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Preface

The China Conference on Machine Translation (CCMT) is a national annual academic
conference held by the Machine Translation Committee of the Chinese Information
Processing Society of China (CIPSC), which brings together researchers and practi-
tioners in the area of machine translation, providing a forum for those in academia and
industry to exchange and promote the latest developments in methodologies, resources,
projects, and products, with a special emphasis on the languages in China. Since the first
session of CCMT in 2005, 17 sessions have been successfully organized (the first 14
sessions were called CWMT), and a total of 11 machine translation evaluations (2007,
2008, 2009, 2011, 2013, 2015, 2017, 2018, 2019, 2020, 2021) have been organized,
as well as one open source system module development task (2006) and two strategic
seminars (2010, 2012). These activities have made a substantial impact on advancing
the research and development of machine translation in China. The conference has been
a highly productive forum for the progress of this area and is considered a leading and
important academic event in the natural language processing field in China.

This year, the 18th session (CCMT 2022) took place in Lhasa, Xizang, C. This con-
ference continued the tradition of being the most important academic event dedicated
to advancing machine translation research in China. It hosted the 12th Machine Trans-
lation Evaluation Campaign, featured two keynote speeches delivered by Nan Duan
(Microsoft Research Asia) and Qun Liu (Huawei Noah’s Ark Lab), and included two
tutorials delivered-by Tong Xiao, Yinqiao Li, and Bei Li (Northeastern University) and
Longyue Wang and Xing Wang (Tencent). The conference also organized five panel
discussions, bringing attention to unsupervised and low-resource machine translation,
the industry of machine translation, the frontier of machine translation, and the forum
for PhD students. A total of 42 submissions (including 16 English papers and 26 Chi-
nese papers) were received for the conference. All papers were carefully reviewed in
a double-blind manner and each paper was evaluated by at least three members of an
international Program Committee. From the submissions, eight English papers were
accepted. These papers address all aspects of machine translation, including improve-
ment of translation models and systems, translation quality estimation, document-level
machine translation, low-resource machine translation, etc.Wewould like to express our
thanks to every person and institution involved in the organization of this conference,
especially the members of the Program Committee, the machine translation evaluation
campaign, the invited speakers, the local organization team, our generous sponsors, and
the organizations that supported and promoted the event. Last but not least, we greatly
appreciate Springer for publishing the proceedings.

August 2022 Tong Xiao
Juan Pino
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PEACook : Post-editing Advancement
Cookbook

Shimin Tao, Jiaxing Guo, Yanqing Zhao, Min Zhang, Daimeng Wei,
Minghan Wang, Hao Yang(B), Miaomiao Ma, and Ying Qin

2012 Labs, Huawei Technologies CO., LTD., Beijing, China
{taoshimin,guojiaxin,zhaoyanqing,zhangmin186,weidaimeng,

wangminghan,yanghao30,mamiaomiao,qinying}@huawei.com

Abstract. Automatic post-editing (APE) aims to improve machine
translations, thereby reducing human post-editing efforts. Training on
APE models has made a great progress since 2015; however, whether
APE models are really performing well on domain samples remains as an
open question, and achieving this is still a hard task. This paper provides
a mobile domain APE corpus with 50.1 TER/37.4 BLEU for the En-Zh
language pair. This corpus is much more practical than that provided
in WMT 2021 APE tasks (18.05 TER/71.07 BLEU for En-De, 22.73
TER/69.2 BLEU for En-Zh) [1]. To obtain a more comprehensive inves-
tigation on the presented corpus, this paper provides two mainstream
models as the Cookbook baselines: (1) Autoregressive Translation APE
model (AR-APE) based on HW-TSC APE 2020 [2], which is the SOTA
model of WMT 2020 APE tasks. (2) Non-Autoregressive Translation
APE model (NAR-APE) based on the well-known Levenshtein Trans-
former [3]. Experiments show that both the mainstream models of AR
and NAR can effectively improve the effect of APE. The corpus has been
released in the CCMT 2022 APE evaluation task and the baseline models
will be open-sourced.

Keywords: Automatic post-editing · Autoregressive translation
APE · Non-autoregressive translation APE

1 Introduction

MT automatic post-editing (APE) is the task of automatically correcting errors
in a machine translated text. As pointed out by (Chatterjee et al., 2020), from
the application point of view, the task is motivated by its possible uses to:

– Improve MT output by exploiting information unavailable to the decoder,
or by performing deeper text analysis that is too expensive at the decoding
stage;

– Cope with systematic errors of an MT system whose decoding process is not
accessible;

– Provide professional translators with improved MT output quality to reduce
(human) post-editing efforts;

– Adapt the output of a general-purpose MT system to the lexicon/style
requested in a specific application domain (Fig. 1).

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
T. Xiao and J. Pino (Eds.): CCMT 2022, CCIS 1671, pp. 1–11, 2022.
https://doi.org/10.1007/978-981-19-7960-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-7960-6_1&domain=pdf
https://doi.org/10.1007/978-981-19-7960-6_1
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Fig. 1. News BLEU vs. APE BLEU; for BLEU gap with News SOTA, the PEACook
corpus presents a much smaller gap than WMT 2021 APE corpora

From 2015 to 2021, APE has been paid with much more attentions. [4–
6] called WMT2015 the “stone age of APE”, which was the pilot run for APE
shared tasks, with the main objective of identifying the state-of-the-art approach
and setting a standard for the evaluation of APE systems in future competitions.
Later, WMT16, 17 and 18 were considered as the golden years of APE, and all
systems were neural-based end-to-end solutions and involved multi-source mod-
els. From 2019 to 2021, participants started to explore three directions: (i) Opti-
mized Transformer architecture in the APE task; (ii) How to effectively inject
more information with multi-sourced architecture; (iii) Better ways of using syn-
thetic data. In conclusion, the performance improvements of APE models are
more and more significant, making it closer to human PE, “things are getting
really interesting” [7].

Although APE research in WMT has made remarkable progresses, there are
still several problems:

– The progress for APE in to-En is not fully investigated. Since 2015, WMT
has released 11 datasets in 7 APE shared tasks; however, there is only one
to-En (De-En) dataset.

– The APE baseline for MT-PE BLEU is not closely related with the SOTA
translation model. The gap of BLEU scores for the En-Zh direction is (69.2−
36.98 = 32.2), for WMT21 APE BLEU is 69.2 and for WMT21 NEWS SOTA
is 36.98.

– Previously released corpora are collected from wiki, rather than any specific
domain. As such, domain-specific APE is not fully investigated.

This paper presents a Zh-En APE dataset, the first To-En dataset since NMT
became the mainstream model. The corpus is collected from a specific domain
(Mobile) rather than from wiki or open domains. Moreover, the BLEU score of
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the APE corpus is 37.4, with only a small gap compared to the WMT News
SOTA translation system (37.4 − 36.9 = 0.5).

In addition to the APE corpus, we provide two types of APE model baselines,
autoregressive (AR-APE) model baseline and non-autoregressive (NAR-APE)
model baseline for APE. The AR model is built based on the work of HW-
TSC APE [2], which is the WMT 2020 APE SOTA architecture. And the NAR
model is built based on the Levenshtein Transformer [3]. With pre-training and
fine-tuning strategies, experiments show that both models are better than the
baseline approach (direct translation). However, compared with the blackbox
MT model baselines, only the AR-APE model obtained positive gains; the NAR-
APE model obtained negative gains. This indicates that the application of NAR-
APE models requires more exploration.

In summary, to better analyze the effectiveness of APE in the improvement of
machine translation and the decrease of human-editing efforts, this work makes
the following contributions:

– A high quality corpus for APE tasks. The corpus is the first APE to-En
dataset in NMT, which is more practical than previously proposed datasets.

– Two mainstream baseline models: AR-APE model based on the WMT2020
SOTA architecture, and NAR-APE model based on Levenshtein Transformer.
AR-APE is better than the MT baseline, while NAR-APE is worse than it.

– A fine-tuning cookbook for AR-APE and NAR-APE, providing step-by-step
methods for training customized APE models.

2 Related Work

2.1 APE Problem and APE Metrics

Table 1. Statistics of WMT and CCMT APE Corpora

Conference Language
pair

Domain MT type Baseline
BLEU

Baseline
TER

WMT 2015 En-ES News PBSMT n/a 23.84

WMT 2016 En-De IT PBSMT 62.11 24.76

WMT 2017 En-De IT PBSMT 62.49 24.48

WMT 2017 De-En Medical PBSMT 79.54 15.55

WMT 2018 En-DE IT NMT 74.73 16.84

WMT 2019 En-DE IT NMT 74.73 16.84

WMT 2019 En-Ru IT NMT 76.2 16.16

WMT 2020 En-DE Wiki NMT 50.21 31.56

WMT 2020 En-Zh Wiki NMT 23.12 59.49

WMT 2021 En-DE Wiki NMT 71.07 18.05

WMT 2021 En-Zh Wiki NMT 69.2 22.7

CCMT 2022(PEACook) Zh-En Mobile NMT 37.4 51.9
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Fig. 2. AR and NAR models for machine translation and APE [8]

Table 2. Comparison of metrics for PEACook and WMT 21 datasets

Metrics Split WMT21 En-DE WMT21 En-Zh PEACook

(Domain) Wiki Wiki Mobile

BLEU train 70.8 40.1 38.6

dev 69.1 62.4 39.2

test 71.1 69.2 37.4

TER Train 18.1 44.9 50.1

dev 18.9 28.1 49.2

test 18.5 22.7 51.9

APE Problem. The first APE shared task was held in the WMT 2015 [4]. The
training and development datasets used in the task were triplets consisting of
source (SRC), target (MT) and human post-edit (PE), in which (Fig. 2):

– SRC: The source is a tokenized source sentence, mainly in English.
– MT: The target is a tokenized German/Chinese translation of the source,

which was produced by a generic, black-box neural MT system unknown to
participants.

– PE: The human post-edit is a tokenized manually-revised version of the tar-
get, which was produced by professional translators.

An APE system aims to build models and predict the PE of the test set where
only SRC and MT are provided. Human post-edits of the test target instances
were left apart for the evaluation of system performance.

APE Metrics. Automatic evaluation is carried out by computing the distance
between the predicted PEs produced by each system and the human PE refer-
ences. Case-sensitive TER [9] and BLEU [10] are used as primary and secondary
evaluation metrics, respectively.

TER is an estimation of the minimum edit-distance (deletions, insertions,
substitutions and shifts of the positions of words) divided by the total number
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Fig. 3. AR-APE architecture of HW-TSC’s APE model [2] and NAR-APE Architecture
of Levenshtein Transformer [3]

of words in a target sequence. The systems with the lowest TER are the best,
since their predictions are closer to the references. BLEU, which has an additional
advantage of dealing with n-grams, is also an important metric to evaluate APE
models. The third metric is Repetition Rate, which measures the repetitiveness
inside a text by looking at the rate of non-singleton n-gram types (n = 1...4) and
combining them using the geometric mean. In addition, the Repetition Rate is
important in SMT, while in NMT, recent research by WMT [11] shows it is not
closely related with APE performance. So, TER and BLEU become the standard
metrics for APE tasks. Baseline metrics of APE tasks in WMT and CCMT in
each year are shown in Table 1.

2.2 APE Baselines

Theoretically, an APE model is a parameterized function f with SRC and MT
pairs as inputs and with PE texts as outputs. Since the PE texts normally have
variable lengths, the task is inherently modeled as a generative problem with the
sequence-to-sequence framework, resulting in a similar pipeline to the translation
function t:

APE Model := f(src,mt) → pe

:≈ t([src;mt]) → pe,
(1)

where [; ] is the concatenation operation.
In this case, the model can be trained under the MLE framework with the

cross-entropy loss:
LAPE = CrossEntropy(p̂e, pe), (2)

where P̂E is the model predicted PE.
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Nowadays, translation models are typically classified into two paradigms, i.e.
Autoregressive Translation (AR) and Non-autoregressive Translation (NAR),
where the former predicts words sequentially from left to right and the latter
can perform parallel generation in fixed steps (1 or N � T, where N is the step
and T is the target sequence length). However, NAR models are bothered by the
multi-modality problems and thus have inferior performance compared to AR
models.

APE models can be divided into two mainstreams, Autoregressive Trans-
lation APE model (AR-APE) and Non-Autoregressive Translation APE model
(NAR-APE).

AR-APE Model. Under this framework, an APE task can also be modeled with
AR or NAR models. When being modeled with AR models, both SRC and
MT texts are considered as input texts, which can be concatenated together or
encoded with independent encoders:

P (pe|src,mt; θ) =
n∏

j=1

P (yj |y<j , src,mt; θ), (3)

where θ is model parameters, yj is current predicted token and y<j are previously
predicted tokens.

As the SOTA model for both En-De and En-Zh in WMT 2020, HW-TSC APE
model is built based on Transformer [12] and is pre-trained on the WMT News
translation corpora. Different from previous works’ models using pretrained
multi-lingual language model (LM) [13], HW-TSC APE uses a pre-trained NMT
model, which is more intuitive to APE and translation scenarios [14].

In terms of fine-tuning strategies, it was found that fine-tuning the model only
on the officially released corpus could easily encounter a bottleneck. Therefore,
data augmentation was used by introducing external translations as additional
MT candidates or pseudo PEs to create more diversified features. The experimen-
tal results demonstrate the effectiveness of such an approach. The architecture
of HW-TSC’s APE model is shown in left of Fig. 3.

NAR-APE Model. Different from AR-APE models which predict words one by
one from left to right, NAR-APE models predict the whole sequence or chunks
of tokens in parallel, which improves the decoding efficiency but compromises
the performance. This paradigm can also be extrapolated to APE tasks:

P (pe|src,mt; θ) =
n∏

j=1

P (yj |src,mt; θ), (4)

where θ is model parameters, and yj is predicted token for each position.
NAR has a vital drawback, namely the multi-modality problem. To conquer
the problem, Levenshtein Transformer (LevT) [15] was proposed to learn from
an expert policy: Levenshtein Distance Algorithm, which models the conversion
of a sequence with a series of insertion and deletion operations. Same as other
NAR works, Knowledge Distillation is also used in the training of Levenshtein
Transformer. The decoding process of LevT is shown in right of Fig. 3.
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Table 3. Five typical PE cases in PEACook corpus

src mt pe PEType

存储环境温度：-10℃+̃45℃（14°F

1̃13°F）

Storage temperature:

−10 ◦C +̃45 ◦C (14 ◦F

1̃13 ◦F)

Storage temperature:

−10 ◦C to +45 ◦C

(14◦F to 113 ◦F)

coherence

键盘待机时间短、电池耗电快。
The standby time of the

keyboard is short, and

the battery power

consumption is high

The standby time of

the keyboard is short

and the batteries

drain quickly

grammar & syntax

将手表关机，并断开充电器连接。
Power off your watch

and disconnect it from

the charger

Power off your watch

and disconnect it

from the charger

no pe

HUAWEI M-Pencil第二代手写笔书写

没有反应

The second generation

of HUAWEI M-Pencil

stylus does not respond

There is no response

when I use the

HUAWEI M-Pencil

(2nd generation) to

write or draw on the

screen

lexicon

说明：当前积分系统为Beta版本，在正式

版上线后你的积分可能会有变化。

Note: The current bonus

point system is a beta

version. Your bonus

points may change after

the official version goes

live

Note: Currently, the

points contribution

system is a beta

version. Your points

may change after the

official version goes

live

named entity

3 PEACook Corpus

3.1 PEACook Corpus Details

The PEACook corpus presented in this paper consists of training, dev and test
datasets, with each consisting of 5000, 1000, and 1000 sentences, respectively.
After detailed analysis, it was found that the PEACook corpus is more practical
than the corpora provided in WMT21 En-De/Zh, shown in many aspects: 1) Its
BLEU score gap is smaller than that of WMT, indicating that more PE patterns
should be learned, as shown in Table 2. 2) Its domain is much narrower, requiring
the model to perform domain adaptation during post editing.

PEACook Case Analysis. According to [16,17] and [18], domain transfer with
post-editing cases can be divided into five major categories, including coherence,
grammar & syntax, lexicon, named entity and no pe. Detailed cases can be found
in Table 3.

4 Baseline Model Experiments

4.1 Pre-training AR-APE Model

To build the AR-APE model, we need to first pre-train a standard transla-
tion model. Here, a Transformer-large is pre-trained on the WMT-19 corpus
by strictly following the pipeline in [19]. When the pretrained model is directly
evaluated, the BLEU score on the hypothesis and PE is only 15.8 (TER = 72.6),
indicating that there is still large room for the model to improve over fine-tuning.
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4.2 Fine-Tuning AR-APE Model

To further improve the AR-APE model performance, we propose three fine-
tuning strategies as shown in Table 4: 1) We directly fine-tune the model on
the (SRC, PE) pairs without using MT, which is to essentially perform domain
adaptation. This baseline strategy helps the model to improve by +21.7 points
on the BLEU score. 2) Src and MT texts are concatenated as input, while PE
as output. This strategy brings +23.1 BLEU improvements compared to the
baseline. 3) The last strategy is the series connection of the two, which obtains
the best performance in our experiments, with +24.6 BLEU and −0.227 TER.

4.3 Pre-training NAR-APE Model

As mentioned in previous sections, we also provide an NAR baseline, which
is a Levenshtein Transformer (LevT) model. Same as what we do in our AR-
APE experiments, we pre-train the LevT on the WMT-19 corpus and knowledge
distillation corpus, following the procedure in [15]. Then, we directly translate
the src text with the LevT, with max decoding iterations being 10. The obtained
baseline results are as follows: BLEU = 14.2 and TER = 0.727.

Table 4. Performances of fine-tuning AR-APE model with three strategies

Strategies Approach TER BLEU

Baseline PT on (src, refnews) 0.726 15.8

Strategy 1 FT on (src, pe) 0.521 (−0.205) 37.5 (+21.7)

Strategy 2 FT on (src+mt, pe) 0.509 (−0.217) 38.9 (+23.1)

Strategy 3 FT on (src,pe), than, FT on (src+mt, pe) 0.499 (−0.227) 40.4 (+24.6)

4.4 Fine-Tuning NAR-APE Model

Again, NAR-APE model is fine-tuned on the in-domain PEACook corpus. Here,
we present two types of evaluation strategies. The first one is to directly generate
PE with the fine-tuned model, i.e. translate from scratch with the fine-tuned
model. The second strategy is to generate PE with SRC and MT as input,
applying the property of LevT partial decoding, i.e. post-editing on the MT by
posing MT texts as decoder inputs. Performances of both strategies are shown
in Table 5.

Although the performance of the NAR-APE model is not as good as the
AR-APE model, LevT still brings improvements when editing MT (Strategy
2), indicating that NAR models have potentials in APE tasks thanks to their
flexibility in the decoding.



PEACook : Post-Editing Advancement Cookbook 9

Table 5. Performances of fine-tuning NAR-APE model with three strategies

Approach TER BLEU

Baseline PT on (src, refnews) 0.727 14.2

Strategy 1 FT on (src, pe), than, decode with (src,) 0.53 (−0.197) 34.1 (+19.9)

Strategy 2 FT on (src, pe), than, decode with (src, mt) 0.531 (−0.196) 36.1 (+21.9)

The performance comparisons between AR-APE/NAR-APE models and
MT-PE baselines are shown in Fig. 4.

Fig. 4. TER scores of MT-PE baseline model, AR-APE model and NAR-APE model

5 Conclusion

This paper provides PEACook, which is the first from Chinese to English APE
corpus. PEACook corpus is more practical than the WMT APE corpus, for
higher TER and lower BLEU, which is closely related with WMT News SOTA
performance results.

Also, AR-APE and NAR-APE baseline models with different fine-tuning
strategies are provided for further investigation in the area. Experimental results
demonstrated that the performances are relatively better than those using con-
ventional machine translation approaches. The AR-APE model is better than
the corpus MT-PE baseline, while the NAR-APE model is worse than the corpus
MT-PE baseline.

The future research directions include (1) How to improve NAR-APE models,
since the performance of NAT Translation models is closer to AT models in
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the WMT News translation task, with great advantages in decoding speed. (2)
Knowledge-guided domain adaption for NAT models. Domain transfer is one
important direction of APE, and much domain knowledge hasn’t been fully
applied in APE corpus. How to distill these knowledge from corpus and inject
into AR/NAR-APE models is also very interesting and useful.
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Abstract. When parallel training data is scarce, it will affect neural machine
translation. For low-resource neural machine translation (NMT), transfer learn-
ing is very important, and the use of pre-training model can also alleviate the
shortage of data. However, the good performance of common cold-start transfer
learning methods is limited to the cognate language realized by sharing its vocab-
ulary. Moreover, when using the pre-training model, the combination of general
fine tuning methods and NMT will lead to a serious problem of knowledge for-
getting. Both methods have some defects, so this paper optimizes the above two
problems, and applies a new training framework suitable for low correlation lan-
guage toMongolian-Chinese neural machine translation. Our framework includes
two technologies: a) word alignment method under hot-start, which alleviates the
problem of word mismatch between the transferred subject and object in trans-
fer learning. b) approximate distillation,not only retains the pre-trained knowl-
edge, but also solves the forgetting problem, so that the encoder of NMT has
stronger language representation ability. The results show that BLEU is increased
by 3.2, which is better than ordinary transfer learning and multilingual translation
system.

Keywords: Transfer learning · Pre-training · Machine translation

1 Introduction

Despite the rapid development of neural machine translation [1] recently, its main
improvements and optimizations can not be easily applied to language pairs with insuf-
ficient resources. Basic training procedure of NMT does not work well with only a few
bilingual data [2], and collecting bilingual resources is difficult for many languages.
With fewer parallel corpora and sparse data, it is easy to cause over fitting problems in
the training process. The trained model has poor robustness and generalization ability.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
T. Xiao and J. Pino (Eds.): CCMT 2022, CCIS 1671, pp. 12–23, 2022.
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In order to solve this problem, unsupervised and transfer learning [3] methods are
generally used to improve the quality of the model with the help of external resources.
However, the unsupervised method has no annotation set, so the cross entropy method
cannot be used for tuning. Back-translation [4] will produce false corpus, and the
increase of false corpus will also produce noise, resulting in inaccurate translation. The
concept of transfer learning is: We pre-train an NMT model on a high-resource lan-
guage pair (parent language pair), and then continue training on the model using the
bilingual data of another low-resource language pair (child language pair). This method
can alleviate the poor performance of the model caused by less corpus, but it also has
some shortcomings.

Some studies [5] show that the most important problem in transfer learning is the
vocabulary mismatch between the transfer subject and the transfer object, which seri-
ously limits the translation performance. We regard the source language in the parent
language pair as the transfer subject, and the source language in the child language pair
as the transfer object. If the words of the subject and object can be correctly correspond-
ing during the transfer, the performance of transfer learning will be greatly improved.
In previous studies [6], transfer learning is divided into hot-start method and cold-start
method according to whether there is training data of child language pairs when training
the parent model. The cold-start method does not use sublanguage for data. In contrast,
in the hot-start method, we have available sublanguage pair training data when train-
ing the parent model. We can use sublanguage pair knowledge to solve this problem.
In this paper, a cross-lingual word embedding method is used to convert words, and
a semi-supervised method is used to correctly correspond the two languages without
shared sub words. It can alleviate the word mismatch mentioned above and effectively
improve the translation quality.

The pre-train models have demonstrated their excellent performance in various nat-
ural language processing tasks including translation tasks. Now the common training
paradigm is “pre-train + fine-tune”, which means that specific downstream tasks are
tuning on the pre-trained model, so that additional knowledge can be obtained when
training downstream tasks.

However, compared with other tasks that directly fine-tune the pre-trained model,
NMT has two obvious characteristics, the availability of large training data (10million
or more) and the high capability of the baseline NMT model (i.e., Transformer). These
two features need a lot of updating steps in the training process in order to adapt to the
large capacity model well. However, too many updates will lead to disastrous forgetting
[7]. Too many updates in training will forget the general knowledge before training.
Since the output of the pre-train model and the encoder output of NMT are essen-
tially language models, this paper does not use the “pre-train + fine-tune” method, but
chooses the approximate distillation method to integrate the pre-trained knowledge into
the encoder, so as to enhance the language representation ability of the NMT encoder
and avoid the forgetting problem caused by a large number of updates.

This work proposes a new framework to adapt the transfer learning of neural
machine translation to low-resources languages:

– Cross-lingual word embedding under hot-start is used to alleviate the problem of
word mismatch between the transfer subject and the transfer object.
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– The approximate distillation method is used to ensure that the NMTmodel can retain
the previously trained knowledge and enhance the generalization ability of the NMT
encoder.

2 Background

2.1 NMT

Neural Machine Translation is essentially an encoder decoder system. Typical NMT
structures include RNN, LSTM, Transformer, etc. The function of encoder is to encode
the source language sequence and extract the information in the source language. Then
the information is converted to the target language by the decoder, so as to complete the
translation of the language.

The training task is to map the source language sequence X = {x1, x2...xn} to the
target language sequence Y = {y1, y2...ym}. The sequence length can be different. In
this case here, n and m are the length of source sequence and target sequence respec-
tively. The model is trained on a parallel corpus by optimizing for the cross-entropy loss
with the stochastic gradient descent algorithm.

Lnmt = −
m∑

i=1

log p(θ)(yi|y<i,X) (1)

p(θ) is probability, θ is a set of parameters: source/target word embedding, encoder,
decoder, and output layer. The training objective is to minimize the loss in equation
(1) to obtain the optimal translation results. In Transformer, the encoder is similar to
the decoder in structure. The decoder is essentially a language model of language y.
Similarly, the encoder with an additional output layer can also be seen as a language
model. Therefore, it is natural to transfer the pre-trained knowledge to the encoder and
decoder of NMT.

2.2 Transfer Learning

Generally speaking, transfer learning refers to reusing knowledge from other
fields/tasks when facing new problems [8]. Especially when there is not enough train-
ing data to solve this problem, transfer learning can play a better role. Because the
hidden layer of neural network can implicitly learn the general representation of data,
the weight of hidden layer can be copied to another network to transfer knowledge.

In NMT, the earliest transfer learning method was proposed by Zoph et al. [3]. In
their work, the parent model was first trained on high resource language pairs. Then,
the source word embedding is copied together with the rest of the model, and the ith
parent language word embedding is assigned to the ith child language word. Because
the parent and child source languages have different vocabularies, this is equivalent to
embedding the parent source words and randomly assigning them to the child source
words. In other words, even if a word exists in both parent and child vocabularies, it is
unlikely that it will be assigned the same embedding in both models (Fig. 1).



Hot-Start Transfer Learning Combined with Approximate Distillation 15

Fig. 1. Schematic diagram of transfer learning

For transfer learning, directly transferring the parameters of the parent model to
the child model is not the optimal solution. Because the input language changes from
the parent language to the child language, it is equivalent to introducing a completely
different data space. The migrated model parameters cannot quickly adapt to the data
space of the new language, and the translation effect will become worse. Previous stud-
ies have shown that the translation effect of transfer learning is closely related to the
correct alignment of word vectors. The higher the alignment, the better the transfer
effect.

2.3 Pre-train Techniques

In recent years, unsupervised pre-train of large neural models has recently completely
changed natural language processing technology. The most representative model is
BERT [9]. Generally, there are two methods to use BERT’s feature, fine-tune and fea-
ture. For the fine-tune method, a simple classification layer is added to the pre-trained
model, and all parameters of downstream tasks are jointly fine-tuned, while the feature
method keeps the pre-trained parameters unchanged. In most cases, the performance of
the fine-tune method is better than feature method.

The basic steps of the tuning method in NMT scenarios: train the language model
on a large number of unlabeled text data, then initialize the NMT encoder with the pre-
trained language model, and use a marked data set for tuning. However, this process
may lead to catastrophic forgetting. After fine-tuning, the model performance on the
language modeling task will be significantly reduced. This may hinder the ability of the
model to use pre-trained knowledge. To solve this problem, we introduce a distillation
method to improve the model.

3 Methods

3.1 Word Alignment Under Hot-Start

The biggest challenge of cross language transfer is vocabulary mismatch. When we
replace only one source language, the NMT encoder will see a completely different
input sequence. The pre-trained encoder weight does not match with the source embed-
ding. Therefore, when we want to reuse the parent model parameters to train child
language pairs, we need to solve the vocabulary mismatch between the transfer sub-
ject and the transfer object. However, the cold-start method is not applicable to the two
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languages that have nothing to do with subwords. Therefore, this paper uses the hot-
start method to solve this problem. Before training, a Cross-lingual word embedding
alignment method is used to match the words of the subject and object and align them
correctly.

In this work, we use the method proposed by Patra et al. [10] and integrate it with
transfer learning. Before model training, by embedding and aligning the words of the
two languages, the parent model can recognize the transfer of child language pairs dur-
ing training, so that the parameter migration can quickly adapt to the data distribution
of the new language, which is impossible for the cold-start method.

Set X = {x1, x2...xn} and Y = {y1, y2...ym}, They are two groups of word
embedding from the source language and the target language respectively. Then set
S =

{
(x1

s, y
1
s)...(x

k
s , y

k
s )

}
, S represent the word embedding that has been bilingual

aligned. We combine unsupervised distribution matching, alignment of known word
pairs and weak orthogonal constraints to learn the linear mapping matrix W that maps
X to Y (Fig. 2).

Fig. 2. Cross-lingual word embedding mapping from child language to parent language.

Unsupervised Method: Given X and Y, the objective of unsupervised loss is to match
the distributions of these two embedding spaces. We used an adversarial distribution
matching target, similar to the work of Conneau et al. [11]. Specifically, a source to tar-
get mapping matrix W is learned to trick a discriminator D, which is trained to distin-
guish between WX and Y . We parameterize our discriminator with MLP, or optimize
the mapping matrix and discriminator with corresponding objectives:

LD|W = − 1
n

∑

xi∈X

log (1 − D(WXi)) − 1
m

∑

xi∈Y

log D(Xi) (2)

LW |D = − 1
n

∑

xi∈X

log D(Wxi) (3)

Aligning Known Word Pairs: Given aligned bilingual word embeddings S. Our task
is to minimize a similarity function (fs) and maximize the similarity between the cor-
responding matched word pairs. Specifically, loss is defined as:

LW |S = − 1
|S|

∑

(xs
i ,y

s
i )∈S

fs(Wxs
i , y

s
i ) (4)

Weak orthogonal constraint: Given an embedding space X , Patra et al. define a con-
sistency loss that maximizes a similarity function fa between x and WTWx, x ∈ X
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[10]. This cyclic consistency loss LW |O encourages orthogonality of the W matrix
based on the joint optimization:

LW |O = − 1
|X|

∑

xi∈X

fa(xi,W
TWxi) (5)

The above loss terms are used in conjunction with supervised and unsupervised
losses, allowing the model to adjust the trade-off between orthogonality and accuracy
based on joint optimization. This is particularly useful in embedded spaces that do not
conform to orthogonality constraints. The final loss function of the mapping matrix is:

L = LW |D + LW |S + LW |O (6)

It enables the model to utilize the available distribution information from the two
embedded spaces, so as to use all available monolingual data. On the other hand, it
allows the correct alignment of tag pairs in the form of a small seed dictionary. Finally,
orthogonality is encouraged. We can think of and as opposed to each other. Co opti-
mization of the two helps the model strike a balance between them.

