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Preface

In recent years, artificial intelligence (AI) has attracted attention as a key for growth in
developed countries and developing countries. The attention has been focused mainly
on developing new deep learning-based information communication technology (ICT)
and Internet of Things (IoT) applications. Although recently developed deep learning
technology certainly excels in extracting certain patterns, there are many limitations.
Most of recent models are overly dependent on big data, lack a self-idea function, and
are complicated. In order to overcome these limitations and to solve the real-world
industrial problems, cognitive computing (CC) and computational neuroscience (CN)
are driving some of the best tools for future brain-inspired robots.

Rather than merely focusing on the development of next-generation AI models,
the 7th International Symposium on Artificial Intelligence and Robotics (ISAIR 2022)
aimed to provide a platform to share up-to-date scientific and industrial achievements of
general-purpose intelligence cognition methods. These methods provide efficient tools
to solve the issues of recent AI models, and capture remarkable human learning abilities,
combining the strengths of CC/CN and deep generative neural networks.

This proceedings collects the state-of-the-art contributions on the cognitive intel-
ligence, computer vision, multimedia, the Internet of Things, robotics, and related
applications presented at ISAIR 2022, held during October 21–23 in Shanghai, China.

We received 285 submissions from authors in over 10 countries around the world.
After the careful single-blind review process, 67 papers were selected based on their
originality, significance, technical soundness, and clarity of exposition. Each submission
was reviewed by at least 2 members of the Program Committee and the accepted papers
underwent further rigorous rounds of review.

It is our sincere hope that this volume provides stimulation and inspiration, and that
it will be used as a foundation for works to come.

October 2022 Shuo Yang
Huimin Lu

Shenglin Mu
Rushi Lan
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Abstract. Virtual surgical simulation trainings have advantages of repeatability,
convinient operation, strong immersion, etc. It can greatly reduce the cost of sur-
gical trainings and decrease the risk of surgery operations. In practice, virtual soft
tissue models require real-time generation of deformations during the interaction,
so as to provide force feedback. In this process, it requires that the rationality
of the model deformation may be fully considered as building the model. Mass
Spring Model is widely used in soft tissue modeling and deformation simulations
due to its simple structure and high efficiency. In order to make the virtual surgical
simulation more realistic and accurate, via the Unity3D software, a mass-spring
physics model is established based on the biomechanical characteristics of soft
tissue in this paper. Newtonian classical mechanics is used and the virtual brain
modeling and collision are performed by numerical simulations. The platform is
constructed using Unity 3D and C# software. Results show that our model may
accurately reflects the deformations of soft brain issue.

Keywords: Virtual surgical simulation · Soft tissue modeling ·Mass-Spring
Model · Deformation

1 Introduction

With the rapid development of virtual reality technology and modern medicine, the
cross-integration of various disciplines have gradually formed the medical virtual reality
technology. A key difficulty in virtual surgery research is the simulation of soft tissue
deformations, which provides users with virtual soft tissue force and deformations both
in the visual and tactile real recovery of the surgical scene [1]. Soft tissue modelling
techniques have been improved in the past decades,while there still existsmanyproblems
[2]. Currently, while real-time virtual surgery systems for soft tissues can meet the real-
time requirements in computation, while the accuracy of the simulation still needs to be
improved [3].
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In exist researches, many methods have been proposed for modelling soft tissues,
such as theMass-SpringModel (MSM), the Finite ElementModel (FEM) and theBound-
ary Element Method (BEM). Among them, the MSM and the FEM are the most com-
monly used. The central idea of the FEM is derived from engineering mechanics, which
usually views a deformed object as a collection of elastic models. Thus, it is highly
biomechanically realistic [4]. However, finite elements are relatively complex and inef-
ficient to Ycompute. Courtecuisse H et al. proposed a non-linear FEM for modelling
soft tissues [5]. The MSM is usually used for deformable surfaces and can simulate the
force deformation of soft tissuesmore realistically [6]. Gao et al. proposed amass-spring
method that takes into account anisotropy to accurately model soft tissue deformations
[7]. In recent years, most of the research has focused on improving the accuracy of the
MSM.

Based on existing researches [8–12], this paper uses Unity3d software and MSM
to model brain tissue according to the requirements of stability, accuracy and real time
data for virtual surgery simulations. It not only enables the modelling of the required
scenes, but also enables a better force feedback effect. Therefore, it may achieve a
visual and haptical realistic reproduction of the surgical scenes. The rest of paper is
organized as follows. The biomechanical properties of brain tissue and the MSM are
presented in Sect. 2, in which a model with topological relationships is developed for
brain tissues and the kinetic equations for the brain tissue model are accordingly given.
The experimental platform and simulation results are described in Sect. 3. Section 4
draws some conclusions.

2 Tissue Deformation Modeling and Kinetic Equations

2.1 Biomechanical Properties of Brain Tissue

Soft tissues have major differences compared to traditional materials, and almost all soft
tissues have both solid and liquid components. There are many types of soft tissues.
Their mechanical properties vary with different tissues due to differences in structure
and function [13, 14]. While the specific characteristics of soft tissues are different, they
basically have the following three characteristics: (1) Anisotropy, the internal arrange-
ment structure of soft tissues affects the tissue properties due to the different internal
cellular and tissue composition. (2) Viscoplasticity, soft tissues are not only elastic, but
also have frictional. (3) Nonlinearity, during the stress process of soft tissue, there is no
linear relationship between the change of stress and the strain of biological tissue.

2.2 Mass-Spring Model

The MSM typically treats a deformed object as a collection of mass points connected to
each other by springs. The deformation of soft tissues is caused by the motion of these
discrete masses connected by springs. The types of springs can be classified according
to their role: (1) Structural springs, maintain the structure of the soft tissue surface. (2)
Bending springs, prevent excessive bending of the soft tissue, and (3) shear springs,
simulate the shear properties of the soft tissue. The MSM is the first physical model
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proposed, and is also a classical deformation model, which is widely used in virtual
surgical soft tissue simulation research due to its computational simplicity and fast
modeling speed.

2.3 Physical Modeling of Brain Tissue

In this paper, we use MSM to model brain tissue. The classic MSM is a method of
simulating the deformation of an object usingNewton’s laws ofmotion. Since the density
of brain tissue is uniform, it can be approximated to the combinations of regularly
arranged particles, and the mass of brain tissue is evenly distributed on each particle.
This process is called discrete. Usually, the mass is connected to the particle with a
spring of non-natural length of zero, which is used to simulate the force deformation of
brain tissue.

The classic MSM topology model consists of structural springs, shear springs, and
bending springs, as shown in Fig. 1. Among them, the structural spring is used to simulate
the force along axis-X and axis-Y directions of brain tissue while the elastic coefficient
is very large. It mainly prevents the brain tissue from being subjected to greater pulling
force or pressure in the X and Y directions, avoid large deformation. Shear springs
are used to simulate the force on the tilt direction within brain tissues, and the elastic
coefficient is smaller relative to the structural spring. The purpose is to prevent unstable
changes in brain tissue during stretching and torsions. A bend spring is a particle that
connects two phased particles in the X and Y directions. It is used to simulate the brain
tissue in the deformation process edge smooth, and its elastic coefficient is small in the
simulation so that it can be ignored.

Fig. 1. Classic prime spring model topology

The MSM implemented in Unity3D is showed in Fig. 2 and Fig. 3. Figure 2 shows
the original state of the model when it didn’t hit by the ball, in which the ball in the
figure simulates the particle. The green line simulates the real spring. Figure 3 shows
the state of the MSM when it hits with a ball. If the ball hits with a large impact force,
it turns yellow as the deformation occurs around the impacted ball.
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Fig. 2. Original state

Fig. 3. Ball collision model

2.4 Kinetic Equations

In the MSM, the essence of the deformation of the model according to the external force
is the motion of the mass. According to Newton’s second law, the kinetic equation for
the mass can be expressed as:

F = ma, (1)

where F is the total force on a single mass. m is the current mass quality, and a is
the acceleration obtained by the current mass. The total force on the mass includes the
interaction force between the mass inside the model and the force exerted by the outside.
Amongmass points, the interaction force includes the spring force and the damping force
during the movement of the mass point. The total force executed on the single mass point
can be expressed as follow:

F = fe +
n=m∑

n=1

(f ns + f nd ), (2)

where fe is the external force. m means that there are m springs connected to the mass,
and f ns , f

n
d indicate the spring force and damping force generated by the n-th spring.

From Hooke’s law, the elastic force produced by a single spring fs is defined as:

fs = k(l − l0), (3)
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where k is the spring elasticity coefficient. l indicates the real-time length of the spring
and l0 is the spring relaxation length.

Damping force fd is defined as:

fd = cv, (4)

where c denotes the damping coefficient and v is the velocity of the mass at a given
moment.

The kinetic equation for a single mass in the MSM can be derived from Eqs. 1, 2, 3,
and 4 which is described as follows:

ma = fe +
n=m∑

n=1

(kn(ln − l0n)+ cnv). (5)

After obtaining the acceleration a at the current moment, the velocity and displace-
ment of the mass can be expressed as follows:

v = at, (6)

s = 1

2
at2, (7)

where t is the time interval, and the position of the mass at the next moment is the sum
of the current position of the mass and the displacement of the mass. After obtaining the
position of the mass at the next moment, the model can be updated and the spring length
and force can be recalculated.

3 Experimental Environment and Experimental Results

3.1 Soft and Hardware Environment

The Brain tissue modeling is mainly based on the 3D drawing software 3DS MAX2020
and the Unity2020 game engine developed under the Windows operating system, with
the modeling of virtual brain organization and the construction of virtual scenes.

The hardware part of the modeling of brain tissue is mainly composed of force
feedback devices and computers. The experimental in this paper are based on computers
and force feedback devices.

Force Feedback Device. The force feedback device is a high-performance force/haptic
interaction device that accurately measures position in three-dimensional space (using
x, y, and z axes) and the orientation of the handheld stylus (flip up and down, left and
right shaking, and lateral movement).

Computer Configuration. The hardware configuration of the computer is 4.6GHz Intel
Core i7-11800H processor, DDR4 3200MHz of memory, NVIDA GeForce RXT 3060
graphics card and Windows 11 operating system.
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3.2 Experimental Platform

Based on the above-mentioned principles, structures, and software and hardware equip-
ment, a virtual brain tissue modeling platform is built. The experimental platform is
showed in Fig. 4. In it, the experiment is conducted a collision experiment with virtual
brain tissues. The force feedback device in the figure is used as an interface device for
human-computer interaction. As the human manipulates the force feedback device to
move up and down in space, the small ball in the virtual environment also moves in the
same way. When it touches the brain tissue in the virtual environment, the contact force
is fed back in real time, so that the experimenter has an immersive feeling.

Fig. 4. Experimental platform

3.3 Experimental Simulation

First, the force feedback device is connected to the computer and debugged to realize
the interaction between the force feedback device and the computer. Then take the
following procedures: (1) export the brain model in 3DS MAX; (2) import the brain
model in Unity3D, (3) adjust the program and required experimental parameters, and
(4) run. Figure 5 reflects that at the beginning of the experiment, the virtual ball is located
on the periphery of the brain and cannot collide with the brain. In this case, the force
feedback at this time is 0. Figure 6 shows that the virtual ball is in contact with the
surface tissue of the brain. When the human pushes the force feedback device with a
small force, the surface tissue of the brain undergoes a small deformation. In this case,
the force feedback is equal to the push force of the experimenter. Figure 7 displays that
when the experimenter increased the thrust, in which the small ball in the virtual scene
and the surface tissue of the brain are greatly deformed. Figure 8 illustrates that the
virtual balls contact different parts of the surface tissue of the brain, which also deforms.
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Fig. 5. Original state

Fig. 6. Collide the brain with less force

Fig. 7. Collide the brain with a larger force

Fig. 8. Collide in different places
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4 Conclusion

In this paper, the MSM is used to simulate brain deformation based on the biological
properties of soft tissues. The experiment is performed using Unity3D software and
a force feedback device. Through experiments, the feasibility of using the MSM to
simulate brain deformation lays the foundation for the subsequent construction of the
entire virtual surgical system. Future work will focus on improving the mesh size of the
MSM, optimizing the collision detection algorithm, and improving the accuracy of the
entire experiment.
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Abstract. Drosophila vision is extremely sensitive to moving targets and color
opponency, which provides rich biological enlightenment for the study of com-
puter vision. Drosophila vision has been extensively studied in various aspects,
but our understanding of the underlying neural computation remains poorly under-
stood. We propose a Drosophila vision-inspired model that constructs a complete
visual motion perception system and a color processing system by integrating con-
tinuous computing layers to gain insight into the neural mechanisms of Drosophila
vision andmake better use of its strengths in saliency detection. Drosophila vision-
inspired model can also be used for saliency detection in dynamic scenes, espe-
cially in some scenes where the color distinction is significant, it can accurately
identify the motion of interest (MOI) while suppressing background interference
and self-motion because our model depends on the motion perception and color
opponency based on the Drosophila vision. Experiments on two large-scale video
saliency detection datasets demonstrate the superiority of our model in saliency
detection compared with the state-of-the art methods.

Keywords: Drosophila vision · Motion perception · Color opponency · Saliency
detection

1 Introduction

Biological vision research has always been a significant source of designing algorithms
for computer vision. Biological vision is essential to maximize the efficiency of daily
tasks such as feeding, avoiding predators, or finding mating partners. Although the nat-
ural scenes have high noise and chaos, the biological visual system shows extremely
advanced perceptual ability. It is worth noting that in terms of information in the visual
processing mechanism, some insects are similar to higher animals but their visual sys-
tems are relatively simple to construct [1]. For example, themedulla, the largest andmost
heavily populated optic neuropil, part of Drosophila vision, is organized into strata and
columns in amanner reminiscent of themammalian cortex [2].Although themechanisms
behind the Drosophila vision have not been fully explained, however, the current mod-
eling of Drosophila vision undoubtedly promote the further development of computer
vision.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
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In Drosophila vision, motion vision is independent of color [3], however, the neural
network behind the motion vision and color vision is a typical hierarchical structure
[4]. First of all, the retina is the first layer of Drosophila vision, in retina, both motion
vision and color vision depend on several photoreceptors (R1–R6, R7, R8), the R1–
R6-based motion pathway is independent of R7/R8-based color pathway. Secondly, in
lamina layer, the neurons specialize in the sensing spatial changes so that they are able
to perceive the boundaries of MOI. Meanwhile, the R7 and R8 photoreceptors in the
first layer penetrate the lamina and innervate the medulla directly. Medulla remind us
of the color mechanism of mammalian cortex, which plays an important role in color
boundary detection. Besides, the T cells in medulla can extract directional information.
In the last layer, lobular, two motion-sensitive neurons called LPTC can integrate the
direction information and reduce the background interference. At the high level of the
Drosophila vision system, there is a central complex that has been found to play a role
in multi-sensory integration [5], it connects the color vision and motion vision.

Generally speaking, most researches focus on a part of Drosophila vision or a single
layer. There are few studies on their coordination ability in color processing and motion
perception. We propose a model that integrate motion processing modules and color
processing modules. It presents a novelty that can study the neural computation of color
processing and motion perception in Drosophila.

This paper mainly consists of the following parts. Firstly, we introduce the related
background about Drosophila vision and saliency detection. After this, we propose the
model and detailed process. Then, an evaluation experiment is conducted to evaluate the
accuracy of saliency detection. Finally, we give a conclusion.

2 Related Work

2.1 Drosophila Vision

Visual processing in Drosophila is divided into two parallel pathways in the first
neuropiles: motion vision and color vision. In nature, lightweight and low-powered
drosophila apply motion vision to detect a moving target in highly variable environ-
ments during flight, which are splendid paradigms to study motion detection strategies
[26–30]. Color information is also important for survival as it conveys rich information
about the external world and allows it to distinguish spectral stimuli and provides an
extra dimension for computer vision. Some scholars have studied motion vision through
the computation of local neural layers and neurons, however, there are few researches
about applying color vision to motion detection.

Hassenstein andReichardt tried to explain themechanismof the insect vision andpro-
posed an elaborated motion detector based on Hassenstein-Reichardt correlator model
(HRC) [6]. Currently, behavioral and electrophysiological studies in the drosophila have
demonstrated that the visual motion responses display the fundamental signatures pre-
dicted by the HRC. In Drosophila, there are four medulla neurons. The neurons Mi1 and
Tm3 respond selectively to brightness increments, conversely, Tm1 and Tm2 respond
selectively to brightness decrements [7]. The mechanism behind the four neurons cor-
responds with the HRC. The LPTCs in the adjacent layer will receive the result from
medulla.
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In Drosophila, photoreceptors R7–R8 in retina are required for color vision. Color
vision cannot be executed by a single photoreceptor and requires complex comparisons.
These comparisons have been shown to take place in the synaptic terminals of R7–R8
in medulla through mutual inhibition.

In the downstream of LPTCs, there is a central complex which can receive motion
signals fromLPTCs and color information. This finding suggests that the central complex
plays a role in fusing motion information and color information.

Generally speaking, most researches focus on a part of Drosophila vision or a single
layer. Besides, in current researches, motion vision and color vision have not work
together to solve motion detection problems. This encourages us to propose a model
fusing motion vision and color vision in Drosophila vision.

2.2 Saliency Detection

The study of visual saliency initially started with static information, i.e., a frame of
an image, aimed at detecting attention-grabbing regions in a scene. Some models are
inspired by biological vision mechanisms and aim to mimic the attentional mechanisms
of biological vision and predictwhere an organismwill focus its attention in an image. Itti
et al. computed saliency by fusingmultiple distinct feature channels andDoG (difference
of Gaussian) filter responses at multiple scales [8]. Then, they simulated the features of
“winner-take-all” and “inhibition of return” with a neural network, fully realizing the
whole process of attentional selection. Later, discoveries in psychology and cognitive
science sparked interest in salient object detection between consecutive frames. So far,
we have witnessed the significant progress towards saliency detection. One of them
is to mimic the mechanism of human visual sensitivity to motion, such as the motion
features input into the Itti model. The starting point of other approaches is not to model
the visual system, but to provide results similar to biological brains. Furthermore, there
are many ways to design classifiers to identify motion saliency, such as graph theory-
based models, regularized feature reconstruction, and compressed video saliency [9]. In
recent years, the development of deep learning has facilitated motion saliency detection.
Various deep models have been widely applied to the field of salient object detection,
such as convolutional neural networks and recurrent neural networks [10].

While existing motion saliency methods have been successful in many applications,
current research is increasingly deviating from the original saliency concept. Recall
that salient object detection is implemented in the optic nervous system, where complex
computations (like Fourier transform) or complex procedures (like deep learning) cannot
be provided. Therefore, most of the existing motion detection models cannot simulate
neural computation and cannot translate the advantages of biological vision into practice.
It’s time to go back to bionic models to detect salient objects.

2.3 Our Contributions

We propose a hybrid model fusing motion perception and color vision inspired by
Drosophila vision in this paper, it is applied to saliency detection and is evaluated on
benchmark datasets. The main contributions of our model are as follows:



12 M. Zhou et al.

i) The overall modeling of Drosophila motion vision and color vision. Unlike previous
studies, our work established a hybrid model to simulate the process of perception
from motion pathways and color pathways, revealing the intrinsic mechanisms of
motion perception and color perception in Drosophila vision.

ii) Through functional simulation, we fill the gap between biological vision and com-
puter vision. Current neural computational models only pay attention to explaining
the motion characteristics of Drosophila, ignoring color information, which plays
an important role in boundaries.

3 Methodology: Drosophila Vision-Inspired Model

Drosophila vision consists of motion pathways and color pathways, in which the motion
pathway passes through the retinal, lamina, medulla, and lobula, and color pathway
passes through the retina directly to the medulla. Neuro computing in these motion-
sensitive organs is modeled and integrated sequentially, and finally the information from
the two pathways is fused for further processing in the central complex, as shown in
Fig. 1.

Fig. 1. Schematic illustration of the hybrid model fusing motion vision and color vision

3.1 Motion Pathway

Retina Layer. Retina mainly plays an important role in detecting illumination changes
in motion pathways depending on a range of photoreceptors (R1–R6) [11]. Due to the
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scale-invariant feature of the retina, we combine scale-invariant feature transform [12]
with the framedifference to obtain preliminarymotion information through computation.

Pt = |H ⊗ ft−1 − ft | (1)

where ft is the frame in the time step t and H is the transform matrix based on SIFT
features. The disturbance caused by self-motion can be largely removed in this way, as
shown in Fig. 2(b).

Lamina Layer.Neurons in the lamina and medulla work together to enhance the spatial
contrast of the MOI through lateral inhibition, where in the lamina, it is primarily used
to generate inhibitory signals. Lateral inhibition strength is represented by a weighted
sum of inhibitory signals from adjacent neural inputs.

It(x, y) =
q∑

i=−q

s∑

−s

Pt−1(x + i, y + j) × w(i + q, j + s) (2)

where q × s represents the field of lateral inhibition, w is the lateral inhibition matrix
with 0 and 1 elements.

Fig. 2. MOI perception in Drosophila motion pathway. (a) Original scene, (b) Retina, (c) Lamina
and Medulla (d) Lobula

Medulla Layer. T cells in the medulla play an important role in orientation.We consider
motion information from four directions in a two-dimensional space, i.e., up, down, left,
and right. The change of direction is achieved through changing the direction of lateral
inhibition in T cells:

ML
t (x, y) = [Pt(x, y) − ILt (x, y) • W ] (3)

where L represents the direction “Left”, other directions share the same steps, as shown
in Fig. 2(c). W is a global inhibition weight. The direction selectivity is accomplished
by adjusting the arrangement of the lateral inhibition matrix.

Lobula Layer. Giant LPTC cells existing in the lobula layer integrate all local motion
signals along main directions [13], achieving a globally average perception for the MOI.

St(x, y) =
∑

d=L,R,U ,D

M d
t (x, y) (4)

So far, we finish the processing of motion pathways and get the orientation of targets,
as shown in Fig. 2(d).
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3.2 Color Pathway

Retina layer. In Retina, color vision depends on several photoreceptors(R7/R8), R7 and
R8 photoreceptors inhibit each other within ‘pale’ and ‘yellow’ ommatidia, forming
two channels of color opponency R7p − R8p and R7y − R8y. Color vision cannot be
performed alone by a single photoreceptor. It is encoded in color opponent neurons
which are excited at one wavelength and suppressed at another [14].

Therefore, in retina, the input from the time step t is separated into four channels:
red(R), green(G), blue(B), and yellow(Y), where Y = (R + G)/2. We simulate the
receptive field in retina to preprocess the input by Gaussian filtering, the outputs are
denoted R, G, B and Y . The four outputs will inhibit each other.

Y (x, y) = ω1 • R(x, y; δ) + ω2 • G(x, y; δ)

where,

{
ω1 • ω2 ≤ 0

|ω1|, |ω2| ∈ [0, 1]
(5)

where ω1 and ω2 are the inhibition weights. ω1 and ω2 always have the opposite sign.
With ω1 < 0 and ω2 > 0, playing a role in mutual inhibition, δ is the standard deviate
of the gaussian filter.

Medulla Layer. The R7 and R8 photoreceptors in retina penetrate the lamina and inner-
vate the medulla directly. The medulla is the largest and densest optic nerve, and works
in a way reminiscent of the vertebrate cortex, inspired by the paper [15], mimicking the
working mechanism of the cortex, and most color-sensitive nerve cells are adversarial in
color and space, so we mimic the processing mechanism of nerve cells for information
transmitted by different photoreceptors in retina to get receptive field in medulla.

f (x,y) = 1√
2π(kδ)2

exp(
−(x2 + γ 2y2)

2(kδ)2
) (6)

[
x
y

]
= M •

[
x

y

]
M =

[
cos θ sinθ

−sinθ cosθ

]
(7)

F(x, y; θ) =
∣∣∣∣
∂f (x, y)

∂x

∣∣∣∣ (8)

where f (x,y) is a two-dimensional gaussian distribution in which γ can control the
receptive field. M is a rotation matrix which controls the direction of the cells. We
usually set k = 2, γ = 0.5 and δ to be the same as the scale of Gaussian filters used in
the retina.

Thus, the output of medulla at each direction is given by

B(x, y, θi) =
∑

m,n⊆N1

Y1(x + m, y + n) • F(m, n; θi)+
∑

m,n⊆N2

Y2(x + m, y + n) • F(m, n; θi) (9)

where N1 and N2 represent the different region of color opponency, θi = 2(i−1)
N , i =

1, 2....,N , here we set N = 16. Then we take the maximum value in all directions as the
response of the edge.

B(x, y) = max{B(x, y, θi)|i = 1, 2, ...,N } (10)

So far, we finish the work of the color pathway.
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3.3 Central Brain

In the high level of the Drosophila vision, there is a central brain involved in the multi-
sensory integration. It can receive motion signals from LPTCs and color information.
In motion pathway, we can obtain background information and approximate target area.
In color pathway, we can get contour information. We simulate the interaction of top-
down and bottom-up mechanism in Drosophila vision, based on rough salient area, we
transform saliency detection problems into Bayesian inference [16].

With Bayesian inference, the likelihood of a point x belonging to saliency map can
be computed as:

p(sal|x) = p(sal)p(x|sal)
p(sal)p(x|sal) + p(bk)p(x|bk) (11)

where p(sal) and p(bk) = 1−p(sal) are the prior probability. p(x|sal) and p(x|bk) are
the likelihood based on saliency map and background. Here, we will further process
the contour information to get the contour-based prior(CBP), we set CBP as the initial
prior probability. The p(x|sal) and p(x|bk) will be set according to the target area and
background information produced in the motion pathway. Finally, we further enhance
the saliency map by iterating: we reset the prior according to the posterior calculated in
the previous round.

4 Experiment Results

Our proposed model aims to explore and demonstrate the superior saliency detection
capabilities of drosophila vision systems and attempt to apply them to classic computer
vision tasks. To better highlight the performance of our model, we conducted a synthetic
experiment on two challenging datasets: the FBMS [17] and DAVIS [18] datasets. There
are various difficulties in these two datasets, such as huge self-movements and complex
backgrounds. We conducted a thorough experimental comparison with the state-of-the-
art saliency detection methods in recent years, such as the SGSP [19], SRP [20], SAGE
[21], SG-FCN [22], SCGT [23], and PCSA [24]. Among the above-mentioned saliency
detectionmethods, SGSP, SRP, SAGE, SCGTdo not need pre-training and huge amounts
of data, SG-FCN and PCSA depend on deep learning. The results of the above methods
are achieved by running publicly available implementations provided by the original
authors.

4.1 Evaluation Metrics

Different criteria, that is, Precision-Recall (PR) curves, F-Measure and MAE [25] are
applied to evaluate the saliency detection results. PR curve, determined by precision and
recall, is widely used to evaluate the performance of saliency detection. F-Measure is a
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comprehensive consideration of precision and recall, they are defined as:

Precision =
∑

x ST (x) • GT (x)∑
x ST (x)

,Recall =
∑

x ST (x) • GT (x)∑
x GT (x)

F − measure = (1 + β2) • Precision • Recall

β2 • Precision+Recall

MAE = 1

N
(S(x) − GT (x))

(12)

where ST represents the binary map of the saliency detection results, GT is the ground
truth, β2 = 0.3 and N is the pixel number. MAE is the average per-pixel difference
between saliency map ST and ground truth map GT .

4.2 Results on FBMS and DAVIS

A qualitative visual comparison of our Drosophila vision-inspired model and other
prominent saliency detection methods are shown in Fig. 3. Among them, SGSP model
improves the saliencydetectionperformanceonunconstrainedvideos through spatiotem-
poral propagation and superpixel-level graph, however, the result is not ideal. SRPmodel
discovers the motion-related salient objects via sparsity-based reconstruction and prop-
agation. SAGE depends on an unsupervised, geodesic distance-based saliency detection
method. SCGT is model inspired by Gestalt theory, the saliency is influenced by high-
level features from top-down knowledge. Both SAGE and SCGT can accurately detect
the salient target areas, but still lack robustness in some video scenes. SG-FCN and
PCSA are all deep learning methods, SG-FCN fully depends on CNNs, to efficiently
detect salient regions. PCSA is a pyramid constrained self-attentionmodel,which capture
motion cues efficiently. However, more data may be needed for training.

Generally speaking, it can be clearly found that the saliency detection performance
of the comparison method is not ideal.

Other methodsmaymistake some background regions as target area, and they cannot
extract precise boundaries. Additionally, from Fig. 3, we also can find in severe dynamic
scenes, the performance of somemethods is degraded. In contrast, ourmethod can extract
precise MOI boundaries and a relatively complete target based on Drosophila vision.
The below Fig. 4 will show the PR-curves, F-measure, and MAE results of our model
and other comparison models. The Fig. 4 demonstrates that our model is the best. So it
quantitatively shows that the detection performance of this method is better than other
methods.

4.3 Performance Discussion

From the quantitative and qualitative results of different saliency detection methods
above, ourmodel has achieved better results in different scenes. In some scenes, although
our model has not gotten the best result, there are some unique advantages: our method
does not need additional training and a huge amount of data. Moreover, the time cost
of our method is lower than others. Table 1 shows the cost for each saliency detection
method.
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Fig. 3. Video saliency detection on the FBMS dataset (top three videos) and the DAVIS dataset
(bottom three videos)

Generally speaking, deep learningmethods with training tend to have a better perfor-
mance than thosewho do not have pre-training process, such as PCSA.While ourmethod
shows better performance overall. It can contribute to the advantage of drosophila vision.
The advantage of Drosophila vision has been fully reflected in our model.
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Fig. 4. Comparison of PR curves (left), F-Measure (middle) and MAE (right) on FBMS dataset
(top row) and DAVIS dataset (bottom row)

Table 1. Time cost for saliency detection

Method SGSP SRP SAGE SG-FCN SCGT PCSA Ours

Cost(s) 10.16 17.03 49.86 3.85 4.497 3.281 2.83

5 Conclusions

In this paper, a Drosophila vision-inspired model which integrates the motion pathway
and color pathway is proposed. We establish a relatively complete model fusing motion
cues and color features and it is applied to classic computer vision tasks. A bridge is built
between computer vision and biological vision. Comparedwith other advancedmethods,
our method shows a better performance. As we all know, the deep neural networks came
from biological inspiration in the very beginning, however, current neural networks
have been separated from biological inspiration. Thus, in the future, we will continue to
combine computer vision tasks with biological inspiration.
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Abstract. Under the influence of COVID-19, intercity ride-sharing has become
more and more popular due to its relatively little contact and low price and has
gradually become one of the important ways of intercity transportation. The ride-
sharing platform provides functions of information interaction among passengers
and drivers, allocating the transportation tasks and recommending the optimal
route planning. Existing ride-sharing platforms fail to take user’s personalized
needs into account when assigning tasks, and users have low satisfaction with
the planned routes. This paper designs an allocation algorithm (Allocation Algo-
rithm 4 Inter-city Carpool) for intercity carpool and proposes a pricing function
related to the detour distance and user’s satisfaction, so as to ensure the optimal
benefits for ride-sharing platforms and drivers, as well as the optimal passenger
satisfaction. The AA4IC algorithm is proved to be incentive compatible and bud-
get balanced theoretically, and the effectiveness of allocation scheme generation
and path planning is verified by experiments. When the algorithm is iterated 1000
times, the time is less than 200 s, and the task assignment under the optimal user
satisfaction can be achieved.

Keywords: Intercity carpool · Passenger satisfaction · Allocation mechanism ·
Path planning

1 Overview

1.1 Introduction

With the spread of COVID-19, the old intercity transport network is increasingly unsafe.
Previously common modes of transportation, such as trains and buses, are highly inten-
sive and have a high possibility of contact, which increases the possibility of infection
with COVID-19. However, the cost of online car-sharing is high, which is difficult for
ordinary people to afford, so online car-sharing becomes the optimal choice. However,
the current online ride-hailing platform is still not very mature. As an intermediary for
passengers and drivers, the online ride-hailing company’s main function is to match and
plan routes. But the existing ride-sharing companies can’t perform these functions well.
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Unreasonable matching leads to the waste of ride-sharing resources and the decrease
of passenger satisfaction. Therefore, it is of great research value to further explore the
distribution mechanism of online ride-sharing in different periods, on the one hand can
improve the utilization of network about carpooling, and improve the net about car-
pooling company total income, on the other hand, can improve the passenger travel
experience.

With the continuous expansion of the online ride-hailing market and the legaliza-
tion of online ride-hailing platforms, the number of registered drivers and passengers
on online ride-hailing platforms has increased sharply, and the problem of road conges-
tion has gradually emerged. In order to solve the problems of high cost of ride-hailing,
waste of resources and vehicle congestion, online ride-hailing arises. On the other hand,
with the continuous urbanization, more and more working people choose to place their
homes far away from the central urban area. Therefore, intercity network about carpool-
ingmatchingmechanism is particularly important, however, at present, themechanismof
online ride-sharing platform is still not perfect, led to the advantage of network about car-
pooling can not well show, more detour, low passenger satisfaction problems emerging,
therefore, it is of great importance to design a matching mechanism for ride-sharing.

1.2 Related Work

The matching mechanism of carpooling will affect the benefits of online ride-hailing
platforms and the riding experience of passengers [25–29]. Document [1] demonstrates
the feasibility of online ride-sharing. Considering the remarkable features of online
ride-sharing in the document [2], we explore the formation mechanism of passengers’
ride-sharing willingness from three different aspects of system, service and information.
Document [3] analyzes the implementation of domestic net-contracting policies. Docu-
ment [4] studied the price regulation strategy under the coexistence of online ride-hailing
and online ride-sharing. Document [5] analyzed the existence value and development
dilemma of ride-sharing patterns. Document [6] investigated the impact of socioeco-
nomic attributes and pricing factors on user selection behavior. Document [7] stud-
ied the mechanism analysis of online carpooling behavior and its impact assessment.
Document [8] uses three-party evolutionary game theory to describe the interaction
mechanism between government regulators, online car platform safety regulators, and
car-sharing owners during the operation of Internet car-hailing in China. Document [9]
uses consumer behavior and bilateral market research theory to investigate the factors
that influence pricing on online car platforms. Document [10] uses dynamic game theory
and bilateral market theory to analyze pricing and cooperative revenue sharing problems
between platforms and drivers. Document [11] analyzes the demand characteristics and
service level influencing factors of intercity online ride-sharing, and understands the
space-time characteristics of individual travel characteristics of intercity online ride-
hailing. Through hybrid genetic algorithm and simulated annealing algorithm provides
aminimum totalmileage andminimumpassenger variance optimizationmodel, butmin-
imum passenger variance does not guarantee high passenger total satisfaction, document
[12] considered the waiting time of the net car. Document [13] designed a network car
matching mechanism, but can not well assign passengers to each vehicle. In document
[14], a coding and decoding rule is designed to realize the vehicle distribution and path



Research on Matching Mechanism and Route Planning 23

planning problems, and the sequential matching relation of passenger vehicles and the
route of vehicles can be given in a relatively short time. Document [15] builds a mini-
mum travel cost model during peak hours, dynamically adjusts the route, and obtains the
optimal route in real time. The static and dynamic optimal pricing and its sharing coeffi-
cient of online ride-hailing platforms is solved in document [16], which also reveals the
impact of the average ride time and drivers and passengers’ choice of online ride-hailing
behavior on the platform pricing strategy. Document [17] uses improved particle swarm
optimization algorithm to optimize the path. Document [18] uses game theory to set the
optimal pricing and promotion strategy, which is inspiring for this paper. Document [19]
considers the autonomous bargaining power of the passenger side and use a demand and
supply function to describe the state of the passenger and the online taxi. In Document
[20], an intermediary pricing model for transportation service markets is developed to
assess the impact of spatial differentiation and network externalizations on the pricing
mechanism of online taxi platforms. In Document [21], a genetic algorithm for mobile
robot path planning is designed. Document [22] proposes dynamically adjustable route
planning algorithms to avoid congestion through deep learning. A robot navigation test
bed was designed and implemented in the Document [23] using a Markov decision
process. Document [24] designed a platform pricing strategy based on maximizing the
social welfare of the online taxi platform, drivers and passengers.

1.3 Study Content

This paper investigates the problem of detour distance and passenger satisfaction in
online carpooling, and designs a matching mechanism for intercity online carpooling
that increases passenger satisfactionwhile increasing the revenueof the online carpooling
company, resulting in a win-win situation for the driver to stop detouring, the passenger
to feel satisfied and the company to increase revenue.

1.4 Thesis Organization

The thesis is divided into six chapters, The main research content of each chapter is
shown below:

Section 1: Overview. This chapter first introduces the research background and
research significance of the online carpool matching and pricing mechanism. It then
describes the current state of research and establishes the research content and research
objectives of this paper.

Section 2: Problem definition and model. Formalizing the problem and a model is
constructed to draw conclusions through mathematical derivation.

Section 3: Algorithm design. By analyzing the results of the model derivation, an
algorithm is designed that can improve passenger satisfaction and the revenue of online
carpooling.

Section 4: Theorem proof. Theoretical proofs are given for individual rational-
ity, incentive compatibility and other aspects respectively to prove the rationality and
effectiveness of the algorithm.
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Section 5: Experiments. The effectiveness of the algorithm is verified by the simu-
lation experiments, and ultimately constructing passenger satisfaction and the length of
time consumed to arrive at a better number of cycles.

Section 6: Conclusion. This chapter summarizes and analyses the main research
work and results, discusses some limitations of this paper, and provides an outlook on
future research directions and work.

2 Problem Definition and Model

This section introduces a matching algorithm for carpooling that maximizes the
total satisfaction of all passengers while making the carpooling company more prof-
itable. Suppose there are n passengers who need to travel from several starting
points in a city ((x1, y1), (x2, y2) · · · (xn, yn) to several ending points in another city
((p1, q1), (p2, q2) · · · (pn, qn). . The straight-line distance (effective transport distance)
for each person di is easily obtained as

√
(xi − pi)2 + (yi − qi)2. The detour distance

for each person is set as. (l1, l2 · · · ln). Every four people ride in a ride-share, and we
suppose that all the cars are filled with four people, that is

n%4 = 0(0 ≤ i ≤ n) (1)

Customer i’s satisfaction equals to li√
(xi−pi)2+(yi−qi)2

, and the total customer

satisfaction is
∑n

i=1
li√

(xi−pi)2+(yi−qi)2
.

The subsidy amount is

ei = k ∗ li√
(xi − pi)2 + (yi − qi)2

+ m (2)

(where k,m are constants, determined by the carpooling platform based on actual
conditions)

Assuming that carpooling drives at a uniform speed, there is the maximum charge
as f , for the customer i

fi = a ∗
√

(xi − pi)2 + (yi − qi)2 (3)

(where a is a constant, determined by the ride-sharing platform based on the reality)
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Combined (2) and (3): The final cost for the customer i is fi:

fi = a ∗
√

(xi − pi)2 + (yi − qi)2

−k ∗ li√
(xi − pi)2 + (yi − qi)2

− m
(4)

Set the total revenue of the platform as r.Set advertising revenue as t. Income per
driver is 0.8 ∗ fi. The total income of all drivers is 0.8 ∗ ∑n

i=1 fi. The final total profit of
the platform is:

r = t +
n∑

i=1

fi − 0.8 ∗
n∑

i=1

fi (5)

Simplifying the formula 5:

r = t + 0.2 ∗
n∑

i=1

fi −
n∑

i=1

ei (6)

where:

ei = k ∗ li√
(xi − pi)2 + (yi − qi)2

+ m

fi = a ∗
√

(xi − pi)2 + (yi − qi)2

Because fi is only related to coefficient a and distance, it is a fixed value. According to
formula (6), the lower the

∑n
i=1 ei, the higher the total gain. And because of the formula

ei = k ∗ li√
(xi−pi)2+(yi−qi)2

+m, it’s easy to know the lower the
∑n

i=1
li√

(xi−pi)2+(yi−qi)2
,

the higher the total gain. And
∑n

i=1
li√

(xi−pi)2+(yi−qi)2
equals to overall satisfaction, so

we can get the conclusion that when
∑n

i=1
li√

(xi−pi)2+(yi−qi)2
’s minimum is taken, the

overall satisfaction is the highest and the company has the highest earnings.

3 Algorithm Design

Based on the above formulas, we know that when the total passenger satisfaction are the
highest, the path of each vehicle must also result in the highest passenger satisfaction.
Based on the greedy algorithm, we first designed the optimal path for each car.
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Algorithm 1 Shortest path value and best path

Input: Starting ix ;Destination iy ; i [1, 4]∈
Output: Shortest path value for every four people

1. for i in range [1,4] do

2. Calculate the linear distance from the beginning to the end;

3. end

4. 0,minsize 0;v ← ←
5. itertools.permulations( ), itertools.permulations( );c x d y←←
6. for k in itertools.products(c,d) do

7. Compute each of the starting indices ma ; 

8. Compute the subscripts of each endpoint mb ; 

9. for m in range [0,3] do

10.     for t in range [ ],m ma b do

11.       Calculate the distance from the start to the end of the detour;

12.       Calculate passenger satisfaction;

13.     end

14. end

15. end

16. while minsizev < do

17. minsize=v ; 

18. Set the path to the shortest path;

19. end

The input to this algorithm is the starting and destination points of the 4 passengers,
firstly by calculating the straight line path that each passenger needs to pass through,
then by calculating the Cartesian product of the start and end point tuples to enumerate
the optimal path for the passengers, the total satisfaction of the passengers calculated∑n

i=1
li√

(xi−pi)2+(yi−qi)2
, by continuously comparing the total satisfaction of each case

with the previous optimal satisfaction, the final optimal path for the passengers and the
optimal satisfaction is obtained.

In Algorithm 2, we devise a sampling algorithm that can only find sub-optimal
solutions due to the high time complexity of the algorithm, so we need the sampling
algorithm to make the results as accurate as possible without consuming too much time.
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Algorithm 2 Sample

Input: Starting ix ;Destination iy ;total passengers number:n

Output: A randomly sorted list:c

1. p TRUE← ; 

2. while p TRUE= do

3. b=random.sample(a,n) ; 

4. c.append(b);

5. Removes selected elements from a;

6. if there are elements in a then

7. p TRUE← ; 

8. else

9. p FALSE← ; 

10. end

11. end

What we input is the number of people in each group and the list of elements, and
we can achieve the purpose of random sampling by constantly randomly extracting a
fixed number of elements from the group until the elements are empty, so as to obtain a
randomly sorted list.

In Algorithm 3, we obtain the suboptimal solution of the allocation algorithm by
random sampling, and achieve the effect of obtaining the suboptimal solution in a certain
time through the combination of Algorithm 1 and Algorithm 2.
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Algorithm 3 Allocation Algorithm 4 Inter-city Carpool

Input: Starting ix ;Destination iy ;total passengers number:n

Output: Allocation plan and path

1. ( (0, ))r list range n= ; 

2. min 0, 0sum← ← ; 

3. for m in range [ ]1, t (t is a preset value) do

4. execute allocation algorithm shown in algorithm 2;
5. execute allocation algorithm shown in algorithm 1;

6. while sum of user satisfaction<minsize do

7. min  sum of user satisfaction← ; 

8. end

9. end

We can get n different grouping methods through n times random sampling, and
then through the allocation method for each group can get the optimal path of each
group and record, until there is a better allocation method to make passenger satisfaction
higher, and replace the change scheme, in a certain number of times to get the best total
satisfaction and path planning in these times.

4 Theorem Proof

Settings: There is a mechanism designer and an actor. They have to select an option a
from some set A of the mutually exclusive option. If option a is selected and the actor
pays the monetary transfer payment t, the utility of the actor is u(a, θ) − t, θ is the type
of the actor. The setting here includes the following scenario: A is a set of non-random
options, and u is an expected utility function. � is the set of possible actor types, and is
an abstract non-empty collection.

Definition 4.1: The direct mechanism (q, t) contains a mapping q : � → A from each
type of the actor to one option and a mapping t : � → R from each type of the actor to
the monetary transfer payment (positive t) or the monetary transfer payment (negative
t), which we call q the “decision rule”.

Definition 4.2: Incentive compatibility
If for all, we have all θ and θ ′ ∈ �

u(q(θ), θ) − t(θ) ≥ u(q(θ ′), θ) − t(θ ′)

A direct mechanism is “incentive-compatible”.
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Theorem 4.1: The carpool matching algorithm satisfies incentive compatibility
Proof: If the optimal algorithm of matching mechanism is li and the driver selected

path distance is l′i > li, it’s easy to get:

li√
(xi − pi)2 + (yi − qi)2

>
l′i√

(xi − pi)2 + (yi − qi)2

Since the total income is t + 0.2 ∗ ∑n
i=1 fi −

∑n
i=1 ei.

among:

ei = k ∗ li√
(xi − pi)2 + (yi − qi)2

+ m

fi = a ∗
√

(xi − pi)2 + (yi − qi)2

Thenwe know that since the driver chooses a path distance of li, the total revenuewill
increase and the total passenger satisfaction will increase, so we know that the driver will
use the optimal path derived from the optimal algorithm of the matching mechanism.

Definition 4.3: Budget feasible
If, for all of those, there is θ ∈ �

N∑

i=1

ti(θ) ≥ 0

A direct mechanism is budget feasible.

Theorem 4.2: The online carpool matching algorithm is budget feasible
Proof: Since the platform takes a portion of the revenue, when a taskworth fi, is added

to the grouping, the platform will not pay more than fi for the driver in the grouping that
matches the order, and because of the advertising fee revenue, the total expenses of the
platform are 0.8 ∗ ∑n

i=1 fi and the total revenue is t + ∑n
i=1 fi, for which the following

equations are available for expenses and revenue.

t +
n∑

i=1

fi >

n∑

i=1

fi

Definition 4.4: Individual rationality
Let a ∈ A. If for all of the ones, θ ∈ �

u(q(θ), θ) − t(θ) ≥ u(a, θ)

A direct mechanism is “individual rational”.

Theorem 4.3: Online carpool matching algorithms are individually rational for both
users and platforms
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Proof: When the driver i matches the order j, the platform should pay the driver i
more than the non-ride-sharing revenue and less than the sum of all passengers paying,
that is, the total ride-sharing revenue. In the process of the algorithm, the passenger
ride-sharing detour will reduce the charge, that is, the passenger carpooling expenditure
will be less than the direct taxi expenditure, and the distribution scheme that pulls down
the total passenger satisfaction arbitrarily will be replaced by the distribution scheme
with a higher passenger total satisfaction. Therefore, there are all for any passenger i,
fi > f ′

i .

Theorem 4.4: The total satisfaction is only the highest when the total satisfaction of
passengers is the highest

Proof: Supposing that except for the car n, the total satisfaction of all cars is st, the
highest satisfaction of the car n is stn, and supposing that car n has the highest total
satisfaction st′n of the passengers, i. e:

st + st′n > st + stn

But since stn ≥ st′n, we can easily obtain the highest overall satisfaction only and
only when stn = st′n. The highest overall satisfaction can only be achieved when the
total satisfaction of passengers on each carpool is the highest.

5 Experiments

This paper gives an example and conducts the simulation experiment with this example.
Suppose 20 passengers need to travel from Yangzhou to Nanjing (with different starting
and ending points) in five online carpooling vehicles. It is necessary to find an allocation
such that the maximum user satisfaction can be minimized, so that the online carpooling
platform has the highest revenue.

