
Automated Cobb Angle Measurement Using
MVIE-Net Combined with Vertebral

Segmentation and Landmarks Detection

Caijun Gan, Xuqing Wang(B), and Huadeng Wang

Guilin University of Electronic Technology, Guilin, China
dants2231111@gmail.com

Abstract. The Cobb angle is the most widely used measurement to quantify
the magnitude of scoliosis. Accurate automated measurement of the Cobb angle
can improve the efficiency of scoliosis diagnosis. The existing direct estimation
of Cobb angle cannot extract structural information of the spine and lacks inter-
pretability. Curvature-based Cobb angle estimation rely on vertebral feature infor-
mation tend to focus on a single landmark or segmentation information and cannot
provide robust vertebral feature information for post-processing of curvature cal-
culations. In this paper, we propose a novel curvature-based method to automatic
Cobb angle measurement. The proposed Multi-task Vertebra Information Extrac-
tion network (namelyMVIE-Net) is used to predict vertebra contour and keypoint
confidence map simultaneously. And we pair the vertebral corner points based
on the positional relationships contained in the vertebral contours and calculate
the Cobb angle accordingly. The performance on the public AASCE Challenge
dataset proves the efficiency of the proposed method. Experimental results on
external datasets demonstrate the more generalizability of the proposed method.
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1 Introduction

Adolescent idiopathic scoliosis (AIS) causes lateral curvature of the spine and rotation
of the thorax and usually occurs in adolescents at or around puberty [1]. The diagnosis of
AIS is based on accurate measurement of the Cobb angle. The Cobb angle refers to the
angle between the upper and lower endplates of the end vertebrae. Manually measuring
the Cobb angle clinically requires the radiologist to measure the angle of inclination
of each vertebra on the patient’s anterior and posterior radiographs, which is time-
consuming, and the accuracy is affected by factors such as end vertebra selection, intra-
observer and inter-observer variation, and so on. Therefore, it is necessary to propose
an accurate and robust automatic Cobb angle measurement method.

With the development of deep learning, many methods for automatic Cobb angle
measurement have been proposed. We roughly classify these methods into two cate-
gories: (1) Direct estimation of the Cobb angle, these methods regress Cobb angle [2–5]
from the original image [5] or coarse processing results of the original image such as
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coarse segmentation results [2, 3], spine centerline [4], etc., which achieve end-to-end
Cobb angle measurement, but ignore the importance of vertebral structures and lack
interpretability. (2) Curvature-based Cobb angle estimation methods that rely on verte-
bral features [6–11]. These methods first extract vertebral feature information through
neural networks, and then perform curvature calculation post-processing based on the
extracted features. For example, some works detect landmarks and thus calculate Cobb
angles by the landmarks [6–8, 10]. Some works calculate Cobb angle by segmenting
the vertebrae and finding the upper and lower end plates of the vertebrae [9, 11]. These
methods can obtain richer information about the spine structure for the subsequent treat-
ment of scoliosis, but they often focus on a single vertebral feature and cannot meet the
accuracy requirements of vertebral features for post-processing of curvature calculations.

Fig. 1. An overview of the proposed method.

In this study, in order to obtain interpretable Cobb angle calculation results, we dis-
card the end-to-end regression angle approach and choose the post-processing approach
to calculate Cobb angle. Given the advantages and disadvantages of the landmarks detec-
tion and contour segmentation, we combine the two approaches through the proposed
MVIE-Net. We use the more robust confidence map to locate landmarks, since the direct
landmark regression approach is vulnerable to accuracy and robustness. we generate
confidence maps at landmark locations and obtain the coordinates of landmarks by seg-
menting and parsing the confidence maps. The proposed MVIE-Net adopts a dual-task
codec structure, where two tasks share the same encoder and have independent decoders,
and the tasks interact with each other through a jump connection. We pair landmarks
based on the location information obtained from vertebral contour segmentation.

In summary, the main contributions of this study are as follows:

– We use confidence maps to locate landmark coordinates, transforming the traditional
points regression task into a confidence map segmentation task.

– We propose the simple and efficient multi-task learning framework MVIE-Net to
simultaneously segment the vertebral contour and the confidence maps of landmarks.