3.2 Approximate Distillation

The transfer learning initializes the child model with the trained parent model param-
eters, and then fine-tune the new training set. Since the new training set is generally
a low-resource language and the corpus is relatively small, it may not be able to fully
learn the source language knowledge of the sub language pairs. The commonly used
auxiliary method adopts the pre-train model to learn the source language knowledge,
and then initializes the knowledge to NMT for fine tune. Moreover, the use of fine-tune
of large pre-train model will reduce the speed of NMT [12]. In this regard, we use dis-
tillation method to integrate the knowledge obtained from the pre-train model into the
NMT encoder, retain the previous knowledge, and improve the language representation
ability of the encoder.

As shown in the figure, first use the pre-train language model (PLM) to train the
source language monolingual, and the trained knowledge is stored in the hidden layer
in the form of matrix. Then, the hidden layer of the PLM is taken as the teacher [13],
and the hidden layer state of the translation model encoder is taken as the student for
knowledge fusion. (The PLM and NMT encoder are essentially language models, so it
is reasonable to integrate the knowledge of the two language models.)

Lad = −
∥∥∥ĥlm − hl

∥∥∥
2

2
(7)

Lad is the mean square error loss of the two hidden layer states, ĥlm is the state
of the last hidden layer of the PLM, and hl is the state of the lth hidden layer of the
encoder. By punishing the loss of mean square error between the PLM and the state
of the hidden layer of NMT encoder, the states of the two hidden layers are gradually
close. In the experiment, the hidden state of the PLM is frozen, and the last layer (top
layer) of the encoder is set to hl. We find that adding the supervision signal to the top
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Fig. 3. The frame of approximate distillation.

encoder layer is the best. During training, distillation loss can be used together with
traditional cross entropy loss (Fig. 3):

Lall = α · Lnmt + (1 − α) · Lad (8)

Lnmt is the cross entropy loss of the translation model. In the above formula, the
total loss Lall combines Lnmt and Lad, and α is a hyperparameter to balance the trans-
lation preference of the translation system [14]. In this way, the knowledge of PLM and
the NMT can be combined to make better use of the pre-trained knowledge, so that the
NMT encoder can obtain stronger representational capacity and generalization ability.

4 Experiment

4.1 Settings

We conducted experiments on English-Chinese (en-zh) and a low-resource translation
task (mo-zh). For the en-zh task, the train set consists of 2 million bilingual sentences
from the casic2015 corpus. We use NIST02 as the validation set and nist03-06 as the test
set. For low-resource tasks, the dataset is provided by ccmt2019, as shown in Table 1.
Mongolian monolingual comes from Wikipedia and news, with a total of 700m words.

Table 1. Dataset distribution

Language Train set Validation set Test set

mn-zh 256,754 2,000 2,000

All NMT models in our experiments follow the basic 6-layer transformer architec-
ture of Vaswani et al. [1]. Each source language adopts byte pair encoding [15], 30K
merge operation, while the target language adopts 50k bpe merge encoding. The train-
ing was conducted using sockeye [16] and Adam optimizer with default parameters.
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The maximum sentence length is set to 100 and the batch size is set to 4,096 words.
When the confusion on a verification set does not improve on the 12 checkpoints, the
training is stopped. We set the checkpoint frequency of the parent model to 10,000
updates and the child model to 1,000 updates.The teacher model of knowledge distilla-
tion is trained by Bert, and the model in the experiment is BERTbase, which follows
the structure proposed by Devlin et al. [9], l = 12, h = 768, a = 12, total parameters =
110m. Set the hyperparameter α to 0.5 during knowledge fusion.

We first train the collected Mongolian and English monolingual corpus into word
embedding. In order to learn cross language mapping, we use a semi-supervised frame-
work, and the parameters basically follow the settings of Patra et al. [10]. The unsu-
pervised method uses muse, the data set is composed of Mongolian and English dic-
tionaries in the corpus, and the weak supervised method uses a set of aligned word
embedding. After learning the final mapping matrix, the words in the source language
are mapped to the target space, and their nearest neighbors are selected as the final result
according to the CSLS [11] distance. We compared it with the multilingual translation
model. In multilingual training, we trained a single and shared NMT model [17]. For
each subtask, we learned the joint BPE vocabulary of all source and target languages
in the parent/subtask through 32K merge operations. The training data of subtasks are
oversampled, so the proportion of parent/child training samples of each small batch is
about 1:1.

4.2 Results and Analysis

Results: From Table 2, in low-resource tasks, our method improved the scores of 3.2
and 1.7 BLEU respectively compared with traditional transformer and multilingual
translation system.

Table 2. Comparison of experimental results.

System Method BLEU

Vaswani et al. [1] Transformer base 27.4

Johnson et al. [17] Multilingual 28.9

Ours +Transfer Learning(cold-start) 28.7

+Cross-lingual Word Embedding 29.5

+Asymptotic Distillation 30.6

Analysis: In the first part of our experiment, we adopted the cold-start method of trans-
fer learning, and directly transferred parameters without using sublanguage pairs. It
is observed from the experiment that the cold-start method is also effective for low-
resource languages, but it is less effective than the hot-start method using cross-lingual
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word embedding. It also further shows that the higher the degree of lexical matching
between the subject and object of transfer, the better the effect of transfer learning.
Finally, the approximate distillation method is added. Compared with the Transformer,
it has a 3.2 BLEU improvement. We believe that the distillation method can enable the
encoder of NMT to fuse additional information.

4.3 Ablation Test

In this section, we will further study our method in detail, compare it with their similar
variants, and conduct general ablation studies.

Pre-trained Word Embedding Type. In Table 3, we analyze the cross-lingual impact
of pre-trained embedding. We try not to transfer word embedding in transfer learning,
but use pre-trained monolingual word embedding to replace the original word embed-
ding. We observe that monolingual embedding without cross language mapping also
improves transfer learning, but it is significantly worse than our proposed mapping to
parent (en) embedding. You can also use learning mapping on the target (zh) side. Tar-
get mapping embedding is not compatible with the pre trained encoder, but directly
guides the sub model to establish the connection between the new source and target. It
also improves the system, but our method is still the best of the three embedding types.

Table 3. The experimental performance of different types of cross-lingual word embedding.

Pre-trained embedding BLEU%

None 4.8

Monolingual 6.3

Cross-lingual (en-mo) 7.7

Cross-lingual (zh-mo) 7.2

Encoder vs Decoder. As shown in Table 4, the effect of integrating the pre-trained
knowledge into the encoder is good, but the effect is low in the decoder. Since BERT
contains bidirectional information, the fusion of pre-trained knowledge into decoder
may lead to inconsistency between training and reasoning. Gpt-2 uses limited self atten-
tion, where each token can only focus on its left context. Therefore, it is natural to intro-
duce gpt-2 into the NMT decoder.It may be that the decoder is not a typical language
model, it only contains information from the source language.

Vocabulary Size. Table 5 shows the effect of different vocabulary sizes on translation.
We changed the number of source side BPE merges and fixed the target vocabulary. The
better result is to use 20K or 30K merges, which indicates that the vocabulary should be
small in order to maximize the quality of translation. Fewer BPE merges result in more
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Table 4.Different Transformer modules and different PLMwere used for approximate distillation
ablation test.

PLM to module BLEU

BERT to transformer encoder 29.5

BERT to transformer decoder 26.8

GPT-2 to transformer encoder 28.3

GPT-2 to transformer decoder 27.7

language independent tags. Cross-lingual embedding makes it easier to find overlaps in
the shared semantic space. However, if the vocabulary is too small, we may lose too
many language specific details necessary in the translation process.

Table 5. Baseline translation results for different vocabulary sizes.

BPE merges BLEU

20k 27.1

30k 27.4

40k 26.6

50k 26.3

4.4 Case Analysis

Fig. 4. Translation effects of different tasks.

It can be seen from the figure that the translation of this method basically conforms to
the standard translation in terms of accuracy and fluency, so as to control the details
of translation. In the case analysis, the words and “宝贝” in Mongolian are very
similar and easy to be confused.Translating these two words correctly makes the trans-
lation more accurate. And the words “几乎” and “掰” more reflect the fluency
of language and express more accurately. It is proved that this method can improve the
accuracy and fluency of translation (Fig. 4).
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5 Conclusion

The main contributions of this paper include: we propose a transfer learning framework
based on hot-start. On the basis of transfer learning, we alleviates the problem of vocab-
ulary mismatch between two languages without shared subwords.Meanwhile, in order
to give full play to the role of the PLM and improve the generalization ability of the
NMT encoder, we use the approximate distillation method to guide the NMT model to
learn the output probability distribution of the PLM.In this way, the NMT model can
master the knowledge probability distribution of the PLM and the NMT encoder at the
same time. Experiments show that this method has a significant impact on low-resource
translation tasks.
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Abstract. For Neural Machine Translation (NMT) tasks with limited
domain resources, curriculum learning provides a way to simulate the
human learning process from simple to difficult to adapt the general
NMT model to a specific domain. However, previous curriculum learning
methods suffer from catastrophic forgetting and learning inefficiency. In
this paper, we introduce a review-based curriculum learning method, tar-
getedly selecting curriculum according to long time interval or unskilled
mastery. Furthermore, we add general domain data to curriculum learn-
ing, using the mixed fine-tuning method, to improve generalization and
robustness of translation. Extensive experimental results and analysis
show that our method outperforms other curriculum learning baselines
across three specific domains.

Keywords: Neural machine translation · Domain adaptation ·
Review-based curriculum learning

1 Introduction

Recently, constructing high-quality domain-specific neural machine translation
(NMT) models has become a research hotspot. Due to the scarcity of domain-
specific parallel corpora, it is currently impossible to train robust domain-
specific NMT models from scratch. Domain adaptation uses general domain
data and unlabeled-domain data to improve the translation of in-domain mod-
els. It focuses on two problems, catastrophic forgetting and overfitting [1]. Com-
mon NMT domain adaptation methods can be divided into two categories [2]:
data-centric methods, including back translation and data selection; model-
centric methods, including training objective-centric methods, architecture-
centric methods and decoding-centric methods. These methods can alleviate the
catastrophic forgetting and overfitting problems to varying degrees.

Curriculum learning (CL) is also used to solve the above problems. It imitates
the way that humans learn curriculum from easier to harder [3], which results
in better generalization of the NMT model. Two main questions of CL are how
to rank the training examples, and how to modify the sampling procedure based
on this ranking [4]. The above questions can be abstracted to difficulty measurer
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
T. Xiao and J. Pino (Eds.): CCMT 2022, CCIS 1671, pp. 24–36, 2022.
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and training scheduler [5]. Usually, difficulty measurers are task-specific, how-
ever, the existing predefined training schedulers are data/task agnostic. Training
schedulers can be divided into discrete and continuous schedulers, and we focus
on the improvement of the discrete schedulers in this paper. One-Pass [3] and
Baby Step [6] are two discrete schedulers, which divide the sorted data into
shards from easy to hard and then start training with the easiest shard. The dif-
ference between two methods is that at each learning phase, One-Pass only uses
the current shard but Baby Step merges previously used shards into the current
shard. One-Pass may suffer from the problem of catastrophic forgetting, while
Baby Step has more generalization but takes longer to train when the number
of shards increases.

From practical experience, humans usually review the previous curriculums
when they learn. One-Pass can be compared to not reviewing the curriculums
they have learned before, and Baby Step is analogous to reviewing all the previ-
ous curriculums at each phase. However, it is enough for humans to strengthen
their memory by reviewing only some of the previous curriculums at each learn-
ing phase. In this paper, we imitate the way humans review curriculums, and
propose this review-based CL method. Aiming at the problems of the existing
discrete scheduler method, we design two review methods which select the previ-
ous curriculums that need to be reviewed and add them to the current training
set. The first method calculates time interval of the previous curriculums between
their last learning phase and the current phase, and selects curriculums with a
larger time interval. The second method is based on the model’s mastery of the
previous curriculums, calculating the increment of curriculum scores between two
close phases to select curriculums which are not proficiently mastered. Figure 1
shows the difference among the curriculum shards used at each phase for One-
Pass, Baby Step and Review. The columns represent the curriculum shards and
the rows represent the curriculum shards used at each learning phase. The darker
color of each square, the less similar it is to the specific domain.

Fig. 1. Comparison of shards used at each phase for different curriculum learning
methods.

With applying to NMT domain adaptation, the above methods still have
the problem of forgetting. So we refer to the practice of mixed fine-tuning [7],
bringing general domain data into each phase of CL after training the general
model. The general domain can be seen as the learning foundation that humans
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already have when learning curriculums. Although it is not completely consistent
with the distribution of specific domains, the knowledge contained in general
domain can help NMT model learn common information, enhance the robustness
and avoid forgetting happens.

We test our approach on TED talks for German-English and Chinese-English
pairs and patent abstracts for German-English pairs. Experimental results show
that our approach significantly improves compared to baseline methods, and
alleviates the problem of occupying too long training time for Baby Step as well.

2 Related Work

From a data-driven perspective, CL is essentially similar to the instance weight-
ing approach in domain adaptation. It makes NMT model pay more attention
to the loss of certain training examples, and allows the model to adapt or forget
certain pairs. Zhang et al. [8] design different difficulty measurers and training
schedulers applying to NMT, and point out that no strategy can perfectly out-
perform the others, but they did not further analyze the effect of other hyper-
parameters in CL. Zhang et al. [9] use Baby Step method in NMT domain
adaptation for the first time. They take in-domain data as the first curriculum
shard, and analyze the effect of two distinct data selection methods and distinct
number of shards on NMT model. However, they did not consider the negative
impact of slower convergence speed and the problem of forgetting due to fine-
tuning with in-domain data and unlabeled-domain data. Xu et al. [10] proposed
a dynamic CL method, using training loss decline of two iterations as difficulty
measurer and a function of BLEU value on the development set as training
scheduler. This method achieves better performance in low-resource scenarios
but no improvement when in-domain data is rich.

From a model-driven perspective, CL is also related to training objective-
centric methods. Fine-tuning [11] is a classical method which first trains a general
domain model and then uses in-domain data to fine-tune it. The fine-tuned model
has the problems of catastrophic forgetting and overfitting, so it is difficult to
obtain a NMT model with high robustness only by fine-tuning with in-domain
data. Thompson et al. [12] use Elastic Weight Consolidation (EWC) method
for NMT domain adaptation, reducing the weight of nodes that have too much
influence on the general domain to achieve the effect of continuous learning.
This method avoids catastrophic forgetting to a certain extent. Chu et al. [7]
propose mixed fine-tuning. After training the general NMT model, it uses data
mixed with in-domain data and general domain data rather than in-domain data
alone, which greatly improves the robustness of the model. We borrow the idea
of mixed fine-tuning to add general domain data to CL for solving the problem
of catastrophic forgetting.



Review-Based Curriculum Learning for Neural Machine Translation 27

3 Review-Based Curriculum Learning

In this paper, we propose review-based curriculum learning for NMT. It focuses
on the improvement of discrete training scheduler. We define the number of
review curriculums at each phase and how to choose the review curriculum.
Also, we introduce general domain data to each phase to solve the forgetting
problem for NMT domain adaptation. The overall method is shown in Fig. 2.
The solid line pointed out from the curriculum shard represents that it is used
at this phase, while the dotted line indicates that some of the curriculum shards
need to be reviewed. These two parts are combined into a review subset for each
phase, and then further mixed with the general domain data and in-domain data
in a certain proportion to form the whole training set of each phase. At each
phase, we continue training the NMT model until it is converged.

Fig. 2. Review-based curriculum learning method enhanced with general domain.

3.1 Time-Based Review Method

Commonly, humans usually forget curriculums which are learned a long time
ago. Inspired by this phenomenon, we believe that the longer a curriculum has
been since it was last learned, the more important it is to review it. We assume
that the number of CL phases is T and the fixed data shard used at each phase
is Ci(1 ≤ i ≤ T ) reaching a certain phase i, in addition to current shard Ci, the
number of other curriculums to be reviewed is set to ni. Apparently, the range
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of ni between 1 and i−1. As Algorithm 1 shows, when reviewing curriculums at
phase i, we calculate the difference value Δtci between last used phase tcj and
current phase i for curriculum Cj(1 ≤ j ≤ i − 1). Then we sort the difference
values to choose the top ni curriculum shards from largest to smallest and add
them to phase i data reCi

. Finally, the last used phase of the top ni curriculum
shards is updated to i. It is worth noting that phase 1 does not need to review,
so Cre

1 = C1.

Algorithm 1. Time-based Review Method
Input: Number of curriculum phase T, each curriculum shard data Ci(1 ≤ i ≤ T ).
Output: Each curriculum phase data Cre

1 (1 ≤ i ≤ T ).
1: Cre

1 ← C1

2: for i=2,3,...,T do
3: for j=1,2,...,i-1 do
4: Δtci ← i- tci
5: end for
6: Sort Δtci(1 ≤ j ≤ i-1)from largest to smallest, choose the top ni curric-ulum

shards Cr1 , Cr2 , ..., Crni
.

7: Cre
i ← Cr1 + Cr2 + ... + Crni

8: for k=1,2,...,ni do
8: tcrk ← i
9: end for

10: tci ← i
11: end for

3.2 Master-Based Review Method

From a different point of view, humans also review the curriculums which are
not proficiently mastered. We change this thought into an achievable method. As
Algorithm 2 shows, first we define the model’s mastery of the previous curriculum
shards as the BLEU value on them. Considering if we translate all the sentences
in the shards, it will cost a long translation time, so we take 1000 sentence pairs
from each curriculum shard at equal spacing as a representation of the shard
and calculate the BLEU value. We think that compared to the last phase, the
less curriculum shard improves, the more it needs to be reviewed. The master
score is estimated as:

scoreCj
=

BLEU i
Cj

− BLEU i−1
Cj

BLEU i−1
Cj

. (1)

where BLEU i
Cj

represents that the BLEU value of 1000 pairs from curriculum
shard Cj(1 ≤ j ≤ i − 1) at phase i before training. If the score is smaller than
others, we think that the NMT model has not learned this shard sufficiently, and
conversely we consider this shard has improved more and does not need more
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attention. We select top ni shards according to the master score from smallest
to largest, and add them to phase i data Cre

i . Finally we calculate BLEU i
Cj

.
Finally we calculate BLEU i

Cj
and train new NMT model.

Algorithm 2. Master-based Review Method
Input: Number of curriculum phase T, each curriculum shard data Ci(1 ≤ i ≤ T ).
Output: Each curriculum phase data Cre

i (1 ≤ i ≤ T ).
1: Cre

1 ← C1

2: for i=2,3,...,T do do
3: for j=1,2,...,i-1 do do
4: Use current model to calculate BLEU i

Cj

5: Calculate master score of Cj by Equation 1.
6: end for
7: Sort scorecj (1 ≤ j ≤ i-1)smallest to largest, choose the top ni curriculum shards

Cr1 , Cr2 , ..., Crni
.

8: Cre
i ← Cr1 + Cr2 + ... + Crni

9: Use current model to calculate BLEU i
Cj

.
10: Train the new NMT model.
11: end for

3.3 General Domain Enhanced Training

General domain can be seen as the inherent memory of humans, so in order
to maintain a high level of generalization and robustness of NMT model, we
add general domain data to each learning phase. In the experiments of Zhang
[9], as training goes on, the weight of in-domain data is decrease due to the
increment of unlabeled-domain data. Therefore, we assign weight to in-domain
data individually, so that each phase uses a fixed proportion of general domain
data, in-domain data and partially unlabeled-domain data:

traint = wGD ∗ DGD + wID ∗ DID + wUD ∗ Cre
t (2)

where Dtraint
represents training set at phase t, wGD, wID and wUD repre-

sent the weight of general domain data DGD, in-domain data DID and review
unlabeled-domain data Cre

i separately.

4 Experiment

4.1 Data and Setup

General Domain Data. We use two general domain datasets in the experi-
ment, Ger-man(de)-English(en) and Chinese(zh)-English. German-English gen-
eral dataset includes Europarl, news commentary, OpenSubtitles and Rapid cor-
pus, while Chinese-English includes CCMT2017, news commentary, UN Parallel
Corpus. After tokenization (not to Chinese) and filtering sentence length up to
80 words, we get 19 million sentence pairs for German-English and 20 million
sentence pairs for Chinese-English.
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In-Domain Data. Chinese-English and German-English TED domain data
are from Duh [13], and German-English patent domain data is from Junczys-
Dowmunt et al. [14]. The concrete number of three domain corpora is shown in
Table 1.

Table 1. Number of sentences in each dataset

Dataset Training set Development set Test set

TED(zh-en) 166373 1958 1982

TED(de-en) 148460 1958 1982

Patent(de-en) 150000 2000 2000

Unlabeled-Domain Data. For unlabeled-domain data in two language direc-
tions, we use web-crawled bitext from the Paracrawl project [15]. After data
cleaning and data selection, we get 20 million sentences for German-English
and 8.3 million sentences for Chinese-English. For the final corpus size in the
experiment, Zhang et al. [9] suggest 1024k pairs, and we follow this setup.

Curriculum Learning Setup. We refer to Zhang et al. [9] for some experi-
ment set-tings. For difficulty measurer we use Moore-Lewis [16] method to build
language models trained on in-domain and unlabeled-domain, and calculate the
cross-entropy difference of sentence in unlabeled-domain dataset. KenLM [17] is
used to build language models on the target side (English). Then, we set ni =
�log2 i� setting is designed to review an appropriate number of curriculums to
avoid forgetting or inefficient learning problem of not reviewing (like One-Pass)
or reviewing all shards (like Baby Step). Finally, we set the number of curriculum
phase to 5, which is different to Zhang et al. [9]. It is explained in experiment
analysis.

Subword Model. We use general domain data to train sentencepiece [18] sub-
word segmentation model. The vocab size is set to 32000 both for two languages.
Since general domain is large enough to train a robust segmentation model, there
is no need to retrain the subword model when we use the in-domain data and
unlabeled-domain data.

NMT Setup. In all experiments, we use the OpenNMT [19] implementation of
the Transformer [20], with 6 layers for both encoder and decoder and 8 attention
heads. The word embedding size is set to 512. We use Adam [21] optimizer to
adjust the learning rate automatically, with β1 = 0.9 and β2 = 0.998. We set
batch size to 6000, and training stops when the perplexity on the development
set has not improved for 5 checkpoints (2000 batches per checkpoint) at each
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phase. In addition, considering that the number of general domain data is much
larger than the number of in-domain and unlabeled-domain data, we set the
weights (wGD : wID : wUD) done to oversample in-domain data and maintain
high learning ratio on the other two do-mains, which not only biases the final
model distribution towards the specific domain, but also improves the robustness
of the NMT model.

Evaluation Metric. We use BLEU as the evaluation metric, and calculate
with sacreBLEU tool [22].

4.2 Main Results

Main experimental results is shown in Table 2. The model trained with large
amount of general domain data (GEN) has BLEU scores of 35.98, 18.29 and
26.47. Fine tuning (FT) on in-domain data improves BLEU significantly by
3.25, 3.51 and 23.98. Mixed fine tuning (MFT) brings more robustness to NMT
model, with improvement of 2.32, 2.17 and 0.94 BLEU score compared to fine
tuning method.

For previous curriculum learning methods, One-Pass suffers from catas-
trophic for getting problem apparently, with BLEU scores of 31.09, 15.48 and
34.03. Although Baby Step improves this situation with BLEU scores of 36.97,
22.60 and 50.74, it does not work as well as fine tuning on TED (de-en) domain,
and still has the problem of forgetting. Our two methods (T-Review and M-
Review) perform better than OnePass and worse than Baby Step, because the
NMT model does not focus on the indomain data all the time during the train-
ing process, and too much attention to the unlabeled-domain data may cause
forgetting problem.

After we add general domain data into CL phases, all the CL methods
mentioned perform better than original. T-Review+MFT performs best in all
the methods with BLEU scores of 42.40, 24.49 and 52.29. Compared to MFT
method, it improves BLEU by up to 0.9 score on patent (de-en). Also, compared
to Baby Step method, it improves BLEU by up to 5.43 score on TED (de-en).
We believe that general domain data enhances the generalization of the NMT
model, so that instead of reviewing all the previous curriculum shards, we use
only a part of shards that are necessary to be reviewed to improve the effect of
NMT model.

As for the comparison of our two methods, T-Review+MFT performs slightly
better than M-Review+MFT. Note that T-Review is not related to the NMT
model while M-Review is related. The possible reason is that T-Review has a
more logical review schedule for the shards and is able to review the curriculum
evenly. We also compare the method of randomly selecting shards for review
with MFT (Rand-Review+MFT). The result shows that even randomly select
curriculums can be better than Baby Step+MFT and One-Pass+MFT, however,
designed review curriculum rules are more effective such as T-Review and M-
Review.
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Table 2. Main experiment results

Method TED(de-en) TED(zh-en) patent(de-en)

GEN 35.98 18.29 26.47

FT 39.23 21.80 50.45

MFT 41.55 23.97 51.39

One-Pass 31.09 15.48 34.03

One-Pass+MFT 42.24 24.08 52.19

Baby Step 36.97 22.60 50.74

Baby Step+MFT 42.05 24.06 51.97

Rand-Review+MFT 42.23 24.25 52.09

T-Review 35.35 21.05 47.67

T-Review+MFT 42.40 24.49 52.29

M-Review 35.64 21.17 47.45

M-Review+MFT 42.37 24.20 52.24

5 Analysis

5.1 Effect of Mixed Fine Tuning

We analyze the effect of MFT for CL. As shown in Table 3, we conduct the
ablation studies on whether CL approach incorporate the general domain and
whether indomain weight is fixed, with Baby Step and T-Review method. We
can see that when the in-domain weight is fixed, T-Review outperforms original
method by up to 3.29 BLEU score on TED (de-en), but Baby Step has an
unstable effect as decreasing on TED (zh-en) and patent (de-en). When mixed
with general domain only, T-Review increases by up to 4.19 BLEU score on TED
(de-en) compared with original method, and this value is 3.81 for Baby Step.
However, due to the reason that in-domain weight is unfixed and the Review
method is not stable to review the in-domain shard, the effect of T-Review is
worse than Baby Step.

When combining the general domain and fixing the in-domain weight, the
robustness of NMT model is greatly improved. Relatively increasing the in-
domain weight can learn the in-domain knowledge better with the help of general
domain and solve the problem of overfitting. So T-Review+MFT performs bet-
ter than Baby Step+MFT. It is worth noting that One-Pass+MFT is even more
effective than Baby Step+MFT, which further proves that MFT does not require
multiple repetitions of curriculms when applied to CL. Only the curriculums
which need to be reviewed is enough.
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Table 3. Ablation study results for general domain and in-domain fixed weight

Method TED(de-en) TED(zh-en) patent(de-en)

Baby Step 36.97 22.60 50.74

+Fixed in-domain weight 39.00 21.93 50.66

+ General domain 40.78 23.49 51.42

+MFT(Fixed in-domain 42.05 24.06 51.97

weight + General domain)

T-review 35.35 21.05 47.67

+Fixed in-domain weight 38.64 22.44 50.28

+ General domain 39.64 22.77 49.53

+MFT(Fixed in-domain 42.40 24.49 52.39

5.2 Low-Resource Scenario

We also explored the effects of using a review-based CL with MFT in a low-
resource scenario. We set the number of patent (de-en) sentence pairs to 15k
rather than 150k, in order to simulate the effect of extremely low-resource domain
scenario. Table 4 shows that two Review+MFT methods have an average incre-
ment of 2.32, 0.55 and 0.53 BLEU score compared to MFT, One-Pass+MFT
and Baby Step+MFT methods. This result indicates the effectiveness of using
data from other rich resources to increase model robustness and also confirms
that CL+MFT, especially review-based CL+MFT, could improve translation
abilities of NMT models and avoid the problem of overfitting and catastrophic
forgetting.

Table 4. Main experiment results

Method patent(de-en)

MFT 45.35

One-Pass+MFT 47.12

Baby Step+MFT 47.14

Rand-Review+MFT 47.39

T-Review+MFT 47.68

M-Review+MFT 47.67

5.3 Data Sharding

We experiment with different number of shards setting and experiment on TED
(deen) domain with Baby Step+MFT and M-Review+MFT. As Fig. 3 shows,
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the two methods both achieve the best performance at the point of 5 shards.
As the number of shards increases, the BLEU scores show a decreasing trend.
Although Baby Step increases when the number of shards is 20, the BLEU score
does not change too much. This result differs from the findings of Zhang et al.
[9]. The possible reason is that our method is mixed with general domain and
fixes weights of three domains, and increasing number of shards with the same
number of unlabeled-domain data will reduce the number of data in each shard.
This may result in the curriculum being repeated too many times at one phase,
which may lead to overfitting. Further, considering the negative effects of too
long training time of too many shards, we set the number of shards to 5 better
than the number of other shards and Review is better than Baby Step.

Fig. 3. Different number of curriculum learning shards

5.4 Training Efficiency

Table 5 shows the comparison of training steps for three CL methods. We
can see that T-Review+MFT reduces training time by average of 18k steps
and M-Review+MFT reduces an average of 12k steps both compared to Baby
Step+MFT. It proves that review-based method with MFT can accelerate the
convergence of NMT model. We argue that the number of curriculums learned at
each phase has an impact on the convergence speed. More curriculums make the
model less easy to converge, however, reviewing appropriate number of courses
reduces training time and improves training efficiency.
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Table 5. Training steps for three curriculum methods

Method TED(de-en) TED(zh-en) patent(de-en)

Baby Step+MFT 92k 168k 144k

T-Review +MFT 84k 146k 118k

M-Review+MFT 86k 150k 132k

6 Conclusion

To address the problems of catastrophic forgetting and learning inefficiency of
previous curriculum learning methods for NMT domain adaptation, this paper
proposes a review-based curriculum learning method. We first select curriculum
shards with long time interval or unskilled mastery to review in each learning
phase, and add general domain data to improve the robustness of NMT model.
The experimental results show that our method improves significantly compared
to previous curriculum learning methods and the simulation of low-resource sce-
nario also demonstrate the effectiveness.

For future work, we will explore more effective methods and more applications
for review-based curriculum learning. Additionally, it is a meaningful job for
adding dynamic weighting method to our approach.
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Abstract. This paper presents HW-TSC’s submissions to CCMT 2022 Chinese
Minority Language Translation task. We participate in three language directions:
Mongolian→Chinese Daily Conversation Translation, Tibetan→Chinese Gov-
ernment Document Translation, and Uighur→Chinese News Translation. We
train our models using the Deep Transformer architecture, and adopt enhance-
ment strategies such as Regularized Dropout, Tagged Back-Translation, Alter-
nated Training, and Ensemble. Our enhancement experiments have proved the
effectiveness of above-mentioned strategies. We submit enhanced systems as pri-
mary systems for the three tracks. In addition, we train contrast models using
additional bilingual data and submit results generated by these contrast models.

