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Abstract. Brain-computer interface (BCI) is a new interactionmodel that directly
connects the human brain or animal brain with external devices, which has a wide
range of application scenarios. Through the BCI technology based on electroen-
cephalography (EEG) signal, the communication and control of external devices
can be realized independently of the peripheral nervous system and muscle tissue.
Motor imagery (MI) is a process in which people imagine their limbs or muscles
moving, to control some external auxiliary devices (wheelchairs, robotic arms,
robots etc.) so that people without motor ability can restore their communication
and motor ability to a certain extent. In this paper, the basic situation of EEG and
EEG signal acquisition is introduced first. Then, the analysismethods and research
contents of EEG signal preprocessing, feature extraction, and feature classifica-
tion based on motor imagery are introduced in detail. Finally, the brain-computer
interface technology based on motor imagery is summarized and prospected.

Keywords: Brain-computer Interface (BCI) · Motor Imagery (MI) · EEG
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1 Introduction

Brain-computer interface (BCI), also known as brain-computer fusion sense, is a means
of communication between a human or animal brain and an external auxiliary device.
Using this communication technology, the control and interaction of external auxiliary
devices can be realized without the help of the brain nervous system and muscle tissue
[1], Nicolas [2] define this as a hardware and software communication strategy.

There are many classification methods for BCI. Figure 1 illustrates four classifica-
tion schemes, which are classified according to the direction of control, dependability,
recording method, and operation method respectively. According to the direction of con-
trol, it can be divided into unidirectional BCI and bidirectional BCI. In a unidirectional
BCI, only one end can send instructions to the other end at the same time. For exam-
ple, the brain sends instructions to an external auxiliary device, or an external device
sends instructions to the brain. Bidirectional BCI allows two-way information exchange
between the brain and external devices. At present, the research on BCI is mainly on
unidirectional BCI, and can only realize the brain sends instructions to external auxiliary
devices.
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According to dependability, it can be classified into dependent BCI and independent
BCI. Dependent BCI requires subjects to carry out some form of motor control, such as
visual evoked control and motor imagery control, which has been widely used. Indepen-
dent BCI, which does not require subject control, is ideal for patients with eyemovement
disorders or severe physical paralysis. Tello [3] proposed a novel independent BCI based
on conventional steady-state visual evoked potentials, they use figure-ground perception
to identify two different targets, send commands in limited visual space without shifting
eyes, and proved to be effective.

According to the recording method, it can be divided into non-invasive BCI and
invasive BCI. Non-invasive BCI involves placing physical electrodes to collect electrical
signals on the scalp, and invasive BCI involves placing physical electrodes into the skull.
Invasive BCI requires physical electrodes to be surgically implanted in different parts of
the brain and has the characteristics of strong signal acquisition, stable signal, and long
duration. But with time, scar tissue is easy to produce, resulting in signal interference and
loss.Although the signal of non-invasiveBCI is not as strong and stable as that of invasive
BCI, it does not harm the human body, there is no need to worry about immune effects on
the human body. Common non-invasive methods include EEG, MEG, PET, functional
magnetic resonance imaging, and functional near-infrared spectroscopy etc. Due to the
advantages of non-invasive, easy to use, safe, easy to collect, and cost-effective, EEG
is widely used and can induce SCP, SSVEP, MI, ERRP, P300, and other control signals
[4].

Finally, according towhether the user depends on the timewhenoperating the system,
the BCI can be divided into synchronous BCI and asynchronous BCI. If the interaction is
based on a prompt imposed by the system at some point in time, it is called asynchronous
BCI. At this point, the brain activity is generated by the user. Based on this cue, it
can be distinguished whether the neural activity generated by the user is intentional or
unintentional [5]. Asynchronous BCI means that the user can generate a mental task
to interact with the application at any time, regardless of time and system prompt. But
asynchronous BCI needs to actively distinguish between intentional and unintentional
neural activity generated by the user. The synchronous BCI system is simple in design
but has many limitations. By comparison, synchronous BCI is not user-friendly.