– We combine vertebral contour information and landmarks information and match the
landmarks of vertebrae by the relative position relationship between contours.
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2 Method

As shown in Fig. 1, the spine X-ray images are input to the proposed MVIE-Net to
generate segmentation results for vertebral contours and landmark confidence maps,
respectively. Next, landmarks are resolved in the confidencemap and paired left and right
according to the relative configuration of vertebrae. Finally, Cobb angles are calculated
from the paired landmarks.

2.1 Confidence Map of Landmarks

The vector T = (t1, t2, . . . , t34), B = (b1, b2, . . . , b34), C = (c1, c2, . . . , c34) repre-
sents the set of upper landmarks, lower landmarks and centers of mass of 12 thoracic
and 5 lumbar vertebrae in the spine, respectively, where t2j−1 = (t(2j−1,x), t(2j−1,y)),
b2j−1 = (b(2j−1,x), b(2j−1,y)), c2j−1 = (c(2j−1,x), c(2j−1,y)), j = 1, . . . , 17 denotes the
coordinates of the four corner points along the clockwise direction and the centroid of
the j-th vertebra, respectively.

Fig. 2. Confidence maps. (a)–(c) show the confidence maps generated at 68 landamrks for σ = 2,
4, 6. σ = 2 is not conducive to the segmentation of the confidence maps, and σ = 6 radiative range
intersects, so we set σ = 4. However, integrating all key points into one confidence map makes
the resolution of the segmented points difficult, so as shown in (d)–(f), three confidence maps are
generated at the upper landmarks, the lower landmarks, and the centroid the vertebrae confidence
maps.

To estimate the locations of 85 key points (68 landmarks and the 17 centroids of
the vertebra), we employ confidence maps [12, 13] to represent the belief of each pixel
location x = (

x′, y′), x ∈ I with respect to the landmark and centroid. Considering
the interference of intersecting confidence maps at different key points to parse the
landmarks, we generate three confidence maps at the upper landmarks, lower landmarks,
and form center of the vertebrae as the segmentation labels for landmark detection, which
is defined by Eq. (1), Eq. (2), Eq. (3) respectively:

�t(x) = (exp(−‖x − t1‖2
2σ 2 ), ..., exp(−‖x − t34‖2

2σ 2 )), (1)
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�b(x) = (exp(−‖x − b1‖2
2σ 2 ), ..., exp(−‖x − b34‖2

2σ 2 )), (2)

�c(x) = (exp(−‖x − c1‖2
2σ 2 ), ..., exp(−‖x − c17‖2

2σ 2 )), (3)

where σ is the radiation radius of the confidence map generated by the key points. We
tested the effect of different σ and finally set σ = 4, as shown in Fig. 2.

2.2 The Proposed MVIE-Net

As shown in Fig. 3, the hard parameter sharing structure [14] is used in our multi-task
learning framework taking into account the similarity of vertebral contour segmenta-
tion and keypoint detection tasks. The two tasks share encoders with unique symmetric
decoders. The basic convolution module consists of two 3 × 3 convolutions. ELU acti-
vation function and Batch Normalization are used to optimize the model parameters.
The codec side uses jump connections to fuse low-level spatial location features with
high-level semantic features [15].

Fig. 3. MVIE-Net architecture. The proposedMVIE-Net is designed to perform vertebral contour
segmentation and key points detection tasks at the same time.

On the encoder side, we extract the features of the image using the base convolution
modules, and each basemodule is followed by amax pooling to halve the image size, and
finally,we reduce the size of the featuremap to 1/32 of the original size bydown-sampling
5 times.

On the decoder side, we halve the channels and double the feature map size using
a 2 × 2 transposed convolution. The feature information of the last layer of the two
decoders is fused together byconcatenation, which allows the two tasks to interact with
each other. At the end of the two decoders, we use two binary cross entropy losses Lc,
Lp as the loss functions for the two tasks.Then the loss function of the whole network is
L = λLc + Lp, and by experiment, we set λ = 0.3.
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2.3 Cobb Angle Measurement

Given the lack of interpretability of regressing the Cobb angle directly from the model,
we calculate the Cobb angle by mathematical modeling. We first extract the information
needed to calculate the Cobb angle from the network segmentation results, and then
model and calculate the Cobb angle based on the Cobb angle definition.