Keywords: CCMT 2022 · Neural machine translation · Regularized dropout ·
Tagged back-translation · Alternated training · Ensemble · Second keyword ·
Another keyword

1 Introduction

CCMT 2022 Chinese Minority Language Translation Task is a challenging low-
resource task. How to maximize low-resource translation performances using mul-
tiple enhancement strategies is the subject of this task, which is also our long-term
research focus. We participate in the Mongolian→Chinese Daily Conversation Trans-
lation, Tibetan→Chinese Government Document Translation, and Uighur→Chinese
News Translation tracks. For each track, we submit a primary system result and a copy
of contrast translation. In the following chapters we will introduce our data processing
method, model training strategies, experiment results, and findings.

2 Dataset

Dataset Volume. We strictly comply with the task requirements and use only officially-
provided bilingual and monolingual data to train our primary systems. For our contrast
models, additional bilingual data is used. Table 1 presents the data size for each lan-
guage pair after pre-processing.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
T. Xiao and J. Pino (Eds.): CCMT 2022, CCIS 1671, pp. 37–44, 2022.
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Table 1. Data size for each language pair after pre-processing.

Mongolian→Chinese Tibetan→Chinese Uygur→Chinese

Bilingual 1.24M 0.97M 0.16M

Monolingual 3.94M 3.94M 3.94M

Additional bilingual 4.97M 1.54M 6.89M

Data Pre-processing. The data pre-processing process is as follows:

1. Remove duplicate sentences.
2. Remove invisible characters.
3. Reverse xml escape character.
4. Convert full-width symbols to half-width symbols.
5. Use jieba word segmentation tool for Chinese sentences.
6. Use joint BPE [1], and the vocabulary size is set to 32k.
7. Filter out sentences with more than 150 tokens.
8. Filter out sentence pairs with token ratio greater than 4 or less than 0.25.

3 System Overview

Model. The Transformer [2] model adopts the full self-attention mechanism, which can
realize algorithm parallelism, speed up model training, and improve translation quality.
Deep Transformer [3] can further improve the transformer performance by applying
layer normalization to the input of every sub-layer and increasing the number of encoder
layers. Therefore, in all three tracks, we use the following model architecture:

1. Deep Transformer: Based on the Transformer-big model architecture, our Deep
Transformer model features pre-layer-normalization, 25-layer encoder, 6-layer
decoder, 16-head self-attention, 1024 dimensions of word embedding and 4096-
hidden-state.

Regularized Dropout. Dropout [4] is a powerful and widely used technique for reg-
ularizing deep neural networks. Though it can help improve training effectiveness, the
randomness introduced by dropouts may lead to inconsistencies between training and
inference. Regularized Dropout [5] forces the output distributions of different sub mod-
els generated by dropout be consistent with each other. Therefore, we use Regularized
Dropout to enhance the baseline for each track and reduce inconsistencies between
training and inference.

3.1 Back-Translation

In order to utilize target-side monolingual data to improve model performance, we use
Back-Translation [6] to expand the training corpus. There are many specific implemen-
tation methods [7–10] for Back-Translation. During the experiment, we verify the effec-
tiveness of two methods, namely, Top-K Sampling Back-Translation [8] and Tagged
Back-Translation [9], and finally choose to use Tagged Back-Translation according to
the experimental results.
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3.2 Alternated Training

Due to the scarcity of authentic bilingual data, pseudo-bilingual data plays an important
role in improving translation quality, but it inevitably introduces noise and translation
errors. In order to alleviate the noise and translation errors caused by pseudo-bilingual
data and improve the translation quality, we use the Alternated Training strategy [11].
The basic idea is to alternately use pseudo-bilingual data and authentic bilingual data in
the training process until there is no noticeable improvement in translation quality.

3.3 Ensemble

Ensemble [12] is a widely-used technique to integrate different models for better per-
formance. It should be noted that when using the Ensemble strategy, increasing the
number of models does not always lead to better performance and may even hurt the
final accuracy. Therefore, for each track, we train four models using the same data,
and then select the models used for ensemble according to the strategy we used in the
WMT21 Biomedical Translation Task [13]. The core idea is traverse all combinations
of models and find the best one in the dev set.

4 Experiments

In the training phase, we use the Pytorch-based Fairseq [14] open-source framework
and use the Deep Transformer model as the benchmark system. Each model uses 8
GPUs for training, and the batch size is 1024. The update frequency is set to 4, and the
learning rate is 5e-4. The label smoothing rate [15] is set to 0.1, the number of warmup
steps is 4000, and the dropout is 0.3. Adam optimizer [16] with β1= 0.9 and β2= 0.98
is used. In addition, when applying Regularized Dropout, we follow the setting of Liang
et al. [5], using reg label smoothed cross entropy as the loss function, and set reg-alpha
to 5. In the inference phase, we use the Marian [17] tool to perform decoding. The beam
size is set to 10, and the length penalties for Mongolian→Chinese, Tibetan→Chinese
and Uyghur→Chinese machine translation are 1.0, 0.6, and 1.4 respectively. During the
experiment, we find that there are super-long sentences in the development sets and test
sets. Therefore, we segment sentences with more than 150 tokens based on punctuations
indicating the end of a sentence before translation.

4.1 Mongolian → Chinese

With regard to the Mongolian→Chinese translation track, we found that a large por-
tion of target-side text in the CCMT 2019 and CCMT 2020 development sets is also
found in this year’s training set, resulting in model overfitting. In order to fairly and
accurately assess the model performance, we use a subset of CCMT 2020 development
set. The subset contains only bitexts whose reference are not in the training set. Dur-
ing the training, we adopt enhancement strategies such as Regularized Dropout, Tagged
Back-Translation, Alternated Training, and Ensemble. In addition, we train two contrast
systems: contrast system b is fine-tuned on CCMT 2019 and CCMT 2020 development
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sets; while contrast system c is trained with additional bilingual data in the last step of
alternated training, and ensembled by multiple models.

Table 2 presents the sacreBLEU [18] results for Mongolian→Chinese translations
under different strategies. Using the CCMT 2020 subset for assessment, we found that
Regularized Dropout, Tagged Back-Translation, Alternated Training, and Ensemble can
all improve model performance. On the contrary, additional bilingual data used in con-
trast system c does not lead to further improvements. As a result, we fine-tune models
on development sets in hope of further improving model performance on CCMT 2022
test set.

Table 2. BLEU scores of Mongolian→Chinese translation

CCMT 2019 CCMT 2020 CCMT 2020 subset

Baseline 69.15 67.96 33.50

+ regularized dropout 68.21 69.88 37.44

+ tagged back-translation 54.56 67.04 45.77

+ alternated training 57.70 69.74 47.01

+ ensemble(primary a) 57.87 70.33 47.63

+ fine-tuning(contract b) 61.99 72.96 52.63

+ additional bilingual(contract c) 60.76 70.40 47.26

4.2 Tibetan→Chinese

With regard to the Tibetan→Chinese track, we train a baseline model with only bilin-
gual data and use multiple enhancement strategies. We ensemble multiple models to
generate the primary system. We also train a contrast system by ensemble models that
use additional bilingual data in the last step of alternated training. Table 3 presents the
experiment results, demonstrating that Regularized Dropout, Tagged Back-Translation,
Alternated Training, and Ensemble all help improve model performance. In addition,
adding additional bilingual data during training can lead to further improvement.

Table 3. BLEU scores of Tibetan→Chinese translation

CCMT 2019 CCMT 2020

Baseline 47.85 61.45

+ regularized dropout 49.35 62.55

+ tagged back-translation 50.38 65.94

+ alternated training 53.56 66.97

+ ensemble(primary a) 54.46 67.96

+ additional bilingual(contract b) 66.44 74.11
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4.3 Uyghur→Chinese

With regard to the Uyghur→Chinese track, we adopt the same training strategy as that
in the Tibetan→Chinese track. Table 4 presents the experiment results. The results also
demonstrate that all enhancement strategies mentioned, as well as additional bilingual
data, can lead to model improvements.

Table 4. BLEU scores of Uyghur→Chinese translation

CCMT 2019 CCMT 2020

Baseline 44.59 47.36

+ regularized dropout 48.26 51.71

+ tagged back-translation 54.89 59.59

+ alternated training 55.56 60.20

+ ensemble(primary a) 55.66 60.44

+ additional bilingual(contract b) 59.06 64.28

5 Analysis

5.1 The Effect of Different Back-Translation Methods

Past experience demonstrates that Tagged Back-Translation and Top-K Sampling Back-
Translation are effective Back-Translation variants. We conduct comparative experi-
ments on the two methods on the three minority language translation tracks. Experi-
ment results shown in Table 5 indicate that Tagged Back-Translation can achieve better
results in low-resource translation scenarios.

Table 5. BLEU scores of two different back-translation methods

Mongolian→Chinese Tibetan→Chinese Uyghur→Chinese

CCMT devset 2019 2020 2020 subset 2019 2020 2019 2020

Tagged back-translation 54.56 67.04 45.77 50.38 65.94 54.89 59.59

Top-k sampling back-translation 54.63 66.19 45.52 51.64 64.18 53.24 57.34

5.2 The Impact of Sentence Segmentation on the Translation Quality of Machine
Translation

During experiments, we found development sets and test sets in all three language pairs
contain some super-long sentences with more than 150 tokens. During training, we have
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filter out sentences more than 150 tokens. We assume that models cannot directly trans-
late those super-long sentences well and do segmentation on those sentences based on
punctuations that indicate the end of a sentence. Table 6 presents BLEU results before
and after segmentation and demonstrate that segmentation is effective in improving
Tibetan→Chinese and Uyghur→Chinese translation tasks. But we see no improvement
on Mongolian→Chinese translation.

Table 6. Bleu scores of whether the baseline uses sentence segmentation.

Mongolian→Chinese Tibetan→Chinese Uyghur→Chinese

CCMT devset 2019 2020 2020 subset 2019 2020 2019 2020

Baseline 69.15 67.96 33.50 47.85 61.45 44.59 47.36

- sentence segmentation 69.58 68.08 33.47 45.88 59.91 42.84 45.82

5.3 Analysis of BLEU Scores of Mongolian→Chinese Machine Translation
on the Development Set

We find an abnormal phenomenon during Mongolian→Chinese experiment: we see
no consistent improvements on CCMT 2019 and CCMT 2020 development sets when
using Regularized Dropout and Tagged Back-Translation. So we conduct an analysis on
the overlapping between development sets and training set. We found that the majority
of Chinese text in CCMT 2019 development set and half of Chinese text in CCMT
2020 development set are also in this year’s training data (Table 7). So we construct
a sub development set containing only sentences not in the training data, in hope of
evaluating the model performance in a more fair way.

Table 7. The number of source sentences, target sentences and sentence pairs in the development
set that appear in the training set.

Source in
Training Set

Target in
Training Set

Sentence pair in
Training Set

CCMT 2019 21 958 20

CCMT 2020 6 584 6

6 Conclusion

This paper presents our submissions to the CCMT 2022 Mongolian→Chinese,
Tibetan→Chinese, and Uyghur→Chinese translation tasks. We train our models using
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the Deep Transformer architecture and employ enhancement strategies such as Reg-
ularized Dropout, Tagged Back-Translation, Alternated Training, and Ensemble. We
also train contrast models with additional bilingual data. In addition, we conduct experi-
ments on two Back-Translation variants (Tagged Back-Translation and Top-K Sampling
Back-Translation), analyze how segmentation influences the translation quality of neu-
ral machine translation model, and find a better solution to the abnormal phenomenon
on Mongolian→Chinese development sets.
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Abstract. With the rapid progress of deep learning in multilingual lan-
guage processing, there has been a growing interest in reference-free
machine translation evaluation, where source texts are directly compared
with system translations. In this paper, we design a reference-free met-
ric that is based only on a target-side language model for segment-level
and system-level machine translation evaluations respectively, and it is
found out that promising results could be achieved when only the target-
side language model is used in such evaluations. From the experimental
results on all the 18 language pairs of the WMT19 news translation
shared task, it is interesting to see that the designed metrics with the
multilingual model XLM-R get very promising results (best segment-
level mean score on the from-English language pairs, and best system-
level mean scores on the from-English and none-English language pairs)
when the current SOTA metrics that we know are chosen for comparison.

Keywords: Target-side language model · Machine translation
evaluation · Reference-free metric

1 Introduction

Traditional automatic metrics for machine translation (MT) score MT output
by comparing it with one or more reference translations. Common such met-
rics include the word-based metrics BLEU [1] and METEOR [2], and the word
embedding-based metrics BERTScore [3] and BLEURT [4]. However, reference
sentences could only cover a tiny fraction of input source sentences, and non-
professional translators can not yield high-quality reference translations [5].

These problems can be avoided through reference-free MT evaluation, mean-
ing that only source texts are used in MT output evaluation and they are directly
compared with system translations. Recently, with the rapid progress of deep
learning in multilingual language processing [6,7], a lot of reference-free metrics
have been proposed for such evaluation. Popović et al. [8] exploited a bag-of-
word translation model for quality estimation, which sums over the likelihoods
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
T. Xiao and J. Pino (Eds.): CCMT 2022, CCIS 1671, pp. 45–53, 2022.
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of aligned word pairs between source and translation texts. Specia et al. [9]
used language-agnostic linguistic features extracted from source texts and sys-
tem translations to estimate quality. YiSi-2 [10] evaluates system translations
by summing similarity scores over words pairs which are best-aligned mutual
translations. Moreover, by introducing cross-lingual linear projection, Lo and
Larkin [11] greatly improved the effect of YiSi-2. Prism-src [12] frames the task of
MT evaluation as one of scoring machine translation output with a sequence-to-
sequence paraphraser, conditioned on source text. COMET-QE [13,14] encodes
segment-level representations of source text and translation text as the input
to a feed forward regressor. Gekhman et al. [15] proposed a simple and effec-
tive Knowledge-Based Evaluation (KoBE) method by measuring the recall of
entities found in source texts and system translations. To mitigate the misalign-
ment of cross-lingual word embedding spaces, Zhao et al. [16] proposed post-hoc
re-alignment strategies which integrate a target-side GPT [17] language model.
Song et al. [18] proposed an unsupervised metric SentSim by incorporating a
notion of sentence semantic similarity.

In this paper, we find out that assessing system translation only with a
target-side language model could achieve very promising results. With a modified
sentence perplexity calculation for system translations, we design a reference-
free metric for segment-level and system-level MT evaluations respectively. And
then we test the performances of the two metrics on all the 18 language pairs of
WMT19 news translation shared task [19]. The experimental results demonstrate
that our metrics with the pretrained model XLM-R [7] are very competitive for
reference-free MT evaluations when compared with the current SOTA reference-
free metrics that we know.

2 Target-Side Language Model Metrics

A statistical language model is a probability distribution over sequences of
words [20]. Given such a sequence with m words, i.e., s = (w1, . . . , wm), it
assigns a probability P (s) to the whole sequence, which is defined as:

P (s) = P (w1, . . . , wm) =
m∏

i=1

P (wi|w1, . . . , wi−1). (1)

In order to overcome the data sparsity problem in building a statistical lan-
guage model, a common solution is to assume that the probability of a word
only depends on the previous n words. This is known as the n-gram model or
unigram model when n = 1. So the probability P (s) could be approximated as:

P (s) =
m∏

i=1

P (wi|w1, . . . , wi−1) ≈
m∏

i=1

P (wi|wi−(n−1), . . . , wi−1). (2)

With the advancements in deep learning [21], various neural language models
are proposed to use continuous representations or embeddings of words to make
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their predictions [6,22]. Typically, a neural language model is constructed and
trained as probabilistic classifiers for

P (w | context), for w ∈ V. (3)

That is to say, the model is trained to predict a probability distribution over the
vocabulary V , when some linguistic context is given.

In this paper, we adopt the masked language model [6] to design a reference-
free metric for segment-level and system-level MT evaluations respectively.

For segment-level evaluation where a single system translation sentence s is
provided, the metric SEG_LM is defined as:

SEG_LM(s) =
1
m

m∑

i=1

log
1

P (wi|s − wi)
, (4)

where m is the number of words in sentence s, wi is the i-th word in s, and
P (wi|s − wi) the probability of wi predicted by the masked language model
when wi is replaced by [MASK] in s.

It should be pointed out that the metric SEG_LM is slightly different from
the log form of the sentence perplexity [20] (PPL), which is defined as:

logPPL(s) = log m

√
1

P (w1, . . . , wm)
=

1
m

m∑

i=1

log
1

P (wi|w1, . . . , wi−1)
. (5)

From the above definitions, it could be seen that the context for predicting
the probability of wi in PPL is different from SEG_LM .

For system-level evaluation where a set of system translation sentences S is
given, the metric SY S_LM is defined as:

SY S_LM(S) =
1

|S|
∑

s∈S

SEG_LM(s), (6)

which is the mean value of SEG_LM scores on each sentence in S.
Although source texts are not considered in our designed metrics, the exper-

imental results on WMT19 in Sect. 3 will show that the metrics SEG_LM and
SY S_LM are very promising for both segment-level and system-level reference-
free MT evaluations.

3 Experiments

In this section, we evaluate the performance of our metrics SEG_LM and
SY S_LM by correlating their scores with human judgments of translation
quality for reference-free MT evaluations. The pretrained multilingual model
XLM-R1 is used as the masked language model for our metrics.
1 https://huggingface.co/xlm-roberta-base.

https://huggingface.co/xlm-roberta-base
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Table 1. Segment-level metric results for the into-English language pairs of WMT19

Metrics de-en fi-en gu-en kk-en lt-en ru-en zh-en Avg
sentBLEU 0.056 0.233 0.188 0.377 0.262 0.125 0.323 0.223

LASIM −0.024 – – – – 0.022 – –
LP −0.096 – – – – −0.035 – –
UNI 0.022 0.202 – – – 0.084 – –
UNI+ 0.015 0.211 – – – 0.089 – –
YiSi-2 0.068 0.126 −0.001 0.096 0.075 0.053 0.253 0.096
YiSi-2+CLP 0.116 0.271 0.249 0.370 0.281 0.121 0.340 0.250
SEG_LM 0.115 0.265 0.214 0.135 0.280 0.120 0.183 0.187

Table 2. Segment-level metric results for the from-English language pairs of WMT19

Metrics en-cs en-de en-fi en-gu en-kk en-lt en-ru en-zh Avg
sentBLEU 0.367 0.248 0.396 0.465 0.392 0.334 0.469 0.270 0.368

LASIM – 0.147 – – – – −0.240 – –
LP – −0.119 – – – – −0.158 – –
UNI 0.060 0.129 0.351 – – – 0.226 – –
UNI+ – – – – – – 0.222 – –
YiSi-2 0.069 0.212 0.239 0.147 0.187 0.003 −0.155 0.044 0.093
YiSi-2+CLP 0.299 0.329 0.459 0.512 0.459 0.314 0.078 0.158 0.326
SEG_LM 0.443 0.343 0.492 0.328 0.301 0.471 0.457 0.297 0.392

Table 3. Segment-level metric results for the none-English language pairs of WMT19

Metrics de-cs de-fr fr-de Avg
sentBLEU 0.203 0.235 0.179 0.206
YiSi-2 0.199 0.186 0.066 0.150
YiSi-2+CLP 0.355 0.294 0.226 0.292
SEG_LM 0.263 0.244 0.198 0.235

3.1 Datasets and Baselines

The source language sentences, and their system and reference translations are
collected from the WMT19 news translation shared task [19], which contains
predictions of 233 translation systems across 18 language pairs. Each language
pair has about 3,000 source sentences, and each is associated with one reference
translation and with the automatic translations generated by the participating
systems. In this paper, all the 18 language pairs in WMT19 are chosen for
reference-free MT evaluation.
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A range of reference-free metrics are chosen to compare with our metrics:
LASIM and LP [23], UNI and UNI+ [19], YiSi-2 [10] and YiSi-2+CLP [11],
KoBE [15] and CLP-UMD [16]. To the best of our knowledge, the above metrics
could cover most of the current SOTA metrics for reference-free MT evaluation.
Reference-based baseline metrics BLEU and sentBLEU [24] are selected as ref-
erences. It should be pointed out that only the results of our metrics SEG_LM
and SY S_LM are calculated in this paper, and the results of the other metrics
are from their respective papers.

3.2 Results

Evaluation Measures. Kendall’s Tau and Pearson correlations [19] are used
as measures for segment-level and system-level metric evaluations respectively.

Table 4. System-level metric results for the into-English language pairs of WMT19

Metrics de-en fi-en gu-en kk-en lt-en ru-en zh-en Avg
BLEU 0.849 0.982 0.834 0.946 0.961 0.879 0.899 0.907

LASIM 0.247 – – – – 0.310 – –
LP 0.474 – – – – 0.488 – –
UNI 0.846 0.930 – – – 0.805 – –
UNI+ 0.850 0.924 – – – 0.808 – –
YiSi-2 0.796 0.642 0.566 0.324 0.442 0.339 0.940 0.578
YiSi-2+CLP 0.898 0.959 0.739 0.981 0.935 0.461 0.980 0.850
KoBE 0.863 0.538 0.828 0.899 0.704 0.928 0.907 0.810
CLP-UMD 0.625 0.890 −0.060 0.993 0.851 0.928 0.968 0.742
SYS_LM 0.856 0.932 0.748 0.696 0.932 0.869 0.480 0.788

Segment-level Results. Tables 1, 2 and 3 show the comparison results of the
metrics for reference-free segment-level evaluations on the into-English, from-
English and none-English language pairs of WMT19 respectively (Best results
excluding sentBLEU are in bold).

From Table 1, it could be seen that the scores of our metric SEG_LM on
the de-en, lt-en and ru-en language pairs are very close to the best values (only
0.001 gap). And as shown in Table 2, our metric not only gets the best mean
score on the from-English language pairs, but also ranks first on 6 of all the
8 language pairs. The results in Table 3 show that our metric even gets better
scores on all the none-English language pairs than the reference-based metric
sentBLEU. Therefore, our metric SEG_LM is very promising for segment-level
MT evaluation especially when the target-side language is not English.
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Table 5. System-level metric results for the from-English language pairs of WMT19

Metrics en-cs en-de en-fi en-gu en-kk en-lt en-ru en-zh Avg
BLEU 0.897 0.921 0.969 0.737 0.852 0.989 0.986 0.901 0.907
LASIM – 0.871 – – – – 0.823 – –
LP – 0.569 – – – – −0.661 – –
UNI 0.028 0.841 0.907 – – – 0.919 – –
UNI+ – – – – – – 0.918 – –
YiSi-2 0.324 0.924 0.696 0.314 0.339 0.055 0.766 0.097 0.439
YiSi-2+CLP 0.773 0.963 0.906 0.890 0.977 0.761 0.473 0.449 0.774
KoBE 0.597 0.888 0.521 -0.340 0.827 −0.049 0.895 0.216 0.444
SYS_LM 0.896 0.978 0.941 0.683 0.897 0.919 0.819 0.959 0.886

Table 6. System-level metric results for the none-English language pairs of WMT19

Metrics de-cs de-fr fr-de Avg
BLEU 0.941 0.891 0.864 0.899
YiSi-2 0.606 0.721 0.530 0.619
YiSi-2+CLP 0.860 0.853 0.461 0.725
KoBE 0.958 0.485 −0.785 0.219
SYS_LM 0.885 0.902 0.778 0.855

System-level Results. Tables 4, 5 and 6 illustrate the comparison results of
the metrics for reference-free system-level evaluations on the into-English, from-
English and none-English language pairs of WMT19 respectively (Best results
excluding BLEU are in bold).

As shown in the into-English results of Table 4, our metric SY S_LM again
gets scores very close to the best values on the fi-en and lt-en language pairs. The
results in Table 5 demonstrate that our metric gets the best mean score and 5 best
scores on all the 8 from-English language pairs. Meanwhile, the results in Table 6
show that SY S_LM gets better scores than the SOTA metric YiSi-2+CLP on
the system-level evaluations, although it does not outperform YiSi-2+CLP on
the segment-level evaluations, as shown in Table 3. In addition, SY S_LM gets
the best mean score on the none-English language pairs. Overall, the experi-
mental results demonstrate that our metric SY S_LM is very competitive for
system-level MT evaluations when the current SOTA metrics that we know are
involved for comparison.

3.3 Discussion

In this section, an explanation for why target-side language model works is pro-
vided. For segment-level evaluation where the input is a source sentence s and a
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system translation sentence t, we design metrics to estimate the true probability
P (t|s). According to the conditional probability formula, we could have:

logP (t|s) = log
P (s|t)P (t)

P (s)
= logP (s|t) + logP (t) − logP (s). (7)

The target-side language model is mainly to approximate the second term
logP (t), and when there are no much differences in the first term logP (s|t), our
target-side language model metric works for MT evaluation.

4 Conclusion

In this paper, a reference-free metric designed only with a target-side language
model is proposed for segment-level and system-level MT evaluations respec-
tively. With the pretrained multilingual model XLM-R as the target-side lan-
guage model, the performances of our metrics SEG_LM and SY S_LM are
evaluated on all the 18 language pairs of WMT19. The experimental results
show that our metrics are very competitive (best mean score of segment-level
evaluations on the from-English language pairs, and best mean scores of system-
level evaluations on the from-English and none-English language pairs) when
most of the current SOTA reference-free metrics are chosen for comparison. Fur-
thermore, the reason why the target-side language model works is discussed. The
fusion of our metrics and other metrics that are for the first term logP (s|t) in
Eq. 7 will be our future work.
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Abstract. This paper highlights a multilingual pre-trained neural
machine translation architecture as well as a dataset augmentation app-
roach based on curvature selection. The multilingual pre-trained model
is designed to increase the performance of machine translation with low
resources by bringing in more common information. Instead of repeatedly
training several checkpoints from scratch, this study proposes a check-
point selection strategy that uses a cleaned optimizer to hijack a midway
status. Experiments with our own dataset on the Chinese-Tibetan trans-
lation demonstrate that our architecture gets a 32.65 BLEU score, while
in the reverse direction, it obtains a 39.51 BLEU score. This strategy
drastically reduces the amount of time spent training. To demonstrate
the validity of our method, this paper shows a visualization of curvature
for a real-world training scenario.

Keywords: Neural machine translation · Dataset enhancement ·
Chinese-Tibetan translation · Curvature

1 Introduction

Many fields, such as education, publishing, and information security, have a
strong demand for Chinese-Tibetan translation algorithms. During the last few
years, neural machine translation (NMT) tasks have had a great deal of success
thanks to the transformer architecture [11]. However, one of the key drawbacks
of this approach is that transformer is greedy in terms of both quality and
quantity of data. This study set out with the aim of investigating a training
method including cross-language transferable pre-trained models and dataset

The demo of this paper is available at http://mt.utibet.edu.cn.
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enhancement algorithm to achieve better results in low-resource Chinese-Tibetan
translation tasks.

Many studies focus on cross-language unified models, which may increase
translation quality in low-resource languages, on the assumption that a cross-
language unified model will acquire common knowledge between languages to
boost performance on unseen data [2,3]. Johnson et al. add an artificial token at
the beginning of the sentence to set the required language [4]. Zhang et al. suggest
that the off-target translation issue is the main reason for unexpected zero-
shot performance. [12] Xiao et al. involve contrastive learning in their mRASP
framework which achieve good results on other language pair yet misses the
Tibetan language dataset [7].

The use of dataset enhancement as a solution to the data hungriness problem
is another alternative. One of the merits of such methods is that most of them
proceed in parallel with model architecture, saving time on model modifications.
Aside from data augmentation, the back translation method [1,8] is a simple yet
effective way to generate synthetic data to improve efficiency. Although this
methodology is highly effective, it involved the use of additional monolingual
data. Nguyen et al. [5] propose an interesting method that generates a diverse
set of synthetic data to augment original data. This method is powerful and
effective yet still required training multiple loops.

2 Prerequisite

2.1 Neural Machine Translation with mRASP

mRASP uses a standard Transformer with both 6 layers encoder and decoder
pre-trained jointly on 32 language pairs. In this paper, we use the pre-trained
mRASP model to finetune our Chinese-Tibetan translation model. Following
the symbols in mRASP, we denote the Chinese-Tibetan parallel dataset as
(Lsrc, ltgt), the finetuned loss is

Lfinetune = E(xi,xj)∼Dsrc,tgt

[− log Pθ

(
xi | xj

)]
. (1)

where the θ is the pretrained mRASP model.

2.2 Diversification Method

Data diversification is a simple yet effective data augmentation method. It trains
predictions from multiple bi-direction models to diversify training data which
is ideal for the low-source Chinese-Tibetan translation task. This strategy is
formulated as:

D = (S, T )
⋃

∪k
i=1

(
S,M i

S→T,1(S)
) ⋃

∪k
i=1

(
M i

T→S,1(T ), T
)

(2)

M denotes the model and k is the diversification factor. In this paper, we
propose an accelerating hijack method to reduce this training burden signifi-
cantly.
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2.3 Curvature

In this work, we choose the curvature as the metric of the sharpness of the
perplexity curve for the validation dataset in the whole training process. Denote
K as the curvature, for a continuous curve it can be calculated as:

K =
1
r

=
|f ′′ (x0)|

(
1 + (f ′ (x0))

2
) 3

2
(3)

However, the valid perplexity averaged within an epoch is discrete and the
direct finite difference may bring relatively large error. In this work, we use
the curvature of the quadratic curve determined by the nearest three points to
estimate the curvature of a valid perplexity curve [13].

3 Methodology

3.1 Overall Structure

In this work, mRASP pretrained on 32 language pairs is utilized to provide a
good starting point than plain Transformer. The vocabulary for our 115k dataset
is merged into the provided vocabulary of mRASP. Then the private Tibetan-
Chinese parallel dataset is utilized to generate an enhanced dataset. As shown
in Fig. 1, the whole fine-tune stage is divided into three parts based on the
valid perplexity averaged on each epoch. We hijack the checkpoint from the key
points and then continue training using a cleaned optimizer to generate k more
checkpoints. Along with the main checkpoint, the enhanced dataset is generated
to train the final model.

Fig. 1. The overall architecture of this work. The proposed work can be divided into
three stages. (1) In the pre-trained stage, the multi-lingual pre-trained mRASP model is
prepared for further finetune. (2) In the dataset enhancement stage, m + 1 checkpoints
are trained and inference to generate an enhanced dataset. (3) The final translation
model is finetuned based on mRASP at the enhanced dataset.
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3.2 Curvature Based Checkpoint Hijack

Fig. 2. The curvature change for an
ideal training process. The green point
denotes the first key point which is used
to re-train. The red point denotes the
best perplexity which is an ideal end-
point. (Color figure online)

Fig. 3. Actual ppl change during train-
ing. The very first epoch is deleted for
better visualization without changing
the shape of the curve. The curvature
is visualized as black arrows.