The experimental environment is:

Hardware: Lenovo y7000p, CPU: i7-10750H
Software: Pycharm.1.2 (Table 1)

The above starting and destination points correspond one to one, each passenger
needs to start from a location in Yangzhou to a location in Nanjing, and we design an
algorithm to enable every four passengers to ride an online taxi, making the highest total
user satisfaction and the highest income of online ride-hailing companies.

After the code running, we can get the above experimental results, and through the
analysis of the experimental results, we can get the following grouping results and paths.

By Fig. 1 and Fig. 2 we can get, and the paths are:

Route 1: He Yuan-> Zhu Ziqing’s former residence-> The South Gate of Yangzhou
University SlenderWest LakeCampus->YangzhouHanjiangDistrict Sansheng Interna-
tional Square-> JiangsuGarden Expo Park->Nanjing Institute of Physical Education->
The Presidential Palace-> Nanjing Yuhuatai Scenic Area
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Table 1. Experimental data

Origin The starting point
coordinate

Terminal point End point coordinates

The north gate
of the Lotus
Pond Campus
of Yangzhou
University

(119.423518,32.385394) Nanjing University of
Science & Technology

(118.855395,32.029061)

South gate of
the Slender
West Lake
Campus of
Yangzhou
University

(119.424816,32.397457) Nanjing Institute of
Physical Education

(118.866682,32.044755)

East Gate of
Yangzijin
Campus,
Yangzhou
University

(119.405186,32.344317) Xianlin Campus of
Nanjing University of
Posts and
Telecommunications

(118.930841,32.113626)

North gate of
Yangzhou
University
Road South
Campus

(119.424445,32.376919) Xianlin Campus of
Nanjing University

(118.958109,32.119541)

Jiangsu North
Jiangsu
People’s
Hospital
South 1

(119.431559,32.383945) Jiulong University
Campus of Southeast
University

(118.820534,31.886956)

Yangzhou
Hospital of
Traditional
Chinese
Medicine

(119.419043,32.393011) Nanjing Xuanwu
Senior High School

(118.81387,32.056239)

Jiangsu
Armed Police
Corps
Hospital

(119.461747,32.386705) Silver city primary
school

(118.732996,32.053013)

Yangzhou
Museum

(119.371984,32.391699) Jinling library (118.717723,32.012447)

(continued)
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Table 1. (continued)

Origin The starting point
coordinate

Terminal point End point coordinates

Yangzhou
railway
station

(119.350827,32.389887) Nanjing station (118.797884,32.087039)

Yangzhou
east station

(119.528684,32.404599) Nanjing South
Railway Station

(118.797636,31.968753)

Yangzhou Bus
and Passenger
Transport
East Railway
Station

(119.506024,32.386625) Nanjing Lukou
International Airport

(118.871253,31.731437)

Western
Yangzhou
traffic and
passenger
transport hub

(119.349108,32.38737) Confucius Temple (118.788941,32.020797)

Yangzhou
municipal
government

(119.412794,32.394328) Nanjing Museum (118.825269,32.040916)

The Grand
Canal
Museum of
China

(119.428335,32.364615) Zhongshan
Mausoleum Scenic
Spot

(118.848379,32.070414)

He yuan (119.448591,32.385528) office of the president (118.797395,32.044481)

Zhu Ziqing’s
former
residence

(119.44947,32.393682) Nanjing Yuhuatai
Scenic Area

(118.781774,31.998053)

Daming
Temple

(119.412981,32.420044) Nanjing Hospital of
Traditional Chinese
Medicine

(118.80791,31.995505)

Shi Kefa
Memorial
Hall

(119.440247,32.401725) Nanjing People’s
Hospital

(118.766496,32.049166)

Yangzhou
Hanjiang
District
Wanda Square

(119.399114,32.368887) Jiangsu provincial
government

(118.76375,32.061577)

(continued)
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Table 1. (continued)

Origin The starting point
coordinate

Terminal point End point coordinates

Yangzhou
Hanjiang
District
Sansheng
International
Square

(119.397674,32.38106) Jiangsu Garden Expo
Park

(119.00974,32.076225)

Fig. 1. Experimental conclusion

(a) path 1 (b) path 2                                 (c) path 3

(d) path 4 (e) path 5

Fig. 2. Grouping and path planning
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Route 2: Yangzhou East Railway Station-> Yangzhou Hospital of Traditional Chinese
Medicine->YangzhouMunicipalGovernment->WesternYangzhouTransportation and
Passenger Transportation Hub-> Nanjing Museum-> Nanjing Xuanwu Senior High
School-> Confucius Temple-> Nanjing South Railway Station
Route 3: Yangzhou Bus Passenger East Station-> South 1 of Jiangsu Subei Peo-
ple’s Hospital-> North Gate of Yangzhou University Lianchi Campus-> East Gate of
YangzhouUniversityYangzijin Campus->NanjingUniversity of Posts andTelecommu-
nicationsXianlinCampus->NanjingUniversity of Technology-> JiulongLakeCampus
of Southeast University-> Nanjing Lukou International Airport
Route 4: Jiangsu Armed Police Corps Hospital-> Yangzhou Hanjiang District Wanda
Plaza-> Yangzhou Museum-> Yangzhou Railway Station-> Nanjing Railway Station-
> Jiangsu Provincial Government-> Yincheng Primary School-> Jinling Library
Route 5: Daming Temple-> Shikefa Memorial Hall-> The North Gate of Yangzhou
University Road South Campus-> China Grand Canal Museum-> Nanjing Univer-
sity Xianlin Campus-> Sun Yat-sen Mausoleum Scenic Area-> Nanjing Hospital of
Traditional Chinese Medicine-> Nanjing People’s Hospital

Fig. 3. Time-consuming and optimal satisfaction plots in Fig

Figure 3 shows us the relationship between the number of iterations, the average
operation time and the optimal satisfaction. From this figure, we can know that when
the accuracy of the number of iterations is about 1000, the time consumption is less
and takes less than 200s, which can approximately reach the task assignment under
the optimal user satisfaction. After more than 1000 iterations, the time consumption
increased significantly without much improvement in accuracy.
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6 Conclusion

In this paper, a matching algorithm is designed for intercity online ride-sharing. By
changing the previous step pricing, online ride-sharing price is associated with the
detour distance, so that online ride-sharing companies and drivers can get the highest
benefits while ensuring the highest passenger satisfaction. A route planning algorithm
was designed to significantly reduce the total number of detour routes for each passen-
ger. Through experimental and theoretical analysis, the matching algorithm proposed
in this paper can significantly improve the total satisfaction of passengers and the total
revenue of online ride-sharing companies. This paper provides a novel method for online
carpooling companies. However, due to the limitation of algorithm complexity and time,
the proposed algorithm can only find the suboptimal solution, and cannot guarantee the
optimal solution. In addition, in terms of improvement, if the API of themap is combined
with the algorithm, it will make the algorithm more practical, as often the presence or
absence of traffic jams on the map will also affect the optimized results of the algorithm.
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Annex 1 Source Code (code available for review only)

import itertools 

import math 

import os 

import random 

import datetime 

os.envi-

ron["CUDA_VISIBLE_DEVICES"] = 

"0" 

starting = [(119.423518, 32.385394), 

(119.424816, 32.397457), (119.405186, 

32.344317), (119.424445, 32.376919), 

(119.431559, 32.383945), (119.419043, 

32.393011), (119.461747, 32.386705), 

(119.371984, 32.391699), 

(119.350827, 32.389887), (119.528684, 

32.404599), (119.506024, 32.386625), 

(119.349108, 32.38737), 

(119.412794, 32.394328), (119.428335, 

32.364615), (119.448591, 32.385528), 

(119.44947, 32.393682), 

(119.412981, 32.420044), (119.440247, 

32.401725), (119.399114, 32.368887), 

(119.397674, 32.38106)] 

destination = [(118.855395, 32.029061), 

(118.866682, 32.044755), (118.930841, 

32.113626), (118.958109, 32.119541), 

(118.820534, 31.886956), (118.81387, 

32.056239), (118.732996, 32.053013), 

(118.717723, 32.012447), 

(118.797884, 32.087039), (118.797636, 

31.968753), (118.871253, 31.731437), 

(118.788941, 32.020797), 

(118.825269, 32.040916), (118.848379, 

32.070414), (118.797395, 32.044481), 

(118.781774, 31.998053), 

(118.80791, 31.995505), (118.766496, 

32.049166), (118.76375, 32.061577), 

(119.00974, 32.076225)] 

def pathvalue(x, y): 

s = 0 

m = 0 

n = 0 

p = 0 

q = 0 

w = 0 

e = 0 

r = 0 

minsize = 10000 

l = {} 

for i in range(0, 4): 

l[i] = math.acos(math.sin(x[i][0]) * 

math.sin(y[i][0]) + (math.cos(x[i][0]) * 

math.cos(y[i][0])) * math.cos( 

x[i][1] - y[i][1])) * 6371 

c = itertools.permutations(x) 

d = itertools.permutations(y) 

for k in itertools.product(c, d): 

c = k[0] + k[1] 

a1 = c.index(x[0]) 

b1 = c.index(y[0]) 

a2 = c.index(x[1]) 

b2 = c.index(y[1]) 

a3 = c.index(x[2]) 

b3 = c.index(y[2]) 

a4 = c.index(x[3]) 

b4 = c.index(y[3]) 

for i in range(a1, b1): 

s += math.acos( 

math.sin(c[i][0]) * math.sin(c[i + 1][0]) + 

(math.cos(c[i][0]) * math.cos(c[i + 1][0])) 

* math.cos( 

c[i][1] - c[i + 1][1])) * 6371 

q = (s - l[0]) / l[0] 

for i in range(a2, b2): 

m += math.acos( 

math.sin(c[i][0]) * math.sin(c[i + 1][0]) + 

(math.cos(c[i][0]) * math.cos(c[i + 1][0])) 

* math.cos( 

c[i][1] - c[i + 1][1])) * 6371 

w = (m - l[1]) / l[1] 

for i in range(a3, b3): 

n += math.acos( 

math.sin(c[i][0]) * math.sin(c[i + 1][0]) + 

(math.cos(c[i][0]) * math.cos(c[i + 1][0])) 

* math.cos( 

c[i][1] - c[i + 1][1])) * 6371 

e = (n - l[2]) / l[2] 

for i in range(a4, b4): 

p += math.acos( 

math.sin(c[i][0]) * math.sin(c[i + 1][0]) + 

(math.cos(c[i][0]) * math.cos(c[i + 1][0])) 

* math.cos( 

c[i][1] - c[i + 1][1])) * 6371 

r = (p - l[3]) / l[3] 

v = e + r + q + w 
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if v < minsize: 

minsize = v 

s = 0 

m = 0 

n = 0 

p = 0 

return minsize 

def minpath(x, y): 

s1 = 0 

m1 = 0 

n1 = 0 

p1 = 0 

q1 = 0 

w1 = 0 

e1 = 0 

r1 = 0 

l1 = {} 

for i in range(0, 4): 

l1[i] = math.acos(math.sin(x[i][0]) * 

math.sin(y[i][0]) + (math.cos(x[i][0]) * 

math.cos(y[i][0])) * math.cos( 

x[i][1] - y[i][1])) * 6371 

c = itertools.permutations(x) 

d = itertools.permutations(y) 

for k in itertools.product(c, d): 

c1 = k[0] + k[1] 

a1 = c1.index(x[0]) 

b1 = c1.index(y[0]) 

a2 = c1.index(x[1]) 

b2 = c1.index(y[1]) 

a3 = c1.index(x[2]) 

b3 = c1.index(y[2]) 

a4 = c1.index(x[3]) 

b4 = c1.index(y[3]) 

for i in range(a1, b1): 

s1 += math.acos( 

math.sin(c1[i][0]) * math.sin(c1[i + 1][0]) 

+ (math.cos(c1[i][0]) * math.cos(c1[i + 

1][0])) * math.cos( 

c1[i][1] - c1[i + 1][1])) * 6371 

q1 = (s1 - l1[0]) / l1[0] 

for i in range(a2, b2): 

m1 += math.acos( 

math.sin(c1[i][0]) * math.sin(c1[i + 1][0]) 

+ (math.cos(c1[i][0]) * math.cos(c1[i + 

1][0])) * math.cos( 

c1[i][1] - c1[i + 1][1])) * 6371 

w1 = (m1 - l1[1]) / l1[1] 

for i in range(a3, b3): 

n1 += math.acos( 

math.sin(c1[i][0]) * math.sin(c1[i + 1][0]) 

+ (math.cos(c1[i][0]) * math.cos(c1[i + 

1][0])) * math.cos( 

c1[i][1] - c1[i + 1][1])) * 6371 

e1 = (n1 - l1[2]) / l1[2] 

for i in range(a4, b4): 

p1 += math.acos( 

math.sin(c1[i][0]) * math.sin(c1[i + 1][0]) 

+ (math.cos(c1[i][0]) * math.cos(c1[i + 

1][0])) * math.cos( 

c1[i][1] - c1[i + 1][1])) * 6371 

r1 = (p1 - l1[3]) / l1[3] 

v1 = e1 + r1 + q1 + w1 

while v1 == pathvalue(x, y): 

return c1 

s1 = 0 

m1 = 0 

n1 = 0 

p1 = 0 

def sample(a, n): 

p = True 

while p: 

b = random.sample(a, n) 

b.sort() 

c.append(b) 

a = list(set(a).difference(set(b))) 

if len(a) > 0: 

p = True 

else: 

p = False

start = datetime.datetime.now() 

minpathall = () 

min1 = 1000000 

for i in range(1,10001): 

c = [] 

ran = list(range(0, 20)) 

n = 4 

sample(ran, n) 

x1 = [] 

x2 = [] 

x3 = [] 

x4 = [] 

x5 = [] 

y1 = [] 

y2 = [] 
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y3 = [] 

y4 = [] 

y5 = [] 

for i in range(0, 4): 

x1.append(starting[c[0][i]]) 

x2.append(starting[c[1][i]]) 

x3.append(starting[c[2][i]]) 

x4.append(starting[c[3][i]]) 

x5.append(starting[c[4][i]]) 

y1.append(destination[c[0][i]]) 

y2.append(destination[c[1][i]]) 

y3.append(destination[c[2][i]]) 

y4.append(destination[c[3][i]]) 

y5.append(destination[c[4][i]]) 

sum1 = pathvalue(x1, y1) + pathvalue(x2, 

y2) + pathvalue(x3, y3) + pathvalue(x4, 

y4) + pathvalue(x5, y5) 

if sum1 < min1: 

min1 = sum1 

minpathall = minpath(x1, y1) + min-

path(x2, y2) + minpath(x3, y3) + min-

path(x4, y4) + minpath(x5, y5) 

print(min1) 

for i in range(0, 5): 

print(minpathall[0 + 8 * i:8 + 8 * i]) 

end = datetime.datetime.now() 

print ((end-start).seconds) 
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Abstract. Recently ray-pixel imaging models which work on pixels and their
related incoming rays have attracted much attention in the computer vision com-
munity. Having many more parameters than traditional models, ray-pixel models
are capable of describing cameras more accurately. Despite this, ray-pixel models
are still rarely used in practice due to the lack of mature modules for image undis-
tortion and stereo rectification. Perceived that optical centers can be used as the
bridge between pinhole and central ray-pixel models, we thus propose algorithms
for image undistortion and stereo rectification based on central ray-pixel models.
Besides, we propose sector grids in the B-spline interpolation procedure, which
significantly reduces the calibration time. With a focus on accuracy, we show
that ray-pixel models outperform traditional models in terms of image undistor-
tion, stereo rectification and 3D reconstruction. Our calibration pipeline has been
released at https://github.com/painterdrown/raxel.

Keywords: Camera calibration · Ray-pixel · Image undistortion · Stereo
rectification

1 Introduction

Camera calibration is part of the infrastructure of computer vision. The nature of camera
calibration is to compute specific parameters of some geometric imaging model, which
describes how a beam of light in the world coordinate system passes through lenses and
finally arrives at some pixel on camera sensors. It enables applications such as image
undistortion [1–3], 3D reconstruction [4, 5], SLAM [6, 7], autonomous driving [8] and
so on. In many scenarios, dual or multiple cameras are used to generate stereo visual
information. Extrinsics of calibration describe the relative rotation and translation from
one camera to another. These cameras should be well calibrated before being applied in
various fields.

Zhang [9] proposed themostwidely used calibrationmethod in the camera industry. It
adopts pinhole models, which perform linear perspective transformations on 3D objects
to project a 2D image through a single optical center. Pinhole models only have around
20 parameters even though distortion coefficients are considered. They can handle lenses
with slight distortion.However, for some cameraswith severe image distortion, or having
complex optics inside, such models should have poor performance because they are too
simple to describe the whole imaging system. More specifically, they may calibrate
central image regions well, but fail when it comes to border regions.
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(a) (b) 

Fig. 1. A ray-pixel model (a) containing 8 × 6 pixels is divided into 4 × 3 cells. The original
calibration method requires ray directions of each pixel, while using B-spline curves, we can just
calibrate rays of cell corners (darker gray). A ray (orange) is interpolated using four corner rays
(blue) from its cell. (b) is a dual-camera system which we mainly use in our experiments.

Ray-pixel models [10], also known as generic models, relate each pixel to its corre-
sponding incoming ray outside cameras. Each ray consists of two 3D vectors, of which
one represents the endpoint and the other one represents the direction. Ray-pixel models
are more intuitive because they care neither how rays are redirected when passing lenses,
nor how images are distorted. They have enough parameters to calibrate every region
in the image. Some comparisons [11] showed that ray-pixel models outperform pinhole
models for lenses with large distortion. However, methodologies about image undis-
tortion and stereo rectification based on ray-pixel models are lacking, which hinders
practical applications of ray-pixel models.

In order to break through the above dilemma, we provide theories and implemen-
tations for image undistortion and stereo rectification algorithms based on ray-pixel
models. We also release an extended pipeline from calibration to application for multi-
camera systems. Finally, we show the experimental results of our algorithms and how
they defeat traditional models in terms of accuracy.

2 Related Work

2.1 Corner Detection

In camera calibration, both 3D object points and 2D image points are required during
Bundle Adjustment [12]. We need an accurate detection method to extract corner coor-
dinates in sub-pixel precision from original images. Bradski’s toolbox [13] and OpenCV
[14] both provide simple and useful methods, but they are likely to have poor perfor-
mance on rather distorted images. Geiger et al. [15] and Schonbein et al. [16] developed a
growing-based method, which is able to detect multiple patterns (normally chessboards)
in a single image without prior knowledge about pattern sizes. To have more robustness
against motion blur and defocus [17], Ha et al. [18] used triangular patterns to detect
ridge lines, which can also provide more gradient information for corner refinement.
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2.2 Pinhole Models

In the 1970s, photography researchers found that camera calibration was needed to get
lines straight in their captured images [19]. They’ve germinated basic concepts of cam-
era calibration and discovered that lens distortion varies with object distance. Zhang’s
method [9] took a huge step forward. It’s quite a flexible method to calibrate in both
experimental and productive environments. Based on pinhole models, fisheye models
[20] used angles between incoming rays and the optical axis for image undistortion,
which are mapped from distances between pixels and the image center. There’re several
fisheye mapping functions such as rectilinear mapping, stereographic mapping, equidis-
tant mapping and so on. Geyer et al. [21] provided a unifying theory for all central
catadioptric systems, enabling panoramic calibration. CNNs [22–24] attempted to apply
the features of neural networks to imaging models, but there is still a lot of room for
progress.

2.3 Ray-Pixel Models

Grossberg et al. [10] first proposed the concept of ray-pixel models. They argued that
we should apply this kind of “blackbox” calibration to arbitrary camera systems.

Central Ray-Pixel Models. Central ray-pixel models [8, 25–27] are simplified versions
which assume that all rays will intersect at a single optical center, making it easier to
calibrate. This is also why optical centers can be regarded as the bridge between pinhole
models and ray-pixel models (Sect. 3.3). While in non-central models, endpoints and
directions of rays are arbitrary.

Unknown Camera Motion. The original ray-pixel calibration method requires prior
motion information of the camera when capturing images, which means that some kind
of sophisticated and expense instruments should be set up to carry cameras. Sturm et al.
[28–30] proposed a unifying theory for central, non-central and axial cameras. During
calibration, camera motions can be automatically calculated.

B-Spline Interpolation.Ray-pixel models are dense, where each pixel has to store a ray.
For example, a 12MP camera has around 72 million parameters when using non-central
models. Time and computation costs to refine such massive parameters are beyond
tolerance. B-spline interpolation [8, 13] thus is necessary in practice, where an image
will be divided into cells. As shown in Fig. 1(a), the four rays of corners in some cell
define a cubic B-spline curve to interpolate every other ray in the cell. Schops et al.
[32] have combined and implemented these new features together in their calibration
pipeline.

2.4 Image Undistortion and Stereo Rectification

Image undistortion is important especially for wide-angle lenses. Although solutions
for radial distortion, tangential distortion and thin prism distortion [2] are mature in
OpenCV and many other implementations, they cannot meet increasing demands on
high accuracy. Hartley et al. [3] managed to calibrate radial distortion and intrinsics
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simultaneously in a parameter-freemanner. Tang et al. [33] used high-degree polynomial
coefficients and claimed that they can reach a high precision of 0.01 pixels. However,
none of them has satisfying performance on lenses with severe distortion. Besides, in
recent years, deep learning methods have also been proposed to solve problems of image
undistortion. Sunet [34] trained a symmetric convolutional neural network to reduce blur
and distortion when the camera is moving fast.

We realized that optical centers could be the connection between central ray-pixel
models and pinhole models. An optical center is the intersection of all rays in ray-pixel
models and is used to project in pinhole models. We thus come up with a procedure
that firstly unproject using pinhole and then project using ray-pixel to achieve image
undistortion. Thanks to such a bridge, we can also achieve stereo rectification.

3 Algorithms and Pipeline

In Sect. 3.1 we propose theories of projection and unprojection for central ray-pixel
models; In Sect. 3.2 we detail about how Bundle Adjustment refines ray-pixel mod-
els; In Sect. 3.3 and Sect. 3.4 we respectively describe image undistortion and stereo
rectification algorithms for ray-pixel models, which are integrated into our pipeline in
Sect. 3.5.

3.1 Projection and Unprojection

In computational photography, projection means to project an object point P or its
direction d in 3D space into a 2D image point p, while unprojection means to obtain
the incoming ray direction d from a pixel. Unprojection of a single camera just gets
directions with unknown depth. In pinhole models, both projection and unprojection
without distortion are linear transformations:

p = KP

sd = K−1p

Here, K is the camera matrix consisting of the focal length and the principle point (the
intersection of the optical axis and the image plane); s is an arbitrary scaling factor.

To achieve projection for ray-pixel models, we will need a non-linear iteration pro-
cedure. More specifically, once given an incoming ray direction d0, we pick up the
center of the image as the initialization. Surely any other pixel is an acceptable candi-
date. Then, Levenberg–Marquardt algorithm [35, 36] is applied to refine the objective
position, taking the Euclidean distance between the current unprojected direction d and
the input direction d0 as the cost function. Finally, in general, when the cost function is
minimized enough, or when the direction change from previous iteration is below some
threshold (10−6), the iteration should end.

min
x,y

(S(x, y) − d0)

In the above cost function, S(x, y) denotes the interpolated ray direction at pixel
(x, y) using B-spline.
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3.2 Bundle Adjustment

Given original images with extracted corners C and the physical sizes of the pattern α, we
can feed them into Bundle Adjustment, where ray directions of pixels and camera poses
(rotation and translation from the pattern to the camera per image) will be jointly refined.
Our goal is to minimize the reprojection error, described as the following objective
function:

min
D,M

∑

i∈I

∑

j∈C
�(�

(D,Mi,Pj
)
, pj)

Here, D denotes the set of cell directions to be calibrated. We don’t have a correspond-
ing ray for each pixel, instead we divide the whole image into cells and use B-spline
interpolation as described in Sect. 2.3. M denotes the set of camera poses per image
to be calibrated, in which Mi denotes the transformation from the pattern coordinate
system to the camera coordinate system of the i-th image. Pj denotes the j -th generated
corner location using α while pj is the corresponding detected corner location.� denotes
the function that projects Pj into the image. � denotes the Euclidean distance between
the projection result and pj. Similar to projection in Sect. 3.1, Bundle Adjustment also
adopts Levenberg-Marquardt algorithm for non-linear iteration.

3.3 Image Undistortion

Image undistortion is done mainly via two steps: we firstly compute a pinhole model
and then apply the unprojection - projection procedure.

Pinhole Model Computation. Intrinsics parameters of pinhole models are required for
image undistortion here. We will compute a camera matrix K which should be as close
to the real one K

∧

as possible. The closer to the real one, the FOV (field-of-view) will
also be closer to the original FOV. If we already know the specifications of the camera:
1) the focal length of the lens; 2) the physical size of the pixel on the sensor, we can just
easily create a camera matrix based on them. Otherwise we also find an effective way
to calculate K using the corners C in Sect. 3.2 via:

a. HomographyCalculation:Wepick upm image combinations, of which each image
contains n points, to computem homography matricesH using maximum likelihood
criterion. Levenberg-Marquardt algorithm is applied to optimize each homography
H. The initialization can be obtained by solving a linear system LH = 0. Here, L is
a normalized 2n × 9 matrix consisting of constant 1 and corner coordinates.

b. Intrinsics Extraction: Homography is a combination of intrinsics and extrinsics.
Referring to Zhang’s method [9], once H is obtained, we can construct a symmetric
matrix B. Without difficulty, the intrinsic parameters of each image combination can
be extracted via:

cy = (B12B13 − B11B23)/(B11B22 − B2
12)
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λ = B33 − [B2
13 + cy(B12B13 − B11B23)]/B11

fx = √
λ/B11

fy =
√

λB11/(B11B22 − B2
12)

cx = γ cy/fy − B13f
2
x /λ

iii. Averaging: We can simply get the wanted camera matrix by averaging the resulting
camera matrices from the previous step: K = 1

m

∑m
i=1Ki

Unprojection - Projection Procedure.We achieve image undistortion in a reverse way.
Starting from an image plane without distortion, and for each pixel on it, we find the
location in the original image. In such a way we can make sure the undistorted image
is blank-free. It includes three steps: Firstly, unproject a pixel p(px, py) to a direction d
using pinhole models; Secondly, project the direction d to a sub-pixel p′ in the original
image using ray-pixel models; Thirdly, apply bilinear interpolation to get the color of p
from p′. The pseudocode is shown in Algorithm 1.

Input I is the original image; Input K is the computed camera matrix of pinhole
models in Sect. 3.3; P refers to the collection of all pixels in the image; The transfor-
mation between original and undistorted images is an identity matrix I because it has
neither rotation nor translation; � denotes the function that projects direction d into the
image at pixel p′; � denotes the bilinear interpolation while �(p) refers to the color of
p.

3.4 Stereo Rectification

Stereo rectification is a general demand for dual-camera or multi-camera systems, which
aligns all the cameras in some unified camera coordinate system after undistorting every
single camera. In this section, we take dual-camera systems as shown in Fig. 1(b) for
example. The algorithm can be easily extended to multi-camera systems.

During Bundle Adjustment in Sect. 3.2, we optimize the camera poses M for all
images. For dual-camera systems, we have 2 camera pose sets M1 and M2 of the



46 Z. Zheng et al.

left camera and the right camera. Each camera pose consists of a rotation matrix and
a translation vector so we have M1 = [R1T1] and M2 = [R2T2]. Note that the left
camera and the right camera share the same pattern coordinate system when capturing
an image. Thus:

←−
R = R2R

−1
1

←−
T = −←−

RT1 + T2

←−
R and

←−
T denotes the relative rotation and translation from the right camera coor-

dinate system to the left. We half rotate both of them to obtain the largest common FOV.
To this point, the orientations of these 2 coordinate systems settle down.

R
′ = ←−

R
− 1

2

T
′ = R

′←−
T

R
′
and T

′
are the intermediate results used to generate the final rotation R′′. Stereo

rectification can be summarized by applying the followingR1 andR2 to the original left
and right camera coordinate systems respectively:

R1 = R′′R′

R2 = R′′R′T

3.5 Calibration Pipeline

Although Schops’s calibration pipeline [32] provides corner detection and camera cal-
ibration based on ray-pixel models, it’s difficult for people to apply ray-pixel models
in practice. There are two main reasons: 1) it still costs much time to complete the cal-
ibration procedure even when using B-spline interpolation, especially for non-central
models. 2) the pipeline does not support image undistortion and stereo rectification,
which are essential for wide-angle lenses and stereo cameras. We extend the pipeline in
the following two ways.

Sector Grids. Original B-spline interpolation is based on rectangular grids, where the
number of parameters would grow fast as we use high resolution images.

For example, using 15 pixels as the cell size, there are 128 × 72 rectangular cells for
1920 × 1080 images. In our pipeline, we use sector grids instead, as shown in Fig. 2(b).
Firstly, we divide the image by 16 identical angles. Secondly, considering that distortion
is not distributed evenly in images and central regions are much less distorted, we use
dynamic sector widths - sector cells are sparse in central regions while they are dense in
border regions. The number of sector cells only depends on the diagonal length of the
image. As a result, we reduce the number of parameters (for 1920 × 1080 images, it’s
around 16 × 100 cells) and have most of them focus on border regions in the images.
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(a) Rectangular grids                  (b) Sector grids

Fig. 2. Ray-pixel models using different grids for B-spline interpolation.

In Sect. 4.3 we show the performance of ray-pixel models using sector grids.

Image Undistortion and Stereo Rectification. Our pipeline implements the proposed
image undistortion and stereo rectification algorithms. Using corner coordinates and
calibrated camera parameters, we generate a mapping from the undistorted image to
the original image. For stereo cameras, our pipeline will save the camera poses during
Bundle Adjustment to compute relative rotation and translation matrices, which are then
used in the stereo rectification to align cameras. We also provide APIs to combine these
two procedures as a generic geometrical transformation:

dst(x, y) = src(mapx(x, y),mapy(x, y))

We calculate the final mapping from undistorted and aligned images to original
images, so that we can just input original images src(x, y) and the combined mapping
mapx(x, y), mapy(x, y) into OpenCV’s remap function to get resulting images dst(x, y).

Overall, our pipeline contains the following functionalities. We have released it as
an open source software to make ray-pixel models easier to use in practice.

• Adopt the growing-based method to detect corners in original images.
• Use Bundle Adjustment to calibrate ray-pixel models (using sector grids).
• Apply image undistortion to original images.
• Apply stereo rectification to multiple cameras.
• Integrate a stereo matching method to get disparity maps from stereo rectified image
pairs.

• Reconstruct 3D scenes as point clouds from disparity maps.

4 Evaluation

In this section, we design and carry out three experiments to evaluate performances on
our proposed algorithms and pipeline. Note that we mainly care about performances on
cameras with severe distortion. Experiments are carried out on a MacBook Pro (16-inch
2019) laptop, with 2.3 GHz 8-Core Intel Core i9, AMD Radeon Pro 5500M 4 GB and
Intel UHD Graphics 630 1536 MB.

Data Collection. In order to obtain consistent calibration data for each camera, a robotic
arm is programmed to steadily carry cameras. We plan a motion trajectory around the
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calibration pattern in the world coordinate. The trajectory will cover the operating dis-
tances and angles of the cameras, which ensure we are able to collect abundant corner
features. Each camera is carried by the robotic arm to take 4000 calibration images
along the trajectory. The frame rate of capturing is 2 FPS. For each camera, around
400,000 corners are detected, of which 300,000 corners are fed into calibration, and the
left 100,000 corners are reserved for testing.

Camera and Models. We use wide-angle lenses of three focal lengths - 1.9 mm, 2.2
mm and 2.6 mm. We also prepare 10 dual-camera rigs for each focus to get the results
more generalized. All cameras use the same type of sensor - SONY IMX327, which has
at most 1920 × 1080 2.9 µm pixels. For comparison, these cameras are calibrated using
the following models:

• Pinhole with radial and tangential distortion (OpenCV)
• Fisheye with radial distortion (OpenCV)
• Central ray-pixel using rectangular grids (Schops’s implementation [32])
• Central ray-pixel using sector grids (ours)

In terms of image undistortion, stereo rectification and 3D reconstruction, their
performances are shown in Table 1.

4.1 Image Undistortion Results

An outcome image using our proposed undistortion algorithm is shown in Fig. 3(b). For
more quantitative analysis, we design an experiment including the following steps:

a. Use calibrated cameras to take images of the chessboard pattern from different
distances and orientations.

b. Undistort these images to get distortion-free chessboard image regions.
c. Apply a corner detectionmethod to these regions to get sub-pixel corner coordinates.
d. Connect adjacent corners on each row and column, and calculate the slope of each

connection.

For example in Fig. 3(b), we believe that corners on the same row or same column in
the original image, should lie on a straight line instead of a curve after being well undis-
torted. Their connection slopes should be identical. Hence, smaller standard deviation
of connection slopes in the whole image means better image undistortion performance.
We test at four distances: 25 cm, 50 cm, 75 cm and 100 cm, denoted as σ1, σ2, σ3 and
σ4.

Table 1 shows that the largest standard deviation goes to pinhole models. Fisheye
models slightly outperform pinhole models but also have large standard deviation. The
standard deviation of rectangular or sector ray-pixel model reduces by 59.4%, 50.8%
and 46.6% respectively in terms of different focal lengths. In addition, we notice that as
the focal length becomes shorter (the camera has severer distortion), ray-pixel models
represent more advantages. Note that our proposed sector ray-pixel models keep almost
the same performance as rectangular models.
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Table 1. Performances of camera models.

Camera Calibration Image undistortion Stereo rectification 3D reconstruction

Model ε σ1 σ2 σ3 σ4 δ1 δ2 δ3 δ4 η1 η2 η3 η4

1.9 mm
+ 1920
× 1080

Pinhole 0.35 1.69 1.61 1.53 1.42 0.42 0.40 0.39 0.37 2.83 5.80 10.80 16.20

1.9 mm
+ 1920
× 1080

Fisheye 0.32 1.65 1.56 1.44 1.36 0.38 0.35 0.36 0.33 2.52 5.59 9.56 15.44

1.9 mm
+ 1920
× 1080

Ray-pixel
(rect)

0.10 0.67 0.62 0.57 0.55 0.23 0.22 0.22 0.21 1.12 2.39 4.86 6.49

1.9 mm
+ 1920
× 1080

Ray-pixel
(sect)

0.11 0.68 0.64 0.59 0.55 0.24 0.22 0.23 0.21 1.11 2.42 4.80 6.45

2.2 mm
+ 1920
× 1080

Pinhole 0.34 1.24 1.23 1.20 1.17 0.39 0.38 0.36 0.34 2.64 5.77 9.72 15.24

2.2 mm
+ 1920
× 1080

Fisheye 0.32 1.20 1.18 1.14 1.07 0.38 0.34 0.33 0.31 2.45 5.43 9.31 14.28

2.2 mm
+ 1920
× 1080

Ray-pixel
(rect)

0.09 0.59 0.58 0.56 0.53 0.22 0.20 0.19 0.18 1.08 2.27 4.21 6.02

2.2 mm
+ 1920
× 1080

Ray-pixel
(sect)

0.09 0.59 0.59 0.57 0.54 0.23 0.22 0.19 0.19 1.09 2.32 4.25 6.03

2.6 mm
+ 1920
× 1080

Pinhole 0.33 1.11 1.05 0.99 0.98 0.40 0.38 0.35 0.34 2.55 5.43 9.48 13.88

2.6 mm
+ 1920
× 1080

Fisheye 0.30 1.03 0.99 0.96 0.93 0.37 0.35 0.33 0.30 2.38 5.09 9.33 13.05

2.6 mm
+ 1920
× 1080

Ray-pixel
(rect)

0.08 0.55 0.54 0.52 0.50 0.20 0.19 0.17 0.17 0.95 2.11 3.94 5.77

2.6 mm
+ 1920
× 1080

Ray-pixel
(sect)

0.09 0.56 0.56 0.53 0.50 0.22 0.19 0.17 0.18 0.97 2.15 4.07 5.59

Note that in calibration, ε denotes reprojection errors (in pixels); In image undistortion, σ1, σ2,
σ3, σ4 denote standard deviations of corner connection slopes; In stereo rectification, δ1, δ2, δ3,
δ4 denote y-coordinate differences (in pixels) of detected corners in the left and right cameras; In
3D reconstruction, η1, η2, η3, η4 denote reconstruction errors (in centimeters)

4.2 Stereo Rectification Results

Figure 4 shows the outcome of our stereo rectification algorithm. It’s difficult to dis-
tinguish whether rectification results are good or bad with our naked eyes because row
alignment differences are normally less than a pixel. After stereo rectification, we cal-
culate y-coordinate differences of detected corners between the left images and the right
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(b) An undistorted image

Fig. 3. Image undistortion of ray-pixel models. After image undistortion, we detect corner posi-
tions (red circle) and connect corners on the same row (green arrow) or column (blue arrow). Only
one row and one column are demonstrated here.

images, which should be 0 under ideal circumstances. We use the detected chessboard
corners in Sect. 4.1. Note that the corner detection not only gives the accurate corner
positions, but also gives the ordered number of each corner. We make 2 corners a pair
if they have the same ordered number in the left and right images. Then we can directly
get the y-coordinate differences of each corner pair. We also test image corners at four
distances: 25 cm, 50 cm, 75 cm and 100 cm, denoted as δ1, δ2, δ3 and δ4.

From the results in Table 1, the conclusion is similar to Sect. 4.1. The averaged
y-coordinate differences of pinhole and fisheye models are below 0.5 pixel and fisheye
models outperform slightly than pinhole models. Our proposed stereo rectification algo-
rithm reduces the differences by over 40%with comparison to fisheye models, no matter
using rectangular girds or sector grids. We think such an improvement benefits from
the better undistortion of ray-pixel models. We are confident that with higher accuracy
(around 0.2 pixel) on stereo rectification, we can achieve better performance on stereo
matching and 3D reconstruction.

Fig. 4. An image pair after stereo rectification. Auxiliary lines (blue) can help distinguishwhether
positions of objects in the left and right image are row-aligned.

4.3 Sector Grid Results

This section we focus on the performance of ray-pixel models using rectangular grids
versus sector grids. We test on cameras with 1.9mm focal length under 3 different image
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resolutions: 1920× 1080, 960× 540 and 480× 270. We don’t directly resize the corner
coordinates because it will lose accuracy to a certain degree. For each camera, the 1920
× 1080 original corner images are resized to 960 × 540 and 480 × 270, respectively.
Then we apply corner detection on resized images to get resized corner coordinates. We
use central ray-pixel models to calibrate each camera using 2 types of grids: rectangular
and sector. In 1920 × 1080 images, there are 9,216 rectangular grids and 1600 sector
grids; In 960 × 540 images, there are 2304 rectangular grids and 800 sector grids; In
480 × 270 images, there are 576 rectangular grids and 400 sector grids. As a controlled
experiment, we also prepare sparse rectangular grids by increasing the cell size so that
they have the same number of grids as sector grids.

The calibration time and reprojection error are shown in Fig. 5. For images of high
resolution, our proposed sector ray-pixel models reduce 83% of calibration time, while
maintaining almost the same calibration accuracy - reprojection error is less than 0.12
pixel. For images of low resolution like 480× 270, sector grids are also faster in terms of
calibration time, but we don’t recommend using low resolution for calibration because
many details on image will not be reserved. Although it takes almost the same time
to calibrate sector grids and the sparse rectangular grids, the latter has 2 more times
reprojection error.

Fig. 5. Comparison of rectangular grids versus sector grids. The sparse rectangular grids are
marked as Rectangular’ (orange)

4.4 3D Reconstruction Results

In this experiment, we evaluate the performance on 3D reconstruction. Firstly, we apply
both image undistortion and stereo rectification algorithms to get row-aligned image
pairs. At certain distances, we then take photos (Fig. 6(a)) of a plain full of random and
colorful texture, which helps the stereo matching algorithm to find more details in the
image. We then feed image pairs into SGBM method [37] to get disparity maps and
then reconstruct 3D point clouds. The idea is to see the reconstruction errors (in terms
of z-coordinate) at three distances: 50 cm, 100 cm, 150 cm and 200 cm, denoted as η1,
η2, η3 and η4. Some of the SGBM parameters are: image channel is set to 1, the number
of disparities is set to 128, the SAD window size is set to 15, the dynamic programming
is set to full-scale and two-pass mode.
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There is a concern that we shall introduce the error of stereo matching, which
will affect the reconstruction results. We design another experiment to use OpenCV’s
CharUco patterns (Fig. 6(b)) and relative detection methods, which can provide accu-
rate corner coordinates. In the same way, we take photos of CharUco patterns at certain
distances, then we detect CharUco corners and get sub-pixel coordinates. The disparity
is obtained from the x-coordinate difference of CharUco corners in the left and right
images.

In Table 1, it’s obvious that ray-pixelmodels have higher 3D reconstruction accuracy.
At the distance of 50 cm, the reconstruction error of ray-pixel models is 60.4% smaller
than pinhole models, and 55.6% smaller than fisheye models. At the distance of 200
cm, the advantages of ray-pixel models are also obvious. The visualization results of
dense 3D reconstruction using stereo matching are shown in Fig. 7. We can see that in
the central regions, both models have good performances. The main difference between
ray-pixel models and fisheye models is: ray-pixel models are able to maintain small
reconstruction error in the border image regions, where pinhole and fisheye models
have poor reconstruction ability. The above reconstruction errors (η1, η2, η3, η4) are the
average from the whole image field, so we then focus on the border regions (the first and
last 25% rows and columns of the image). The results are as expected: at the distances
of 50 cm and 200 cm, ray-pixel models have 71.6% and 63.3% smaller reconstruction
error, respectively.

Fig. 6. Images for 3D reconstruction
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Fig. 7. Visualizationof dense reconstruction error (150 cm).OpenCV’s Jetmap is used to represent
the reconstruction error. Error near ground truth ismarked as green (middle). Error less than ground
truth is marked as red (right). Error greater than ground truth is marked as blue (left).

5 Evaluation

In this paper, we propose algorithms and implementations of image undistortion and
stereo rectification based on central ray-pixel models. We also provide an extended
pipeline fromcalibration to application. The evaluation consisting of several experiments
shows that our algorithmswork better in terms of various aspects: calibration time, image
undistortion, stereo rectification and 3D reconstruction. We believe that our work should
make ray-pixel models much easier and more attractive in practice.

In the future, we would like to complete ray-pixel models, such as supporting non-
central models.
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Abstract. In the diagnosis and treatment of brain tumor, the position, shape, and
size of tumor are the key factors to be taken into account. However, for the multi-
category brain tumor segmentation task, complexity of tumor growth lead to poor
segmentation performance near intersection area. Most medical image segmenta-
tion methods extract the region of interest based on the gray information of the
image, rather than introducing gradient information. In addition, the complexity
of multi-modality medical images and the huge differences between brain tumor
areas make it difficult to segment brain tumors. To solve the above problems,
we propose an gradient-guided multi-category brain tumor segmentation method.
Proposed algorithm includes three branches: Dual-ConvD encoding branch, gra-
dient detecting branch, and multi-category segmentation branch. We used 295
patients as training set and 74 as validation set to validate the performance of
the algorithm. The proposed method has 1.25% improved to the latest method on
averaged Dice Score.

Keywords: Deep learning · Multi-modality MRI · Brain tumor segmentation ·
Gradient-guided

1 Introduction

Magnetic Resonance Imaging (MRI) technology obtains information on human tissue
structure through non-invasive imaging [1].MRI has an excellent performance in reflect-
ing the brain tissue. It is used for the diagnosis and treatment of brain tumors commonly.
Tumor segmentation of tumor areas can help doctors better judge current situation of
patients to formulate diagnosis and treatment strategies [2]. Glioma is the most common
malignant tumor in the brain, which is very aggressive and poses a severe threat to the
lives of people all over the world [3–5]. The median survival time of glioma patients is
about 15 months, and the 5-year survival rate is less than 10% [6]. It is almost incurable.
Gliomas grow in the brain parenchyma andmixwith normal brain tissues [7]. In the same
tumor area, tumor cells and tissue have complex and changeable tumor characteristics.
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Because of the complexity of the same tumor, different regions have their own relatively
specific characteristics and clinical manifestations. These all lead to the high complexity
of glioma segmentation. According to the malignant degree, tumor cells can be divided
into low-grade glioma (LGG) and high-grade glioma (HGG) [8]. The volume, shape,
and location of the tumor site are essential factors in evaluating brain tumors. Therefore,
the segmentation of brain tumor regions is significant for diagnosing and treating brain
tumors.

Generally, MRI images of a patient include the following: native (T1), post-contrast
T1-weighted (T1ce), T2-weighted (T2), and T2-weighted fluid attenuated inversion
recovery (T2-Flair) [9]. These four kinds of images have different sensitivity to dif-
ferent areas in tumor tissue. Glioma segmentation needs to be abtained at the pixel level,
and the following four regions need to be generated: Enhanced Tumor (ET), Tumor Core
(TC), Whole Tumor (WT), and normal tissue.

In order to use the generated MRI images to evaluate the condition of patient and
help doctors make diagnoses and treatment plans, professional radiologists need to use
professional physiological anatomy knowledge to sketch pixel-level spatial information.
Manual drawing of the target area takes time and effort, leading to unstable effects and
error-prone [10, 11]. It usually takes a radiologist 3–5 hours to sketch the image of a
patient [12, 13]. Therefore, scholars are studying powerful automatic methods, hoping
to reduce the tedious workload of radiologists. Radiologists can save time for other
meaningful work. At the same time, the automatic segmentation algorithms can also
ensure the accuracy and stability of segmentation results, thus helping clinicians in
diagnosis and treatment [14]. Deep learning has made remarkable achievements in the
field of segmentation [15], and has also made some progress in multi-modality [16, 17].
For medical images, due to the complexity and diversity of its imaging principles and
the limitation of small amount of data, accurate image segmentation is being explored.

In MRI brain tumor analysis, segmentation techniques are mainly divided into tradi-
tional segmentation and deep learning algorithms [18]. Traditional algorithms are usu-
ally based on hand-designed features to performpixel-level segmentation [19–21].Kaihu
et al. [19]. Designed the patch’s 3-D texture features using the gray co-occurrence matrix
(GLCM) statistics, thus constructing the random field of texture features. Recently, the
methods based on deep learning have made the cutting-edge achievements in the field
of medical image analysis [22–24], especially the UNet [25] structure and its derivative
networks [24–26] networks are vital in medical images. There are two difficulties that
limit the improvement of algorithm performance. The one is that the medical image data
is in the form of three-dimensional voxels. The other is imbalanced data. For brain tumor
segmentation, the situation is more complicated. We need to get multiple regions of the
tumor from multi-modality MRI. The existing multi-modality image data are usually
input to the neural network, which does not effectively utilize the multi-modality char-
acteristics of data. Therefore, this paper proposes a brain tumor segmentation algorithm
consisting of one encoding branch and two decoding branches. The main contributions
are as follows: 1) A encoding structure is designed to extract the features of multi-
modality image data; 2) An gradient extraction decoding structure is designed to guide
region segmentation; 3) Segmentation network branch is designed to utilize gradient fea-
tures and abstract features generated by the encoder effectively. The proposed algorithm
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achieves the Dice score of WT, ET, and TC of 0.9010, 0.8289, and 0.7543 on Brats2020
dataset. The effectiveness of proposed algorithm has been verified.