Motor imagery (MI), one of the four main paradigms of BCI, focuses on control-
ling the movement of objects (such as the movement of hands, arms, or feet) through
visual-motor imagery visualization. Unlike other paradigms, it primarily characterizes
an intention to move, controls limb movement through neural activity and has no actual
movement output, and does not require external stimulation [6]. When subjects imagine
different limb movements, they generate EEG signals in the sensorimotor cortex of the
brain that is similar to the actual signals, allowing researchers to determine the user’s
intention to achieve control of the limb by identifying the activation effects in different
brain areas. 28-year-old paraplegic Giuliano Pinto successfully kicked off the World
Cup in Brazil through MI-BCI.

The MI-BCI is important for the therapeutic recovery of stroke patients, people
with motor disorders, severe muscle disorders, and paralysis etc., and this active motor
rehabilitation training approach has been studied to effectively restore the function of
impaired brain motor perceptual areas [7]. It also allows people with motor disabilities,
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cerebral palsy, and other mobility impairments to control some external assistive devices
(such as wheelchairs, nursing beds, and robotic arms) through theMI paradigm to restore
their ability to communicate and move to some extent.

The structure of this paper is as follows: Sect. 2 introduces the basic information
about EEG signal and EEG signal acquisition; Sect. 3 introduces the pre-processing
method of MI-EEG signal; Sect. 4 introduces the feature extraction method of MI-EEG
signal; Sect. 5 introduces the feature classification method of MI-EEG signal; Sect. 6
makes a conclusion and outlook on the MI-BCI.
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Fig. 1. Classification of BCI systems in terms of control direction, dependability, recording
method, and mode of operation.

2 EEG Signals and Signals Acquisition

The EEG signals are the sum of the changes in extracellular field potentials caused by
the electrophysiological activity of a large number of nerve cells in the brain in the
cerebral cortex or on the surface of the scalp, and data on brain activity can be recorded
using EEG acquisition equipment. EEG signal is generally classified as spontaneous
EEG and evoked EEG [8], with spontaneous EEG being the spontaneous changes in
extracellular field potentials induced by the brain’s nervous system without any external
stimuli applied, such as slow cortical potentials and sensorimotor rhythms. Evoked EEG
is an external stimulus (such as sound, light, picture, video etc.) applied to a person’s
sensory organs that cause fluctuations in the nervous system of the brain which in turn
causes potential changes in the corresponding parts of the brain, such as steady-state
visual evoked potentials, visual evoked potentials, and P300.

The human brain is generally divided into the cerebral cortex and the subcortex,
of which the cerebral cortex is generally the focus of scientists’ research. It is the most
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central and complex region of the brain, controlling human emotions, memory, thinking,
behavior, language, and other functions. The cerebral cortex is divided into two hemi-
spheres, as shown in Fig. 2, each of which contains five parts: frontal, parietal, occipital,
temporal lobes, and cerebellum [9]. With the advancement of science and technology,
scientists have found that subjects in different mental states show different EEG signal
characteristics, and EEG activity is closely related to the subject’s emotion and thinking.
Since the frequency domain signal of the EEG signal fluctuates more obviously, the
fluctuation range is 0.5–0 Hz, so the EEG signal is divided into 5 bands δ wave, θ wave,
α wave, β wave, and γ wave according to the frequency, and each band can reflect the
different activity states of the brain, as shown in Table 1.

Fig. 2. Physiological Structure of the Cerebral Cortex.

Table 1. EEG characteristics of different bands.