In this paper, we argue that it is not necessary to train the entire procedure for
a large pre-trained model like mRASP. Figure 2 illustrates the perplexity of the
valid set will go under three stages. In the fast drop stages, the perplexity will
sharply drop to fit the new dataset. Then in the key points stage, the perplexity
will gradually get smooth to the minimal value. The final stage is the stable
oscillation stage where the perplexity will not change fast. Instead of training
from scratch, the curvature is involved to quantify the key points. To ensure the
model status is as far as possible from the best point, a few checkpoints before
the first key checkpoint are averaged along with the key checkpoint to ensure
maximum diversity (Fig. 3).

Formally, denote the training epoch as N . The calculated curvature for valid
set is denoted as a sequence A := {k1, k2, . . . ki, . . . kN} , kj ∈ R where i denotes
the very first key point. By setting the threshold for curvature as hyperparameter
T , the key points can be formulated as:

S := {k ∈ A | ki ≥ kj , ki ≥ T,∀i, j ∈ R, i < j} . (4)

The generated parallel dataset is:

D = (S, T )
⋃

∪k
i=1

(

S,
1
m

i∑

i−m

M i
S→T,i(S)

)
⋃

∪k
i=1

(
1
m

i∑

i−m

M i
T→S,i(T ), T

)

(5)
where m is the total averaged checkpoints numbers and i is the smallest index
in S .
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4 Experiments

4.1 Dataset Description and Finetune Parameters

This paper uses the Chinese-Tibetan parallel dataset constructed by Tibet Uni-
versity and Qinghai Normal University. It contains high-quality parallel sen-
tences checked and approved by professionals. The Chinese segment tool is Jieba
and the Tibetan segment tool is based on perceptron and CRF developed by
Tsering et al. [10] In the fine-tuning process, both the input and output length
is restricted to 300. The optimizer is Adam and the learning rate is set to 1e−4.
Label smoothing is set to 0.1 and mixed precision is used. The diversion fac-
tor k is set to 2 and the average checkpoint number m is 3. We perform our
experiments in RTX 3090 and A5000 with fairseq [6].

4.2 Experiment Result

Table 1. BLEU score reported on test set

Task Direction BLEU Epoch

Base [9] zh-ti 30.46 X

ti-zh X X

Train-scratch zh-ti 27.17 90

ti-zh 37.34 90

mRASP-finetuned zh-ti 32.65 90

ti-zh 39.51 90

Hijack-enhanced (our) zh-ti 33.04 90(47)

ti-zh 39.87 90(47)

Table 1 shows the BLEU score on the test set. Compared to baseline, the
mRASP-based pre-trained model indeed performs better. For the training
epochs, 90(47) means that we first train an entire loop and then use the best ppl
as a stopping point so the next m training will stop at it. The hijack-enhanced
dataset brings slightly better benefits than mRASP. However, it is worth men-
tioning that it only takes dozens of extra epochs to fine-tune, which is faster
than the original diversity approach.

5 Conclusion

In this paper, a neural machine translation architecture is proposed for Chinese-
Tibetan translation. The involvement of curvature selection reduces the training
time significantly. The experiments demonstrate that a multilingual pre-trained
model can boost low resources language translation performance. More discus-
sion of curvature in neural networks is desirable for future work.
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Abstract. Weak robustness and noise adaptability are major issues for Low-
Resource Neural Machine Translation (NMT) models. That is, once some tiny
perturbs are added to the input sentence, the model will produce completely dif-
ferent translation with high confidence. Adversarial example is currently a major
tool to improve model robustness and how to generate an adversarial examples
that can degrade the performance of the model and ensure semantic consistency
is a challenging task. In this paper, we adopt reinforcement learning to generate
adversarial example for low-resource NMT. Specifically, utilizing the actor-critic
algorithm to modify the source sentence, the discriminator and translation model
in the environment are used to determine whether the generated adversarial exam-
ples maintain semantic consistency and the overall deterioration of the model.
Furthermore, we also install a language model reward to measure the fluency
of adversarial examples. Experimental results on low-resource translation tasks
show that our method highly aggressive to the model while maintaining semantic
constraints greatly. Moreover, the model performance is significantly improved
after fine-tuning with adversarial examples.

Keywords: Reinforcement learning · Adversarial example · Low-resource
NMT

1 Introduction

Neural Machine Translation (NMT) [2,16,17] has made significant progress. How-
ever, even the best trained translation models still make unpredictable errors in prac-
tical applications [3]. Figure 1 illustrates the fragility of NMT. Robustness is the fea-
ture that a model can maintain some performance despite perturbations or noise. For
machine translation tasks, robustness refers to the ability of the model to adapt to new
corpus. The lack of model training and noise learning ability leads to the model gen-
erating a completely different translation after adding certain perturbations to the sen-
tence, which seriously affects the model performance. The original method improves
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
T. Xiao and J. Pino (Eds.): CCMT 2022, CCIS 1671, pp. 60–71, 2022.
https://doi.org/10.1007/978-981-19-7960-6_7
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the model robustness by manually compiling error features [7,18], but it is too costly
and some features are inapplicable for tasks of machine translation.

Fig. 1. Fragility of neural machine translation. Leaving out a
Chinese character “大 ” and word “起来 ” lead to significant
errors in Mongolian translation.

Adversarial example is a
momentous tool for exploring
the robustness of deep learn-
ing systems and it’s initially
applied in the field of com-
puter vision [14]. Recently,
some researchers utilizing adv-
ersarial examples to Natural
Language Processing (NLP)
tasks [4,5,19], which cur-
rently include character-level, word-level, phrase-level, and sentence-level adversarial
examples. It makes the model produce error output by adding carefully designed pertur-
bations to the input data. In general, the generation of adversarial examples implies that
the model uses non-robust features, resulting in a less robust model as well. Adversarial
training is performed by data augmentation methods, where adversarial examples are
proportionally blended into the training set. In this way, the model obtained by training
on the new dataset learns these non-robust features, resulting in a more robust model.
Thus for machine translation tasks, we can quickly obtain a large amount of parallel
data that can be applied for robustness analysis by using the input of an existing parallel
corpus to generate adversarial examples along the output of the source text.

However, unlike images that directly use the gradient optimization to obtain adver-
sarial examples, the sentence space in NLP is discrete, so it’s difficult to disturb along
the gradient update direction when generating adversarial examples for text. On the
other hand, if the common noise introduction such as adding, deleting, and modifying
words is used to perturb against the source input, the generated adversarial examples
aren’t only difficult to ensure sentence fluency and semantic consistency, but also may
even degrade the model performance. Especially for low-resource translation tasks, its
own lack of massively parallel corpus has led to poor model performance, poor robust-
ness and weak adaptation to new corpus or sentences with noise. Therefore, to improve
the robustness of low-resource translation tasks, this paper utilizes reinforcement learn-
ing to generate adversarial examples and uses discriminators as terminal signals in
the environment to further constrain semantics. Furthermore, we also add a language
model to evaluate the fluency of the adversarial examples. The method learns how to
apply discrete perturbations at the token-level to directly reduce translation quality. The
experimental results on the CCMT2019 Mongolian-Chinese and CWMT2017 Uighur-
Chinese show that using the adversarial examples generated by this method to fine-tune
the model can significantly improve its performance.
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2 Background and Related Work

2.1 Neural Machine Translation

Neural machine translation (NMT) mainly utilizes the encoder-decoder structure to
achieve semantic encoding of the source language and prediction of the target lan-
guage. The specific way is to use an Encoder to encode the input source language
x = (x1, ..., xn) into a fixed vector, and then use Decoder to decode the vector to
finally get the target language. For yt, given its previous word sequence y<t and the
source language sentence x, use P (y|x) to determine the probability of the current tar-
get word P (yt|y<t, x). The specific calculation process is shown in Eq. (1):

P (yt|y<t, x) ∝ exp(yt; rt;Ct) (1)

where rt is the hidden layer state of the neural machine translation model Encoder at
time t. Ct is the context state information of the generated word yt defined according
to the hidden layer node state of Encoder. NMT is trained using Maximum Likelihood

Estimation (MLE). Given J training sentence pairs
{
xi, yi

}N

i=1
, at each time step,

NMT generates the target word yt by maximizing the translation probability on the
source sentence x. The training objective is to maximize the Eq. (2):

LMLE =
N∑

i=1

logp(yi|xi) =
N∑

i=1

M∑

t=1

logp(yi
t|yi

1...y
i
t−1, x

i) (2)

2.2 Adversarial Example, Adversarial Attack and Adversarial Training in NLP

Adversarial Example can be described as x̂, which is obtained by adding a restricted
perturbation of δ to the original input sample (x, y) and cause model deterioration.
For an original sample (x, y), there exists its adversarial sample set A (x, y), and its
expression is shown in Eq. (3):

A (x, y) = {x̂|R (x̂, x) ≤ δ ∧ M (x̂) �= y} (3)

where R (x̂, x) represents the vector perturbed between the disturbed sample x̂ and the
original sample x. “Restricted perturbation” requires that R (x̂, x) to be constrained by
δ. The model M is generally non-robust, which makes it possible that when the model
inputs a sample x̂ with minor perturbations, the resulting M (x̂) is completely differ-
ent from the original output M (x). The generation of adversarial samples is usually
associated with perturbations of non-robust features.

Adversarial Attack is the process of generating adversarial examples x̂1, x̂2, ..., x̂n ∈
A (x, y) against model M and (x, y) sample. It aims to look for the non-robust and
useful features to perturb x, and finally make the model produce error output. According
to the attack environment, adversarial attack can be divided into black-box attack and
white-box attack. For black-box attack, the attack algorithm can only access the output
of M without knowing the parameters and structure information. For white-box attack,
the attack algorithm can access all the information and parameters of M and generate
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adversarial examples based on the gradient ofM to attack the network. In NLP task, due
to the discreteness of sentence space, it is difficult to disturb effectively with gradient
information, so white box attack is difficult.

Adversarial Training is the process in which adversarial examples are generated on
the training set through adversarial attacks for data enhancement and the enhanced data
is used to retrain model M , so it can be defined as an optimization problem, and the
model is expected that both performance and robustness will be enhanced. The original
non-robust features may become useless after adversarial training, thereby weakening
the association between non-robust features and labels, and achieving the purpose of
anti-disturbance model.

2.3 Genetic Algorithm-Based Adversarial Attack

GeneticAttack [1] is a black-box adversarial attack method that performs word-
level perturbation on examples, and uses genetic algorithm to optimize the examples.
Inspired by the theory of biological evolution, the core of genetic algorithm lies in
population mutation, crossover and selection. The population of GeneticAttack con-
sists of several sentences x, and the size of the population is limited by hyperparam-
eters. The mutation operation is completed by synonym replacement, and synonyms
are obtained through an independently obtained word-embedding matrix. In mutation
operations, GeneticAttack additionally uses a language model to filter out inappropriate
word substitutions. The crossover operation takes out two sentences in the population
and randomly selects words from one of them in the position of each word to form a
new sentence. The new sentence collection forms the next generation population. The
selection fitness is the output M (x̂).

2.4 Gradient-Based Adversarial Attack

HotFlip [6] is a typical white-box attack method, which uses gradient ascending to
directly select the largest disturbance among the acceptable perturbations by limiting
the degree of perturbation, thereby generating adversarial samples quickly and effi-
ciently. HotFlip performs one-hot encoding on sentences, which are represented as a
three-dimensional tensor, in which each word corresponds to a matrix, and each col-
umn in the matrix is a one-hot character vector. It has the advantage of allowing char-
acter substitutions to be represented using a tensor of the same size as the sentence,
as well as a tensor representation of character substitutions from the gradient tensor.
During character replacement, Hotflip directly selects the character closest to the gra-
dient direction for replacement. The insertion and deletion operations are completed by
character substitutions of words.

3 Adversarial Examples Based on Reinforcement Learning

Adversarial examples must be semantically consistent with the original input, while
causing the model to produce incorrect output. GeneticAttack (Sect. 2.3) generates
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adversarial examples through synonym substitution, and the resulting perturbations are
often tiny in semantic space, but the algorithm cannot effectively use gradient infor-
mation to efficiently generate perturbations. HotFlip (Sect. 2.4) uses gradient informa-
tion to make attacks extremely efficient. However, it can only attack the character-level
model and produce several meaningless words, which will greatly reduce the overall
fluency of the sentence.

Therefore, this paper utilizes Reinforcement Learning (RL) to generate adversarial
examples by combining the advantages of above two methods. According to [20], it is
regarded as a restricted Markov Decision Process (MDP), which edits the tokens at each
position in the source sentence from left to right. Each editing decision depends on the
impact of the existing modification on the semantics and the degradation expectation of
the system output. Furthermore, inspired by GeneticAttack [1], we also add a Language
Model (LM) to measure the fluency of adversarial examples. The generation strategy
of adversarial examples is obtained through the continuous interactive feedback of the
degree of attack on the translation model and the fluency of the examples.

3.1 Reinforcement Learning

Enviroment

Agent

RewardState Action

Fig. 2. Reinforcement learning.

As an momentous branch in the field of
machine learning, reinforcement learning
aims to study the use of agents to con-
duct model training through interacting with
the environment and receiving “feedback”
information, so as to “automatically” decide
the optimal solution [8]. Figure 6 illustrates
the process of reinforcement learning. At
each time t, Agent receive state st from
Environment, and Agent make action at

on basis of st, while act on Environment
to generate reward rt. Agent reach the new
state st+1 according to rt. Figure 7(a) shows
the overall framework of the model, in which
the Environment (Sect. 3.2) and the Agent
(Sect. 3.3) are two significant parts. Agent learns to modify the token of each position
in the original sample sequentially from left to right, and uses a discriminator in the
Environment to determine whether the modified sample is semantically consistent
with the original sample, at the same time, inputs the modified sample into the lan-
guage model and translation model to evaluate the fluency of adversarial examples and
whether reach the deterioration of the model. The specific process is as in Fig. 7(b).

3.2 Environment

This section details the environment state and the calculation of rewards.
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Process 1 Generation of adversarial examples

① Environment states are processed as inputs for agent;
② Agent modifies the original samples using the Actor-
Critic algorithm based on the state;
③ Utilizing the discriminator to determine the survival or 
termination signals and step reward of the environment;
④ Determine degradation with NMT and fluency of LM;
⑤ Update agent with total rewards.
Loop ①to ③and accumulate rewards for each step until 
environment terminates.

(a) (b)

rt

Target  y Source  x

Discriminator

NMT

Enviroment

survival/terminal  signals

Agent

X xt-1 xt xt+1

Xemb Tokens embedding

src bi-GRU

Mean Sum

Linear+dropout

Actor Critic

Y N V(st)

st at

②

①

⑤

③ ④

LM

Fig. 3. The architecture and specific process of our method.

State. The state of the Environment is described as st = (x, t), where x =
(x1, ..., xN ) are N sequences. Adding the begin and end tags (BOS and EOS) to
each sequence xi = (x1, x2, ..., xn) and padding them to the same length. t ∈ (1, n)
indicates the token position to be perturbed by Agent. Environment will consec-
utively loop for all token positions and update st based on Agent’s modification.
Environment also yields reward signals until the end or intermediately terminated.

Reward Calculation. The reward rt consists of a survival reward rs for each step, a
final degradation rd and the fluency reward rl when the Agent survives till the end.
Therefore, the reward for each time step is calculated as follows:

rt =

⎧
⎪⎨

⎪⎩

− 1, terminated
1
N

∑
N α · rs, survive ∧ t ∈ [1, n)

1
N

∑
N (α · rs + β · rd + γ · rl), survive ∧ t = n

(4)

where α, β γ and are hyper-parameters. Since the adversarial examples must maintain
semantic consistency with the original examples, the Agent must survive for its goal by
also fooling the discriminator D, which determines terminal or survival signal by judg-
ing whether the modified sequence matches the original target translation y. Once D
determines the pair as positive, its corresponding possibility is regarded as the reward,
otherwise 0:

rs =

{
P (positive|(x̂, y); θd), positive

0, otherwise
(5)

When all sequences in x are intermediately terminated, the overall reward rt yields
−1. For example which is defined as “negative” during survival phase, it’s subse-
quent rewards and actions will be disguised as zero. If the agent survives to the end,
Environment generates an additional average reward rd and fluency reward rl as the
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final reward for the current training episode. For rd, we adopt relative degradation [11]:

rd =
score(y, refs) − score(y

′
, refs)

score(y, refs)
(6)

where y and y
′
denote original and perturbed output, refs are references, and score is

a translation metric. If score(y, refs) is 0 and return 0 as rd.
For the sake of receiving smoother adversarial example, we use a language model

to participate in the reward calculation in the Environment so that the Agent can con-
sider the fluency of the examples when modifying the original examples. Typical lan-
guage models have problems such as zero probability or statistical inadequacies. Katz
smoothing is a probability formula to alleviate the “unsmoothness” problem. The basic
idea of this method is if exists N-gram language model, directly using the discounted
probability; If the higher-order language model is non-exist, the saved probability will
be allocated according to the N-1 order language model probability, and so on. We adopt
3-gram and rl represents the fluency score of sequence x̂:

rl =
n∑

t=1

Pkatz

(
xt|xt−1

t−2

)
(7)

Pkatz

(
xt|xt−1

t−2

)
=

{
PML

(
xt|xt−1

t−2

)
, if count

(
xt−1
t−2

)
> 0

λP
(n−1)
katz (xt|xt−1) , if count

(
xt−1
t−2

)
= 0

(8)

3.3 Agent

As it is shown in Fig. 7(a), Agent uses Actor-Critic algorithm [9] to modify samples,
the actor and critic share the same input layers and encoder. Actor takes in Source and
current token with its surrounding (xt−1, xt, xt+1), then yields a binary distribution to
determine whether to attack a token on step t, while critic emits a value V (st) for every
state. Once the Actor determines that a token at specific location can be perturbed, it is
replaced with one of the token’s candidates within the distance of σ in the vocabulary.
See [20] for more details about training and inferencing.

4 Experiment

4.1 Data Preprocessing

We test our adversarial example generations on Mongolian-Chinese (Mo-Zh) transla-
tion tasks of CCMT2019 and Uighur-Chinese (Ug-Zh) translation tasks of CWMT2017.
In this paper, we use the open-source Chinese word splitting tool THULAC [10] to split
the Chinese corpus, so that the corpus can be better adapted to the model and reduce the
problem of poor model performance caused by word order to a certain extent. Moreover,
Byte Pair Encoding (BPE) [13] encoding is used to process the Mongolian and Uighur
corpus, which is firstly sliced into the corresponding smallest granularity. The training
of the translation model is assisted by extracting the highest frequency character sub-
strings into the newly generated dictionary. This approach slices the sentences into a
granularity between words and characters, which can preserve the contextual semantics
to a certain extent while alleviating the data sparsity problem.
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4.2 NMT Model

This paper selects the state-of-the-art RNNSearch [2] and Transformer [15] as vic-
tim translation models. For RNN-Search, it’s an encoder-decoder framework based
on RNN, we set the hidden layer nodes and word-embedding dimensions to 512 and
dropout = 0.1. By averaging the single model obtained from the last 20 checkpoints,
we use adaptive to adjust the learning rate. For Transformer, we set dropout = 0.2
and the dimension of word embedding to 1024, with the learning rate and checkpoint
settings consistent with RNNSearch.

4.3 Evaluating Indicator

We report de-tokenized BLEU with SacreBLEU [12] as the evaluation metric of adver-
sarial examples and also test source semantic similarity with human evaluation (HE)
ranging from 0 to 5 (Table 1) used by [11] by randomly sampling 20% of total sequences
for a double-blind test.

Table 1. Human evaluation metrics.

0 Meaning of the two sentences is completely different

1 The topic is the same but the meaning is different

2 Some key messages are different

3 The key messages is the same, but the details differ

4 Meaning is essentially equal but some expressions are unnatural

5 Meaning is essentially equal and the expression is fluent and natural

4.4 Adversarial Attack Results and Analysis

We utilize GeneticAttack [1], HotFlip [6] and our method to generate adversarial exam-
ples for the test set respectively to attack the translation model. Table 2 illustrates the
deterioration degree of adversarial examples to different translation tasks. We randomly
select 20% of the adversarial examples for double-blind human evaluation to evaluate
the semantic similarity between the adversarial example and the original example.

As it is shown in Table 2, GeneticAttack uses synonym replacement and genetic
algorithm optimization to modify the original sample, resulting in less disturbance, but
it lacks some semantic and fluency constraints compared with our method, which is
easy to produce grammar problems, and low efficiency due to the inability to use gra-
dient information effectively. Hotflip mainly uses gradient information to generate typo
adversarial examples (such as “香蕉 ” → “香交 ”) to improve the model’s ability to
adapt and correct typos. Although the efficiency is high, it may produce some mean-
ingless words which greatly reduce the overall smoothness of the sentence. Our method
uses the actor-critic to modify the token of each position of the original example from
left to right, uses the discriminator to restrict the semantics of the confrontation sample,
and the language model and the translation model are utilized to evaluate its fluency
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Table 2. Experiment results for Mo-Zh and Ug-Zh MT attacks. We list BLEU for perturbed test
sets generated by each adversarial example generation method. An ideal adversarial example
shouldachieve low BLEU and high HE.

Model Mo→Zh Zh→Mo Ug→Zh Zh→Ug

BLEU↓ HE↑ BLEU↓ HE↑ BLEU↓ HE↑ BLEU↓ HE↑
RNNSearch 26.51 – 22.25 – 28.24 – 23.18 –

GeneticAttack 20.27 1.98 18.56 2.34 22.12 2.06 19.67 2.43

HotFlip 19.15 2.60 18.03 2.91 20.76 2.47 18.32 2.98

Ours 22.14 3.36 20.75 3.73 23.47 3.26 21.48 3.84

Transformer 30.44 – 25.57 – 32.67 – 26.32 –

GeneticAttack 24.02 2.16 22.13 2.91 26.43 2.21 22.18 2.94

HotFlip 23.17 2.67 21.21 3.14 24.67 2.74 21.35 3.13

Ours 26.87 3.45 23.12 3.62 26.98 3.47 23.69 3.88

and the overall deterioration of the model. Therefore, our model stably generate adver-
sarial examples without significant change in semantics and any handcrafted semantic
constraints by the same training setting among different models and tasks, achieving
stably model degradation and high HE.

4.5 Adversarial Training Results and Analysis

Due to Agent can effectively generate adversary examples that retain semantic infor-
mation, we can directly use these samples to tune the original translation model. Given
the original training data, Transformer models of different methods are used to gener-
ate equal number of adversarial examples, which are then paired with the initial target
sentences.

Table 3. Fine-tuning with adversarial examples.

Model Mo→Zh Zh→Mo Ug→Zh Zh→Ug

BLEU↑ Promote BLEU↑ Promote BLEU↑ Promote BLEU↑ Promote

Transformer 30.44 – 25.57 – 32.67 – 26.32 –

GeneticAttack 31.19 0.75 26.13 0.56 33.46 0.79 26.93 0.61

HotFlip 32.07 1.63 26.41 0.84 34.39 1.72 27.24 0.92

Ours 33.29 2.85 27.33 1.76 35.41 2.79 28.11 1.79

We directly train the model by mixing the augmented sentence pairs with the origi-
nal sentence pairs. As shown in Table 3, utilizing the adversarial examples generated by
GeneticAttack and HotFlip to adversarial training enable improve the performance of
the model, but the effect is unapparent. The reason is they aren’t guaranteeing seman-
tic consistency and sentence fluency, and has a poor effect attack on the model. Our
method can not only guarantee the semantics, but also have strong aggression against
the translation model. The results of fine-tuning using the adversarial examples show
that the robustness of the model can be significantly improved.
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4.6 Ablation Study

Table 4 shows the results of abla-
tion study. Line 1 represent only use
discriminator (D) rewards to guide
Agent optimization. It is clear that
NMT reward rd plays a critical role
since removing it impairs model per-
formance (line 2 and line 3). The lan-
guage model reward is also shown to
be benefit for improving performance
(line 4) but seem to have relatively
smaller contributions than rd.

Table 4. The results of ablation study, “◦” means uti-
lize this module and “×” means not.

ID D NMT LM MO-ZH

1 ◦ × × 28.35

2 ◦ ◦ × 33.02

3 ◦ × ◦ 28.94

4 ◦ ◦ ◦ 33.29

5 Conclusion

This paper adopts a novel approach to generate adversarial examples for low-resource
machine translation tasks. It can expose the defects of the translation model without
manual error features, and ensure the semantic consistency with the original examples.
The experimental results on CCMT2019 Mongolian-Chinese and CWMT2017 Uighur-
Chinese show that this method achieves stable model degradation on different attacked
models. Furthermore, we use adversarial examples to fine-tune the model, and the per-
formance is significantly improved after adversarial training.
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Abstract. Non-autoregressive neural machine translation is gradually
becoming a research hotspot due to its advantages of fast decoding. How-
ever, the increase of decoding speed is often accompanied by the loss of
model performance. The main reason is that the target language infor-
mation obtained at the decoder side is insufficient, and the mandatory
parallel decoding leads to a large number of mistranslation and missing
translation problems. In order to solve the problem of insufficient target
language information, this paper proposes a dynamic mask curriculum
learning approach to provide target side language information to the
model. The target side self-attention layer is added in the pre-training
phase to capture the target side information and adjust the amount of
information input at any time by way of curriculum learning. The fine-
tuning and inference phases disable the module in the same way as the
normal NAT model. In this paper, we experiment on two translation
datasets of WMT16, and the BLEU improvement reaches 4.4 without
speed reduction.

Keywords: Non-autoregressive model · Curriculum learning · Mask
ratio

1 Introduction

Neural machine translation (NMT) [1–3] has become a popular direction of
research and has achieved great results. However, the mainstream autoregressive
neural machine translation (AT) models have high decoding latency and exist
in exposure bias [4]. Therefore, Gu et al. [5] proposed non-autoregressive neural
machine translation (NAT), which uses parallel decoding to generate all tokens at
once and improves the decoding speed significantly. However, this method can’t
obtain enough contextual information for the model to learn, and the generated
translations suffer from a large number of mistranslation, missing translation
and multi-modality problems.
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Ding et al. [6] proposed that there are differences between the distillation data
and the raw data, and simply using distillation data in one direction will result
in poor translation of low-frequency words. Therefore, adding the knowledge
distillation data in the opposite direction, which utilizes the target side data and
solves the low-frequency word problem, but generating distillation data using
only the target side data does not allow the decoder to obtain more information
on the target side. Ran et al. [7] proposed that the decoding stage makes use
of reordering information. Reorder the source copy token so that the position
of each token is aligned with the target language token. Although makes use of
word alignment information at the target side, but semantic information is not
sufficiently obtained. Guo et al. [8] proposed fine-tuning by curriculum learning
(FCL-NAT), which transfers the knowledge learned from the AT model to the
NAT model by way of curriculum learning. However, this approach requires
training the AT model first and then fine-tuning it using curriculum learning.
This approach greatly increases the training time and consumes a lot of resources.

Obtain more linguistic information at the target side, some researchers
have proposed a semi-autoregressive model with multiple iterations of decod-
ing. Therefore, Gu et al. [9] proposed Levenshtein Transformer (LevT), which
modifies the translation by three operations: delete, insert, and replace place-
holders. More contextual information can be obtained during the translation
adjustment process. The mask prediction method proposed by Ghazvininejad et
al. [10] replaces a token with a lower probability with a mask and re-predicts it
after each generation. It stops after two iterations unchanged or after reaching
the maximum number of iterations. Although the above method can provide
enough target side information for the model by multiple iterations, the increase
in the number of iterations is accompanied by a decrease in the decoding speed,
which can even degrade to the autoregressive model level and lose the advantage
of NAT. Qian et al. [11] proposed GLAT, which uses the token of partial ground
truth translation to replace the source copy token, and the model obtained by
training in this way can achieve better performance. It is illustrated that, the
performance of the model can be improved without losing speed by incorporating
more target side information based on the model decoded in a single iteration.

In this paper, we propose a dynamic mask method based on curriculum
learning (DMCL) to generate ground truth translations with mask for model
training, so that the decoder can obtain more linguistic information on the tar-
get side. Specifically, the number of masks for the ground truth translations
is dynamically increased in each training phase by means of curriculum learn-
ing, and the ground truth translations with mask are input to the decoder side.
The target self-attention layer is added at the decoder side to obtain the tar-
get language information and fuse it with the self-attention layer information.
The target language information provided can be limited by the mask ground
truth token to prevent relying too much on the target self-attention part in the
training phase. The number of masks is dynamically adjusted using a curriculum
learning approach so that the model can be trained from easy to difficult, and
the training process is smoother and achieves better model performance. In the



74 Y. Wang et al.

fine-tuning phase, the target self-attention is removed, and the model is identical
to the common NAT model. The experimental results show that the maximum
improvement of BLEU value is more than 4.4 without losing decoding speed. It
is noted that the DMCL approach in this paper is also applicable to the model
with multiple iterations of decoding.

2 Background

2.1 Non-autoregressive Neural Machine Translation

The non-autoregressive model is based on the hypothesis that all words in the
target language are independent of each other, and generates all target language
words in parallel [5]. The generation process can be expressed as follows:

P (y|x) = P (Ty|x) ·
Ty∏

t=1

P (yt|x, z) (1)

where Ty denotes the length of the target sentence, x denotes the source language
sentence, and y denotes the target language sentence. From the Eq. (1), it can
be seen that although the hidden variable of z is involved in the decoding stage,
the latent variables are also derived from the source side language. Therefore,
this approach does not fully utilize the target side language information in the
training phase, but forcibly decodes the translation based on the latent variables.
In contrast, the DMCL proposed in this paper can provide part of the target
side information in the pre-training stage, so that the model learns richer target
side information.

2.2 Curriculum Learning

Curriculum learning is a strategy to train a model from easy to difficult. This
asymptotic training approach allows the model to be smoother during the train-
ing phase while achieving better results. Platanios et al. [12] proposed a new
training framework that decides the next phase of input to the model based
on the difficulty of the training data and the current model capabilities. There
are two important metrics under this training framework, data difficulty and
model competence. The data difficulty can be calculated based on the sentence
length or the average word occurrence probability. The model competence uses
a predefined incremental function. The input data difficulty at each stage is less
than the current model competence. In this paper, the same idea is adopted,
and DMCL determines the amount of target side language information provided
in the next step based on the current status of the model. The DMCL strategy
adjusts the amount of target side language information provided to enable the
model to achieve better results compared to the strategy that doesn’t use the
course learning approach.
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3 Method

In this section, a detailed description of the model structure of DMCL-NAT and
the dynamic mask curriculum learning training strategy will be illustrated.