In the following sections, we first introduces the proposedmethod in detail from three
aspects, and then introduces the training related settings based on the proposed method,
including loss function and parameter settings. Finally, relevant experiments are carried
out on the dataset, including ablation experiment and advanced contrast experiment.

2 Methods

2.1 Image Acquisition and Preprocessing

The algorithm proposed in this paper is verified on the multi-modality Brain Tumor
Segmentation Dataset. The classical 3D segmentation algorithms are evaluated on the
same dataset. This dataset published four modality MRI image data of 369 patients,
namely T2-flair, T1, T1-CE and T2. These patients are divided into two different disease
development processes: HGG and LGG. The images needs to be divided into three parts:
whole tumor (WT), enhanced tumor (ET), and tumor core (TC). In the published official
tumor labeling data, there are four kinds of numerical values: 0, 1, 2, and 4. Integer 0
represents the background area. The true value of WT, TC, ET area are 1∪ 2∪ 4, 1∪ 4,
and 4, respectively. The original volume data size of each 3D image is 240×240×155.
In data preprocessing, wemainly adopt three operations: Z-value normalization, random
(center) cropping, and random flipping.

As for Z-score normalization [27], we use the linear change between the gray levels
of the original image to obtain the mean and variance of the whole image. The specific
mathematical transformation is shown in Eq. 1.

X = Z − μ

σ
(1)

where Z represents the initial input image and X represents the normalized image.μ and
σ represent the mean and variance of the image respectively.

As for random (center) cropping, based on the original data size of 240×240×155,
we crop the training data and test data to 160 × 192 × 128. In the training process, the
random cutting operation can expand the amount of original data. During the testing
process, the central cropping operation can ensure the same size as the training data and
remove the redundant background. In addition, four times of down-sampling are carried
out in this paper, and the input data are collected to 1/16 of the original data in each
dimension.

As for random flipping, if the random value is set every time data is read less than
0.5, the data will be flipped around the X-axis. Every flip data enhancement includes
three random flips on the X, Y, and Z axes.

2.2 Gradient-Guided Multi-category Segmentation Network

Theoverall network structure flowproposed in this paper is shown inFig. 1. The proposed
algorithm comprises three modules: dual feature extraction network module (D-Conv
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Fig. 1. Pipeline of the proposed method GGM-Net. The algorithm is composed of four part:
D-ConvD Block, Gradient Block, Gradient Driven Block

Block), gradient extraction module (Gradient Block), and gradient driven decoder mod-
ule (GDDBlock). The dual convolution feature extraction networkmodule can skillfully
deal with the problem that multi-modality images are uniformly input into the network
model and effectively extract multi-modality features. The gradient extraction module
can effectively use the features output by the Encoder to obtain gradient information
to guide the network to generate pixel-level segmentation results. The gradient driven
decoder module is driven to receive the corresponding features output by the dual fea-
ture extraction encoder and the gradient extraction module simultaneously and fuse the
information to generate accurate multi-category segmentation results.

D-ConvD Block: This module consists of four operations: MaxPooling, ConvD Unit,
concatenation, and adding. There are five D-ConvD Blocks in the proposed algorithm.
If the module is located at the first position, the Maxpooling indicated by the dotted
line in Fig. 1 will be omitted, and next operations will be carried out directly. If the
D-ConvD Block are not at the first position, MaxPooling is the first operations to be
performed. In this paper, all Maxpooling kernel size and stride of MaxPooling are set
to be 2. After the Maxpooling operation, two ConvD Units are used to extract features
separately. Then the two streamline features are concatenated. Finally the concatenated
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features are added with the initial features. The structure of the ConvD Unit is shown in
Fig. 2(a). The convolution kernel size of Conv3d is 3 × 3 × 3.

Fig. 2. Modules of the proposed algorithm. (a) is the structure of ConvD Unit and (b) is the
structure of GDD. The dotted box indicates that the operation can be omitted according to the
input setting.

Gradient Block: Gradient Block consists of three operations, two convolution blocks,
and one concatenation. The gradient detecting branch consists of four Gradient Blocks.
The convolution kernel sizes in Fig. 1 are 3 × 3 × 3.

Gradient-Driven-Decoder: The primary function of this module is to fuse features
from different network branches to decode and get accurate multi-category segmenta-
tion results. Segmentation network branch consists of four GDD Blocks. As shown in
Fig. 2(b), the input of GDD block has no previous feature for the first fusion block, the
top branch is cut off. We indicate the corresponding branch as a dotted line. For the
fusion modules at other positions, the features output by encoder are up-sampled and
then concatenated with the gradient features. After that, ConvD Unit is multiplied by the
processed gradient feature and encoder feature, respectively. Finally, the obtained two
features are subtracted and added with the previous feature.

2.3 Training

2.3.1 Loss Function

The brain tumor segmentation task has three significant characteristics: 1) a large propor-
tion of HGG and LGG, 2) large differences in tumor morphology, sometimes discrete,
and 3) small tumor area, especially non-enhancing tumor. Therefore, we use soft Dice
loss [28] as the objective function of the task, consider each category separately, and
then average the final result. Dice loss is expressed as follows:

Lcontent = 1 − 1

M

M∑

c=1

2 × ∑W
i=1

∑H
j=1

∑D
k=1Ycijk�(X ) + ε

∑W
i=1

∑H
j=1

∑D
k=1Ycijk + ∑W

i=1
∑H

j=1
∑D

k=1�(X ) + ε
. (2)
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Fig. 3. Visualization of HGG segmentation results. The first line is the four modes of input image
and the visualization of the manual label. The second line is annotation, UNet, ResUnet, and
proposed methods.

Fig. 4. Visualization of LGG segmentation results. The first line is the four modes of input image
and the visualization of the manual label. The second line is annotation, UNet, ResUnet, and
proposed methods.

where X and Ycijk represents the original input and predicted segmentation respectively.
M is the total number of segmentation categories.� is the set ofMCCNet parameters.W,
H andD are the size of the input image in three dimensions.Our input patches are cropped
to the size of 160× 192× 128. ε is to prevent the denominator from being 0. It is set to
1.

In addition, in order to strengthen the guidance of gradient information to segmen-
tation tasks, we introduce gradient supervision information in the training process, and
its loss function is shown as follows:

Lgradient = − 1

M

∑M

c=1

∑W

i=1

∑H

j=1

∑D

k=1
Gcijk log

(
�(X ) +

(
1 − Gcijk

)
log(1 − �(X ))

)
. (3)

where X and Gcijk represents the original input and gradient information respectively.
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The final loss function is as follows, α is set to be 0.1:

Lfinal = Lcontent + α × Lgradient . (4)

2.3.2 Training Setting

Configuration: Our experiment is performed on a workstation equipped with Intel
(R)Intel(R) Core(TM) i9-10980XE CPU at 3.00 GHz, 24 GB memory. The model of
GPU is NVIDIA GeForce RTX 3090, 24 GB memory.

Parameter Setting: The patch size of the input data is 160 × 192 × 128. The batch
size is set to be 1. Adam optimizer with initial learning rate 1e−4 is adopted to update
parameters of the network. The weight decay is set to be 1e−5. The training process
epoch of iteration is 100. And the initial channels is 16.

3 Experiment Result

The training data used in this experiment is the Brats2020 dataset, a total of 369 patients,
which are divided into train set and test set. The number of patients in the train set is
295 and the number of patients in the test set is 74. The training images are randomly
cropped while the testing images are center cropped.

3.1 Evaluation Metric

Dice similarity coefficient (DSC) is the main rating standard for segmentation tasks.
Dice coefficient is a measure of collective similarity, which is usually used to calculate
the similarity between two samples. The optimal value of segmentation result is 1 and
the worst is 0. It is defined as follows:

DSC = 2TP

FP + 2TP + FN
(5)

where FP, FN and TP are false positive, false negative and true positive respectively.

3.2 Analysis and Presentation of Results

To verify the effectiveness of the proposed algorithm, we analyzed the output results
qualitatively and quantitatively and compared our algorithmwith 3D-Unet, 3D-ResUnet,
and Vnet. The output results of various algorithms are shown in Fig. 3 and Fig. 4. The
first line is the original image data of the patient, and the last column of the first line is the
three-dimensional visualization effect of the true value of the tumor sketched by hand.
It can be seen that the tumor in Fig. 3 has a complex shape and a star-shaped emission.
The first four pictures in the second row are the manually sketched truth values, the
output of 3D-Unet algorithm, the output of 3D-ResUnet, and the output results of the
proposed algorithm. The last column in the second row is the 3D visualization effect of
the output result of the proposed algorithm. It can be seen from the resulting diagram that
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all three algorithms can determine the general location of the tumor, but there are some
differences in performance in detail. The proposed algorithm can capture the detailed
features better.

Table 1 shows the performance of the algorithm in indicators. All the comparative
experiments performed are based on the framework given by the official literature. We
set the number of initial channels to 16, which is consistent with the number of channels
in the proposed algorithm. It can be found from the table that the DSC obtained by our
proposed method is 0.9010, 0.8289, and 0.7543 respectively. The average DSC index
reached 0.8278, 1.5% higher than that of 3D-ResUnet. The correlation results of three
tumor regions prove the effectiveness of the proposed method.

Table 1. Quantitative comparisons of segmentation results

Methods DSC HD95

WT TC ET Average WT TC ET Average

Unet [25] 0.6858 0.5280 0.5509 0.5882 16.8238 14.6242 11.2896 14.2459

VNet [28] 0.6578 0.6145 0.6330 0.6351 25.1337 15.0412 11.8130 17.3293

Res-Unet 0.8927 0.8331 0.7200 0.8152 5.7462 6.3212 6.5573 6.2082

RAL [29] 0.8873 0.8426 0.7432 0.8244 7.7767 7.7917 4.5934 6.7206

Proposed 0.9010 0.8289 0.7543 0.8278 6.4465 5.5104 5.6123 5.8564

4 Conclusion

In this work, we propose an gradient-guided multi-category segmentation algorithm
(GGM-Net) to segment three sub-regions of multi-modality glioma. GGM-Net com-
prises a three-branch coding structure, gradient extraction branch, and decoding branch,
effectively using various features with different modes. The gradient extraction branch
generates gradient features, thus guiding the decoding branch to generate more accu-
rate multi-category segmentation results. The fusion module applied in the decoding
structure can fuse the details extracted by the Encoder and the contour information
extracted by the gradient structure. We put forward a supervision training method com-
bining gradient information with content information in the objective function, making
the training process more effective. The proposed algorithm is superior to the widely
used coding and decoding structure in brain tumor segmentation. Our algorithm has
substantial advantages in WT region segmentation and competitiveness in ET region
segmentation through qualitative and quantitative analysis and comparison. Overall, the
proposed algorithm is an effective brain tumor segmentation method and an essential
tool for studying three-dimensional medical images.
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Abstract. The number of vehicles is increasing rapidly, the road is aging faster
than ever, cracks are an early manifestation of road aging. To avoid high main-
tenance costs, this method was designed for realizing early detection of various
cracks on the surface of pavement, which are mostly made of concrete, asphalt and
other materials. To improve the accuracy of crack detection, this paper slightly
modifies the backbone network vgg16 to retain the crack features in the depth
information. We designed Linear Split Attention Module (LSAM) to extract more
location information and linear features from deep feature map. Multi-scale Fea-
ture Fusion module (MFFM) was designed for last layer to capture higher infor-
mation features and make connections with low level features. Then different
upsample methods are used in high-level and low-level convolutional layer to
improve the position ability for crack pixels. Finally, compared with the other 5
methods in two datasets, prediction results of this method on DeepCrack dataset
have an overall improvement of 1%–2.5%. Recall of this method on CrackForest
dataset is 2.2% higher than traditional method.

Keywords: Crack detection · Deep learning · Linear split attention · Multi-scale
feature fusion

1 Introduction

Cracks are one early sign of a variety of road damage types that can shorten the road’s
useful life and render it incapable of supporting large loads. It is crucial to promptly
identify and fix road cracks since they can endanger pedestrians and traffic safety. Tra-
ditional manual survey techniques typically need labor at the target site, which can be
slowed down by keeping the road closed to traffic. In addition, since manual detection is
common, human error may have a detrimental effect on evaluation outcomes. Because
of its quick speed, practical detection method, and low cost, digital image processing-
based fracture detection technology has replaced human survey. The detection accuracy
is currently not very high because the standard digital image processing algorithm design
depends on the designer’s experience. Accurate crack identification is quite challenging
due to the complicated environment, as well as the difficulty of gathering fracture texture
data.

Deep learning is widely utilized in the area of autonomous image processing, for-
tunately, and is much more accurate than conventional image processing techniques in
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areas like shadow detection and face detection. This is thanks to the rapid growth of
machine learning. The vast majority of crack identification jobs use supervised learning.
Convoluted Neural Networks (CNN) are used in supervised learning to execute a crack
detection job, matching each training input with a labeled output. The neural network
model is optimized so that the input can be predicted later by changing the parameters of
each node. In the task of monitoring and learning to detect cracks, there are twomethods:
mesh recognition and pixel segmentation. They split the picture lattice into numerous
blocks and categorise each one in order to find fractures at the beginning of the detection
development process, like in the 1993 article [1]. However, this approach is too crude to
identify cracks; it can only precisely identify the position of cracks, not their exact pro-
file. As a result of its high accuracy prediction capability, pixelated segmentation crack
has emerged as the most active detection technique in this area. U-Net was applied by
Cheng et al. [2] on complete Crack pictures to successfully forecast fractures. However,
the network struggles when faced with multi-target identification and pays little atten-
tion to deep information. SegNet design has been used by Zou et al. to construct a novel
encoder-decoder [3]. Its drawbacks include poor crack edge prediction accuracy and
inadequate predictive placement capabilities. A deep-supervised encoderdecoder archi-
tecture [4] is created for the deep feature extraction issue that can handle the training
of various feature levels and multi-scale feature fusion. May enhance fracture detection
skills in addition to attentionmethods and residualmodules [5]. However, the operational
memory is increased by the blind addition of the attention mechanism, which makes the
deep supervision network ineffective. Supersamples and structure employing encoders
were proven to be quicker and more efficient by Liu et al. [6]. However, this structure
missed a lot of deep information, overlooked the specifics of high-level and low-level
information, and the inaccurate localization of crack from the whole network.

In summary, our proposed a linear split attention for pavement crack detection has
the following contributions:

we take vgg16 [7] as the backbone network, eliminates the pool operation after the
last convolution layer and the full connection layer operation, which can improve the
efficiency and recoverthe loss of deep information.
we desigin Linear Split Attention Module (LSAM) to focusing on the crack pixels
along the two dimensions of channel and space, which can improve the localization of
crack and reduce noise interference. Then we desigin Multiscale Feature Fusion module
(MFFM) to enhance the ability of deep information feature extraction, strengthening the
connection between high level features and low level features. Because the low level
feature information is missing less, the two modules are only used to extract the deep
feature information, which can improve the efficiency of the whole network and avoid
taking up too much operating memory.
According to the particularity of high level feature information and low level feature
information, we optimize the upsample module, and different upper adoption methods
are used in high-level and low-level convolutional layer. Prediction accuracy of whole
network can be improved by combining with deep supervision.

The rest of this paper is organized as follows. Section 2 introduces the related work.
In Sect. 3, we introduce the proposed deep convolutional neural network architecture.
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Section 4 gives the experimental results and discusses the performance of the results.
Section 5 draws the conclusion for this paper.

2 Related Work

2.1 Traditional Methods

Image processing and conventional machine vision are examples of classic detection
techniques. For image processing to achieve crack detection, the crack image must first
be captured by a camera. The data must then be uploaded to a computer for prepro-
cessing. The crack image’s features must then be manually extracted and the crack’s
recognition achieved using techniques like histogram estimation [8, 28, 29], trapezoidal
histogram [9], local binary mode [10], Gabor filter [11], and multi-feature fusion [12].
Although under ideal circumstances these approaches can effectively identify cracks,
the actual operation will be impacted by the fissures’ surrounding environment, such
as uneven illumination and noise interference. The latter makes use of machine vision
technologies, including basic video capture and image inspection [13], a lidar scanner
[14], and ultrasonic detection [15], to collect crack data. While employing 3D data in
the form of 2D photos, video, or point clouds makes the detection process more chal-
lenging, these systems can nonetheless automatically detect fissures in road surfaces.
The development of more potent hardware and software tools has accelerated research
into machine learning algorithms in the field of computer vision, and more researchers
are now studying the semantic segmentation crack detection based on Deep Learning
[30–32].

2.2 Deep Learning Based Methods

Based on deep learning semantic segmentation, there are two different types of frac-
ture detection techniques. One method is to identify the pixel by taking into account
how it relates to the pixels around it. For pixels, this is a two-category issue [16]. This
approach requires an excessive amount of operational memory and is difficult to train
because to the enormous number of pixels in the image. Another strategy is to begin
with the entire image. As coders, network models like FCN [17] and SegNet [18] are
frequently employed. To decrypt the deep feature information, Zou et al. [3] constructed
a SegNet encoder decoder framework and had success on the dataset. CrackSeg is a
deep-convolution neural network that Song et al. [19] devised. It is more effective at
automatically detecting advanced characteristics in pictures. To solve the imbalance of
contextual information during detection [26, 27, 33, 34], Yang et al. [20] suggested the
topology of the Feature Pyramid Hierarchical Boost Network (FPHBN), which lever-
ages edge detection HED [21] as its backbone network to enable automatic end-to-end
crack detection. In order to improve the ability to detect cracks and strengthen the con-
nection between the high level layer and low level layer, this paper summarises the
prior experience by using Vgg16 as the network’s backbone and adding LSAM atten-
tional mechanism and MFFM linear multi-scale sensing field modules in the deep layer.
Last but not least, the network’s upsample module is tuned to record and restore the
information typically lost during bilinear interpolation.
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3 Proposed Method

3.1 Model Architecture

Fig. 1. The suggested network’s basic architecture is made up of the following components:
LSAM, MFFM, an upsample module, and guided filtering. To get additional linear characteristics
and localization data, LSAM is suggested. To improve the contextual relationship and acquire
deeper characteristics, MFFM is offered. Only bilinear interpolation is utilised as an upsample
at low values. Here, the DUC is employed as an upsample due to the high level. Each measured
output is then combined, and guided filtering is employed to improve the forecast.

Vgg16 is utilised as the primary component of the network structure in this study.
Only the pool operation following the last convolution layer and the whole connection
layer are removed from the structure, as seen in Fig. 1. The featuremap is recovered to its
original size using sample operation on bilinear interpolation after the first, second, and
third layers have been convolutioned.We employ LSAM andMFFM to extract the linear
features, position information, and channel information of fractures in the fourth and
fifth layers after the fourth and fifth layers have been convolutioned. Then, we sample
the deep layer’s features using DUC [22] and restore them to their original size. After
the final sampling operation, each layer is exposed to a loss function to modify its model
parameters using the knowledge gained by the deep supervision network DSN [23]. A
guidance filter is then applied here [24]. Each layer’s output is combined, and the first
convolution layer’s output serves as the guide image for the guide filter. Finally, we may
obtain the prediction result for each pixel in the picture by adjusting the weight of each
layer and other network parameters.

Utilizing LSAM in the final two layers will enable us to concentrate on the crack pix-
els along the channel and spatial dimensions, improving crack localization and lowering
noise interference. In order to improve the ability of deep information feature extraction
and strengthen the connection between high level and low level features, MFFM must
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be added as the final layer after LSAM. After employing LSAM and MFFM, we should
switch to using DUC and a different upsample approach.

3.2 Linear Split Attention Module

Fig. 2. Selective Convolution and Fusion Model

The attentional process that has been investigated only applies to the network as a
whole; adding without considering the consequences would increase operational mem-
ory and reduce the network’s ability to forecast outcomes accurately. Therefore, there
haven’t been many research to enhance deep feature extraction’s capabilities. There-
fore, starting with the Selective Convolution and Fusion Model (SFM), with the module
specifics provided in Fig. 2, this research has built an attention mechanism LSAM that
focuses on deep spatial and channel information.

The mission of the SFMmodule is to focus on channel characteristics in deep feature
maps. First, the input featuremap is passed through convolution layers of different scales.
The length of the feature map is H, the width is W and the number of channels is C.
where, Conv1 uses the convolution layer of 1 × 1 with an output ofO1; Conv2 is to pass
through the convolution layers of 1× 3, 3× 1, and 3× 3 respectively and fuse them into
output O2, and pass through the convolution of 1 × 3 and 3 × 1 respectively to become
more sensitive to the linear features of the convolution. Conv3 uses 5 × 5 convolution
layers with output of O3; Conv4 uses the convolution layer of 7 × 7. A dense sampling
layer of feature map information can be implemented with output of O4. Finally, the
characteristic mosaic of four convolution layers with different scales is output asO. The
feature map O of the mosaic output is Golbal Average Pooling and the information is
embedded in the vector sg, which has a length of C and a formula such as o below:

sg = 1

H × W

H∑

i=1

W∑

j=1

O(i, j) (1)
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Vector sg is then reduced in size and refined through the full connection layer to
improve efficiency, and the output is defined as w:

w = fc(sg) = relu
(
B
(
Wsg

))
(2)

where fc is the full connection layer formula. Relu is the activation function. B is the
normalized BN layer in the algorithm. W is the matrix, whose dimension is d × C and
due to the full connection operation, the dimension of w of the output fc is d × 1, which
is defined as follows:

d = max

(
C

r
, 32

)
(3)

where C is for the number of channels in the feature map, r is for the re- duction
dimension ratio, and d is restricted to 32 when the channel after the reduction dimension
is less than 32.

After the above operations, four smooth attention vectors a, b, c and d can be obtained
to determine the results of convolution layers of different scales. Assume that channel
k of the feature map corresponds to the ak, bk, ck, dk elements of the four attention
vectors, and that the weighted combination of the channel is Yk. The final output Y can
be obtained by combining the weighted combinations of each channel as follows:

1 = a + b + c + d (4)

Yk = akO1,k + bkO2,k + ckO3,k + dkO4,k (5)

Y = [Y1,Y2, · · ·,YC ] (6)

where O1, kis the output of the first convolution layer of the module when the channel is
k. The dimension of Yk is H × W. The dimension of Y is H × W × C.

As shown in Fig. 3, the input characteristic map X is weighted after passing through
the SFM module and the output is Z = X × Y. The subsequent oper- ation is similar to
that of the SFMmodule, in which the feature Z is averaged and maximized, respectively,
and then each pixel is summed up and fed into a convoluted layer with a core of 7 × 7.
This operation reduces the feature to a single 1-channel number and generates spatial
features Y s through the sigmoid activation function. The overall formula is as follows:

Ys = sigmoid
(
Conv7×7

([
avgpool(Z) + maxpool(Z)

]))
(7)

Finally, the input Z is weighted with the generated spatial features Y s to obtain the
final generated features.
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Fig. 3. Linear split attention module

3.3 Multi-scale Feature Fusion Module

With the deepening of the network, the positioning performance in areas with weak
recognition, the resolution of feature images will decrease continuously as the network
deepens, and the location performance will gradually decline. Based on dilated convolu-
tion, we can set different dilated rates to obtain multi-scale semantic feature information
by, and improve the ability of network to locate and identify target areas. It can increase
the effective information around the target by expanding the receptive domain of convo-
lution kernel, and improves the target areas with weak recognition ability. By operating
the convolutions in a cascade way, not only can obtain the positionmapping of the target,
but also the target area with weak recognition ability can be accurately located.

Fig. 4. Multi-scale Feature Fusion module. Here, the dilated convolution with rate of 1 can be
regarded as a the 1 × 1 convolution.

We add MFFM to the backbone after the final layer of the network passes through
the attentional mechanism LSAM to increase the network’s sensory field, allowing for
more high level feature and low level feature connections because the backbone network
Vgg16 has a shallower receptive field than theoretical val- ues. The MFFM structure, as
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shown in Fig. 4, is a parallel mosaic of multi-scale sensory field modules. First, the input
is divided into three convolution cores with different convolution rates. The process of
operation is that the input char- acteristic map is passed through the 1 × 1 convolution
and the dilated convolution with rate of 1, respectively, and the result is spliced into D1.
At the same time, the input feature passed through 1 × 3 convolution, 3× 1 convolution
and 3 × 3convolution and the 3 × 3 dilated convolution with rate of 3, respectively, and
the result was patched out as D2. At the same time, the input feature map was divided
into 5 × 5 convolution and the 3 × 3 dilated convolution with rate of 5, and the output
was spliced into D3. Finally, the output of three different paths was combined into a
convolution with a kernel of 1 × 1.

As the comparison before and after adding MFFM in the fifth layer shown in
Fig. 5. After adding MFFM, we can see the ability of locating crack pixels is obviously
improved, the detailed information is richer and the edge of crack is clearer.

Fig. 5. The effect comparison before and after adding MFFM. (a) input (b) GT (c) sideoutput5
after using MFFM (d) sideoutput5 before using MFFM.

4 Experimental Result and Analysis

4.1 Experimental Setting

This chapter conductednetwork training and experiments on a computerwith anNVIDIA
GeForce 2080Ti GPUwith I9900K performance and 32 gigabytes of RAM. The version
of Python is 3.6, with Pytorch, and others using default settings. The parameters of
network tuning are an initial learning rate of 1e−4, an adaptive learning rate of 1/5,
the loss weight for each side output layer and final fusion layer is 1.0, and a weight
attenuation of 2e−4. The momentum is 0.9.

5 Dataset Introduction

Two crack datasets are used. Deepcrack [6] and CrackForest [25] datasets. Deep- crack
is a manually annotated multi-scale and multi-scenario public infrastruc- ture dataset.
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The dataset consisted of 537 RGB color images, of which 300 were selected for training
and the rest for testing with CrackForest. CrackForest is a collection of 118 480 320
images, each with a hand-drawn realistic outline. Data augmentation is a key technique
in deep learning networks. Rotation parameters are set to 0, 45, 90, etc., up to 360°, with
each rotation separated by 45° and the largest rectangle cut out; Horizontal flip of the
above rotated image. In all, the dataset were augmented by 16 times.

6 Evaluation Metrics

To assess network performance, six metrics were used: Precision, recall, F 1Score,
ttlobalaccessibility, Classaverageaccessibility, and MeanIU.

Precision = TP

TP + FP
(8)

Recall = TP

TP + FN
(9)

F1score = 2 ∗ (Precision ∗ Recall)

(Precision + Recall)
(10)

When the prediction is positive and the true value is positive, that is, when the
prediction results are the same as the actual labeling, it is evaluated as True Positive TP;
When the predicted value is positive and the true value results in negative, that is, it is
not actually a crack but is mistakenly predicted as a crack, assessed as False Positive
FP; When the predictive value is negative and the true value is positive, the broken
pixel cannot be identified and the system mistakenly treats it as a background pixel,
which is assessed as False Negative FN; When the prediction is negative and the true
value is negative, that is, when the prediction matches the true value without a crack, the
assessment is True Negative TN.

Global accuracy (G) =
∑

i nii∑
i ti

(11)

Global average accuracy (C) = (1/ncls)
∑

i nii
ti

(12)

MeanIU (MIU) = (1/ncls)
∑

i nii(
ti + ∑

j nji − nii
) (13)

where N ij is the number of pixels predicted as j for the i class, which has ncls in different
classes, and ti = Σ jnii is the total number of pixels for the i class (true positive and
includes misinformation).

TPR(TruePositiveRate) = TP

TP + FN
(14)

FPR(FalsePositiveRate) = FP

TN + FP
(15)

At last, we use a classical metric Receiver Operating Characteristic (ROC) curve.
For the ROC curve, we calculate three metrics TPR, FPR and AUC is the area under the
ROC Curve.
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7 Evaluation on Image Datasets

The network in this chapter compared five of the best experimental methods in the
DeepCrack and CrackForest datasets with crack detection, DeepCrack [6], SegNet
[18], CrackSeg [19], FPHBN [20], and HED [21]. Table 1 predicted the results of the
DeepCrack experiment and Table 2 predicted the results of the CrackForest experiment.

In the above two tables, the optimal data of crack detection method compared with
other methods are put forward. You can see an overall improvement in the assessment
on the DeepCrack dataset. These metrics results are shown in Table 1. On DeepCrack
dataset Precision of Our method reaches 87.5%, Recall reaches 86.3%, F-score reaches
86.9%, and MIOU reaches 87.8%, it outperforms DeepCrack, the second best.

Then we verify the crack detection ability of our methods in another environments,
we test the network model on CrackForest dataset. The results are shown in Table 2.
Comparing with the second highest result, the Recall, GAccuracy, CAccuracy of our
method are improved by 2.2%, 0.1% and 1.5% respectively. The results show that our
proposed network model has good generalization ability.

Fracture prediction maps of various fracture detection methods are shown in Fig. 6.
By comparing the results of different prediction methods, it can beclearly observed that
the fracture detection methods in this paper can accurately predict the fracture maps in
different complex environments. It can be seen that CrackSeg is seriously disturbed by
noise, and the anti-noise performance of this paper is good, not only can correctly point
out the location of the crack area, but also can accurately generate the crack boundary.

Fig. 6. The visualization results of different crack detection methods are obtained in two datasets.
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Table 1. The evaluation metrics of competing methods on Deepcrack dataset.

DeepCrack

Methods Precision Recall F-score GAccuracy CAccuracy Mean IOU

DeepCrack [6] 0.850 0.850 0.850 0.987 0.922 0.863

HED [21] 0.825 0.838 0.746 0.986 0.922 0.853

SegNet [18] 0.733 0.693 0.712 0.980 0.877 0.800

CrackSeg [19] 0.789 0.813 0.801 0.983 0.900 0.825

FPHBN [20] 0.827 0.766 0.796 0.988 0.884 0.824

Ours 0.875 0.863 0.869 0.989 0.931 0.878

Table 2. The evaluation metrics of competing methods on Crackforest dataset.

Crackforest

Methods Precision Recall F-score GAccuracy CAccuracy Mean IOU

DeepCrack [6] 0.558 0.664 0.601 0.988 0.822 0.712

HED [21] 0.520 0.635 0.572 0.985 0.813 0.692

SegNet [18] 0.710 0.658 0.683 0.979 0.820 0.749

CrackSeg [19] 0.506 0.648 0.568 0.985 0.800 0.690

FPHBN [20] 0.562 0.656 0.605 0.986 0.824 0.710

Ours 0.622 0.686 0.652 0.989 0.839 0.736

8 Ablation Studies

In order to study the effectiveness of LSAM and MFFM in this network. Keeping all
parameters the same, we compared the networkwith all modules removed to the network
with only some modules added, and the results are shown in Tables 3 and 4.

Fig. 7. The Precision-Recall (PR) curve for crack segmentation on two database
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Fig. 8. The ROC curve for crack segmentation on two database.

It performed better than either LSAM or MFFM alone to combine the two. It is clear
that the two modules do not limit one another but rather improve the network’s crack
detection ability, enabling the network to identifymore varieties of fractures in situations
with more complexity. TheMFFMmodule additionally gives deep location information,
linear edge characteristics, and contextual connections, whereas the LSAM attentional
mechanism just provides rough position and edge information. The ROC metrics and
PR metrics are shown in Figs. 7 and 8. Though there are only small differences in the
curve, our strategy achieves the better performances than baseline.

Table 3. Ablation analyze for the proposed architecture on DeepCrack dataset.

DeepCrack

Methods Precision Recall F-score GAccuracy CAccuracy Mean IOU

baseline 0.8637 0.8593 0.8615 0.9880 0.9266 0.8721

onlyLSAM 0.8634 0.8619 0.8627 0.9881 0.9279 0.8731

onlyMFFM 0.8739 0.8529 0.8633 0.9883 0.9237 0.8737

LSAM + MFFM 0.8747 0.8622 0.8684 0.9886 0.9307 0.8778

Table 4. Ablation analyze for the proposed architecture on CrackForest dataset.

CrackForest

Methods Precision Recall F-score GAccuracy CAccuracy Mean IOU

baseline 0.5588 0.6666 0.6079 0.9861 0.8290 0.7113

onlyLSAM 0.6187 0.6855 0.6504 0.9881 0.8393 0.7350

onlyMFFM 0.5816 0.6628 0.6196 0.9868 0.8275 0.7178

LSAM + MFFM 0.6216 0.6855 0.6519 0.9882 0.8393 0.7358
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9 Conclusions

Our work contributes to the idea of a linear split attention for pavement fracture iden-
tification that can partition the fine-grained crack areas in pixel terms. To enhance the
extraction of position and edge information, we add the attention module to the deep
feature map. Then, to enhance the deep orientation and edge linearity characteristic
and increase the relationship between high-level and lowlevel, we create a linear mul-
tiscale sensing field module. In order to increase the network’s detection precision and
operational effectiveness, we additionally optimise the upsampling module and employ
several upsampling techniques in both the high-level and low-level convolutional lay-
ers. Finally, the experimental findings demonstrate that our technique outperforms other
cutting-edge fracture identification methods in dataset. The LSAM andMFFMmodules
can both boost the underlying network’s predictive ability, according to ablation stud-
ies. The usefulness of the suggested strategy is demonstrated by experiments on two
datasets, which also show that it outperforms other methods in terms of detection accu-
racy. We intend to develop a more effective approach in the future to improve network
performance and achieve accurate automatic crack detection. We also need to develop
a Data Augmentation plan due to the dearth and unreliability of datasets. To satisfy the
demands of real-time detection, the network must, meanwhile, speed up crack detec-
tion. Therefore, our future equipment needs higher memory than 2080ti, and also need
hardware knowledge.
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Abstract. Brain-computer interface (BCI) is a new interactionmodel that directly
connects the human brain or animal brain with external devices, which has a wide
range of application scenarios. Through the BCI technology based on electroen-
cephalography (EEG) signal, the communication and control of external devices
can be realized independently of the peripheral nervous system and muscle tissue.
Motor imagery (MI) is a process in which people imagine their limbs or muscles
moving, to control some external auxiliary devices (wheelchairs, robotic arms,
robots etc.) so that people without motor ability can restore their communication
and motor ability to a certain extent. In this paper, the basic situation of EEG and
EEG signal acquisition is introduced first. Then, the analysismethods and research
contents of EEG signal preprocessing, feature extraction, and feature classifica-
tion based on motor imagery are introduced in detail. Finally, the brain-computer
interface technology based on motor imagery is summarized and prospected.

Keywords: Brain-computer Interface (BCI) · Motor Imagery (MI) · EEG
signals · Feature extraction

1 Introduction

Brain-computer interface (BCI), also known as brain-computer fusion sense, is a means
of communication between a human or animal brain and an external auxiliary device.
Using this communication technology, the control and interaction of external auxiliary
devices can be realized without the help of the brain nervous system and muscle tissue
[1], Nicolas [2] define this as a hardware and software communication strategy.

There are many classification methods for BCI. Figure 1 illustrates four classifica-
tion schemes, which are classified according to the direction of control, dependability,
recording method, and operation method respectively. According to the direction of con-
trol, it can be divided into unidirectional BCI and bidirectional BCI. In a unidirectional
BCI, only one end can send instructions to the other end at the same time. For exam-
ple, the brain sends instructions to an external auxiliary device, or an external device
sends instructions to the brain. Bidirectional BCI allows two-way information exchange
between the brain and external devices. At present, the research on BCI is mainly on
unidirectional BCI, and can only realize the brain sends instructions to external auxiliary
devices.
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According to dependability, it can be classified into dependent BCI and independent
BCI. Dependent BCI requires subjects to carry out some form of motor control, such as
visual evoked control and motor imagery control, which has been widely used. Indepen-
dent BCI, which does not require subject control, is ideal for patients with eyemovement
disorders or severe physical paralysis. Tello [3] proposed a novel independent BCI based
on conventional steady-state visual evoked potentials, they use figure-ground perception
to identify two different targets, send commands in limited visual space without shifting
eyes, and proved to be effective.

According to the recording method, it can be divided into non-invasive BCI and
invasive BCI. Non-invasive BCI involves placing physical electrodes to collect electrical
signals on the scalp, and invasive BCI involves placing physical electrodes into the skull.
Invasive BCI requires physical electrodes to be surgically implanted in different parts of
the brain and has the characteristics of strong signal acquisition, stable signal, and long
duration. But with time, scar tissue is easy to produce, resulting in signal interference and
loss.Although the signal of non-invasiveBCI is not as strong and stable as that of invasive
BCI, it does not harm the human body, there is no need to worry about immune effects on
the human body. Common non-invasive methods include EEG, MEG, PET, functional
magnetic resonance imaging, and functional near-infrared spectroscopy etc. Due to the
advantages of non-invasive, easy to use, safe, easy to collect, and cost-effective, EEG
is widely used and can induce SCP, SSVEP, MI, ERRP, P300, and other control signals
[4].

Finally, according towhether the user depends on the timewhenoperating the system,
the BCI can be divided into synchronous BCI and asynchronous BCI. If the interaction is
based on a prompt imposed by the system at some point in time, it is called asynchronous
BCI. At this point, the brain activity is generated by the user. Based on this cue, it
can be distinguished whether the neural activity generated by the user is intentional or
unintentional [5]. Asynchronous BCI means that the user can generate a mental task
to interact with the application at any time, regardless of time and system prompt. But
asynchronous BCI needs to actively distinguish between intentional and unintentional
neural activity generated by the user. The synchronous BCI system is simple in design
but has many limitations. By comparison, synchronous BCI is not user-friendly.

Motor imagery (MI), one of the four main paradigms of BCI, focuses on control-
ling the movement of objects (such as the movement of hands, arms, or feet) through
visual-motor imagery visualization. Unlike other paradigms, it primarily characterizes
an intention to move, controls limb movement through neural activity and has no actual
movement output, and does not require external stimulation [6]. When subjects imagine
different limb movements, they generate EEG signals in the sensorimotor cortex of the
brain that is similar to the actual signals, allowing researchers to determine the user’s
intention to achieve control of the limb by identifying the activation effects in different
brain areas. 28-year-old paraplegic Giuliano Pinto successfully kicked off the World
Cup in Brazil through MI-BCI.

The MI-BCI is important for the therapeutic recovery of stroke patients, people
with motor disorders, severe muscle disorders, and paralysis etc., and this active motor
rehabilitation training approach has been studied to effectively restore the function of
impaired brain motor perceptual areas [7]. It also allows people with motor disabilities,
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cerebral palsy, and other mobility impairments to control some external assistive devices
(such as wheelchairs, nursing beds, and robotic arms) through theMI paradigm to restore
their ability to communicate and move to some extent.

The structure of this paper is as follows: Sect. 2 introduces the basic information
about EEG signal and EEG signal acquisition; Sect. 3 introduces the pre-processing
method of MI-EEG signal; Sect. 4 introduces the feature extraction method of MI-EEG
signal; Sect. 5 introduces the feature classification method of MI-EEG signal; Sect. 6
makes a conclusion and outlook on the MI-BCI.
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Fig. 1. Classification of BCI systems in terms of control direction, dependability, recording
method, and mode of operation.

2 EEG Signals and Signals Acquisition

The EEG signals are the sum of the changes in extracellular field potentials caused by
the electrophysiological activity of a large number of nerve cells in the brain in the
cerebral cortex or on the surface of the scalp, and data on brain activity can be recorded
using EEG acquisition equipment. EEG signal is generally classified as spontaneous
EEG and evoked EEG [8], with spontaneous EEG being the spontaneous changes in
extracellular field potentials induced by the brain’s nervous system without any external
stimuli applied, such as slow cortical potentials and sensorimotor rhythms. Evoked EEG
is an external stimulus (such as sound, light, picture, video etc.) applied to a person’s
sensory organs that cause fluctuations in the nervous system of the brain which in turn
causes potential changes in the corresponding parts of the brain, such as steady-state
visual evoked potentials, visual evoked potentials, and P300.

The human brain is generally divided into the cerebral cortex and the subcortex,
of which the cerebral cortex is generally the focus of scientists’ research. It is the most
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central and complex region of the brain, controlling human emotions, memory, thinking,
behavior, language, and other functions. The cerebral cortex is divided into two hemi-
spheres, as shown in Fig. 2, each of which contains five parts: frontal, parietal, occipital,
temporal lobes, and cerebellum [9]. With the advancement of science and technology,
scientists have found that subjects in different mental states show different EEG signal
characteristics, and EEG activity is closely related to the subject’s emotion and thinking.
Since the frequency domain signal of the EEG signal fluctuates more obviously, the
fluctuation range is 0.5–0 Hz, so the EEG signal is divided into 5 bands δ wave, θ wave,
α wave, β wave, and γ wave according to the frequency, and each band can reflect the
different activity states of the brain, as shown in Table 1.

Fig. 2. Physiological Structure of the Cerebral Cortex.

Table 1. EEG characteristics of different bands.

Types Area Mental states and conditions

δ band (0.5–4 Hz) Temporal lobe and parietal lobe Deep sleep, unconscious

θ band (4–8 Hz) Forehead position in adults and
hindbrain position in infants

Intuitive, creative, recall, fantasy,
imaginary, dream

α band (8–14 Hz) Posterior part of the brain and
both sides of the brain

Relaxed but not drowsy, tranquil,
conscious

β band (14–30 Hz) Both sides of the brain Alert, thinking, and active
concentration

γ band (>30 Hz) In the sensory cortex of the body Motor functions, higher mental
activity

Acquiring EEG signals and accurately processing EEG information becomes the key
to BCI. A complete EEG signal acquisition system consists of a signal acquisition cap,
amplifier, and data storage device [10]. The electrodes of the signal acquisition cap can
be divided into dry electrodes and wet electrodes. Dry electrodes are generally made of
stainless steel as conductors, while the conductors of wet electrodes are usually made
of silver and silver chloride materials. A comparison of dry electrode collection devices
and wet electrode collection devices is shown in Table 2. Since both acquisition devices
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have their advantages and disadvantages, the appropriate device can be selected for EEG
signal acquisition during the study according to the length of the experiment, laboratory
environment, and other factors.

Table 2. Comparison table of dry electrode and wet electrode.

Name Wet electrode Dry electrode

Whether to add conductive
media

Yes No

Advantages Stable acquired EEG signal,
better signal-to-noise ratio,
easy impedance drop, and high
reliability. Less difficulty in
subsequent EEG feature
extraction

No need to add conductive
media, the subject experience
is good, easy to use and fast

Disadvantages The conductive medium is easy
to wear, becomes dry, and
cannot collect signals for a long
time, the subject experience is
poor, and the experimental
procedure of a wet electrode
EEG cap is more complicated
than that of a dry electrode

More sensors are needed, the
quality of the acquired EEG
signals is average, the
reliability is poor, the
impedance does not drop
easily, there are artifact
signals, and the subsequent
EEG feature extraction is
difficult

Table 3. Typical time domain feature extraction methods.

Reference Method Introduction

Rodríguez [19] Auto-regressive (AR) modeling AR models signal from each channel
as a weighted combination of its
previous samples and AR coefficients
are used as features

Croz-Baron [20] Adaptive autoregressive (AAR)
modeling

As an extension of AR modeling, the
coefficients in AAR are not constant
and, in fact, vary with time

Adam [21]
Yilmaz [22]

The peak-valley modeling Represent the signal in terms of peaks
(local maximum) and valleys (local
minimum), various features points are
extracted between neighboring peak
and valley points

The current electrodes of EEG acquisition devices follow the international standard
for placement of electrodes for the 10–20 system developed in 1958 [11], as shown in
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Fig. 3. Where 10 represents the distance from the midpoint of the frontal pole to the
root of the nose and the distance from the occipital point to the external occipital ridge
each representing 10% of the total connecting distance, and 20 represents the distance
between the remaining collection points representing 20% of the total distance. Since
the EEG information collected by the EEG acquisition device is extremely weak, the
collected signal needs to be amplified by an amplifier, which also reduces the effect of
environmental noise and the weakening of the signal caused by cable movement. Finally,
the collected EEG information is stored through storage devices such as mobile hard
disks or Raspberry Pi.
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Fig. 3. International standard 10–20 EEG recording system electrode placement.

3 Preprocessing of MI-EEG Signals

To obtain effective EEG signals, signal processing usually consists of three parts: pre-
processing, feature selection and extraction, and feature classification, which we will
introduce in this section and the rest in the next two sections.

EEG signals collected with EEG acquisition equipment are usually mixed withmany
artifacts and noise. Artifacts are usually generated by the human body, such as eye
artifacts, heart artifacts, muscle disorders etc. Noise is usually generated by equipment
outside the human body, such as EEG acquisition equipment failure, poor electrode
contact, electrode impedance, electromagnetic noise, power line interference etc. Noise
and artifacts cause great obstacles to the analysis of EEG data, and the preprocessing
of EEG signals based on MI-BCI system is to filter the original EEG signals mainly by
using temporal filters and spatial filters to eliminate noise and artifacts to get signals
with specific patterns [12, 13].

Temporal filters, which mainly include low-pass and band-pass filters, are the most
commonly used in the preprocessing stage. Temporal filters mainly restrict the EEG
signal to the frequency band where the neurophysiological information related to the
cognitive task is located. For example, the signal will block the high frequency signal in
the signal after passing through the low-pass filter (myoelectric or other noisy signals).
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Signals in both the α band and the β band are usually closely related to themotor imagery
task, so the band-pass filter is usually set in the MI task at a frequency of 8 to 30 Hz [14,
46].

The main function of the spatial filter is to extract the necessary spatial information
related to the motion imagery task [15]. The common average reference (CAR) and the
Laplacian spatial filter are two common spatial filters and are computationally inex-
pensive. The CAR mainly removes the common components from all channels, leaving
only the channel-specific signals. The Laplace spatial filter is designed to remove the
common components of adjacent signals, increasing the difference between channels.

4 Features Extraction and Analyses

Due to the multi-electrode and high sampling rate of EEG acquisition devices, a large
amount of EEG data is generated every second species, but the vast majority of these
data are non-valid. It is important to correctly distinguish the intentional neural activ-
ity (such as motor imagery task of a specific limb) and non-intentional neural activity
(such as EEG, EMG) of the subjects to extract useful EEG information. Feature extrac-
tion is mainly the process of abstracting feature vectors that can strictly distinguish
different thinking states from the pre-processed EEG signals, and removing non-valid
data from the feature vectors to retain valid data. Feature extraction methods based on
motion imagery can be broadly classified into: time domain methods, frequency domain
methods, time-frequency domain methods, spatial domain methods, time-space domain
methods, spatial spectrum methods etc. [16, 47].

4.1 Time Domain Methods

The EEG signal is an extremely weak and unstable signal, and its amplitude, frequency,
period, and phase all change with the changes in the sensory motor rhythm, the EEG
signal shows different characteristics at each moment. The time domain analysis method
mainly extracts the EEG signal features at each time node from time, which is the earliest
and most intuitive feature extraction method used, easy for people to understand, and
can obtain both time domain and frequency-domain features. However, the algorithm is
complex and computationally intensive, which is difficult to meet the real-time require-
ments of the BCI [17]. And the method is highly subjective, largely influenced by the
analyst’s thoughts, and it is often difficult to objectively evaluate EEG signals.

