
Chapter 1
Software Defect Prediction Through a
Hybrid Approach Comprising of a
Statistical Tool and a Machine Learning
Model

Ashis Kumar Chakraborty and Barin Karmakar

Abstract Traditional statistical learning algorithms perform poorly in case of learn-
ing from an imbalanced dataset. Software defect prediction (SDP) is a useful way
to identify defects in the primary phases of the software development life cycle.
This SDP methodology will help to remove software defects and induce to build a
cost-effective and good quality of software products. Several statistical and machine
learning models have been employed to predict defects in software modules. But the
imbalanced nature of this type of datasets is one of the key characteristics, which
needs to be exploited, for the successful development of a defect prediction model.
Imbalanced software datasets contain non-uniform class distributions with most of
the instances belonging to a specific class compared to that of the other class.We pro-
pose a novel hybrid model based on Hellinger distance-based decision tree (HDDT)
and artificial neural network (ANN), whichwe call as hybrid HDDT-ANNmodel, for
analysis of software defect prediction (SDP) data. This is a newly developed model
which is found to be quite effective in predicting software bugs. A comparative study
of several supervised machine learning models with our proposed model using dif-
ferent performance measures is also produced. Hybrid HDDT-ANN also takes care
of the strength of a skew-insensitive distance measure, known as Hellinger distance,
in handling class imbalance problems. A detailed experiment was performed over
ten NASA SDP datasets to prove the superiority of the proposed method.

Keywords Software defect prediction · Class imbalance · Hellinger distance ·
Artificial neural network · Hybrid model

Introduction

Software defect prediction (SDP) is an important topic in software reliability engi-
neering literature. It helps software engineers to allocate the available resources to
detect the defect-prone modules, if one can predict the number of defects in a module
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in the early stage of the software development process. Several researchers tried to
estimate the number of defects present in a software system [20]. Different statistical
techniques like capture-recapture sampling have been applied to estimate the number
of defects. Some authors also have used the number of defects detected during code
inspection as a co-variate and used regression type of analysis to find out the esti-
mate of reliability of a software [20]. A variant of this problem has been considered
to estimate the optimum time for software release [10, 14]. An important feature
of SDP problem is that the real-life data are highly imbalanced in nature between
defect and non-defect classes. This basically means that the incidence of one of the
classes, say non-defect classes are much more compared to the occurrence of defect
classes. Some studies [12] noted this important feature for these types of datasets
and suggested a hybrid approach which uses statistical and machine learning meth-
ods together to improve prediction accuracy. The authors [12] noted an important
property of sample defect prediction datasets, that is in majority cases the modules
that are non-defective (majority) are much more higher in number in comparison
with the defective modules (minority). Noticing this class imbalance problem, sev-
eral researchers [29] started using imbalance learning techniques to improve the
performance for defect prediction. Earlier several SDP models have been developed
with a goal to predict the possibility of occurrence of a defect in the unseen (future)
version of a software product [7, 22, 35]. A software module with defects often
fails and prevents to produce preferable results; so, it is required to have an early
warning (detection) system of software defects in the system. In the starting phases
of software development life cycles, there is possibility to correct the set of identified
defects [38] in order to achieve better performance of the system. Furthermore, if it
is possible to restrict such defects to propagate to the latter stages, then this could
be cost-saving and worthwhile for the producer. Thus, constructing an efficient SDP
model will be helpful in order to develop better quality software products which will
reduce maintenance costs and accounts for higher customer satisfaction.

In this article, we use a novel hybrid approach where decision tree, which is
based on Hellinger distance, and artificial neural network with one hidden layer
is used to predict the number of software bugs. To validate the power of the hybrid
HDDT-ANNmethod,weperformed thismethodon several standard imbalancedSDP
datasets. This newapproach helped to increaseminority class prediction accuracy and
appears to be more efficient than other traditional supervised classification models
for predicting defects and improving the overall performance.

