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Abstract. Learning to generate the description for a video is essentially a chal-
lenging task as it involves an understanding of vision and language. Existing
methods are mainly based on Recurrent Neural Networks (RNN). Nevertheless,
there are some limitations, such as feeble representation power and sequential
nature. The transformer-based architecture was proposed to address such issues,
and it is widely used in the domain of image captioning. Although it has achieved
success in existing methods, the applicability to video captioning is still largely
under-explored. To fully explore its significance in video captioning, this paper
proposes a novel network by utilizing the transformer for video captioning named
Multimodal Interaction Fusion Network (MIFN). To effectively learn the rela-
tionship between multiple features, a cross-attention module is introduced within
the encoder, which provides a better representation. Moreover, in the decoder,
we use a gated mechanism for filtering the essential information to produce the
next word. Moreover, we evaluate the proposed approach by using the bench-
markMSR-VTT andMSVD video captioning datasets to illustrate its quantitative
and qualitative effectiveness and employ extensive ablation experiments to fully
understand the significance of each component of MIFN. The extensive exper-
imental results demonstrate that MIFN obtains performance comparable to the
state-of-the-art methods.
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1 Introduction

Recently, the task of vision and language has attracted widespread attention due to one
of the key initiatives to achieve artificial intelligence (AI). Meanwhile, the develop-
ment of deep learning has promoted many multimodal learning tasks such as image-text
matching [1], visual question answering (VQA) [2–4] and captioning [5–9]. Captioning
task is defined as generating the natural language descriptions of an image or a video.
Captioning requires a deep understanding of visual concepts, linguistic semantics, and
the alignment of the two. The model needs to recognize the visual information provided
to generate accurate and descriptive sentences. However, compared with image caption-
ing, video captioning presents many challenges. First, reasoning over the sequence of
images rather than the static image can bemore difficult. To describe the video, themodel
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needs to identify the content of each frame in the video. Secondly, the model needs to
consider long-range temporal structures without missing the relationship between the
frames in the video. Thirdly, it is a common problem for both image captioning and
video captioning to build the relationships between the visual and language to generate
descriptions consistent with visual semantics. Thus, video captioning models require
reasoning ability on spatial and long-range temporal structures of both video and text to
generate an accurate sentence.

The well-known encoder-decoder framework with a Recurrent Neural Network
(RNN) is usually used as the basic structure for video captioning tasks. First, a convo-
lutional neural network (CNN) has been adept in our framework to extract frame-based
features from an input video. And then, the encoder captures the temporal information
to obtain video-based features. Finally, the decoder generates the caption words about
the video by taking the output of the encoder. The encoder-decoder framework was
optimized end-to-end through a word-level cross-entropy loss. Based on this frame-
work, some researchers have proposed plenty of improved algorithms to upgrade the
model for video captioning tasks. For instance, to build the relationship between the
caption words and their related frames in the video, an attention mechanism has also
been adopted for video captioning, including spatial and temporal attention. To provide
a better visual representation of the video, multiple features (appearance and motion)
can be extracted from different networks to represent the diverse information.

Although it has succeeded in existing methods, the applicability to video captioning
is still largely under-explored. Although it has succeeded in existing methods in video
captioning, we observed the following limitations: First, when encoding the multiple
features, the encoder neglects intra-modal interactions (e.g., appearance to appearance
or motion to motion) and inter-modal interactions (e.g., appearance to motion or motion
to appearance). Secondly, the decoder also ignores the self-attention between the output
caption words (i.e.,word-to-word). Third, the fusion strategy in the decoder is to simply
fuse different features, such as concatenation and element-wise adding.

To deal with the above-mentioned issues, we design a novel Multimodal Interac-
tion Fusion network with a transformer (MIFN) to upgrade the effectiveness of the
video captioning task. Especially, the property of transformer [10] can capture some
intra-modal interactions (e.g., appearance-to-appearance, motion-to-motion, and word-
to-word) and inter-modal interactions (e.g., word-to-motion and word-to-appearance)
which can address partial limitation and the second limitations. To resolve the first lim-
itation, we inject the cross-attention module to learn the relationship between the input
visual features (i.e., appearance-to-motion and motion-to-appearance). Furthermore, we
apply a gated mechanism to select the key information from the multiple features.