The time domain method first extracts and analyzes the EEG signals for every single
channel, then fuses the features of all acquired channels into a large feature set and
applies this feature set to a single motion imagery paradigm, Table 3 summarizes sev-
eral commonly used methods employed for time domain feature extraction. To extract
effective time domain features, the EEG signal needs to be digitally filtered to extract
the values of the motor rhythm components in the frequency band of interest to the
researcher, and then the energy values of the filtered frequency band power features are
calculated. Mathematical statistical methods such as mean, root mean square, standard
deviation, and variance are all widely used in MI task classification [18].
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4.2 Frequency Domain Methods

Spectral Domain Methods (SDM) are used to extract frequency domain information
from EEG signals. Some statistical methods in the time domain (such as mean, standard
deviation, variance etc.) are also applicable in the frequency domain. Samuel [23] used
12 spectral domain descriptors (SDD) and 20-time domain descriptors (TDD) for a total
of 32 EEG Feature extraction methods were used to decode the MI task for different
limbs, and the results showed an average accuracy of 99.55% for a set of optimal SDD
and 90.68% for a set of optimal TDD by a linear feature combination technique. The
power of specific frequency bands, such as δ, θ, α, β, and γ bands, can be analyzed using
the fast Fourier transform (FFT) [24].

The power spectral density method (PSD) is a frequency domain based method, PSD
is a measure of how the power of a signal is distributed over frequency, it is performed by
parametric or non-parametric methods, commonly used are Welch’s averaged modified
periodogram [25], Yule-Walker equation [26], Lomb-Scargle periodogram [27], Spectral
entropy [28].

4.3 Time-Frequency Domain Methods

For EEG signals with more prominent time-frequency characteristics, this is generally
analyzed by time-frequency methods, which means that the EEG signal can be extracted
in both time and frequency domains simultaneously. Short Term Fourier Transform
(STFT) [29] and Wavelet Transform [30] are the more commonly used analysis meth-
ods in the time-frequency domain. STFT first splits the EEG signal into overlapping
time frames and then performs Fast Fourier Transformation (FFT) on the time frames
by a fixed window function. FFT has the advantages of simple calculation and short
computation time, so it has been widely used. Wavelet transform is a decomposition of
the signal into wavelets, which is a finite harmonic function (sin/cos). The wavelet trans-
form has a flexible time-frequency resolution, the signal is progressively refined using
a variable time-frequency window, and the energy intensity or density of the signal can
be represented in both the time and frequency domains [31].

Main formulas of STFT:

S(m, k) =
∑N−1

n=0
s(n + mN )�(n)e−j 2�N nk (1)

Main formulas of Wavelet Transform:

ψs,τ (t) = 1√
s
ψ(

t − τ

s
) (2)

Empirical modal decomposition (EMD) is an analysis method similar to Wavelet
Transform, but instead of decomposing the EEG signal into wavelet functions, it decom-
poses the EEG signal into intrinsic mode functions (IMF), which are simple oscillatory
functions in mathematics, and the IMF capture the frequency signals in order from high
to low.

Main formulas of EMD:

x(t) =
∑n

i=1
ci(t) + rn(t) (3)
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4.4 Spatial Domain Methods

Although the time domain method has been used earlier, only a single channel can be
selected for EEG signal extraction and analysis at a time, and the algorithm is more
cumbersome. The spatial domain method extracts features by combining multiple chan-
nels with certain feature relationships, and it can process multiple channels at a time,
among which blind source separation (BSS) [32] is a widely used unsupervised feature
extraction method. Cortical current density (CCD) and independent component analy-
sis (ICA) are both good applications of the blind source separation method. The blind
source separation method is an unsupervised feature extraction method in which there
is no correspondence between classes and features.

Main formulas of BSS:

x(t) = As(t) (4)

s
′
(t) = Bx(t) (5)

where x (t) is the vector of the mixed signals, s (t) is the vector of sources, and A is
the unknown non-singular mixing matrix. They aim to find a matrix B that reverses the
channels back into their sources.

Common Spatial Pattern (CSP) is a supervised feature extraction method based
on classes and features, which can effectively detect event related desynchronization
(RED), and the method has a high recognition rate and low computational complexity
and is more widely used in BCI. The preprocessed EEG data are first subjected to
wavelet transform, and then the wavelet transformed finite harmonic function is used as
input for the common spatial mode transformation. This enables the transformation of
EEG information into another new space that minimizes the variance of the class signal
[33]. This spatial filtering algorithm can be considered as a data driven dimensionality
reduction method to improve the variance difference between the two conditions. The
common spatial frequency subspace decomposition (CSFSD) used by Ramoser [34] and
Choi [35] method is an improvement of the CSP method.

Main formulas of CSP:

J (ω) = ωTC1ω

ωTC2ω
(6)

where C1 and C2 represent the estimated covariance matrix of each MI class. The above
equation can be solved while using the Lagrange multiplier method.

4.5 Spatio-Temporal Domain Methods

The combination of time domain feature extraction methods and space-domain feature
extractionmethods results in spatio-temporal domain feature extractionmethods, and the
more common spatio-temporalmethods in the past were the Riemannian geometry based
methods. Riemannian flow shape is formed by using EEG data with flow characteristics
and sample covariance matrix (SCM) acting in symmetric positive definite (SPD) matrix
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space [36]. The distances of Riemannian manifolds are curves not straight lines, which
can be calculated using the affine invariant Riemannian metric (AIRM) [37].

Most of the remaining spatio-temporal domain methods are based on deep learning.
For example, the new method proposed by Echeverri [38] in 2019 uses a blind source
separation (BSS) algorithm to separate the single channel signal into independent com-
ponents of the estimated source signal, and then uses the continuous wavelet transform
(CWT) for 2D representation of the separated independent components, and finally uses
a convolutional neural network (CNN) method for classification. Yang [39] proposed
a method using a long short term memory network (LSTM) and convolutional neural
network to extract temporal and spatial features from the raw EEG signal, followed by
extracting the spectral information of the EEG signal by discrete wavelet transform.
Li [40] proposed an end-to-end EEG decoding framework by first extracting spatial
and temporal features from the raw EEG signal, and then by using wave amplitude-
scramble data enhancement assisted by channel-projection mixed-scale convolutional
neural network (CP-MixedNet) technique to improve the decoding accuracy.

4.6 Spatio-Spectral Domain Methods

The combination of spatial domain feature extractionmethods and spectral domainmeth-
ods results in a spatio-spectral domain feature extraction method, and if temporal and
spatial filters can be learned simultaneously, a unified framework can extract information
from both spatial and spectral domains. For example, Wu [41, 48] proposed an iterative
spatio-spectral patterns learning (ISSPL) algorithm that learns both spatio-temporal fil-
ters and spectral filters simultaneously. Suk [42, 49] used the interplay between particle
filtering algorithms, feature vectors, and class labels information proposed a proba-
bilistic method for optimizing spatio-temporal spectral filtering of BCI based on EEG.
Zhang [43] proposed a structure based on deep recurrent and 3D convolutional neural
networks (R3DCNNs) that enables simultaneous learning of EEG signal features from
spatial, spectral, and temporal dimensions. Bang [44] proposed to superimpose the fil-
tered spectral filters and construct a 3-D-CNN feature map, and by using this feature
map, a layer-by-layer decomposition model of the framework was implemented and
experimental accuracy was ensured.

5 Classification of MI EEG Signals

A feature classification algorithm is to classify the extracted feature vectors according
to the target discriminant criterion to obtain the best classification result, which is the
mapping from the feature space to the target space, and usually consists of three parts: the
mapping function, the objective function, and theminimization/maximization algorithm.
Among them, the mapping function determines the feature space and the approximation
ability of the classifier, the objective function describes the problem to be solved by
the classifier, and the minimization/maximization algorithm is to find the best mapping
function to ensure the mapping of the data to the target space.

Algorithms such as Linear Discriminant Analysis (LDA), Support Vector Machine
(SVM), Multilayer Perceptron (MLP), and Bayesian classifier are feature classification
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stage commonly used algorithms. In recent years, some deep learning-based feature
classification algorithms have been proposed, but the feature classification stage of deep
learning based on motion imagery is still difficult to be widely used due to noise, the
correlation between channels, and small dataset of subjects [45].

6 Conclusions

This paper introduces the research of brain-computer interface based onmotion imagery,
which mainly involves the classification of brain-computer interface, an overview of
EEG signal and signal acquisition, pre-processing of MI, feature extraction, feature
classification methods etc.

With scientists’ research on MI-BCI, various signal processing methods have made
some progress and the performance of algorithms has improved substantially. However,
the research on MI-BCI is far from over, and there are still some key issues waiting to
be solved. For example, due to the extreme nonlinearity and non-smoothness of EEG
itself, the target user often needs to conduct a large number of training experiments,
which leads to a longer calibration period of a MI model. Current research on motor
imagery is mainly focused on offline models, and research onMI in online models needs
to be enhanced. Researchers should set a unified BCI criterion for algorithm evaluation,
which in turn can better measure performance improvement.
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Abstract. In this paper, we propose a new lightweight neural network for point
cloud classification that has only about 100 K parameters. Most of the current
research focuses on aggregating network features through pooling layers and
extracting abstract features of 3D point clouds using higher dimensions. In this
work, we turn our attention to exploring the relationships between points at a
deeper level, using a multilayer perceptron module with a residual structure to
suppress the performance degradation problem that comes with increasing the
number of network layers. On the ModelNet40 dataset, our method achieves an
accuracy of more than 92.5%, which is the first of its kind in our knowledge for
ultralight networks. Without using any techniques such as pruning and quantiza-
tion, themodel was trained at 1214 samples per second and inferred at a staggering
1956 samples per second.

Keywords: Point cloud classification · Lightweight neural network · Multilayer
perceptron · Deep learning

1 Introduction

Two-dimensional images only have flat information but lack depth information, robots,
self-driving cars and other devices cannot perceive real scenes accurately, and more
and more research is now focused on three-dimensional scenes. With the development
of LiDAR and binocular cameras, the cost of devices has also dropped significantly,
and more and more consumer-grade products are equipped with LiDAR or binocular
cameras to acquire 3D scenes. Among them, point cloud is the simplest and efficient
3D scene representation method, and it has been widely used in different fields, such as
autonomous driving, 3D scene segmentation and virtual reality (VR). While 2D images
are represented by dense regular pixels, point clouds are often represented by sparse
points in 3D space. Therefore, the feature extraction network of 2D images cannot be
directly used for 3D point cloud information extraction.

In this paper, we propose an efficient and lightweight network architecture which
has only about 100K parameters. This novel neural network architecture is specifically
tailored for mobile robots or portable VR devices that do not have powerful processors.
Unlike recent state-of-the-art (SOTA) algorithms that search for semantic cues by using
graphs, self-attentive mechanisms, etc., which introduce complex structures and a large
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number of parameters to obtain higher scores, our method simply use a simple con-
volutional network with remaining blocks to learn salient geometric features in point
clouds. Our approach not only far outperforms these SOTA models in terms of training
and interface speed, but also achieves similar performance (see Fig. 1).

Fig. 1. Our method runs significantly faster than other 3D point cloud networks with comparable
performance. And our model has a very small number of parameters.

We summarize the main contributions of our work as follows.

1. We propose a novel deep convolutional network with residual blocks that can
substantially reduce the number of parameters for point cloud classification.

2. We show that the training and inference speed of the model exceeds that of other
methods.

3. We report extensive experiments on multiple datasets. We perform ablation exper-
iments and detailed comparisons, and point out the shortcomings of the SOTA
models.

2 Related Work

2.1 Hand Crafted Features

Since point clouds are disordered and dispersed in 3D space, most 2D image process-
ing methods do not work. Many methods use local feature descriptors to capture the
geometric structure of the point cloud [1, 2, 5, 18], but these methods only work for
specific data sets and fail if the point cloud density changes. To use 2D image processing
methods in 3D point clouds, some methods project the points in the cloud onto the 2D
plane through different angles [7, 8, 19, 21]. However, these methods rely heavily on the
angle of the selected view, and different primary views should be chosen for different
point cloud images, e.g., a top view angle is good for an airplane but not for a hat.
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2.2 Point Cloud Classification

Point cloud classification is very challenging due to the disorderly nature of point clouds.
VoxelNet [29] solves this problem by converting a set of points within each voxel into
a uniform feature representation. Alternatively, there are approaches to classify point
clouds by graph structure to represent the relationships between them. DGCNN [25]
designs a novel neural network that captures potentially long-range semantic features in
the original embedding. RGCNN [22, 30] defines the convolution of a graph via a Cheby-
shev polynomial approximation to capture the structure of dynamic graphs adaptively.
Recent work has shown that on standard datasets (e.g. ModelNet40), competitors and
hardly distinguish between ranks. The difference between state-of-the-art methods such
as PointMLP [11], CurveNet [13], GBNet [13] is less than 1% in object classification
accuracy.

2.3 Deep Learning on Point Cloud

There are three main types of point cloud models based on deep learning: multi-view
projections, voxel-based networks, and direct point cloud methods. Unlike images, 3D
point clouds do not have neatly aligned pixel points and require another way to extract
features from the point clouds. The most common way to overcome this problem is to
project the point cloud onto a plane from different views, which is called multi-view pro-
jection method. MVCNN [19, 31] uses a convolutional network to extract features from
the projected image from the point cloud, and then aggregates these features through a
pooling layer to obtain global features for classification. Voxel-based networks [6, 12,
20] place points on a grid, each of which can be analogous to a pixel point, but generate
a large amount of computation because the number of voxels grows in a cube. To reduce
the computation, larger networks are often used, but local geometric details may be
lost at lower resolutions, so these voxel-based networks cannot handle complex point
cloud data. PointNet [15] is designed to be an efficient network for the direct point cloud
method. PointNet is not only much faster than the view and volume representation-based
methods, but also allows to obtain geometric features without loss of detail geometric
features without loss of detail. To obtain more local structure, PointNet++[16, 33] intro-
duces a layered neural network that learnsmore features as the contextual scale increases.
Others [3, 9, 32] use graphs to connect the points and pass information on top of them.

3 Lightweight 3D Point Cloud Classification Network

We first briefly review how the SOTA method captures fine geometric structures from
point clouds. Then, we describe the structure of our network and finally describe how
the residual blocks can better extract local features and reduce the number of parameters
at the same time. The entire pipeline of our network is given in Fig. 2.

3.1 Background

There are a number of different methods to extract features directly from point clouds,
the most representative of which is PointNet. Let χ = {xi|i, ..., n} be a set of feature
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Fig. 2. Architecture of our Snowpoints for point cloud classification.

vectors, where n denotes the number of points. The core modules of the PointNet family
are the multilayer perceptron network and the maximum set function, which can be
expressed as:

yi,t = MaxPooling(MLP(xi,j)|j = 1, ..., t) (1)

where yi is the output after feature aggregation and xi,j is the j-th nearest neighbor
point feature of the i-th centroid being sampled. The centroids are sampled by the
farthest point sampling algorithm, which covers all points of the object compared to
random sampling. PointNet++is the first method to build a hierarchical spatial structure
to improve sensitivity to local geometric layout for efficient sampling of point clouds,
and to develop multiple sampling strategies [4, 26]. The density adaptive layer is called
multi-scale grouping (MSG) and can be expressed as follows:

yi = yi,t1 ⊕ yi,t2 ⊕ yi,t3 , t1 < t2 < t3 (2)

where⊕ stands for the connection operation. This operation allows the network to group
local regions and combine features of different scales. The point transformer, inspired
by transformers and self-attentive mechanisms, assumes that the point transformer layer
is used to encode location information and can be represented as follows:

yi =
∑

xj∈χ(i)

ρ(γ (ϕ(xi) − ψ(xj) + δ)) � (α(xj) + δ) (3)

where γ, φ,ψ and α are linear projections, � is the Hadamard product, and ρ is a
normalization function such as softmax. δ = θ(xi − xj) is the position encoding func-
tion between the points xi and xj, and the encoding function θ includes the multilayer
perceptron and the ReLU function. The point transformer compares the similarity of
neighboring local regions in the point cloud by relative position encoding, which can
find promising results. Unlike the point transformer, pointMLP [11] proposes a geo-
metric affine module to normalize local points, which can make the model robust. The
normalization formula is defined as follows:

xi,j = α � xi,j − xi
σ + ε

+ β, σ =
√∑n

i=1
∑k

j=1 (xi,j − xi)2

k × n × d
(4)
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where σ is a scalar describing the deviation of the features, α and β are learnable
parameters, and ε is a small number used for numerical stabilization. By doing this, the
local points will be mapped to a normal distribution, and the network can then be trained
more easily.

Each method has its own advantages and disadvantages. Linear projections and
ensemble structures like PointNet have limitations in obtaining fine geometric features,
while the self-attention module in point transformers generates a large number of com-
putations and is not applicable to lightweight networks. The geometric affinemodule can
improve accuracy, but through experiments, we found a more general approach - batch
normalization - that not only achieves the same results, but also reduces parameters and
improves training speed.

3.2 Position Encoding

Location encoding plays an important role in point cloud classification, where the model
must extract fine local geometric features, gradually expand the perceptual field, and
finally obtain global features. To make an effective trade-off between inference latency
and accuracy, we reduce the feature dimensionality of the embedding layer compared
to other networks and use the residual structure to enhance message passing.

We constructed a residual location encoding block using a multilayer perceptron
and maximum pooling, as shown in Fig. 3. Linear projection proved to be effective for
extracting point cloud features in PointNet, but it had to extract deep features in high
dimensions, such as 1024. This not only slowed down the network, but in the last block,
multiple fully connected layers were used to classify the high-dimensional features,
which greatly increased the number of parameters. Therefore, we look for an efficient
way to encode the point cloud.

Fig. 3. Detail of the residual block.

Exploring the relationships between points within a local region of low dimension-
ality is the focus of the location coding layer. We must leave useful data and add dimen-
sionality carefully. We divide the point features into backbone features and residual
branch features. Backbone features contain deep point features that are representative of
the local region and aggregate local features through maximum pooling. However, the
maximum pooling layer loses a large number of effective features, and other networks
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add feature dimensions to reduce the loss. In our approach, we use residual branching
features to bring the shallow neighborhood context into the backbone features, enhanc-
ing the ability of the features to describe local regions in low dimensions, as shown in
Fig. 4.

Fig. 4. Backbone feature extractor and branch feature extractor.

We replace the residual branch features with higher dimensional features, which can
not only reduce the number of parameters, but also improve the training and inference
speed. In the backbone network, we also propose a mini-residual block to extract local
features. We use deeper layers rather than higher dimensions to extract better local
features, but the degradation problem is exposed as the depth of the network increases.
Simply increasing the number of network layers may result in failure to extract effective
features, leading to worse results. Constant mapping layers can overcome this problem,
and constant mapping branches can prevent the degradation problem due to too deep
network layers.

3.3 Framework of the Network

The position encoder in the classification framework has four stages, where each stage
has a down sampling rate of 2, for progressively expanding the local receptive field for
extracting a larger range of local point cloud features. Select 1024 points as the network
input and 64 centroids are chosen as the local point cloud feature centers. The expansion
rate of feature dimensions in each stage is [2,2,2,1], so the dimensions of point cloud
features generated in each stage are [2d,4d,8d,8d], where d is the feature dimension
encoded by the embedding layer.

In detail, the centroid sampling method refers to [15]. The farthest point sampling
(FPS) method can generate overlapping partitions of the point set at high speed. We
visualize the sampling results in Fig. 5.
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Fig. 5. Example result the point cloud sample.

4 Experiment

4.1 Detail Experimental Setting

We implemented our network in PyTorch [14]. We trained the model on four Nvidia
2080Ti GPUs with 200 epochs and a batch size of 128. we used the SGD optimizer
with momentum and weight decay set to 0.9 and 0.0002, respectively. The learning rate
was initially set to 0.2 and the cosine annealing scheduler [10] was used to adjust the
learning rate. To better compare with other models, we use the same sampling method
as the other models. For each sample in ModelNet40 and ScanObjectNN, 1024 points
were sampled uniformly from the grid surface and rescaled to fit the unit sphere. Object
classification is evaluated by accuracy.

4.2 Results in ModelNet40

There are forty classes of items in the ModelNet40 dataset [1], with a total of 9840
samples in the training set and 2468 samples in the test set. The results of the experiments
are shown in Table 1.

Compared with current SOTA methods, our approach demonstrates excellent
classification accuracy and fast training and inference speed.
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Table 1. Classification results on ModelNet40 dataset.

Method Accuracy(%) Param.(million) Train speed Test speed

PointNet [15] 86.0 0.8

PointNet++[16] 90.7 1.41 413.3 612.8

MVCNN [19] 90.1 138.0

PointConv [26] 92.5 18.6 37.9 21.6

KPConv [23] 92.9 15.2 31.0 80.0

Point Trans. [27] 92.8

PointMLP [11] 94.5 12.6 192.8 428.0

GBNet 93.8 8.39 35.2 226

VoxNet [12] 83.0 0.92

LightNet [28] 86.9 0.30

Ours 92.7 0.12 1214 1956

4.3 Results in ScanObjectNN

ScanObjectNN [24] is a point cloud benchmark dataset with 15 categories and 15,000
samples. The point clouds obtained from real-world 3D scans are significantly different
from the CAD models in ModelNet40 due to the presence of noise from airborne dust.
Unlike the ModelNet40 dataset, the density of the point clouds is heterogeneous due
to the accuracy limitations of the acquisition equipment. Table 2 shows the quantitative
results of the different methods.

Table 2. Classification results on ScanObjectNN dataset.

Method Accuracy(%)

PointNet [15] 68.2

PointNet++ [16] 77.9%

PointCNN [26] 78.5

DGCNN [25] 78.1

PointMLP [11] 85.4

GBNet [17] 80.5

Ours 82.3

4.4 Ablation Study

We verified the effectiveness of the module by ablation experiments, which were
designed to investigate the ablation of the dimensionality of the location coding layers,
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Table 3. Ablation study: full connected layer.

FC layers ModelNet40 Accuracy(%) ScanObjectNN Accurancy(%) Parameters

3 92.9 83.1 168960

2 92.7 82.6 141312

1 92.7 82.3 20480

and the number of fully connected layers. The experiments show that on two datasets,
ModelNet40 and ScanObjectNN, the classification accuracy of the model is 92.9% and
83.1% if the commonly used three-layer fully connected layer classification network
is followed, respectively. We also retrained the model with only two fully connected
layers and one fully connected layer instead of pruning the three-layer fully connected
layer model. The experiments show that the accuracy of using only one layer of fully
connected layers is 92.7% and 82.3% in the two models, respectively, and the accuracy
in the ModelNet40 dataset only decreases by 0.2%, while the number of parameters in
the fully connected layers is only 12% of the original one.

5 Conclusion

We propose a lightweight point cloud classification network with residual blocks, which
can reduce the width of the network while deepening the number of layers, thus sig-
nificantly reducing the number of network parameters, and gradually expanding the
local perceptual field by down sampling to obtain the global features of the point cloud.
Compared with other methods, this network can better obtain high-dimensional global
features, and we further reduce the number of fully connected layers and keep only one
fully connected layer for classification,which significantly reduces the number of param-
eters and improves the training and inference speed. Compared with existing methods,
our framework is able to obtain high-dimensional feature information with fewer param-
eters and extract local features of point clouds, and the training and inference speed is
faster than all current methods.
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Abstract. Deep convolutional neural networks have made considerable progress
in the field of semantic segmentation of images. However, due to inter-domain
differences, even modern networks cannot segment test datasets from different
domains very well. To reduce and avoid costly annotation of the source domain
training data, unsupervised domain adaptation attempts to provide efficient infor-
mation transfer from the source domain with detailed annotation to the target
domain without annotation. However, most existing methods attempt to align the
source and target domains from a holistic view, ignoring the underlying class-
level structure in the target domain, along with large noise and ambiguity at the
class junctions. In this work, we innovatively employ a fine-grained unsuper-
vised domain adaptation semantic segmentation method with increased entropy
certainty, and guide the model for finer-grained feature alignment by adversarial
learning, while increasing the pixel certainty near the category boundaries. Our
approach is easy to implement and we have achieved good results on both the
urban road scene datasets GTA5->Cityscapes and SYNTHIA->Cityscapes.

Keywords: Semantic Segmentation · Unsupervised Domain Adaptation ·
Class-Level Alignment

1 Introduction

The goal of image semantic segmentation is to be able to assign the correct category
labels to all pixels in an image, so it is suitable for complex image-based scene analysis,
which is required for applications such as autonomous driving. The recently adopted
convolutional neural networks (CNNs) offer various methods with the best performance
for this task [1–3]. At the same time, there is a real problem that cannot be ignored,
namely, all models depend on a well-trained dataset and its corresponding labels. If all
images to be semantically segmented had a test dataset and its complete good label,
this task would be a breeze. However, in practice there are two unavoidable problems:
first, not all source domain datasets are easily available, e.g., some medical images are
not publicly available per se or the number of samples is too small; second, the labels
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corresponding to the training data are too expensive to obtain, and these labels often
require a large number of intensive pixel-level annotations that are done by expensive
human labor, which is time-consuming and labor-intensive.

A potential solution to these two problems is to use simulated data, such as selected
images from virtual scenes generated by computers or simulators [4–6] as source domain
data, which has the advantage that a large number of source domain data samples can
be easily obtained to solve the problem of insufficient data, while the labeling of these
synthetic images is also done by computers, which is not only very complete and detailed
but also fast to save time and cost. However, the models trained with simulated images,
no matter how perfect they perform in the simulated data environment, often fail to
achieve the expected or satisfactory results once they are replaced by real scene images,
and even the accuracy drops drastically. The reason for this degradation is that the two
domains (source and target) are taken from different datasets, which have independent
data distributions and large inter-domain differences. This phenomenon is commonly
referred to as domain drift or domain shift [7]. The cross-domain task [8] needs to
overcome this problem and undoubtedly faces a great challenge.

In order to achieve the cross-domain task to solve the domain drift problem, we adopt
a domain adaptive approach, i.e., we reduce the domain drift problem to some extent
by adjusting the feature distribution of the source domain (virtual image data) and the
target domain (real image data) to reduce the distribution difference between them.
Specifically we use the idea of adversarial learning to design a segmentation network
and a discriminator network as the main framework of the model, and a segmentation
network and a discriminator network are designed as the adversarial sides to distinguish
the target sample from the source sample by training the domain discriminator, while
the segmentation network tries to deceive the discriminator [8–16] into making wrong
judgments by generating domain invariant features, and the discriminator is responsible
for trying its best to identify whether the generated image comes from the source domain
or the target domain. As the adversarial training escalates, the images generated by the
segmentation network become more and more deceptive closer and closer to the target
domain images, which means that the distribution difference between the source and
target domains is gradually shrinking and the consistency between the two is getting
stronger and stronger, finally achieving the purpose of solving the domain drift.

Despite the impressive progress in domain-adaptive semantic segmentation, most of
the previous work has been devoted to the complete global feature distribution without
paying much attention to the underlying structure between classes, and there is still
a large amount of noise at the junction between classes. This is one of the reasons
why the current domain-adapted semantic segmentation is not yet effective enough. As
discussed in recent works [17, 18, 36], matching the global feature distribution alone
does not guarantee that the expected error on the target domain is reduced and the
class conditional distributions should be aligned as well. This implies that class-level
alignment plays an equally important role in domain-adapted semantic segmentation.
Therefore, it is necessary to satisfy both the matching alignment of global features of the
image and also to solve the problem about the alignment between semantic classes. The
difference between global alignment and class alignment is shown in Fig. 1, where blue
indicates the source domain samples and red indicates the target domain samples. Figure
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(a) shows the results of global feature alignment, where the traditional discriminator can
achieve good inter-domain discrimination, and the feature alignment between the two
domains is basically good after domain adaptation, but some samples are still mixed
together incorrectly. Figure (b) shows the semantic class level alignment by the fine-
grained discriminator, which not only achieves the correct classification of the source
and target domains but also distinguishes the different semantic classes in the source
and target domains.

Fig. 1. The traditional approach and adversarial learning based on semantic category fine-
grained are illustrated. Traditional adversarial learning pursues edge distribution alignment and
ignores the inconsistency of semantic structure between domains. We propose to use fine-grained
discriminators to achieve semantic class-level alignment.

There have been some inspiring works [11, 19, 37] to try to solve the problem of
semantic class-level alignment.Chen et al. [19] proposed to use multiple independent
discriminators for class-level alignment, but since each discriminator is independent and
the effective information of the learned features is not further integrated and optimized,
the model may still fail to capture the relationship between individual semantic classes.
Luo et al. [11] introduced adaptive adversarial loss functions to roughly approximate
class-level alignment by applying different weights to each region in the image. In prac-
tice, however, they do not explicitly incorporate semantic class information effectively
into their approach, which may not facilitate class-level alignment.The work of Haoran
Wang [20, 38] et al. is illuminating in that although the labels of the target domain are
inaccessible in the unsupervised domain adaptive task, they find that the model predic-
tions on the target domain also contain by semantic class information, and demonstrate
that it is possible to use predictions on both domains to supervise the discriminator: i.e.,
merging semantic class information into the learning process of the adversarial network
allows the model to model the semantic inter-class structure, thus enabling fine-grained
semantic class-level feature alignment.

We follow this idea by introducing semantic class information in the adversarial
learning process and aligning features according to specific classes. We find that this
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operation also offers the possibility of fine-grained classification, where we integrate
semantic class information into the discriminator and encourage it to judge and align
at the fine-grained semantic class level by means of an objective optimization function.
In addition, we observe a more general problem in the semantic segmentation results
between, i.e., different semantic classes always have a large noise at the intersection, or
even a segmentation error. As shown in Fig. 2, in the Source only graph it can be seen
that the sidewalk is incorrectly segmented into the road, and in the AdaptSegNet graph
on the right it is seen that the edge segmentation of the building class and the vegetation
class is also not accurate enough.

Fig. 2. It illustrates that the pixel certainty of previous domain adaptive semantic segmentation
methods for boundary segmentation of semantic categories still needs to be improved.

The study [21]showed that there is some connection between pixel certainty and
entropy and also demonstrated that if the model is trained only on the source domain
then it tends to produce overconfident (i.e., low entropy) source-like image predictions
and underconfident (i.e., high entropy) target-like image predictions. This phenomenon
is shown in Fig. 2.

On the one hand the predicted entropy map of the scene from the source domain
looks like the edge detection results, with only high entropy activations at the boundaries
of each semantic category. On the other hand the prediction for the target domain image
is uncertain, which leads to a large amount of noise in the image segmentation result,
which is represented as some columns of high entropy output in the entropy map. It
is easy to argue that one possible way to reduce the difference in distribution between
the source and target domains is to reduce the entropy of the pixels in the prediction of
the target image, thus increasing the confidence level of the predicted pixels, especially
those near the boundaries. Thus, we decided to try to increase the degree of certainty
that the target predicted pixels belong to that semantic category while ensuring semantic
category alignment. Experiments show that our model outperforms some of the more
advanced unsupervised domain-adaptive semantic segmentation methods, and we also
tested it on a commonly used publicly available road scene dataset. (Fig. 3)

• We propose a new mechanism that introduces a target prediction pixel entropy mini-
mization strategy during fine-grained adversarial learning at the semantic class level
for images to achieve better semantic segmentation, which results in clearer semantic
segmentation outputs and correct recovery of larger blurred regions in images.
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Fig. 3. Unsupervised domain adaptive semantic segmentation based on entropy minimization.
The top two rows show the results of the model without domain adaptive training in the source
and target domain scenarios. The bottom row shows the results of the model based on entropy
minimization domain adaptive training in the same target domain scenario. The left and right
columns show the visual semantic segmentation output and the corresponding predicted entropy
mapping results, respectively.

• We evaluate our method by comprehensive experiments. Significant progress is
achieved on popular domain adaptive semantic segmentation tasks compared to other
state-of-the-art methods, including GTA5->Cityscapes and SYNTHIA->Cityscapes.

2 Related Works

2.1 Semantic Segmentation

Semantic segmentation is the task of predicting the unique semantic class label corre-
sponding to each pixel of an input image, which can also be considered as a pixel-level
classification task. With the development of deep convolutional neural networks, com-
puter vision has made tremendous progress in this area. Many excellent models have
emerged for the task of image semantic segmentation, which often perform well when
sufficient training data and labels are available, but the models do not generalize well
enough and show a sharp performance degradation when tested on other discrepant
datasets. However, in real-world scenarios, it is not guaranteed that the model has a
large amount of well-labeled training data under arbitrary conditions, especially in some
unfamiliar and unknown scenarios, and it is also difficult to meet the consistency of the
distribution between the source domain data when the model is trained and the target
domain data when the model is actually working.
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2.2 Domain Adaptation

Domain adaptation, as a representative approach to migration learning, aims to address
various types of cross-domain tasks, i.e., for model performance degradation caused by
different distributions of the source domain (training data) and the target domain (test
data). In recent years, several studies have been proposed to address this problem in image
classification tasks [12, 17]. Inspired by the existence of risk-theoretic upper bounds in
the target domain [22], some pioneering works have suggested feature alignment by
optimizing the inter-domain difference measure between the two domains [23, 24, 39].
Recently, adversarial training, driven by GAN networks [25], has attracted attention for
its leading ability to align features [12, 13, 19].

2.3 Unsupervised Domain Adaptive Semantic Segmentation

The semantic segmentation of images can in fact be seen as a more detailed pixel-level
image classification problem, so theoretically semantic segmentation domain adaptation
can fully draw on the existing related research results in the field of image classification.
Because the labels of the target domain images are inaccessible, the challenge of unsu-
pervised domain adaptation (UDA) [26, 27] is enormous. The aim is to better perform
the cross-domain task by transferring the effective information learned by the network
model in the labeled source domain dataset to the unlabeled target domain images, thus
improving the performance of themodel on the target domain.ManyUDAmethods have
been proposed to mitigate the domain drift problem. One common idea is to align the
source and target domain distributions [28]. There are several ways to explore this idea in
practice.CLAN [11] is an outstanding representative of this: it suggests applying differ-
ent adversarial weights to different regions, but it does not directly and explicitly merge
semantic class information into the model. AdaptSegNet [13] and Advent [21] mitigate
domain drift. Another common direction to solve the problem is to align the input pixels
of source and target domain images by generating adversarial networks [10] or Fourier
transforms [29]. In recent years, especially in the field of UDA semantic segmentation,
pseudolabel refinement in a self-training framework has achieved quite good results.
By iteratively training the network with progressively improved target pseudolabels, the
performance of the model in the target domain can be further improved. Driven by this
motivation, CBST [16] also achieved good results by setting appropriate thresholds for
different semantic categories to improve the performance of model self-training.

3 Method

In this section, we propose the domain adaptive semantic segmentation algorithm with
convolutional fine-grained discrimination and entropyminimization. To better introduce
our model, we will start with the existing convolutional fine-grained adversarial learning
and then describe how to introduce the entropy minimization approach and the process
of fusing the two.
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3.1 Semantic Segmentation

The structure of the entire adversarial network can be divided into a generative network
and a discriminator network. Traditional adversarial training seeks to align the feature
distribution by confusing the binary discriminator; specifically, the generative network
makes every effort to generate images that can deceive the discriminator in an attempt to
make awrong judgment;while the binary discriminator tries to correctly identifywhether
the input image comes from the source or target domain in an attempt to avoid being
deceivedby the generative network.. The limitation of the traditional binary discriminator
is that it can onlymake simple judgments, i.e., whether the image has a higher probability
of belonging to the source domain or to the target domain, which largely limits the
segmentation accuracy of the model and falls far short of our requirements. In order
to make the discriminator not only focus on the differentiation domain, our idea is to
make the discriminator not limited to making simple binary judgments but also focus
on the semantic class information, specifically, we use the convolutional fine-grained
discriminator to optimize and upgrade the binary discriminator by expanding its original
two output channels to K channels, and then encourage it to perform the semantic class
level at a finer granularity.Adversarial training.Where,Kdenotes the number of semantic
classes to be segmented in the source and target datasets. By this design, the discriminator
can fully exploit the role of adversarial learning, so that the discriminator can not only
distinguish the domain to which the feature image belongs, but also further distinguish
the specific class to which the feature belongs, e.g., whether it is the sky class or the
building class in the source domain or the row human class or the vegetation class in
the target domain. In other words, the prediction confidence of both source and target
domains are represented as confidence distributions over different semantic classes,
which enables the newconvolutional fine-graineddiscriminator tomodel amore complex
underlying structure between semantic classes, and thus better perform semantic class-
level alignment. After this operation is done, the corresponding binary domain labels of
the traditional discriminators are correspondingly overwhelmed and need to be converted
into a general form, i.e., domain encoding, to contain semantic class information as well.
The domain labels traditionally used for training binary discriminators are the source
domain [1,0] and the target domain [0,1], respectively. In contrast, the domain encoding
is represented by vectors [a;0] and [0;a] for the two domains, where a is the feature
extracted in classifier C, represented by a k-dimensional vector; and 0 is an all-zero
k-dimensional vector. When the discriminator believes that an image feature belongs to
the i-th class of the source domain with higher probability, it will set the i-th dimensional
vector in [a;0] to 1 and the rest to 0. Similarly, when the discriminator makes a judgment
that an image feature belongs to the j-th class of the target domain, it will set the j-th
dimensional vector in [0;a] to 1. This achieves the transformation from the traditional
binary discriminator to the convolutional fine-grained discriminator. Transformation.
This allows the discriminator to not only correctly distinguish domains during adversarial
learning, but will also learn to model class structure and be able to portray the semantic
class-to-class relationships in more detail.

The network structure is shown in Fig. 4. We divide the whole network structure into
three parts: the generative network or called semantic segmentation part, the adversarial
learningnetwork, and the entropyminimizationnetwork that increases the pixel certainty.
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Fig. 4. Different strategies for generating domain labels, as shown in the figure, the traditional
binary discriminator is only able to determine which domain the feature pixel comes from, while
the updated multi-channel discriminator is able to perform a more fine-grained determination of
semantic categories, and then when the entropy minimization strategy is added, it can be seen that
the degree of certainty that each pixel belongs to its semantic category also increases significantly.

In which, the segmentation network G consists of feature extractor F and classifier
C. Firstly, some images are randomly selected from the source and target domains and
fed into the segmentation network. After the feature extraction and classification by the
extractor and classifier, the feature maps of the source and target domains are obtained.
On the one hand, the segmentation loss is calculated by comparing the source domain
feature map with its corresponding source domain label, and the segmentation loss is
continuously reduced in the process of adversarial training to help the segmentation
network generate more deceptive images, i.e., the consistency of the source and target
domain images in the generated images of the segmentation network is getting higher
and higher, i.e., the gap between domains is decreasing.

On the other hand, after obtaining the feature maps, the semantic feature maps of the
two domains are then input to the convolutional fine-grained discriminator and enter into
the discriminator work part. At this point the discriminator uses the domain encoding
processed from the sample prediction and tries to distinguish the domain information
and class information of the features on the fine-grained semantic classes, calculates
the probability that the feature pixel belongs to the domain and the class and makes
a corresponding judgment, and calculates the loss of the discriminator by comparing
the number of correct and incorrect judgments of the discriminator. In the adversarial
training, the parameters are continuously iterated and updated to reduce the loss function,
thus improving the ability of the discriminator to make correct judgments to continue the
confrontation with the generative network. Also, to increase the degree of confidence
of a pixel in the semantic class to which it belongs and to reduce the large amount
of noise present in image segmentation, especially near the junction between semantic
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classes. We transform the hard-to-express degree of pixel certainty into pixel entropy
that can quantify the output, by adding the process of calculating the target pixel entropy
minimization for the feature output, so that it can be learned adversarially with the
discriminator to compensate for the wrong judgments made by the convolutional fine-
grained discriminator. Therefore, we integrate the loss function of the convolutional
fine-grained discriminator with the loss function of entropyminimization, and during the
iterative process of adversarial learning, as the adversarial loss is continuously reduced,
our segmented images will become more and more accurate, and also avoid much noise
in the segmentation, being the boundary more clear (Fig. 5).

Fig. 5. The overall architecture of the network.

In order to better constrain the learning process of the network, we design three loss
functions in the whole network structure, including: segmentation loss function Lseg,
discriminator loss function LD, and adversarial loss function Ladv.

The segmentation loss function is as follows.

Lseg = −
∑

(h,w)∈ns

K∑

k=1

y(h,w)
s logP(h,w)

xs (1)

The main role of the segmentation loss function is to guide the segmentation net-
work to generate semantic segmentation images with finer accuracy, which is achieved
by training the reduction on the source domain dataset while training the reduced adver-
sarial loss on the target domain dataset together with continuously updating the feature
extractor and classifier. Where, is the source domain label, is the probability confidence
that the segmentation network predicts that the source domain sample x belongs to the
kth semantic class.

The loss function of the discriminator is as follows.

LD = −
ns∑

i=1

K∑

k=1

a(s)
ik logP(d = 0, c = k|fi) −

nt∑

j=1

K∑

k=1

a(t)
jk logP(d = 1, c = k|fj) (2)
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During the training process, the discriminator not only tries to distinguish between
source or target domains, but also will learn to model the semantic class structure.Where
a(s)
ik and a(s)

jk is the kth class feature of sample i in the source domain and sample j in the
target domain.

The adversarial loss function is as follows.

Ladv = −
nt∑

j=1

K∑

k=1

a(t)
jk logP(d = 0, c = k|fj) (3)

Themain role of Ladv is to deceive the discriminator and guide the generative network
to generate feature maps with consistent distribution between domains, in other words to
maximize the probability of target domain features being used as source domain features
without compromising the relationship between features and semantic classes.

3.2 Entropy Minimization

In unsupervised domain adaptive semantic segmentation, the target domain is unlabeled,
and there is no way to use the labels to compute the segmentation loss function to guide
the model training as in the source domain. So we propose to use a constrained model
to make it produce high confidence predictions. Here we do not use high confidence
pseudo-labeling based on the lack of memory capacity of the graphics card, because
end-to-end training is not worth the memory occupied by pseudo-labeling. Instead, we
generate semantic segmentation images with a high confidence level by minimizing
the prediction pixel entropy. Specifically, we use Shannon entropy [30] to accomplish
this task. Given a target domain input image xt, the entropy mapping Ext ∈ [0, 1]H×W

consists of independent pixel-level entropies normalized to the range [0,1] as follows.

E(h,w)
xt = − −1

log(K)

K∑

k=1

P(h,w,k)
xt logP(h,w,k)

xt (4)

Then, the entropy loss can be defined as the sum of all pixelated normalized entropies
as follows.

Lent(xt) =
∑

h,w

E(h,w)
xt (5)

Similarly, in the training process, we jointly optimize the cross-entropy loss of the
supervised segmentation of the source domain samples and the unsupervised entropy
loss of the target domain samples. The loss function ofminimum entropy can be obtained
and expressed as:

min
G

1

|xs|
∑

xs

Lseg(xs, ys) + λ

|xt|
∑

xt

Lent(xt) (6)
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3.3 Fusion and Adversarial Learning

By carefully observing and studying the prediction results of semantic segmentation, we
found that if only the adversarial learning of convolutional fine-grained discriminator is
performed, although the modeling of semantic inter-class relations can be improved, the
confidence of the pixels in the classes to which they belong still needs to be improved,
and intuitively the semantic segmentation pixels in the target domain still have a large
ambiguous part, especially at the locations where classes intersect with each other.
Therefore, we introduce the entropy minimization of the predicted pixels on top of the
convolutional fine-grained discriminator. The specific measures we take are as follows:
first, to find the right time for the entropy minimization to be added, here we add it in the
adversarial network, and the fine-grained discriminator piece by piece in the adversarial
learning to continuously constrain the segmentation network to generate feature images
with higher segmentation accuracy. We do not recommend adding this operation after
the classifier in the segmentation network, as it has been found experimentally that the
effect of entropy minimization in improving pixel confidence will be greatly reduced if
the adversarial learning process is lost. In addition, since the adversarial network contains
both the convolutional fine-grained discriminator and the entropy minimization, we also
modify the adversarial loss. Then the adversarial loss function of the whole network
becomes:

Ladv = −
nt∑

j=1

K∑

k=1

a(t)
jk logP(d = 0, c = k|fj) + λ

∑

h,w

E(h,w)
xt (7)

where is the weight of the sum of all pixel-wise normalized entropies.
In the training process, we then jointly optimize the supervised segmentation loss

of the source domain data samples and the unsupervised adversarial loss of the target
domain data samples. The final optimization problem is formulated as follows.

min
G

Lseg + λadvLadv (8)

In this way, the entropy minimization of the predicted pixels can well compensate
for the lack of pixel confidence in the fine-grained discriminator, and together with
the convolutional fine-grained discriminator, through adversarial learning, continuously
promote the improvement of the network segmentation image accuracy, and finally
reach the effect that the model is trained in the source domain and can also achieve good
performance in the target domain.

4 Experiments

4.1 Datasets

We performed a comprehensive evaluation of our proposed method on two popular
unsupervised domain adaptive semantic segmentation datasets, GTA5->Cityscapes and
SYNTHIA->Cityscapes.
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Cityscapes Cityscapes [31] is a large-scale dataset for autonomous driving model
training, focusing on some road scenes of urban life, with a high diversity of videos and
images sampled from different urban centers, as well as in multiple seasons. Set contains
2975 images, the validation set 500 images and the test set 1525 images. Following
standard protocols [8, 10, 13], we use 2975 images from the Cityscapes training set as
the unlabeled target domain training set and evaluate our model on 500 images from the
validation set.

SYNTHIA SYNTHIA [5] is a large synthetic dataset of images obtained from scene
renderings of virtual cities. We selected its subset SYNTHIA-RAND-CITYSCAPES,
which shares 16 semantic classes with Cityscapes, as the source domain. In total, 9400
images from the SYNTHIA dataset were used as the source domain training data for
this task.

GTA5 GTA5 [4] is another synthetic dataset that shares 19 semantic classes with
Cityscapes. The dataset was rendered from the modern computer game Grand Theft
Auto V, which has labels fully compatible with Cityscapes. 24,966 images of urban
scenes were collected and used as source training data.

4.2 Network Architecture

We use Deeplab-V2 [2] as the basic semantic segmentation architecture, and apply a
void space pyramidal pooling (ASPP) on the feature output of the last layer in order to
better capture the scene context. The sampling rate is fixed to {6,12,18,24}, similar to
the ASPPL model in [2]. We perform experiments on the base deep CNN architecture
ResNet-101 [32]. After [2], we modify the step size and expansion rate of the last layer
to produce denser feature maps and larger perceptual fields. To further improve the
performance of ResNet-101, we also adapt the multilevel outputs from the conv4 and
conv5 features [13].