Self-Attn Trgt-Self-Attn

Word Embedding Word Embedding

Add&Norm

Cross-Attention

Add&Norm

Feed Forward

Add&Norm

Self-Attention

Add&Norm

Feed Forward

Add&Norm

Word Embedding

SoftMax

Source Token Source Copy
Token

Mask Target 
Token

×N

×N

fertility Predictor

Copy

Fig. 1. The model structure of DMCL-NAT. Where trgt-self-attention is added to this
paper. Residual connectivity is dispensed with in the figure.

3.1 Model

The encoder side of the model is identical to the Transformer’s encoder, and
the fertility predictor is added to the encoder side to predict the target sentence
length. DMCL -NAT adds language information on the target side mainly at the
decoder side. It also gradually reduces the amount of incorporated information in
a curriculum learning manner, thus achieving an easy-to-hard training strategy.
Firstly, the symbolic representation is defined, and the source language token
sequence is denoted as X = {x1, x2, x3, ..., xn}, and the target language token
sequence is denoted as Y = {y1, y2, y3, ..., yT }. The main structure of the model
is shown in Fig. 1. The input to the decoder side has two parts, one part of
the copy from the source language according to the fertility predictor denoted as
X∗ = {x1, x2, x2...xT }, and the other part replaces the token in the ground truth
translation with the mask according to the mask ratio. The input is the mask
target token denoted as Y ∗ = {y1, y2, [MASK], [MASK], ...yT }. The DMCL
strategy will be described in detail on the next section. The two part inputs are
embedding and their respective self-attention modules:

Hself−attn = MultiHead(Emb(x∗), Emb(x∗), Emb(x∗)) (2)

Htart−self−attn = MultiHead(Emb(y∗), Emb(y∗), Emb(y∗)) (3)
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where Emb(·) denotes the word embedding. After obtaining the self-attention
results of the two parts, the two parts are fused and expressed as:

H = 0.5 ∗ (Hself−attn + Htart−self−attn) (4)

where H is the result of the fusion of the two parts of the self-attention. In
the model fine-tuning and inference phase then the target self-attention layer is
disabled, returning to the original structure of the NAT model.

3.2 Dynamic Mask Curriculum Learning

Due to the feature of parallel decoding of NAT model, if all the target language
information is directly introduced at the decoder side, the model will completely
rely on the target self-attention part in the training phase, and the originally
self attention part can’t be adequately trained, resulting in the model losing the
ability to generate translations after the target self-attention is removed in the
inference phase. Therefore, it is necessary to limit the amount of information
provided in the target language.

Inspired by BERT [13], Replace some words in the target sentence with mask
tokens. To prevent the problem of over-fitting and not decoding properly, the
mask ratio should be more than 50%. Therefore, this paper adopts the curriculum
learning method to dynamically adjust the proportion of tokens in mask, and
its value range should be [0.5, 1].

The mind of curriculum learning is to let the model train from easy to dif-
ficult. When the mask is less, more contextual semantic information can be
provided to the model, and as the mask ratio keeps increasing, the ground truth
translation information that the model can refer to keeps decreasing. Therefore,
the adjustment function for the mask ratio should be an increasing function
overall. Platanios et al. [12] proposed a function taking values between 0 and 1
and increasing with the number of training steps:

ratio(t) = min(1, p

√
t

T
(1 − cp0) + cp0) (5)

where c0 is the starting value, t is the current number of training steps, and T is
the total number of curriculum learning steps. When p = 1, it is a linear increas-
ing function, and when p = 2, ratio(t) increases gradually less as t increases.
From the existing course learning experience, generally p = 2 works best.

However, this way of taking values still has drawbacks. The main reason is
that the mask ratio cannot be adjusted in time for different training conditions
and can only be trained in a predefined way. Therefore, dynamically adjusting
the mask ratio according to the current training condition of the model can
make the model achieve better results. Therefore, this paper proposes a dynamic
adjustment strategy that follows the change of last step loss. The equation is as
follows:

ratio(loss) = min(1, 2

√
lossmin

loss
(1 − c20) + c20) (6)
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where loss denotes the loss obtained by the model for the previous stage of
calculation, and lossmin denotes the loss when the autoregressive model reaches
the convergence state, c0 is the minimum mask ratio. As can be seen from the
Eq. (6), as the loss decreases indicates that the current model can reach a better
learning state, so the mask ratio can be increased appropriately, and when the
loss increases during the training process indicates that the current stage is
difficult to train, the mask ratio can be reduced appropriately.

3.3 Train and Inference

Train: The model is divided into pre-training and fine-tuning phases during
training. The pre-training process is shown in Fig. 2. In the pre-training phase,
which can also be called the mask curriculum learning phase, the mask ratio is
dynamically adjusted according to the current training status of the model, and
some of the target side language information is added so that the model can
learn more target side language information. Can be expressed as:

P (y|x, y∗) = P (Ty|x) ·
Ty∏

t=1

P (yt|x, y∗, z) (7)

where y∗ denotes the ground truth translation with mask token and Ty denotes
the target sentence length. However, due to the existence of target self-attention
there is still the problem of partial information leakage. Therefore, the fine-
tuning phase removes target self-attention completely and doesn’t introduce the
ground truth translation information. The fine-tuning process can be expressed
as Eq. (1).

1

D

Translation
model

Update by loss
Mask 
ratio

1

D

Target token

Tagt-self-attn

Fig. 2. Dynamic mask curriculum
learning process. The shaded area
indicates the token that was masked

Inference: The method in this paper
only modifies the model structure in the
training phase, and the fine-tuned model
no longer relies on the target side informa-
tion provided by target self-attention. The
inference stage is the same as in Eq. (1).
The sentence length is obtained according
to the fertility prediction and the decoder
needs the latent variable z copied from the
source language. In addition, this paper
also uses the noise parallel decoding (NPD)
[5] method to generate the translation, the
candidate set is increased according to the
sentence length in the inference stage, and then the optimal result is selected
from all the candidate sets as the final translation, which can make a better
decision on the sentence length. Therefore, the inference stage is the same as the
ordinary NAT model, and the model performance is further improved without
affecting the decoding speed.
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4 Experiment

4.1 Data Preparation

In this paper, experiments were conducted on two sets of language pairs. The
WMT16 RO-EN dataset is v6 version containing a total of 220K sentence pairs.
For the WMT16 EN-DE dataset (2M sentence pairs), 1M sentence pairs were
selected as the training set. On the RO-EN and EN-DE tasks, all the corpus was
preprocessed by Byte Pair Encoding (BPE) [14], and the BPE dictionary size
was set to 32K for both.

4.2 Configuration

For all the above datasets, the experimental model configurations all follow the
settings of Vaswani et al. [2]. The decoder and encoder were each set to n-
layers = 6, where the attention module d-model = 512, n-heads = 8. The warm-up
steps were all set to 4000. The learning rate was set to 0.0005, and the learning
rate update followed the inverse square root annealing algorithm. For the RO-
EN dataset, a total of 6W steps are trained, and for the EN-DE dataset, a total
of 30W steps are trained, where the DMCL pre-training are set to half of the
total training steps.

4.3 Baseline

The experimental baseline in this paper is derived from the autoregressive model,
the non-autoregressive model with single decoding, and the semi-autoregressive
model with multiple iterations of decoding.

Transformer [2]: Autoregressive model strong baseline.
NAT [5]: The NAT model proposed by Gu et al. assumes parallel decoding

with individual tokens directly independent of each other.
Mask Predict [10]: The token with lower probability in each generated

translation is replaced with mask and re-predicted. The final translation is gen-
erated after several iterations.

All the above baseline and methods in this paper are implemented based on
fairseq [15]. Choose the BLEU [16] value to evaluate the model performance.

4.4 Results

The main results of the experiments are shown in Table 1. The DMLM approach
can significantly improve the performance of the NAT model. Compared with
the multiple iteratives decoding model, the method in this paper retains the
original fast decoding advantage of the NAT model and significantly reduces the
performance difference with the multiple iteratives decoding model. Compared
with the vanilla NAT model, significant improvements are obtained on the RO-
EN dataset, with a maximum performance gain of more than 4.4. In addition,
great potential is shown on large corpora of millions.
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Table 1. Results on the WMT16 RO-EN and EN-DE benchmarks. m denotes the noise
parallel decoding window size. DMCL-NAT is the method proposed in this paper. The
bolded results indicate the best performance of single decoding.

Models WMT2016 Speedup

RO-EN EN-RO EN-DE

AT Model Transformer 36.64 34.65 22.13 1.0×
Iterative NAT Mask-Predict (iter = 10) 35.22 32.96 18.43 2.6×
Fully NAT NAT 26.46 25.32 12.56 15.7×

NAT (m = 5) 28.83 27.07 12.92 7.6×
Ours DMCL-NAT 30.47 28.81 14.74 15.7×

DMCL-NAT (m = 5) 33.27 31.76 15.44 7.6×

In this paper, only the target self-attention layer is added to the pre-training
process of the model, and the amount of target language information input is
adjusted by adjusting the number of masks in the input ground truth translation.
Therefore the method can be applied to a variety of NAT models.

5 Analysis

5.1 Mask Strategy

Table 2. Performance on
WMT16 RO-EN with fixed
mask ratio.

Mask ratio BLEU
0.5 29.78
0.6 29.91
0.7 30.00
0.8 29.57
0.9 28.36
Ours 30.47

In this paper, two points of view are evaluated
to verify the effectiveness of DMCL. Firstly, the
mask ratio is fixed to a certain value. In addition,
a strategy of mask ratio adjustment with the idea
of curriculum learning is adopted, which gradually
increases from 0.5 to 1. There are four incremental
functions set in Table 3.

The experimental results are shown in Table 2
and Table 3. The optimal performance is reached
when the fixed mask ratio is 0.7. When the incre-
mental function is used, the inverse quadratic
incremental function achieves the maximum value
and is stronger than the model performance when
the ratio is fixed. But this DMCL strategy pro-
posed in this paper obtains a significantly better
model performance than all the above approaches.
The main reason is that dynamically adjusting the amount of information input
allows the model to obtain the most appropriate amount of information and
achieve better training results. So the DMCL strategy proposed in this paper is
effective.
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Table 3. Performances on WMT16 RO-EN with incremental mask ratio.

Functions Description BLEU

Linear t
T

(1 − c0) + c0 29.85

Sqrt 2
√

t
T

(1 − c20) + c20 30.23

Exponent e−log t
T

(1−c0)+c0 29.72

Ladder-like � 5∗t
T

� ∗ 0.1 + c0 29.82

Ours 30.47

Table 4. Performance on WMT16 RO-EN when DMCL applied to Mask Predict.

Model BLEU

Transformer 36.64

Mask Predict (iter = 10) 35.22

Mask Predict+DMLM (iter = 10) 35.87

5.2 Method Generality

Since the method in this paper is to add target self-attention at the decoder side
and then pre-train the model by DMCL. So the method is also applicable to the
non-autoregressive translation model with multiple iterations of decoding. To
test this hypothesis, the multiple iterations decoding model Mask Predict was
chosen as the base model and experiments were conducted on the RO-EN task.
The experimental results are shown in the Table 4, after adding the method of
this paper to Mask Predict, the BLEU value has improved by 0.65. The reason
why the improvement is not as large as that of the model with single decoding
is that DMCL provides linguistic information on the target side in the training
phase, while the same information on the target side is available during the
iteration of Mask Predict. Therefore, the impact of DMCL is weakened.

6 Conclusion

In this paper, we propose a new method that can incorporate the target side
language information in the NAT model, while dynamically adjusting the ratio
of mask substitution in the ground truth translation in a curriculum learning
approach, and controlling the amount of target language information provided
by the ground truth translation can achieve a progressive learning process from
easy to difficult. The method significantly improves the performance of the sin-
gle decoding model without speed loss. Also, experiments are conducted in this
paper based on the Mask Predict model, and it is demonstrated that the method
is also applicable to models with multiple iterations of decoding. Providing target
side information at the decoder side can effectively improve NAT model perfor-
mance, and future research will focus on exploring more appropriate curriculum
learning strategies and ways to apply the approach to other generative tasks.
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Abstract. kNN-MT has been recently proposed, uses a token-level k-
nearest neighbor approach to retrieve similar sentences, obtaining knowl-
edge guidance from an external memory module, and then combined with
the prediction results of the translation model, which greatly improves
the accuracy of machine translation. However, kNN-MT uses simple lin-
ear interpolation in the fusion of retrieval probability and translation
probability, which can not dynamically adjust the fusion ratio according
to the matching degree of the retrieved sentences. Moreover, different
fusion ratios need to be explored in different translation scenarios, and
the translation effect will be affected when the retrieved sentences have
a low matching degree or contain noise. In this paper, we propose an
approach via Dempster-Shafer theory (DST) to dynamically fuse differ-
ent probability distributions to suit different scenarios. We demonstrate
that our approach is more significantly improved and more robust than
the traditional kNN-MT, and we explore the application of kNN-MT in
low-resource translation scenarios for the first time.

Keywords: kNN-MT · Dynamic fusion · Translation

1 Introduction

Over the past few years, with the development of deep learning, neural machine
translation has come a long way. In order to further improve the translation accu-
racy, more and more researches have started to express the training data as some
kind of external knowledge rather than as model parameters, which is called non-
parametric method. Since this method requires search to obtain external knowl-
edge, it is also called search-based model. The representative methods are as
follows: Nearest neighbor language models (kNN-LM) [1], which introduces kNN
to the language model for the first time and gains tremendous enhancements; k-
nearest-neighbor machine translation (kNN-MT) [2], which extends kNN-LM to
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translation model, has made a qualitative leap in bilingual translation, multilin-
gual translation, and especially domain adaptation translation tasks compared
with traditional methods; As well as Adaptive kNN-MT implemented by [3] on
this basis, a meta-k network is trained by artificially constructing features for
generating the number of nearest neighbors k, instead of artificially specifying
them; And Fast kNN-MT [4] introduces hierarchical retrieval to improve the
retrieval efficiency thus improving the slow translation speed of kNN-MT.

kNN-MT bulids an external memory module on top of the ordinary NMT,
storing the context representation of the corresponding sentence as well as the
target word. The idea of kNN-MT is to retrieve sentences similar to the current
sentence in the memory module when translating the current word, and get
reference and guidance from the translation memory by the words corresponding
to the similar sentences. Then it is fused with the translation result of NMT to
get the final result.

Although kNN-MT has demonstrated its powerful capability in high-resource
languages as well as domain adaptation, there are still two problems. On the one
hand, kNN-MT has not been studied in low-resource scenarios due to its par-
ticular reliance on the representational power of pre-trained translation models
and the retrieval effect of similar sentences. On the other hand, in the fusion
of NMT with an external memory module, the fusion ratio is controlled by a
hyperparameter λ, i.e., how much information the NMT model obtains from the
external memory module. However, it poses some problems, due to the long-tail
effect of the dataset, some sentences have more similar sentences while some sen-
tences have less similar sentences. Using the same fusion ratio for all data will
cause the problem that some sentences do not acquire enough information and
some sentences introduce noise. We illustrate this with a concrete example in
Fig. 1. Moreover, it is experimentally demonstrated that the model translation
results are very sensitive to the selection of hyperparameter λ, which affects the
robustness of the model.

Fig. 1. Example of failure of probability interpolation between pNMT and pMem, while
translating DE-EN.

To solve this problem, we propose a dynamic fusion method via Dempster-
Shafer theory, which drops the fixed fusion method with linear interpolation, and
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gives different fusion results for different retrieval probabilities and translation
probabilities. The problem of high confidence in retrieval probability, but too
low fusion ratio, i.e., better prediction of retrieval probability, but biased final
translation result due to too low fusion ratio, and vice versa, is alleviated. More-
over, our method improves the robustness of the model to cope with translation
in complex scenarios. More importantly, we explore the application of kNN-MT
in low-resource translation scenarios for the first time, demonstrating the effec-
tiveness of non-parametric methods in low-resource scenarios. We validate the
effectiveness of our methodology for multi-domain datasets, including IT, Med-
ical, Koran, Law, and the CCMT’19 Mongolian-Chinese low-resource dataset.
Our method obtains an increase of 0.41-1.89 BLUE, and the robustness of the
model is improved.

2 Background

The main approach of kNN-MT involves the building of memory modules and
the fusion of external knowledge with the predicted results of the NMT model.
In terms of memory module construction, unlike [5] and [6] which construct
sentence-level and fragment-level memory datastore, kNN-MT constructs token-
level memory datastore. Its advantage is better retrieval and higher matching,
but the memory module size is the total number of tokens in the target language,
which leads to low retrieval efficiency. In terms of construction method, kNN-MT
selects an offline construction method, therefore a pre-trained model with strong
knowledge representation capability is required. The memory module is stored
as a key-value pair of a context vector and a target token, and is constructed
by feeding the training data into the model in a single forward pass. Given a
bilingual corpus (x, y) ∈ (X ,Y) the decoder decodes yt based on the source
language x and the words y<t that have been generated. Assuming that the
hidden layer state of the pre-trained model is f (x, y<t), the key of the datastore
is f (x, y<t) and the value is yt, then the construction process is:

(K,V) = {(f (x, y<t) , yt) ,∀yt ∈ y | (x, y) ∈ (X ,Y)} (1)

Once the memory module is constructed, the similar sentences can be
retrieved when decoding, and the token corresponding to the similar sentences
can be used to obtain a retrieval probability, i.e., the retrieval probability pMem

given by the memory module through historical data.

pMem (yi | x, ŷ1:i−1) ∝
∑

(ki,vi∈N )

1yi=vi
exp

(
−−d (kj , f (x, ŷ1:i−1))

T

)
(2)

The retrieval probability represent external knowledge guidance, and kNN-
MT fuses the external knowledge with the model knowledge by simple linear
interpolation to obtain the final probability distribution.

p (yt | x, ŷ1:i−1) = λpNMT (yt | y<t, x) + (1 − λ) pMem (yt | y<t) (3)
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3 Method

In this section, we mainly introduce our proposed method, and our method is
mainly applied in the inference stage of the model. We discard linear interpola-
tion and use DST (Dempster-Shafer theory) in the fusion process of pNMT and
pMem, and our method is shown in Fig. 2. Since pMem only generates probabil-
ities for a few relevant words of the similar neighbors in the actual calculation
process, and the probabilities of other irrelevant words are all 0, resulting in a
very hard distribution of pMem, and more 0 probabilities will have a very signif-
icant impact on the DST results, so we use label smoothing for pMem to make
the distribution of pMem smoother.

Fig. 2. Schematic diagram of our approach, the retrieval process occurs at the decoder,
where similar sentences are retrieved in the memory module based on the context
vector. The retrieval probability is obtained by normalizing the target token and then
dynamically fused with the translation probability using the DST algorithm.

3.1 Dempster-Shafer Theory

Dempster-Shafer theory [7] is a generalization of probability theory and a very
effective method for data fusion. DST extends the basic event space in probabil-
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ity theory to power sets of basic elements by replacing a single probability value
of a basic element with a probability range. DST is based on the mathematical
theory proposed by Demster and Schaeffer, and is a more general formulation of
Bayesian theory. DST proposes a framework that can be used to represent incom-
plete knowledge and update credibility. If a set is defined as Θ = {θ1, θ2, ..., θN}
and all elements in the set are independent and mutually exclusive, Θ is called
the frame of discernment framework. Under this premise, the DST combination
rules are provided.

Let m1 and m2 be the two probability assignment functions on the same
discernment framework. The corresponding focal elements are Ai (i = 1, 2, ..., k)
and Bj (j = 1, 2, ..., l), respectively, and the new probability assignment (BPA)
functions after the combination is denoted by m. Then the DST combination
rule can be expressed as the following form:

m(A) = m1(A) ⊕ m2(A)

⎧
⎨

⎩

m(φ) = 0
1

1−k

∑
Ai∩Bj=A

m1(Ai)m2(Bj) (4)

Dempster-Shafer theory has been widely used to deal with problems with
uncertainty or imprecision. Because it can integrate different algorithms based
on its basic probability assignment framework to improve the reliability of the
results. In this paper, we use evidence theory to execute data fusion for pNMT

and pMem, where m1 in Eq. 4 is pNMT and m2 is pMem.

3.2 Label Smoothing

Label Smoothing [8] is a widely used regularization technique in machine transla-
tion. LS penalizes the high confidence in the hard target to introduce noise to the
label and change the hard target into a soft target. The idea of label smoothing
is simple: the token corresponding to the ground truth should not have exclu-
sive access to all probabilities; other tokens should have a chance to be used as
ground truth. In parameter estimation of complex models, it is often necessary
to assign some probabilities to unseen or low-frequency events to ensure the
better generalization ability of the model. For the specific implementation, label
smoothing uses an additional distribution q which is a uniform distribution over
the vocabulary V, i.e., qk = 1

v , where qk denotes the kth dimension of the distri-
bution. The distribution of final result is then redefined as a linear interpolation
of yj and q:

yls
j = (1 − α) · yj + α · q (5)

Here, α denotes a coefficient to control the importance of the distribution q,
and yls

j denotes the learning target after using label smoothing. The schematic
diagram is shown in Fig. 3.
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Fig. 3. Targets with Label Smoothing when α = 0.1.

Label smoothing can also be seen as an adaptation of the loss function with
the introduction of additional prior knowledge (i.e., the part related to q). But
this prior knowledge is not fused with the original loss function by means of
linear interpolation.

The process of generating the final probability can be summarized by the
following procedure, where the LS denotes a label smoothing, DST denotes
Dempster-Shafer theory, pMem denotes the retrieval probability obtained from
the memory module, and pNMT denotes the translation probability of the NMT
model.

p (yt | y<t) = DST (pNMT , LS (pMem)) (6)

4 Experiment

We validate the effectiveness of our method in two translation scenarios: (1)
domain adaptation. (2) Mongolian-Chinese low resource language.

4.1 Experimental Setup

Data. We use the following datasets for training and evaluation:
MULTI-DOMAINS: We use the multi-domains dataset [9], re-split by [10] for

the domain adaptation experiments. It includes German-English parallel data
for train/valid/test sets in four domains: Medical, Law, IT and Koran. The
sentence statistics of MULTI-DOMAINS datasets are illustrated in Table 1.

Table 1. Statistics of dataset in different domains.

Train Valid Test

IT 222,927 2,000 2,000

Medical 248,009 2,000 2,000

Koran 17,982 2,000 2,000

Laws 467,309 2,000 2,000

Low-resource: We use the CCMT’19 Mongolian-Chinese dataset to evaluate
the performance of our method in low-resource scenarios. The bilingual parallel
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corpus comes from a comprehensive field, including daily conversations, gov-
ernment documents, government work reports, laws and regulations, etc. The
sentence statistics of Mongolian-Chinese dataset are illustrated in Table 2.

Table 2. Statistics of dataset in Mongolian-Chinese.

Train Valid Test

Mo-Zh 247,829 1,000 1,000

Models. For the domain adaptation experiments, we use the WMT’19
German-English news translation task winner [11], available via the FAIRSEQ
library [12]. It is a Transformer encoder-decoder model [13] with 6 layers, 1,024
dimensional representations, 8,192 dimensional feedforward layers and 8 atten-
tion heads. Apart from WMT’19 training data, this model is trained on over 10
billion tokens of back translation data and fine-tuned on newstest test sets from
years prior to 2018.

For low-resource translation, we train a Mongolian-Chinese translation model
based transformer. The corpus is subworded using subword-nmt1 [14], using a
Adam optimizer [15] with a warmup step of 10,000, epoch of 30 and setting early
stop. Other settings are kept the same as transformer-base.

Our experiments are based on the fairseq2 sequence modeling toolkit to train
NMT models, using the faiss3 [16] toolkit for external memory module construc-
tion and high-speed retrieval. We implement our approach on the open source
code of adaptive-knn-mt4, which implements the original kNN-MT based on
fairseq and has a good code structure.

4.2 Result and Analysis

For the domain adaptive task, the main results are shown in Table 3. Consistency
improvement is obtained for all four domains of our method. The BLEU scores
are improved by 1.89, 0.51, 0.48, and 0.55 compared to kNN-MT. The minimum
improvement is in the Koran domain and the highest is in the IT domain.

For the low-resource task, the experimental results are shown in Table 4,
and it can be found that kNN-MT can also obtain a huge improvement on the
translation result in the low-resource domain, and our method is also improved
compared with kNN-MT.

Analysis. Compared with kNN-MT our method is more flexible in the prob-
abilistic fusion stage, which is reflected in the results to obtain a consistent
improvement of BLEU. The biggest improvement in the domain adaptive exper-
iments is in the IT domain, and by analyzing the translation results we speculate
1 https://github.com/rsennrich/subword-nmt.
2 https://github.com/pytorch/fairseq.
3 https://github.com/facebookresearch/faiss.
4 https://github.com/zhengxxn/adaptive-knn-mt.

https://github.com/rsennrich/subword-nmt
https://github.com/pytorch/fairseq
https://github.com/facebookresearch/faiss
https://github.com/zhengxxn/adaptive-knn-mt
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Table 3. BLEU scores of Base NMT model, kNN-MT and our method on domain
adaptive experiments with hyperparameters k of 8, 4, 8 and 4, respectively. The linear
interpolation ratios α for kNN-MT are 0.7, 0.8, 0.7, and 0.7.

Model IT Medical Koran Laws

Base-NMT 32.05 36.25 14.38 41.78

kNN-MT 36.68 51.27 17.55 57.55

Ours 38.57 51.78 18.03 58.1

Table 4. BLEU scores of Base NMT model, kNN-MT and our method on Mongolian-
Chinese low-resource experiments with hyperparameter k = 4.

Model Valid Test

Base-NMT 27.85 36.56

kNN-MT 31.19 42.29

Ours 33.64 42.77

that it may be due to the presence of more low-frequency special nouns in the
IT domain. kNN-MT introduces noise in the retrieval process, while our method
performs better in the translation of low-frequency words.

In the low-resource scenario since the test sets of Mongolian-Chinese are
mostly simple short sentences, while the valid sets have more long and difficult
sentences. Therefore, the improvement of our method on the test sets is not as
large as that on the valid sets, which also reflects the effectiveness of our method
in complex translation scenarios to some extent. Since DST can produce different
results according to different probabilities and expose more information after
using label smoothing for pMem, it increases the generalization and robustness
of the model.

4.3 Robustness

Fig. 4. Robustness experiments of kNN-MT and our method at different hyperparam-
eters k.
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To verify the robustness of our method, we test the accuracy of translation under
different hyperparameters k. The experimental results are shown in Fig. 4. We
find that the BLEU scores of kNN-MT fluctuate more in the case of not optimal
k values, indicating that the performance of kNN-MT is more sensitive to the
noise brought by k. And the performance of our method is also affected during
the increase of k, but with less fluctuation. It indicates that a relatively good
performance can be maintained at different noise intensities.

We also evaluate the robustness of our method in the domain-mismatch set-
ting, where we consider a scenario that the user inputs an out-of-domain sentence
(e.g. Medical domain) to a domain-specific translation system (e.g. IT domain)
to evaluate the robustness of different methods. Specifically, in IT→Medical set-
ting, We use hyperparameters and datastore in the IT domain, and then use
Medical test set to test the model with IT datastore. As shown in Table 5, the
retrieved results are highly noisy so that the kNN-MT encounters drastic per-
formance degradation. In contrast, our method could filter out some noise and
therefore prevent performance degradation as much as possible.

Table 5. Robustness Evaluation, where the test sets are from Medical/IT domains
and the datastore are from IT/Medical domains respectively.

Model IT→Medical Medical→IT

Base-NMT 36.25 32.05

kNN-MT 15.81 12.31

Ours 24.1 19.56

4.4 Case Study

Fig. 5. Translation examples of different systems in IT domain and Mongolian-Chinese.

As shown in Fig. 5, we show examples of translations in the IT domain and
Mongolian-Chinese. We can observe that kNN-MT can produce mistranslations
in some cases, and our method can generate translations with more fidelity and
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fluency in this case. Moreover, our method can alleviate the 〈unk〉 problem to a
certain extent. In the Mongolian-Chinese example, both the Base NMT model
and kNN-MT can not translate correctly when the corpus contains 〈unk〉, which
also shows that our method is more robust and higher error tolerance.

5 Conclusion

In this paper we propose dynamic fusion of kNN-MT. By using Dempster-Shafer
theory instead of fixed linear interpolation to dynamically fuse the two probabil-
ity distributions from NMT model and memory modules. Through experiments
in domain adaptation, we verify that our method has some improvement on
kNN-MT and validate that our method is more robust. In addition, we explore
the possibility of applying kNN-MT in low-resource scenarios for the first time.
In the future, we will deeply explore the application of non-parametric methods
in low-resource scenarios.
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Abstract. The existing multi-language generative model is considered
as an important part of the multilingual field, which has received exten-
sive attention in recent years. However, due to the scarcity of Chinese
Minority corpus, developing a well-designed translation system is still
a great challenge. To leverage the current corpus better, we design a
pre-training method for the low resource domain, which can help the
model better understand low resource text. The motivation is that the
Chinese Minority languages have the characteristics of similarity and
the adjacency of cultural transmission, and different multilingual trans-
lation pairs can provide the pre-trained model with sufficient semantic
information. Therefore, we propose the Chinese Minority Pre-Trained
(CMPT) language model with multi-tasking and multi-stage strategies to
further leverage these low-resource corpora. Specifically, four pre-training
tasks and two-stage strategies are adopted during pre-training for bet-
ter results. Experiments show that our model outperforms the baseline
method in Chinese Minority language translation. At the same time, we
released the first generative pre-trained language model for the Chinese
Minority to support the development of relevant research (All the exper-
imental codes and the pre-trained language model are open-sourced on
the website https://github.com/WENGSYX/CMPT).

Keywords: Multi-task · Multi-stage · Chinese minority · Generative
pre-trained language model

1 Introduction

With the emergence of the pre-training language model, great progress has been
made in the field of natural language processing [1]. The self-supervised method
has achieved remarkable success in many tasks [2], which is designed to recon-
struct the input text by using the AutoEncoder [3,4]. In the previous works, the
generative sequence-to-sequence (seq2seq) model can be applied to a wide range
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of downstream tasks. Firstly, the text is destroyed by noise manipulation, and
then the original text is reconstructed with the language model. The downstream
task performance can be effectively improved by further fine-tuning [5].

For some low-resource languages, the self-supervised method is difficult to
adapt to the downstream task directly because the corpus is relatively small.
At the same time, the model will have a better understanding of high resource
languages but ignore the learning between similar low resource languages [6].

The Chinese Minority languages have similarity and adjacency in cultural
transmission [7]. This is because ethnic integration in East Asia has been going
on continuously since ancient times [8]. The frequent iterations of the regime
have promoted the social development of the Han nationality and the cultural
exchanges among all ethnic groups. Chinese and minority languages have long
been in contact, influenced, and integrated with each other [9].