Types Area Mental states and conditions

δ band (0.5–4 Hz) Temporal lobe and parietal lobe Deep sleep, unconscious

θ band (4–8 Hz) Forehead position in adults and
hindbrain position in infants

Intuitive, creative, recall, fantasy,
imaginary, dream

α band (8–14 Hz) Posterior part of the brain and
both sides of the brain

Relaxed but not drowsy, tranquil,
conscious

β band (14–30 Hz) Both sides of the brain Alert, thinking, and active
concentration

γ band (>30 Hz) In the sensory cortex of the body Motor functions, higher mental
activity

Acquiring EEG signals and accurately processing EEG information becomes the key
to BCI. A complete EEG signal acquisition system consists of a signal acquisition cap,
amplifier, and data storage device [10]. The electrodes of the signal acquisition cap can
be divided into dry electrodes and wet electrodes. Dry electrodes are generally made of
stainless steel as conductors, while the conductors of wet electrodes are usually made
of silver and silver chloride materials. A comparison of dry electrode collection devices
and wet electrode collection devices is shown in Table 2. Since both acquisition devices
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have their advantages and disadvantages, the appropriate device can be selected for EEG
signal acquisition during the study according to the length of the experiment, laboratory
environment, and other factors.

Table 2. Comparison table of dry electrode and wet electrode.

Name Wet electrode Dry electrode

Whether to add conductive
media

Yes No

Advantages Stable acquired EEG signal,
better signal-to-noise ratio,
easy impedance drop, and high
reliability. Less difficulty in
subsequent EEG feature
extraction

No need to add conductive
media, the subject experience
is good, easy to use and fast

Disadvantages The conductive medium is easy
to wear, becomes dry, and
cannot collect signals for a long
time, the subject experience is
poor, and the experimental
procedure of a wet electrode
EEG cap is more complicated
than that of a dry electrode

More sensors are needed, the
quality of the acquired EEG
signals is average, the
reliability is poor, the
impedance does not drop
easily, there are artifact
signals, and the subsequent
EEG feature extraction is
difficult

Table 3. Typical time domain feature extraction methods.

Reference Method Introduction

Rodríguez [19] Auto-regressive (AR) modeling AR models signal from each channel
as a weighted combination of its
previous samples and AR coefficients
are used as features

Croz-Baron [20] Adaptive autoregressive (AAR)
modeling

As an extension of AR modeling, the
coefficients in AAR are not constant
and, in fact, vary with time

Adam [21]
Yilmaz [22]

The peak-valley modeling Represent the signal in terms of peaks
(local maximum) and valleys (local
minimum), various features points are
extracted between neighboring peak
and valley points

The current electrodes of EEG acquisition devices follow the international standard
for placement of electrodes for the 10–20 system developed in 1958 [11], as shown in
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Fig. 3. Where 10 represents the distance from the midpoint of the frontal pole to the
root of the nose and the distance from the occipital point to the external occipital ridge
each representing 10% of the total connecting distance, and 20 represents the distance
between the remaining collection points representing 20% of the total distance. Since
the EEG information collected by the EEG acquisition device is extremely weak, the
collected signal needs to be amplified by an amplifier, which also reduces the effect of
environmental noise and the weakening of the signal caused by cable movement. Finally,
the collected EEG information is stored through storage devices such as mobile hard
disks or Raspberry Pi.
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Fig. 3. International standard 10–20 EEG recording system electrode placement.

3 Preprocessing of MI-EEG Signals

To obtain effective EEG signals, signal processing usually consists of three parts: pre-
processing, feature selection and extraction, and feature classification, which we will
introduce in this section and the rest in the next two sections.

EEG signals collected with EEG acquisition equipment are usually mixed withmany
artifacts and noise. Artifacts are usually generated by the human body, such as eye
artifacts, heart artifacts, muscle disorders etc. Noise is usually generated by equipment
outside the human body, such as EEG acquisition equipment failure, poor electrode
contact, electrode impedance, electromagnetic noise, power line interference etc. Noise
and artifacts cause great obstacles to the analysis of EEG data, and the preprocessing
of EEG signals based on MI-BCI system is to filter the original EEG signals mainly by
using temporal filters and spatial filters to eliminate noise and artifacts to get signals
with specific patterns [12, 13].