4.3 Implementation Details

We use the PyTorch [33] implementation. For a fair comparison, we used DeeplabV2,
as the segmentation base network. All models are pre-trained on ImageNet [34]. For
the convolutional fine-grained discriminator, we used a simple structure consisting of 3
convolutional layers with {256,128,2K} channels, 3 convolutional kernels, and a step
size of 1. Each convolutional layer except the last one is followed by a Leaky-ReLU [35]
parameter with a value of 0.2. To train the segmentation network, we use a stochastic
gradient descent (SGD) optimizer, where the momentum is 0.9 and the weights decay
to. The learning rate was initially set and decreased with a poly learning rate of power of
0.9. The discriminator is trained using the Adam optimization algorithm, = 0.9, = 0.99,
with an initial learning rate of. The same poly learning rate strategy was used. It was
set to 0.001. Regarding the training process, the network is first trained on the source
data for 20k iterations and then fine-tuned for 40k iterations using our framework. The
batch size is 2. One of them is the source image and one is the target image. Some data
enhancement methods are used, including random flips and color changes, to prevent
overfitting.
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4.4 Experimental Results

Our approach is tested with respect to domain adaptation on both datasets, and the
experimental results show that our algorithm achieves excellent results. The experi-
ments use the mean intersection-to-merge ratio (mIoU) as an evaluation metric, which
is the most important evaluation metric in semantic segmentation tasks. Our algo-
rithm model achieves 49.5 mIoU in GTA5->Cityscapes experiments and 45.4 in
SYNTHIA->Cityscapes experiments.

Table 1. GTAV-to-Cityscapes results.
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Source 
Only

75.8 16.8 77.2 12.5 21.0 25.5 30.1 20.1 81.3 24.6 70.3 53.8 26.4 49.9 17.2 25.9 6.6 25.3 36.0 36.6

Cycada 79.1 33.1 77.9 23.4 17.3 32.1 33.3 31.8 81.5 26.7 69.0 62.8 14.7 74.5 20.9 25.6 6.9 18.8 20.4 39.5

AdaptSeg 86.5 25.9 79.8 22.1 20.0 23.6 33.1 21.8 81.8 25.9 75.9 57.3 26.2 76.3 29.8 32.1 7.2 29.5 32.5 41.4

SIBAN 88.5 35.4 79.5 26.3 24.3 28.5 32.5 18.3 81.2 40.0 76.5 58.1 25.8 82.6 30.3 34.4 3.4 21.6 21.5 42.6

CLAN 87.0 27.1 79.6 27.3 23.3 28.3 35.5 24.2 83.6 27.4 74.2 58.6 28.0 76.2 33.1 36.7 6.7 31.9 31.4 43.2

CBST 86.8 46.7 76.9 26.3 24.8 42.0 46.0 38.6 80.7 15.7 48.0 57.3 27.9 78.2 24.5 49.6 17.7 25.5 45.1 45.2

DISE 91.5 47.5 82.5 31.3 25.6 33.0 33.7 25.8 82.7 28.8 82.7 62.4 30.8 85.2 27.7 34.5 6.4 25.2 24.4 45.4

ADVENT 89.4 33.1 81.0 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.8 38.5 44.5 1.7 31.6 32.4 45.5

PyCDA 90.5 36.3 84.4 32.4 28.7 34.6 36.4 31.5 86.8 37.9 78.5 62.3 21.5 85.6 27.9 34.8 18.0 22.9 49.3 47.4

Ours 90.8 49.8 85.0 39.5 28.7 33.3 35.5 18.1 86.7 39.7 85.6 61.1 35.9 86.7 31.8 49.9 0.0 35.5 46.8 49.5

As can be seen from Table 1, all domain adaptive methods significantly outperform
Source Only methods, i.e., models trained on images of synthetic scenes are directly
applied to images of real scenes. This shows that domain adaptive methods are necessary
for semantic segmentation tasks with different feature distributions. Comparing some
current more advanced unsupervised domain adaptation methods, the model designed
in this paper is able to achieve optimal results with a mIoU of 49.5, which is a signif-
icant improvement of 12.9 over the Source Only model trained on the source domain.
Firstly, for the baseline method AdaptSegNet, which uses a traditional unsupervised
domain adaptation method based on adversarial discriminations from The disadvantage
of AdaptSegNet is that matching the global distribution of source and target domains
may lead to some classes whose distributions in the feature space are already matched
being disrupted after migration instead, resulting in some classes not performing as well
as the Source Only model, i.e., a negative migration phenomenon. Specifically, for the
classes “fence”, “pole” and “bike” in Table 1, the performance of AdaptSegNet method
on these three classes is even The performance of the AdaptSegNet method on these
three classes is not even as good as that of the model without the domain adaptation
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method (i.e., Source Only). In contrast, the algorithm model proposed in this paper
aligns the joint distribution of classes in the source and target domains at the class level,
so that it can handle each class well and significantly outperforms the baseline method
AdaptSegNe by 8.1 mIoU. More specifically, the algorithm in this study outperforms
the Source Only model for almost all classes, i.e., there is no negative migration phe-
nomenon. It should be noted that the simulator-generated dataset GTAV is taken from
the in-game city scenes, and for the “train” category, its effect on the model is not con-
sidered for the time being because of the low stability of the training samples in this
category in the source and target domains. Then, the algorithm of this study outperforms
the unsupervised domain-based adaptive method CBST by 4.3 mIoU, and outperforms
ADVENT and PyCDA by 4 mIoU and 2.1 mIoU, respectively. Overall, the algorithm
model proposed in this paper outperforms other models, and the effectiveness of the
model is verified by rich comparison tests.

It is obvious from Table 2 that all unsupervised image semantic segmentation algo-
rithms using domain adaptation outperform Source only methods, which means that
domain adaptation methods play an important role in reducing the domain gap between
the source and target domains and improving the performance of the model on the tar-
get domain. It can be seen that the algorithm designed in this paper even improves the
mIoU by 11.9 compared to Source only. Because algorithms SIBAN, AdaptSegNet and
CLAN have individual semantic classes that are not correctly identified and segmented,
their mIoU results are not calculated and further compared. In addition, compared to
algorithms AdaptPatch and ADVENT, the algorithms in this paper improved 5.4 mIoU
and 4.2 mIoU, respectively.

Table 2. SYNTHIA-to-Cityscapes results.
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Source only 55.6 23.8 74.6 9.2 0.2 24.4 6.1 12.1 74.8 79.0 55.3 19.1 39.6 23.3 13.7 25.0 33.5

SIBAN 82.5 24.0 79.4 - - - 16.5 12.7 79.2 82.8 58.3 18.0 79.3 25.3 17.6 25.9 -

AdaptSegNet 84.3 42.7 77.5 - - - 4.7 7.0 77.9 82.5 54.3 21.0 72.3 32.2 18.9 32.3 -

CLAN 88.5 35.4 79.5 - - - 32.5 18.3 81.2 76.5 58.1 25.8 82.6 34.4 21.6 21.5 -

AdaptPatch 84.5 38.0 78.6 8.7 0.6 26.0 3.9 11.1 75.5 84.6 53.5 21.6 71.4 32.6 19.3 31.7 40.0

ADVENT 62.4 42.2 79.7 8.7 0.4 25.9 5.4 8.1 80.4 84.1 57.9 23.8 73.3 36.4 14.2 33.0 41.2

Ours 84.3 40.5 82.2 8.6 0.2 31.3 18.4 18.2 85.5 83.4 54.5 18.7 85.1 47.8 22.6 44.8 45.4

The results of the ablation experiments are shown in Table 3. The results of the
semantic segmentation model trained on the source domain without domain adapta-
tion and tested directly on the target domain, i.e., the Source Only method, are shown
first. The model without domain adaptation method shows a relatively poor result of
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Table 3. Ablation experiments.

GTAV → Cityscapes

Source Only AdaptSegNet Convolutional fine-grained
discriminator

entropy minimization mIou

√ √
√
√

√
√

√
36.6
41.4
48.4
49.5

36.6 mIoU on the target domain data aggregation. Then the results of the unsupervised
domain adaptation method based on traditional adversarial discrimination for semantic
segmentation, i.e., the AdaptSegNet method, are shown. The global alignment of the
traditional adversarial discriminant-based method is significantly improved compared
to the unsupervised domain adaptive model, with a result of 41.4 mIoU. After that, the
discriminant network is modified based on the AdaptSegNet method, i.e., the original
traditional binary discriminator is transformed into a multi-category convolutional fine-
grained discriminator. The binary discriminator can only distinguish the source domain
or target domain, and furthermake the judgment that the featuresmay belong to a seman-
tic category in the source or target domain, so that each semantic category can be well
aligned. Then, on top of this, the target prediction pixel entropy minimization method is
introduced, and the entropy loss function and adversarial training are used to increase the
certainty of the predicted pixels, especially the pixels near the category boundaries, by
calculating the entropy map of the target domain prediction image, so that the boundary
features of the semantic categories are clearer, and the final model is improved again by
1.1 mIoU, and finally the mIoU of the algorithm model in this paper reaches 49.5 on the
validation set of the target domain data.

The results of some randomly selected visualized adaptive semantic segmentation
are shown in Fig. 6. It is obvious from the figure that the visualization results of the
algorithm model in this paper are closer to the real image semantic labels than the
Source Only model without domain adaptation, which can not only identify some rare
categories, such as “pole” and “street light” It can not only identify some rare categories,
such as “pole” and “street light”, but also has no significant noise for the intersection
boundary of different semantic categories.

The comparison focuses on the traffic sign class within the white box in the target
domain image. For the segmentation results of the model without any domain adaptation
processing (Source Only), the traffic sign classes can be correctly segmented, although
theglobal segmentation results are poor. This phenomenon indicates that someclasses are
initially aligned in the distribution of source and target domain data features even though
they are not processed by any domain adaptationmethod. The adversarial discrimination-
based domain adaptive method AdaptSegNet, as the baseline method in this paper, uses
a global-level alignment of the distribution of the output features of the source and target
domains after the semantic segmentation network, and although the overall segmentation
effect of the adversarial learning-based domain adaptive method is better than that of the



Unsupervised Domain Adaptive Image Semantic Segmentation 121

Fig. 6. GTA5->Cityscapes Semantic segmentation results

model without any domain adaptation, the segmentation result for traffic signs is poor,
even inferior to that of the model without any domain adaptive model. This is because
the global alignment strategy favors some common classes with a large percentage
of pixels and tends to make conservative predictions for the features. This results in
some uncommon features being predicted to other common classes, causing a negative

Fig. 7. Comparison of several algorithms
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migration phenomenon for those uncommon features, even though these classes are well
aligned in the initial state (Fig. 7).

5 Conclusion

In this work, we solve the task of unsupervised domain adaptive semantic segmenta-
tion, and propose a convolutional fine-grained discriminant and entropy minimization
algorithm. Specifically, the discriminant used in traditional confrontational training can
only judge whether features come from the source domain or the target domain, which
seriously damages the identification between semantic categories. Different from the tra-
ditional binary discriminator, the convolutional fine-grained discriminator expands the
channel and keeps consistent with the number of semantic categories in the datasets of
the target domain, so it can not only distinguish the source domain or the target domain,
but also further make a judgment that the feature belongs to a class in the source domain
or a class in the target domain. In addition, the entropy of the target pixel is calcu-
lated and reduced by adversarial training to increase the determination of the predicted
pixel, especially the position of the junction between different semantic categories in
the image. Finally, the effectiveness of the model in this task was verified by a large
number of comparative experiments, and the contribution of each module to the model
was verified by detailed ablation experiments. Our model achieves good results from
two challenging synthetic datasets to real datasets.
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Abstract. Traditional single object tracking has has been well investigated in
recent years. There are many excellent trackers including the offline tracker and
the online updating tracker. However, few efforts were spent on drone-based object
tracking because of its complexity. In this paper, a novelty ensemble of classifica-
tion and matching model with alpha-refine (ECMMAR) method is proposed for
drone-based object tracking. ECMMAR integrates two different types of trackers
by a elaborate discriminator. This discriminator can combine the tracking results
of the two trackers to judge the tracking credibility of the trackers and then choose
a more reliable results.Experimental results on Visdrone-SOT 2020 benchmark
for drone-based visual tracking demonstrate that our proposed method achieving
a satisfactory tracking performance.

Keywords: Visual object tracking · Drone-based tracking · Ensemble of tracker

1 Introduction

Visual object tracking is a important task in computer vision. It models the appearance
and motion information of the target to predict the motion state of the target with the
context information of video and image sequences. Single object tracking aims to infer
the location of an arbitrary target in a video sequence, given only its location in the
first frame.In past decades, object tracking has made great progress and development,
especially the deep learning methods [1, 11, 14, 15, 19–21, 26, 30] which achieved
satisfactory results.However, existing tracking research mainly focused on the video
sequences captured bynormal cameras. In the recently years, drone-based object tracking
has attracted the attention of the community due to its complexity. Compared to general
object tracking challenges such as illumination variation and occlusion,drone-based
tracking is more difficult because of extremely small targets, frequent view point change,
and abrupt camera motion.

Presently, there aremainly two types of deep learning trackers. One [15, 29] based on
siamese network extract the features of search image and template image from the same
backbone network, then calculates the response map through the cross- correlation, and
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uses region proposal network (RPN) [18] for regression. The other tracker combines
discriminative localization model with a separate scale estimation model, such as DiMP
[2] and ATOM [4]. Siamese trackers utilize the deep feature, and have simple model
structure. But their shortcomings are obvious. They only utilize the target appearance
without background information which is crucial for discriminating the target from
similar objects. Aiming at the disadvantages of the siamese approach, DiMP utilizes
the background information to designs a online-classifier, which improves the ability
of model discrimination, and adopts a nice updating strategy. Even so, the possibility
that drift frames can be used as a template for update can not be avoided in the DiMP.
Besides, its long-term tracking capability is insufficient to cope with large shifts between
frames and there is no mechanism to deal with occlusion.

In order to address the problems frequent occlusion, background clutter, and abrupt
camera motion in the drone-based long-term object tracking, we propose a Ensemble
of Classification and Matching Models with Alpha-Refine (ECMMAR) method, which
combines DiMP and Siamese tracker. Our method mainly in- cludes a discrimination
selection mechanism and a target redetection module, which are used for the interaction
between two sub-trackers to improve tracking accuracy and credibility. In addition, there
is a compensation strategy in our method for dealing with abrupt camera motion. We
evaluated our tracker on the visdrone2020 dataset. Figure 1 demonstrates the improve-
ment of our tracker.It always choose the right result from two sub-trackers, and correct
the wrong result one in time. The results show that our tracking method has excellent
performance in drone-based object tracking.In summary, the contributions of our work
mainly include the following aspects: (1) We propose a method which can be used to
automatically switch between two trackers and cooperate with each other to accurately
judge the current tracking state; (2) We propose a redetection module to deal with the
situation when target lost during long-term tracking; and (3) ECMMAR is applied to
object tracking task of visdrone, which has excellent accuracy compared with other
tracking methods.

Fig. 1. Comparison result of DiMP, SiamRPN ++and our method on two challenging drone-
based sequences. Our tracker is able to choose the right result from two sub trackers, and make the
bounding box more tight with Alpha-Refine.The frame number is marked at the upper left corner
of the image.
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2 Related Work

In this section, we will review the single object tracking algorithms in recent years. The
current tracking methods are mainly divided into two types.

2.1 Correlation-Filter-Based Methods

The earliest correlation filtering method MOSSE [3, 27] realizes the conversion from
timedomain to frequency domain through fast Fourier transform,which greatly improves
the speed of the algorithm, so it has received widespread attention.Since then, there have
been many related improved algorithms. CSK [12] and KCF [13] introduce circulant
matrices and kernelized correlation, and utilize the improved features to achieve a signif-
icant performance improvement. DSST [6] regards object tracking as two independent
problems: localization variation and scale change. It trains the translation filter and scale
estimation separately. In SR-DCF [7], weight constraints are added to the filter coeffi-
cients, which effectively alleviates the boundary effect caused by the circulant matrix.
Compared with methods based on deep learning, correlation filtering is computationally
efficient but lacks accuracy.

2.2 Deep-Learning-Based Methods

With the development of deep learning technology, many deep learning based tracking
algorithms have emerged, such as HCF [16], HDT [17], ECO [5], etc. Different from
handcrafted features, they use CNNs to extract image features and merge them into
the correlation filters to obtain good tracking performance. Other deep learning based
tracking algorithms, such as SINT [19] and SiamFC [1], directly learn the matching
function of target template and search image by using siamese network with offline-
trained methods. However, they only use the target in the first frame as the template
during the tracking, so these methods do not make accurate estimation of the target box
and lack robustness. After that, the RPN (region proposal network) module is added to
the SiamRPN, which significantly improves the accuracy of the predicted bounding box.
Then DasiamRPN, SiameseRPN ++and SiamDW [25] and others have made improve-
ments to solve the problems that the training samples of SiamRPN are unbalanced and
the depth network break the translation invariance, which greatly improves the perfor-
mance of the Siamese tracker. At the same time, trackers such as ATOM and DiMP
divide the tracking task into a classification task and a target estimation task, and they
all use online update classification modules, which improves the discriminative ability
of the tracker and significantly improves the performance of the tracker.

Although great progress has been made in traditional single object tracking, these
methods cannot cover problems in drone-based object tracking.In this work, we argue
that our method can effectively improve the performance of the tracker in the field of
drone-based object tracking.
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3 Proposed Algorithm

In this section, we describe the proposed method in detail. First of all, we give the
overview on the whole architecture of ECMMAR.And then we introduce the discrimi-
nator that judge the output result of the tracker and themethod of redetection the tracking
object after it is lost.

3.1 Overview

The structure of out tracker is shown in Fig. 2, including two sub trackers (Dimp and
SiamPRN++), a discriminator, a refine module, and a redetection module. DiMP is a
tracker whose filter can be updated online. It utilizes the background information to
improve discrimination ability of the tracker. However, due to that, the cumulative error
of online update increases gradually, which results in the incredible score of this tracker.
SiamRPN ++is a offline-trained tracker, whose template will not be affected by the error
accumulation caused by tracking frame offset during tracking. But it is easily interfered
by similar objects. Our tracking algorithm is based on both of two trackers.

Fig. 2. Architecture of out tracker. It is composed of two sub-trackers (DiMP and SiamRPN++),
discriminator, redetection and refine module.

First of all, the current frame image is sent to two sub trackers, then they give
their tracking results and confidence scores respectively. Moreover, the output of DiMP
includes a extra flag. It consists of not_found, uncertain, hard_negative, normal, which
are set by preset different thresholds. The discriminator will give the tracker state with
the results of two sub trackers, and make different selection and processing according to
different states. After that, the result is send to the refine module. In the refine module,
we will further modify the predicted bounding box to make it more compact. If the
target state is loss given by discriminator, it will trigger the redetection mechanism to
help tracker detect the target when it appears in the view again.

During the tracking,we also utilize cameramotion compensation and image enhance-
ment strategy. Camera motion compensation is to alleviate the target estimation drift
caused by the rapid movement of the camera in a short time. The SIFT feature is utilized
to help compensate the frame that the pixel difference between adjacent frames is greater
than a certain threshold. Image enhancement is to improve the accuracy of the tracker
at night. In the experiment (Sect. 4), we will explain the effect of both of strategies in
detail.
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3.2 Discriminator

Our discriminator will determine that the tracker is in the following three situations: (1)
Normal tracking, that is, the output results of the two trackers are considered reliable.
(2) One tracker drifts, and the other is normal. (3) Both tracking have drifted, and the
target is lost.

Assume that in the current frame Tn we get the tracking result of DiMP (including the
bounding box Bd and the current tracking state Fd ) and the tracking result of SiamRPN
++(including the bounding box Bs and the current tracking confidence score Cs). First,
we combine Fd and Cs to judge the current status of the tracker by calculating the ratio
Rd andRs.Rd is the proportion ofFd is lost in the Tn−t+1 to Tn frame.Rs is the proportion
of Cs is less than the threshold τ in the Tn−t+1 to Tn frame.

For the condition

Rd > 0.9 and Rs > 0.5 (1)

Rd > 0.5 and Rs > 0.9 (2)

When neither of the above two conditions is satisfied, we believe that at least one
of the two sub-trackers is correct, and further judgment will be made at this time. If the
IOU(Intersection over Union) of Bd and Bs of the two sub-trackers is greater than 0, it
is considered that both sub-trackers are in the normal tracking state. Bd is then selected
as the tracking result and sent to Refine module. Moreover, we will update the (xo, yo)
in the (5) with Bd . When the IOU is not satisfied, we calculate whether the IOU of Bd
and Bs in the last 5 frames. If the IOUs from Tn−4 to Tn frame are all 0, it is considered
that one of the two trackers is abnormal. We will send the result of Dimp to SiamRPN
++tracker for scoring (the score of DiMP is not credible) and get a confidence score Cd .
Then we compare it with confidence score Cs of SiamRPN++. Combining the tracking
state Fd of DiMP to judge the following two situations:

Cs > 0.7 and Cs − Cd > 0.3 (3)

Cd − Cs > 0.3 and Fs �=′ not_found ′ (4)

When condition (3) is true, the discriminator selects SiamRPN++, while condition
(4) is true, the discriminator selects DiMP. When both of the above conditions are not
true, we will calculate the Euclidean distance between the results of the two sub-trackers
and the correct tracking position of the latest frame. As the (5), we select the tracking
results of the sub trackers with smaller Euclidean distance.

min
√
(xo − xi)2 + (yo − yi)2, i ∈ {1, 2} (5)

where (xo, yo) denotes the last credible location result of our tracker, and (x1, y1) (x2, y2)
denote the predicted locations of DiMP and SiamRPN ++separately. If either condition
(1) or (2) is satisfied, the discriminator considers both sub-trackers are lost, and then the
redetection model will be enabled. We will introduce the redetection module in detail.
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3.3 Redetection Module

Asdescribed in Sect. 3.2,when the tracking target is determined to be lost, the redetection
module is enabled. Specifically, in the drone-based object tracking, the UAV always
moves with the target. When the target is severely blocked and disappears for a short
time, the target is still near the center point of the picture. So it is considered that the
target will not drift too far in the frames that determine the lost of the target. When target
is lost, we change the center point of the search area of the current frame from the center
of bounding box of the previous frame to the center of the picture, and utilize SiamRPN
++to redetect the target. Specifically, we expand the search area of SiamRPN ++to 36
times the size of the target. (the reason why we do not use DiMP to redetect the target is
that the classification label used during DiMP training is Gaussian distribution, and the
mismatch between the test search area and training search area will result in inaccurate
response map). We assume that the change of scale is very small before and after the
target disappears, so we update both of two sub trackers with the scale (width and height)
of the target box before the t frame when target lost. In order to avoid that the loss ratio
Rd and Rs in the first t frames are still large at the time when the tracker finds the target,
we set a buffer time with deleting the first ten frames of the loss state flag.

4 Experiment

In this section, we use experiments to validate the performance of ECMMAR. Imple-
mentation details and results are also presented.We evaluate the proposed method on
VisDrone-SOT2020 benchmark. Tracker performance ismeasured byPrecision andSuc-
cess. Our experiment was conducted on the basis of DiMP and SiamRPN++ pretrained
models.Below we give a detailed analysis.

4.1 Dataset

The Visdron-SOT2020 dataset [9] is divided into three subsets, including the training
set containing 70K frames of 86 videos, the verification set containing 7K frames of 11
videos, and the test set containing 145K frames of 95 videos. The VisDrone-SOT2020
dataset introduce more challenging drone sequences compared to VisDrone-SOT2018
dataset [22] of 132 videos and VisDrone-SOT2019 dataset [8, 28] of 167 videos. In order
to reliably reflect the performance of tracking algorithms, the video sequences of the
three subsets are captured from varying scenarios with various drone platforms under
different conditions. In addition, there are 12 attributes to mark each video sequence,
including aspect ratio change (ARC), background clutter (BC), camera motion (CM),
fast motion (FM), full occlusion (FOC), partial occlusion (POC), illumination variation
(IV), low resolution (LR), out-of-view (OV), similar object (SO), scale variation (SV)
and viewpoint change (VC).

4.2 Implementation Details

The proposed method is trained on PyTorch deep learning framework with a 2080ti
GPU.We use the training set of the Visdrone-SOT 2020 dataset to fine-tune the pre-
trained model of DIMP and AlphaRefine[24].We train DiMP with 35 EPOCH with
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optimization Adam. Parameters setting such as learning rate are the same as the [2].
We train Alpha-Refine based on pretrained model from epoch40 and iterated 20 epochs.
The learning rate adopted a fixed step size 8, attenuation coefficient gamma is 0.5, and
the remaining parameters are the same as the [24]. We use the long term version of
SIAMRPN ++pretrained model without finetune. In the inference stage, because there
are some videos at night in Visdrone-SOT 2020 dataset, low brightness will seriously
affect the performance of the tracker, so we conduct light enhancement processing[10]
for the video whose brightness is lower than the threshold.

4.3 Results and Analysis

In this section, we first evaluate our tracker on visdrone2020 all testing dataset, including
dev and test challenge set, divided into short-term part and long-term part, and compare
it with other tracking algorithms. After that, we carry out ablation experiments of our
tracker.

We evaluate our tracker on the visdrone2020 all testing dataset. We compare it with
7 competitive methods, including Siamese network based algorithms and correlation
filter based algorithms. The detailed comparison results are presented in Table 1, and the
results on short-term part and long-term part are shown in Tables 2 and 3 respectively.

Table 1. Comparison results on VisDrone2020 all testing set with performance measures of
Precision score (PRE) and Success score (SUC).

SMILEv2 LTNMI PrSiam 
RCNN 

DIMP+
SiamRPN

DROL
_ LT

DiMP
_AR ECO Ours

PRE ↑ 91.1 89.9 70.8 81.5 77.3 74.1 53.1 85.1
SUC ↑ 66.0 66.0 54.7 60.3 58.2 56.0 38.3 63.0

Obviously, our tracker works well on the overall all testing dataset. Especially in
Success score, our method achieves 63.0, which is very competitive to the state-of-the-
art tracker SMILEv2 and LTNMI, and outperforms from the DiMP + SiamRPN with
60.3, The improvement mainly comes from the design of our Discriminator and Refine
module, which could switch results between DiMP and SiamRPN ++automatically and
make the predicted bounding boxmore strictly.As shown inTable 3, our tracker performs
very well on long-term part. This is because that our redtection mechanism has played a
important role. As for short-term part, our tracker is not robust enough, but our tracker
outperformmost of siamese network based trackers and correlation filter based trackers.

Following [23], we adopt precision (PRE) and success (SUC) scores in one- pass
evaluation (OPE) to assess different tracking approaches.
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Table 2. Comparison results on VisDrone2020 short-term part of all testing set.

SMILEv2 LTNMI PrSiam 
RCNN 

DIMP+
SiamRPN

DROL
_ LT

DiMP
_AR ECO Ours

PRE ↑ 90.6 92.3 76.0 84.9 83.3 84.6 60.6 85.8
SUC ↑ 73.4 76.5 65.2 68.7 70.7 70.8 47.9 69.1

Table 3. Comparison results on VisDrone2020 long-term part of all testing set.

SMILEv2 LTNMI PrSiam 
RCNN 

DIMP+
SiamRPN

DROL
_ LT

DiMP
_AR ECO Ours

PRE ↑ 91.9 84.1 63.6 76.7 68.8 59.4 42.6 84.1
SUC ↑ 55.5 51.3 39.9 45.6 43.6 35.2 24.9 54.4

To investigate the impact of each module in our tracker, we do the ablation study.We
evaluate on VisDrone2020 dev set with each module in our tracker. “D” denotes DiMP,
“S” denotes SiamRPN++, “AR” denotes Alpha-Refine module. Moreover, we evaluate
our tracker on test-challenge set because dev set do not have enough sequences with
attributes camera motion, night and full occlusion. “LLE” denotes Low light enhance-
ment, “CMC” denotes Camera motion compensation. “REDE” denotes redetection. The
results are presented in Tables 4 and 5. Experiment shows that results of each module in
our tracker have obvious improvement, which further promotes the final tracking results
more accurate and robustness.

As shown in Table 5, everymodule in our tracker has great contribution to the results.
Especially the discriminator module (D+AR+ LLE+ S), is 11.3% higher than before.
In addition, we find that UAV visual angle always jitter and the target is small, so it is not
suitable to utilize search region 4 times than the template as traditional siamese based
algorithms do. As a result, we do the experiment on VisDrone2020 dev set to explore
the most suitable search region of different sizes. The results are presented in Table 6.

As shown in the results, it will reduce the tracker performance if we utilize search
region 4 times than the template, and the SUC is only 59.2 with SiamRPN++. Search
region size is very sensitive. If it is too small, the target is easy to get out the search
region for the tracker in the current frame. In contrast, if the search region is too large,
it is easy to get more distractors. Finally, we choose the search region 16 times larger
than the template.
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Table 4. Expected PRE and SUC results on VisDrone2020 dev set for different modules of our
tracker.

PRE ↑ SUC ↑
D 84.41 64.48

S 77.20 59.20

D + AR 85.19 66.97

D + S + AR 87.32 68.20

Table 5. Expected SUC results on VisDrone2020 test-challenge set for different modules of our
tracker.

SUC ↑
D + AR 65.78

D + AR + LLE 66.86

D + AR + LLE + S 74.44

D + AR + LLE + S + REDE 76.75

D + AR + LLE + S + REDE + CMC 78.95

Table 6. Comparison results on VisDrone2020 dev set with search region of different sizes of
SiamRPN ++when normal tracking.

Search Region PRE ↑ SUC ↑
4 times 77.2 59.2

9 times 82.4 62.9

16 times 83.0 63.3

25 times 79.9 60.9

5 Conclusion

In this work, we propose an method that combines an online tracker and an offline
tracker named ECMMAR for drone-based object tracking. Specifically,we design a
discriminator to switch between the two trackers and judge the tracking state of the two
trackers.When the target lost, we use the redetectionmodule to find it. And by employing
brightness enhancement and motion compensation strategies, our approach can further
improve the tracking accuracy.The experimental results demonstrate the superiority of
our method.
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Abstract. Recently,many approaches have been proposed to correct grammatical
errors. Above them, LM-Critic. (Language model critic) achieved great success. It
uses a language model to judge whether a sentence is grammatical and then uses
Break-It-Fix-It (BIFI) framework to fix the broken sentence. However, it does
not work in the scenario of multimodal, since the text is usually not a complete
sentence and the errors are often not grammatical errors. Besides, because of the
noise of scanned images, there always be inevitable recognition mistakes even
though using the best Optical Character Recognition (OCR) engine. And some of
those are intolerable, such as errors in receipt date, total amount, etc. Therefore,
it’s essential to introduce an error correction system to fixOCR results. Inspired by
LayoutLMv2 (Layout LanguageModel version 2), which introduces a pretraining
task to align the text and image,we present LayoutLM-Critic, a critic used to assess
how much a sentence matches the bounding box and image for the visually-rich
document.

Keywords: Error correction · Language model · Multimodal · OCR

1 Introduction

OCR error correction focuses on fixing noisy text in scene text recognition, such as
character missing, case inconsistency, and character mismatch. For analyzing the error
type of OCR engine output, we randomly sample 100 examples from scanned Chinese
invoices andmake a statistic for error types. The result shows that there are 5299 segment
lines that are split by the image layout (both date and total amount are counted on one
segment). However, 3796 segment lines contain errors. And among these 15.46% of
lines have characters missing, 15.52% of which occur case inconsistency, and 69.02%
of themare typos. Ifwe dive deeper,we can see that there are almost 80%of segment lines
with 1–10 characters differ from the ground truth text. These errors take challenges for
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information extraction tasks. Even though obtaining correct labels for the text eventually,
we can’t get actual results since the broken text. So, if we have a preprocessing step to
get clean data, then we have confidence in the inference based on the sequential labeling
prediction results.

Haithem Afli [1] et al. use the statistical machine translation (SMT) model to post-
process the OCR error text. Given an OCR sentence containing errors, the model max-
imizes the posterior probability Pr(t|s). Although SMT has achieved some success in
correcting French document OCR errors, it requires a large number of pairs of data,
which is very costly. In addition, such a model does not have good transfer ability, that
is, for documents in different languages and fields, the writing style will change greatly,
so data need to be collected again and the model needs to be retrained. The costs are
very large.

Other studies focus on the error correction approach based on the confusion set [14].
The confusion set is one of the key data in Chinese input error correction, which is used
to store the possibility of each Chinese character’s typo that may be confused. The data
format of the confusion set is key-value format and the key is a commonly used Chinese
character, and the value is the possible error form of the Chinese character. The quality of
confusion sets largely determines the upper limit of Chinese error correction. There are
mainly two strategies for direct confusion set substitution, total substitution, and single
word substitution.

All Substitution. Assume that every word in the sentence is wrong, replace every Chi-
nese character one by one with the construction set, generate all possible combinations,
evaluate with the binary language model, and take the one with the highest probability
as the correct answer [13]. This approach traverses most of the possibilities, but the
disadvantages are performance issues and FAR being too low.

Word Replacement. Assume that every word in a sentence is wrong, using a confusion
set to replace every single word after a word segmentation [5, 24]. This method achieved
a good recall rate on error detection tasks but was not efficient in other aspects (a large
number of normal sentences were considered as having clerical errors).

The replacement strategy for single words is too simple in the above two ways.
Although a good recall rate can be achieved, a large number of normal sentences will
be modified and the performance is poor. To solve the above problems, there are three
main ways: one is to use rules to reduce the number of words substituted; one is to use
word list templates or language models to filter correct expressions; the third is to use
models to generate candidate text for revision.

Xiong [8] et al. use the idea of HMMerror correction candidate generation. It consid-
ers that the traditional HMM has the following two problems in the text error correction
task: first, the first-order Markov can’t model the long-distance dependency; Another is
that too many candidate entities can degrade the performance of the model and interfere
with subsequent models. The error model in this paper uses edit distance estimation and
the language model uses LM calculation. In the specific operation, firstly remove the
parts that do not belong to Chinese in the original sentence, and then divide the original
sentence according to punctuation marks to form clauses, which are the main unit of
this paper. Construct a priority queue, express the clause as a single word, replace from
the first word, replace the sentence as a candidate, calculate the score according to the
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channel noise model and add to the priority queue, if the priority queue is full, remove
the lowest score, and repeat.

However, this approach is not able to solve the case wheremore than two consecutive
words arewrong.To solve this situation, basedon thefirst step set, all thewords composed
of twowords are replaced (according to the performance and statistical results, more than
two consecutive errors are relatively rare). Through the above steps, the error correction
problem is transformed into a shortest path problem. Add the beginning and end tags
before and after the statement, calculate the shortest path from the beginning to the end,
and select the first several optimal error correction candidates.

Heafield et al. [16] proposed to train the Chinese n-gram language model based on
Kenlm (Kenneth Language Model) statistical language model tool. Combining the rule
method and confusion set, it can correct Chinese spelling errors. The method is fast and
expansible, but the effect of text error correction is not good.

Ruiqing Zhang [15] et al. built a whole set of end-to-end Chinese text error correction
models, including building a pre-trained language model MLM-Phonetics and fine-
tuning downstream error correction tasks.

FASpell [17] was proposed by Yuzhong et al. in 2019 to correct Chinese spelling
by training a BERT-based deep noise reduction encoder (DAE) and a confidence-word-
word-line similarity-based decoder (CSD). In the DAE stage, BERT can dynamically
generate candidate sets to replace the traditional confusion sets, while CSD can replace
the traditional single threshold to select candidate sets by calculating the two dimensions
of confidence and similarity of word, sound, and font, to improve the error correction
effect and achieve a state-of-the ART (SOTA) effect. However, FASpell does not include
few words and multi-word error correction, the training is not an end-to-end process,
and the CSD boundary curve is generated by observation fitting.

Xingyi et al. present SpellGCN [18] in 2020, which mainly learns the relationship
between the font and shape structure through Graph convolutional network (GCN), and
integrates the font and shape vector into the embedding of the word. Error correction is
more likely to predictwords in the confusion set.Model training is an end-to-end process,
and experiments show that there is a great improvement in the publicly available Chinese
error correction dataset. However, the coverage of the confusion set used in the test set
affects the effect evaluation.

Shaohua et al. divide the error correction task into two parts: The detection network
and the Correction network [19, 22, 25]. In the error detection part, the BiGRU model
is used to detect the error of each input character, and the error probability value of
each input character is obtained and used to calculate the soft-masked embedding as the
input vector of the error correction part, which reduces the overcorrection problem of the
Bert model to a certain extent and improves the error correction accuracy. However, the
model does not introduce the constraint of word, sound, and glyph similarity. Although
the error detection module is introduced to reduce the correction problem through soft
mask technology, it only relies on Bert’s semantic recognition for error correction, which
is not robust enough.

Yingbo et al. take error correction as a translation task [20], which can correct
different types of error forms:wrongwords, fewwords,manywords, and so on.However,
the model does not learn the similarity relation of word, sound, and shape, and the result
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after error correction is not constrained, so it is easy to have overcorrection and error
correction problems.

Minh et al. learned hierarchical vectors of words through treeLSTMmodel [21, 23],
which does not rely on fixed confusion sets, and made the model adaptively learn the
features of glyph structure vectors. The confounding relation set can be expanded by
learning the model, and it has better adaptability to new words and new fields. However,
the pinyin similarity between characters is not used in model learning.

All of the abovemethods have a problem, that is, the sentences constructed by random
substitution cannot fit the distribution of true errors well, thus limiting the correction
ability of true error texts. Inspired by BIFI (Break-It-Fix-It [12]), they train the Breaker
to produce the wrong text, gives a good approximation to the true wrong text, and then
train fixers with the outputs of the Breaker.

Similarly, as Fig. 1 shows, we take the same ways. Firstly, we train a fixer f0 and a
breaker b0 on synthetic paired data. Then, use the breaker to generate real error OCR
text to feed the fixer. Cycle K(K = 1, 2, . . . , k) rounds.

Fig. 1. The idea behind LayotLM-Critic: Local optimum criterion

2 Approach

The core component of OEC (OCR Text Error Correction) is a criterion, which gives a
score for a sentence to show how much it is matched to the bounding box and image.
Motivated by the large-scale pre-training multi-modal for visually-rich document under-
standing, such asLayoutLMv2 [9],we aim to decode the output of theLayoutLMencoder
given a sentence, bounding box, and image. Specifically, we judge a sentence to be good
if it has the highest probability within its local neighborhood.

2.1 Local Optimum Criterion of OCR Text

Because the LayoutLM assigns a higher probability to sentences that match the image
and bounding box than mismatched ones. Based on this knowledge, a simple way to
judge correction might be to obtain a threshold σ for the probability, and we have:

AbsThr − Critic(x) =
{
1 if p(x) > σ

0 otherwise
. (1)
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However, we can’t use this equation directly. As Fig. 2 shows, for example, “购
消合同” (5th sentence) is mismatched and should have a lower probability (accord-
ing to LayoutLM) than “陕西咸宁风险评估事务所有限公司” (1st sentence), which
is matched. However, it contradicts reality. This is because the two sentences are not
directly comparable.

Fig. 2. The idea behind LM-Critic: Local optimum criterion

So, we should give some limitations that we can compare sentences with similar
meanings.

Intuition 1 (Correlation of grammaticality and probability). For a correct sentence,
xgood , and a broken version of it (with a similar meaning), xbad , we have

p(xbad ) < p
(
xgood

)
(2)

Intuition 2 (Local neighborhood of sentences). Suppose that every sentence has only
one good version of it (i.e., if the sentence matches with the image and bounding box,
itself; if not, it’s a corrected version). For each sentence x, there is a set of sentences,B(x)
(local neighborhood), that consists of the correct version and all other broken versions
of x.
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Based on the two intuitions, we get the following equation for judging whether a
sentence is matching or not.

x ismatching iff x = argmax
x′∈B(x)

p
(
x′) (3)

2.2 Implementation of LayoutLM-Critic

Motivated by LM-Critic [10], we implement LayoutLM-Critic by approximating the
local optimum criterion. First, for the sentence probability p(x), we train LayoutLM-
Critic (by adding a dense layer to decode the output of LayoutLM encoder, as Fig. 3
shows) from synthetic paired data. Since obtaining the exact local neighborhood B(x) is
nearly impossible, we consider to get an approximate, B̂(x); we implement a sentence
perturbation function b, and let B̂(x) be samples from b(x). To check the correction of
a sentence with a given bounding box and image, we apply the local optimum criterion
(Eq. 4) using B̂(x):

LayoutLM − Critic(x, bbox, image) =
⎧⎨
⎩
1 if x = argmax

x′∈B(x)
p
(
x′)

0 otherwise
. (4)

LayoutLM-Critic.We fine-tune a critic based on the LayoutXLM using synthetic data
(xbad , xgood ) pair. The dense layer of criteria will output a score range from 0 to 1 to
represent the similarity between the target sentence and the correct one. And if the target
sentence is correct, the score will be 1.0; otherwise, the score will be close to 0 if the
sentence is totally mismatched with the bounding box and image.

Perturbation function. We study two strategies:
Word-level perturbation. Given a sentence, we randomly select a word from the

confusing set to replace the current word.
Sentence-level perturbation. Given a sentence, we randomly select a sentence from

the global document to replace it.

3 Experiment

3.1 LayoutLM-Critic

Figure 4 gives the distribution of log probability for pairs (xbad , xgood ) (xbad �= xgood )
which randomly samples 600 sentences from SROIE [2] dataset. And Table 1 shows
how often the LM gives larger scores to good samples than bad ones. From Tables 2 and
3, we can see that there are many uppercase words for fields company and address in
ground truth texts.However, theOCRengine recognizes thesewords as normal sentences
and only the first letter is capitalized. Besides, among of those the value of the amount
maybe have missing characters in the OCR text, which leads the LM to give a larger
score than the latter. For instance, the ground truth amount ’559.53’ gets a score of
–20.830, and OCR text ‘59.53’ get a score of −17.479. However, the LayoutXLM gives
a higher divergence for bad samples and good samples. Table 4 shows the performance
of LayoutLM-Critic.
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Fig. 3. The architecture of LayotLM-Critic

3.2 OEC

Setup andData.Motivated byDrRepair [11], we get synthetic paired data by corrupting
sentences from the analyzable PDF documents. Following the same steps, we learn a
seq2seq model based on Transformer [7] to be our baseline fixer. We get 10M pairs of
synthetic data.

Implementation details. We use traditional Transformer architecture with 12 hidden
layers, 16 attention heads, and a hidden state size of 768. We use BART-base release to
initialize our model parameters [4], and use the Adam algorithm as our optimizer [3],
learning rate 0.00005, and gradient clipping 1.0 [6], on two GTX 3090 GPUs. In the
step of generation, we use beam search with beam size 10. We run the BIFI algorithm
for K = 2 rounds.

Results. Table 5 gives the results of the contract OCR text. The results show that the
paired data generated by BIFI with LayoutLM-Critic is more realistic than the synthetic
data. Figure 5 gives a sample of OCR error correction.
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Fig. 4. Probability of ground truth sentence (blue) and OCR sentence (yellow) sentences,
computed by a pre-trained LM (GPT2)

Table 1. How well OCR text probability returned by pre-trained LMs correlates with grammati-
cality empirically

Pretrained LM How often p(xbad ) < p
(
xgood

)
?

GPT2 83.53%

LayoutXLM 96.43%

Table 2. Examples when p(xbad ) < p
(
xgood

)

Ground truth OCR output

DATE: 29/10/2017 Date: 29/10/2017

INPUT TAX CLAIMS, ON THE BASIC OF THE input tax claims, on the basic of the

1 X 2.69 1 × 2.69

EXCHANGE ARE ALLOWED WITHIN ExCHANGE ARE ALLONED WITHIN

CASH SHO
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Table 3. Examples when p(xbad ) > p
(
xgood

)

Ground truth OCR output

3.60S 3.685

INV NO.: 1128507 o.:1128507

GOODS SOLD ARE NOT RETURNABLE. TQ Goods Sold Are Not Returnable: TQ

STRICTLY NO CASH REFUND R000115147

559.53 59.53

Table 4. Performance of LayoutLM-Critic

Perturbation Recognize “Good” Recognize “Good”

P R F0.5 P R F0.5

Word-Level 58.7 90.1 63.1 78.8 36.8 64.2

Sentence-Level 69.7 75.5 69.7 72.7 65.1 71.1

Perturbation Recognize “Good” Recognize “Good”

P R F0.5 P R F0.5

100 68.4 75.5 69.7 72.7 65.1 71.1

200 70.3 72.5 68.4 69.4 70.3 73.8

300 72.6 68.7 71.8 72.3 73.0 72.0

Table 5. OEC results

OEC system CoNLL-2014(test) Contract

P R F0.5 P R F0.5

Transformer 58.4 55.5 59.7 42.7 45.1 51.1

BIFI with no critic 59.3 62.5 58.4 59.4 50.6 63.6

BIFI (ours) 63.0 67.6 62.3 65.4 67.1 73.2

Fig. 5. A sample of OCR error correction

4 Conclusion

We presented LayoutLM-Critic, an approach that uses a pretrainedmultimodal language
model to assess how much the text, bounding box, and image match. With LayotLM-
Critic and BIFI pipeline, we train an OCR error correction (OEC) by generating realistic
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paired data from unlabeled text. As a result, our way can be viewed as an unsupervised
method to turn the LayoutLM into an actual OEC system.
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Abstract. Blind image deblurring is a challenging problem in low-level computer
vision, which aims to recover blur kernel and latent sharp image from a single
blurry input. In recent years, channel priors such as dark channel prior and extreme
channel prior have shown excellent results. However, the high computational cost
and approximate solution of sub-problem limited the performance of thesemodels.
In this paper, a novel fast local extreme intensity prior (LEP) based on maximum
a posterior (MAP) framework is presented for kernel estimation. The LEP is
inspired by the observation that the blur will damage the local extreme intensity
of an image patch. Moreover, we show the LEP is sparser in clear images than
blurred ones, thus the change in sparsity of LEP motivated us to explore the
kernel estimation model based on LEP. Then, unlike traditional half-quadratic
splitting based optimization strategy, an effective and fast optimization algorithm
is developed for this non-convexnonlinear problem.Experimental results on image
sets show that the proposed algorithm is superior to state-of-the-art methods.

Keywords: Blind image deblurring · Local extreme intensity · Sparse

1 Introduction

As important processing technologies in the field of image and video analysis, blind
image deblurring, image retrieval [1], semantic image segmentation [2], cross-modal
common representations [3] and image-text matching [4] play an important role in vari-
ous application scenarios of artificial intelligence [5], such as deep-sea visual monitoring
system [6], autonomous driving [7], intelligent transportation system [8], routing regis-
tration system [9], etc. However, blind image deblurring is a highly ill-posed problem
since both the blur kernel and latent sharp image are unknown. To make this problem
well posed, plenty of image priors for kernel estimation have been developed. For exam-
ple, sparsity prior [10–12], low-rank prior [13], weighted nuclear norm [14], structure
prior [15], L0 regularized [16], dark channel prior [17], extreme channel prior [18], local
maximum gradient prior [19], local minimal intensity prior [20] and deep prior [21,
22]. Besides, patch prior [23, 24] has been widely used for kernel estimation, which is
conducive for complex image structure extracting. In order to improve the effectiveness
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of the MAP based method, edge selection step is often used for kernel estimation, such
as strong edge prediction [25] and heuristic edge filtering [26–28]. With sufficient edge
information, these methods can effectively achieve image deblurring; however, they are
easy to cause increased noise and over-sharpening image. Since the model designed for
natural images is less effective on special scenes, many priors are developed for special
images, such as text [29, 30], face [31], and low-light [32].