Our MIFN model achieves comparable performance with the competing methods
over MSR-VTT and MSVD datasets, two large-scale video captioning benchmarks. In
summary, the major contributions of the proposed method include:

• This paper proposes a novel approach, Multimodal Interaction Fusion Network
(MIFN), based on a transformer for video captioning by jointly modeling the interac-
tions with self-attention and co-attention. The MIFN model uses a modular attention
block to model a better representation by extracting five types of relationships, e.g.,
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word-to-word, appearance-to-motion, motion-to-appearance, word-to-appearance,
and word-to-motion.

• We introduce a Gated mechanism in the decoder part of the MIFN model to obtain
key information across different modalities.

• Theextensive ablation experiments illustrate thatMIFNobtains performance improve-
ment over two publicly available MSR-VTT and MSVD datasets for video caption-
ing tasks. In addition, our experimental results obtained comparable results to the
state-of-the-art methods.

2 Related Work

Here, we review the last few years studies about video captioning and transformer.

2.1 Video Captioning

Learning to generate video descriptions is a very challenging task that involves under-
standing both vision and language. Early approaches [11–14] on video captioning is
often based on template methods, which apply the word and language rules to design a
sentence template. According to the predefined template, the model can align with video
content and languages. For example, the work in [13] adopted a Conditional Random
Field (CRF) to generate the semantic features for description by modeling the relation-
ships of each two different components from visual inputs. In [14], they proposed a
unified framework with two joint models to model two types of features, compositional
semantics language and video, in video-text space. However, fixed templates also limit
the capabilities of the model for language generation.

The well-known encoder-decoder framework is broadly used in neural machine
translation and captioning, which is more flexible than the aforementioned method. The
encoder-decoder framework includes encoder and decoder components. In captioning
tasks, the former is used to encode video information, and the latter is used to produce
human-specific sentences. The work in [7] first averaged each frame feature and then
used an LSTM to decode it into captions. The temporal information of video is not
adequately used. The attention mechanism is introduced into video captioning to focus
on a specific frame in the video relevant to the generated word [15]. The work in [16]
proposes a general video caption method (S2VT) without an explicit attention model
which learns the temporal structure of the video (optical flow) and applies an LSTM
in both encoder and decoder. In [6], they adapt a parallel two-stream 3D-CNN to gain
better visual features from the video. Since then, numerous works have adopted multi-
modal visual features to upgrade the effectiveness of video captioning. The work in [17]
proposes an adaptive attention (hLSTMat) hierarchical LSTM framework to select the
key information between the visual content and the language context content and adapt
the multi-modal features too.

However, the works mentioned above directly input the various visual outputs from
the encoder into the decoder while ignoring the relationship between those features. To
learn such a relationship, MIFN injects a cross-attention into the encoder to learn the
relationship between the multiple features and a gated mechanism into the decoder to
generate the video’s description by selecting the key information.
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2.2 Video Captioning

The first work on the transformer network [10] introduced a new encoder-decoder archi-
tecture. This architecturewas applied tomachine translation and it achieved better results
than the previous works [18–20]. The transformer includes self-attention and cross-
attention. The former can characterize the intra-modal interaction within each modality
(e.g., appearance-to-appearance), and the latter can characterize inter-modal interaction
across different modalities (i.e., Chinese to English). Some work also attempted to use
the transformer to solve the captioning task since the captioning involves multimodal
interactions. The work in [21] proposed the Object Relation transformer (ORT), explic-
itly modeling the spatial relationships. The work in [9] introduced EnTangled Atten-
tion (ETA) for image captioning that enables the transformer to bridge the relationship
between semantic and visual information simultaneously. The work in [8] proposedM2

∧

,
a meshed transformer with memory that model the prior knowledge between the low
and high two-level information.

Nevertheless, there are only a few studies that use transformers to deal with video
captioning tasks. In our work, we adopt the transformer architecture that introduces the
different encoder and decoder designs to deal with video captioning tasks. The encoder
learns a better representation from different multimodal features. The decoder can select
more important information with the gate mechanism.

3 Preliminaries

Next, this section introduces the primary formulation of the transformer,which is the core
structure for our model. The transformer has two basic blocks: the multi-head attention
module and the feed-forward network (FFN).

Fig. 1. The Scaled Dot-Product Attention network.

