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Abstract. Aiming at the problem that the differential evolution algorithm easily
falls into a local optimum and results in premature convergence, a new differ-
ential evolution algorithm with an adaptive population size reduction strategy
(APRDE) is proposed. Firstly, in the mutation and crossover operation, to bal-
ance the local exploitation and global exploration capabilities of the algorithm, a
parameter adaptive tunning scheme based on the hyperbolic tangent function and
Cauchy distribution is proposed to adaptively adjust the parameter factors. Sec-
ondly, an ordered mutation strategy is adopted to guide the direction of mutating
and enrich the diversity of the population. Lastly, after each evolution iteration,
adaptively reducing the population size according to the error between the fitness
values of individuals and the current optimal. The proposed algorithm is compared
with 5 other optimization algorithms on 8 typical benchmark functions. The results
show that the algorithm has a great improvement in solution accuracy, stability
and convergence speed.
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1 Introduction

Coal has always been the main energy source in China, and accounts for more than
60% of consumption, it will remain be the main energy source in China until 2050.
Coal intelligent mining is a new stage in the development of coal comprehensive mining
technology, which is also an inevitable requirement for the technological revolution and
upgrading development of coal industry [1]. Three-dimensional modeling of coal seams
at the fully mechanized mining face is an important foundation for coal enterprises to
realize “intelligent management and transparent mining”.

Researchers often use kriging interpolation to interpolate unknown regions in space
to build 3D models. For the problem that kriging interpolation is prone to overfitting
or underfitting in the fitting process of variogram, this paper proposes a Differential
Evolution algorithm with Adaptive Population size Reduction (APRDE) to optimize
the kriging interpolation algorithm. After experimental verification, the adaptive differ-
ential evolution algorithm proposed in this paper has higher solution accuracy, faster
convergence speed and better stability.
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2 The APRDE Algorithm

The Differential Evolution (DE) algorithm [2] is an effective heuristic search algo-
rithm that can be used to solve parameter optimization problems. This paper optimizes
the DE algorithm by modifying the variation strategy, parameter adaptive adjustment
mechanism, and population reduction strategy.

2.1 Variation Strategy

The mutation process and the crossover process are the core parts of the differential
evolution algorithm, and the mutation formula is:

vi =x; + F(x; — x;) (1

where v; is the individual after mutation, x;, x;, x, are the random individuals in the
current population and i # j # r, In the process of mutation, in order to enrich the
diversity of the population and improve the local exploitation ability of the algorithm,
this paper adopts an ordered mutation strategy [3], and the mutation equation is:

Vi = Xi + F (Xpest — Xi) + F Ciddie — Xworst) 2)

Three randomly selected individuals from the current population are sorted according
to the fitness value to obtain Xpeg, Xmiddie, Xworst- With the current vector as the base
vector, avoiding the algorithm from falling into a local optimal solution or stagnation.
Combining the base vector and two ordered difference vectors, enriching the diversity
of the population, and making the direction of variation gradually approach the optimal
solution.

2.2 Parameter Adaptive Adjustment

In the variation process, the variation factor F controls the magnitude of the base vector
change. To balance the global exploration and local exploitation abilities of the algorithm,
the hyperbolic tangent curve between [—4,4] [4] is used in this paper to control the
variation of the mutation factor with the following variation equation.

tanh(74+8 %)(Fmax*kﬂmin) (3)

F = Fmax;‘Ffrli)L +

where Fin, is the minimum value and Fpy.x is the maximum value of the variation
factor. G4y is the maximum evolutionary generation and G is the current evolution-
ary generation. The hyperbolic tangent curve changes very little at the beginning and
the end. The variation factor varies approximately linearly between the maximum and
minimum values, striking a balance between global exploration and local exploitation
ability. Besides, a variation factor based on normal distribution is used in this paper to
enhance the diversity of the variation vector and jump out of the local optimal solution.
The variation process of the variation factor is as follows:

£ — | randn(0.5.0.1). [xpes g — Xpest,g+1] < 1078 @
- equation(7), otherwises
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The crossover process of the differential evolution algorithm is as follows:

vij, rand(0,1) < CR or j = rand (1, D)

ujj = . @)
Xij, otherwises

The crossover process is to operate on each variable in an individual, and D denotes
the number of variables. The variables in the mutated individual are crossed with those
in the initial individual by setting the conditions to obtain the crossover individual. To
accommodate the crossover process, this paper changes the crossover factor in a linearly
reduced manner with the evolutionary process, and the change equation is:

G(CRmax - CRmin)

CR = CRyax — G (6)
m

where the change range of the crossover factor is [CR,i, CRynax]. The adaptive differ-
ential evolution algorithm proposed in this paper adaptively changes the variance and
crossover factors in evolutionary process, and balances the global exploration and local
exploitation ability to some extent in the algorithm search process.