Post-processing Contour Segmentation Results
As shown in Fig. 4, we binarize the vertebral segmentation results and then calculate
the minimum bounding rectangle of the vertebral contour. A line passing through the
centroid of the vertebra and parallel to the MBR intersects the left and right midpoints
of the vertebral contour. Intercept the middle 2/3 of the line connecting the left and right
midpoints and make a vertical line through the two endpoints of the intercepted line.
By fitting a straight line to the set of upper and lower boundary points of the vertebrae
intercepted by two vertical lines, we obtain the upper and lower end plates similar to
those manually labeled by the physician.

Fig. 4. Post-processing process of vertebral contour segmentation results. (a) vertebral contour
segmentation results (b) vertebral contour point set (green) and the centroid of vertebra (red) (c)
the four points of the minimum bounding rectangle (yellow) (d) Contour left and right midpoints
(darkred) (e) vertebra upper and lower endplate point set (purple) (f) results of linear fitting of the
upper and lower edge point sets (blue) (Colour figure online)

Post-processing Key Points Segmentation Results
As shown in Fig. 5, we parse the coordinates of the corresponding key points by finding
themaximumvalue of the confidence region generated by each point. After obtaining the
upper landmarks and lower landmarks of the vertebrae, the two upper and lower vertices
belonging to the same vertebrae are paired according to the left and right midpoints of
the vertebrae contours.

Methods of Calculating the Cobb Angle
We learned that the label of the Cobb angle used by the public AASCEChallenge dataset
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Fig. 5. Post-processing process of key points segmentation results. (a) upper landmarks con-
fidence map segmentation result (b) lower landmarks confidence map segmentation result (c)
coordinates paresd out from the two confidence map (green is the upper, red is the lower) (d) the
position of the left and right center points of the contour (dark red hollow points). (e) results of
landmark matching (Colour figure online)
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Fig. 6. Cobb anglemeasurement using landmarks. (a) the vectors A, B used to calculate the angle.
(b) Calculating angles using the parallel property (c) Simulate the upper and lower end plates using
the upper and lower landmarks connections

[16, 17] is calculated by Eq. (4):

angle = arccos(
A · B

‖A‖ · ‖B‖ ) (4)

As shown in Fig. 6 (a), the vectors A = p2 − p1,B = p4 − p3 represent the vectors
of any two different vertebrae pointing from the midpoints of the two landmarks on the
right to the midpoints of the two landmarks on the left.

We found that the algorithm given in the dataset uses the line connecting the mid-
points of the left and right landmarks to simulate the vertebral endplates, which is
different from the upper and lower endplates selected by physicians in clinical practice.
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To investigate the effect of using different information on the Cobb angle measurements,
we propose the following three ways to calculate the Cobb angle:

1. Midpoint: To obtain the angle of inclination of each vertebra, we let ka = y2 −
y1/x2− x1, kb = y4− y3/x4− x3, α = arctan(ka), β = arctan(kb), (see Fig. 6(b)),
then the angle between vertebrae angle = α+β. Since the midpoint of the landmark
is used, the results obtained by this method are the same as the method Cobb angle
measurements given in the dataset.

2. Endpoint: As shown in Fig. 6(c), we follow more closely the way the clinician
looks for the endplate, using the upper landmark connection of the vertebra above
to simulate the upper endplate the lower landmark connection of the vertebra below
to simulate the lower endplate.

3. Straight-line fit: In order to fully simulate the way physicians clinically mark the
upper and lower endplates, we use the contour information alone to calculate the
Cobb angle. We consider the straight lines fitted to the upper and lower boundaries
of the contour as the upper and lower endplates of the vertebrae and calculate the
Cobb angle from this.

3 Experimental Details

3.1 Dataset

The public AASCE Challenge dataset used for the experiment contained a total of 609
anterior-posterior radiographic images with labels. The dataset is divided by the provider
into 481 images for training and 128 images for testing. Each imagewasmanually labeled
by a clinician with 68 landmarks in 12 thoracic and 5 lumbar vertebrae. These images
are of varying sizes (∼2500 × 1000).

3.2 Implement

Wemanually labeled 17 vertebrae as our contour segmentation labels using the labeling
tool labelme, and generated key point segmentation labels by Eq. (1), Eq. (2), Eq. (3).
To alleviate the overfitting problem of small datasets, we expanded the dataset through
rotation, mirroring, and gamma transform (see Fig. 7).

