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Abstract. CenterNet is a widely used single-stage anchor-free object detector. It
only uses single feature map to detect all size objects, and does not effectively
use different levels of feature maps. We present an enhanced feature fusion and
multi receptive field object detector, namedEM-CenterNet. Our detector first fuses
different levels of featuremaps, and then enhances feature fusion through semantic
information transfer path. Besides, we design another key component, which is
composed of continuous several dilated convolutions and shortcut connections,
so that our detector can cover all object’s scales. We compare the EM-CenterNet
method with the baseline on the Pascal VOC and COCO datasets. Experiments
show that our method increases the AP by 12.2% on the Pascal VOC dataset, and
increases the AP by 5.9% on the COCO dataset.
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1 Introduction

Computer vision technology has played a powerful role in many fields [1, 2]. At present,
object detection technology is widely used. The accuracy of object detector has a great
influence on the accuracy of subsequent tasks based on object detection. In recent years,
more and more excellent detectors have been proposed. According to different detection
processes, the types of object detectors generally include one-stage detectors [3, 4]
and two-stage detectors [5, 6]. Two-stage detectors predict boxes proposals and one-
stage detectors slide several specific bounding boxes over the image and classify them
directly. Whether one-stage detector or two-stage detector, most of them are anchor-
based detectors. Specifically, they need to place many carefully set anchors on the image
in advance. And it is very complex and needs to adjust the hyper-parameters of the
anchors according to different datasets.

Recently, anchor-free detector, as an emerging framework for object detection with
a simple strategy and excellent performance, has received increasing attention. FCOS
[7] is a widely used anchor-free object detector. It treats all samples in the ground truth
as positive samples, and then obtains the distance from the center point to the four
sides directly through regression. At the same time, FCOS adds a center-ness branch to
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obtain higher quality detection boxes. Another anchor-free object detector, CornerNet
[8], detects two bounding box corners as keypoints.

Different from the above two anchor-free detector, CenterNet [9] only regards the
center point of the object as the positive sample, and other points are regarded as positive
samples, and then regresses at the center point to obtain the size of the object. CenterNet
is simpler and faster because it only needs to detect all the objects of different sizes on a
single high resolution feature map. However, CenterNet only obtain the feature map by
upsampling the smallest high-level feature map for detection, but does not effectively
use the low-level feature maps. The research of Li et al. shows that objects with different
scales have different needs for the best receptive field of the network [10]. In addition,
our investigation found that the receptive field of CenterNet is not enough to cover all
objects’ scales.

In this paper, two key components, Enhanced feature fusion and Residual dilated
convolution are proposed, which bring considerable improvements. First, we propose
a semantic information transmission path to enhance feature fusion. Specifically, we
fuse feature maps at different levels, and we use semantic information transfer path to
transfer the semantic information, so as to significantly enhance feature fusion. Then we
design a continuous dilated convolution module with shortcut connections. Experiments
on two datasets which are challenging, Pascal VOC and COCO datasets, demonstrate
the effectiveness of our method. The main contributions of our work are as follows:

1) We fusing the low-level feature maps of the backbone to improve the performance of
CenterNet. And we propose a semantic information transfer path to enhance feature
fusion.

2) We verify the influence of the receptive field of CenterNet on the detection perfor-
mance of objects with different scales, and the current receptive field of CenterNet
is not enough to cover targets with all scales. And we propose a continuous dilated
convolutions module with shortcut connections, which can generate a feature with
multiple receptive fields.

3) Sufficient experiments show the advantages of our proposed detector.

2 Related Work

2.1 Anchor-Based Detector

Two-Stage Method. R-CNN [11] innovatively uses convolutional neural network to
detect objects. The detection steps of R-CNN are complex. Firstly, it obtains redundant
candidate boxes through selective search, and then classifies the candidate boxes and
obtains the size of the objects through regression in the second stage. R-CNN has good
detection performance, but its slow inference speed limits its application. Faster R-CNN
[5] uses the Regional Proposal Network (RPN) to speed up the generation of candidate
boxes. At present, the two-stage detectors have the most advanced accuracy.

One-Stage Method. Different from the above object detectors, the earliest one-stage
object detector YOLOv1 [12] based on deep learning does not need to form excessive
candidate boxes, but directly divides the image into many regions, classifies each region
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and predicts the size of the objects. This method significantly shortens the inference
speed, but it is less accurate than two-stage detectors. SSD [13] uses multi-scale feature
maps to predict the location and category of objects, so it has better detection perfor-
mance for small objects. Thereafter, many object detectors have followed this approach
[14, 15]. YOLOv3 [3] draws on the multi-scale feature maps of SSD and introduces
feature pyramid network (FPN) [16] to improve the detection accuracy of small objects.
RetinaNet [4] is a relatively new detector, which uses focal loss to alleviate the problem
of category imbalance in the process of network training.