Multi-Head Attention module layer (MHA): The core component of the multi-head
attention module is h paralleled scaled independent dot-product attention layers, namely
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‘Head’, as shown in Fig. 1. Specifically, the input of ‘Head’ contains q ∈ Rd , kt ∈ Rd ,
and vt ∈ Rd , where q is the query, k is the key and belongs to set K , v is the value and
belongs to setV , t ∈ {1, 2, ..., n} is the number of key-value pairs, and d is the dimension
number. Then, we can achieve the attention weights for the values by calculating the
dot products of the query with all keys through a softmax function. Eventually, through
this dot-product attention mechanism, we obtain queries-based aware attended feature
defined as F . For matrices Q = [q1, ..., qm] ∈ Rm×d ,K = [k1, ..., kn] ∈ Rn×dandV =
[v1, ..., vn] ∈ Rn×d , we formulate the above process as:

F = Attention(Q,K,V ) = σ

(
QKT

√
d

)

V , (1)

where the dimension of F is m × d , δ is the softmax function.
MHA allows the model not only conduct with a single attention layer but also to

explore subspaces. Thus, the final attended feature $F$ will be obtained as follows:

M − head(Q,K,V ) = Concat(H1, . . . ,Hh)WO,

Hi = Attention
(
QWQ

i ,KWK
i ,VWV

i

)
,

(2)

where M-head is the short form of multihead, WK
i ,WV

i ∈ Rd×dh are linear function
parameters of the i − th ‘Head’ which respectively project Q,KandV into the latent
space.WV

i ∈ Rd×dh is the output projection matrix. We denote the sequence number of
the ‘Head’ as h and set dh = d/h.

Feed-Forward Network layer (FFN): Another basic block of the transformer is FFN.
FFN takes the output from the MHA as input and it is implemented by two linear
projections to obtain the high-level representation. This process is formulated as:

FFN (x) = FC(ReLU (FC(x))), (3)

where both input and output dimensions are d , ReLU is the ReLU activation function.
And the dimensionality of inner-layer is usually dff = 2048.

Both encoder and decoder of transformer consist of multiple above building blocks
where each building block is composed of the MHA and FFN modules. According to
whether the input features are the same, the MHA module can be divided into self-
attention and cross-attention two types. The original encoder of the transformer only has
self-attention, which can characterize the intra-modal interaction within each modality.
The difference in the decoder is that it has these two attention mechanisms, and cross-
attention can characterize Inter-modal interaction across different modalities. Besides,
each layer follows layer normalization (LayerNorm), and the residual connection is used
for all building blocks.

4 Methodology

For a video sequenceV = [v1, ..., vm], the goal of video captioning is to produce a natural
sentence S = [s1, ..., sn] that expresses the semantic meaning of the video, where m is
the length of frames, n is the length of a sentence.
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Fig. 2. The framework of the proposed MIFN. We first inject the cross-attention module into the
encoder of the transformer to fully exploit the differential but related semantic information. Then,
we select the key information to generate textual captions by representing various features through
the encoder.

Next,wedetail the proposed framework, i.e.,Multimodal InteractionFusionNetwork
(MIFN) based on the transformer for video captioning, which can upgrade the quality
of the produced sentence descriptions. In our method, we first adopt the basic structure
of the transformer and then modify its internal structure to meet our specific needs.
Specifically, a cross-attention module is injected into the encoder of the transformer
to fully utilize the different but relevant semantic information. Furthermore, since we
get representations of various features through the encoder, we need to produce textual
captions by choosing the key information. Thus, we propose a gated mechanism to deal
with such issue. The overall framework of theMFIN is illustrated in Fig. 2. The following
sections provide details about each component.

4.1 Encoder with Multimodal Features

Theprocess of the encoder includes two stages. Thefirst stage aims to extract the different
visual representations, namely appearance and motion features, defined as a multimodal
feature extraction module. Moreover, the second stage aims to learn the relationship
between the multimodal visual representation to obtain the final video features.