This article is constructed as follows. In Section “Literature Review”, we provide
the literature review, while in Section “Proposed Model” we develop the proposed
hybrid model. Section “Experimental Analysis” gives experimental analysis of the
proposed model, wherein we apply the model on several SDP datasets. We conclude
this article in Section “Conclusion”. Section “Code” refers to the computer code
used for implementation of the model developed.
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Literature Review

Earlier, several authors have developed SDP models which were applied for predict-
ing the occurrence of a defect that may be present in unseen (future) version of a
software product [22, 29]. So a valid SDP model is required to develop good qual-
ity software products which helps in reducing maintenance costs and also increases
customer satisfaction. Recent studies demonstrated that around 80% of the defects
occurred in a few modules which consists of 20% [51] of total number of modules.
This fact suggests that the defective class can be considered as a minority class and
non-defective class is the majority class. This kind of imbalanced class frequency
distribution is an important feature of SDP datasets. It is noted further that the more
penalty is associated when minority (defective) classes are misclassified though they
are less in number. Hence, for defect prediction in SDP area, it is essential to address
the issue of misclassification of the elements of minority class for the unseen data
to reduce future defect percentages and successful development of a software. In the
binary pattern classification problem, when the source dataset (labeled data) contains
one class of data, which are very high in number, compared to the other class, the
concept of imbalance in the dataset originates. By convention, the majority class is
the over-represented class whereas minority class is the other class having a lower
number of instances. In software defect prediction, the probability of finding defect
instances, which is from the minority class, are very less compared to finding a
non-defect case which is from the majority class.

The objective of imbalance learning is to develop classification model that can
correctly classify the instances fromminority andmajority class simultaneously. This
kind of problem is tackled through different approaches, but almost all the traditional
classifiers used to put higher weightage to the instances from majority class and as
a result the instances from minority classes are often misclassified compared to the
majority class instances [25]. In order to tackle this data imbalance, problem several
methods have been developed utilizing the properties of data and also at algorithm
levels. Somemethods based on utilizing the properties of the dataset use various sam-
pling techniques, where by manipulating training data we try to balance the skewed
class distributions. The methods based on algorithm have modified the training pro-
cedure and used cost-sensitive and ensemble learning techniques in order to achieve
increased accuracy on the minority class instances. The most common technique
which has been used for solving class imbalance problems, is the well-known sam-
pling techniques where we oversample or undersample the original dataset to modify
the data class distributions. Random oversampling (ROS) or undersampling is one
of the common techniques used for imbalanced datasets. In random oversampling,
one randomly selects examples from the minority class, with replacement, and add
them to the training dataset; on the other hand, random undersampling technique ran-
domly selects instances from themajority class and deletes them from the training set.
Another way to balance the class distribution is to synthesize new examples from the
minority class. SMOTE (Synthetic Minority Oversampling Technique) is the most
widely used approach to synthesizing new examples. SMOTE selects instances that
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are adjacent within the feature space. After that it draws a line between the instances
in the feature space and then it selects a new sample at a position along that line.
Shatnawi [43] showed the efficacy of random oversampling (ROS) where training
instances are added in the defective class of the datasets, and it is more effective
compared to SMOTE technique. Lopez et al. [36] have presented that oversampling
may effect in overfitting since there is possibility that the input training dataset may
contain duplicate instances. These approaches have shortcomings of often overfitting
or underfitting. To get rid of these problems, hybrid sampling, the technique where
the approach is not only balancing the class distribution but also removing noisy
instances which are lying on the wrong side of the decision boundaries, is used.
Some examples are the combined techniques of oversampling and undersampling
like synthetic minority oversampling technique (SMOTE) + Tomek link (TL) and
ROS + TL [2, 23]. Oversampling like SMOTE alone is not enough to counter the
problems with imbalanced structure, like overfitting. So, undersampling like Tomek
link (TL) is further applied in the preprocessing stage to get rid of the problems like
class clusters are overlapped between some majority and minority class space. Only
majority class examples that participate in a Tomek link are removed on the basis of
the following principles: If two instances create a Tomek link (TL), then at least one
of the instances is noise or both are considered as borderline, since minority class
examples are considered too rare to be discarded. These hybrid methods have been
implemented on the SDP datasets, and it is found more effective than the individual
methods. But ensemble methods [25] work better compared to these methods.

