642.28 278.872

o − 20 113.696 3.07143 2721.98 205.796

− 10 113.696 3.07143 2715.47 205.796

10 113.696 3.07143 2702.45 205.796

20 113.696 3.07143 2695.94 205.796

Ip − 20 113.696 3.23214 2769.02 224.054

− 10 113.696 3.07143 2738 205.796

10 113.696 3.07143 2679.93 205.796

(continued)
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Table 10.2 (continued)

Parameter % Change in parameter Change in optimal values

p∗ T ∗ TP∗ Q∗

20 113.696 2.91071 2652.47 188.163

Ie − 20 113.696 3.07143 2702.18 205.796

− 10 113.696 3.07143 2705.57 205.796

10 113.696 3.07143 2712.35 205.796

20 113.696 3.07143 2715.74 205.796

M − 20 113.696 3.07143 2666.35 205.796

− 10 113.696 3.07143 2687.58 205.796

10 113.696 3.07143 2730.5 205.796

20 113.696 3.07143 2752.19 205.796

has to pay interest charges for a lesser number of goods, hence total profit per
unit time increases.

Managerial Insights

In order to compete in the business era, it is very important to decide the selling price
of the item since it directly impacts customer choice. The retailer must appropriately
decide the selling price in order to generate profit rather than suffer loss. Another
aspect is to decide efficiently the replenishment cycle length so as to avoid shortages
and run the business smoothly. To provide a better insight, demand is supposed to be a
function of selling price aswell as the inventory level. It is also important to efficiently
manage the total holding cost. Trade credit policy allows the buyer to purchase goods
without paying instantly. While this policy looks lucrative, a better insight can only
be provided if the effect of this policy on the buyer’s profit is analyzed from all aspects
which is one of the intentions of this research work. This research work can also help
the managers in analyzing the impact of the important parameters like purchasing
price, ordering cost, demand parameters, etc., and improve the efficacy of the supply
chain.

Conclusion

With the increase in globalization, the demand for an efficient and effective supply
chainmanagement has increased. Selling price plays a significant role in deciding the
demand of a product. Along with selling price customer’s demand is also determined
by exhibited stock. In this researchwork, an inventorymodel is presented considering
demand to be a function of selling price as well as displayed stock along with trade
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credit policy. In general, the common perception is that cost of holding goods in
the inventory is always linearly dependent on stock which need not to be. In this
paper, holding cost is considered to be nonlinearly dependent on stock. Trade credit
policy allows the buyer to purchase goods without paying instantly. In this research
work, the supplier grants a full trade credit period to the retailer. The main aim of
the proposed model of inventory is to determine the optimal selling price, optimal
replenishment cycle length so as to maximize the total profit earned by the retailer
per unit time.

This research work can be extended along many directions such as: partial
trade credit policy, inflation, fuzzy-valued inventory costs, credit-dependent demand
function among others.

Appendix 1

f (T ) =
[
p[α(a − bp)(1 − β)T ]

1
1−β

+ pIe
[
M[α(a − bp)(1 − β)T ]

1
1−β

+ 1

α(a − bp)(2 − β)

{
[(a − bp)(1 − β)(T − M)]

2−β

1−β

−[α(a − bp)(1 − β)T ]
2−β

1−β

}]

− o − c[α(a − bp)(1 − β)T ]
1

1−β

− h
[α(a − bp)(1 − β)T ]

γ+1−β

1−β

α(a − bp)(γ + 1 − β)

−
cIp

[
[α(a − bp)(1 − β)(T − M)]

2−β

1−β

]

α(a − bp)(2 − β)

⎤

⎦

g(T ) = T

If f ′′(T ) < 0, then by using the theoretical result in (10.14) it can be proved that
TP1(p, T ) is a strictly pseudo-concave function in T , which completes the proof of
Part (1). The proof of Part (2) and Part (3) follows immediately from the proof of
Part (1) of Theorem 1.

Appendix 2

Similar to Appendix 1.
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Appendix 3

Since TP1(p, T ) is a strictly pseudo-concave function in T , we know that ∂TP1(p,T )

∂T

is a decreasing function in T . If � > 0, then lim
T→∞

∂TP1(p,T )

∂T < 0.

By applyingmeanvalue theorem,weknow that there exists a uniqueT ∗
1 ∈ (M,∞)

such that ∂TP1(p,T )

∂T = 0. By this, we complete the proof of � > 0. Similarly, other
theorems of Theorem 5 can be proved.
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