2.3 Population Reduction Strategy

Reduction of populations during evolution process of differential evolution algorithm
can effectively capture useful individual information, reduce unnecessary computational
resources, and improve convergence speed. This paper proposes a nonlinear population
reduction strategy to control the reduction of population size according to the hyperbolic
tangent function curve between [—2.5,4]. Through a predetermined maximum evolu-
tionary generation Gp,x, the reduction function changes with the current evolutionary
generation as the independent variable. The reduction equation is as follows:

Gmax—G _ .
F — NPmch‘z'rNPmin + [anh<72.5+4.%\;§>(1\/pmax NPmm) (7)

In the early stage of evolution, the size of population is large, and to ensure the
diversity of population and to improve the global search ability of the algorithm. As
the evolutionary process proceeds, the solved optimal individuals are closer and closer
to the optimal solution. To save computational resources and improve the convergence
speed, some individuals far from the optimal solution are removed. In the later stage of
the evolutionary process, the population iterates around the optimal solution. To improve
the local search ability, the population size is maintained at the small value and local
search is performed carefully to ensure that the optimal solution in that range is found.

3 Numerical Experiment and Analysis

The experiments in this paper use a 64-bit Windows 10 operating system. The processor
is an Intel(R) Core (TM) i5-5200U CPU @ 2.20 GHz with an Intel(R) HD Graphics 5500
GPU. Python 3.5.2 is selected as the experimental code language, and the experiment is
run in PyCharm software to complete the experimental process.
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3.1 Experiments Setup

In this paper, we choose five comparison algorithms, namely DE [2], LSHADE (Linear
Success-History based Adaptive DE) [5], AGDE (Adaptive Guided Differential Evo-
lution) [6], AMODE (a DE algorithm based on Adaptive Mutation Operator) [7] and
ASVDE (modified DE algorithm based Adaptive Secondary Variation) [8]. The com-
parative analysis of the algorithms is performed on eight typical benchmark functions
in CEC2014 [9], which are unimodal £, f», simple multimodal f¢, f12, hybrid /17, f22,
and composite functions f24, f27, as shown in Table 1. D is the dimensionality of the
problem. The search space of these benchmark functions is [-100,100], with more local
optima and function values greater than 0. Therefore, the fitness function is defined as f
=fx)—f (™). f(x) is the function value calculated by the algorithm, f (x™) is the known
optimal value of the function. The closer the f is to zero, the closer the function value
calculated by the algorithm is to the global optimum. The parameter variables set for the
comparison experiments are shown in Table 2.

Table 1. Some benchmark functions of CEC2014

f No. Functions F¥ =Fi(x*)
h 1 Rotated High Conditioned Elliptic Function 100

Hh 2 Rotated Bent Cigar Function 200

f 6 Shifted and Rotated Weierstrass Function 600

fa 12 Shifted and Rotated Katsuura Function 1200

fs 17 Hybrid Function 1 (N = 3) 1700

J6 22 Hybrid Function 6 (N = 5) 2200

fr 24 Composition Function 2 (N = 3) 2400

13 27 Composition Function 5 (N = 5) 2700

3.2 Comparison of Solution Accuracy and Stability

With the variable settings and experiments conducted in Table 2, the six comparison
algorithms were run 21 times on the benchmark functions in the dimensions of D = 30.,
the average (avg) and standard deviation (std) of fitness function values were calculated
and recorded in Tables 3, with the optimal values bolded in the table.

As shown in Table 3, the mean values solved by the APRDE algorithm on eight
functions are 5.51E+02, 0.00E-00, 2.65E-01, 6.00E-01, 2.24E+02, 2.84E+01, 2.22E+02
and 3.20E+02, which are closer to the optimal solution than the mean values solved by
other algorithms. The results obtained by the APRDE algorithm are closer to the optimal
solutions compared with other algorithms, and also have better performance for solving
high-dimensional optimization problems. The APRDE algorithm solves to the closest
global optimal solution on 88% of the functions. The standard deviation range obtained
by APRDE is 0.00E+00 to 3.85E+05, which has the smallest value compared with other
algorithms, so the algorithm has the best stability.
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Table 2. Parameter settings of comparison algorithms

DE APRDE AGDE LSHADE AMODE ASVDE
Gmax = D * 100
NP =100
F=0.75 | Fpax = 0.9 F = F=0.75 F=0.75 Fmax = 0.9
randn(0.1, 1)
CR=0.7 |Fpjn =0.2 Frax = 0.2 CR =0.7 CR =0.7 Frmax = 0.2
CRmax = 0.9 |CRy = p=0.1 C = Mr =0.99
[0.9, 1.00] [0.05, 0.95]
CRpin = 0.2 H=5 Max_count =
5
NPpin = 50 MF = MCR = CR=0.7
0.5NPpin = 10