Some authors used ensemble learning techniques where they use combination of
finite number of classifiers and allocate different values of weights to the component
methods to tackle the imbalance classification problems. It is seen that ensemble
learning utilizes the strength of individual learners and improves overall performance
of the model by combining them. Wang and Yao [48] introduced a dynamic version
of the AdaBoost.NC (ABNC) which is used in SDP for tackling the imbalanced
classification problem. On the other hand AdaBoost-based kernel ensemble learning
methodwas also experimentally presented to be quite effective for the projects which
are made on NASA SDP datasets [29]. One can also think to formulate the SDP
problems as a binary classification problemwhere software modules are classified as
either defect-prone or non-defect-prone based on a set of features whose components
are software metrics.

In software reliability engineering, a set of static code attributes like McCabe
and Halstead are used to describe the complexity of a module, which is defined as
the smallest unit of functionality and is extracted from previous software releases
with the log files of defects. As the complexity of a module increases, the more
likely it is to be fault-prone in nature. The values of the metrics which are men-
tioned above have been used as features to construct classifiers for defective module
prediction for the upcoming phase of release. This leads to detect the segments of
the software that have greater probability of containing defects. PROMISE repos-
itory [3] is an open-source of defect prediction datasets from real-world projects
and several researchers used in their academic study. Several statistical and machine
learning tools have been implemented to solve SDP problems, such as decision tree
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[6, 30], Random Forest (RF) [27, 45], Deep Feed Forward Neural Network [28],
support vector machines [26], and artificial immune systems [8]. Some authors also
considered ensemble learning [46], kernel-based technique [26], learning based on
cost-sensitive [49], improved subclass discriminant analysis (ISDA) technique [29],
value-cognitive boosting along with support vector machine (VCB-SVM) method
[40] transfer learning [47] in order to build software defect prediction models. It
seems that no single method is good enough for developing models based on the
SDP datasets. But all the methods like RF and cost-sensitive learning seem to be
working better for the most of the datasets [48] compared to others.

However, many of the previous studies had not taken into account the class imbal-
ance scenario of SDP datasets, though some researchers have implemented ensemble
and other techniques for tackling the imbalanced structure of the dataset [25]. Some
research demonstrated the effectiveness of resampling techniques in case of tree-
based learners [48]. Ensemble and cost-sensitive learning approacheswere also found
quite effective in the cases where an appropriate cost ratio is fixed [33]. Recently,
Gong et al. [25] proposed a new method known as stratification embedded nearest
neighbor (STr-NN) approach. Also, Sun et al. [46] presented a ensemble learning
approach which is coding-based. But these approaches have some deficiencies. For
example, while using sampling techniques, the actual datasets aremodified. Also, the
choice of optimized weights in constructing ensembles is not straight forward. To get
rid of these drawbacks, some authors introduced “imbalanced data-oriented” classi-
fiers [17]. These classifiers, e.g., Hellinger distance-based decision tree (HDDT) and
the ensemble technique like Hellinger distance-based random forest (HDRF) can
tackle the problem of class imbalance without modifying the original dataset and
hence it can be a possible solution to deal with SDP problems. Even though HDDT
takes care of class imbalance, still it has some deficiencies. Since it is a greedy algo-
rithm, i.e., at each stage, it finds the best feature for splitting and as a result it may
stick to local minima and also may lead to overfitting [9] when the tree size is very
large compared to the number of training data present. Also, HDDT does not use
pruning techniques, where we add complexity parameter to obtain optimal subtree,
so it may overfit the dataset since we are using the whole tree [4]. Some authors have
tackled these deficiencies of HDDT problems using hybridization like Hellinger net
[12], where the following steps are associated to generate the model: convert an
HDDT into rules, construct two hidden layered DFFNN (Deep feed forward neural
network) architecture from the generated rules, and finally train the DFFNN using
stochastic gradient descent back propagation method.