Therefore, we propose the Chinese Minority Pre-Trained (CMPT) lan-
guage model with multi-tasking and multi-stage strategies. The CMPT model
improves the ability of cross-language understanding through pre-training, which
is designed with denoising and contrastive learning between texts in different low-
resourced languages. Specifically, we refer to the settings of the BART [10] to ran-
domly mask the text and require the model to be restored. In order to improve
the understanding ability of the encoder model, we refer to the setting of CPT [11]
and add a single-layer masked language model (MLM) [12] decoder to the encoder
output layer for joint training of generation and understanding. Due to the small
number of minority languages, we learn close to the dense vector of language pairs
with the same semantic meaning based on the cross-lingual contrastive learning
between text pairs. This can pull the language pairs with the same semantic mean-
ing to similar positions in the vector space and can help the model to better realize
the migration and understanding of low-resource languages.

In order to further study the feasibility of a large-scale pre-training language
model, we use DeepNorm [13] to implement a 256 layer into the CMPT model,
which has 128 layers of the encoder and 128 layers of decoder, respectively. We
believe that the model with depth can better extract the understanding ability
between languages.

In conclusion, we have the following three contributions to this work:

1. We have proposed a CMPT model for Chinese Minority languages. Through
the use of denoising tasks and contrastive learning, it has the ability to under-
stand and generate meanwhile.

2. We have trained a 256-layer CMPT model and open-sourced it online, which
greatly promotes the research of Chinese Minority language translation.

3. The CMPT model has achieved better performance in the shared task of
CCMT20221 compared with the baseline method.

1 http://mteval.cipsc.org.cn/.

http://mteval.cipsc.org.cn/
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2 Related Work

2.1 Pre-trained Language Model

In recent years, increasing pre-training methods have been used in the field of
natural language processing [14,15]. These methods can learn common knowl-
edge from a large number of unlabeled texts. GPT uses a one-way decoder to
perform generation tasks. Bert [4] introduces a mask language modeling (MLM)
task, which can significantly improve the performance of the pre-trained language
model through pre-training to learn the interaction between context tokens with
longer training time and larger model parameter size. In order to realize the
conversion of seq2seq, the BART [10] and the T5 [16] use the denoising task
and mask restoration task for pre-training respectively. The BART has achieved
SOTA in generation tasks like translation, while T5 has SOTA performance in
understanding and summarization.

2.2 Multilingual Model

Large-scale multilingual pre-training can significantly improve the performance
of cross-lingual migration tasks. The XLM-R [17] uses more than 2TB of multi-
lingual data sets and is pre-trained in 100 languages [18]. This model can model
multiple languages without sacrificing language performance through denoising
pre-training. The mBART [19] has significantly improved in a variety of machine
translation tasks. At the same time, it can also migrate to language pairs without
bidirectional corresponding text.

The M2M [20] is the translation model that not only focuses on English
but realizes the first real multi- to multi-lingual translation model by collecting
supervised data of thousands of language pairs. The M2M model can achieve an
improvement of more than 10 BLEU [21] score when focusing on non-English
translation. In order to align the context representations between different lan-
guages, the VECO [22] adds a cross-attention module [23] to explicitly construct
the interdependencies between languages. It can effectively avoid the generation
of predicting masked words only conditioned on the context in its own language.
In order to improve the efficiency of translation. Switch-GLAT [24] proposes a
non-autoregressive translation method, which improves the translation perfor-
mance by shortening the spatial distance between the replaced words and the
original target language.

2.3 Chinese Minority Languages

The existing work for the Chinese Minority languages is relatively small, as
the multilingual model is difficult to model indigenous languages and minor-
ity languages. Nevertheless, the CINO [25] has developed the first pre-trained
language model for Chinese Minority languages, covering Chinese, Cantonese,
and other six low-resourced languages. It is believed that for languages with
scarce resources, multilingual pre-training can perform better than language pre-
training. Also, the cost of data annotation for low-resource languages is reduced
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significantly. The CINO has the same model architecture as XLM-R [17,26].
In order to adapt to minority languages, additional vocabulary expansion and
vocabulary pruning have been carried out and the word embedding matrix is
reduced to lower the size of the model. However, the CINO is based on lan-
guage understanding, which does not have the ability to perform generation
downstream tasks. Different from the previous work, our work focuses on the
generative pre-trained language model to further advance the development of
minority language translation.

Fig. 1. Overview of the proposed Chinese Minority Pre-Trained (CMPT) language
model.

3 Main Methods

3.1 Model Architecture

Recently, many works have combined language understanding and generation
abilities [27–29] into the pre-trained language model. Inspired by the work [11],
we incorporate both understanding and generation tasks into our Chinese Minor-
ity Pre-Trained (CMPT) language model. In order to better adapt the model to
the downstream tasks of minority languages and make full use of the language
pre-training tasks in low resource scenarios, we design different decoders into
the CMPT with multi-task and multi-stage settings. As shown in Fig. 1, we have
modified the Transformer [30] structure, which is mainly divided into four parts.

1. Bidirectional Encoder. We use a bidirectional self-attention encoder
[30], which can leverage the semantic representation and text meaning.
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Fig. 2. The illustration of the cross-lingual contrastive learning, where the different
translation pairs (Flipped Input-output) are required to learn the same semantics in
the vector space between the CLS.

2. Mask Decoder. We adopt the single linear layer [31] to the output of the
Bidirectional Encoder, where the input embedding is multiplied by the output.
It is known as the MLM head to support the training of MLM pre-training task.

3. AutoReressive Decoder. We use the original transformer decoder struc-
ture, following the settings of BART [10,19] to design our model. The cross-
attention is adopted to realize auto-regressive decoding.

4. Similarity Decoder. We input the CLS vector of the encoder into the
single-layer similarity decoder to extract the semantic vector.

In the downstream tasks of the Chinese Minority language, the encoder can
freely choose the decoder accordingly. For example, the comprehension task
[32,33] uses the mask decoder, the generation [34] and translation task [35] uses
the AutoRegressive Decoder, and the retrieval task [36,37] uses the similarity
decoder. This pre-trained language model can meet more diversified require-
ments, and make efficient use of the parameters with suitable decoders.

3.2 Multi-tasking Multi-stage Pre-training

We designed four pre-training tasks with two-stage strategies to help the model
learn language knowledge to make better use of the low resource corpus, which
is shown as follows.

1. Mask Language Model (MLM) Task. We randomly mask the input
text with a probability of 15%. We require the Mask Decoder to predict the
masked token separately so that we can learn deeper semantic information. The
input embedding is utilized to multiple with the output from the encoder for
this MLM task.
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2. Denoising Auto-Encoding (DAE) Task. For the AutoRegressive
decoder, we use two-stage training to make more efficient use of the provided
multilingual translation pairs. We first use DAE for pre-training for the first
pre-training stage along with MLM. Specifically, we use the noise function to
randomly destroy the input text, and then use the mask to fill in the correspond-
ing position. The motivation is that the AutoRegressive Decoder can learn to
reconstruct the original noise input.

3. Text Translation (TT) Task. In the second stage, we will change the
DAE task to supervised training, while the MLM task keeps its original setting.
Specifically, we input the multilingual translation pairs into the pre-trained lan-
guage model as the same mini-batch [38]. The model is designed to generate the
text of the other language while in this TT task. As for the choice of the loss
function, both the Mask Decoder and AutoRegressive Decoder, we choose the
Cross-Entropy loss for training [39].

4. Cross-lingual Contrastive Learning (CCL) task. In the second stage,
we also add the similarity decoder to compare and learn the CLS output of
mutual translation pairs, so as to shorten the vector space distance between
texts with the same semantics. As shown in the Fig. 2, in this similarity decoder,
in order to keep the same semantics between flipped translation sequence pairs,
we use the sequence contrastive learning loss function, which is presented as
follows.

LCL = −
n∑

i=0

[
log

exp
(
f(x)T f

(
x+
i

))

exp
(
f(x)T f

(
x+
i

))
+

∑m
j=1 exp

(
f(x)T f

(
x−
j

))
]

(1)

where the x is the input sample of multilingual, while x+
i and x−

i represent the
positive and negative samples of translation pairs.

3.3 Model Parameter Details

Recent studies have shown that a deeper model can have better performance
under the same parameter size, as the deeper model can deeply understand the
original meaning of the language [40].

We first use the Xavier Norm [41] to initialize model parameters, where E is
the number of layers of the encoder and D is the number of layers of the decoder.

αEncoder = 0.81(E4 · D)
1
16 , αDecoder = (3D)

1
4 (2)

βEncoder = 0.87(E4 · D)− 1
16 , βDecoder = (12D)− 1

4 (3)

Referring to DeepNet settings [13], we set the α and β values for the standard
parameter normalization

stdEncoder = βEncoder ×
√

2
fan in + fan out

(4)
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stdDecoder = βDecoder ×
√

2
fan in + fan out

(5)

WEncoder ∼ N (0, stdEncoder) ,WDecoder ∼ N (0, stdDecoder) (6)

where the fan in is the number of incoming network connections, while fan out
is the number of outgoing network connections from that layer.

Then, we use the DeepNorm [13] to implement deep model layers. Specifically,
we add residual structure in layernorm for each layer.

LayerOutput
Encoder = LayerNorm(x × αEncoder + f(x)) (7)

LayerOutput
Decoder = LayerNorm(x × αDecoder + f(x)) (8)

where we first use the Encoder to encode sentences into a feature matrix H ∈
R

x×d×t, which is then input into three different decoder layers.
For the mask decoder, we first dot product encoded hidden feature H with

the weight of the input embedding layer (CMPTEmbedding), and then adopt the
linear layer (LinearMask) to obtain the output vector

OutputMask = LinearMask
(
H · CMPTEmbedding

)
(9)

For the Similarity Decoder, we input the HCLS vector into the linear layer
(LinearSim) to obtain the semantic vector of the text.

OutputSimilarity = LinearSim
(
HCLS

)
(10)

We adopt the cross-attention mechanism to integrate H into decoder for the
AutoRegressive Decoder. The attention function can be described as an output
of a Query (Q) and a set of Key-Value (K-V) pairs mapping. The output is the
weighting, and calculation between these QKV is presented as follows

Ḣt
D = MultiHead SelfAtt(Ht

D) (11)

Ḧt
D = MultiHeadAtt(Ḣt

D,H,H) (12)

Ht+1
D = LayerNorm(Ht

D × αDecoder + Ḧt
D)) (13)

where t represents the current time, and the whole calculation is implemented
as the recursive process for further auto-regression.

3.4 Model Setting Details

The CMPT is a Transformer-based [30] model that supports multiple languages.
It has 256 hidden states, 8 attention heads, 128 encoder layers, and 128 decoder
layers. The final model size of CMPT is 390 MB, which belongs to the base
version for the pre-trained language model. In order to adapt to the minority
languages, we adopt the CINO vocabulary [25], which has a number of 135359
in size.
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In the pre-training phase, we set the maximum token length to 120 and
deleted the excess text. We used a 15% mask rate and a maximum of 3-grams
for span masking [42]. We have conducted 200000 steps (about one month) of
pre-training in 8 GPUs of RTX6000 on the Pytorch2 [43] and the hugging-face3

[44] framework, with a batch size of 256. We implement distributed training with
mixed precision based on the DeepSpeed [45]. As a result, we have fine-tuned the
corpus officially provided by CCMT datasets, with a total of about 15,000,000
samples. We use an AdamW optimizer [46] with a maximum learning rate of
8e−5, followed by linear attenuation and warm-up optimizing schedules [47].

Table 1. Details of the Chinese Minority language corpus.

Language pair Dataset Number

Chinese Monolingual 11,000,000 words

English Chinese Train 9,037,417 sentences

Dev 4003 sentences

Mongolian Chinese Train 1,262,643 sentences

Dev 1000 sentences

Tibetan Chinese Train 1,157,959 sentences

Dev 1000 sentences

Uyghur Chinese Train 170,061 sentences

Dev 1000 sentences

4 Experiments

We implement the experiments under the minority language corpus shown in
Table 1. A variety of evaluation metrics are adopted, which can evaluate the
generation quality of sentence level and word level meanwhile and show the
detailed performance of the system more comprehensively. Specifically, we adopt
“BLEU” [21], “ROUGE” [48], “METEOR” [49] and “CIDER” [50] as the eval-
uation metrics, which can assess the quality of translate, including fidelity and
diversity.

In all experiments, we implement the Transformer [30] method as the base-
line for fair comparisons since there is no other suitable method for the Chinese
Minority language translation. This model is pre-trained in the same Chinese
Minority language corpus, which is trained with equal limited training epochs.
We repeated the experiment three times by changing different random seeds
to ensure the fairness of the experiment. We use the learning rate of 1e−5 to
fine-tune the translation of individual language pairs. Each experiment was con-
ducted for 10 rounds. After each round, we conducted experiments in the dev
set, and reported in the result table.
2 https://pytorch.org.
3 https://github.com/huggingface/transformers.

https://pytorch.org
https://github.com/huggingface/transformers
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Table 2. Experiments for the CCMT 2022 shared task.

Language Evaluation metrics Ours Baseline

Chinese
↓
English

BLEU 1 0.531 0.416

BLEU 2 0.378 0.278

BLEU 3 0.277 0.153

BLEU 4 0.207 0.129

METEOR 0.288 0.172

Rouge L 0.468 0.324

CIDEr 2.016 1.564

English
↓
Chinese

BLEU 1 0.143 0.098

BLEU 2 0.031 0.015

BLEU 3 0.011 0.009

BLEU 4 0.005 0.005

METEOR 0.129 0.107

Rouge L 0.177 0.164

CIDEr 0.079 0.067

Mongolian
↓
Chinese

BLEU 1 0.155 0.117

BLEU 2 0.052 0.044

BLEU 3 0.029 0.012

BLEU 4 0.016 0.009

METEOR 0.136 0.094

Rouge L 0.149 0.101

CIDEr 0.122 0.114

Tibetan
↓
Chinese

BLEU 1 0.363 0.333

BLEU 2 0.253 0.207

BLEU 3 0.202 0.149

BLEU 4 0.168 0.112

METEOR 0.419 0.374

Rouge L 0.380 0.365

CIDEr 1.295 0.774

Uyghur
↓
Chinese

BLEU 1 0.217 0.124

BLEU 2 0.053 0.041

BLEU 3 0.028 0.015

BLEU 4 0.017 0.010

METEOR 0.148 0.117

Rouge L 0.249 0.204

CIDEr 0.127 0.108
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Fig. 3. Case study of the proposed method.

4.1 Main Results

In the experiment of the shared task shown in Table 2, we can find that the
CMPT has many to many translation abilities and supports translation tasks
in different minority languages compared with the baseline method. For the
same experimental setting, our method can achieve better performance than
the baseline. Specifically, we can also find that CMPT has good translation
performance, whether it is Chinese to English or ethnic minorities to Chinese.
This further demonstrates the effectiveness of the proposed method. However,
our method fails to obtain a high score for the English-Chinese translation, where
the reason may be the limited size of the pre-training process.

4.2 Case Study

We randomly selected some translation results for comparison, which is shown
in the Fig. 3. The further conclusion can be found that in the scenario of English
to Chinese translation, the model generates repetition results, which may be
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because the model has a weak understanding of English due to insufficient train-
ing corpus. When using minority languages for translation, we can find that the
model can generate relatively complete text. However, due to the insufficient
understanding ability of the model, the semantics of the generated text may be
biased.

5 Conclusion

In this work, we introduced a multilingual model CMPT that supports down-
stream generative tasks. It uses Chinese Minority languages for multi-task and
multi-stage pre-training to comprehensively improve the ability of understand-
ing and generation. We have conducted an evaluation of the translation task of
the CCMT-2022, where the experimental results show that CMPT has achieved
better performance both in understanding and generation compared with the
baseline method. In the future, we believe that with more pre-training minority
language corpus being used for the pre-training, the performance of the CMPT
is expected to be further improved.
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Abstract. Machine translation (MT) quality estimation (QE) aims to
automatically predict the quality of MT outputs without any refer-
ences. State-of-the-art solutions are mostly fine-tuned with a pre-trained
model in a multi-task framework (i.e., joint training sentence-level QE
and word-level QE). In this paper, we propose an alternative multi-task
framework in which post-editing results are utilized for sentence-level QE
over an mBART-based encoder-decoder model. We show that the post-
editing sub-task is much more in-formative and the mBART is supe-
rior to other pre-trained models. Experiments on WMT2021 English-
German and English-Chinese QE datasets showed that the proposed
method achieves 1.2%–2.1% improvements in the strong sentence-level
QE baseline.

Keywords: Quality estimation · Multitask learning · mBART

1 Introduction

Machine translation (MT) quality estimation (QE) is used as an automatic
evalua-tion for selecting the most suitable machine translation without golden
reference. QE is usually implemented either in sentence-level or word-level.
Sentence-level QE subtask takes HTER [3] Metric to represent the quality of
MT, and the word-level QE task measures the translation quality by generating
a quality tag for each word in the output of MT.

The sentence-level and word-level QE subtasks both rely on the triplets of
src (source sentence), mt (machine translated sentence) and pe (post-edited
sentence). Therefore, sentence-level task is usually training jointly with word-
level task so as to improves model performance. It should be noted that, for
sentence-level task, pe is only used for calculating the label HTER, it is not
integrated into the training phase.

In contrast to existing practice, we propose to integrate pe into the sentence-
level QE model, which is named as pe based multi-task learning QE. Follow-
ing recent em-ployment of pre-trained model, we adopt a multi-task transla-
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
T. Xiao and J. Pino (Eds.): CCMT 2022, CCIS 1671, pp. 106–116, 2022.
https://doi.org/10.1007/978-981-19-7960-6_11
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tion QE model based on mBART [4,5]. Evaluated on the WMT2021 English-
German/English-Chinese QE dataset and CCMT2021 English-Chinese/Chinese-
English QE datasets, the proposed method is revealed a substantial improvement
in sentence-level QE compared with jointly training by word-level task. We also
reveal that compared to other pre-trained models like BERT [1] and [2], mBART
achieved better perfor-mance.

This paper is organized as follows. In Sect. 2, we introduce the related work
of QE. The proposed multi-task QE method based on mBART is described in
Sect. 3., we report the experiment and results in Sect. 4, and conclude our paper
in Sect. 5.

2 Related Works

With the purpose of estimating machine translations without reference transla-
tion, the early research on QE tasks adopted traditional feature extraction and
feature selection methods to train the models. Commonly used features included
the length of the translation, the matching degree of special symbols, punctu-
ation, and capital letters, etc. Gaussian process [9], heuristic [12] and principal
component analysis [16] were commonly used feature selection methods.

With the development of deep learning, QE tasks had gradually shifted into
neu-ral network-based framework. The simple network of QE is based on con-
text win-dow [6], and it could be improved by CNN and RNN [15]. In order
to integrate large-scale parallel corpus into RNN model, the model could be
implemented by Predic-tor-Estimator structure [7]. With the rise of transformer,
transformer-based QE models was implemented for its abilities of using large-
scale parallel corpus and learning lexical and syntactic information [8].

With the emergence of pre-trained model, researchers attempted to use pre-
trained models (e.g., XLM [13] and XLM-R [14]) to implement machine transla-
tion quality estimation, which obtained fairly good results compared with pre-
vious re-search based on barely transformer. Those researches are both based
on encoder framework, which consider QE as a regression task for matching
HTER. However, As QE tasks and MT are highly related, QE models can
also be implemented based on encoder-decoder framework. The QE model with
encoder-decoder framework achieved the state-of-the-art performance in WMT
2017/2018 QE task [8] and mBART [4] based model achieved good results on
DA (Direct Assessment) QE task [11]. It should be noted that previous methods
usually neglected pe data in sentence-level QE task. In other words, information
in pe data is unexploited. The only excep-tion is in word level QE, which relies
on pe to derive the quality label for each word.

3 PE Based Multi-task Learning for Sentence Level QE

3.1 Multi-task Learning Framework for QE

Given that QE tasks is highly correlated with machine translation which is
imple-mented by encoder-decoder architecture, we choose mBART [4] as our
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base model. mBART is based on multi-layers transformer architecture and uti-
lizes the bidirec-tional modeling capability of the encoder while retaining the
autoregressive feature. We feed the source text (src) into the encoder and the
machine translation (MT) into the decoder, and the output of the decoder is
used to implement the sentence level task and word level task, respectively.

The multi-task learning QE based on mBART is shown in Fig. 1. For
sentence-level task, we take the last token which is a special token <eos> to
calculate the sentence-level loss, which we believe that the logit contains ade-
quate information. We use sigmoid as the activation function. The loss function
for sentence-level is as follows:

Lsentencelevel = MSE(HTER, sigmoid(FC(u))) (1)

where u denotes the hidden representation for the special token <eos>. MSE
represent Mean Square Error function, Lsentencelevel denotes the sentence-level
loss, FC denotes a fully connected layer.

Fig. 1. Multi-task learning framework for MT QE

For word-level task (used as the baseline in this paper), we utilize each token’s
correlated logits to generate word-quality label. The loss function for word-level
is as follows:

Lwordlevel =

k∑

i=1

(−I(label = OK) log (logiti[0]) − I(label = BAD) log (logiti[1])) (2)

The final overall loss is the sum of sentence-level loss and word-level loss, ℵ
is a constant weight.

L = Lsentencelevel + α × Lwordlevel (3)
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3.2 PE Based Multi-task Learning QE

Under the encoder-decoder structure of mBART, we design a translation task
from src to pe as an auxiliary task for sentence-level QE. The model is shown
in Fig. 2. For the translation part, we feed the right-shifted pe x = [x1, ..., xk+1]
into the decoder which share parameter with the sentence-level part.

Fig. 2. Sentence-level joint translation task

The translation loss Ltranslation is calculated by the cross-entropy loss func-
tion:

Ltranslation =
k∑

i=1

− log (logiti [xi+1]) (4)

where xi+1 denotes each token in the input sentence.
The final overall loss is the sum of sentence-level loss and translation loss, β

is a constant weight.

L = Lsentencelevel + β × Ltranslation (5)

Compared with word-level task, translation task can evaluate not only the
trans-lation quality of each single word, but also the translation quality at the
sentence-level by using the context information in the pe data. Meanwhile, com-
pared with encoder-based QE structures, mBART can utilize pe data more
directly and avoid additional label cost in word level quality annotation.

3.3 Multi-model Ensemble

Given that various models with different initialized parameters, we can utilize
multi-ple models to construct our system. Following existing practices in this
aspect, we further implemented three other different QE models, mBERT, XLM-
RoBERTa-base and XLM-RoBERTa-large to obtain different information from
the same data. We average the HTER obtained by these three models and our
system to generate stronger performance.

mBERT and XLM-RoBERTa are both encoder-based multilingual pre-
trained models. The framework of QE is shown in the Fig. 3. src and mt are
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concatenated as encoder input. The output of the encoder passes through the
linear layer, which utiliz-es sigmoid as the activation function. For CCMT does
not provide word level QE data, we didn’t apply multi-task learning for encoder-
based framework.

Fig. 3. Sentence-level joint translation task

4 Experiments

4.1 Dataset

To compare with recent public results, we use the QE data from WMT2021
Machine Translation Quality Estimation tasks for English-German, and
CCMT2021 Machine Translation Quality Estimation tasks for English-Chinese.
Each dataset contains both sentence-level and word-level tasks. The dataset of
WMT2021 provided 7k samples for training in both directions, and CCMT2021
provided more than ten thousand samples, slightly more data than WMT2021.
The dataset statistics are shown in Table 1.

Table 1. The statistics of quality estimation datasets.

Dataset Train Dev Test

WMT2021 EN-DE 7000 1000 1000

WMT2021 EN-DE 7000 1000 1000

CCMT2021 EN-ZH 10070 1385 1412

CCMT2021 ZH-EN 14789 1445 1528

4.2 Model Training and Evaluation Metric

In the training process, AdamW is selected as the optimizer. We set the batch-
size as 8 and the learning rate is set to 1e−5, and the warmup steps are 1000
steps. The train-ing adopts the early stop strategy, that is, if the model does
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not improve on the vali-dation set in 2000 steps, stop training. The proposed
approach is trained over a single Nvidia 3090. In the sentence-level translation
quality estimation task, three evalua-tion metrics are used: Spearman’s Rank
Correlation Coefficient (Spearman), Mean Absolute Error (MAE), and Root
Mean Squared Error (RMSE). The Spearman corre-lation coefficient is used as
the main metric, in which the higher value indicates better performance of the
QE model. The mean absolute error and the root mean square error are also
provided for reference, in which the lower value indicates better perfor-mance of
the QE model.

4.3 Experimental Results and Analysis

We first compare mBART with other pre-trained models on the WMT2021
Dataset. We choose monolingual BERT, XLM-Roberta, and mBERT as base-
lines. As shown in Table 2, the mBART model surpasses all the other pre-trained
models and achieves the highest Pearson correlation in both DE-De and EN-ZH
tasks.

Table 2. Experiment results with different pretrain models

Model Pearson↑ MAE↓ RMSE↓
EN-DE BERT 0.544 0.122 0.172

bert-base-multilingual 0.544 0.123 0.176

XLM-RoBERTa-base 0.505 0.125 0.175

XLM-RoBERTa-large 0.548 0.116 0.176

mBART 0.554 0.125 0.166

EN-ZH BERT 0.27 0.234 0.312

bert-base-multilingual 0.265 0.278 0.314

XLM-RoBERTa-base 0.256 0.232 0.282

XLM-RoBERTa-large 0.30 0.233 0.270

mBART 0.327 0.253 0.304

The experiment results of our system on WMT2021 are shown in Table 3. It
shows that the multi-task learning method can achieve better results compared
with using mBART only. For sentence-level QE, jointly trained with translation
task ob-tained better performance than the single word-level task. However,
combining word-level task and translation task will lead to a performance decline.
We also compare the proposed QE model with the best results of WMT2021.
HW-TSC [9] utilizes the auxiliary data for training which is obtained by a mature
translation system. IST-Unbabel [10] uses the ADAPT strategy and a more
complicated feature extraction classifier to enhance its performance. As a result,
there is still a gap between our method and the best results.
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The experiment results of our system on CCMT2021 are shown in Table 4.
The proposed approach outperforms all the other pre-trained models in the
CCMT2021 dataset. Jointly training with translation task boost the performance
of our mBART-based system, and the ensemble of multiple models can also make
improvement in both directions.

Table 3. Experiment results with multitask on WMT2021

Model Pearson↑ MAE↓ RMSE↓
WMT2021baseline 0.529 0.129 0.183

HW-TSC 0.653 0.108 0.151

IST-Unbabel 0.617 0.116 0.172

EN-DE mBART 0.554 0.125 0.166

mBART + word level 0.585 0.123 0.169

mBART + translation 0.606 0.119 0.167

mBART + translation + word 0.596 0.127 0.162

WMT2021 baseline 0.282 0.246 0.287

HW-TSC 0.368 0.248 0.297

IST-Unbabel 0.290 0.220 0.266

EN-ZH mBART 0.327 0.253 0.304

mBART + word level 0.335 0.235 0.280

mBART + translation 0.347 0.221 0.265

+ translation + word 0.338 0.230 0.272

4.4 Ablation Study

In this section, we will investigate the effect of translation task. We use pe (post
editing) to correct the error of mt (machine translation) in different proportions,
then the corrected mt is used as the input of decoder for the translation task.
The result is shown in Table 4. We observe that with the increase of the cor-
rection ratio, the per-formance of the model improves significantly. This means
that when introducing pe into sentence-level evaluation system, the proposed
approach can obtain more useful information from pe data (Table 5).
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Table 4. Experiment results on CCMT2021

Model Pearson↑ MAE↓ RMSE↓
EN-ZH mBART 0.348 0.085 0.125

mBART + translation 0.375 0.089 0.118

bert-base-multilingual 0.261 0.094 0.129

XLM-RoBERTa-base 0.306 0.083 0.12

XLM-RoBERTa-large 0.331 0.087 0.12

Ensemble 0.419 0.079 0.114

ZH-EN mBART 0.483 0.078 0.113

mBART + translation 0.498 0.0745 0.116

bert-base-multilingual 0.422 0.091 0.119

XLM-RoBERTa-base 0.414 0.077 0.117

XLM-RoBERTa-large 0.463 0.076 0.117

Ensemble 0.541 0.072 0.106

Table 5. Effect of PE translation tasks

Model Pearson↑ MAE↓ RMSE↓
EN-DE Mt 0.570 0.123 0.168

20% 0.585 0.120 0.176

40% 0.593 0.131 0.190

60% 0.594 0.119 0.169

80% 0.597 0.121 0.169

100% 0.606 0.119 0.167

EN-ZH Mt 0.332 0.254 0.304

20% 0.339 0.255 0.305

40% 0.337 0.238 0.282

60% 0.343 0.240 0.289

80% 0.346 0.234 0.276

100% 0.347 0.221 0.265

We also test the influence of weight on multi-task learning as shown in Fig. 4
and 5. Generally speaking, the performance of the translation multi-task method
is better than the word-level multi-task method.
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Fig. 4. Influence of joint training task weight on multi-task learning in EN-DE

Fig. 5. Influence of joint training task weight on multi-task learning in EN-ZH

Moreover, we test different ways of input to train mBART like feed mt into
the encoder and put src into the decoder or put src and mt into the encoder
together, as shown in Table 6. Compared to other ways of input, our framework
achieves signifi-cant improvements in EN-DE and EN-ZH tasks.
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Table 6. Experiment results with different ways of input

Model Pearson↑ MAE↓ RMSE↓
EN-DE Encoder: src Decoder: mt 0.554 0.125 0.166

Encoder: mt Decoder: src 0.438 0.137 0.193

Encoder: src mt 0.417 0.146 0.205

EN-ZH Encoder: src Decoder: mt 0.327 0.253 0.304

Encoder: mt Decoder: src 0.241 0.261 0.281

Encoder: src mt 0.201 0.272 0.295

5 Conclusion

In this paper, we describe our submission in the QE task, which consists of
English- Chinese and Chinese-English tasks. Our system is implemented based
on the mBART and multi-task QE learning strategies. We propose a sentence-
level translation quality estimation model based on the mBART, which achieves
better results than other cross-language pre-training models. We also present
a training method to introduce translation task into multi-task QE learning
which successfully integrates post-edited sentences into sentence-level QE task
and greatly improve the system performance with a simple model architecture
design.
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Abstract. In this paper, we study the use of deep Transformer trans-
lation model for the CCMT 2022 Chinese↔Thai low-resource machine
translation task. We first explore the experiment settings (including the
number of BPE merge operations, dropout probability, embedding size,
etc.) for the low-resource scenario with the 6-layer Transformer. Con-
sidering that increasing the number of layers also increases the regu-
larization on new model parameters (dropout modules are also intro-
duced when using more layers), we adopt the highest performance set-
ting but increase the depth of the Transformer to 24 layers to obtain
improved translation quality. Our work obtains the SOTA performance
in the Chinese-to-Thai translation in the constrained evaluation.

Keywords: Low-resource NMT · Deep transformer · Chinese-Thai
MT

1 Introduction

Neural machine translation (NMT) has achieved impressive performance with
the support of large amounts of parallel data [1,27]. However, in low-resource
scenario, its performance is far from expectation [10,12].