2.2 Anchor-Free Detector

The first successful universal anchor-free detector is YOLOv1 [12]. The inference speed
of YOLOv1 is surprising, but it is not as accurate as the anchor-based object detec-
tors. Therefore, its successor, YOLOv2, abandons the anchor-free design. Recently, the
proposal of CornerNet [8] has turned the attention of the academic to the anchor-free
object detectors. CornerNet does not need to regress the size of the objects, but only
needs to predict two key points of the objects, and determine the category and location
through the key points. Another successful anchor-free detector, FCOS [7], introduces
FPN to detect objects with different scales and has achieved competitive performance.
CenterNet [9] determines the location and category by predicting the center point of the
objects, and then predicts the size of the objects at the center point. CenterNet detects
objects at all scales only through a high-resolution feature map, thus its reasoning speed
is very fast.

2.3 Feature Fusion

Different levels of feature maps contain different semantic information or spatial infor-
mation. Feature pyramid network (FPN) [16] fuses different level feature maps, and
significantly improves the detection effect of small objects. Zhang et al. added semantic
information to the low-level feature maps to enhance the fusion effect, which slightly
improved the performance of the instance segmentation method [17]. We use a similar
way to improve the object detector. The experimental results show that the low-level fea-
ture map containing more semantic information can be better fused with the high-level
feature map.

2.4 Dilated Convolutions

Dilated convolution is a common component in many semantic segmentation methods
[18, 19]. It increases the receptive field without losing information. Now, many object
detectors [20, 21] also use dilated convolution to improved accuracy. In this paper, we
stack convolution layers with different dilated rates to obtain feature map that can cover
objects of different scales.

3 Receptive Field of CenterNet

In this section, we will introduce CenterNet at length, and then we design a scientific
experiment to investigate the influence of receptive field on CenterNet object detector.
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3.1 CenterNet

Different from other target detectors, CenterNet’s approach is similar to key point detec-
tion. [22, 23], which represents objects by a single center point. In the reasoning stage,
we only need to input the image into the network to get the heatmap representing the
location and category of the objects, and the size of the objects.

The construction of CenterNet is very sample, the backbone network generates a
low-resolution feature map, and then obtains a high-resolution feature map after three
consecutive up sampling.After the image is input into the network, four featuremapswith
width and height gradually reduced by half are obtained from the bottom-up pathway,
that is, the backbone network. Then the smallest high-level feature map is upsampled for
three consecutive times to obtain a high-resolution feature map for subsequent detection.

Specifically, for ResNets [24] we choose the last four output feature maps as the
selection and mark them as C2, C3, C4, and C5. The top-down pathway generates
feature maps with higher resolution by upsampling the high-level feature maps, and
we mark them as P2, P3, P4, and P5. It should be noted that P5 is produced applying
one 1 × 1 convolutional layer on C5. CenterNet determines the location and category
by detecting the center point of the objects, and directly predicts the width and height
of the objects. At the same time, to compensate for the center point offset caused by
downsampling, CenterNet predicts the center point offsets.

Table 1. Results with different receptive fields using CenterNet [9] evaluated on the Pascal VOC
dataset [26].

Dilation rate AP APS APM APL

1 38.6 6.2 25.0 48.5

2 40.3 5.2 25.1 51.3

4 41.2 5.7 25.0 52.6

3.2 Investigation of Receptive Field

The receptive field of the network is one of the key factors affecting the performance
of object detectors [25]. To investigate the relationship between receptive field and
CenterNet detection effect, we add a dilated convolution layer between the backbone
network and the upsampling structure. We use three different dilation rates to generate
networks with three different receptive fields.

We conduct our experiment using the CenterNet with the ResNet18 backbone on the
VOC dataset. The dilation rates used in the experiment are 1, 2 and 4. And we report
Average Precision (AP) on object of small (APS), medium (APS) and large sizes (APL).

We can find that the detection performance of objects with different scales is pos-
itively correlated with the dilation rate from Table 1. In other words, larger receptive
fields are better for detecting large objects. This phenomenon strongly shows that the
receptive field of CenterNet is not enough to cover all objects’ scales. These findings
inspire the following improvements to the CenterNet object Detector.
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4 EM-CenterNet

This section will describe the main components of our proposed EM-CenterNet detector
in detail. The proposed EM-CenterNet consists of Enhanced feature fusion and Residual
dilated convolution. The brief structure of EM-CenterNet as shown in Fig. 1. First, we
describe the proposed components of EM-CenterNet. Then, we also introduce several
loss functions for training in detail.