Different hybrid models have been constructed combining the decision tree algo-
rithm along with neural networks. Sirat and Nadal [44] introduced a method called
Neural tree (NT), which is an example of this kind of model. Such techniques com-
bine both CARTwhich have the advantages of a hierarchical organization and ANN,
because of the perceptron’s ability to handle many input variables and they fur-
ther proposed NT model which works for multiclass classification problems also.
Sakar and Mammone [41] introduced a new method known as neural tree networks
(NTN), where neural networks are associated in a tree structure. In neural tree net-
work method, the neural networks are used recursively to segment the feature space
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into disjoint sub-spaces at each tree node, which results in a preferable efficient clas-
sification performance. Foresti and Dolso [24] introduced a new concept known as
adaptive neural tree (ANT). Later on, flexible neural tree (FNT) is introduced by
Chen et al. [15], which works as a feature selection technique and also deal with
problem of intrusion detection. Chen et al. [16] presented an experimental result
where it is shown that the efficiency of FNT model to forecast the small time scale
traffic measurement. Bouaziz et al. proposed a model called Flexible Beta Basis
Function NT model [5], and it was shown that the model performs better compared
to other related methods in case of dealing with some standard problems drawn from
the control system and time series prediction. Sethi introduced [42] Entropy nets,
a mapping of decision trees into a multilayer neural network structure, which has
superiority since it contains comparatively fewer number of neural connections. In
this framework, the number of neurons present in the neural network’s input layer
equals to the number of decision tree’s internal nodes. These neurons go through
hidden layer, and the number of neurons in the output layer is same as number of
distinct classes. A recent study [12] has shown how hybrid model famously known as
Hellinger net helps to improve accuracy of the model in the context of dealing with
imbalanced dataset. In this article, we propose a hybrid HDDT-ANN model which
will increase the performance of the model in terms of different accuracy metrics.

Proposed Model

In software defect prediction, static code attributes are extracted from older releases
of software containing the log files of defects and these are used to construct models
with an objective to predict the defective modules for the future releases. This is
an advantage to discover parts of the software which are more probable to contain
defects. We have presented our proposed hybrid HDDT-ANN model to tackle the
class imbalance problem in context of SDP in this section. We first discuss the theo-
retical frameworks for constructing Hellinger distance-based decision tree (HDDT)
and later on thework flowof our proposedmodelwhereHDDTandANN two distinct
classifiers are used jointly to make a decision.

Hellinger Distance Decision Tree

Hellinger distance, which is a symmetric and non-negative measure of distributional
divergence, is associated to the Bhattacharyya’s distance and the Kullback–Leibler
divergence. Chawla [17] proposed how to use Hellinger distance as a decision tree
splitting criterion for modeling an imbalanced dataset for classification. This method
considers two distributions say U and V, which is the normalized frequencies of
feature values considering the problem as a binary classification. Cieslak and Chawla
[17] have introduced the concept of affinity between two distributions U and V as a
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criterion for tree splitting. The goal is to split tree nodes on the features which are
having minimal affinity which implies maximal Hellinger distance. This approach
uses the idea of splitting of features based on howwell the examples seen so far in the
training data can be discriminated by them. Whereas other tree-based models used
to split on the feature, which represents the highest possible number of data points
seen so far (for an example: information gain discussed in Breiman’s CART [6]).
Hellinger distance is skew insensitive in nature, since examples of one particular class
are higher in number compared to other class which only leads to make its sample
distribution more inclined to the actual distribution. Considering the situation that a
feature is a good class discriminator, then whatever the class balance is, it will remain
same. The formal definition of Hellinger distance is as follows.
Definition: Let (δ, γ ) denote a measurable space and assume that U and V be two
continuous distributions with respect to the parameter γ having the densities u and
v in a continuous space �, respectively [1]. One can define Hellinger distance (HD)
as follows:

dH(U, V ) =
√
√
√
√

∫

�

(
√
u − √

v)2dγ

Note that Hellinger distance does not depend on the choice of the parameter γ .
Some important properties of Hellinger distance are given below.