Recently, the classical dark channel prior (DCP) has been proved effective for image
deblurring [17]. But it is unlikely to help blur kernel estimation when the images have
no zero pixels. To solve this problem, Yan et al. combined dark channel prior and bright
channel prior (BCP) for kernel estimation [18]. However, the use of multiple priors
significantly increases the computational cost.

In this paper, we present a fast local extreme intensity prior for blur kernel estima-
tion from a single image. The prior is inspired by the observation that the local extreme
intensity will be damaged by the blur processing, which is proved both mathemati-
cally and empirically. We develop a local extreme intensity approximation strategy to
reconstruct the local extreme values. In addition, our local extreme intensity prior can
improve low-level texture of intermediate latent image to strong edges and beneficial
to kernel estimation. Moreover, we use a coarse-to-fine strategy to suppress noise and
fit large kernel in the estimation process of blur kernel. It is worth noting that our prior
only relies on internal patch information, but no other external statistical knowledge.
Extensive experiments on different datasets demonstrate that our method is competitive
compared to the state-of-the-art methods. The rest of this paper is organized as follows:
In Sect. 2, we present the local extreme intensity approximation strategy and propose the
new fast local extreme intensity prior. We outline our blind deblurring algorithms based
on the MAP framework in Sect. 3. The experiment and further analysis of our proposed
deblurring algorithm is given in Sect. 4. Finally, we present our conclusion in Sect. 5.

Fig. 1. Intensity histograms for local extreme intensity map of both clear and blurred images in
the dataset [10]. Blurred images have far fewer extreme pixels than the clear ones
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2 LEP: Local Extreme Intensity Prior

2.1 Building Local Extreme Intensity Collect Model

In a local image patch, the extreme value will be diminished after the blurring process.
To formally describe this observation, we define an image I ∈ R

m×n×c, and divided it

into K =
⌈
m
q

⌉
·
⌈
n
q

⌉
non-overlapped patches with size q × q. Let x and y denote the

coordinates of the pixel in image I, respectively. Then, the local extreme intensity can
be collected by:

L(I)(i) =
{
minx∈�i

(
minc∈(r,g,b)(I c(x))

)
, if ubi ≥ udi

maxx∈�i

(
maxc∈(r,g,b)(I c(x))

)
, otherwise

(1)

where i = 1,2,3,…K, �i denotes the i-th patch of image I, ubi and udi denote the i-th
distance between x and global brightness and darkness, respectively. I c is the c-th color
channel of image I. LEP is a collection of local extreme values on non-overlapping
patches.

Previous methods have considered the intensities of pixels for blind image deblur-
ring, such as L0 norm of intensity and gradient for text image deblurring [16], dark
channel [17] and bright channel [18] for natural image deblurring. The dark chan-
nel is defined as D(I)(x) = miny∈�(x)

(
minc∈(r,g,b)(I c(y))

)
[8], where �(x) denotes

the image patch centered at pixel x. Similarly, the bright channel is obtained by
B(I)(x) = maxy∈�(x)

(
maxc∈(r,g,b)(I c(y))

)
[9]. Note L(I) ∈ R

K , D(I) ∈ R
m×n,

B(I) ∈ R
m×n, the proposed L(I) is much simpler than D(I) and B(I).

2.2 Fast Local Extreme Intensity Prior

Figure 1 plots the average intensity of clear and blurry images on dataset [10]. It can
be seen that the LEP map of clear images have more zero pixels than those of blurry
ones. And the histogram statistic of LEP map shows obvious sparsity. Therefore, LEP
provides a point to distinguish clear image from blurred ones by sparsity.

Based on this characteristic, our algorithm enhance the sparsity of LEP during the
process of deblurring to achieve a sparse solution of intermediate image. Let L(I) and
L(b) denote the LEP map of clear image and blurred image respectively. If there exists
zero pixels in the clear image, it will be greater than or equal to zero after blurred. We
have:

‖L(I)0‖ ≤ ‖L(b)0‖ (2)

This property can be directly derived via extending Property1 in [33]. In order to
establish the relationship between the image pixel and its corresponding extreme value.
We record the index when computing the LEP map of an image and use this index to
map the solution to an image. The elements in M can be defined as:

M (I)(i) =
{
1, if ubi ≥ udi
0, otherwise

(3)
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Letmi denote the i-th elements of the maskM. Whenmi equals to 1, the patch nearest
neighbor extreme value is local minimal pixel, otherwise the patch nearest neighbor
extreme value is local maximal pixel. Note that the matrixM maps an image to its LEP
map and thus the transpose of M is its inverse operator.

3 Proposed Blind Deblurring Model

Local extreme function L(·) is incorporated in our blind image deblurring model by
regularizing optimization, which seeks an intermediate sparse representation I. The
objective function is:

minI ,k‖I ⊗ k − b‖22 + μ‖L(I)0‖ + ϑ‖∇I0‖ + γ ‖k‖22 (4)

where μ, ϑ and γ are three non-negative regularization weights. Our model includes
four terms. The data fidelity term

∥∥I ⊗ k − b22
∥∥ ensures the recovered image is consistent

with the original image. ‖L(I)0‖ is the new proposed prior. ‖∇I0‖ helps suppress ringing
and artifacts. ‖k‖22 increases the sparsity of the blur kernel.

3.1 Estimating Latent Image

The objective function (4) can be solved directly by half-quadratic splitting method
similar to [17, 18]. However, the computational cost of multiple priors optimization is
expensive. Inspired by [20], in order to reduce the calculation cost, we adopt a new
optimization method via alternating update the latent image and kernel. By convention,
the estimation of blur kernel is performed in a coarse-to-fine manner. The results of
coarse level is used as the initialization of next finer level. We elaborate the optimization
process of the (t + 1)-th iteration in detail on the fine level, and other levels and different
iterations have similar optimization.

We use a simple thresholding shrinkage step in the iteration procedure to impose
sparsity inducing on the LEP of I. For an input image b, let I t+1 denote the latent image
at the (t + 1)-th iteration, I ts and I

t
p denote the subset of L

(
I t

)
, we iteratively update I t+1

and gt+1 via the following steps. First, let ∈> 0 and 0 < ω < 1 be threshold parameters.
The LEP is thresholded as:

I t+1
s =

{
0, if

∣∣I t+1
s

∣∣ <∈
I t+1
s , otherwise

(5)

I t+1
p =

{
1, if

∣∣I t+1
s

∣∣ > ω

I t+1
p , otherwise

(6)

Then the mask M is updated by:

M t+1(i) =
{
1, if ut+1,b

i ≥ ut+1,d
i

0, otherwise
(7)
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where ut+1,b
i and ut+1,d

i can be obtained according to Sect. 2.2. Finally, the I t+1 is
updated as:

Ĩ t+1 = I t+1
p �

(
1 − M t+1

)
+ I t+1

s � M t+1 (8)

where � denotes the Hadamard product. M (i)t+1 is determined by the index between
the i-th patch and its corresponding extreme intensity. We record the index matrix M
when computing the LEP map of an image and use this index to map the solution of
I t+1
p . and I t+1

s to an image Ĩ t+1.

Update g. With the given Ĩ t+1, the ∇I is updated by:

minI
∥∥∥Ĩ t+1 ⊗ k − b

∥∥∥
2

2
+ ϑ

∥∥∥∇ Ĩ t+1
∥∥∥
2

2
(9)

Introducing an auxiliary variable g with respect to ∇I the problem can be
approximated by

ming
∥∥∥Ĩ t+1 ⊗ k − b

∥∥∥
2

2
+ λ

∥∥∥g − ∇ Ĩ t+1
∥∥∥
2

2
+ ϑ‖g‖0 s.t. g = ∇ Ĩ t+1 (10)

Note that the sup-problem about g in (10) is an element-wise minimization problem,
thus the solution of g can be expressed as:

gt+1 =
{

∇ Ĩ t+1,

∣∣∣∇ Ĩ t+1
∣∣∣ ≥ ϑ

λ

0, otherwise
(11)

Update I. Finally, I is updated by solving the following formulation:

minI‖I ⊗ k − b‖22 + λ∇
∥∥∥I − gt+2

∥∥∥
2

2
(12)

Equation (12) contains all quadratic terms, and we can obtain its solution by the least
square method. In each iteration, FFT (Fast Fourier Transform) is used to accelerate the
computation process. Its closed form solution is given as follows:

I t+1 = F−1

⎛
⎝F(k)F(b) + λ

(
F(∇v)F

(
gt+1
v

) + F(∇h)F
(
gt+1
h

))

F(k)F(k) + λ
(F(∇v)F(∇v) + F(∇h)F(∇h)

)
⎞
⎠ (13)

where F(·) and F−1(·) are Fast Fourier Transform (FFT) and its inverse, respectively.
F(·) denotes the complex conjugate operator of FFT,∇v,∇h are gradients in the vertical
and horizontal directions, respectively.

3.2 Estimating Blur Kernel k

With given I t+1, optimizing k becomes an independent sub-problem. To accelerate the
convergence rate, we estimate k in the gradient space. Specifically, we obtain the solution
to the blur kernel by minimizing the following problem:

k t+1 = arg mink∇
∥∥∥I t+1 ⊗ k − b

∥∥∥
2

2
+ γ ‖k‖22 (14)
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where ∇ denotes the gradient operation. Note that solving k in the gradient space is
beneficial to suppress the ringing and artifacts. Equation (14) is a classical least squares
problem with respect to k. The closed form solution to Eq. (14) can be obtained directly
by FFT method.

4 Experiment

We carry out experiments and compare with state-of-the-art approaches on four main-
stream benchmark datasets [10, 16, 23, 34]. In all the experiments, the parameters are
set as follows: μ = ϑ = 0.004, γ = 2, and the image patch size to compute the LEP is
set to be 6.

4.1 Deblurring Images

Köhler et al.’s dataset. Firstly, we test our method on the synthetic non-uniform image
dataset [34] for quantitative evaluations. This dataset includes 4 ground truth images
and 12 different kernels. We compare our results with the state-of-the-art methods.
Figure 2 presents visual comparison on one challenging example. For all the images in
this dataset, we present the average Peak Signal to Noise Ratio (PSNR) and Structural
Similarity (SSIM) value in Table 1. The PSNR and SSIM values of the restored images
by our method are higher or not lower than those of the state-of-the-art algorithms [12,
17, 20, 27, 35, 36–38]. Our algorithm performs well compared with other methods on
this benchmark dataset.

Fig. 2 Comparisons of state-of-the-art methods on one challenging image from the dataset [34].
The images (a–d) are groundtruth, Pan et al.’s [17] result, Yan et al.’s [18] result and our result,
respectively

Levin et al.’s dataset. Then, we test our algorithm against the state-of-the-art meth-
ods [12, 17, 20, 27, 35, 36–38] on another benchmark dataset [10], which includes 4
original truth images blurred with 8 different kernels. One challenging example against
the competing methods [17, 18] is shown in Fig. 3. For all the images in dataset [10],
we report the PSNR and SSIM values of comparison methods in Table 2, our method
performs better than the others. In addition, Fig. 4 plots the cumulative error ratios of
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Table 1. Quantitative results (in PNSR and SSIM) on dataset [34]

Method [27] [12] [36] [35] [37] [38] [17] [20] Ours

SSIM 0.87 0.76 0.77 0.70 0.81 0.81 0.88 0.89 0.89

PSNR 28.57 25.72 25.89 22.73 27.84 26.83 29.95 29.97 30.10

our method and the other competing methods. Note that our LEP based method outper-
forms state-of-the-art algorithms with 100% under error ratio 2. All the experimental
results consistently show that our method is competitive compared with the competing
methods.

Fig. 3. A comparison of our method with state-of-the-art methods. The images (a-d) are
groundtruth, Pan et al.’s [17] result, Yan et al.’s [18] result and our result, respectively

Table 2. The Average accuracy of the deblurred image (in PNSR and SSIM) for the Levin’s
dataset [10]

Method [27] [12] [36] [35] [33] [38] [17] [20] Ours

SSIM 0.85 0.89 0.73 0.79 0.88 0.89 0.87 0.89 0.90

PSNR 28.29 31.72 26.86 26.33 30.10 30.53 29.33 32.23 32.39

Sun et al.’s dataset. To further explore the effectiveness of our method, we use the large
image set introduced by Sun et al. [23], which contains 640 blurred images, and compare
with state-of-the-art methods. For quantitative comparison, we record the success rates
with different error ratio compared with the other methods on this image set in Table 3.
According to the quantitative comparison results, our LEP based approach achieves the
state-of-the-art performance.

Text image. We carry out experiments on text images against the state-of-the-art
approaches [17, 18]. Figure 5 presents the recovered latent sharp images and estimated
blur kernels of the two compared methods on two challenging samples in dataset [16]. It
can be seen that the images restored byDCP [17] and ECP [18] still contain residual blur,
and the blur kernel estimated by them is not as sparse as ours. In general, our proposed
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Fig. 4 Quantitative results of our method on benchmark dataset [10]. Error ratios comparison
between our approach and the other methods

Table 3. Success rates of the state-of-the-art methods on dataset [23]

Error ratio ≤1.5 ≤2 ≤2.5 ≤3 ≤3.5 ≤4

Sun et al. [23] 388/640 511/640 550/640 569/640 587/640 599/640

Pan et al. [17] 568/640 594/640 621/640 627/640 632/640 633/640

Yan et al. [18] 568/640 596/640 625/640 636/640 638/640 638/640

Ours 592/640 633/640 638/640 639/640 639/640 639/640

method helps to estimate the correct blur kernels and produce results with less ringing
and artifacts.

4.2 Analysis and Discussion

Comparison with other related methods. Previous methods [11, 16] adopt L0 norm
priors for kernel estimation are less likely to perform well compared with the state-of-
the-art approaches. Recently, some approaches enforce sparsity by L0 regularized on the
dark channel [17] and bright channel [18] of image pixel. We present the dark channel
and bright channel maps compared to our LEP map for visual comparison in Fig. 6.
Although the dark channel, bright channel and our LEPmap of recovered image all have
improvement than that in the corresponding blurry image, our LEP map improves more
than the dark channel and bright channel. Moreover, our LEP map is more clearer than
dark channel and bright channel in both blurry image and recovered image.

Ablation studies. To further explore the effectiveness of our LEP, we conduct ablation
studies on dataset [10]. For fair comparison, we disable the LEP prior in the implementa-
tion. Figure 7a shows that our algorithmwith LEP term performs better than that without
LEP in terms of PSNR. Figure 7b plots the cumulation error ratio to further evaluate the
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Fig. 5. Results of our method on text image dataset [16]. (a) blurry inputs and ground truth
kernels. (b) results by Ref. [17]. (c) results by Ref. [18]. (d) Our results

Fig. 6. Visual comparison of different maps. (a) is blurry sample. (b)–(d) are dark channel, bright
channel and our LEP map of (a), respectively. (e) is recovered image. (f)–(h) are dark channel,
bright channel and our LEP map of (e), respectively

effectiveness of LEP, our model with LEP is much better than that without LEP. Figure 7
validates the effectiveness of LEP.

Computational Complexity. Different from the traditional methods [17, 18], the pro-
posed method adopt the new optimization strategy. We compare the running time of our
algorithm with competitive methods. The method by Xu et al. [11] is implemented with
C++ , and the method developed by Pan et al. [17] and Yan et al. [18] is optimized based
on the half quadratic splitting algorithm. The experiment is conducted on a desktop PC
with Intel Core i5-4590 CPU, 16 GB RAM. Table 4 shows the running time of relevant
methods to deblur images with different sizes. It can be seen that the method of Xu et al.
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Fig. 7. Evaluate the effectiveness of our LEP on benchmark dataset [10]. (a) PSNR value com-
parison with and without LEP. (b) Quantitative evaluations on the benchmark dataset [10] with
and without LEP

[11] is the fastest, the method of Pan et al. [17] and Yan et al. [18] is much slower than
ours.

Table 4. Running time (s) of different methods on dataset [10]

Method 255 × 255 512 × 512 800 × 800

Xu et al. [11] 1.02 2.43 5.35

Pan et al. [17] 111.51 563.33 1150.17

Yan et al. [18] 306.56 1250.12 31.02

Ours 22.68 77.12 187.53

5 Conclusions

In this paper, a new fast local extreme intensity prior is proposed for single image
deblurring. This prior is sparser on clear images over blurred ones. Then, we embed
this prior into the MAP based blind deblurring framework for effective kernel estima-
tion. To restore the latent sharp image regularized by the fast local extreme intensity
prior, we present an effective optimization strategy based on the threshold shrinkage and
alternating optimization method rather than the conventional half-quadratic splitting
algorithm. Extensive experiments demonstrate that our method performs favorably and
computational efficiency against state-of-the-art algorithms on mainstream benchmark
datasets.
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Abstract. Scene text removal (STR), which aims to erase text in the wild and fill
with visually plausible content. Because text in thewild is often in a complex back-
ground, existing methods fail to replace the text regions with a visually plausible
background. To tackle this challenge, it requires the model to learn the distribution
of a large amount of data. Inspired by the successful adoptions of score-based dif-
fusion models in image generation task, we proposed a new two-stage text erasing
approach termed as STRDD. STRDD contains two modules: an autoencoder and
an SDE. The autoencoder encodes the image into the features and reconstruct the
image from the features. SDE learns the distribution of features encoded by the
encoder and uses non-text regions in the image as conditions to turn text regions
into background. The results of experiment on real-world dataset demonstrate that
STRDD can remove the text in the wild well and achieve improvements on STR
as compared to all baselines.

Keywords: Scene text removal · Diffusion model · Image inpainting

1 Introduction

Over the past few years, with the popularity of smart devices and streaming media,
personal privacy is also more likely to be leaked. Specifically, text in natural images
usually provides valuable private information such as name, address and mobile phone
number. Therefore, scene text removal (STR), which aims to erase text in the wild
and fill it with visually plausible content, has gained increasing attention in the optical
character recognition community. Lately, many methods have been proposed to erase
text in the wild [1–8]. These scene text removal methods can be roughly divided into
two categories: one-step and two-step. The former is an end-to-end model that combines
text region detection and background inpainting into one model. The relatively simple
structure makes the one-step model lightweight and fast. EraseNet [4] is a GAN-based
text erasure model that contains a text segmentation head and a coarse-to-fine network.
The text segmentation head can enhance the perception of text regions. The coarse-to-
fine network ensures sufficient receptive field and supervision information. Although
the one-step model does not need to input text region information, this also makes the
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model usually unable to accurately locate the text region and leave the remnants of
text. The latter first detects text regions in the image, turns the text regions into holes,
and then fills the holes into a visually reliable background. Zdenek et al. [5] applied a
pretrained detector to predict bounding-box-level text region masks and used an image
inpaintingmodel trained on the Place2 [9], Paris StreetView [10], ImageNet [11] datasets
to replace text region masks with the background. However, because the training dataset
used is different from the real world, the model will face the domain offset problem.
Tang et al. [7] crop text instances from images using bounding box annotations and used
a stroke mask prediction module to predict text strokes in cropped images. According
to the text stroke masks and cropped images, use the background inpainting module
to predict the text-erased images. Despite their success, there is the main challenge for
scene text removal in general: text in the wild is often in a complex background. To
replace the text region with a visually reliable background requires the model to learn
the distribution of a large amount of data. Lately, the successful adoptions of score-based
diffusion models in image editing [12], super resolution [13] and image segmentation
[14] witness the power of score-based models in generative tasks. DDPM [15] and
SMLD [16] ensure that the probability distribution of the images will not collapse to
a low-dimensional manifold by adding discrete random noise in the diffusion process,
so the score (i.e., the gradient of log probability density) will be well defined and score
matching will provide a consistent score estimator. In the inference stage, the score-
based model starts from a prior noise (i.e., standard gaussian noise), then progressively
denoises the noise through Markov chains and score matching, and finally samples the
high-quality images. SDE [17] unifies DDPM and SMLD into a time-continuous model
based on stochastic differential equations. SDE considers the noise diffusion process
as a stochastic process and uses stochastic differential equations to transform the data
into a prior distribution. According to [18], an inverse SDE that reverses the diffusion
process can be derived from the noise diffusion of SDE. Compared to GAN-based
models, score-based model training is less unstable and does not suffer from mode
collapse. Compared with other likelihood estimation-based models (e.g., autoregressive
models, variational auto-encoders (VAEs), and normalizing flow), score-based models
have less computational complexity and better image generation quality. In this work, we
proposed a new text removal approach termed STRDD. STRDD contains two modules:
an autoencoder and an SDE. The encoder first extracts features from the input images,
then the SDE which has learnt the distribution of features uses features from non-text
regions as condition to sample the features of text regions from noise and finally the
image is reconstructed from the features by the decoder (Fig. 1).

The remainder of the paper is organized as follows. Section 2 presents related work
about the task of scene text removal. Section 3 introduces the basic background of SDE.
Section 4 illustrates the proposed STRDD during the training phase and inference phase.
Section 5 presents the details of experiment and comparison between other scene text
methods and STRDD. Finally, a summary of our study is provided in Sect. 6.
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Fig. 1. Examples of scene text removal. Input an image with scene text and text regions, STRDD
can remove the text fill with visually plausible content. From left to right, in each example, the
top is the input image of IC13 and text regions labeled with polygons in green, while the down is
the text-removed images generated by our method

2 Related Work

2.1 Scene Text Removal

Early text erasing research was mainly used to process born-digital text (such as water-
marks, stamps and subtitles) in images or videos. These texts can be detected by using
the binarization method [19] because the area, color and fonts are relatively fixed. And
these text background textures are simple and can be inpainted using the smoothing
method [20]. The diverse layout of texts in images, image degradation caused by blur
and illumination conditions, and complicated background textures make removing text
in scenes a challenging task. With the rapid development of deep learning, many text
erasing methods have accomplished excellent results. Nakamura et al. [1] make the first
try to useU-Net to erase text patch by patch. Thismethod fails to locate textwith complex
shapes and inevitably damages the overall quality of the image. EnsNet [2] uses condi-
tional GAN (cGAN) to erase the entire image. Both methods are one-step models, where
the localization and erasure of text are performed at the same time. Such methods often
result in inaccurate text localization and incomplete text erasure. To tackle this problem,
MTRNet [3] uses auxiliary text masks to provide text position information, which is
the main reason for outperforming previous methods. Zdenek et al. [5] used a weakly
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supervised approach to train on an unpaired dataset using a pretrained detector and an
image inpainting model. Liu et al. [4] contributed a manually annotated dataset called
SCUT-EnsText and proposed EraseNet which uses coarse-to-fine network structure and
text segmentation head to enhance the perception of text regions. MTRNet++ [6] is a
multi-branch network with the same structure for each branch. The structure between
branches is also a coarse-to-fine network structure. Tang et al. [7] proposed a stroke-
based model. The crop images which contain text are sent to the stroke mask prediction
module to obtain the stroke-level text mask, and the background inpainting module is
used to generate text-erased images. Compared with the previous model, the stroke-level
text mask can provide more accurate text information and guide the inpainting model to
generate higher quality images. PERT [8] decomposes the scene text removal task into
multiple text remove stages. In each stage, it tries to take an equal step toward the text-
removed image. The decomposed operation reduces the learning difficulty and makes
the model more lightweight.

3 Background: SDE

SDE is a score-based generative model. Unlike other diffusion models (such as DDPM
and SMLD), SDE uses an infinite number of noise scales to perturb the data. As the noise
gradually increases, the distribution of the perturbed data changes as a random process.
t ∈ [0,T ] is a continuous time variable, p0 is the original distribution of the data, and
pT is a prior distribution (such as Gaussian distribution) independent of p0. In this way,
the diffusion process that converts x0 ∼ p0 to xT ∼ pT by gradually adding noise can
be modeled using an Ito SDE:

dx = f (x, t)dt + g(t)dw, (1)

where f (·, t) : Rd → R
d is a vector-valued function called drift coefficient of x(t), and

g(t) : R → R is a scalar function that does not depend on x known as the diffusion
coefficient of x(t), w is the standard Wiener process.

According to the result from Anderson [18], the reverse of the diffusion process is
also a diffusion process, which can be modeled as an SDE:

dx =
[
f (x, t) − g(t)2∇xpt(x)

]
dt + g(t)dw (2)

Therefore, if the score of marginal distribution (∇xpt(x)) can be accurately estimated
for all t, we can obtain sample x(0) ∼ p0 from sample x(T ) ∼ pT by deriving the reverse
diffusion process from Eq. (2).
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4 Method

Fig. 2. Overview of our proposed STRDD during the training and inference process. The STRDD
is composed of an autoencoder and a VE SDE

4.1 Overview

The overview of our scene text removal method termed STRDD is shown in Fig. 2.
Fully convolutional networks with encoder-decoder structures are widely used in scene
text removal, while diffusion models such as SDE have accomplish favorable results in
various image generation tasks. Owing to the impressive results achieved by these two
different models, STRDD first uses the encoder to extract the features of the images,
and then let the SDE learn the distribution of the features, so that the SDE can gradually
denoise the noise sampled from the prior distribution to obtain the real scene image
features, and finally use the decoder to reconstruct high-quality scene images from the
features. Unlike some diffusion models, the SDE of STRDD learns the distribution of
images in feature space rather than pixel space. It can offer the following benefits:
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• After the image is extracted by the encoder, SDE can directly learn important semantic
representation information from the features, which reduces the data dimension and
improves the capacity of the model.

• SDE is more efficient in learning and sampling in feature space than in pixel space.

4.2 Training

Autoencoder. The training process of the model is split into two stages. At first, We
train a fully convolutional network autoencoder, given an input image x ∈ R

H×W×3,

the encoder E encodes x into features z0 = E(x) ∈ R
H
4 ×W

4 ×c by two down-sampling
convolution layers and six residual connection blocks, and decoder D reconstructs the
image x′ = D(z0) = D(E(x)) from features z0 through two subpixel convolution blocks.
L1 loss directly measures the pixel-level distance between the input image and the
reconstruction result, which is used to guide the pixel-level reconstruction in this work.

Lpixel
(
x, x′) = ∣∣∣∣x − x′∣∣∣∣

1 = ||x − D(E(x))||1 (3)

But solely relying on the L1 loss makes the reconstruction result over-smooth and
loses local detail. To avoid this, we add a perceptual loss and a style loss. Both perceptual
loss and style loss use pre-trained VGG19 to capture semantic features at different levels
on the image and constrain the difference between the features of the input image and the
features of the output image, thereby improving the local realism of the reconstructed
image. The perceptual loss is defined by Eq. 4 and the style loss is defined by Eq. 5:

Lperceptual = E[
5∑

i=1

∣∣∣∣φi(x) − φi
(
x′)∣∣∣∣

1 (4)

Lstyle = E

[∑
i=1

∣∣∣
∣∣∣Gφ

i (x) − Gφ
i

(
x′)∣∣∣

∣∣∣
1

]
(5)

where φi denotes the i th activation maps from the first activation function of each layer

in VGG19. Gφ
i = φiφ

T
i

CiHiWi
is the Gram matrix. Ci, Hi, Wi are the number of channels,

width and height of the feature maps of φi, respectively. The loss of the autoencoder is

LAE = Lpixel + λ0Lperceptual + λ1Lstyle (6)

where the hyper-parameters λ0 and λ1 are set to 0.005 and 20, respectively. When
the autoencoder is trained, we fix the parameters of the autoencoder so that the data
distribution of z0 is deterministic.

SDE. In this work, we use the VE SDE proposed by [17] to learn the data distribution
of features. The perturbation kernel of VE SDE is as follows:

p0t(zt |z0) = N
(
zt; z0, σ 2

min

(
σmax

σmin

) 2t
T

I

)
(7)
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Typically, σmin is small enough such that pσmin(z) ≈ p0(z) and σmax is large enough
such that pσmax (z) ≈ pT (z). The input feature z0, a random time variable t and a standard
Gaussian noise ∈ are taken as input, the output of VE SDE is perturbed feature zt =
z0 +σmin

(
σmax
σmin

) t
T ∈. Then, zt goes through the score model sθ which is a time-condition

U-Net to get the score prediction sθ (zt, t). To be able to sample data from noise, the
score model needs to correctly estimate the gradient of log density distribution for all
t ∈ [0,T ] and z0 ∼ p0(z). So, the optimization function of the score model can be
derived as follows:

LSDE = Et∼[0,T ]
[
λ(t)Ez0∼p0(z)Ezt |z0

[
sθ (zt, t) − ∇zt log p0t(zt |z0)

]]
(8)

where λ : [0,T ] → R>0 is a weighting function.

4.3 Inference

As shown at the bottom of Fig. 2, given an image with scene text Itext and corresponding
text region mask M , we first get the masked image IM by using mask M to fill the text
regions with blank. IM is encoded to masked feature zm0 by encoder E. To make the
most of the information provided by the mask, M is resized to the same size as the zm0
denoted bym. In every step from zt to zt−1, the zt−1 does not solely depend on zt , we use
the masked feature zm0 and the resized mask m as a condition to control the denoising
process. Thus, we first diffuse zm0 into zmt−1 with the same noise scale as the zt−1 and
then we denoise zt into zt−1. zmt−1 has more semantic information of background than
m � zt−1, so zmt−1 and zt−1 are combined to the new zt−1 by using the mask m.

zt−1 = zt + g(t)2

N
sθ (zt, t) +

√
g(t)2

N
∈ (9)

zmt−1 = zm0 + σmin

(
σmax

σmin

) t−1
T ∈ (10)

zt−1 = (1 − m) � zt−1 + m � zmt−1 (11)

After the denoising process, the new features z′0 sampled from noise are decoded by
decoder D. into the scene imageO′. Finally, we combine IM andO′ to the text-removed
scene image O.

O = IM + (1 − M ) � O′ (12)

5 Experiment

5.1 Datasets

SCUT-Syn [2] is a synthetic dataset generated by the Synthesis text engine [24]. There are
8000 training images and 800 test images in this dataset. all the training and test samples
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are resized to 512 × 512. This dataset has a paired image with text and its background
image. We use the background images of the training set to train the STRDD.

SCUT-EnsText [4] is a challenging scene text removal dataset. It contains 2,749
images for training and 813 images for testing. All the images in this dataset are collected
fromseveral public real-word scene text datasets, including IC13 [21], IC15 [22],COCO-
Text [25], SVT [26],MLT2017 [23],MLT2019 [27] andArTs [28]. This dataset contains
both Chinese and English text instances, which have diverse shapes, colors, fonts. To
maintain the consistency of erased text regions and surrounding texture, the text instances
were carefully erased and filled with a visually plausible background. The text-erased
images of the training set are also used to train the STRDD, and the paired images of
the test set are used for qualitative and quantitative evaluation.

5.2 Evaluation Metrics

To quantitate the ability of a model on how much text can be erased, an evaluation
approach proposed by [1] that utilizes an auxiliary text detector to detect text on the text-
erased images, then assesses the precision, recall, and F1-score under scene text datasets
according to the ground truths for text localization. For a fair comparison with previous
methods,we employCRAFT [30] on the SCUT-EnsText. The abovemethod only focuses
on howmuch text is erased but disregard the local details and realism of the entire image.
Therefore, in order to evaluate the final text removal results more comprehensively, we
use some evaluation metrics commonly used in the image translation task as follows:

• MSE: The average squared difference between two images.
• PSNR: The square of the ratio of the maximum possible difference between the two
images to the actual difference.

• MSSIM [31]: Multiscale structural similarity which evaluates the difference in
illuminance, contrast and structure between two images.

A higher PSNR and MMSIM, or a lower MSE indicate the better results.

5.3 Comparison with Other Scene Text Removal Methods

To evaluate the effectiveness of STRDD, we compared it with some inpainting methods
and scene text removal methods on the SCUT-EnsText. Firstly, we compared STRDD
with state-of-the-art image inpainting method. The LBAM [32] and RFR-Net [29] were
pretrained on the Pairs Street View dataset.We generated text regionmasks directly from
the annotations provided by SCUT-EnsText. The resolution of the input image andmasks
are 512 × 512. The results on SCUT-EnsText are shown in Table 1, and these results
prove that STRDD can surpass these inpainting methods on PSNR, MSSIM and MSE.
But our model’s inference speed is about 60 times slower than LBAM because STRDD
requires multiple loops to sample the features from noise. From some samples presented
in Fig. 3, the output of LBAM and RFR-Net contains obvious distortion. STRDD can
a generate visually plausible background. To enable a fair comparison with other scene
text removal methods, we utilize a pretrained scene text detector to produce text region
labels instead of directly from annotations. In this experiment, we use CRAFT to detect
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Fig. 3. Visual results of scene text removal methods on the SCUT-EnsText. From left to right:
input image with bounding boxes, ground truth, output of STRDD, output of LBAM, output of
RFR-Net

Table 1. Comparison between State-of-the-Art inpainting methods and STRDD on the SCUT-
EnsText

Method SCUT-EnsText Inference speed

PSNR↑ MSSIM (%)↑ MSE↓
LBAM 33.0421 93.3275 0.0013 25 ms

RFR-Net 33.6560 93.9355 0.0012 193 ms

STRDD 34.8403 94.7480 0.0010 1600 ms

Table 2. Comparison between scene text removal methods and STRDD on the SCUT-EnsText

Method Qualitative eval Quantitative eval

PSNR↑ MSSIM (%)↑ MSE↓ R↓
SceneTextEraser 25.47 90.14 0.0047 5.9

Pix2Pix 26.70 88.56 0.0037 35.4

EnsNet 29.54 92.74 0.0024 32.8

EraseNet 32.30 95.42 0.0015 4.6

STRDD 32.60 93.80 0.0015 5.9
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the texts in the images and generate text regionmasks as the input of STRDD. The results
are shown in Table 2. Overall, our model achieves the lowest PSNR and MSE values,
which indicates that our model can generate reasonable backgrounds. However, due to
the limited capabilities of the detector, the values of MSSIM and recall increase.

6 Conclusion

In this paper, we present a new scene text removal approach termed STRDD which
consists of an autoencoder to extract features and reconstruct images, and an SDE to
learn the data distribution of features. In the inference phase, ourmodel canmake full use
of information of non-text regions in scene text images. Experimental comparisons with
some scene text removal approaches onSCUT-EnsText show that STRDDcan effectively
remove text and generate reasonable background. In the future, we will explore how to
speed up sampling for diffusion models and improve the performance of erasing scene
text.
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Abstract. Table is a common representation format used to record and summarize
important data in our daily life. Table detection, cell detection and table structure
recognition have been widely discussed in recent years. The recognition of table
structure in clean and noiseless images or documents has achieved good results, but
in the real world with distorted images containing noise disturbance, the existing
methods cannot get good results. The reason for this problem is that the image in
the real world contains various distortions, such as curve, which causes the model
to fail to parse the table correctly. To solve this problem, we propose a network
with geometry awareness, which can enhance the ability of the model when facing
the real-world images containing distortion.

Keywords: Geometry awareness · Table structure recognition · Object detection

1 Introduction

Table is a format commonly used in our daily life to record and summarize important data.
Tables can quickly visualize information and data, and can intuitively provide readers
with compact and important information. Tables exist in a wide variety of formats,
including but not limited to web pages, PDFs, word processors, and document images
[1]. With the development of natural language processing technology, many table-based
tasks have emerged, such as table-based question answering [2, 3], entity linking [4], etc.,
which have attracted extensive attention in academia. However, most of these existing
studies only consider structured tabular data, relational tabular data, or clean document
images in simple scenarios, which are far from real-world data in the wild. Therefore,
it is an existing problem to automatically parse the unstructured noisy image data in the
wild in the real world into a structured digital format. In addition, with more and more
mobile camera devices such as smart phones, images containing tables are becoming
very common. Therefore, this imposes a requirement on the automatic extraction and
parsing of table structures from images in wild.

For an image, the purpose of table structure recognition (TSR) is to extract all tables,
locate their cells, and obtain row and column information in the table. Early pioneering
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S. Yang and H. Lu (Eds.): ISAIR 2022, CCIS 1701, pp. 171–180, 2022.
https://doi.org/10.1007/978-981-19-7943-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-7943-9_14&domain=pdf
http://orcid.org/0000-0002-4838-1637
http://orcid.org/0000-0001-8324-0656
http://orcid.org/0000-0002-4709-8469
https://doi.org/10.1007/978-981-19-7943-9_14


172 B. Xu et al.

works, such as [5], usually use heuristic rules, which will first detect low-level cue units
such as lines, boundaries, text regions, then combined these units in a bottom-up manner
to complete TSR task. In recent years, with the development of deep learning and its
wide application in various tasks, the deep learning method of developing end-to-end
model is proposed to avoid heuristic grouping scheme design. However, previously this
problem was mostly studied on document image. In this case, the table image is taken
or scanned under good imaging conditions, or even extracted directly from a completely
noise free PDF file, usually with a clean background and clear table structure aligned
horizontally (and vertically). Limited by the training data set used for table structure
parsing [6–9], these methods still solve this problem under the assumption that the table
image is well aligned. For the more practical needs of parsing table structures from
images taken from wild handheld cameras, the most advanced methods available [10,
11, 21–23] are prone to failure because common assumptions about table images in clean
documents no longer hold. Specifically, in widely used data sets (such as ICDAR2013,
Table-bank), table images usually have clear backgrounds and clear table structures. Due
to this limitation, most of the existing TSR methods can only complete the TSR task by
grouping low-level cues in clean and noise-free simple cases.

For the recognition of table structure in wild, this paper [24, 38] focuses on the
important problem of cell boundary accuracy in text recognition and proposes a meth-
od based on key points detection. This method no longer has a priori assumptions of
cell alignment and others, expanding the scope of the table structure recognition model
from clean document images to real world images. However, if there is distortion in
the image of the table, such as bending, blocking or blurring of the overall table line,
and extreme ratio, existing methods don’t perform very well on these images In order
to solve the performance degradation caused by the distortion of the table image, we
propose a geometry aware network GA-CenterNet based on Cycle-CenterNet, through
which the model can obtain the ability of geometry deformation of the table and improve
the recognition result in the face of the above situation. The experiment results show
that the performance of the proposed method is better than that of the existing methods
when there is a lot of distortion in real world.

The rest of the paper is structured as follows. In Sect. 2, we first present related
work on table detection, table structure recognition, and spatial transformation networks.
Second, in Sect. 3, we elaborate the proposed method, including the overall framework
of the model, and the geometry-aware representation. We then show related experiments
in Sect. 4.

2 Related Work

Table detection and table structure recognition have been widely studied in recent years.
For simple structed documents such as PDF, the heuristic-based approach is popular
and achieves good results. Typically, heuristic methods start from metadata to define
various heuristic rules for documents, which means this approach fails when process
image data. In addition, the generalization ability of heuristic methods is often limited
by changes in table structure. In the survey [35, 39], methods and techniques for table
detection and recognition from an earlier time were introduced. With the great success
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brought by deep neural networks in the field of computer vision, the research methods
about table images are more universal [22, 25, 26]. With the great development of deep
learning, deep learning-based solutions have become mainstream, and we focus more
on deep learning-based models in this section.

2.1 Table Detection

Table detection and cell detection tasks generally appear as subtasks of table structure
recognition. It has been discussed in many studies. The techniques of object detection
and semantic segmentation are often used to solve the tasks of table detection and table
structure recognition. Therefore, currently popular target detection schemes, such as
Fast-RCNN [27], Mask-RCNN [36] and FCN [37, 40], have been widely applied in
relevant studies. DeepDeSRT [17] is a method based on deep learning, which aims to
detect tables and identify table structures. [28] proposed a multi-stage expansion Mask
R-CNN deep learning network for table detection tasks. [29, 41] adopted a cascaded
network structure model, which can cascade the tasks of table detection and table struc-
ture recognition, but this model is very dependent on complex data augmentation and
transfer learning. [21] adopted a single model based on semantic segmentation to solve
the tasks of table detection and table recognition. Methods for object detection and
semantic segmentation have also been used in other studies. Most of these studies take a
top-down approach to design or improve network architectures for different application
scenarios. For better results, the transfer learningmethod be used to strengthen themodel
ability. In the top-down approach, the task of table detection and table structure parsing
can be accomplished simultaneously, such as segmenting table cells. In the bottom-up
method, table detection needs to be performed first, and then table structure recognition
is performed on the basis of table detection.

2.2 Table Structure Recognition

Based on the granularity of the basic components, we have roughly divided the previous
approaches into two categories: global object-based approaches and local object-based
approaches.

Global Object-Based Approaches. Global object-based methods focus on important
global elements, such as columns/rows, and usually detect or segment global elements.
Study [22] uses a detection or segmentation model to obtain row and column regions,
and then considers the intersection of the two regions as cells of the table. Region masks,
including row masks and column masks, are learned in [21]. In this way, table detection
and table recognition tasks are implemented in end-to-end way. Different from [22, 30]
learns a region segmentation mask between rows/columns to split rows and columns,
and then the intersecting regions outside the mask are considered as cells of the table.
In addition, there is an end-to-end method. [8] serializes the information of the entire
table, and outputs the table corresponding to the image as a text sequence through the
encoder-decodermethod. Thismethod is relatively simple inmodel, and is an end-to-end
way. However, these models require a large amount of labeled training data and usually
are difficult to train.
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Local Object-Based Approaches. The local object-based approaches start with the
smallest base element cell. Due to cell-level text area annotation, it is easier to complete
text detection tasks by using commonly used detection methods such as Yolo [31] and
Faster RCNN [27]. Then, the relationships between cells are reconstructed through
heuristic-based rules or algorithms. If the detected box is regarded as a node in the graph,
and the relationship between the boxes is an edge, then the table structure can be predicted
using the technology of the graph network. The relationship among three types of nodes
(horizontal connection, vertical connection and connectionless) is predicted by using
visual features, text location, word embedding and other features in. [9] augmenting the
ability of graph networks with a graph attention mechanism improves the performance
of the model. Since empty cells cannot be detected, local object-based methods are often
ambiguous in the face of empty cells.

2.3 Transformation Learning Networks

The Spatial transformer networks (STN) [32] module performs a global affine transfor-
mation on the entire feature map, which is not flexible enough to adapt to local deforma-
tions. Inspired by the Instance Transformation Network (ITN) [34], through deformable
convolutional networks [33], the transformations are embedded into the convolutional
layers to generate geometry-aware representations. The STN module adopts an unsu-
pervised end-to-end learning method, and the ITNmodule performs supervised learning
for each instance.

3 Proposal Method

The difficulty of distortion table structure recognition lies in its rapidly changing geom-
etry, including scale, direction, curve, and aspect ratio. The canonical representation
learned in the standard CNN model does not encode the unique geometric distribution
of table cells well. Therefore, in this study, we propose a transformation network to
learn geometric aware representations detected for table elements with distortions. In
this section, we will describe our approach in detail. Specifically, we first introduce the
framework of GA-CenterNet, then introduce geometric aware representation.

Based on Cycle-CenterNet, the network proposed by us detects the center of the
cell and the intersection points of the cell based on key point detection. Meanwhile,
two branches are used for regression from the center of the cell to the intersection point
of the cell and regression from the intersection point of the cell to the center of the
cell respectively. On this basis, we utilize geometric representation network to explicitly
aware the spatial distortion.All cells can be spliced together by commonvertices between
adjacent cells to get a complete table structure (Fig. 1).
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Fig. 1. Based on Cycle-CenterNet, themodel consists of three parts: (1) The first part is the shared
bottom which is a feature extraction backbone network, specifically using DLANet-34. (2) The
second part contains three branches, from top to bottom, the coordinate regression of the center to
the vertex, the coordinate regression of the vertex to the center, and the classification of the center
points and the key points.

3.1 Framework

The model consists of three parts: a backbone composed of convolutions, which is used
to extract features from images and fully fuse features of different scales; a geometry-
aware transformation network that generates geometry -aware representations; three
parallel downstream tasks. Specifically, the backbone is DLA-34. Then the geometric
aware representation is generated by embedding module of transformation network. In
this module, the parameter θ of affine transformation is generated by mapping feature
map M with stacked 3 × 3 convolution layers.

Then GA-CenterNet performs multi-task learning, parallel three branches: classi-
fying the center of the cells and the vertex of the cells, coordinate regression from the
center of the cells to the vertex of the cells and coordinate regression from the vertex
of the cells to the center of the cells. Taking a pixel position as an example, the geo-
metric aware representation is used for classification, and coordinate regression. The
sampling boundary of conventional convolution is a bounding box with a fixed shape
(such as a 7 × 7 square). Inspired by STN network, the geometry-aware transformation
network performs affine transformation on the bounding box of the fixed shape. The
transformed boundary should cover the target to be detected as much as possible. So it
can be considered as a rough estimate of detection. The model is trained in supervised
strategy and has three outputs at each pixel location:(a) the prediction probability that
the current position is key point; (b) vertex to center coordinate regression; (c) center to
vertex coordinate regression.
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3.2 Geometry-Aware Representation

Given an input feature map M generated by a convolutional backbone, we want to
generate geometry-aware representations V for downstream tasks. Each pixel position
in V is obtained by convolving the input feature mapM with the convolution kernelW.
The standard form of the convolution operation is defined as:

vxy =
k∑

p=−k

k∑

q=−k

w(p, q)M (x + p, y + q) (1)

Each feature position vxy after standard convolution is obtained by sampling the fixed
shape of the feature map of the previous layer and convolution with the kernel. For all
position, the shape of the receptive field is the same. When the ratio of target object is
extreme or there is geometric distortion such as tilt, the features map learned by using
this square receptive field strategy are difficult to be complete and clear.

To solve this problem, inspiredbySTN,weattempt to generate geometry aware repre-
sentations of the input image by transforming guided feature sampling. For the selection
of a particular transformation, we use affine transformation. We observe that in the real
world most of the table distortion in the image is subject to projection transformation.

The projective transformation matrix consists of affine matrix and projection vector.
Learning projective transformations directly in the network is difficult, and the trans-
formation network is very parameter-sensitive and not differentiable. Similar to ITN,
we choose to use affine transformations to encode geometric distortions, making the
network geometry aware.

We estimate the affine transformation Tθxy of parameterized θxy at pixel positions
(x, y) in V and embed it in the feature sampling stage to adaptively match the current
receive field to the surrounding key points region. In particular, if the current location
is not part of the key points region, we don’t care about the transformation. Transform
embedding is achieved by pixel-to-pixel alignment and by twisting the regular sampling
boundary into an adaptive sampling boundary guided by Tθxy :

vxy =
k∑

p=−k

k∑

q=−k

w(p, q)M (Gθxy (x + p, y + q)) (2)

where Gθxy = (
x̂, ŷ

)
, and

(
x̂
ŷ

)
= Aθ

⎛

⎝
x
y
1

⎞

⎠ =
[

θ1 θ2 θ3

θ4 θ5 θ6

]⎛

⎝
x
y
1

⎞

⎠ (3)

where Aθ is a 2D affine transformation matrix parameterized by a 6D vector.