Fig. 1. The brief structure of EM-CenterNet detector, in which C2, C3, C4 and C5 are the feature
maps of different scales in the backbone network respectively, D is residual dilated convolution, the
bule dotted line is the path of semantic information transmission, SITPmeans semantic information
transmission path, and P2 to P5 are the feature levels.

4.1 Enhanced Feature Fusion

To effectively use the low-level feature map rich in spatial information, we improve the
structure of CenterNet. After sampling on the featuremaps, we fuse themwith the feature
maps in the backbone, and finally get a feature map containing rich information. And
to enhance the effect of feature fusion, we introduce semantic information transmission
path. We will describe it in detail later.

Feature Fusion. The construction of our feature fusion as like FPN [16]. We upsample
the high-level feature maps and add them pixel by pixel with the feature maps in the
backbone to get the final high-resolution feature map for detection. The detailed design
of feature fusion is illustrated in Fig. 2.

Semantic Information Transmission Path. In object detection, semantic information
is conducive to the classification of objects, and spatial information is more conducive to
the positioning of objects. Previous studies [17] believe that due to the large difference
of semantic information between them, it is not the best way to directly fuse them.

To enhance the effect of feature fusion, we introduce three semantic information
transmission paths. Specifically, we first sample the three high-level feature maps in
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Fig. 2. The network architecture of feature fusion. The “ +” sign means element-wise addition.

the backbone, then multiply them pixel by pixel with the feature maps in the previous
stages in the backbone, and finally add the obtained feature maps pixel by pixel with
the feature maps in the top-down path. The detailed design of the semantic information
transmission path is illustrated in Fig. 3.

Fig. 3. The network architecture of Semantic information transmission path. The “×” signmeans
element-wise multiplication.

4.2 Residual Dilated Convolution

From Sect. 3, we can see that the detection effect of CenterNet object detector on
objects of different sizes is closely related to its receptive field. And the receptive field
of CenterNet is not enough to cover all objects’ scales.

To increase the receptive field of theCenterNet, we first designed a continuous dilated
convolution structure. We add four continuous convolution layers with different dilation
rates between the backbone network and the upsampling structure. At the same time, we
reduce the channel dimension of the featuremap by applying one 1× 1 convolution layer
and then add a 3 × 3 convolution layer. The dilation rates are 2, 4, 6, and 8, respectively.

The above structure is very simple, but continuous dilated convolution will lead to
a large receptive field, which is not friendly for small objects. To solve this problem,
we add a shortcut connection after each dilated convolution layer. The residual dilated
convolution structure is shown in Fig. 4.
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Fig. 4. The network architecture of Residual Dilated Convolution. The D means dilation rate.

4.3 Loss Function

The training process of our EM-CenterNet is consistent with CenterNet. For center
localization, we use Gaussian kernel to produce a heat-map. For the prediction σ and
the target y, we have:

LK = −1

N

∑

xyc

{
(1 − σ)α log σ if y = 1
(1 − y)β(σ )α log(1 − σ) otherwise

(1)

where α = 2 and β = 4, N is the number of keypoints, following CenterNet [9].
Center point offset due to downsampling, CenterNet predict the offset of the center

of the objects. The offset loss:

Loff = −1

N

∑
|p − q| (2)

where p is the true offset and q is the offset of the network output.
For size regression, we use an L1 loss:

Lsize = −1

N

∑
|S − Ŝ| (3)

where S is the true width and height, and S
∧

is the predicted width and height.
The total loss L includes localization loss LK , offset loss Loff and size loss Lsize,

weight by two scalars. The total loss is:

L = LK + w1Loff + w2Lsize (4)

where w1 = 1 and w2 = 0.1 in our setting as in CenterNet.

5 Experiments

We evaluate our EM-CenterNet on the Pascal VOC [26] and MS COCO datasets [27].
We first introduce our experimental setting, including datasets and training details. Then
we compare the results of EM-CenterNet on the test-dev set of MS COCO dataset
with CenterNet and other methods. Finally, we provide detailed ablation experiments of
each component of our proposed EM-CenterNet object detector and provide quantitative
results and analysis.
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5.1 Experimental Setting

Datasets. In this section, we first describe the datasets and experimental settings we
used, then we show the main results, and finally we show the ablation results. We
experimented on Pascal VOC and COCO datasets. Pascal VOC datasets include VOC
2007 and VOC 2012 datasets. VOC 2007 includes 5011 training images and 4952 test
images. VOC 2012 has 11540 training images, and the annotation of the test images is
not disclosed. We test the performance of the detector on the test images of the VOC
2007 dataset.