1. dH(U, V ) is in [0,√2].
2. Hellinger distance (HD) is non-negative dH(U, V ) ≥ 0, ∀ U, V.
3. HD is symmetric, i.e., dH(U, V ) = dH(V,U ), ∀ U, V.
4. As the Hellinger distance increases, the discrimination power of the feature also

gets better.

Hellinger Distance Decision Tree (HDDT) utilizes Hellinger distance for tree
splitting and constructs the tree on the basis of methods proposed by Breiman’s
CART [6] as discussed in [17]. In this methodology, once the root node is found,
the criterion is applied recursively until next decision node is found. This criterion
determines in which input direction split will take place and where the cut should be
initiated. HDDT works on feature input spaces in order to make a hierarchical axes-
parallel split of it, similar like CART, the only exception is the split criterion. Here,
each of the tree node represents the partitioned subsets in the input feature space. In
this case, we consider only binary tree consisting of two child nodes or zero child
nodes are constructed [17]. The details of the algorithm of splitting criteria of HDDT
are provided below:

Consider X to be the input feature space and let p be the number of attributes and
let Y be the set of binary class labels which consists of elements from the response
column. Suppose, there is a training sample (labeled dataset) with k as the number
of instances, Dk = {(X j ,Y j ); j = 1, 2, . . . k} where X j = (X j1, X j2, . . . , X jp) ∈
X , and Y j represent their respective labels. The source SDP dataset Dk contains
identically distributed independent instances (X j ,Y j ), which are distributed as the
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pair denoted by (X , Y ), where X ∈ Rp
+ and Y ∈ {0, 1}. One may note that for the

source SDP dataset, the range of values of static code attributes of a software module
are positive and numeric whereas response class value is discrete in nature (that is
defective or non-defective). In our proposed hybrid approach [13], the second model
is an artificial neural network model. Before modeling, we need to normalize the
features of SDP dataset, i.e., we are mapping each element of each column to [0, 1]
range and keeping the response column as it is, so that in latter stage, while we are
training the neural network, the model becomes efficient. We are using min-max
scaling for normalization. The problem is given with a total of n instances on p input
features where X ∈ C p and Y ∈ {0, 1}. The goal is to construct a binary pattern
classifier that predicts whether the software module is defect-prone or not, given
the observed features of the software module. HDDT does hierarchical splitting of
the input feature space. Each tree node in the feature space represents as one of the
segregated subsets in C p. Cieslak et al. [17] introduced a splitting criterion to create
the HDDT is as follows:

Hellinger distance (HD) = dH(X+, X−) =
√
√
√
√

p
∑

r=1

(
|X+r |
|X+| + |X−r |

|X−| )
2 (1.1)

In this methodology, given there are two class distributions X+ and X−, the goal is
to calculate the “distance” in terms of the normalized frequencies combined over all
the partitions. Assuming feature space as a countable space, we are discretizing all
continuous features into p partitions. |X+| denotes the frequency of instances which
are from the majority class (non-defective class) in the training dataset and |X+r | is a
subset of the training set for the featureX, comprising ofmajority class andwith value
r. A similar description follows for |X−| and |X−r |which are defined for theminority
class (defect class). As Hellinger distance (HD) increases, the features become more
discriminative in nature. HDDT methods also have a feature selection mechanism,
and the first feature (first split node) selected has the property of carrying minimal
affinity with respect to the classes. The Hellinger distance is not influenced by prior
probability; hence, it is insensitive to class distribution.HDDT is also skew insensitive
in nature since it is not taking account the prior probabilitywhile calculating distance.
However, the split criterion mentioned in (1) only works in case of classification
problem where only two distinct classes are present. But often HDDT may overfit
the data. To get rid of this problem, we go for a hybrid method. Generally, we
combine classifiers which use distinct pattern representations to make a decision.
Pattern classifiers are designed in order to achieve the best possible classification
performance for the unseen data or the task in hand [32]. Decision trees and artificial
neural networks are both well-known and competitive methodologies for building
classification problems. Classification trees are hierarchical classifiers in nature and
it is comparatively superior to artificial neural network (ANN) in case of readability
of knowledge [37]. ANN works better in case of implementation of comprehensive
inference over the inputs [50].
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Fig. 1.1 Example of hybrid CT-ANN classification model where xi , i = 1, 2, 3, represents impor-
tant features extracted through CT and ci , i = 1, 2, 3, are leaf nodes and OP as CT output [13]