3.3 Loss Function

The overall training loss is:

L = Lk + λoff Loff + Lp + Lt
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where Lk and Loff are consistent with keypoint branch and offset branch in CenterNet,
Lp is dynamic cycle paring loss in Cycle-CenterNet and Lt is transformation loss defined
as: Lt

(
θi, θ

∗
i

) = smooth_l1
(
θi, θ

∗
i

)
.

4 Experiments

4.1 Datasets

The WTW dataset is large-scale real world table dataset containing a large number of
table images with geometric distortions. We conduct experiments on the WTW dataset
to verify the effectiveness of the model.

4.2 Evaluation Metric

Reasonable evaluation metric is very important for quantitative comparison of different
evaluation methods. The evaluation of table structure recognition consists of two parts,
the correctness of the physical structure and the correctness of the logical structure.
Specifically, the metrics on the physical structure are precision, recall and F1 score.
Different from general object detection, table structure recognition requires higher pre-
cision and lower tolerance for table cells. Therefore, cells that detect an IOU below
0.9 are considered a false positive sample. For the correctness of logical structure,
we follow the evaluation protocol used in the document image, and make use of the
tree-editor-Distance-based Similarity (TEDS).

Table 1. Results on WTW dataset.

Model Backbone Prec. Rec. F1 TEDS

Split + Heuristic – 3.2 3.6 3.4 26.0

CenterNet DLA-34 74.2 72.1 73.1 58.7

CascadeTabNet CascadeNet – – – 11.4

Cycle-Centernet DLA-34 78.0 78.5 78.3 83.3

GA-CenterNet DLA-34 78.2 78.3 78.3 83.5

4.3 Evaluation Result

Table 1 shows the performance of existing models on the WTW real-world image in
wild dataset. It can be seen that the Split+Heuristic method and the CascadeTabNet
method, which perform well in processing undistorted tables, do not perform well in
processing real wild world datasets. The reason is these models do not have the ability
to process document images with distortion and geometric deformation. Our model
outperforms Cycle-CenterNet by 0.2% on the logical structure metric TEDS, and by
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0.2% in precision. Compared to Cycle-CenterNet, our model is close in F1, but has a
small drop in recall.

Table 2 compares the performance of the models on each sub-category of distortion
in detail. Existing models performwell on simple document images and are adequate for
real-world images, but the performance still needs to be improved on sub-categories with
distortion. Our model has different degrees of improvement in Curved, Occluded and
Blurred, Extreme aspect ratio categories, close in Inclined category, and slight decline
in Overlaid and Muti color and grid categories (Fig. 2).

Fig. 2. Results of model on WTW dataset.

Table 2. TEDS Results on distort categories of WTW dataset.

Model Inclined Curved Occluded
and blurred

Extreme
aspect ratio

Overlaid Muti
color and
grid

Cycle-Centernet 90.6 70 53.3 77.4 51.2 66.7

GA-CenterNet 90.6 70.3 53.9 77.8 50.8 66.6

5 Conclusion

In this paper, we propose a new model called GA-CenterNet, for the distortion problem
of real-world wild images. The model perceives the distortion through the geometry-
aware module, and predicts the coordinate in a geometry-aware manner in the face of
instances with distortion and deformation. Comprehensive experiments show that the
proposed method has improved performance in images with distortion.
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Abstract. Aiming at the problem that the differential evolution algorithm easily
falls into a local optimum and results in premature convergence, a new differ-
ential evolution algorithm with an adaptive population size reduction strategy
(APRDE) is proposed. Firstly, in the mutation and crossover operation, to bal-
ance the local exploitation and global exploration capabilities of the algorithm, a
parameter adaptive tunning scheme based on the hyperbolic tangent function and
Cauchy distribution is proposed to adaptively adjust the parameter factors. Sec-
ondly, an ordered mutation strategy is adopted to guide the direction of mutating
and enrich the diversity of the population. Lastly, after each evolution iteration,
adaptively reducing the population size according to the error between the fitness
values of individuals and the current optimal. The proposed algorithm is compared
with 5 other optimization algorithms on 8 typical benchmark functions. The results
show that the algorithm has a great improvement in solution accuracy, stability
and convergence speed.

Keywords: Adaptive differential evolution algorithm · Parameters tunning
scheme · Ordered mutation strategy · Population size reduction strategy

1 Introduction

Coal has always been the main energy source in China, and accounts for more than
60% of consumption, it will remain be the main energy source in China until 2050.
Coal intelligent mining is a new stage in the development of coal comprehensive mining
technology, which is also an inevitable requirement for the technological revolution and
upgrading development of coal industry [1]. Three-dimensional modeling of coal seams
at the fully mechanized mining face is an important foundation for coal enterprises to
realize “intelligent management and transparent mining”.

Researchers often use kriging interpolation to interpolate unknown regions in space
to build 3D models. For the problem that kriging interpolation is prone to overfitting
or underfitting in the fitting process of variogram, this paper proposes a Differential
Evolution algorithm with Adaptive Population size Reduction (APRDE) to optimize
the kriging interpolation algorithm. After experimental verification, the adaptive differ-
ential evolution algorithm proposed in this paper has higher solution accuracy, faster
convergence speed and better stability.
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2 The APRDE Algorithm

The Differential Evolution (DE) algorithm [2] is an effective heuristic search algo-
rithm that can be used to solve parameter optimization problems. This paper optimizes
the DE algorithm by modifying the variation strategy, parameter adaptive adjustment
mechanism, and population reduction strategy.

2.1 Variation Strategy

The mutation process and the crossover process are the core parts of the differential
evolution algorithm, and the mutation formula is:

vi = xi + F
(
xj − xr

)
(1)

where vi is the individual after mutation, xi, xj, xr are the random individuals in the
current population and i �= j �= r, In the process of mutation, in order to enrich the
diversity of the population and improve the local exploitation ability of the algorithm,
this paper adopts an ordered mutation strategy [3], and the mutation equation is:

vi = xi + F(xbest − xi) + F(xmiddle − xworst) (2)

Three randomly selected individuals from the current population are sorted according
to the fitness value to obtain xbest, xmiddle, xworst . With the current vector as the base
vector, avoiding the algorithm from falling into a local optimal solution or stagnation.
Combining the base vector and two ordered difference vectors, enriching the diversity
of the population, and making the direction of variation gradually approach the optimal
solution.

2.2 Parameter Adaptive Adjustment

In the variation process, the variation factor F controls the magnitude of the base vector
change. Tobalance the global exploration and local exploitation abilities of the algorithm,
the hyperbolic tangent curve between [−4,4] [4] is used in this paper to control the
variation of the mutation factor with the following variation equation.

F = Fmax+Fmin
2 + tanh

(
−4+8Gmax−G

Gmax

)
(Fmax−Fmin)

2
(3)

where Fmin is the minimum value and Fmax is the maximum value of the variation
factor. Gmax is the maximum evolutionary generation and G is the current evolution-
ary generation. The hyperbolic tangent curve changes very little at the beginning and
the end. The variation factor varies approximately linearly between the maximum and
minimum values, striking a balance between global exploration and local exploitation
ability. Besides, a variation factor based on normal distribution is used in this paper to
enhance the diversity of the variation vector and jump out of the local optimal solution.
The variation process of the variation factor is as follows:

F =
{
randn(0.5, 0.1),

∣∣xbest,g − xbest,g+1
∣∣ < 10−8

equation(7), otherwises
(4)



A Differential Evolution Algorithm 183

The crossover process of the differential evolution algorithm is as follows:

ui,j =
{
vi,j, rand(0, 1) < CR or j = rand(1,D)
xi,j, otherwises

(5)

The crossover process is to operate on each variable in an individual, and D denotes
the number of variables. The variables in the mutated individual are crossed with those
in the initial individual by setting the conditions to obtain the crossover individual. To
accommodate the crossover process, this paper changes the crossover factor in a linearly
reduced manner with the evolutionary process, and the change equation is:

CR = CRmax − G(CRmax − CRmin)

Gm
(6)

where the change range of the crossover factor is [CRmin, CRmax]. The adaptive differ-
ential evolution algorithm proposed in this paper adaptively changes the variance and
crossover factors in evolutionary process, and balances the global exploration and local
exploitation ability to some extent in the algorithm search process.

2.3 Population Reduction Strategy

Reduction of populations during evolution process of differential evolution algorithm
can effectively capture useful individual information, reduce unnecessary computational
resources, and improve convergence speed. This paper proposes a nonlinear population
reduction strategy to control the reduction of population size according to the hyperbolic
tangent function curve between [−2.5,4]. Through a predetermined maximum evolu-
tionary generation Gmax, the reduction function changes with the current evolutionary
generation as the independent variable. The reduction equation is as follows:

F = NPmax+NPmin
2 + tanh

(
−2.5+4·Gmax−G

Gmax

)
(NPmax−NPmin)

2
(7)

In the early stage of evolution, the size of population is large, and to ensure the
diversity of population and to improve the global search ability of the algorithm. As
the evolutionary process proceeds, the solved optimal individuals are closer and closer
to the optimal solution. To save computational resources and improve the convergence
speed, some individuals far from the optimal solution are removed. In the later stage of
the evolutionary process, the population iterates around the optimal solution. To improve
the local search ability, the population size is maintained at the small value and local
search is performed carefully to ensure that the optimal solution in that range is found.

3 Numerical Experiment and Analysis

The experiments in this paper use a 64-bit Windows 10 operating system. The processor
is an Intel(R) Core (TM) i5-5200UCPU@2.20GHzwith an Intel(R)HDGraphics 5500
GPU. Python 3.5.2 is selected as the experimental code language, and the experiment is
run in PyCharm software to complete the experimental process.
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3.1 Experiments Setup

In this paper, we choose five comparison algorithms, namely DE [2], LSHADE (Linear
Success-History based Adaptive DE) [5], AGDE (Adaptive Guided Differential Evo-
lution) [6], AMODE (a DE algorithm based on Adaptive Mutation Operator) [7] and
ASVDE (modified DE algorithm based Adaptive Secondary Variation) [8]. The com-
parative analysis of the algorithms is performed on eight typical benchmark functions
in CEC2014 [9], which are unimodal f 1, f 2, simple multimodal f 6, f 12, hybrid f 17, f 22,
and composite functions f 24, f 27, as shown in Table 1. D is the dimensionality of the
problem. The search space of these benchmark functions is [-100,100], with more local
optima and function values greater than 0. Therefore, the fitness function is defined as f
= f (x)−f (x*). f (x) is the function value calculated by the algorithm, f (x*) is the known
optimal value of the function. The closer the f is to zero, the closer the function value
calculated by the algorithm is to the global optimum. The parameter variables set for the
comparison experiments are shown in Table 2.

Table 1. Some benchmark functions of CEC2014

f No. Functions F∗
i = Fi(x

∗)
f1 1 Rotated High Conditioned Elliptic Function 100

f2 2 Rotated Bent Cigar Function 200

f3 6 Shifted and Rotated Weierstrass Function 600

f4 12 Shifted and Rotated Katsuura Function 1200

f5 17 Hybrid Function 1 (N = 3) 1700

f6 22 Hybrid Function 6 (N = 5) 2200

f7 24 Composition Function 2 (N = 3) 2400

f8 27 Composition Function 5 (N = 5) 2700

3.2 Comparison of Solution Accuracy and Stability

With the variable settings and experiments conducted in Table 2, the six comparison
algorithms were run 21 times on the benchmark functions in the dimensions of D = 30.,
the average (avg) and standard deviation (std) of fitness function values were calculated
and recorded in Tables 3, with the optimal values bolded in the table.

As shown in Table 3, the mean values solved by the APRDE algorithm on eight
functions are 5.51E+02, 0.00E-00, 2.65E-01, 6.00E-01, 2.24E+02, 2.84E+01, 2.22E+02
and 3.20E+02, which are closer to the optimal solution than the mean values solved by
other algorithms. The results obtained by the APRDE algorithm are closer to the optimal
solutions compared with other algorithms, and also have better performance for solving
high-dimensional optimization problems. The APRDE algorithm solves to the closest
global optimal solution on 88% of the functions. The standard deviation range obtained
by APRDE is 0.00E+00 to 3.85E+05, which has the smallest value compared with other
algorithms, so the algorithm has the best stability.
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Table 2. Parameter settings of comparison algorithms

DE APRDE AGDE LSHADE AMODE ASVDE

Gmax = D ∗ 100
NP = 100

F = 0.75 Fmax = 0.9 F =
randn(0.1, 1)

F = 0.75 F = 0.75 Fmax = 0.9

CR = 0.7 Fmin = 0.2 Fmax = 0.2 CR = 0.7 CR = 0.7 Fmax = 0.2

CRmax = 0.9 CR2 =
[0.9, 1.00]

p = 0.1 C =
[0.05, 0.95]

Mr = 0.99

CRmin = 0.2 H = 5 Max_count =
5

NPmin = 50 MF = MCR =
0.5NPmin = 10

CR = 0.7

Table 3. Results of comparison algorithms on benchmark functions for D = 30

Function Criterion DE AGDE LSHADE AMODE ASVDE APRDE

f1 avg 5.46E + 07 1.97E+04 1.43E+04 2.91E+05 1.11E+06 5.51E+02

std 1.57E+07 3.91E+03 3.45E+03 1.03E+05 1.05E+06 3.91E+02

f2 avg 2.73E+07 9.86E+03 7.15E+03 1.46E+05 5.53E+05 0.00E+00

std 2.95E+07 1.02E+04 7.55E+03 1.63E+05 9.27E+05 0.00E+00

f3 avg 1.82E+07 6.57E+03 4.77E+03 9.70E+04 3.69E+05 2.65E-01

std 2.73E+07 9.57E+03 7.03E+03 1.49E+05 8.00E+05 5.29E-01

f4 avg 1.36E+07 4.93E+03 3.58E+03 7.28E+04 2.77E+05 6.00E-01

std 2.49E+07 8.76E+03 6.43E+03 1.36E+05 7.11E+05 8.26E-02

f5 avg 1.10E+07 4.03E+03 3.11E+03 6.11E+04 2.22E+05 2.24E+02

std 2.29E+07 8.04E+03 5.82E+03 1.24E+05 6.46E+05 1.44E+02

f6 avg 9.16E+06 3.37E+03 2.61E+03 5.10E+04 1.85E+05 2.84E+01

std 2.13E+07 7.49E+03 5.43E+03 1.15E+05 5.95E+05 6.82E+00

f7 avg 7.86E+06 2.92E+03 2.27E+03 4.37E+04 1.58E+05 2.22E+02

std 2.00E+07 7.02E+03 5.10E+03 1.08E+05 5.55E+05 2.65E-01

f8 avg 6.87E+06 2.60E+03 2.03E+03 3.83E+04 1.39E+05 3.20E+02

std 1.89E+07 6.62E+03 4.81E+03 1.02E+05 5.22E+05 4.02E+01

3.3 Comparison of Convergence Speed

When D = 10, the convergence curves of the six compared algorithms on each function
are shown in Fig. 1. From Figs. 1-a and 1-b, all algorithms show a single decreasing
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trend in the process of solving for unimodal functions, and the solution results are near
the optimal solution. Compared with other algorithms, the APRDE algorithm converges
the fastest, finds the global optimal solution first, and has the highest solution accuracy.
In the simple multimodal functions f 3 and f 4, the fitness function values solved by

(c) 3f (d) 4f

(e) 5f (f) 6f

(e) 7f (f) 8f

(a) 1f (b) 2f

Fig. 1. The convergent curve of comparison algorithms on eight benchmark functions.
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APRDE algorithm keep decreasing in the iterative process, the algorithm converges
faster and first finds the global optimal solution first in the f 3 function, and in the
f 4 function, the solved optimal is closer to the global optimal solution. Among the
above four functions, compared with the ASVDE, LSHADE and AGDE algorithms, the
APRDE algorithm not only finds the global optimal solution, but also converges faster
and more efficiently. In the hybrid and composite functions f 5 ~ f 8, the functions have
multiple local optimal solutions and larger local optimal values. The comparison results
shows that the convergence curve of the APRDE algorithm is decreasing and the solved
results are smaller and closer to the global optimal solution.

4 Conclusion

In the process of solving optimization problems, the differential evolution algorithm
tends to converge prematurely and falls into a local optimal solution or stagnation state.
In this paper, we propose a Differential Evolution Algorithm with Adaptive Population
size Reduction (APRDE) strategy to remedy the shortcomings of traditional differential
evolution algorithm. The APRDE algorithm proposes a parameter adaptive adjustment
mechanism to balance the global exploration and local exploitation ability in the search
process and adopts an ordered variation strategy to enrich the diversity of the popu-
lation and improve the convergence speed and solution accuracy of the algorithm. In
the evolutionary process, a nonlinear population reduction strategy is proposed to save
computational cost and improve the quality of computational results at the same time.
Compared with the other five optimization algorithms, the APRDE algorithm proposed
in this paper has a fast convergence speed, the optimal solution is obtained in 88% of
the tested functions, and the stability of the algorithm is relatively high.
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Abstract. Aiming at the problem that that pixel-level annotations of remote sens-
ing images are difficult to obtain, a semi-supervised road segmentation method for
remote sensing images is proposed. Firstly, an unsupervised network is designed
to generate pseudo-labels of road images. In this module, a super-pixel segmen-
tation method is used to pre-segment roads in remote sensing images, and then a
lightweight convolutional neural network is used to extract road feature informa-
tion, and to optimize the super-pixel segmentation result to generate the pseudo-
label images. Secondly, the loss function of SegFomer is improved to solve the
problem that, the difference between the number of front and rear pixels in the
remote sensing road image is difficult to accurately segment. Finally, the pseudo-
label image and the original image are combined and input to the improved Seg-
Former network for training. The experiment results show that, the segmentation
effect of the proposed method is better than PSPNet, HRNet and other methods.

Keywords: Remote sensing image · Super pixel · Semi-supervised · SegFormer

1 Introduction

Remote sensing image is a synthesis of ground features. In order to identify and analyze
the target, it is necessary to separate and extract the relevant area, and on this basis,
the target can be further utilized, such as measurement and positioning. Remote sensing
image segmentation refers to the technology and process of dividing the image into
regions with different characteristics and extracting the target of interest. The charac-
teristics here refer to the characteristics of remote sensing images, which can be targets
such as grayscale, color, texture, etc., which can correspond to a single area or mul-
tiple areas. There is no general theory of remote sensing image segmentation so far.
With the introduction of various disciplines and many new theories and methods, many
image segmentation techniques combined with some specific theories and methods have
emerged.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
S. Yang and H. Lu (Eds.): ISAIR 2022, CCIS 1701, pp. 189–201, 2022.
https://doi.org/10.1007/978-981-19-7943-9_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-7943-9_16&domain=pdf
https://doi.org/10.1007/978-981-19-7943-9_16


190 T. Ma et al.

Due to the rapid development of remote sensing technology, the resolution of remote
sensing images has been continuously improved, and the interference of noise on images
has also increased. How to automatically extract high-precision road information from
remote sensing images has become a hot and difficult research topic in recent years.
At present, the remote sensing image segmentation method based on Convolutional
Neural Network (CNN) is particularly outstanding. Compared with the traditional semi-
automatic extraction method, this method can effectively suppress the noise generated
in the process of road information extraction and reduce road detail information. Lost,
which greatly improves the extraction effect. However, there are the following difficulties
in automatically extracting road information from remote sensing images:

(1) The input image has a high resolution and a large amount of data, which requires
a large enough receptive field;

(2) The roads in remote sensing images are slender and complex, and account for a
small proportion of the entire image;

(3) The road has natural connectivity, that is, it has the topological characteristics of
the image [1].

In recent years, a variety of methods have been proposed at home and abroad for the
problem of how to automatically extract road information from high-resolution remote
sensing images. The more common traditional remote sensing image road information
extraction methods include pixel-based [2, 3], object-based [4, 5, 22], knowledge-based
[6, 23] and machine learning-based methods. Das et al. [7] proposed to utilize the salient
contrasting features of the spectrum and local linear trajectories to design a multi-level
framework, while incorporating a probabilistic support vector machine to supplement
the missing road information to obtain potential road targets. Chen [8, 24] et al. extracted
the information of greenhouse cover in remote sensing images by fusing spectral features
and texture features, and used confusion matrix to verify the classification results, which
improved the recognition accuracy of greenhouse cover. With the rapid development of
deep learning, Long et al. [9, 25] proposed a Fully Convolutional Network (FCN), which
uses the skip connection structure to fuse the representation information of shallow and
high layers to obtain accurate and fine segmentation results. Zhang et al. [10] combined
residual learning and U-Net network structure to construct an algorithm for road region
extraction, simplifying the training of deep networks through residual units, and the
rich skip connections in the network can promote the dissemination of information,
gradually recover road detail features in the image. Chen et al. [11] proposed the Atrous
Spatial Pyramid Pooling (ASPP) module in the Deeplab series by combining multi-
scale information and Dilated Convolution, which combined dilated convolutions with
different dilation rates for feature fusion., which ensures that the feature receptive field
is enlarged without sacrificing the feature spatial resolution.
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Inspired by the self-encoder, Chaurasia et al. [12] proposed the LinkNet network
structure, which improves the accuracy of road segmentation by directly connecting the
encoder and the decoder, while retaining the encoded part information without adding
additional parameters, learning efficiency. Since the feature resolution of the ASPP
module is not dense enough on the scale axis and the acquired receptive field is not
sufficient, Yang et al. [13] combined the dense connections in the Deeplab series of
ASPP and DenseNet [14] to form Dense-ASPP. In order to better focus on key regions
and suppress useless features, the PSANet proposed byZhao et al. [15] obtains contextual
information by learning self-attention feature maps at all locations, but introduces too
many parameters and consumes a lot of memory. Fu et al. [16] proposed a Stacked
Deconvolutional Network (SDN), which aims to capture more contextual information
and gradually recover high-resolution predictions using progressively stacked networks.

However, deep learning is a data-driven technology. Manually labeling remote sens-
ing images at the pixel level is expensive and difficult to obtain. Current existing semi-
supervised learningmethods train multiple networks to generate pseudo-labeled images,
which is undoubtedly a heavy workload. In this paper, an unsupervised module is pro-
posed for generating pseudo-labels of roads in remote sensing images and trained in an
optimized SegFormer network.

2 Our Method

2.1 Training Strategy

At present, the mainstream semi-supervised remote sensing image road segmentation
methods mainly use a pre-trained segmentation network to segment unlabeled images to
obtain pseudo-labels, and then input the pseudo-labels into the semantic segmentation
network for training, so as to obtain a good segmentation network. But such a method is
very cumbersome, we have to train two networks or even more, and traditional methods
are difficult to pre-segment complex images and generate pseudo-labels.

Our proposed method is divided into two stages for road segmentation, As shown
in Fig. 1, the remote sensing image first generates pseudo-labels through a lightweight
unsupervised module, and the pseudo-labels and the manually labeled pixel-level labels
are input into the semantic segmentation network for training, so as to obtain the
segmentation results. After boundary zing, the final pseudo-labels are obtained.
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Fig. 1. General training strategy

2.2 Unsupervised Module Design

In this paper, an unsupervised method is used to generate pseudo-labeled images of
remote sensing roads, which pre-segment remote sensing images through super pixel
segmentation inmachine learning algorithms to obtain preliminary segmentation results,
and extract the features of remote sensing images through lightweight convolutional
networks. The fine-grained pre-classification results of machine learning segmentation
are processed. And in the iteration, the small blocks are gradually merged, and finally
the expected semantic segmentation results are obtained, as shown in Fig. 2.
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Fig. 2. Unsupervised Module Framework

3 Super Pixel Segmentation

Super pixel segmentation plays the role of pre-segmentation in the unsupervised mod-
ule, and its segmentation effect determines the quality of pseudo-labels, so the selec-
tion of super pixel segmentation method is particularly important. In this paper, the
Felzenszwalb [18] algorithm is selected as the super pixel segmentation algorithm.

The segmentation algorithm adopts a graph-based method, and the main steps are as
follows:

(1) Calculate the dissimilarity between each pixel and its 8 neighbors
(2) Arrange the edges according to the dissimilarity from small to large to obtain

e1, e2, e3 . . . en.
(3) Select en to perform a merge judgment on the currently selected edge. Let its

connected vertices be
(
vi, vj

)
, if the merging conditions are met;

• vi, vj belong to two different regions Id(vi) �= Id
(
vj

)
;

• wij ≤ Mint
(
Ci,Cj

)
, execute 4, otherwise execute 5;

(4) Update threshold and class number;

• Update the class label, Id(vi), Id
(
vj

)
are unified as Id(vi);
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• The dissimilarity threshold wij,of the new class, the calculation formula:

wi,j = K

|Ci| + ∣
∣Cj

∣
∣ (1)

(5) If n ≤ N , select the next edge in order, go to 4;

As can be seen from Fig. 3, the algorithm predicts the boundaries of the road well.

Fig. 3. Super pixel segmentation results

Feature extraction module
In this paper, a lightweight fully convolutional neural network is constructed to extract
remote sensing image features. The module structure is shown in Fig. 2, mainly consists
of using 3x3 alternating with 1x1, loss function, batch normalization. This lightweight
structure enables the network to effectively extract features in a faster time, and cal-
culate the cross-entropy loss function through the extracted features and the pre-
segmentation result obtained by super pixel segmentation to optimize the result of road
pre-segmentation, so as to obtain high-quality pseudo-labels. The cross-entropy loss
function is shown in formula (2):

L = −
M∑

c=1

yclog(pc) (2)

Among them, M represents the number of categories, yc is a one-hot vector, and
the element has only two values, 0 and 1. If the category and the sample category are
the same, it is 1, otherwise it is 0, and pc represents the probability that the predicted
sample belongs to c. Here, M is set to 2 to represent the background and foreground
roads, respectively.

3.1 SegFormer Network Structure

The segmentation network is trained by combining the pseudo-labeled images obtained
by the unsupervised module with the hand-labeled images.
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Fig. 4. The network structure of SegFormer, mainly the encoder-decoder structure

The Transformer module [20] inside the encoder MiT adopts the Overlap Patch
Embeddings (OPE) structure to extract and downsample the input image, and then
input the obtained features into the Efficient Multihead Self-Attention (Efficient Multi-
head Self-Attention). Attention, EMSA) layer and Mix Feed Forward (Mix-FFN) layer.
Overlapping patch embeddings are computed using standard convolutional layers. After
spatially flattening 2D features into 1D features, they are input to the EMSA layer for
self-attention computation and feature enhancement. In order to replace the position
encoding in the ordinary Transformer, a 3 × 3 convolutional layer is added between the
two linear transformation layers of the ordinary feedforward layer to fuse the spatial
position information (Table 1).

Table 1. Main parameters of MiT-B1

Embed dims 64

Num layers [2,2,2,2]

Num heads [1,2,5,8]

Mlp ratio [7,3,3,3]

Sr ratios [8,4,2,1]

Transformer Block employs multiple stacked EMSA and Mix-FFN to deepen the
network depth to extract rich details and semantic features. Self-attention is calculated
in EMSA at each scale. Compared with other previous networks based on convolutional
neural networks that integrate information on all scales and then perform self-attention
calculation, the self-attention at each scale purer.

According to the parameters of Fig. 1, embed dims is the encoding length of each
feature point, Num layers represent the value of N in the Transformer Block in the first
to fourth stages in Fig. 4, that is, the number of times to repeat EMA and Mix-FFN, and
Num heads are the first to fourth stages, respectively. In the fourth stage, the number
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of heads in EMSA, multiplied by Embed dims, is the number of channels of output
features in each stage, which are 64, 128, 320, and 512, respectively. Patch sizes are the
convolution kernel sizes of the convolutional layers in each stage of OPE, and Strides
is the OPE sampling step size. Sr ratios respectively represent the reduction multiples
of K and V input in each stage. The multiplication of MLP ratio and Embed dims is the
increased channel dimension in Mix-FNN, which is 256 in all four stages. The decoder
of SegFormer is a feature map whose height and width output from the four stages of the
encoder are 1/4, 1/8, 1/16, and 1/32 of the original image, and the input convolution kernel
is a 1× 1 volume. The product module uniformly adjusts the number of channels to 256,
and adjusts the height and width of the feature map to 1/4 the size of the input image
through bilinear interpolation upsampling, and then connects into a 1024-channel feature
map. Semantic segmentation images are predicted by two convolution modules with 1
× 1 convolution kernels. The convolution module consists of standard convolutional
layers, BN and ReLU. The characteristics of remote sensing road images are that the
categories are unbalanced, and the pixels occupied by the background are much larger
than those of the road. In view of this situation, the SegFormer loss function is designed
as Dice Loss and Focal Loss, and its calculation formula is as follows:

DiceLoss = 1 − 2|A ∩ B|
|A| + |B| (3)

In formula (3), Dice Loss is the degree of coincidence between the output result and
the real label, A represents the output result; B represents the real label;

FocalLoss = − 1

N

N∑

i=1

[
αyi

(
1 − y

′
i

)γ

logy
′
i + (1 − α)(1 − yi)

(
y

′
i

)γ

log
(
1 − y

′
i

)]
(4)

Loss = Diceloss + FoCalLoss (5)

In formula (4): yi represents the real sample label of pixel i, y
′
i represents the predic-

tion result of pixel i by the network, N represents the number of pixels, and γ represents
the rate at which the sample weight decreases. In this paper, γ and α are respectively
Take the value α = 0.1, γ = 2. As shown in Eq. (5), the loss function is designed as the
sum of the two.

4 Experiment

4.1 Datasets

This experiment uses the Massachusetts road data [21], which contains high-resolution
images and corresponding real road labels, covering complex features such as cities and
suburbs. We uniformly crop the dataset images to a size of 640*640 pixels, and collect
a total of 700 images as the original training set. An example dataset is shown in Fig. 5.
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Fig. 5. Sample dataset

4.2 Experimental Setup

In order to verify the advantages of the method in this paper, three evaluation indicators,
mIoU,MAP (accuracy) and F1-score, are used for comparative analysis, and the number
of training rounds is 300 epochs. The experimental device runs on 3090Ti with 24G of
memory.

Figure 6 shows the situation of the training process. Compared with SegFormer, our
method has a faster convergence speed, and the loss function and mIoU are also better
than SegFormer.

Fig. 6. The method in this paper is compared with the training process of segformer

4.3 Unsupervised Module Experiment

After many experiments, setting the number of iterations of the unsupervised module to
128 can get better segmentation results. Experiments show that under the 3090Ti device,
the average time-consuming of images with different pixels is shown in Table 2.

The image of this experimental dataset is 640*640 pixels in size, and it only takes
5.69s on average to get a pseudo-label.

Figure 7 shows the segmentation results of the unsupervised module under different
iteration times. It can be seen that the designed unsupervised module has a good effect
on road segmentation.
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Table 2. Time-consuming generation of pseudo-labels by unsupervised modules

Image size (iteration 128) Time(s)

512*512 4.71

640*640 5.69

1024*1024 8.41

Fig. 7. Segmentation results of unsupervised modules with different iterations

4.4 Comparative Test

First, we mix the pseudo-labeled images generated by the unsupervised module with
the labeled images 1:20 to obtain 735 training sets, which are input to the improved
SegFormer network for training. To verify the effectiveness of our method, our method
is compared with the remaining four methods.

Table 3. Comparison of evaluation indicators of different algorithms

Method MIoU MAP F1_score

PSPNet 51.44 52.64 54.1

HRNet 74.86 79.94 83.8

DeepLabv3+ 78.61 85.30 85.0

SegFormer 81.16 86.52 98.04

Ours 81.73 88.02 99.05

It can be seen from Table 3 that the evaluation indicators of PSPNet are the lowest,
which are 51.44, 52.64, and 0.541, respectively. Ourmethod achieves the best indicators,
which are 81.73, 88.02, and 99.05, respectively. Compared with SegFormer, our method
has mIoU, MAP, The F1_score is increased by 0.57%, 1.5%, and 1.01%, respectively,
indicating that our method can achieve better segmentation results when there is a large
gap between front and back pixels.

Figure 8 shows the visualization of the segmentation results. It can be seen that
the segmentation effect of PSPNet is the worst, and it is almost difficult to segment
road images. Among the three convolutional neural networks, DeepLabv3+ has the best
segmentation effect, but there is over-segmentation and under-divided; The segmentation
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Fig. 8. Visualization of segmentation results under different algorithms

results of SegFormer are better than those of these three convolutional neural networks,
but there are still cases of over-segmentation and under-segmentation, as marked in the
red box in the figure, and our method is the best.

5 Conclusion

This paper designs a semi-supervised method for segmentation of remote sensing road
images. In order to solve the problem that the pixel-level labels of remote sensing road
images are difficult to obtain, a semi-supervised module is proposed to efficiently gener-
ate pseudo-labels of road images; it is used for the training of segmentation network; In
remote sensing images, there is a large gap between foreground and background pixels.
In this paper, a loss function that combines Dice Loss and Focal Loss is designed to
optimize SegFormer. Compared with mainstream segmentation networks, our method
has achieved advanced results. However, in terms of model performance, how to further
design an efficient end-to-end semi-supervised segmentation model for remote sensing
road images is a problem worthy of study.
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Abstract. Recent target detection networks adopt the attention mechanism for
better feature abstraction. However, most of them draw feature attentions from
merely one or two layers, failing to obtain consistent results for objects with dif-
ferent scales. In this paper, we propose a cross-layer feature attention module
(CFAM) which can be plugged in any off-the-shelf architecture, and demonstrate
that attentions obtained from multiple layers can further improve object detec-
tion. The proposed module consists of two components for cross-layer feature
fusion and feature refinement, respectively. The former collects rich contextual
cues by fusing the features from distinct layers, while the later calculates the
cross-layer attention maps and applies them with the fused features. Experiments
show the proposed module improves the detection rate by 2% against the baseline
architecture, and outperforms recent state-of-the-art methods on the Pascal VOC
benchmark.

Keywords: Attention · Feature fusion · Object detection

1 Introduction

Numerous works explore multi-scale object detection via advanced feature learning
technologies [1–3], among which multi-level future fusion and refinement are most
widely used [4–6]. For example, recent convolutional neural networks (CNNs) composite
feature maps from different layers and coupled with anchor boxes, obtaining prominent
results of detection. The power of these networks lies in their ability to discover objects
with different scales and aspect ratios. To further promote the discrimination of fused
features, the feature pyramid [7] and the attention mechanism [8–10] are introduced.

Features with distinct receptive fields depict an image in different scales: features
with large receptive fields encode global information and semantic patterns, while fea-
tures with small receptive fields carry local details and texture cues [11]. Either built
from a sequence of pyramid images or generated from a CNN, detection methods based
on feature pyramid concatenate feature maps depicting images in discrete scales to dis-
cover objects with different scales [12–15]. However, the concatenated feature maps
contribute equally to the final results in these methods. As a comparison, the proposed
module fuses the features in a weighted manner.
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Fig. 1. Pipeline of the proposed CFAM: context information collection via cross-layer feature
fusion, and feature refinement using channel attention.

The attention mechanism becomes increasingly prevalent in recent intricate deep
networks [16, 17]. Motivated by the visual attention processing in the brain, researchers
improve the performance of neural networks by selecting the information of interests
while eliminating redundant information [18]. Two types of attentions are widely used in
detection: the channel attention [8] and the spatial attention [9, 19]. The former supposes
that different channels contribute partially to the final prediction, and explicitly mod-
els the importance of discrete feature channels by investigating the interdependencies
between these channels. As a comparison, the spatial attention encourages regions in an
image to have distinct importance to the prediction, which assigns optimal weights to the
regions according to the current task [20]. Feature selection via attentions can be config-
ured in a CNN handily, which benefits the learning process and domain transformation
of the network [21–25].

Although the feature pyramid and attentionsmakegreat progress in fusingmulti-level
features, their symbiosis has not been extensively investigated. Most of the attention-
based methods focus either spatial attentions or channel attentions in feature maps from
one or two layers [26, 27], ignoring the multi-level context information of the feature
pyramid obtained frommultiple layers. However, the contextual cues encoding an object
with distinct scales and abstraction levels could be essential to object detection [28]. As
the size of an object may varies across numerous images, consistent detections of the
object fundamentally rely on multi-level context cues in each of the image [29].

To explore the symbiotic feature pyramid and attention while further improve multi-
scale object detection, we devise the CFAM module which explicitly model the inter-
dependence of context cues at different level. The novelty of the proposed architecture
lies in its combinationof the feature pyramid and attentionmechanism.Feature alignment
and feature fusion are assembled in an unify pipeline which works with any backbone
networks.
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Fig. 2. The component of feature refinementmultiplies the cross-layer featuremapswith attention
maps, collecting context cues frommultiple layers and highlighting the detected objects of various
scales. The attention map is obtained by summarizing activations in different channels of the
cross-layer feature maps.

2 The Proposed Method

In this section, we introduce the proposed cross-layer feature attention module (CFAM).
As illustrated in Fig. 1, the module consists of a cross-layer feature fusion component
and a feature refinement component. An image is first fed into the backbone network,
generating multiple feature maps in the convolutional layers. Then these cross-layer
feature maps are aligned to have the same size via up-sampling before concatenation.
After that, an attention map is calculated for fusing the aligned feature maps which
highlights the detected objects with various scales.

2.1 Cross-Layer Feature Fusion

Extracting context information shows significant impact on multi-scale object detection,
where the feature pyramidnetwork (FPN) are commonlyused.However, the up-sampling
and fusion processes are alternated in the FPN, and no attention is incorporated in the
pipeline. As shown in Fig. 2, the proposed cross-layer feature fusion component first
aligns all the feature maps and then concatenate them, obtaining the cross-layer feature
maps with rich contextual information.

Specifically, the feature fusion component takes the feature maps from convolutional
layers as its input (Fig. 1). Firstly, 1×1 convolutions are applied to these features, reduc-
ing the dimension of the feature maps and summarizing the global information of each
channel. After that, the number of channels of the feature maps is reduced to 256, which
benefits the following feature learning and abstraction. At the same time, the network
parameters are minimized, which accelerates the training process. Then, feature maps
with smaller resolutions are up-sampled using bilinear interpolation, aligning themselves
to the same size with the feature map with the largest resolution. Finally, the aligned
feature maps after and concatenated to a single cross-layer feature map for the further
refinement.
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2.2 Feature Refinement

Conventional SSD networks utilize the feature pyramid to summarize feature maps at
each scalewith equalweights, incorporating no visual attentions.However, the attentions
taking features differentially can be deterministic for multiscale object detection. Specif-
ically, feature maps generated from layers close to the top usually have larger receptive
field, and contain richer semantic information. On the other hand, feature maps gener-
ated from layers close to the bottom have smaller receptive field, which specify detailed
information. As a result, highlevel features are commonly used to encode large objects
while low-level features are used to encode small targets. The dependency between dif-
ferent features can be modeled through CFAM, and discrete weights can be assigned
to the feature maps specifying objects with different abstraction levels. As shown in
Fig. 2, the feature refinement is achieved by multiply the cross-layer feature map with
an attention map.

In order to obtain the attention map, channel attention [8] is applied to calculate
the weights for each feature in the cross-layer feature map, adjusting the contribution
of each feature to multi-scale object detection. When calculating the attention map, the
channel-based spatial information is obtained by global average pooling and global max
pooling. Let Oc be the pooling result of the c-th channel in a H ×W area R, for an input
feature map X ∈ R

C×H×W , it computes:

Oc = P(Fc) = 1
∣
∣RHW

∣
∣

∑

(a,b)∈RHW
Xc(a, b) + max

(a,b)∈RHW
Xc(a, b) (1)

where P denotes the pooling function (global average pooling and maximum pooling),
Fc denotes the input feature map.

∣
∣RHW

∣
∣ represents the number of elements in the area

RHW , Xc(a, b) represents the element at location (a, b) of the c-th channel.
Then, the attention map can be obtained by feeding Oc in two convolutional lay-

ers with kernel size 1 × 1, followed by a Relu layer and a sigmoid activation layer,
respectively:

CAc = Sigmoid(Conv(ReLU (Conv(Oc)))) (2)

Finally, we multiply the attention map with the cross-layer feature map, producing
the refined feature for multi-scale object detection:

F
′
c = CAc ⊗ Fc (3)

CFAM computes the attention map of each channel by considering the relationship
between the feature maps specifying different scales. So that the important feature maps
encoding objects are highlighted during detection, while feature maps specifying back-
grounds are suppressed. CFAM works with stateof-the-art backbones, which further
improves multi-scale object detection.
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Fig. 3. Qualitative comparisons between the proposed module and the original SSD.

Table 1. Detection results of the entire VOC2007 and 20 categories obtained by different
attention-based detection models.

Method mAP aero bic. bird boat bot. bus car cat cha. cow din. dog hor. mot. per. pot. she. sofa. tra. tv.

SSD 75.5 81.2 82.4 72.4 66.0 47.2 84.2 85.1 85.3 57.4 80.9 76.0 82.1 85.9 82.9 77.3 49.9 76.7 76.7 86.5 73.8
HyperNet 76.3 77.4 83.3 75.0 69.1 62.4 83.1 87.4 87.4 57.1 79.8 71.4 85.1 85.1 80.0 79.1 51.2 79.1 75.7 80.9 76.5

Ion 76.5 79.2 79.2 77.4 69.8 55.7 85.2 84.2 89.8 57.5 78.5 73.8 87.8 85.9 81.3 75.3 49.7 76.9 74.6 85.2 82.1
SSD+SE 76.9 80.4 83.4 75.2 69.5 50.1 83.0 85.3 87.9 59.9 81.6 77.6 85.6 86.5 83.5 77.4 52.4 77.1 78.7 87 75.9

SSD+CFAM 77.6 79.6 84.6 76.3 71.8 50.6 85.1 86.1 89.1 62.4 84.6 75.9 86.2 87.6 83.3 77.5 50.4 77.9 79.3 87.8 76.3

3 Experiments

3.1 Datasets and Settings

The proposed CFAM is extensively tested on the challenging Pascal VOC benchmark.
We choose single shot multi-box detector (SSD) as the baseline architecture, conducting
comparisons with several networks and modules for object detection. SSD uses vgg16
[30] as its backbone network, whose parameters are initiated with the model pre-trained
on ImageNet [31]. Among the Pascal VOC dataset, VOC07+12 is used for training
while the test set in VOC 2007 is used for validation. We take the layer Conv4_3,
Conv7, Conv8_2, Conv9_2, Conv10_2, Conv11_2 in SSD to perform cross-layer fusion
in CFAM. All the experiments run on a single NVIDIA Tesla P100 GPU. SGD optimizer
is utilized for network training, with a batch size of 48, a learning rate of 1e-3 and a
momentumof 0.9. The learning rate decreases to 1e-4 and1e-5when the training iteration
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approaches 130 and 220, respectively. 260 iterations of optimization are performed
before convergence.

Table 2. Impact of the CFAM on the detection rate.

Method CFAM on layers mAP

SSD w/o 75.50

SSD Conv9,10,11 76.32

SSD Conv4,7,8 77.55

SSD Conv4,7,8,9,10,11 77.62

3.2 Comparison with State-of-the-Arts

Table 1 compares the mAP on the Pascal VOC dataset achieved by the proposed CFAM
and some state-of-the-art attention modules backboned by SSD. To fairly investigate
the performance of each attention module, we remain the training settings and hardware
platform unchanged for all these modules. As shown in Table 1, the mAP is improved
by 1.4% over the baseline SSD300 after incorporating the channel attention. The mAP
is improved by 2.12% when the CFAMworks with the baseline SSD300, demonstrating
the proposed CFAM outperforms the channel attention on object detection. The power
of the CFAM lies in its appropriate modeling of cross-layer feature attentions.

Comparisons of the detection accuracy of 20 categories in the Pascal VOC dataset
are summarized in Table 1. As is shown, CFAM-SSD300 achieves consistently high
accuracies among all categories, andmakes great improvement in detecting small targets
(cat, dog and sofa). Notice that, CFAM-SSD300 outperforms SSD300 in detecting most
of the categories, demonstrating the effectiveness of the proposed module.

Qualitative comparisons between the proposed module and the SSD in object detec-
tion are illustrated in Fig. 3. The first row visualizes the detection results of single objects
with small sizes, while the second and third row give the detection results of multiple
targets with different sizes. As is shown, SSD network fails to detect some objects with
small sizes and some overlapped targets. The proposed CFAMmodule achieves consis-
tent detection results with regard to objects with various sizes and overlapped targets.
Otherwise, the prediction scores for the ground-truth categories generated by CFAM are
higher than that obtained by SSD.

3.3 Ablation Studies

To further investigate the benefits of the proposed CFAM to fuse different feature maps
across network layers, three folds of experiments are conducted by removing some of
the components from the original module. All modules are trained using the VOC 2007
and VOC 2012, and tested on the VOC 2007.
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Table 2 shows the mAP scores obtained by the cross-layer feature fusion component
under three different configurations, in which the CFAM is deployed in discrete layers
in SSD300. (1) High-level feature maps from layer conv9_2, conv10_2 and conv11_2
are assembled to a cross-layer feature map, followed by feature refinement. In this case,
the mAP score is 76.32%, which is a limited improvement over the original SSD300.
(2) Low-level feature maps form layer conv4_3, conv7 and conv8_2 are fused, obtaining
a mAP score of 77.55%. This is a significant improvement over the original SSD300;
(3) Cross-layer fusion is performed on both high-level and low-level feature maps from
layer conv4_3, conv7, conv8_2, conv9_2, conv10_2 and conv11_2. The final mAP score
further goes up to 77.62%, suggesting that cross-layer feature fusion improves the detec-
tion performance of the networkwhenCFAM is deployed. And the best result is obtained
when both the high-level and low-level feature maps are fused together.

4 Conclusion and Future Work

This paper proposes a context-aware cross-layer feature attention module(CFAM) for
multi-scale object detection. Themodule fuses cross-layer featuremaps to collect context
visual cues from both high-level and low-level features. When combined with the chan-
nel attention components, the module highlights the detected object disregard of their
sizes, thus increase the detection robustness to scale variations. Otherwise, the proposed
CFAM is feasible to deploy in any offthe-shelf architectures. Extensive experiments on
the challenging Pascal VOC benchmark show the CFAM improves detection rate by a
large margin over baseline architectures without additional costs. In our future works,
CFAMwill be modified to benefits more computer vision tasks like image enhancement,
segmentation and visual tracking.
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Abstract. In recent years, several excellent works dealing with human pose esti-
mation in complex multi-person scenes have focus on the problems of complex
backgrounds and the multiplayer scene. However, when facing the scene of multi-
person interaction, the results of current mainstream algorithms are still unsatis-
factory and some common datasets are not suitable for coping with interaction
problems. Therefore, we propose a new dataset named Interact-Pose for solv-
ing multi-person interactions problems. Firstly, We use the MSCOCO format to
annotate Interact-Pose. Except that, we adopt the corresponding data augmenta-
tion scheme to exchange the background of the Interact-Pose Dataset to make
it more complex and have better generalization performance. Then it is trained
after being fused with the MSCOCO dataset. After training on HigherHRNet, the
average AP value of our test results is 67.3% on the Validation set of COCO2017,
which is higher than that of the test only being trained by MSCOCO.