4.2 Multimodal Feature Extraction Module

For appearance representation, we utilize Inception-Resnet-v2 (IR-v2) network [22] pre-
trained on ILSVRC-2012-CLS dataset [23] to extract it. The input of each frame vi in
the video to the IR-v2 network is resized to 299 × 299. The output feature of the last
pooling layer is used to encode the frame-based visual feature ai ∈ R1536, where 1536
is the dimension. Therefore, the total appearance features A of video V is defined as
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follows:

A = [a1, . . . , am], ai ∈ R1536

ai = IR − v2(vi),
(4)

where vi represents the RGB image of the frame in the video.
For motion representation, we adopt the Inflated 3D ConvNet (I3D) [24] pre-trained

on the Kinetics dataset [12] to obtain clip-based visual features. First, we use both
horizontal and vertical directions between each frame and adjacent frames, using TVL1-
flow networks [25], to calculate the optical flow information. Then, each continuous 64
optical flowflips are input to the I3Dnetwork to obtain 2048-dimensionalmotion features
mi ∈ R2048. We formulate this process as below:

M = [m1, . . . ,mm], ai ∈ R1536

mi = I3D(ci)
, (5)

where ci represents a clip, the clip duration is 64 frames.
In order to represent sequence order for the transformer model, the model uses

position encoding (PE) to encode the position information of the frames.
We formulate the process of PE as:

PE( position ,2i) = sin

(
p

10000
2i
d

)

PE( position ,2i+1) = cos

(
p

10000
2i
d

) , (6)

where i is the dimension. The PE chose the sinusoidal version.

4.3 Cross-Attention Module with Multi-modal Features

The cross-attention module is composed of two identical encoders, and each encoder
encodes a different video feature. Each encoder encodes its features without interaction,
and there is no relationship between the learned features. To deal with this issue, this
paper introduces a cross-attention strategy to the encoder that modifies the transformer’s
original encoder. Each encoder stack L cross-attention block, and each cross-attention
block has three sub-networks, a self-attention network, a cross-attention network, and a
FFN. Take the outputs of the l − th(0 ≤ l < N ) block of two encoders V i

A ∈ Rm×d and
V i
M ∈ Rm×d as an example. Specifically, the input from the (i + 1) − th self-attention

network is the output for the i − th block, which learns Intra-modal interaction within
each modality.

Dl+1
.,t = MHA self

(
Hl

.,t,H
l≤t,H

l≤t

)
, (7)

And then the V i‘
A and V i‘

M are input to the (i + 1) − th cross-attention network to
learn inter-modal interaction across different modalities. This process is formulated as
follows:

ga = MHA cross
(
dt,VL

A ,VL
A

)

gm = MHA cross
(
dt,VL

M ,VL
M

) , (8)
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Before feeding into this module, the appearance feature A and the motion featureM
are mapped into V 0

A ∈ Rm×d and V 0
M ∈ Rm×d , and the residual connection and layer

normalization are used.

4.4 Decoder with Gated Mechanism

Given previously generated words and video features, the decoder generates the next
tokens of the output caption. Note that the video features extracted from multiple
encoders focus on aspects of the video that have different importance to the gener-
ated words, making it challenging to select key information from different features. To
address such an issue, our decoder block inserts a gated mechanism module between
the MHA sub-layer and FFN sub-layer, which can empower the ability of the decoder
block to perform attention over the difference encoder outputs simultaneously.

Given the previously generated wordsS<t = [s0, ..., st−1], the decoder is to generate
the next t − th word. Each word wt ∈ Rd is represented by a vector for the word at
position t in the sentence. Moreover, wt is obtained by word embedding and positional
encoding. Notably, w0 represents the start of a sentence.

Similar to the encoder, the decoder has N identical blocks, and each block consists
of five sub-layers, namely oneMHAself , twoMHAcross, one a gated mechanism and one
FFN. For the (l + 1) − th block, the output of the l − th block Hl ∈ Rt×d = [hl1, ..., hlt],
are fed into a (l + 1) − th MHAself sub-layer in the (l + 1) − th block, notice that hl0
corresponds to wt−1 :

c−at = sigmoid(Wa
[
dt, ga

] + ba
c−mt = sigmoid(Wm

[
dt, gm

] + bt
ct = Relu(

[
(c−at � f (ga)) ⊕ (c−mt � f (gm)

])
, (9)

where Hl
.,t ∈ R1×d , El=1

.,t ∈ R1×d , and hl0 = st−1. Subsequently, the MHAself output

Dl+1
.,t is passed into the two MHAcross to provide the proper guidance for the attention

in different target modalities. The process can be formulated as follows:

Lθ = −
N∑

t=1

logP(wt |w<t,V , θ), (10)

where VL
A and VL

M are the output of the two encoders.
The gating mechanism is to select key information between the different modalities

and flow to the subsequent layers. Such a gate is good at dealing with gradient explosion
and vanishing, enabling information to spread unimpeded through a long time step or a
deeper layer. The context gates cat and cmt are determined by the current self-attention
output dt , the appearance guidance ga and the motion guidance gm.