Training Details. ResNet-18 is the backbone in our method for experiments and we
resize the images to 512 × 512. The initial learning rate is 0.001, and the mini-batch
size is 16. We reduced the learning rate by a factor of 10 at epoch 90 and 120 for 140
total epochs. Our optimizer is SGD, and weight decay is 0.0005. Warm-up is applied for
the first epoch.

5.2 Main Results

We evaluate our EM-CenterNet on the COCO dataset and VOC dataset, and we adopt
ResNet-18 as the backbone. As shown in Table 2, the AP of our detector is improved
by 5.9% compared with baseline on the VOC dataset. As shown in Table 3, the AP of
our detector is improved by 5.9% compared with baseline on the COCO dataset. And
compared with other popular detectors, our method also has strong competitiveness with
the same backbone.

Table 2. The experimental results on VOC dataset are compared with several newer detectors.

Method Backbone AP AP50 AP75 APS APM APL

FCOS [7] R50 44.1 73.5 46.2 14.9 32.2 51.9

RetinaNet [4] R50 44.8 73.1 46.9 13.3 32.2 52.6

YOLOF [28] R50 49.6 76.6 54.1 11.2 35.4 59.6

EM-CenterNet R50 51.4 74.6 56.3 17.1 36.7 61.2

5.3 Visualization Results

Figure 5 visualizes the detection results of CenterNet and EM-CenterNet. We can see
that the detection result of our proposed method is better than the baseline. Specifically,
the detection boxes of our method are more accurate and have higher classification
confidence.
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Table 3. ComparisonwithCenterNet and other popular object detectors onCOCO test-dev.Using
the same backbone resnet-18, EM-CenterNet outperforms the baseline counterpart CenterNet by
5.9% in AP. EM-CenterNet also outperforms the CenterNet with ResNet-18-DCN as its backbone.

Method Backbone AP AP50 AP75 APS APM APL

SSD [13] VGG16 25.7 43.9 26.2 6.9 27.7 42.6

YOLOv3 [3] D53 28.2 - - - - -

FCOS [7] R18 26.9 43.2 27.9 13.9 28.9 36.0

CenterNet [9] R18-DCN 28.1 44.9 29.6 - - -

CenterNet R18 23.9 41.6 25.0 9.1 26.1 33.4

EM-CenterNet R18 29.8 47.3 31.6 11.3 30.7 42.6

Fig. 5. Visualization of CenterNet and EM-CenterNet detection results.

5.4 Ablation Experiments

Enhanced Feature Fusion. As shown in Table 4, we first add feature pyramid net-
work to CenterNet, and the result of ablation experiment result show that feature fusion
can significantly improve the performance of CenterNet (36.8 vs. 41.3). Then we add
the semantic information transfer path to feature pyramid network. The result of abla-
tion experiment show that the semantic information transfer path significantly enhances
feature fusion (41.3 vs. 42.4). After adding semantic information transfer path, the per-
formance of large objects is significantly improved, and the performance of medium
objects and small objects is slightly increased.

Residual Dilated Convolution. Based on the enhanced feature fusion component, we
further add the residual dilated convolution component. As shown in Table 4, residual
dilated convolution also significantly improves the performance of baseline (41.3 vs.
48.3). Finally, EM-CenterNet achieve significant improvements (12.2 AP increase) on
the baseline.
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Table 4. Results on the Pascal VOC dataset with ResNet-18. Starting from our baseline, we
gradually add Enhanced feature fusion, Residual dilated convolution in our EM-CenterNet for
ablation studies. FPN means feature pyramid network.

FPN Enhanced feature
fusion

Residual dilated
convolution

AP AP50 AP75 APS APM APL

- - - 36.8 60.0 39.9 9.1 27.8 44.6√
- - 41.3 65.8 44.7 13.1 30.5 49.4√ √

- 42.4 66.7 46.0 13.3 31.0 50.7√
-

√
48.3 73.2 52.8 14.2 32.2 58.3√ √ √
49.0 73.4 53.5 13.7 32.8 59.1

6 Conclusion

In this work, we find that fusing the low-level features of the backbone can significantly
improve the performance of CenterNet. And we propose a semantic information transfer
path to enhance feature fusion. In addition, to make the receptive field of our detector
can cover all objects of different sizes, we propose residual dilated convolution. We
conducted experiments on two challenging data sets. The performance of our proposed
detector, EM-CenterNet, is significantly improved compared with the baseline. We hope
that our EM-CenterNet object detector can provide insights for designing anchor-free
detectors.
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