We trained the proposedMVIE-Net in a Tesla T4 GPU using the pytorch framework.
We resize the image to a fixed size of 768 × 256 while keeping the width and height of
the image constant. The network was trained 500 epochs using the SGD optimization
and stopped when the verification loss was not significantly reduced.

3.3 Evaluation Metrics

We qualitatively evaluated the vertebral segmentation results using the Dice Coefficient
and the Intersection over Union (IoU) metrics which are defined as Eq. (5) and Eq. (6):

Dice = 2
|Vseg ∩ Vgt |

|Vseg | + |Vgt | = 2TP

FP + 2TP + FN
, (5)
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Fig. 7. Data augmentation. (a) resized image with its corresponding contour segmentation labels
and upper landmarks confidence map (b) after rotating (c) after vertical mirroring

IoU = |Vseg ∩ Vgt |
|Vseg ∪ Vgt | = |Vseg ∩ Vgt |

|Vseg | + |Vgt | − |Vseg ∩ Vgt | = TP

FP + TP + FN
. (6)

Following the AASCE Challenge, we use Symmetric Mean Absolute Percentage
Error(SMAPE) and mean absolute error (MAE) to evaluate the accuracy of the Cobb
angle measurements which can be computed as Eq. (7) and Eq. (8):

SMAPE = 1

N

∑N

i=1

∑3
j=1 |Xij − Yij|

∑3
j=1 |Xij + Yij|

× 100%, (7)

MAE = 1

N

∑N

i=1
(
1

3

∑3

j=1
|Xij − Yij|), (8)

where the Xij and Yij is the estimation of the j− thCobb angle and corresponding ground
truth for the test image i. N is the number of testing images.

4 Results and Analysis

To evaluate the proposed method, we tested the segmentation results of the proposed
network and explored the effect of different Cobb angle calculationmethods on the Cobb
angle measurement results.

4.1 Segmentation Results of MVIE-Net

Wecompare the segmentation results of the two tasks ofMVIE-Net separatelywith some
efficient medical image segmentation networks. Table 1 shows the qualitative results of
the proposed model on vertebral segmentation. Compared with the results of U-Net and
U-Net++, the proposedmodel obtains better vertebral segmentation results. Although the
proposed model has a larger number of parameters, it handles two tasks simultaneously.
When using U-Net and U-Net++ to process two tasks simultaneously, the number of
parametres would be twice as large as it is now, which means that our model reduces the
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Input CP-Net(Ours) U-Net U-Net++ GT

Fig. 8. Qualitative results of vertebrae segmentation. GT refers to the ground-truth landmarks.
The red circle in U-Net marks the wrong segmentation, and the red circle in U-Net++ marks the
missed vertebrae. (Colour figure online)

U-Net U-Net++

CP-Net(ours) GT

Fig. 9. Qualitative results of keypoints segmentation. The 7 images from left to right are the input
image, the confidence map of the upper landmark, the confidence map of the lower landmark, the
confidence map of the shape center, and the visualization of the confidence map on the original
image. The red circle in U-Net shows the case where two points are connected, and the red circle
in U-Net++ shows the segmentation anomaly of the points. (Colour figure online)

number of parametres by 4.71M compared to U-Net which also implements two tasks.
Figure 8 shows the quantitative results for vertebral segmentation, and it can be seen
from the red circles that the proposed network shows a significant improvement over
U-Net and U-Net++ segmentation results, reducing the number of false segmentations
that occur. Table 2 shows the qualitative results of the proposed model on keypoint
segmentation. The qualitative metrics are generally low because the confidence maps
generated by the key points are small relative to the images, but as can be seen in Fig. 9,
the segmentation of the network can achieve the desired results, and as can be seen
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from the red circles, the proposed network has clearer and non-adhesive confidence map
segmentation results.

Fig. 10. Comparison and differences between the Cobb angle estimations and Cobb angle ground
truth.

Img1 Img2 Img3 Img4

Fig. 11. Visualization of the straight-line fit method for estimation of four images.