F = Attention(Q,K,V ) = MultiH(QUOTE talh
u
Venc
l

,WTAl
k1

huTAl ,W
TAl
v1 huTAl

where Wa and Wm are parameters that needed to be learned, and ba and bt are bias
terms. Note that [, ], �, and ⊕ is the concatenation, element-wise multiplication and
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element-wise addition operation separately.f (.) can be an activation function. We feed
the ct into the FFN sub-layer to obtain the final feature Ht+1≤t ∈ Rt×d .

F = Attention(Q,K,V ) = MultiH(QUOTE talh
u
Venc
l

,WTAl
k1

huTAl ,W
TAl
v1 huTAl

Suppose the decoder is generating the n − th word of the target sentence. Similar
to the encoder, the decoder also consists of N uniform multi-head layers. Each layer
consists of three MHA modules, more preciously, two FFN modules and one gated
mechanismmodule.Moreover, thefirst twoMHAmodules learnmotion-guided attention
from the caption words separately (appearance to word and motion to word) and the
appearance-guided attention from the caption words. The last MHA module models the
self-attentions on the caption words (word to word).

4.5 Training Processing

In the training process, we follow the standard protocol of video captioning to implement
the training process. Specifically, we pre-train the model by using a word-level cross-
entropy objective:

F = Attention(Q,K,V ) = MultiH(QUOTE talh
u
Venc
l

,WTAl
k1

huTAl ,W
TAl
v1 huTAl

where N denotes the length number of the sentence, and θ denotes the model parameter.

5 Experiments

In this section, we demonstrate the effectiveness through extensive experiments. we
first introduce two public datasets used for the video captioning task. Then, we compare
MIFNwith other competing baselines. Finally, qualitative results of ablation experiments
are conducted to verify the effectiveness of each component.

5.1 Datasets

To evaluate the effectiveness of the proposed video captioning models, this part reports
the results over MSR-VTT and MSVD, two large-scale video captioning datasets.

MSR-Video to Text (MSR-VTT) dataset:MSR-VTT dataset collected by [5] is one of
the largest video captioning datasets for generating the description of the video, which
contains 10,000 video clips. The duration of each clip is between 10 and 30 s, and each
video clip is annotated with approximately 20 different captions by AmazonMechanical
Turk (AMT) workers. The total of video-sentence pairs is 200K. Following the existing
work, we use the splits provided by [5], i.e., 6,513 for training, 497 for validation, and
2,990 for testing respectively.

Microsoft Video Description (MSVD) dataset:MSVD dataset consists of 1,970 video
clips, each of them also annotated by AMT workers. Each video clip has roughly 40
descriptions and the dataset has approximately 80,000 video-sentence pairs. Similar to
the existing works [16, 26], there are 1,200 training video clips, 100 validation video
clips, and 670 test video clips.
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Table 1. The experiment results over MSR-VTT dataset.

Model B@1 B@2 B@3 B@4 M R C

MP-LSTM [7]
Soft-Attention [15]
Res-Attention [31]
S2VT [16]
v2t_navigater [32]
Aalto [33]
VideoLAB [34]
hLSTMat [17]
RecNet [35]
PickNet [36]
LSGN + LNA [37]

- - - 30.4 23.7 52.0 35.0
- - -28.5 25.0 53.3 37.1
77.1 62.1 48.7 37.0 26.9 – 40.7
- - - 28.5 25.0 52.0 37.1
- - - 40.8 28.2 60.9 44.8
- - - 39.8 26.9 59.8 45.7
- - - 39.1 27.7 60.6 44.1
76.2 62.9 50.6 39.7 27.0 – 42.1
- - - 39.1 26.6 59.3 42.7
- - - 41.3 27.7 59.8 44.1
- - - 39.5 27.4 60.9 46.5

baseline (our)
MIFN (our)

- - - 38.5 26.8 58.9 44.8
78.6 65.1 51.9 41.0 27.6 60.1 46.6

5.2 Implementation Details

Preprocessing. To preprocess the text information, we first convert all words to lower-
case letters, remove the punctuation and add three additional tokens, namely unknown
< UNK >, the begin-of-sentence< BOS >, and the end-of-sentence< EOS >. Thus, it
yields a vocabulary of 23,665 and 15,906 in size for the MSR-VTT andMSVD datasets,
respectively.