Temporal filters, which mainly include low-pass and band-pass filters, are the most
commonly used in the preprocessing stage. Temporal filters mainly restrict the EEG
signal to the frequency band where the neurophysiological information related to the
cognitive task is located. For example, the signal will block the high frequency signal in
the signal after passing through the low-pass filter (myoelectric or other noisy signals).
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Signals in both the α band and the β band are usually closely related to themotor imagery
task, so the band-pass filter is usually set in the MI task at a frequency of 8 to 30 Hz [14,
46].

The main function of the spatial filter is to extract the necessary spatial information
related to the motion imagery task [15]. The common average reference (CAR) and the
Laplacian spatial filter are two common spatial filters and are computationally inex-
pensive. The CAR mainly removes the common components from all channels, leaving
only the channel-specific signals. The Laplace spatial filter is designed to remove the
common components of adjacent signals, increasing the difference between channels.

4 Features Extraction and Analyses

Due to the multi-electrode and high sampling rate of EEG acquisition devices, a large
amount of EEG data is generated every second species, but the vast majority of these
data are non-valid. It is important to correctly distinguish the intentional neural activ-
ity (such as motor imagery task of a specific limb) and non-intentional neural activity
(such as EEG, EMG) of the subjects to extract useful EEG information. Feature extrac-
tion is mainly the process of abstracting feature vectors that can strictly distinguish
different thinking states from the pre-processed EEG signals, and removing non-valid
data from the feature vectors to retain valid data. Feature extraction methods based on
motion imagery can be broadly classified into: time domain methods, frequency domain
methods, time-frequency domain methods, spatial domain methods, time-space domain
methods, spatial spectrum methods etc. [16, 47].

4.1 Time Domain Methods

The EEG signal is an extremely weak and unstable signal, and its amplitude, frequency,
period, and phase all change with the changes in the sensory motor rhythm, the EEG
signal shows different characteristics at each moment. The time domain analysis method
mainly extracts the EEG signal features at each time node from time, which is the earliest
and most intuitive feature extraction method used, easy for people to understand, and
can obtain both time domain and frequency-domain features. However, the algorithm is
complex and computationally intensive, which is difficult to meet the real-time require-
ments of the BCI [17]. And the method is highly subjective, largely influenced by the
analyst’s thoughts, and it is often difficult to objectively evaluate EEG signals.

The time domain method first extracts and analyzes the EEG signals for every single
channel, then fuses the features of all acquired channels into a large feature set and
applies this feature set to a single motion imagery paradigm, Table 3 summarizes sev-
eral commonly used methods employed for time domain feature extraction. To extract
effective time domain features, the EEG signal needs to be digitally filtered to extract
the values of the motor rhythm components in the frequency band of interest to the
researcher, and then the energy values of the filtered frequency band power features are
calculated. Mathematical statistical methods such as mean, root mean square, standard
deviation, and variance are all widely used in MI task classification [18].
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4.2 Frequency Domain Methods

Spectral Domain Methods (SDM) are used to extract frequency domain information
from EEG signals. Some statistical methods in the time domain (such as mean, standard
deviation, variance etc.) are also applicable in the frequency domain. Samuel [23] used
12 spectral domain descriptors (SDD) and 20-time domain descriptors (TDD) for a total
of 32 EEG Feature extraction methods were used to decode the MI task for different
limbs, and the results showed an average accuracy of 99.55% for a set of optimal SDD
and 90.68% for a set of optimal TDD by a linear feature combination technique. The
power of specific frequency bands, such as δ, θ, α, β, and γ bands, can be analyzed using
the fast Fourier transform (FFT) [24].