4.2 Cobb Angle Measurement Results

We tested three Cobb angle calculation methods (midpoint method, endpoint method,
and straight-line fit method), and the results are shown in Table 3. The Midpoint method
achieved the best results because it is consistent with the Cobb angle labels in the dataset,
which all pass through the vertebral The left and right midlinks simulate the endplates
of the vertebrae.
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Table 1. Qualitative vertebral segmentation results

Dice IoU Params (M)

U-Net [15] 81.567 69.166 7.78 × 2

U-Net++ [18] 82.422 70.12 9.04 × 2

MVIE-Net 85.323 74.573 10.85

Table 2. Qualitative keypoints segmentation results

Upper points Lower points Centroids

Dice IoU Dice Iou Dice IoU

U-Net 33.029 20.815 31.412 19.686 42.329 25.346

U-Net++ 38.783 24.128 37.709 23.308 42.715 27.235

MVIE-Net 40.292 25.283 39.496 24.678 45.029 29.094

Table 3. Cobb angle calculation results of 3 methods

Midpoint Endpoint Straight-line fit

MAE (degree) 3.31 3.75 7.03

SMAPE (%) 7.59 8.54 16.15

Table 4. Comparison with the state-of-the-art methods

MAE (degree) SMAPE (%) w/calculate

Landmark Net [19] 10.48 26.94

Seg4Reg [2] 3.96 7.64

Seg4Reg+ [3] 3.73 7.32

AEC-Net [19] 4.90 23.59 �
SLSN [7] 4.28 9.712 �
Vertebra-focused [6] 4.07 9.53 �
VF [20] 3.51 7.84 �
Ours 3.31 7.59 �

In order to show the accuracy of the proposed method in Cobb angle estimation,
we compared the results of Cobb angle estimation with those of other methods, and the
comparison results are shown in Table 4. The proposed method obtains the best results
among all curvature post-processing methods for calculating Cobb angles, with MAE
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metrics reaching SOTA. Although the direct regression Cobb angle method [4] reaches
SOTA in SMAPE metrics, the approach focused only on the Cobb angle calculation
results and was unable to obtain information on the the end vertebrae, which is equally
important for the diagnosis of scoliosis. Figure 10 shows the histogram of the difference
and scatter plot between the Cobb angle estimation of the proposedmethod and the Cobb
angle groud truth.

Table 5. Cobb angle estimations for 4 scoliosis radiographs

Img1 Img2 Img3 Img4

Cobb Angle Upper Lower Upper Lower Upper Lower Upper Lower

GT 39° 18° 39° 28° 49° 34° 60° 49°

Midpoint 44.2° 15.9° 47.4° 28.8° 52.9° 43.7° 61.5° 51.6°

Endpoint 45.2° 15.1° 48.5° 25.4° 51.8° 43.7° 60.4° 49.9°

Straight-line fit 42.1° 17.4° 42.4° 25.2° 51.8° 29.6° 62.1° 54.5°

It is important to note that we also tested our method on four scoliosis radiographs
with the Cobb angle manually marked by the physician (see Fig. 11). The test results
are shown in Table 5, where the straight-line fit method has the smallest SMAPE (3.88,
compared to 5.51 for the midpoint method and 5.98 for the endpoint method), due to
the fact that the method is more similar to the way clinicians determine the endplates.
Therefore, we concluded that although the midpoint method showed better results on
the public AASCE challenge dataset, the estimations of the straight-line fit method were
more similar to the physician’s manually labeled Cobb angle.

5 Conclusion

This paper presents a new method for automatic measurement of the Cobb angle of sco-
liosis, using a network to extract scoliosis information and post-processing to calculate
the Cobb angle, which can obtain more comprehensive vertebral contour information for
visualization of the spine than direct Cobb angle regression. First, the proposed multi-
task learning network MVIE-Net can simultaneously perform vertebral contour and key
points detection, and the MVIE-Net network adopts a single encoder and dual decoder
structure, and the symmetric structure and jump connection between the dual decoders
improve the generalization ability of the network. Then, we proposed and tested three
angle calculation methods based on the definition of the Cobb angle, namely the mid-
point method provided by the public AASCE Challenge dataset, as well as the extended
endpoint method, and the straight-line fit method that simulates the physician’s position-
ing of the endplate. MVIE-Net with midpoint method achieved SOTA in MAE metrics
and the best SMAPE metrics among the known methods using post-processing on this
dataset. The SMAPE of all three methods was lower than 6 on the physician manually
labeled Cobb angle image processing, indicating that the proposed method can be used
as an adjunct to the physician’s clinical scoliosis Cobb angle measurement.
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