To improve the translation performance, previous work either study data
augmentation approaches to leverage pseudo data [5,6,16,22,29] or benefit from
models pre-trained on large-scale monolingual corpus [18,21].

Instead of introducing more data, in this paper, we explore the effects of
different data processing and model settings for the CCMT 2022 Chinese↔Thai
low-resource machine translation task inspired by Sennrich and Zhang [24].

Specifically, we adopt the Chinese↔Thai (Zh↔Th) machine translation data
from CCMT 2022 of 200k training sentence pairs. We first apply strict rules for
data cleaning, and employ the cutting-edge Transformer model [27]. We explore
the influence of BPE merge operations on performance, and the effects of dif-
ferent model settings (embedding size, dropout probability). As previous work
[2,8,13–15,17,28,30,31,33,36–38] shows that deep Transformers can bring about

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
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improved translation performance, we adopt the setting of highest performance
in ablation experiments for the Chinese↔Thai translation task but increase the
number of layers to 24. We explore experiment settings with the 6-layer setting
but adopt the best one to deeper models, because: 1) exploring the effects of
these hyper-parameters with shallow models is more computation-friendly than
with deep models, and 2) increasing the number of layers also introduces regu-
larization, as adding new layers also brings dropout modules.

2 Background

2.1 Transformer

Vaswani et al. [27] propose the self-attention based Transformer model, evad-
ing the parallelization issue of RNN. Transformer has become the most popular
model in NMT field. Transformer consists of one encoder and one decoder mod-
ule, each of them is formed by several layers, and the multi-layer structure allows
it to model complicated functions. The Transformer model also employs residual
connection and layer normalization techniques for the purpose of ease optimiza-
tion.

2.2 Low-Resource NMT

Despite that NMT has achieved impressive performance in high-resource cases
[27], its performance drops heavily in low-resource scenarios, even under-
performing phrase-based statistical machine translation (PBSMT) [10,12]. NMT
normally requires large amounts of auxiliary data to achieve competitive results.
Sennrich and Zhang [24] show that this is due to the lack of system adaptation for
low-resource settings. They suggest that large vocabularies lead to low-frequency
(sub)words, and the amount of data is not sufficient to learn high-quality high-
dimensional representations for these low-frequency tokens. Reducing the vocab-
ulary size (14k→2k symbols) can bring significant improvements (7.20→12.10
BLEU). In addition, they show that aggressive (word) dropout (0.1→0.3) can
bring impressive performance (13.03→15.84 BLEU), and reducing batch size
(4k→1k tokens) may also benefit. Optimized NMT systems can indeed outper-
form PBSMT.

2.3 Parameter Initialization for Deep Transformers

Xu et al. [36] suggest that the training issue of deep Transformers is because
that the layer normalization may shrink the residual connections, leading to the
gradient vanishing issue. They propose to address this by applying the Lipschitz
constraint to parameter initialization. Experiments on WMT14 English-German
and WMT15 Czech-English translation tasks show the effectiveness of their sim-
ple approach.
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2.4 Deep Transformers for Low-Resource Tasks

Previous work shows that deep Transformers generally perform well with suf-
ficient training data [13], and few attempts have been made on training deep
Transformers from scratch on small datasets. Xu et al. [37] propose Data-
dependent Transformer Fixed-update initialization scheme, called DT-Fixup,
and experiment on the Text-to-SQL semantic parsing and the logical reading
comprehension tasks. They show that deep Transformers can work better than
their shallow counterparts on small datasets through proper initialization and
optimization procedure. Their work inspires us to explore the use of deep Trans-
formers for low-resource machine translation.

3 Our Work

3.1 Data Processing

The quality of the dataset affects the performance of NMT. Therefore, We first
standardize the texts with the following pipeline:

1. removing sentences with encoding errors;
2. converting Traditional Chinese to Simplified Chinese through OpenCC;1
3. replacing full width characters with their corresponding half width characters;
4. converting all named and numeric character HTML references (e.g., &gt;,

&#62;, &#x3e) to the corresponding Unicode characters.

For the training of NMT models, we segment Chinese sentences into words
using jieba.2

We perform independent Byte Pair Encoding (BPE) [23] for Thai and Chi-
nese corpus to address the unknown word issue with the SentencePiece toolkit
[11].3

As the evaluation does not release the test set, we hold out the last 1000
sentence pairs of the training set for validation.

3.2 Exploration of Training Settings

We explore the influence of different training settings on the low-resource trans-
lation task in two aspects:

1. Vocabulary sizes;
2. Model hyper-parameters (embedding size and dropout probabilities).

For our experiment, we employ the Transformer translation model [27] for
NMT, as it has achieved the state-of-the-art performance in MT evaluations [1]
and conduct our experiment based on the Neutron toolkit [35] system. Neutron
is an open source Transformer [27] implementation of the Transformer and its
variants based on PyTorch.
1 https://github.com/BYVoid/OpenCC.
2 https://github.com/fxsjy/jieba.
3 https://github.com/google/sentencepiece.

https://github.com/BYVoid/OpenCC
https://github.com/fxsjy/jieba
https://github.com/google/sentencepiece
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Table 1. Results (BLEU) on CCMT 2022 Th→Zh translation task with different
vocabulary sizes.

Merge operations 6k 8k 16k 24k

Thai vocabulary size 5,996 7,997 16,000 23,999

Chinese vocabulary size 5,989 7,984 15,943 23,881

BLEU 27.07 25.70 29.90 28.87

Exploration of Vocabulary Sizes. Previous work shows that the effect of
vocabulary size on translation quality is relatively small for high-resource set-
tings [7]. While for low-resource settings, reduced vocabulary size (14k→2k) may
benefit translation quality [24]. BPE [23] is a popular choice for open-vocabulary
translation, which has one hyper-parameter, the number of merge operations,
that determines the final vocabulary size. Following Sennrich and Zhang [24], we
explore the influence of different vocabulary sizes for the Thai→Chinese trans-
lation task.

We train 4 NMT models in Thai→Chinese translation direction with different
number of BPE merge operations, and the statistics of resulted vocabularies are
shown in Table 1. Specifically, we perform independent BPE [23] for Thai and
Chinese corpus with 4k/8k/16k/24k merge operations by SentencePiece [11].

For model settings, we adopted the Transformer with 6 encoder and decoder
layers, 256 as the embedding dimension and 4 times of embedding dimension as
the number of hidden units of the feed-forward layer, a dropout probability of
0.1. We used relative position [25] with a clipping distance k of 16. The number
of warm-up steps was set to 8k. We used a batch size of around 25k target tokens
achieved by gradient accumulation, and trained the models for 128 epochs.

For evaluation, we decode with a beam size of 4 with average of the last 5
checkpoints saved in an interval of 1, 500 training steps. We evaluate the trans-
lation quality by character BLEU with the SacreBLEU toolkit [20]. Results are
shown in Table 1.

Table 1 shows that: 1) in general, the use of more merge operations (16k/24k)
is better than fewer ones (6k/8k), and 2) the setting of 16k merge operations
leads to the best performance for the Thai→Chinese translation task, achieving
29.90 BLEU points.

Exploration of Hyper-parameter Settings of Model. Hyper-parameters
are often re-used across experiments. However, best practices may differ between
high-resource and low-resource settings. While the trend in high-resource settings
is using large and deep models, Nguyen and Chiang [19] use small models with
fewer layers for small datasets, and Sennrich and Zhang [24] show that aggressive
dropout is better for low-resource translation. In this paper, we also explore the
effects of model sizes (embedding dimension and hidden dimension) and dropout
probabilities on the performance.
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Table 2. Results (BLEU) on CCMT 2022 Zh→Th translation task with different model
settings.

Settings A B C D E

Embbeding size 256
√

384
√ √

512
√ √

Dropout 0.1
√ √ √

0.3
√ √

BLEU 6.35 15.02 5.30 24.42 7.73

We train 5 NMT models in Chinese→Thai translation direction with dif-
ferent training settings as shown in Table 2. We set the number of BPE merge
operations to 16k based on Table 1.

We experimented the Transformers with 6 encoder and decoder layers,
256/384/512 as the embedding dimension and 4 times of embedding dimension
as the number of hidden units of the feed-forward layer, dropout probabilities
of 0.1 or 0.3. We used relative position [25] with a clipping distance k was 16
and GeLU as the activation function. The number of warm-up steps was set
to 8k. We used a batch size of around 25k target tokens achieved by gradient
accumulation, and trained the models for 128 epochs.

For evaluation, we decode with a beam size of 4, and evaluate the translation
quality with the SacreBLEU toolkit [20] with the average of the last 5 checkpoints
saved in an interval of 1, 500 training steps. Results are shown in Table 2.

Table 2 shows that: 1) large embedding dimension is beneficial to transla-
tion performance, 2) aggressive dropout (0.3 in this paper) does not benefit the
task, and 3) Setting D with 512 as the embedding dimension and 0.1 as the
dropout probability is the best option, achieving a BLEU score of 24.42 in the
Chinese→Thai translation task.

3.3 Deep Transformers for Low-Resource Machine Translation

To obtain good translation quality, we adopt the setting D, but use 24 encoder
and decoder layers for better performance [2,8,13–15,17,28,30,31,33,36–38].
Parameters were initialized under the Lipschitz constraint [36] to ensure the con-
vergence. We used the dynamical batch size strategy which dynamically deter-
mines proper and efficient batch sizes during training [34].

We use the best experiment setting explored with the 6-layer models for
deeper models, because: 1) training shallow models are much faster than deep
models, and 2) adding new layers also introduces regularization, as dropout
modules are also introduced with these layers.

We train two models on the whole training set, which takes about 75 h to
train one model on a nvidia RTX3090 GPU. We averaged the last 20 checkpoints
saved with an interval of 1, 500 training steps.
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Table 3. Results on the CCMT 2022 Zh↔Th test set. The computation of BLEU
scores for the test set are different from that for Tables 1 and 2.

Th→Zh Zh→Th

BLEU4 / 9.06

BLEU5 4.85 /

We decode the CCMT 2022 Zh↔Th test set consisting of 10k sentences for
each direction with a beam size of 4. Results are shown in Table 3.

Table 3 shows that the CCMT 2022 Chinese-Thai low-resource translation
task is still a quite challenging task and there is a quite large space for improve-
ments. But to date, our study establishes the SOTA performance in the Chinese-
to-Thai translation in the constrained evaluation.

4 Related Work

As data scarcity is the main problem of low-resource machine translation, making
most of the existing data is a popular research direction to address this issue in
previous work. There are two specific types: 1) data augmentation, and 2) using
pre-trained language models.

Data augmentation is to add training data, normally through modifications
of existing data or the generation of new pseudo data. In machine translation,
typical data enhancement methods include back-translating external monolin-
gual data [5,22], obtaining pseudo bilingual data by modifying original bilingual
data, such as adding noise to training data [6,29] or by paraphrasing which takes
into the diversity of natural language expression into account [16], and mining
of bilingual sentence pairs from comparable corpus [32] (comparable corpus is a
text that is not fully translated from the source language to the target language
but contains with rich knowledge of bilingual contrast).

For the use of pre-trained language models in NMT, leveraging the target-side
language model is the most straightforward way to use monolingual data [26].
Other work [18,21] directly uses word embeddings pre-trained on monolingual
data to initialize the word embedding matrix of NMT models. More recently,
some studies leverage pre-trained models to initialize the model parameters of
the encoder of NMT [3,4,9].

Fore-mentioned studies require large amounts of auxiliary data. Low-resource
NMT without auxiliary data has received comparably less attention [19,24]. In
this work, we revisit this point with deep Transformers, and focus on techniques
to adapt deep Transformers to make most of low-resource parallel training data,
exploring the vocabulary sizes and model settings for NMT.

5 Conclusion

In this paper, we explore the influence of different settings for the use of deep
Transformers on the CCMT 2022 Zh↔Th low-resource translation task.
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We first test the effects of the number of BPE merge operations, embedding
dimension and dropout probabilities with 6-layer models, then adapt the best
setting to the 24-layer model, under the motivation that: 1) shallow models are
fast to train, and 2) increasing the number of layers also introduces regularization
for these added layers.
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Abstract. This paper presents the method used by Huawei Transla-
tion Services Center (HW-TSC) in the quality estimation (QE) task:
sentence-level post-editing effort estimation in the 18th China Confer-
ence on Machine Translation (CCMT) 2022. This method is based on
a predictor-estimator model. The predictor is an XLM-RoBERTa model
pre-trained on a large-scale parallel corpus and extracts features from
the source language text and machine-translated text. The estimator is
a fully connected layer that is used to regress the post-editing distance
scores using the extracted features. In the experiment, it is found that
pre-training the predictor with the semantic textual similarity (STS) task
in the parallel corpus and using augmented training data constructed by
different machine translation (MT) engines can improve the prediction
effect of the Human-targeted Translation Edit Rate (HTER) in both
Chinese-English and English-Chinese tasks.

Keywords: Translation quality estimation (QE) · Transformer ·
Pre-training

1 Introduction

The off-line technical estimation task of the 18th China Conference on Machine
Translation (CCMT) includes a sentence-level Chinese-English and English-
Chinese machine translation (MT) quality estimation (QE) task, which aims to
measure the MT quality by estimating the Human-targeted Translation Edit
Rate (HTER) of the translation without reference translations. This paper
describes in detail the data processing strategies, technical methods, and model
structure used by HW-TSC’s Text Machine Translation Laboratory in this esti-
mation task, as well as the performance of the used models in the Chinese-English
and English-Chinese MT QE tasks.

2 Estimation System

In this sentence-level QE task, HW-TSC uses the predictor-estimator structure
proposed in the early research [1]. As shown in Fig. 1, the language model XLM-
RoBERTaBase [2] (XLM-RB) is used as the predictor (L = 12, H = 768, A
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
T. Xiao and J. Pino (Eds.): CCMT 2022, CCIS 1671, pp. 127–134, 2022.
https://doi.org/10.1007/978-981-19-7960-6_13
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= 12; Total Parameters = 288M) to extract source features from the source
text and target features from the target text. After that, average pooling is
applied to the extracted features of each sentence to obtain the source sentence
features and target sentence features. The source sentence feature (SF), target
sentence feature (TF), difference between the SF and TF (diff), and dot product
of the source and target text features (prob) are concatenated to obtain a global
feature. The global feature is sent to an estimator constructed by two fully
connected layers (FFNs), which maps the feature to sample label space and
performs regression prediction on the HTER score.

The final system submitted uses the ensemble model policy that uses the
model with Dropout to average multiple predicted results, thereby improving
the model robustness and significantly improving accuracy of the system in the
test set. The ensemble models are:

1) Models that achieve the best perform in the development set during multiple
training processes;

2) Best models selected from step 1) based on the development set, with random
Dropout enabled.

Fig. 1. Predictor-estimator based QE model for estimating sentence-level HTER score
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3 Data

Training Data

1) In the English-Chinese task, the CCMT 2022 sentence-level translation QE
task provides 3043 source sentences and 14,789 translations and correspond-
ing editing results.

2) In the Chinese-English task, the CCMT 2022 sentence-level translation QE
task provides 2503 source sentences and 10,070 translations and correspond-
ing edited translations.

3) Google, Baidu, Youdao, and Huawei translation engines are used separately
to translate the source sentences provided by the CCMT 2022 sentence-level
translation QE task. The obtained translations generate additional training
data together with the provided edited translations.

4) In addition to the data provided in the QE task, HW-TSC also uses the Chi-
nese corpora provided in the English-Chinese, Chinese-English, Mongolian-
Chinese, Uyghur-Chinese, and Tibetan-Chinese tasks of the CCMT 2022
bilingual translation task, as well as the English-Chinese and Chinese-English
parallel corpora.

Development Data

1) In the English-Chinese task, the CCMT 2022 sentence-level translation QE
task provides 2826 (1381 + 1445) source sentences, translations, and corre-
sponding edited translations.

2) In the Chinese-English task, the CCMT 2022 sentence-level translation QE
task provides 2528 (1143 + 1385) source sentences, translations, and corre-
sponding edited translations.

Test Data
The off-line test set of the CCMT 2022 provides 10,000 parallel sentence pairs

for the English-Chinese and Chinese-English sentence-level translation QE tasks
separately.

4 Method

4.1 System Training

The model system used by HW-TSC is trained in three steps:

1) Chinese language model training. Referring to the previous research [3], in this
paper, a masked language model (MLM) is trained on a large-scale Chinese
corpus. This generates a model for extracting Chinese text features, which
is used as a center language encoder (CLE) for the next-step training. From
the word tokens of the Chinese sentences, one token is randomly selected and
masked and then sent to the Transformer Encode. The obtained word feature
vector is sent to a fully connected classification model, and the model predicts
the masked word token, as shown in Fig. 2a.
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2) Predictor pre-training. According to an early work [4], in this paper, the
XLMRB model proposed in Sect. 1 is trained with the semantic textual sim-
ilarity (STS) task on English-Chinese and Chinese-English parallel corpora.
On the parallel corpora, the XLM-RB obtains feature vectors of the Chinese
and English sentences separately, and the CLE model obtains the Chinese
sentence feature vector. The mean squared error (MSE) loss function is used
for separate supervised training of these vectors, making the sentence feature
vectors obtained by the XLM-RB highly similar, as shown in Fig. 2b.

3) Translation QE model training. The XLM-RB trained in step 2 is used as the
predictor to train the translation QE model on the translation QE training
set.

Fig. 2. (a): Masked language model, (b): Schematic diagram of the parallel corpus
semantic textual similarity training task

4.2 System Test

As described in Sect. 1, the ensemble model policy is used in the final system
submitted. In this policy, multiple models are used to separately predict the
HTER scores of the sentences in the test set, and an average value of the HTER
scores of each sentence is used as a score of the ensemble policy.

5 Experiment

5.1 System Environment

OS: Ubuntu 18.04.5 LTS
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Deep learning framework: Pytorch 1.8.0
CPU: Intel(R) Xeon(R) Gold 6278C CPU @ 2.60GHz
Memory: 128 GB
GPU: Nvidia Tesla T4
GPU Memory: 16 GB

5.2 Experiment Settings

The system used by HW-TSC is an English-Chinese and Chinese-English multi-
task system, and the same system trained is used to obtain the experiment
results.

Training Process

Step-1 training 1 described in Sect. 4: In this paper, the sbert-chinese-
general-v2 [5] model provided by Hugging Face is used as the pre-trained model
to train the MLM on the corpus of 18 million Chinese sentences provided in
the English-Chinese, Chinese-English, Mongolian-Chinese, Uyghur-Chinese, and
Tibetan-Chinese tasks of the CCMT 2022 bilingual translation task. The pre-
trained model sbert-chinese-general-v2 is obtained by training the BERT model
of the bert-base-chinese [6] version provided by Hugging Face on SimCLUE, a
dataset with millions of semantically similar texts.
Step-2 training described in Sect. 4: In this paper, the xlm-roberta-base [7]
provided by Hugging Face is used as the pre-trained model for STS task training
on the bilingual parallel corpus of 9 million of English-Chinese and Chinese-
English sentences provided in the CCMT 2022 translation QE task under the
sentence-transformers [8] framework.
Step-3 training described in Sect. 4: In this paper, the English-Chinese and
Chinese-English training sets of the CCMT 2022 sentence-level translation QE
task are used for training based on the system structure described in Sect. 2.

Training parameters used in the three steps are shown in Table 1.

Table 1. Training parameter settings.

Step Batch size Optimizer Learning rate (lr) lr scheduler

1 16 Adam1 1.0e−4 –

2 8 Adam 5.0e−5 –

3 8 Adam 2.5e−5 Cosine Annealing Warm2

Note: 1) Adam: reference [9]. 2) Cosine Annealing Warm: reference [10].

Test Process
As described in this section, the model system used by HW-TSC is trained for 9
times. Top 2 models are selected based on the development set, and Dropout 0.1
is applied to the Top 1 model for three test tasks. A total of 6 results are obtained,
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and the average value of the 6 results is used as the result of the ensemble policy.
Due to the limited amount of training data, to prevent overfitting, a model
with a small Dropout value is used to predict the test set results, and then an
average value is used. In this way, system robustness and accuracy can both be
significantly improved. During the training, the maximum epoch is set to 10.
In addition, early stopping of training is enabled: During the training, if the
Pearson’s correlation coefficient of the validation set is not among the Top 3 for
5 consecutive times, the training is halted immediately.

Comparison training is also performed in the experiment:

1) The XLM-RB model is used to train the model system directly following Step
3 by using the pre-trained model provided by Hugging Face without Step 1
and Step 2 and without using the augmented data produced by Google, Baidu,
Youdao, and Huawei translation engines.

2) The Step-3 model training does not use the augmented data (AD) produced
by Google, Baidu, Youdao, and Huawei translation engines.

5.3 Experiment Result

In this estimation task, the estimation metrics, mainly the Pearson’s correlation
coefficient, are automatically measured. Table 2 show the model system perfor-
mance on the development set.

After comparison, the experiment results of the English-Chinese MT QE task
show that:

1) The model pre-trained with the STS task can improve the Pearson’s cor-
relation efficient by 8.5% on the development set and by 0.5% on the test
set.

2) The model pre-trained using the augmented training data generated by mul-
tiple translation engines can improve the Pearson’s correlation efficient by
0.7% on the development set and by 0.1% on the test set.

3) The ensemble model policy that uses the model with Dropout to obtain the
average value of multiple predicted results can improve the Pearson’s corre-
lation efficient by 7.3% on the development set and by 1% on the test set.

After comparison, the experiment results of the Chinese-English MT QE task
show that:

1) The model pre-trained with the STS task can improve the Pearson’s correla-
tion efficient by 9% on the development set and by 2% on the test set.

2) The model pre-trained using the augmented training data generated by mul-
tiple translation engines can improve the Pearson’s correlation efficient by
0.5% on the development set and by 1% on the test set.

3) The ensemble model policy that uses the model with Dropout to obtain the
average value of multiple predicted results can improve the Pearson’s corre-
lation efficient by 5% on the development set and by 1.5% on the test set.
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Table 2. Pearson’s correlation between prediction of our different system and labels
on development and test data.

Language Model Dev set Test set

w/o STS1 & w/o AD 0.4561 0.3549

en-zh w/o AD2 0.5413 0.3597

Top 13 0.5487 0.3607

Ensemble4 0.6211 0.3704

w/o STS & w/o AD 0.4663 0.4527

zh-en w/o AD 0.5527 0.4741

Top 1 0.5574 0.4850

Ensemble 0.6008 0.5002

Note: 1) w/o STS: The model is trained directly fol-
lowing Step 3 without Step 1 and Step 2. 2) w/o AD:
The Step-3 training does not use augmented data. 3)
Top 1: The best single model with STS and AD. 4)
Ensemble: The policy used by HW-TSC’s system.

6 Conclusion

This paper presents HW-TSC’s participation in the MT QE task in the 18th
China Conference on Machine Translation. In the experiment, the pre-trained
language model XLM-RoBERTa is used as the predictor to extract features
from the source text and target text. The estimator concatenates the sentence
features of the source text and target text after the minus and dot product
operations, and performs regression fitting on the HTER scores through the
fully connected layer. About the QE training data, the system used by HW-
TSC uses the augmented data produced by Google, Baidu, Youdao, and Huawei
MT engines. The experiment results show that in the MT QE task, pre-training
the predictor with the STS task, using the augmented data produced by multiple
translation engines, and adopting the ensemble model policy that uses a model
with dropout to average the values of multiple predicted results can improve the
accuracy of MT QE results on both the development set and test set. In the
future experiment, the model structure of the estimator can be designed and
tested in a more refined and effective manner. In addition, the future research
and experiment will focus on how to better use the source text and target text
for data augmentation on the limited QE data set, so as to generate QE data
more similar to the real-world data, as proposed in an early work [11], to further
enhance the QE result.
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Abstract. The purpose of this paper is to introduce the specific situ-
ation in which Guangxi University participated in the 18th China Con-
ference on Machine Translation (CCMT 2022) evaluation tasks. We sub-
mitted the results of two bilingual machine translation (MT) evalua-
tion tasks in CCMT 2022. One is Chinese-English bilingual MT tasks
from the news field, the other is Chinese-Thai bilingual MT tasks in low
resource languages. Our system is based on Transformer model with sev-
eral effective data augmentation strategies which are adopted to improve
the quality of translation. Experiments show that data augmentation
methods have a good impact on the baseline system and aim to enhance
the robustness of the model.

Keywords: Machine translation · CCMT 2022 · Transformer · Data
augmentation

1 Introduction

In the context of the rapid development of deep learning, neural machine trans-
lation (NMT) has attracted more and more attention from the academic commu-
nity. We participated in four directions of machine translation evaluation tasks.
And we built our translation systems based on Google’s Transformer [11] model
in all directions.

The reason why we selected the Transformer model is that it solved the
problem of long-distance information loss. In addition, we applied BPE algo-
rithm which Sennrich [9] proposed in 2016 to word-segmented texts to deal with
the out-of-vocabulary (OOV) problem. Finally, we used several data augmenta-
tion strategies to generate pseudo data, enrich the diversity of data, and make
up for the lack of training data. Data augmentation is defined by many authors
as a solution to a data distribution mismatch problem [13]. In short, data aug-
mentation has been used in low resource tasks due to the requirement of large
amounts of training data.

The remaining part of the paper proceeds as follows. Chapter Two briefly
describes the Transformer model. After that, Chapter Three is concerned with
the data augmentation methodologies used for our model. Chapter Four then
describes the experimental settings and discusses the results our model obtained.
This paper ends with a conclusion and future work.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
T. Xiao and J. Pino (Eds.): CCMT 2022, CCIS 1671, pp. 135–142, 2022.
https://doi.org/10.1007/978-981-19-7960-6_14
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2 System Architecture

In CCMT 2022 translation evaluation tasks, we adopted our neural machine
translation model based on the Transformer model. The Transformer model
adapts the encoder-decoder architecture which is one of the most popular archi-
tectures. In recent years, the attention mechanism has been widely used to solve
the insufficient dependency when modeling long sequences. Meanwhile, the atten-
tion mechanism is the most significant part of the Transformer model. And it
also is an important reason why Transformer has achieved great success in many
fields.

The decoder and encoder of Transformer have a similar structure consisting of
n identical layers. Each layer contains two main modules: an attention mechanism
module and a feed-forward neural network module. Scaled dot-product attention
mechanism performs the following operations on the input query, key, and value
as follows:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

where
√

dk is the dimension of the hidden layer state. Based on scaled dot-
product attention, the calculation method of the multi-head attention mecha-
nism can be expressed as:

MultiHead(Q,K, V ) = Concat(head1, ..., headh)WO (2)

where headi = Attention(QWQ
i ,KWK

i , V WV
i ). Multi-head attention enriches

the representation of semantic information. When calculating the attention score,
the input is divided into multiple parts on average, then each part is calculated
as attention score independently. Finally, all the obtained attention scores are
concatenated together as the output of the multi-head attention layer. After
calculating the self-attention, the following feed-forward neural network is used
to transform the input.

The residual connection [2] is also important in Transformer architecture. It
can prevent the problem of vanishing gradients and increase the network depth
further. The residual connection is employed around each of the two sub-layers,
followed by layer normalization.

3 Methods

3.1 Data Augmentation

Data augmentation is an important machine learning method nowadays. It is
based on the existing training sample data to generate more training data. Its
purpose is to make the expanded training data as close to the real distributed
data as possible and improve the translation quality further. In addition, data
augmentation can force the model to learn more robust features and effectively
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improve the generalization ability of the model. Figure 1 shows the process of
generating pseudo parallel corpus. In CCMT 2022, we use the data augmentation
methods as follows.

Swap. Randomly select two words in the target sentence and exchange their
order until words of α · n sentence length are exchanged.

BPE-Dropout. BPE-Dropout [6] algorithm was proposed in 2020 by Provilkov
et al. BPE-Dropout stochastically corrupts the segmentation procedure of BPE,
leading to different subword segmentation with the same BPE vocabulary.

Synonym Replacement. Synonym Replacement is to replace a word with its
synonym. And this word is randomly selected in the target sentence. We believe
that synonym replacement can enrich the diversity of training data.

Word-Replacement. Use mgiza++1 toolkit to obtain bi-directional alignment
lexicon from the training data. α · t source-target aligned words are selected at
random and replaced by random entries in the bi-directional alignment lexicon.

Back Translation. Back Translation [8] is the process of translating the target
language into the source language. On the one hand, it can augment the pseudo
parallel pairs. On the other hand, it can improve the generalization ability of
the model.

Fine Tuning. Fine tuning [1] is an effective method which can bring improve-
ments to neural network. Our translation systems trained with data augmenta-
tion method were fine-tuned on the training set.

3.2 CE Task and EC Task

In Chinese-English machine translation tasks, our baseline system was developed
in base Transformer model. Besides, we built two contrast systems which both
use data augmentation strategies. One contrast system made the use of word-
replacement operation. The other applied several data augmentation methods
to enhance the performance of the model.

Specifically, we generated 1M synthetic data by the word-replacement opera-
tion. Word-Replacement makes use of statistical machine translation to generate
a bilingual aligned lexicon. Sánchez-Cartagena et al. [7] used each of the multi-
task learning data augmentation auxiliary tasks to stress the fact that the aug-
mented data. In addition, we mixed several data augmentation methods, such
as swap, insert, delete, and so on. We augmented 4M pseudo parallel data by
using this method. The paper of [12] motivates this idea. The data and model
settings of the CE task and EC task are consistent.
1 https://github.com/moses-smt/mgiza.

https://github.com/moses-smt/mgiza
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Fig. 1. Overall flow chart for data augmentation.

3.3 CThai Task and ThaiC Task

In Chinese-Thai low resource translation tasks, our systems applied data aug-
mentation methods which included back translation and swap to improve the
performance of translation. We used Tencent AI Lab Embedding Corpus for
Chinese Words and Phrases2 [10] to do synonym replacement. At the same with
Chinese-English translation tasks, fine tuning was used in Chinese-Thai data
augmentation systems.

For back translation, we applied only for the Thai-Chinese direction. And we
conducted experiments to evaluate the impact of fine tuning technology on the
model.

4 Experiments

4.1 System Settings

We use fairseq3 [3] open-source framework to implement our translation systems.
The toolkit fairseq was implemented in 2019. In bilingual Chinese-English direc-
tions, our Transformer model includes six layers for the encoder and six layers
for the decoder, respectively. Each layer has the size of 512 hidden units. We also
set the size of embedding layers to 512. The dimension of the feed-forward layer
is 2048. And the multi-head self-attention mechanism has 8 heads. However, we
set the encoder layer number and decoder layer number to 5 in the low resource
translation tasks. The multi-head self-attention mechanism only has 4 heads.
Table 1 shows the main parameters of our Transformer model. The parameter

2 https://ai.tencent.com/ailab/nlp/zh/embedding.html.
3 https://github.com/pytorch/fairseq.

https://ai.tencent.com/ailab/nlp/zh/embedding.html
https://github.com/pytorch/fairseq
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patience stands for early cease training if valid performance doesn’t improve for
N consecutive validation runs.