Table 3. Results of comparison algorithms on benchmark functions for D = 30

Function | Criterion | DE AGDE LSHADE | AMODE | ASVDE | APRDE
N avg 5.46E + 07 | 1.97E+04 | 1.43E+04 | 2.91E+05 | 1.11E+06 | 5.51E+02
std 1.57E+07 | 3.91E+03 | 3.45E+03 | 1.03E+05 | 1.05E+06 | 3.91E+02
H avg 2.73E+07 | 9.86E+03 | 7.15E+03 | 1.46E+05 | 5.53E+05 | 0.00E+00
std 2.95E+07 | 1.02E+04 | 7.55E+03 | 1.63E+05 | 9.27E+05 | 0.00E+00
NE) avg 1.82E+07 | 6.57E+03 | 4.77E+03 | 9.70E+04 | 3.69E+05 | 2.65E-01
std 2.73E+07 | 9.57E+03 | 7.03E+03 | 1.49E+05 | 8.00E+05 | 5.29E-01
fa avg 1.36E+07 | 4.93E+03 | 3.58E+03 | 7.28E+04 | 2.77E+05 | 6.00E-01
std 2.49E+07 | 8.76E+03 | 6.43E+03 | 1.36E+05 | 7.11E+05 | 8.26E-02
fs avg 1.10E+07 | 4.03E+03 | 3.11E+03 | 6.11E+04 | 2.22E+05 | 2.24E+02
std 229E+07 | 8.04E+03 | 5.82E+03 | 1.24E+05 | 6.46E+05 | 1.44E+02
fe avg 9.16E+06 | 3.37E+03 | 2.61E+03 | 5.10E+04 | 1.85E+05 | 2.84E+01
std 2.13E+07 | 7.49E+03 | 5.43E+03 | 1.15E+05 | 5.95E+05 | 6.82E+00
f avg 7.86E+06 | 2.92E+03 | 2.27E+03 |4.37E+04 | 1.58E+05 | 2.22E+02
std 2.00E+07 | 7.02E+03 | 5.10E+03 | 1.08E+05 | 5.55E+05 | 2.65E-01
13 avg 6.87E+06 | 2.60E+03 | 2.03E+03 | 3.83E+04 | 1.39E+05 | 3.20E+02
std 1.89E+07 | 6.62E+03 | 4.81E+03 | 1.02E+05 | 5.22E+05 | 4.02E+01

3.3 Comparison of Convergence Speed

When D = 10, the convergence curves of the six compared algorithms on each function
are shown in Fig. 1. From Figs. 1-a and 1-b, all algorithms show a single decreasing
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trend in the process of solving for unimodal functions, and the solution results are near
the optimal solution. Compared with other algorithms, the APRDE algorithm converges
the fastest, finds the global optimal solution first, and has the highest solution accuracy.
In the simple multimodal functions f3 and f4, the fitness function values solved by

20

DE
. APRDE
% 0 ,—3 -—- AGDE
- LSHADE
% o .g -~ AMODE
2 10 3 1 —— ASVDE
% 5-10
_20
s Of‘ 20
-30- -30
0 200 400 600 800 1000 0 200 460 600 800 1000
Iteration Reration
@) /i ®) f
0 15
k)
__3 -5 1.0
s 0.5
3-10 g
g s 00
g § 0.5
§ R
5 -20 @
g. -1.0
25 -15
-30 . : ‘ a0 _ : P — .
0 200 400 600 800 1000 0 200 400 600 800 1000
Iteration Iteration
© f3 @ f4
17.5
DE
. 6
2 A5 e APRDE
2 2
125 3 4 ---- AGDE
g 5 ——- LSHADE
8 10.0 § 5 AMODE
2 75 s —— ASVDE
§ 5o N
2_ 5.0 3 -
© s ©-2 B
0.0 . -4 . ’ ;
0 200 400 600 800 1000 0 200 400 600 800 1000
Iteration Iteration
(e) fs ® fs
5.6
6
Ssa4 5
g Is
§ 5
g5:2 24
a 3
s 5.0 53
2
C.s o
L TS om——————— - 1

400

0 200 600 800 1000 600 800 1000
Iteration Iteration
(e) f7 ® 13

Fig. 1. The convergent curve of comparison algorithms on eight benchmark functions.
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APRDE algorithm keep decreasing in the iterative process, the algorithm converges
faster and first finds the global optimal solution first in the f3 function, and in the
f4 function, the solved optimal is closer to the global optimal solution. Among the
above four functions, compared with the ASVDE, LSHADE and AGDE algorithms, the
APRDE algorithm not only finds the global optimal solution, but also converges faster
and more efficiently. In the hybrid and composite functions f5 ~ fg, the functions have
multiple local optimal solutions and larger local optimal values. The comparison results
shows that the convergence curve of the APRDE algorithm is decreasing and the solved
results are smaller and closer to the global optimal solution.

4 Conclusion

In the process of solving optimization problems, the differential evolution algorithm
tends to converge prematurely and falls into a local optimal solution or stagnation state.
In this paper, we propose a Differential Evolution Algorithm with Adaptive Population
size Reduction (APRDE) strategy to remedy the shortcomings of traditional differential
evolution algorithm. The APRDE algorithm proposes a parameter adaptive adjustment
mechanism to balance the global exploration and local exploitation ability in the search
process and adopts an ordered variation strategy to enrich the diversity of the popu-
lation and improve the convergence speed and solution accuracy of the algorithm. In
the evolutionary process, a nonlinear population reduction strategy is proposed to save
computational cost and improve the quality of computational results at the same time.
Compared with the other five optimization algorithms, the APRDE algorithm proposed
in this paper has a fast convergence speed, the optimal solution is obtained in 88% of
the tested functions, and the stability of the algorithm is relatively high.
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