Evaluation Settings: Following the previous works, we employ the same captioning
metrics: BLEU [27], METEOR [28], ROUGE [29], and CIDEr [30].

Model Settings & Training: All MHA layers and FFN layers have 512-dimensional,
and the input feature’s dimension of the co-encoder is mapped into 512 with a linear
projection. We represent words with word embeddings, whose size is also set as 512.
During training, the model is optimized using Adams’ optimizer. The batch size is set as
50, and a beam size is equal to 5. Besides, we introduce gradient clipping and dropout
technology during training.

5.3 Comparison with Competing Baselines

Here, we present the results of our evaluation followed by a comparison of the proposed
method with several competing baselines over MSR-VTT and MSVD datasets.

5.3.1 The Experiment Results Over MSR-VTT Dataset

Comparing Methods. We first consider the MSR-VTT dataset and compare the per-
formance of the proposed approach to other competing methods. Specifically, we com-
pare MIFN with Mean-Pooling [7], Soft-Attention [15], Res-Attention [31] S2VT [16],
v2t_navigater [32], Aalto [33], VideoLAB [34], hLSTMat [17], RecNet [35], PickNet
[36], and LSGN + LNA [37].



Multimodal Interaction Fusion Network 31

Results: The experimental results are demonstrated in Table 1. In this experiment, the
proposed method (MIFN) achieves better performance than other baseline models. The
results show that the Cider of our MIFN can achieve 47.6, which exceeds the highest
performance reported over MSR-VTT dataset. For the rest of the evaluation metrics, our
model obtains comparable scores with 41.0 B@4 (vs. 41.3 B@4), 27.6 Meteor (vs. 28.2
Meteor), and 60.1 Rough (vs. 60.0 Rough). It proves the effectiveness of our approach.

5.3.2 The Experiment Results over MSVD Dataset

Comparing Methods: Next, we assess our model over MSVD dataset. For the exper-
iments, we compare the proposed MIFN with previous works, i.e., S2VT [16], Res-
Attention [31], hLSTMat [17], HRNE [38], MA [39], SCN [40], SCN [40], TSA [41],
RecNet [35], PickNet [36], and ASGN + LNA [37].

Results: We demonstrate the experimental results in Table 2. We can see that the
proposed MIFN model outperforms other competing baselines. The proposed method
achieves improvements of 1.3 B@4, 0.6 Meteor, 1.1 Rough, and 2.3 Cider respectively,
compared to the LSGN + LNA model [37].

Table 2. The Experiment Results over MSVD Dataset.

Model B@4 M R C

S2VT [16]
Res-Attention [31]
hLSTMat [17]
HRNE [38]
MA [39]
SCN [40]
TSA [41]
RecNet [35]
PickNet [36]
ASGN + LNA [37]

- 29.2 -
53.4 34.3 72.9
33.5 – 72.8
43.8 33.1 - -
50.4 31.8 – 69.9
51.1 33.5 – 77.7
51.7 34.0 – 74.9
52.334.169.880.3
52.3 33.3 69.6 76.5
52.1 33.3 70.3 80.3

MIFN (Our) 53.4 33.9 71.4 82.6

5.4 Ablation Study

We employ extensive ablation studies to illustrate the effectiveness of each component
over the MSR-VTT dataset.

5.4.1 The Effect of Transformer

Here, we demonstrate the effectiveness of the transformer. The results are shown in
Table 3 which has three blocks, and each block takes a different feature as an input.
Especially, $A$ and $M$ denote appearance features and motion features, respectively.
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Moreover, $A + M$ denotes the fusing of the appearance feature and motion feature by
simple concatenating. Furthermore, eachblock is divided into three categories: 1)LSTM-
ATT model, which uses a two-layer LSTM with attention mechanism, 2) transformer
with three layers, and 3) transformer with six layers.