Flowchart of the Proposed Model

In our proposed methodology, the feature space is split into disjoint segments by
HDDT algorithm. The constructed tree chooses important features and removes
redundant ones. Later, we build an ANNmodel with one hidden layer [39] where we
have used the important features obtained through HDDT algorithm as input feature
and additionally the prediction results produced by HDDT method is also used as
input feature, i.e., if we obtain m number of important features then we provide
(m + 1) number of features in the input layer of neural networks. We first provide a
picture in Fig. 1.1 of a simple hybrid model called CT-ANN Model [13]. This helps
us to understand how a hybrid approach is used.

The informal work flow of the proposed hybrid model called HDDT-ANNmodel
is given. Figure 1.2 represents the flowchart of the proposed HDDT-ANN model.

1. Normalize the source SDP dataset using min-max method.
2. Split the scaled dataset randomly by 80:20 ratio, where 80% data is used for

training and 20% for testing.
3. Apply HDDT algorithm on training set to build a tree model which will extract

important features.
4. HDDT shortlists the important features, which are contributing for building the

tree and neglect the rest ones.
5. The prediction result produced by HDDT algorithm is considered as an additional

feature along with the important features shortlisted, as described in step 5 are
used in the input layer of Artificial neural network (ANN) model.

6. The important features extracted by HDDT method with an additional input fea-
ture are exported to the Artificial neural network (ANN) model with one hidden
layer and with sigmoid activation function.

7. Then, we optimize the weights and number of neurons present in hidden layer
of artificial neural network as mentioned in [13] and run ANN algorithm till
acceptable accuracy is achieved.

8. Then, the classifier will be finally ready to produce results.
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Fig. 1.2 Flowchart of
HDDT-ANN model

Insights of the Proposed Model

The key point of our proposed HDDT-ANN model is the extraction of important
features and utilization of the class levels produced through HDDT model, which is
then followed byANNmodel. Hornik and Stinchcombe [28] showed that if sufficient
number of hidden units are present then standard multilayer feedforward networks
consisting of one hidden layer is able to approximate any Borel measurable function
from one finite dimensional space to another space to any desired level of accuracy.
An additional input feature in the form of HDDT output with the extracted impor-
tant features from HDDT method increases the dimension of feature space and will
also increase the class separability, which will help ANN for drawing better deci-
sion boundary. Cover [18] proposed the idea that shows that if feature space is not
densely populated, then in the higher dimensional space it becomes linearly sepa-
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rable, compared to a lower dimensional space in a complex pattern classification
problem. Experimental results by Lee and Srihari [34] have presented that as more
information is included, then the performance of combination of decision tree and
ANN algorithm also increases. One of the key characteristics of our proposed hybrid
model is choosing the optimum number of neurons to be used in ANN model in the
hidden layer. It is shown that too few nodes in hidden layer may restrict network
generalization capabilities, on the other side, too many hidden layers may lead into
the situation of overtraining by the network [39]. To deal with this problem, we
used the approach of optimizing weights and also varying the number of neurons
to be used in the hidden layer until we achieve sufficient accuracy. This algorithm
is a two-step problem-solving approach where it initially selects features based on
HDDT and then use optimum ANN technique to improve the model. The theoretical
properties of our proposed model have been proved in the article [11].