The power spectral density method (PSD) is a frequency domain based method, PSD
is a measure of how the power of a signal is distributed over frequency, it is performed by
parametric or non-parametric methods, commonly used are Welch’s averaged modified
periodogram [25], Yule-Walker equation [26], Lomb-Scargle periodogram [27], Spectral
entropy [28].

4.3 Time-Frequency Domain Methods

For EEG signals with more prominent time-frequency characteristics, this is generally
analyzed by time-frequency methods, which means that the EEG signal can be extracted
in both time and frequency domains simultaneously. Short Term Fourier Transform
(STFT) [29] and Wavelet Transform [30] are the more commonly used analysis meth-
ods in the time-frequency domain. STFT first splits the EEG signal into overlapping
time frames and then performs Fast Fourier Transformation (FFT) on the time frames
by a fixed window function. FFT has the advantages of simple calculation and short
computation time, so it has been widely used. Wavelet transform is a decomposition of
the signal into wavelets, which is a finite harmonic function (sin/cos). The wavelet trans-
form has a flexible time-frequency resolution, the signal is progressively refined using
a variable time-frequency window, and the energy intensity or density of the signal can
be represented in both the time and frequency domains [31].

Main formulas of STFT:

S(m, k) =
∑N−1

n=0
s(n + mN )�(n)e−j 2�N nk (1)

Main formulas of Wavelet Transform:

ψs,τ (t) = 1√
s
ψ(

t − τ

s
) (2)

Empirical modal decomposition (EMD) is an analysis method similar to Wavelet
Transform, but instead of decomposing the EEG signal into wavelet functions, it decom-
poses the EEG signal into intrinsic mode functions (IMF), which are simple oscillatory
functions in mathematics, and the IMF capture the frequency signals in order from high
to low.

Main formulas of EMD:

x(t) =
∑n

i=1
ci(t) + rn(t) (3)
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4.4 Spatial Domain Methods

Although the time domain method has been used earlier, only a single channel can be
selected for EEG signal extraction and analysis at a time, and the algorithm is more
cumbersome. The spatial domain method extracts features by combining multiple chan-
nels with certain feature relationships, and it can process multiple channels at a time,
among which blind source separation (BSS) [32] is a widely used unsupervised feature
extraction method. Cortical current density (CCD) and independent component analy-
sis (ICA) are both good applications of the blind source separation method. The blind
source separation method is an unsupervised feature extraction method in which there
is no correspondence between classes and features.

Main formulas of BSS:

x(t) = As(t) (4)

s
′
(t) = Bx(t) (5)

where x (t) is the vector of the mixed signals, s (t) is the vector of sources, and A is
the unknown non-singular mixing matrix. They aim to find a matrix B that reverses the
channels back into their sources.

Common Spatial Pattern (CSP) is a supervised feature extraction method based
on classes and features, which can effectively detect event related desynchronization
(RED), and the method has a high recognition rate and low computational complexity
and is more widely used in BCI. The preprocessed EEG data are first subjected to
wavelet transform, and then the wavelet transformed finite harmonic function is used as
input for the common spatial mode transformation. This enables the transformation of
EEG information into another new space that minimizes the variance of the class signal
[33]. This spatial filtering algorithm can be considered as a data driven dimensionality
reduction method to improve the variance difference between the two conditions. The
common spatial frequency subspace decomposition (CSFSD) used by Ramoser [34] and
Choi [35] method is an improvement of the CSP method.

Main formulas of CSP:

J (ω) = ωTC1ω

ωTC2ω
(6)

where C1 and C2 represent the estimated covariance matrix of each MI class. The above
equation can be solved while using the Lagrange multiplier method.

4.5 Spatio-Temporal Domain Methods

The combination of time domain feature extraction methods and space-domain feature
extractionmethods results in spatio-temporal domain feature extractionmethods, and the
more common spatio-temporalmethods in the past were the Riemannian geometry based
methods. Riemannian flow shape is formed by using EEG data with flow characteristics
and sample covariance matrix (SCM) acting in symmetric positive definite (SPD) matrix
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space [36]. The distances of Riemannian manifolds are curves not straight lines, which
can be calculated using the affine invariant Riemannian metric (AIRM) [37].