As shown in Table 4, we first see that the performance of $A + M$ is better than
$A$ and $M$. This result shows the beneficial effects of multiple features. Then, the
result illustrates that the original transformer for video captioning in effectiveness. The
original configuration of the transformer is six layers and self/cross attention. Comparing
LSTM (Row 1) with transformer (Row 3) in the first block of Table 4, it has obtained the
improvement by the original transformer, by 0.4 in B@4, 0.3 in Meteor, 0.3 in Rough,
and 1.5 in Cider, respectively. Furthermore, by changing the number of layers of the
transformer (three layers vs. six layers), we notice that the performance has also slightly
increased. This validates the impact of the number of transformer layers. The possible
reason is that training data quantity is reduced, and the complexity of the sentence is lower
for video description compared with machine translation. In the following experiments,
we utilize multiple features ($A + M$) to train our model and adopt the transformer
with three layers.

5.4.2 Effects of Proposed Individual Components

Here, an ablation study is designed to verify the effect of ourMIFN individual component
in MIFN. The results are shown in Table 3. The baseline model is the basic-transformer
encoder with three layers, which takes input by simply concatenating multiple features
into one visual feature. Comparing Row 0 and Row 1, we observe the efficiency of the
total model MIFN. The improvement over the baseline is significant, by 2.5 in B@4,
0.8 in Meteor, 1.2 in Rough, and 2.0 in Cider, respectively. Then we start with the
MIFN model and successively remove Cross-attention from the encoder and the Gated
mechanism from the decoder to demonstrate their importance.

Effects of the encoder with cross-attention: By removing the Cross-attention in the
encoder (Row 2), we notice that the model has fallen on the MSR-VTT dataset and
have fallen by 0.2, 0.7, 0.7, and 0.4 on B@4, Meteor, Rough, and Cider, respectively,
almost fallen on all evaluation metrics. These results show the effectiveness of such
cross-attention from the encoder to generate a better visual feature from the video.

Effects of decodingwith gatedmechanism: Further, we verify the strength of decoding
with a gated mechanism by comparing it (Row 1) with the other model (Row 5) that
replaces the gatedmechanismwith the concatenation operation in the decoder. The result
of Row 4 (the RCM model with only supervised learning) validates the superiority of
the gated mechanism in the decoder. The gated mechanism in the decoder improves the
performance of video caption, particularly for B@4 by 0.6, Meteor by 0.5, Rough by
0.4, and cider by 0.9, respectively.
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Table 3. The effectiveness of the transformer in theMSR-VTTdataset. The table has three blocks,
and each block uses a different feature to train the model. A and M denotes the appearance feature
and motion feature, respectively. A + M denotes the fusing between the appearance feature and
motion feature by simple concatenation. L represents the number of the transformer’s layers.

Model B@4 M R C

A LSTM
transformer (L = 3)
transformer (L = 6)

37.8 26.0 58.3 41.4
38.0 26.5 58.7 43.5
38.2 26.3 58.6 42.9

M LSTM
transformer (L = 3)
transformer (L = 6)

37.2 25.3 57.9 39.9
37.8 26.2 58.3 42.5
37.5 25.8 58.2 41.8

A + M LSTM
transformer (L = 3)
transformer (L = 6)

38.0 26.2 58.5 42.3
38.5 26.8 58.9 44.8
38.3 26.4 58.7 44.3

Table 4. Ablation study on MSR-VTT. The result demonstrates the performance of the basic
transformer as the baseline, which takes features by simply concatenating multiple features as
input. Row 1–3 shows the influence of individual components by removing them from the final
model (Row 1).

# Model B@4 M R C

0 Baseline (transformer with three layers) 38.5 26.8 58.9 44.8

1 MIFN 41.0 27.6 60.1 46.6

2
—Cross-attention in the encoder

39.8 26.9 59.4 45.5

3
—Gated mechanism in the decoder

39.4 27.1 59.7 45.9

6 Conclusion

In this paper, we propose a novel framework, namedMultimodal Interaction Fusion Net-
work (MIFN) which is based on the transformer, for the video captioning task. Firstly,
we inject the cross-attention module into the original transformers’ encoder to learn
the relationship between the input visual feature which provides a better visual repre-
sentation of video. Besides, we apply a gated mechanism to replace the simple fusion
strategy, which can select the key information from the multiple features in the decoder.
Experimental results on MSR-VTT and MSVD datasets illustrate that MIFN achieves
performance comparable with the competing methods. Moreover, extensive ablation
studies also indicate the effectiveness of the proposed model for video captioning.
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