By implementing this model, future defects based on code attributes can be pre-
dicted accurately compared to other models and appropriate actions can be taken.
We will experimentally illustrate that the proposed model is superior in comparison
with the other supervised models, which is discussed in the literature for 10 NASA
datasets available at promise repository. Our proposed methodology can be utilized
for choosing features of items that will satisfy a specific goal and also can be engaged
for modeling such complex scenarios.

Experimental Analysis

Description of Datasets

The SDP datasets consist of various features (numeric values) of a software module
(e.g., various measures of lines of code, base Halstead measures, derived Halstead
measures,McCabemetrics, and branch counts are some features of the SDPdatasets),
along with the response column consisting of class labels (true or false i.e., whether
the module reported defects or not) [31]. Our objective is to classify between defect
(“true” class) and non-defect (“false” class) distributions of software modules. The
dataset is splitted into training set (80% of the dataset) for building the model and
test set (20% of the dataset) to examine the performance of our model. Such a split
is quite usual in literature [15]. The response variable indicates whether the software
module is defective or non-defective. Sample datasets and their characteristics are
shown inTable 1.1. Each of the datasets contains two classes and is highly imbalanced
in nature. As an example, analysis of CM1 dataset is shown here. The number of
attributes of CM1 dataset contains 22 features (lines of code measure of 5 different
types, 3 different McCabe metrics, 4 different base Halstead measures, 8 different
derived Halstead measures, a branch-count, and 1 goal field). There are no missing
values in any of attributes. The class value (defects) is discrete in nature, and 90.87%
are false instances compared to 9.13% true instances. We provide the summary of
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Table 1.1 Description of 10 SDP datasets

Summary

Dataset Classes Objects Attributes Defects %

CM1 2 327 22 9.13

KC3 2 194 39 18.6

MC1 2 1988 38 2.3

MC2 2 125 39 35.2

MW1 2 253 37 10.7

PC1 2 705 37 8.7

PC2 2 745 36 2.1

PC3 2 1077 37 12.4

PC4 2 1287 37 13.8

PC5 2 1711 38 27.5

ten SDP datasets in Table 1.1. It is clear from Table 1.1 that the true instances vary
from 2.1 to 35.2%, which means that the false instances vary from 68.8 to 97.9%
indicating a clear imbalance between the two class instances.

Performance Evaluation Metrics

For classification problems, the efficiency of a model is presented as a matrix repre-
sentation of the classification results known as confusion matrix. The elements of the
matrix are actual and predicted classification results produced by the classification
model. After the confusion matrix for a model is generated, we calculate different
metrics like precision, recall, F-measure and accuracy percentages to verify how
good the model is performing. The ratio of number of positive instances which are
predicted accurately to the total number of instances that are predicted positive is
defined as precision and recall is defined as the ratio of number of positive instances
which are predicted accurately to the total number of instances that belong to the
actual class. F-measure is defined as the harmonic mean of precision and recall, and
the ratio of number of correctly predicted data points to the total number of data
points is defined as accuracy. In general, particularly dealing with balance data the
model, which produces maximum accuracy may be considered as the best model
but in case of imbalanced datasets, it may not be a good metric to evaluate model
performance. For symmetric datasets where the number of false negatives and false
positives are almost equal, the metric accuracy gives the best measure. However, in
case of dealing with asymmetric class distribution in case of binary classification
scenario, F-measure is usually more logical and capable than accuracy [19]. A F-
measure value closer to 1 recommends a desired model. The formula of the different
performance measures are given in the following:
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Precision = TP
TP+FP

Recall = TP
TP+FN

Specificity = TN
TN+FP

AUC = Recall+Specificity
2

F-measure = 2∗Precision∗Recall
Precision+Recall

Accuracy = TP+TN
TP+FP+TN+FN

where TP (True Positive) is number of correctly positive predictions and FP (False
Positive) is number of positive prediction which are incorrect, whereas the number
of correctly negative prediction is denoted as TN (True Negative) and FN (False
Negative) is the number of negative prediction which are incorrect, done by the
model.