Most of the remaining spatio-temporal domain methods are based on deep learning.
For example, the new method proposed by Echeverri [38] in 2019 uses a blind source
separation (BSS) algorithm to separate the single channel signal into independent com-
ponents of the estimated source signal, and then uses the continuous wavelet transform
(CWT) for 2D representation of the separated independent components, and finally uses
a convolutional neural network (CNN) method for classification. Yang [39] proposed
a method using a long short term memory network (LSTM) and convolutional neural
network to extract temporal and spatial features from the raw EEG signal, followed by
extracting the spectral information of the EEG signal by discrete wavelet transform.
Li [40] proposed an end-to-end EEG decoding framework by first extracting spatial
and temporal features from the raw EEG signal, and then by using wave amplitude-
scramble data enhancement assisted by channel-projection mixed-scale convolutional
neural network (CP-MixedNet) technique to improve the decoding accuracy.

4.6 Spatio-Spectral Domain Methods

The combination of spatial domain feature extractionmethods and spectral domainmeth-
ods results in a spatio-spectral domain feature extraction method, and if temporal and
spatial filters can be learned simultaneously, a unified framework can extract information
from both spatial and spectral domains. For example, Wu [41, 48] proposed an iterative
spatio-spectral patterns learning (ISSPL) algorithm that learns both spatio-temporal fil-
ters and spectral filters simultaneously. Suk [42, 49] used the interplay between particle
filtering algorithms, feature vectors, and class labels information proposed a proba-
bilistic method for optimizing spatio-temporal spectral filtering of BCI based on EEG.
Zhang [43] proposed a structure based on deep recurrent and 3D convolutional neural
networks (R3DCNNs) that enables simultaneous learning of EEG signal features from
spatial, spectral, and temporal dimensions. Bang [44] proposed to superimpose the fil-
tered spectral filters and construct a 3-D-CNN feature map, and by using this feature
map, a layer-by-layer decomposition model of the framework was implemented and
experimental accuracy was ensured.

5 Classification of MI EEG Signals

A feature classification algorithm is to classify the extracted feature vectors according
to the target discriminant criterion to obtain the best classification result, which is the
mapping from the feature space to the target space, and usually consists of three parts: the
mapping function, the objective function, and theminimization/maximization algorithm.
Among them, the mapping function determines the feature space and the approximation
ability of the classifier, the objective function describes the problem to be solved by
the classifier, and the minimization/maximization algorithm is to find the best mapping
function to ensure the mapping of the data to the target space.

Algorithms such as Linear Discriminant Analysis (LDA), Support Vector Machine
(SVM), Multilayer Perceptron (MLP), and Bayesian classifier are feature classification
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stage commonly used algorithms. In recent years, some deep learning-based feature
classification algorithms have been proposed, but the feature classification stage of deep
learning based on motion imagery is still difficult to be widely used due to noise, the
correlation between channels, and small dataset of subjects [45].

6 Conclusions

This paper introduces the research of brain-computer interface based onmotion imagery,
which mainly involves the classification of brain-computer interface, an overview of
EEG signal and signal acquisition, pre-processing of MI, feature extraction, feature
classification methods etc.

With scientists’ research on MI-BCI, various signal processing methods have made
some progress and the performance of algorithms has improved substantially. However,
the research on MI-BCI is far from over, and there are still some key issues waiting to
be solved. For example, due to the extreme nonlinearity and non-smoothness of EEG
itself, the target user often needs to conduct a large number of training experiments,
which leads to a longer calibration period of a MI model. Current research on motor
imagery is mainly focused on offline models, and research onMI in online models needs
to be enhanced. Researchers should set a unified BCI criterion for algorithm evaluation,
which in turn can better measure performance improvement.
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