Table 1. Model Settings

Parameter Chinese-English Chinese-Thai

Embedding Size 512 512

Encoder Layer 6 5

Decoder Layer 6 5

Dropout 0.3 0.3

Encoder Attention Heads 8 4

Decoder Attention Heads 8 4

Warm-up Steps 16000 8000

Patience 20 6

In the low resource translation tasks, the parallel corpus is limited so that
we selected a slightly smaller Transformer model. Specifically, we apply layer
normalization before each encoder block. The same goes for each decoder block.
A major advantage of these settings is to prevent the model from over-fitting
during training.

4.2 Data Pre-processing

As we all know, data pre-processing is an especially important part of machine
translation. Data pre-processing is also the first step to solving practical prob-
lems by deep learning. It mainly includes duplicate removal, symbol normal-
ization, word segmentation, and so on. Next, we will introduce our data pre-
processing steps.

In the CE and EC task, the evaluation organizers provide about 9M Chinese-
English parallel corpus and 11M Chinese monolingual corpus. We only use the
NEU2017 corpus, the Datum2015, and the Datum2017 as the training set in
Chinese-English MT tasks in our submitted systems. The test set consists of
newstest2019.

In the CThai low resource translation task, the only bilingual parallel corpus
is released. Therefore, we sample 195K randomly as the training set. The rest of
the parallel data is divided into validation set and test set in a ratio of 2:3.

After splitting the training set, validation set, and test set, we begin to pro-
cess the sentences. For English sentences, we tokenize the English word by the
space first. Then, we need to learn the most suitable case form for English words
due to the problems of different cases of the same word. For Thai sentences, we
use pythainlp4 to do word segmentation. It is a useful toolkit for us to split the
Thai sentences. Finally, we use jieba5 for Chinese sentences to tokenize the Chi-
4 https://github.com/PyThaiNLP/pythainlp.
5 https://github.com/fxsjy/jieba.

https://github.com/PyThaiNLP/pythainlp
https://github.com/fxsjy/jieba
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nese texts, whose advantages are fast and high accuracy compared with other
Chinese word segmentation tools.

In all languages, we use Moses scripts6 to normalize the texts from digits,
punctuations and special symbols. Additionally, we use Subword-NMT7 toolkit
to learn and apply Sennrich’s BPE from the tokenized texts. Lastly, those sen-
tence pairs are removed which are less than 5 BPE tokens or more than 100
BPE tokens in the training set. We completed all our experiments on a single
RTX3090.

4.3 Experimental Results

BLEU [4] is one of the most commonly used automatic evaluation methods for
machine translation. We use sacrebleu8 [5] to calculate the score of BLEU for
our submitted results in CCMT2022.

In the CE translation evaluation task, we submit three translation systems,
which include one baseline system and two contrast systems. Chinese and English
do not share the alphabet, so we learn 16K BPE operations separately on Chi-
nese and English texts by using Subword-NMT toolkit. Mixture DA is a data
augmentation method that performs random swap, random insert, and random
delete of words in sentences. Table 2 reports the performance of our CE trans-
lation systems. We can infer that data augmentation is effective due to the
increment of 1.04 BLEU points in the validation set and 0.64 BLEU points in
the test set. And we find that it is obvious that data augmentation methods
increase the accuracy of the model.

Table 2. The BLEU scores of CE task

System Valid set Test set

Baseline 19.73 17.56

Mixture DA 19.67 16.66

Word-Replacement 20.77 18.20

In the EC translation evaluation task, we also submit three translation sys-
tems. It indicates the results of our submitted translation systems in Table 3.
The methods of EC translation systems used are exactly the same as the CE
task. We know clearly that word-replacement receives the best results among all
EC translation systems from Table 3.

In the CThai translation evaluation task, we find that BPE-Dropout algo-
rithm does not perform well on the low resource dataset through experiments.
Then, we use synonym replacement method to generate Chinese-Thai pairs.

6 https://github.com/moses-smt/mosesdecoder/tree/master/scripts.
7 https://github.com/rsennrich/subword-nmt.
8 https://github.com/mjpost/sacrebleu.

https://github.com/moses-smt/mosesdecoder/tree/master/scripts
https://github.com/rsennrich/subword-nmt
https://github.com/mjpost/sacrebleu
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Table 3. The BLEU scores of EC task

System Valid set Test set

Baseline 14.49 23.20

Mixture DA 16.49 25.10

Word-Replacement 18.42 26.26

Table 4 reports the results of our translation systems. Synonym Replacement
method obtains an obvious improvement. And it can perform better when it
combines with fine tuning method.

Table 4. The BLEU scores of CThai task

System Valid set Test set

Baseline 11.63 11.97

Synonym Replacement 14.39 15.18

Synonym Replacement + Fine Tuning 15.12 15.64

In the ThaiC translation evaluation task, four translation systems are sub-
mitted. As shown in Table 5, we discover that reverse has a positive effect on the
baseline system. In addition, it does not work for the model to only use back
translation. When we add fine tuning to back translation method, the model
obtains a better result. What’s more, combining swap and fine tuning realizes
the best performance in the ThaiC task.

Table 5. The BLEU scores of ThaiC task

System Valid set Test set

Baseline 12.13 16.27

Back translation 10.95 15.02

Back translation + Fine tuning 12.87 17.21

Swap + Fine tuning 14.00 18.28

5 Conclusion

In this paper, we described our translation systems in four translation evalua-
tion tasks including Chinese to English, English to Chinese, Chinese to Thai,
and Thai to Chinese. In all directions, our experiments proved that our trans-
lation systems have been improved on data augmentation methods. Our data
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augmentation strategies bring good performance to the baseline system in these
translation evaluation tasks. In the future, we expect that we explore more data
augmentation approaches, especially in some fields where parallel data is scarce.
And we hope that our proposed data enhancement methods can be applied to
different neural network models and datasets.
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Abstract. Quality Estimation is a task aiming to estimate the quality
of translations without relying on any references. This paper describes
our submission for CCMT 2022 quality estimation sentence-level task for
English-to-Chinese (EN-ZH). We follow the DirectQE framework, whose
target is bridging the gap between pre-training on parallel data and fine-
tuning on QE data. We further combine DirectQE with the pre-trained
language model XLM-RoBERTa (XLM-R) which achieves outstanding
success in many NLP tasks in order to improve performance. With the
purpose of better utilizing parallel data, several types of pseudo data are
employed in our method as well. In addition, we also ensemble several
models to promote the final results.

Keywords: Quality estimation · Pre-trained language model ·
DirectQE

1 Introduction

Machine translation quality estimation (QE) is the task of providing an estimate
of how good or reliable the MT is without access to reference translations [15].
QE plays an important role in many real applications of machine translation. A
representative example is machine translation post-editing (PE). Although the
quality of machine translation for many language pairs has improved, most of the
machine translations are still far from publishable quality. Therefore, a common
practice for including machine translation in the workflow is to use machine
translations as raw versions to be further post-edited by human translators [9].
However, post-editing low-quality machine translations spends more effort than
translating from scratch [4] when QE can further improve post-editing workflows
by offering more informative labels including, potentially, not only the words that
are incorrect but also the types of errors that need correction [15].

Traditional QE methods make use of some hand-craft features, which are
time-consuming and expensive to get [10]. Later, researchers try to generate
automatic neural features by applying neural networks [1,14]. However, there
are still serious problems as to the fact that QE data is scarce which limits the
improvement of QE models. The Predictor-Estimator framework proposed by
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
T. Xiao and J. Pino (Eds.): CCMT 2022, CCIS 1671, pp. 143–150, 2022.
https://doi.org/10.1007/978-981-19-7960-6_15
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Kim et al. [7] is devoted to addressing this problem, and under this framework,
bilingual knowledge can be transferred from parallel data to QE tasks. The
remaining drawback is that data distribution between parallel data and QE data
differs. Cui et al. [2] propose the DirectQE method in order to bridge the gaps
between pre-training on parallel data and fine-tuning on QE data. Nowadays,
large-scale pre-trained language models have been widely applied in QE models
[8], but DirectQE is not corporated with the pre-trained model which gives us
insight into combining the two well-performing models.

This paper introduces our sentence-level quality estimation submission for
CCMT 2022 in detail. We submit a model combining DirectQE with the pre-
trained language model XLM-R for the first time. Therefore, on the one hand,
the gaps between parallel data and QE data are bridged. On the other hand, the
pre-trained models are well utilized in QE models. Furthermore, we try different
pseudo data strategies from several aspects, including data generation and data
tokenization which help us make full use of the parallel data consequently. Even-
tually, basic averaging ensemble and neural ensemble are used to get a better
result.

2 Methods

2.1 Existing Methods

DirectQE. The DirectQE framework mainly contains two parts, the generator
which is trained on parallel data to generate pseudo QE data, and the detector
which can be pre-trained and fine-tuned with the pseudo data and real QE data,
respectively, with the same object.

The generator of DirectQE is trained on the masked language model con-
ditioned on source X. During the training procedure, for each parallel pair X,
Y , DirectQE randomly masks 15% tokens in Y and tries to recover them. Then
DirectQE predicts these masked tokens by sampling strategies according to the
generated probability in the procedure of generating pseudo data. The annotat-
ing strategy is simple, it annotates the generated token as ‘BAD’ if it is different
from the original one and the sentence-level score is the ratio of ‘BAD’ tokens.

The detector jointly predicts the word-level tags and sentence-level scores. It
pre-trains on the pseudo QE data first and then fine-tunes on the real QE data
with the same training object.

DirectQE obtained the state-of-art results when it was published.

QE BERT. QE BERT [8] uses the pre-trained model BERT (multilingual) [3]
for translation quality estimation and contains two steps which are pretraining
and fine-tuning separately. QE BERT further pre-trains BERT on parallel data
on only the masked language model task and uses multi-task learning. In addi-
tion, the QE method based on pre-trained cross-lingual language model XLM
[12] was proposed in [6].
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2.2 Proposed Methods

Our proposed method contains two stages: generator and detector. The generator
can be subdivided into two types, including a Transformer-based generator and
an NMT-based generator. Figure 1 and Fig. 2 show the complete procedure of
our methods with the Transformer-based generator and NMT-based generator
separately.

Generator. The generator is trained to generate pseudo data with the use
of parallel data. DirectQE adopts Transformer [16] as a generator. It functions
as a word-level rewriter and is used to produce a pseudo translation with one-
to-one correspondences according to the reference. In our method, we do not
only adopt Transformer but also adopt a neural machine translation (NMT)
as a generator, called Transformer-based generator and NMT-based generator
separately. Furthermore, we try to use a Transformer-based generator to generate
pseudo data at token-level and at bpe-level to eliminate the bias coming from
the aspect of word tokenization.

Fig. 1. Complete procedure with Transformer-based generator

Transformer-Based Generator. This part is similar to the generator in the orig-
inal version of DirectQE. Given a parallel sentence pair, we randomly replace
some tokens in reference with a special tag [MASK] and force the Transfomer-
based generator to recover the masked tokens. Pseudo data is annotated accord-
ing to the comparison between recovered tokens and their standard tokens. Dif-
ferent from DirectQE, we sample the tokens according to the token generation
probability to better determine the location where the errors in translations most
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likely occurred. Therefore, many recovered tokens may just be the same as the
standard tokens causing that actual replacement ratio far below the mask ratio.

Fig. 2. Complete procedure with NMT-based generator

NMT-Based Generator. Given the parallel data, we first train a standard NMT
model and use the NMT to generate target translations from the source sen-
tences. After getting the translations, pseudo tags and scores are calculated by
TERCOM [5] tool. Because the translations may be significantly different from
the reference ones, the NMT-based generator is difficult to get trustworthy labels.
However, this method can generate pseudo data whose distribution is consistent
with real QE data that may complement the drawback of pseudo data generated
from the transformer-based generator.

Detector. The detector contains two stages: pre-training and fine-tuning.
Pseudo QE data generated by the generator from parallel data is used for pre-
training. The pretraining task aims to jointly predict the tags O′ at the word level
while predicting the scores q′ at the sentence level. The pretraining objectives
of word-level Jw and sentence-level Js are just the same as DirectQE:

Jw

(
X,Y′, o′

j

)
=

|O′|∑

j=1

log P
(
o′
j | X,Y′; θ

)
(1)

Js (X,Y′, q′) = log P (q′ | X,Y′; θ) (2)

The object of the fine-tuning procedure is a little bit different from pre-
training for the reason that word-level labels are not provided in real QE data.
Therefore, only sentence-level scores are predicted at the stage of fine-tuning.
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In DirectQE, the detector encodes the source sentence with self-attention to
obtain hidden representations and predicts word-level tags from the last encoder
layer at the target side as well as sentence-level scores. Different from this, the
detector in our method uses the XLM-R pre-trained language model as a basic
framework, while the transformer is used in DirectQE.

We concatenate the source sentence with the pseudo target sentence as a
joint input. For sentence-level scores, the standard method of XLM-R uses the
token corresponding to the first special token [CLS] of the last layer, and we
instead combine the average representations of all the layers with the last layer
representation as a mixed feature to predict the scores.

3 Experiments

In this section, we will display the details of our experiments, including the
dataset, hyper-parameters, the performance of single models, and so on.

3.1 Dataset

QE Dataset. All QE triplets (SRC, MT, HTER) that we use come from the
CCMT 2022 QE task, and the language direction EN-ZH that we participate in
consists of 14789 training data (TRAIN) and 2826 development data (DEV).

Parallel Dataset. Parallel data is transformed into pseudo data in the form of
QE triplets to pre-train the XLM-R model. We use an additional 10,000,000 out
of all 20,305,269 parallel sentences from the WMT 2020 QE task and actually
do not make use of parallel data provided by the CCMT QE task.

3.2 Settings

Metrics. The main metric of the quality estimation sentence-level task is Pear-
son’s Correlation Coefficient. Mean Absolute Error (MAE) and Root Mean
Squared Error(RMSE) will be considered as metrics as well.

Hyper-parameters. For the transformer-based generator, we set the mask
ratio to 45% and the average HTER score of the pseudo data is approximately
16% - 18%. Except for the above, other sets are the same as the original DirectQE
model. For the NMT-based generator, an inverse sqrt learning rate scheduler is
used to adjust the training learning rate and set dropout to 0.3. As to the part
of the detector, the XLM-R-large is used, and all the parameters are updated.

Tokenize. We first use jieba to tokenize the Chinese dataset. In the step of the
generator, we use BPE [13] to tokenize both the source and target sentences,
while in the step of detector SentencePiece [11] is used to tokenize the sentences
for XLM-R model. The step of BPE is set to 30,000, and we use all tokens after
tokenization.
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3.3 Single Model Results

The results of single models are shown in Table 1. Pure-XLMR refers to the
model that makes no use of both generator and parallel data but only uses real
QE data. All models that, with the help of parallel data, use 3,500,000 parallel
data expect that Transformed-based (10 million) uses 10 million parallel data.
Similarly, all models train the model on the token level, but Transformed-based
(bpe level) trains on the bpe level.

Table 1. Single model results of the CCMT 2022.

Method Pearson MAE RMSE

Pure-XLMR 0.5544 0.0917 0.1367

NMT-based 0.5624 0.0901 0.1349

Transformed-based 0.5969 0.0871 0.1320

Transformed-based (10 million) 0.6138 0.0854 0.1297

Transformed-based (bpe level) 0.5847 0.0891 0.1340

It is clear that the Pure-XLMR model without parallel knowledge does not
get better performance compared to other models. Meanwhile, models combining
DirectQE with pre-trained language model XLM-R perform best, and with more
data and with token level can get better results.

3.4 Ensemble

We try two different ensemble methods at the sentence level. The averaging
ensemble is the simplest ensemble method that averages all the results from
model outputs. Neural ensemble refers to that we gather all the HTERs of both
training datasets and development datasets from all of the models described
above. Then we train a simple neural network model that learns to use these
HTER values to predict the golden HTER values.

The ensemble results are shown in Table 2, and we can see that the neural
ensemble result slightly outperforms the other one at the sentence level.

Table 2. Ensemble model results of the CCMT 2022.

Ensemble method Pearson

Averaging 0.6219

Neural result 0.6294
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3.5 Analysis

In this section, we will discuss the influence of the mask ratio in the pseudo
data generation procedure. We set the mask ratio to 15%, 30%, 45%, 45%*2 and
45%*3. The 45%*2 means two 45% pseudo datasets are concatenated as one
pseudo data to avoid the bad effects of the high mask ratio, meanwhile, 45%*3
is similar. The corresponding average HTERs of the pseudo data are about 5%,
10%, 16%, 27%, and 36% separately. The results are shown in Fig. 3.

As we can see, the best result corresponds to 16% average HTER. Coinciden-
tally, the average HTER of the real QE data is approximately 16% as well. The
average HTERs above that get the results of a slight decrease and the average
HTERs below that decline more obviously.

Fig. 3. QE performances according to different average HTERs

4 Conclusion

This paper describes our submissions for the CCMT 2022 Quality Estima-
tion sentence-level task. Our systems are based on DirectQE architecture and
built upon the Fairseq framework. To leverage the successful large-scale pre-
trained language model, we make a combination of the high-performing Direc-
tQE method and XLM-R pre-trained model for the first time. We also take
advantage of various forms of pseudo data to better make use of parallel data
for further improvements at the same time. Experiments show that the proposed
method is effective. Eventually, we use base and neural ensemble methods to get
our final results.
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Abstract. This paper introduces technical details of Thai-to-Chinese
neural machine translation system of Institute of Scientific and Technical
Information of China (ISTIC) for the 18th China Conference on Machine
Translation (CCMT’ 2022). ISTIC participated in a low resource eval-
uation task: Thai-to-Chinese MT task. The paper mainly illuminates
its system framework based on Transformer, data preprocessing meth-
ods and some strategies adopted in this system. In addition, the paper
evaluates the system performance under different methods.
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1 Introduction

ISTIC participated in a low resource evaluation task: Thai-to-Chinese MT task.
In this evaluation, our team adopted the Google Transformer architecture as
the basis of our system. We collected data from three different sources to form
the training set, which were the data released by the evaluation organization,
the pseudo parallel corpus and the external data of self-built Thailand-Chinese
dictionary and bilingual parallel corpus. The monolingual data released by the
evaluation organizer of CCMT’ 2021 was filtered to construct the pseudo parallel
corpus through the back-translation method, the pseudo parallel corpus and the
original given bilingual parallel corpus were used together as the training set of
our neural machine translation system. Since the scale of given data was too
small, the external data of self-built Thailand-Chinese dictionary and bilingual
parallel corpus were introduced into training set. In terms of data pre-processing,
we adopted general methods and specific methods for the given data, which
mainly included filtering special characters, removing duplicate sentences, and
bilingual tokenization. In the construction of the system model, we mainly used
the context-aware system method, which took the surrounding sentences as the
context and employs an additional neural network to encode the context. We
adopted the method of model averaging and ensemble to get the final translation
result and removed the spaces between the words of results and finally submitted
XML format result to the evaluation organization.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
T. Xiao and J. Pino (Eds.): CCMT 2022, CCIS 1671, pp. 151–160, 2022.
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The structure of this paper is as follows: the second part introduces our tech-
nical architecture of the machine translation system in this evaluation task; the
third part explains the methods used in this evaluation task; the fourth part
describes the core process, parameter settings, data pre-processing and experi-
ments results.

2 System Architecture

Figure 1 shows the overall flow chart of our neural machine translation system
in this evaluation which includes data pre-processing, data set partition, model
training, model inference, and data post-processing.

Fig. 1. Overall flow chart for machine
translation tasks.

Fig. 2. Transformer model structure
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2.1 Baseline System

The baseline system we adopted in this evaluation task is Google’s Transformer,
which has achieved significant results on machine translation since being pro-
posed in 2017 [1]. Its whole network structure is absolutely built on attention
mechanism instead of traditional CNN and RNN in deep learning, which has
brought a series of advantages, such as consuming less training power, achiev-
ing algorithm parallelism, further alleviating long-distance dependence and most
importantly, getting a better translation quality. Transformer is essentially an
Encoder-Decoder structure, just like most seq2seq models. It consists of Encoder
and Decoder (see Fig. 2). Both parts have n stacked identical layer blocks (n can
be any number, our system set n to 6.). Every layer of encoder contains two
sub-layers (see the left part of Fig. 2), which we call the self-attention sub-layer
and the feed-forward sub-layer. The self-attention sub-layer calculates the out-
put representation of a token by attending to all the neighbors in the same
layer, computing the correlation score between this token and all the neigh-
bors, and finally linearly combining all the representations of the neighbors and
itself. Each layer of decoder includes three parts, masked self-attention mecha-
nism, encoder-decoder attention sub-layer and feed-forward sub-layer [2]. Masked
self-attention mechanism is responsible for summarizing the partial prediction
history. Encoder-decoder attention sub-layer is used to determine the dynamic
source-side contexts for current prediction. A residual connection [3] is employed
around each sub-layers in both decoder and encoder, followed by layer normal-
ization [4].

Fig. 3. An overview of two multi-encoder systems. In the Outside approach, Hs is the
query and Hc is the key/value. In the Inside approach, Target is the query, Hs and Hc
represent key/value.

2.2 Our System

Based on the transformer model, we build a context-aware system [5] leaving
Transformer’s decoder intact while incorporating context information on the
encoder side [6]. This approach takes the surrounding sentences as the context
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and employ an additional neural network to encode the context, that is, there is
a source-sentence encoder and a context encoder. Figure 3 shows two methods
of integrating the context into NMT.

There are two methods for integrating the context into NMT. The method
of outside integration (See Fig. 3(a)) is that the representations of the context
and the current sentence are firstly transformed into a new representation by an
attention network, then the attention output and the source sentence represen-
tation are fused by a gated sum. Alternatively, inside integration (See Fig. 3(b))
means decoder can attend to two encoders respectively and the gating mecha-
nism inside the decoder is employed to obtain the fusion vector. There are two
kinds of context that can be used to integrate into NMT. One is source context,
another is target context. We often make train set and development set of source
language as source context, and make train set and development set of target
language as target context.

3 Methods

In this evaluation we try the following methods to improve translation perfor-
mance.

3.1 Back Translation

Back Translation (BT) [6] is one of the most commonly used data augmentation
method for machine translation tasks. In our Thai-to-Chinese task, we took three
steps to train a Thai-to-Chinese translation model. We train a Chinese-Thai
translation model on the released bilingual data and use the model to translate
the additional Chinese sentences into Thai sentences as pseudo bilingual sentence
pairs, which are mixed with the released sentence pairs to train the final Thai-
to-Chinese translation model.

3.2 Add External Data

The success of neural machine translation is closely related to computing
resources, algorithm models, and data resources, especially the scale of bilin-
gual training data. In the Thai-to-Chinese task, the number of sentence pairs of
parallel corpus available for training is as low as 200,000. Therefore, the introduc-
tion of external resources can effectively improve the performance of the machine
translation system.

3.3 Model Averaging

Model averaging [7] refers to averaging the parameters of the same model at dif-
ferent training moments to obtain more robust model parameters, which helps
to reduce the instability of model parameters and enhance the robustness of the
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model. After specifying the Max EPOCH parameter in the trainer and complet-
ing the training process, our team gets the best epoch checkpoint and the last
EPOCH checkpoint, and averages the two checkpoints. The more stable and
robust individual models obtained through the model averaging strategy will
also be used for model averaging to jointly predict probability distributions.

3.4 Model Ensemble Strategy

Model ensemble [8] refers to that in the decoding process, multiple models simul-
taneously predict the probability distribution of the target word at the current
moment, and finally make a weighted average of the probability distribution
predicted by multiple models to jointly determine the final output after model
ensemble.

4 Experiments

4.1 System Settings

The baseline MT system is based on Transformer trained only by the given
bilingual parallel corpus. Outside integration and inside integration are also used
in the experiments. Table 1 shows the parameters settings of the three systems.
Since context-aware system [9] is fine-tuned on the basis of the baseline system,
the value of initial state settings of baseline system is smaller than baseline
system. Table 2 shows the Initial learning rate setting of three systems.

Table 1. Fundamental parameters settings of three systems.

Parameter Value

GPU number (used for each model training) 1–3

Batch size 2048

Embedding size 1024

Hidden size 1024

Dimension of the feed-forward layer 4096

Self-attention layers (for both encoder and decoder) 6

Number of heads (multi-head self-attention mechanism) 16

Dropout probabilities 0.3

Merge operations (BPE) 32000

Maximum number of tokens 4096

Loss function Label smoothed cross
entropy

Adam betas (0.9,0.997)

Maximum epoch number 50

Warm-up steps 4000

Initial learning rate (Baseline system) 0.0007

Context-aware system (inside integration) 0.0001

Context-aware system (outside integration) 0.0001
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4.2 Data Preprocessing

In Thailand-Chinese task, the data used in the experiment includes bilingual
parallel corpus released by evaluation organization; some external data, such as
bilingual sentence pairs and dictionary; monolingual data and pseudo parallel
corpus. Bilingual parallel corpus is 200000 sentence pairs. 13069 sentence pairs
and 1400 word pairs are collected from Internet as a supplement for bilingual
parallel corpus. Monolingual data is extracted by similarity calculation between
Chinese development set and CCMT’2021 Chinese monolingual database index
by Elasticsearch [10]. Pseudo parallel corpus is generated by back translation
system, whose source language sentence is from Chinese monolingual data.

Preprocessing method we adopted includes a general method and a specific
method for given data. Both methods are used to reduce the data noise and
improve the data quality [11]. The main stages of preprocessing are shown below.

• Traditional Chinese to simplified Chinese
• Full-width characters to half-width characters
• Special characters filtering
• Duplicating
• Sentence length filtering
• Sentence length ratio filtering
• Tokenization

Among above, in the process of sentence length filtering, we get Chinese
sentence length by calculating the number of ‘character’ and get Thailand sen-
tence length by the number of ‘token’, based on which we remove sentence pairs
whose source sentence length or target sentence length exceeds the range of
[1, 200]. Sentence length ratio filtering excludes the sentence pairs whose ratio
of source sentence length and target sentence length exceeds the range of [0.1,
10]. In the tokenization stage, Thailand tokenization is implemented by Python
tools Thainlp [12] and Chinese tokenization is implemented using the lexical tool
Urheen [13].

Table 2. Preprocessing results of training set data.

Type Before preprocessing After preprocessing

Bilingual parallel corpus 200000 191465

Dictionary 1400 1400

Bilingual sentence pairs 13069 6894

Pseudo parallel corpus 913432 901134

Chinese monolingual data 1000000 913432

All steps of preprocessing are done on bilingual parallel corpus. Duplicating,
sentence length filtering, and sentence length ratio filtering, Chinese tokeniza-
tion are carried out on Chinese monolingual data. Sentence length filtering and
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sentence length ratio filtering are implemented on the pseudo parallel corpus by
back translation. Table 2 shows the data size comparison before and after pre-
processing. 1000 sentence pairs are extracted respectively from the bilingual par-
allel corpus by evaluation organization as development set and test set. Finally
189465 sentence pairs are used as train set. All system below are trained on the
development set and the test set. Their train set varies with different methods.

4.3 Experimental Results

thc-2022-istic-primary-a Model. Baseline system and other context-aware
systems are all trained on the given bilingual parallel corpus. Table 3 shows the
results of baseline system and context-aware system under two methods (inside
integration and outside integration) and two context (source context and target
context). These models are all trained 50 epoch. Table 4 shows the effect of
context-aware system is better than baseline system and the effect of the context-
aware system under outside integration with target context is better than other
system. So context-aware system under outside integration with target context is
chosen as thc-2022-istic-primary-a model. This model’s integrated target context
in decoder is train set of Chinese and development set of Chinese.

Table 3. Performance comparison in different system

System BLEU (test)

Baseline system 42.71

Inside integration + source context 44.93

Outside integration + source context 44.31

Inside integration + target context 46.89

Outside integration + target context 47.37

Table 4. Performance comparison in different training set

Mixing proportion (given corpus/pseudo corpus) BLEU (test)

1:0 42.71

1:0.25 38.24

1:0.5 34.97

1:1 26.13

1:2 23.37

1:3 20.85

1:4 18.21
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We adopted back translation method to generate pseudo parallel corpus.
Context-aware system under outside integration with target context is trained
on the released bilingual parallel corpus by evaluation organization, where source
language is Chinese, target language is Thailand. 900000 Chinese sentences are
filtered from monolingual data and translated into pseudo Thailand sentences.
We mix the pseudo parallel corpus into other corpus in different proportions
as new training set to train models. Context-based System (outside integra-
tion+target context) is trained on the above training sets. From the results in
Table 4 pseudo corpus does not bring performance improvement of translation.

thc-2022-istic-primary-b Model. We adopt a model averaging strategy in
the decoding phase and different results above are combined in post-processing
stage to obtain the final translation. They make a model averaging and ensemble
on thc-2022-istic-primary-c model and finally get a model whose Bleu scoring is
the highest and choose it as thc-2022-istic-primary-b model.

Table 5. Performance comparison of adding external corpus

Baseline training set Dictionary External sentences BLEU (test)

189465 0 0 46.89

189465 1400 0 47.45

189465 1400 6894 47.62

thc-2022-istic-primary-c Model. We put Thai-to-Chinese dictionary and
bilingual sentence pairs from Internet together with the released bilingual parallel
corpus by evaluation organization as a new training set. Table 5 shows their
performance comparison. From the results of Table 5, we can know external
dictionary and bilingual sentence pair improve the translation effect. We choose
this model as thc-2022-istic-primary-c model.

Table 6 shows the BLEU score [14] of three model submitted to evaluation
organization.

Table 6. BLEU scoring test set (submitted models)

System BLEU (test)

thc-2022-istic-primary-a model 47.37

thc-2022-istic-primary-b model 47.89

thc-2022-istic-primary-c model 47.62
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4.4 Conclusion

This paper introduces the main and methods of ISTIC in CCMT’ 2022. In sum-
mary, our model is constructed based on the Transformer architecture of the
self-attention mechanism and a context-aware system. Although we tried the
method of back-translation, it didn’t work well. In terms of data preprocess-
ing, several corpus filtering methods are explored. In the process of translation
output, we adopt strategies such as model averaging and model ensemble. In
the corpus filtering process, we use Elasticsearch to filter similar corpus. Exper-
imental results show that these methods can effectively improve the translation
quality. For machine translation tasks in low-resource languages, adding external
dictionaries and parallel corpus can effectively improve translation performance.
But in another view [15], it is worth exploring more to make more efficient use
of small amounts of parallel training. Due to limited time, there are still many
methods and techniques waiting us to exploit. Low-resource’s neural machine
translation is a very meaningful research problem. In the future, we will go into
low-resource’s neural machine translation and hope to make a contribution to
it.
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