Analysis of Results

The hybrid methodology presented in this article has been applied to ten NASA
datasets [3] mentioned in Table 1.1. Sincemost of the datasets mentioned in Table 1.1
aremostly imbalanced in nature, the decision tree developed on theHellinger distance
[17] has been applied.Wepresent here the analysis onCM1 (one of the 10NASASDP
dataset) dataset. The HDDT has been grown on the randomly splitted training set and
tested on remaining 20% instances. From there,we extract the important features. The
important features are LO-Comment which is Halstead’s count of lines of comments,
LOC-COde-And-comment. We have predicted the class of each instances based on
this HDDT model. Then, we took the prediction made by HDDT as an extra input
along with the important features extracted by HDDT in the input layer of ANN.
Several performance metrics have been considered in this context like F-measure,
AUC, and Recall since data are highly imbalanced in nature. The F-measure of
the HDDT model further improved to 90%, AUC is 66%, and recall is 88%. The
optimal classification tree based on Hellinger distance is given in Fig. 1.3. ANN
model is quite often used as a supervised learningmethodology for predicting class of
unknown instances in a classification problem.We have performed the normalization
of the data prior to training a neural network, the major reason behind is that if we
avoid normalization then the training process may become very difficult and time-
consuming. We have used min-max normalization technique to scale the data in the
interval [0, 1]. Hornik et al. [28] proved the universal consistency of the feedforward
neural networks. We have chosen optimum number of neurons as mentioned in [13].
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Fig. 1.3 Hellinger distance-based decision tree output on CM1 dataset

Fig. 1.4 Hybrid
HDDT-ANN output on CM1
dataset

We have taken 10 neurons in the hidden layer in case of CM1 dataset. We used
sigmoid activation function in the output layer.

The ANN model is presented in Fig. 1.4. After hybridization the F-measure
improved to 96%, AUC improves to 90% and recall to 95%. Since the sample is
drawn randomly, in each iteration we will get different values for each of metrics.
We iterate 10,000 times and calculate mean and standard deviation for each of the
metrics.

Table 1.2 gives the various performance metrics obtained for different models
applied to these datasets, including the one of the recent methods [12]. The per-
formance metrics of the proposed model are shown in the right most column of
Table 1.2 and it clearly indicates that the proposed model is the best model so far
used for imbalanced classification problems of this type, though for a few instances
other models have done better occasionally.
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Fig. 1.5 Horizontal barplot of F-measure of different models applied on CM1 dataset

Conclusion

The objective of this article is to develop a model, which can predict whether a
software module is defective or non-defective. In our study, we have produced a
HDDT-ANNmodel which is a combination of artificial neural network andHellinger
distance-based classification tree, and it gives better results in terms of different
metrics used for classification problems, specially for imbalanced datasets than all
other traditional models as shown in Fig. 1.5. Splitting the data into training and
testing set in the ratio 80:20 is quite popular in machine learning literature [13].
However, it is noted that when the data comes from an extremely imbalanced dataset,
there are non-zero (although very low) chances of obtaining a sample which has only
one class of data. But, since the samples generated randomly are in thousands, the
effect of the positive probability of having a one-class samplewill bemuch low,which
can be neglected. In this study, we have used HDDT for extracting important features
from imbalanced dataset and found that the hybrid HDDT-ANN model outperforms
the other supervised models in the context of SDP problems. Significant accuracy
compared to traditional machine learning algorithms has been achieved through the
use of our experimentally optimized model for the 10 NASA SDP datasets. For a
module which may be newly introduced, if we know the features of the new module
in terms of Halstead’s count of lines of comments, LOC-COde-And-comments, etc.,
then the proposed model will be able to say whether the module is defect-prone or
not. The proposed hybrid HDDT-ANNmodel may be used for similar problems like
in medical diagnosis contexts as well. Also, it is known that all defects are not of
same importance. However, severity of the effects of a defect instance can be looked
at as a future research topic. Some recent works [21] may be looked at for tackling
such problems.
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Code

We used R language to implement this hybrid HDDT-ANN methodology. The link
for the code is given here: https://github.com/KARMAKAR03/Barin001.
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