Keywords: 2D human pose estimation · Multi-person interaction · Data
augmentation · Multi-person interaction dataset

1 Introduction

In the past few years, human pose estimation has been a very popular issue in the field
of computer vision. Due to the increasing demand in film shooting, motion analysis,
behavior recognition, more and more scientific researchers begin to put their efforts on
this issue. Early work focused on single-person human pose estimation tasks, such as
Convolutional Pose Machines, Stacked Hourglass [9, 10]. The datasets used in these
single-person human pose estimation tasks are usually relatively simple and mainly
consists of single-person picture like LSP and FLIC [24, 29]. With the application of
human pose estimation technology inmany fields, the work of single-person human pose
estimation is unable to meet the current demand. Therefore, researchers focus on multi-
person human pose estimation based on deep learning methods. The task of human pose
estimation tends to be much more complex than the task of single-person human pose
estimation when facing multi-person interaction human pose. The difficulty of single-
person human pose estimation research is that complex poses or diverse backgrounds
may affect the results of pose estimation. The situation we face in multiplayer scenarios
is more complicated. And Interactions between multiple people usually have a large
impact on the results of pose estimation (Fig. 1).
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Fig. 1. After adding the Interact-Pose dataset and the MSCOCO dataset for fusion training, the
performance in multi-person interaction scenarios has been significantly improved. The upper
pictures are tested by themodel trained byHigherHRNetwith theMSCOCOdataset. The following
line of pictures are tested by the backbone of HigherHRNet after adding the coco dataset and the
interact-pose dataset for a new fusion dataset and for fusion training.

At present, there are many mainstream algorithms to solve the multi-person pose
estimation problem, such as HRNet [3], HigherHRNet [12], Alphapose [16], and Open-
Pose [1]. Currently, OpenPose is the most popular pose estimation algorithm, it uses
the non-maximum suppression algorithm to detect all the joint points in the picture, and
employs the Part Affinity Fields for Part Association method to combine joint points
from different human bodies; HRNet [3] uses a parallel high-resolution network for
human pose estimation, and the features of each resolution are retained in the whole
process; HigherHRNet [12] adopts a bottom-up approach for pose estimation based on
HRNet, and adds a deconvolution module to fuse Generate feature heatmaps at multiple
resolutions [31]. These schemes all use the MSCOCO dataset as the evaluation index,
and have achieved fine results on the MSCOCO dataset. At the same time, compared
with other works (for example, CPM (Convolutional Pose Machines), Hourglass), these
common algorithms are also better at solving some multi-person interaction scenarios.
But the overall performance is still unsatisfactory, and from an intuitive point of view,
its performance is still at a low level [32].

In the proposed training scheme which is proposed by us, a large amount of multi-
person interactive data is used for training, and data augmentation is adopted to further
improve the performance of pose estimation on the data. Besides, it not only improves the
generalization performance of the model on theMSCOCO dataset, but also improves the
accuracy of joint detection in multi-person interaction scenes (especially the accuracy
of occluded joint detection during interaction). The contributions of our work could be
summarized as follow:

• Our proposed Interact-Pose Dataset for solving multi-person interaction problems
greatly makes up for the deficiencies of the current public datasets;

• The data augmentation programs on Interact-Pose Dataset can make traditional 2D
human pose estimation backbone own better performance when facing multi-person
scenes. Meanwhile this proposal can also boost the evaluation metrics in COCO2017;
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2 Related Works

2.1 Datasets for 2D Human Pose Estimation

The current mainstream single-person datasets for 2D human pose estimation include
LSP [24], FLIC [29], and so on. With market demands, advances in hardware perfor-
mance, and improvements in algorithms, researchers pay their attention to multi-person
human pose estimation. The datasets for multi-person human pose estimation include
MSCOCO, CrowdPose, AI challenger. Although these datasets have been widely used
in the field of human pose estimation, most of them are scattered multi-person scenes,
and the interaction scenes involving multiple people are very limited. Therefore, it is not
particularly helpful for us to solve the human pose estimation problem of multi-person
interaction.

Fig. 2. The detection results of the HigherHRNet scheme and the DCPose scheme for the same
group of pictures. The images are selected from the Interact-Pose dataset. The detection results
of HigherHRNet (bottom-up scheme) (top) will not be missing the detection results of a single
human body caused bymulti-person interaction. In the same case, the DCPose (top-down) scheme
we adopted will have a missing detection of a single human body. In this figure, it can be clearly
found that there are human bodies that have not been detected at all in the detection results of
DCPose.

2.2 Multi-person Human Pose Estimation

Themulti-person human pose estimation task performed by the current mainstream deep
learning-based solutions can usually be divided into two ideas: top-down; bottom-up;
we use the Interact-Pose dataset to analyze the current mainstream algorithms. Due to
the shortcomings of the object detection algorithm [6, 7, 23], most of top-down schemes
do not have good performance when facing multi-person interaction. Specifically, when
detecting samples with high IOU values, problems such as the bounding box error of
human body detection and the number of human body errors often occur [33, 34], which
will cause systematic defects in the subsequent pose estimation of a single human body.
We can see from Fig. 2 that in most bottom-up schemes [1, 12, 15], we usually do not
miss detection of all nodes of a single human body due to high IOU values.
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Top-Down. The main procedure of this our method is to first detect a single person and
obtain a bounding box through the target detection algorithm (usually the mainstream
is to use YOLOv3, Faster RCNN) [6, 7]. Pose estimation is then performed for a single
human body within each bounding box. It can be treated as transforming a multi-person
problem into several single-person problems. Although in some scenarios with relatively
low interaction between multiple people[35], the scheme achieves satisfactory accuracy.
However, if it is in a multi-person interaction scenario, especially strong interaction, in
the top-down solution may not be able to accurately detect the bounding box (as shown
in the Fig. 3). Therefore, subsequent key point detection and skeleton connection work
are meaningless. In addition, the detection time of this scheme will increase with the
increase of the number of people to be detected, so the real-time performance is usually
difficult to guarantee.

Fig. 3. All images tested are from the Interact-Pose dataset. (a), (c), (e) are the bounding-box of
the human body detected in theDCPose algorithm; (b), (d), (f) are the results of the pose estimation;
if there is a missing bounding-box detection, or the detection result of the bounding-box is not
accurate enough, which will have a great impact on the subsequent human pose estimation results.

Bottom-Up. In this scheme, when estimating the human body pose, it first detects
the key points of all the human bodies in the picture, then groups the key points, and
finally assembles the skeletons of several completed human bodies. The proposal of
Openpose makes the bottom-up scheme attract more and more researchers’ attention.
This scheme has certain advantages in studying the pose estimation problem in multi-
person interaction scenarios. The resulting problem is that the human skeleton cannot
be detected. At the same time, the detection efficiency of this solution in multi-person
interaction scenarios is relatively considerable, and real-time effects can be achieved.

3 Method

Our training scheme is a fusion training scheme using the MSCOCO dataset and the
Interact-Pose dataset. In this scheme, in order to ensure that the algorithm performs
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well on the COCO2017 validation set and the Interact-Pose test set, we need to perform
data augmentation operations on the data set. The steps of data augmentation mainly
include character background culling, background replacement, and reshaping the image
(Fig. 4).

Fig. 4. The schematic diagram of our pipline. We take HigherHRNet as an example. We need
to enhance the Interact-Pose dataset (the specific process will be explained in detail later). Better
results are obtained by merging the two datasets together into the network for training.

3.1 Interact-Pose Dataset

We propose a brand new dataset, which is named Interact-Pose Dataset. This dataset
was captured in a multi-camera laboratory setting (Fig. 5). The crew was wearing looser
clothing when filming. Compared to existing datasets, we recorded in studio with green
and white curtains to allow automatic segmentation and augmentation. There are a
total of 12 actors (9Male+3Female) in this dataset, which contains many multi-person
interaction scenes, including “intense” interaction scenes such as two-person boxing and
wrestling. 90% of the pictures are interactive scenes of two or more people.

Fig. 5. The picture above shows the scene of the laboratory shooting. The scene consists of a
solid color backdrop and 20 RBG cameras. Data can be collected from multiple angles.

To make poses as diverse as possible, we employ a real-time data acquisition system
with up to 20 viewing angles. We can collect photos of people under the premise of
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ensuring good lighting to obtain an ideal posture. Each of the cameras is placed at a
height of 1.8 m from the ground, maintaining a depression angle of about 15°. In this
situation, the camera can ensure the integrity of the human body. Figure 6 shows some
of the obtained images in the Interact-Pose dataset and their annotated results.

Data Collection. Given that our shooting scenes for the dataset are in laboratory scenes,
we select the most representative 10,000 images from all shooting data. And divide the
training set and the validation set according to the ratio of 9:1.

Image Annotations. At present, in the commonly used human pose estimation datasets,
from the point of view of the number of joint points, MSCOCO has 17 joint points, MPII
has 16 joint points, and CrowdPose has 14 joint points respectively. When we made our
dataset, we used the same annotation method as the MSCOCO dataset, that owns 17
joints. Therefore, our data can be used for fusion training with the coco dataset to further
improve the accuracy (Fig. 7).

Fig. 6. The figure shows some pictures in the Interact-pose dataset (the connection of the skeleton
of the joint points is the labeled ground-truth). We can find that compared with public datasets
such as MSCOCO, our annotation results pay more attention to the annotation results of occluded
joints after multi-person interaction. The background of the laboratory scene is relatively simple,
which is conducive to data enhancement work.

3.2 Multi-dataset Fusion Training

Due to the problems of different labels and different evaluation indicators between
datasets, almost all the previous algorithms for 2D human pose estimation use the
method of separating training data sets. We annotated the Interact-Pose in the same
format as MSCOCO, and performed fusion training on the two datasets together with
the MSCOCO dataset after data augmentation.

In our scheme, the training process requires alternating use of MSCOCO dataset
and Interact-Pose dataset. The specific attempt is to first train the MSCOCO dataset.
On this basis, continue to train the MSCOCO dataset and the Interact-Pose dataset to
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Fig. 7. The figure shows the picture after data augmentation of the Interact-pose dataset (the
connection of the joint points is the marked ground-truth). The background pictures are selected
from the MSCOCO dataset. After the procedure of data augmentation, the background of our
dataset is richer.

combine the fusion dataset. Based on the strong generalization ability of the MSCOCO
dataset, when using the proposed scheme for training, we can fine-tune COCO dataset
for multi-person interaction scenarios.

3.3 Data Augmentation Scheme

Although our dataset has more pose variations than other common 2D human pose
estimation datasets, it meets our pose requirement for solving multi-person interactions.
But appearance changes are still not comparable to wild images. Usually, when deep
learning-based schemes are used for human pose estimation, many schemes [8, 12, 14,
15] perform data augmentation operations in the image preprocessing stage. The data
augmentation scheme we adopt here is different from the traditional data augmentation.
Since the data set we propose is collected in a laboratory scene, which means its action
pose, shooting angle, clarity and the effect of multi-person interaction fully meet our
needs, there is still a problem that its background is relatively monotonous. CSPNet
[28] proposed to augment the data by horizontal flipping, changing the brightness, and
changing the scale of the picture. The data augmentation method used in CSPNet is will
also be reflected in many other works in the future [15, 20]. But for the data taken in the
lab, the effect of the augmentation on the training effect is negligible. Therefore, here
we propose a novel data augmentation scheme that can improve the training effect on
our dataset. In the field of 3D human pose estimation, the MPI-INF-3DHP [2] dataset
adds data augmentation processing for foreground and background to the dataset. The
effect of data training has been significantly improved under the method. Inspired by
this scheme, we perform a similar background augmentation replacement process on the
Interact-Pose dataset. Our operation flow is shown in Fig. 8.
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Fig. 8. Our process for data augmentation on the Interact-Pose dataset is shown in the figure. We
first remove the background of the pictures in the original dataset, and then replace the background
with pictures without people. Finally, generate our data-augmented picture. (a): Pictures selected
from the Interact-Pose dataset; (b): The pixel value of the background of the characters is set to
0; (c): The pictures that do not contain the characters are selected; (d): The picture (b) is added to
the (c) Figure. (At this time, the size of the image is the same as that of (c)); (e): Resize the image,
making it share the same size with (a);

4 Experiments

In this section, we focus on the improvement of the training effect of the interact-
pose dataset and the scheme of training in multiple datasets (MSCOCO dataset and
Interact-Pose dataset).

4.1 Datasets

IN this section, We introduce some common datasets in detail.

MSCOCO Dataset: The size of the MSCOCO dataset is huge, and the scenes and
annotations contained in it are rich. In the experiment, we use the COCO2017 dataset,
which contains about 120k training sets and about 5k validation sets. It contains data of
several people interacting with each other.

Interact-Pose: In our proposed dataset, we set a training set of 9000 images and a test
set of 1000 images. We use the coco format to label the dataset, so the number of key
points in this dataset and the connection method of key points are the same as that of the
COCO.

The evaluation indicators in the experiment follow the evaluation indicators of the
COCO dataset, that is, the average precision (AP) and the average recall (AR) are used.
Object Keypoint Similarity (OKS) plays the same role as IoU, and AP/AR is used for
keypoint detection. We consider mAP averaged over multiple OKS values (.50:.05:.95)
as our primary metric.
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This experimental framework is based on the deep learning framework of PyTorch.
We utilized three 3090 GPUS as the hardware device, set the batch size to 18 and trained
for 320 epochs.

Table 1. We use experiments to compare the experimental results before and after adding the
Interact-Pose dataset, as well as before and after data augmentation. The data augmentation
mentioned here is based on Interact-Pose.

BackBone Training datasets mAP AP.5

MSCOCO Interact-Pose Reforcement data

(a) HigherHRNet-W32
√

67.1 73.0

(b)
√ √

66.9 72.5

(c)
√ √

67.3 73.6

Table 2. The results of our testing on the test set of the Interact-Pose dataset. After adding the
Interact dataset, the performance of the algorithm on the pose estimation problem of multi-person
interaction has been significantly improved.

BackBone Training datasets mAP AP.5

MSCOCO Interact-Pose Reforcement data

(a) HigherHRNet-W32
√

4.5 17.8

(b)
√ √

11.9 40.5

(c)
√ √

12.8 41.0

4.2 Training

Following the requirements of the HigherHRNet framework and the Associative embed-
ding [11], we need to preprocess the data before the experiment starts. The parameter
of data augmentation is set as a random rotation within ([−30°, 30°]), a random scale
within ([0.75, 1.5]), and a random translation within ([−40, 40]) respectively to crop the
input patch of size 512× 512 and Random flip, thus playing a role in data enhancement.

In the deep learning framework, we use the adamoptimizer and set the initial learning
rate at the beginning of the experiment to 1 * 0.001.We reduce the learning rate by 0.0001
at the 100th epoch and 0.00001 at the 200th epoch.

In HigherHRNet, we train on different datasets and test on the validation set of
COCO2017 and the Interact-Pose dataset, respectively. As shown in Table 1 and Table 2,
it can be found that the test performance trained with our scheme is better than the test
performance trained only with the COCO dataset.

In addition to HigherHRNet, we test the impact of the enhanced data of Interact-Pose
on the test results on the OpenPose, PersonLab, PIFPAF, Hourglass algorithms. What
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we can find is that after adding the enhanced data of Interact-Pose and the MSCOCO
dataset for fusion training, the test results are significantly improved on the test set of
Interact-Pose. And most of the indicators of the results of the test on the val of the
MSCOCO dataset have also been improved.

Ablation Experiment. We conduct experiments on HigherHRNet, OpenPose, Person-
Lab, PIFPAF [1, 27, 30], which are bottom-up method. In the course of the experiment,
we verified the effectiveness of our work through the following ablation experiments. In
the experiment, we compared the impact of different datasets before and after the fusion
training and the impact on the indicators before and after data augmentation respectively.

We can find that on the traditional COCO2017 training set for training, although the
performance on the COCO2017 validation set is acceptable. But for the Interact-Pose
dataset, which is more interactive with many people, it is difficult to satisfy only by
training on theMSCOCO dataset. We can find from the table that only by training on the
MSCOCO dataset, the mAP value tested on the Interact-Pose dataset is only 3.3. Even
though the multi-person interaction scene of the Interact-Pose dataset is much more
complex than the MSCOCO dataset, such performance is hardly satisfactory. In this
section, we compare the results of training only on the MSCOCO dataset and testing on
the MSCOCO test set and the Interact-Pose dataset. Through the experimental results,
we can find that most of the indicators tested on the COCO dataset and all indicators
tested on the Interact-Pose dataset have significantly improved. Our solution is very
effective on mainstream bottom-up solutions. Table 3 and Table 4 show the test results
at MSCOCO and Interact-Pose, respectively.

Table 3. We use the Interact-Pose dataset for data augmentation, and then perform fusion training
with the coco dataset. We have tested numerous Bottom-up methods with good results.

Test on MSCOCO

Method Backbone Input
size

AP AP50 AP75 APM APL Training
dataset

OpenPose VGG-19 368 61.8 84.9 67.5 57.1 68.2 MSCOCO

62.0 85.2 67.2 57.6 68.7 MSCOCO+
Interact-pose

PersonLab ResNet-152 1401 66.5 88.0 72.6 62.4 72.3 MSCOCO

67.1 87.6 72.9 63.1 72.1 MSCOCO+
Interact-pose

PifPaf ResNet-50 – 50.0 73.5 52.9 35.9 69.7 MSCOCO

50.2 73.9 52.9 36.3 69.8 MSCOCO+
Interact-pose

HigherHR-Net HRNet-W32 512 67.1 86.2 73.0 61.5 76.1 MSCOCO

67.3 86.2 73.6 61.9 75.8 MSCOCO+
Interact-pose



Interact-Pose Datasets for 2D Human Pose Estimation 221

Table 4. We use the Interact-Pose dataset for data augmentation, and then perform fusion training
with the Interact-Pose dataset. We have tested numerous Bottom-up methods with good results.

Test on Interact-Pose valset

Method Backbone Input size AP AP50 AP75 APM Training dataset

OpenPose VGG-19 368 2.9 14.1 0.5 10.1 MSCOCO

10.1 38.5 3.9 22.3 MSCOCO+
Interact-pose

PersonLab ResNet-152 1401 3.7 15.1 0.4 10.5 MSCOCO

11.6 39.1 3.9 23.4 MSCOCO+
Interact-pose

PifPaf ResNet-50 – 2.9 11.3 0.3 7.4 MSCOCO

6.7 31.4 2.3 19.5 MSCOCO+
Interact-pose

HigherHRNet HRNet-W32 512 4.5 17.8 0.5 10.9 MSCOCO

12.8 40.5 4.2 24.4 MSCOCO+
Interact-pose

5 Conclusion

First, we introduce a new dataset named Interact-Pose, which focuses on complex multi-
person interaction scenes. Furthermore, we adopt somemainstream 2D human pose esti-
mation backbone frameworks, mainly including HigherHRNet, OpenPose, and PIFPAF
based on the bottom-up scheme to use our proposed dataset. Second, the data augmenta-
tion method of our proposed Interact-Pose dataset is utilized in our paper, then fused our
proposed dataset with the MSCOCO Dataset into a joint dataset for training. Compared
with the traditional human joint detection framework, our human pose estimation sys-
tem can better handle occlusion better in general. When our solution solves the problem
of multi-person scene interaction, many algorithms have achieved satisfactory results.
Among them, especially for the problem that several joint points between two or more
people are blocked from each other or the human body interacts with each other, our
scheme has achieved good results.
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Abstract. With the widespread application of artificial intelligence technology,
deep learning algorithms have been extensively applied to the diagnosis and
screening of breast cancer. However, the classification of breast cancer with the
data from a single modality is still not accurate enough to meet clinical needs.
This paper proposes a Multimodal breast cancer diagnosis based on Multi-level
fusion network which integrates pathological images, structured data and medical
description text. Specifically, we first construct a fully connected graph to extract
the node and graph level feature representation of pathological images with graph
attention layers. Second, we use the BERT model to extract the text features from
the medical records. At last, the features of the above three modal data are fused
using a multimodal adaption gate (MAG) for diagnosis. Experimental results indi-
cate that the proposed method obtains superior performance (accuracy 93.62%)
to most baseline methods on PathoEMR dataset.

Keywords: Deep learning · Graph neural network · Multimodal fusion · Breast
cancer diagnosis

1 Introduction

Breast cancer is one of the most serious diseases which is threatens human life and
health, and it is a medical and healthy problem of common concern all over the world.
According to the datawhich released by the InternationalAgency forResearch onCancer
(IARC), a division of the World Health Organization (WHO) in 2020 [1], the number of
new cases of breast cancer is over 2.26 million, exceeding the 2.2 million cases of lung
cancer. Breast cancer had replaced lung cancer as the world’s largest cancer. In clinical
medicine, compared with Xray, MRI and other medical images, pathological images
remain the best criteria for the diagnosis of breast cancer. Early identification of benign
and malignant tumor pathological images of breast cancer is important for clinicians to
develop individualized treatment plans. In earlier methods, the features of pathological
image were extracted manually, based on support vector machine, random forest and
other classifiers were used to complete the classification. This kind of methods has
disadvantages such as high requirement expertise, features extraction is time-consuming,
and it is difficult to extract high-quality features.
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Deep learningmethods have shown the increasing advantages inmanymedical image
diagnosis tasks recently.Comparedwithmanual-based pathological image classification,
this kind of methods reduce the need for professional knowledge, and they can use the
network to continuously learn image features and classify pathological images into
benign and malignant [2–5]. This method not only improves diagnostic efficiency, but
also provides physicians with more objective and accurate diagnostic results. But these
methods still have some shortcomings: (1) A patient may contain multiple pathological
images of various parts of breast cancer, and there are some consistent or compensative
lesion information between these images. Using a single pathological image [3] will
discard the existing image-to-image interaction. (2) Most of the existing studies use
pathological images as the input of convolutional neural networks [2], but it is difficult
to meet the requirements of clinical diagnosis. (3) There is a correlation between the
data of different modalities, and the simple fusion method [4] will not give full play to
the complementarity between the modalities.

For the above problems, we propose the following solutions: (1) We construct a
fully-connected graph of the patient’s pathological image set to extract the associations
between the pathological images, and use a multi-level graph attention network (GAT)
[6] to obtain high-level pathological image features, at last we concatenate the node
and graph-level feature representation. (2) The electronic medical record (EMR) reflects
some information of the patient’s consultation, such as personal tumor history, family
tumor history, orange peel and other information that cannot be displayed in the patho-
logical image. We process the EMR according to certain medical rules and form a text
description. Then, for the medical text description in the EMR data, we utilize the pre-
trained languagemodelBERT [7] to extract the diagnostic text features of the patients. (3)
Inspired by Multimodal Adaptation Gate (MAG) [8], we use an attention gating mech-
anism to fuse the various modalities which described above.The experimental results
prove that the multimodal adaptation gate (MAG) model performs better.

The contributions of this paper can be summarized as follows:

• To the best of our knowledge, we are the first to fuse features from threemodalities i.e.,
image, text and pathological to classify breast cancer. The proposed network structure
outperforms significantly better than single modality methods.

• We construct a fully connected graph to extract the node and graph level feature
representation of pathological images with graph attention layers. In this way, we can
extract high-level feature of pathological images.

• We textually describe the structured electrical medical record and construct the med-
ical record text according to the rules of clinical medicine. Then we use multimodal
adaptation gate (MAG) to fuse image, text and pathological features.

• We conducted extensive experiments on PathoEMR dataset. It’s showing that the
model’s classification accuracy can reach 93.62%, which is better than the most base-
line methods. In addition, variant experiments are also performed to verify the validity
of our proposed key components.
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2 Related Work

As we known, the existing methods of classifying breast cancer are divided into the
following four main categories: disease diagnosis based on manually extracted feature,
disease diagnosis based on convolutional neural network (CNN), disease diagnosis based
on electronic medical records, and disease diagnosis based on multimodality. In the
following subsections, we briefly review previous work on computer-aided diagnosis of
related diseases, respectively.

2.1 Disease Diagnosis Based on Manually Extracted Feature

Kowal et al. [9] had used various cell nucleus segmentation algorithms to classify the
breast cancer pathological images. Nanni et al. [10] used local tristimulus patterns and
local phase quantization histograms as image features to classify the masses as benign
or malignant, respectively. Jagadeesh et al. [11] proposed two complex feature extrac-
tion methods, first using the Sech template method to select suspicious regions in the
mammary gland for thresholding segmentation, and then using grayscale co-generation
matrix and optical density features to extract information on local intensity relationships
and discrete photometric distributions. Spanhol et al. [12] disclosed the breast cancer
pathological image dataset BreaKHis. Based on this dataset, they used 6 feature descrip-
tors such as Local Binary Pattern (LBP), Gray Level Co-occurrence Matrix (GLCM),
and different classification algorithms such as Support Vector Machine and Random
Forest for classification. The accuracy rate reached 80%–85%.

Most of the above classification algorithms are performed on different datasets. There
is no uniform comparison standard between algorithms, and the accuracy rates are not
comparable. More importantly, these algorithms use manual-based feature extraction
methods, which not only require professional domain knowledge, but also consume a
lot of time and energy to complete, and the results are highly susceptible to pathol-
ogists’ subjective human factors. The limitation of these traditional machine learning
algorithms for breast cancer pathological image classification is that some manually
extracted features have poor generalization ability in the classification model. All these
severely restrict the application of traditional machine learning algorithms in diagnosis
of breast cancer.

2.2 Disease Diagnosis Based on Convolutional Neural Network (CNN)

Deep learning has made an important breakthrough in computer vision research. The
major difference between deep learning and traditional machine learning methods is
that its feature representation is automatically learned from a large amount of data,
and it learns to obtain a distinguished target feature representation by constructing a
learning model with multiple hierarchical structures and gradually extracting features
from a large amount of training data from low-level edge and other features to high-level
abstract semantic features. The complexity and limitations of manual feature extraction
in traditional algorithms are avoided. Convolutional Neural Networks (CNN) as one
of the widely used models in deep learning which have been widely used in natural
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language processing, computer version and other fields. CNN has achieved a series of
achievements in the research of breast cancer pathological images.

Koné et al. [13] used theDenseNet50model for the classification breast cancer patho-
logical images which achieved 81% accuracy. Bayramoglu et al. [14]; Aresta et al. [15]
utilized a multi-task magnification which is based on CNN architecture to distinguish
benign from malignant breast cancer. Spanhol et al. [16] utilized AlexNet with different
fusion strategies for classification. On BreaKHis dataset, Araújo et al. [17]; Rakhlin
et al. [18] proposed a classification method which based on CNN and SVM for H&E
stained breast cancer tissue images. Vang et al. [19]; Golatkar et al. [20] proposed a deep
learning framework with the Inception-V3 model for multi-class breast cancer histology
images. Awan et al. [21] utilized CNN to map the representation encoding of patches
into a high-dimensional space, and uses support vector machine(SVM) to aggregate con-
textual information from high-dimensional features for breast cancer classification. Cao
et al. [22] applied the RFSVMmethod to classify breast cancer data. Yan et al. [23] pro-
posed a richer breast cancer classification fusion network based on pathological images
and structured electrical medical record (EMR) data, and extract multi-level feature rep-
resentations of pathological images. They further improved the accuracy of breast cancer
classification by combining pathological images with structured data which extracted
from EMR.

Although the method based on CNN not only can alleviate the complexity of extract-
ing breast cancer pathological images, but also can overcome the defect of weak image
feature extraction ability, and make the model achieve a good classification effect by
deepening the network layers. But when the amount of data in the algorithm is not
large enough, this method may find overfitting. What’s more, only the features of single
modality often have insufficient information, making it difficult tomeet the requirements
of clinical diagnosis of breast cancer.

2.3 Disease Diagnosis Based on Electronic Medical Records

EMRdata includes structured attributes of patients. Comparedwith pathological images,
electronic medical records can display features that cannot be reflected in images, such
as patient age, gender, family tumor history and other consultation informations.

Liu et al. [24] utilized a graph-structured Transformer model to jointly learn sta-
tistical information from electronic medical records and medical knowledge graphs for
performing diagnosis prediction tasks. Li et al. [25] used deep learning techniques to pro-
cess gynecological electronic medical record texts to achieve better diagnostic results.
Hazewinkel et al. [26] used text mining for psychiatric electronic medical records and
assisted to give medical decisions. From the perspective of natural language, Gong et al.
[27] usedmining algorithms tomine the related information of breast cancer fromclinical
medical record texts to assist medical workers in making breast cancer staging decisions.
Xu et al. [28] mined the feature of similar patients by using electronic medical records
of breast cancer patients as research data.

However, it is difficult to directly reflect the actual status of the tumor from the
description of the patient’s symptoms based on the text of the medical record alone.
When a patient is in the early stages of cancer, these symptoms are not very obvious,
which has a significant influence on the accuracy of the classification.
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2.4 Disease Diagnosis Based on Multimodality

Although existing deep learning models are powerful in learning visual and textual
representations, and have achieved satisfactory performance in natural language process
and medical image analysis [29], it is still a challenge to complementarily incorporate
data from different modalities into a unified modality to improve the quality of disease
diagnosis. A mainstream approach is to combine the features from different modalities
and then performs multimodal learning with deep neural networks. Mobadersany et al.
[30] combinedhistopathological features extracted fromhistological images usingVGG-
19 with genomic features of subjects by concatenation, and then input the concatenated
features into a multilayer perceptron (MLP) for the classification of glioma cancer.
Huang et al. [31] modeled the relationship between the patient’s image data and non-
image data through pairwise associative encoders, and they learned to construct fully
connected graphs based on paired associative encoders adaptively, and improved the
prediction performance.

On the one hand, in various diagnostic tasks, image data can provide the most intu-
itive features and ultimately determining the disease condition of a patient. On the other
hand, non-image data (e.g., age, gender, tumor history) provides richer information about
the patient. They can provide additional guidance for diagnosis, which is complemen-
tary to image data for the task diagnosis. Thus, it is important to study the ability of
combining image data with non-image data for multimodal medical data which can lead
to more comprehensive feature representation and more accurate disease prediction and
diagnostic performance.

In this paper, we propose Multimodal breast cancer diagnosis based on Multi-level
fusion network. Furthermore, in the face of the heterogeneous multimodal data fusion
problem. Inspired by Rahman et al. [8], we used multimodal adaptation gates (MAG)
with pathological images as the primary modality. The other two modalities are used as
a complement to the image modal information for multimodal data fusion, and obtained
the good results.

3 Methods

In this section, we describe the proposed method in detail. It includes three parts: image
feature representation, text feature representation and multimodal fusion. The proposed
method is shown in Fig. 1.

3.1 Image Feature Representation

With the development of deep learning in computer vision, different convolutional
neural networks are used in various medical diagnostic tasks. Specifically, assum-
ing that a breast cancer patient has k pathological images, the set of pathologi-
cal images can be represented as X = {x1, x2, x3, . . . , xk}. The node-level feature
V = {vi|i = 1, 2, 3, . . . , k}, vi ∈ RF of the pathological image is obtained through
the DenseNet [32] model, and the dimension of the node-level features of each image is
F .
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Fig. 1. The overall architecture of the proposed approach.

We construct the node-level feature V = {vi|i = 1, 2, 3, . . . , k}, vi ∈ RF into a fully
connected graph G = (V ,E) to obtain the correlation between pathological images.
Each vertice in the graph is node-level feature, and we use the fully connected graph to
compose the edge. This approach can assist the graph neural network to integrate and
process the information between the images.

Here, we utilize Graph attention networks (GAT) to extract high-level features of
patient images. The node-level feature V = {vi|i = 1, 2, 3, . . . , k}, vi ∈ RF of the
pathological image is used as the input of GAT. Through the multi-layer GAT model,
we extracted the new node-level feature V ′ = {

vi ′|i = 1, 2, 3, . . . , k
}
, vi ′ ∈ RF ′

, F ′ is
the dimension of the GAT output. The detailed process is as follows.

First, we apply W ∈ RF ′×F to each node to implement a parametric linear trans-
formation. Then the attention coefficient eij indicates the importance of node j to node
i:

eij = LeakyReLU (aT [Wvi||Wvj]) (1)

where || is the concatenation operation, aT ∈ R2F ′
is the parameterized weight vector,

and LeakyReLU is the nonlinear activation function. E ∈ Rt×t is the attention coefficient
matrix; t is the number of patients;W is the parameter weight matrix.

Then, the coefficient eij is normalizedwith the softmax function to obtain the attention
weight:

αij = Softmaxj
(
eij

) = exp(eij)∑
k∈Ni

exp(eik)
(2)

where Ni is the neighborhood of node i in the graph. Finally, the normalized attention
factor αij is used to calculate the weighted sum of the associated features. The output of
the k-head attention is:

vi
′ = ||Kk=1ELU (

∑

j∈Ni
αijWvj) (3)



230 M. Song et al.

where ELU is a combination of Sigmord and ReLU , which is a nonlinear activation
function. The graph-level feature Ṽ ′, Ṽ ′ ∈ RF ′

is obtained by V ′ after mean pooling:

Ṽ ′ = meanpool(
∑k

i=1
vi

′) = 1

k

∑k

i=1
vi

′ (4)

The final feature G,G ∈ RF ′+F of the patient’s pathological image is obtained by
concatenating the node-level feature and the graph-level feature Ṽ ′:

G = [1
k

∑k

i=1
vi||Ṽ ′] (5)

3.2 Text Feature Representation

In this section, we use the PathoEMR dataset which collaborated by Yan et al. [23] with
Peking University International Hospital. The PathoEMR dataset contains pathological
images and structured EMR data for breast cancer classification. We textually describe
these structured EMR data and construct the medical record text according to the rules
of clinical medicine. As shown in Table 1 and Fig. 2, these are the electronic medical
record text and 29 pathological features of patient S0000004 for textual description,
respectively.

Fig. 2. Text medical record of patient S0000004

BERT has proved that it can achieve good performances in the text classification
tasks. We use the BERT model to take the medical record text I as input, and extract the
medical record text feature T ,T ∈ RF1 . F1 is the dimension of the medical record text
feature after BERT. The formula is as follows:

T = BERTbase(I) (6)

In addition, 29 representative pathological features were selected from the patient’s
EMR, and defined as C.
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Table 1. Structural features of patient S0000004, where “-” is the selected value, and “-” is
followed by the description corresponding to the selected value

Age: 2-Between 20 and 40 Gender: 2-Female

Disease Course Type:0-Not mentioned Personal Tumor History:0-No

Family Tumor History:0-No Prophase Treatment:0-No

Neoadjuvant Chemotherapy:0-No Dimple Sign:0-No

Orange Peel Appearance:0-No Redness And Swelling Of Skin:0-No

Skin Ulcers:0-No Tumor:1-Yes

Breast Deformation:0-No Nipple Change:0-No change

Nipple Discharge:0-No Axillary Lymphadenectasis:0-No AL

Swelling Of Lymph Nodes:0-No metastasize Tumor Position:1-Outer

Tumor Number:1-Single-unilateral Tumor Size:1-Less than 20mm

Tumor Texture:1-Soft Tumor Border:1-Clear

Smooth Surface:1-Yes Tumor Morphology:1-Regular

Activity:1-Moderate Capsules:2-Enveloped

Tenderness:0-No Skin Adhesion:0-No

Pectoral Muscle Adhesion:0-No Diagnosis:1-Benign

3.3 Multimodal Fusion

In summary, we obtained the information consisting of three modalities of the patient:
pathological image feature G, medical record text feature T and pathological feature
C. Inspired by Multimodal Adaptation Gate (MAG) [8], we fuse three modalities with
attention gate as shown in Fig. 3. The implementation of MAG was first studied by
Wang et al. [33], we refer to the modality that is being adjusted as the primary modality
and the other modalities as secondary modalities. For the medical classification task,
we consider that the pathological image should be the main modality since the other
two modalities are complementary to the image modality information. Essentially, the
MAG unit receives three features as the input, such as image feature, text feature and
pathological feature. Let the triplet (G,T ,C) denote the patient’s input in the sequence.

The formula of the attention gating in Fig. 3 is as follows:

gt = ReLU (Wgt[G||T ] + bt) (7)

gc = ReLU (Wgc[G||C] + bc) (8)

whereWgt andWgc are theweightmatrices of text and pathological modalities, || denotes
the concatenation operation, and bt and bc are the bias vectors. ReLU is a nonlinear
activation function.

Then, according to the above two weights, as well as the diagnostic text feature T
and the pathological feature C, the vector H is obtained:

H = gt · (WtT ) + gc · (WcC) + bH (9)
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and pathological features, respectively. Displacement vectors derived from the image modality to
adjust the representation of other modalities.

where Wt and Wc are the weight matrices for textual and pathological information,
respectively, and bH is the bias vector.

Finally, through the weighted summation of the pathological image feature G and
the vector H , the final multimodal fusion feature M of the patient is obtained:

M = G + αH (10)

α = min(
‖G‖2
‖H‖2

β, 1) (11)

where β is the hyperparameter training with random initialization of the model. ‖G‖2
and ‖H‖2 denote the L2 norm of G and H , respectively.

3.4 Classification Prediction

At last, we use the Softmax to predict the result of the breast cancer classification, i.e.:

P
∧

= softmax(Linear(M )) (12)

where P
∧

∈ R2, M is the multimodal fusion feature, and Linear represents the output of
the fully connected layer. We use cross-entropy to calculate the loss function:

L = −1

t

∑t

n=1
Pnlog

(
P
∧

n

)
+ (1 − Pnlog

(
1 − P

∧

n

)
) (13)

where t is the number of patients, L ∈ R for binary classification problems, Pn and P
∧

n

denote the actual and predicted values of the nth patient, respectively. We calculate the
loss by replacing the ground truth label P and predicted label P

∧

.
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4 Experiments

4.1 Dataset

The PathoEMRdataset is provided by the literature Richer fusion network for breast can-
cer classification based onmultimodal data [23]. They obtained a new dataset PathoEMR
from Peking University International Hospital, which contains pathological images and
corresponding EMR data of each patient.

The dataset collected data from 185 breast cancer patients whowere treated at Peking
University International Hospital fromMarch 2015 to March 2018, of which 82 patients
were benign and 103 patients were malignant. Each patient included 2–97 pathological
images for the study. Finally, there are a total of 3764 pathological images with size of
2048 × 1536 pixels, and each image is marked as benign or malignant (1332 benign,
2432 malignant).

In addition to the pathological images of patients, Yan et al. [23] also collected
EMR data of patients. Electronic medical records (EMR) reflect some of the patient’s
consultation information. Yan et al. [23] also extracted 29 representative features from
EMR.

4.2 Experimental Setup and Evaluation Metrics

We randomly selected 80% of the dataset as the train set to train the model and the
remaining 20% as the test set for testing. Our proposed network is implemented using
PyTorch, and using an ADAM optimizer with an initial learning rate of 0.0001 to mini-
mize the cross-entropy loss during training with a batch size of 10 and epoch of 1000 on
anNVIDIARTX3090GPU.We resize each pathological image to 224×224, and extract
the feature vector of pathological images fromDenseNet with dimension F = 1024.We
use a three-layer GAT, and the GAT hidden layer (the first layer) has 4 attention heads
to calculate 256-dimensional features, the second and third layers with a single atten-
tion head to calculate F ′ = 128 dimensional features. The text of the medical record
is extracted through BERT to extract the text features of F1 = 768 dimensions. The
pathological features were extracted from EMR with 29 dimensions.

In GAT, we set the depth as 60 nodes: if the number of nodes is less than 60, we
will use the zero vector supplement. Please note that the supplemented zero vector here
has no edges, so it has no effect on the experimental results. If the number of nodes is
greater than 60, we take the middle 60 as the input, and truncate the more part. In the
PathEMR dataset, there is only one case with more than 60 images, and 60 pathological
images are enough to learn the image features of the patient, so it has no effect on
the experimental results. For the evaluation of the proposed method, we compared our
proposed model with previously proposed models for breast cancer classification. We
evaluate the method in terms of classification accuracy (ACC), AUC, precision, recall
and F1-score. The accuracy rate indicates the number of samples with correct predictions
as a percentage of the total number of samples. Precision represents true positive samples
rate of each positive samples. Recall represents the numbers of positive samples in the
samples which predicted correctly. F1 score is a weighted average of accuracy and recall.
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These metrics are calculated as follows:

ACC =
∑t

n=1

TNn + TPn

TNn + FPn + FNn + TPn
(14)

precision =
∑t

n=1

TPn

TPn + FPn
(15)

recall = True positive rate =
∑t

n=1

TPn

TPn + FNn
(16)

F1 − score = 2 · precision · recall
precision + recall

(17)

FalsF positive rate =
∑t

n=1

FPn

FPn + TNn
(18)

Among them, TPn,TNn,FPn and FNn denote the values of true positives, true
negatives, false positives and false negatives respectively. t represents the number of
patients in the dataset. The ROC curve and AUC were also used to further evaluate the
performance of the classifier.

4.3 Comparative Experiment

We conduct extensive experiments to evaluate the performance of the proposed method.
Few of the existing studies have used only clinical electronic medical record text to
diagnose breast cancer, so we compared our method with several methods which are
based on pathological images [14–23]. As shown inTable 2, the accuracy of our proposed
model is higher than previous proposed methods.

Table 2. Comparison of the accuracy of different methods for breast cancer classification

Methods Accuracy

Bayramoglu et al. (CNN) [14] 83%

Spanhol et al. (AlexNet) [16] 85%

Araújo et al. (CNN + SVM) [17] 83.3%

Rakhlin et al. (CNN) [18] 87.2%

Vang et al. (Inception-V3) [19] 87.5%

Golatkar et al. (Inception-V3) [20] 85%

Awan et al. (CNN + SVM) [21] 83%

Cao et al. (RFSVM) [22] 87.1%

Aresta et al. (CNN) [15] 87%

Yan et al. (VGG16 + denoising autoencoder) [23] 92.9%

Our proposed 93.62%
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4.4 Model Analysis

Experimental Results
In order to verify the effectiveness of the proposed model, we conducted experiments
on four variants of it: (1) Text: only use single-modality features which are based on
text for classification; (2) Image-node only: only use node-level features for classifica-
tion; (3) Image-graph: image features obtained by concatenating node-level features and
graph-level features for classification; (4) Structured data: only from 29 representative
structured pathological features for classification. Our experimental results are shown
in Table 3 and Fig. 4. Figure 4(a) shows the classification performance of the differ-
ent methods in each variant experiment. Based on the receiver operating characteristic
(ROC) analysis, the area under the curve (AUC) using the variant experiment is shown
in Fig. 4(b).

Table 3. Variant experiments for the proposed model. For classification tasks. We selected
evaluation metrics such as ACC, Recall, Precision, F1-score, AUC, etc.

Methods Accuracy Recall Precision F1-score AUC

Text 0.7447 0.7308 0.7917 0.7034 0.8077

Image-node only 0.8298 0.7692 0.8323 0.8163 0.8352

Image-graph 0.8723 0.8524 0.8275 0.8364 0.8936

Structured data 0.6596 0.7238 0.7456 0.6827 0.6807

Our proposed 0.9362 0.8812 0.9013 0.8990 0.9476

Fig. 4. The result of the classification performance.

It can be seen that only using the features of structured data have the lowest perfor-
mance of classification tasks. The classification performancewhich is using Image-graph
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pathological image features is significantly better than Image-node only, although its Pre-
cision value is slightly lower than Image-node only by 0.0048, its values in ACC, Recall,
F1-score and AUC are improved by 0.0425, 0.0832, 0.0201, 0.0584 respectively, and
achieved the better performance. Because comparedwith Image-node only, Image-graph
is GNN based. The graph structure provides a broader view and also includes interac-
tions between individual node-level vectors. The graph structure method can model the
structural continuity and interaction between individual pathological images of patients
[34]. In contrast to convolutional neural network (CNN), graph neural networks (GNNs)
are parameter efficient and also include the interactions that exist between images [35–
37]. Our proposed method achieved the best performance, reaching the highest values
in terms of ACC, Recall, Precision, F1-score, and AUC, which were 0.0639, 0.0288,
0.0738, 0.0626 and 0.0540 higher than the second best Image-graph method respec-
tively. Although the performance of Text and Structured data alone is not good, but the
features of these data can be used to fuse with image features, and the combination of
multi-modal data fusion can make the fused feature representation richer. The comple-
mentarity between data can be fully exploited. The experimental results show that our
proposed model achieves superior performance and makes the automatic breast cancer
classification algorithms possible in medical diagnosis.

Fusion Strategy
We will change the components of the fusion model to explore their impact on per-
formance. The results are shown in Table 4, Fig. 5(a). According to the ROC char-
acteristic analysis, the area under the curve (AUC) using different fusion strategies is
shown in Fig. 5(b). We selected evaluation indicators such as ACC, Recall, Precision,
F1-score, and AUC to explore the influence of different fusion strategies. We enumer-
ate some basic aggregation functions and compare them with our fusion strategy: (1)
add:x+ y; (2) concat:x‖y; (2) mlp:x+ tanh(Wy + b)), where tanh is the activation func-
tion; (3) att:αx+ (1−α)y, where α is a real-valued scalar parameterized by x and y; (4)
gate:βx + (1 − β)y, where β is a real-valued vector parameterized by x and y.

Table 4. Influence of different fusion strategies on experimental results.

Methods Accuracy Recall Precision F1-score AUC

add 0.8085 0.7783 0.7811 0.7856 0.7856

concat 0.8511 0.8359 0.8016 0.7962 0.8372

MLP 0.9149 0.8792 0.8614 0.8869 0.8777

att 0.8738 0.8503 0.8532 0.8693 0.8604

gate 0.9205 0.8705 0.8819 0.8784 0.9185

MAG 0.9362 0.8812 0.9013 0.8990 0.9476

In our proposed model, the MAG unit receives three feature inputs which are image
feature G,G ∈ R1152, text feature T ,T ∈ R768 and pathological feature C,C ∈ R29.
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During the variant experiment, we concatenate the text feature T and the pathological
feature C to obtain the EMR feature E,E ∈ R797. We reduce the image feature G and
EMR feature E to 500 dimensions as the input of x and y to the fusion strategies except
MAG for analysis. We can observe that the evaluation criterion value achieved by the
MAGfusion strategy is significantly better than the performance of other fusionmethods,
and the classification accuracy of breast cancer is obviously improved.

Fig. 5. The experimental result of fusion strategy.

5 Conclusion

In this paper, we proposed Multimodal breast cancer diagnosis based on Multi-level
fusion network. In the feature extraction stage, we used Graph Attention Network to
extract node and graph level features to capture fine-grained features of pathological
images. Besides, we processed the electronic medical record (EMR) and formed the
medical text description, and we used the pre-trained model (BERT) to obtain diag-
nostic text feature extraction. To fuse the features by fully exploiting the correlation
between different modalities, we fused the image, text and pathological features through
a Multimodal Adaptation Gate (MAG).

Extensive experiments on PathoEMR datasets and compared with the other deep
learning models for breast cancer diagnosis. It’s prove that the performance of the pro-
posed network is significantly better than that of the current state-of-the-art models,
which demonstrates the validity and robustness of the method for the diagnosis of breast
cancer.
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Abstract. Aiming at the problem of low intelligence of horizontal transport vehi-
cles in container terminal, the research on cooperative vehicle infrastructure sys-
tem is carried out combined with the characteristics of closure and low-speed
for container terminals. The model for the behavior control and optimization of
unmanned vehicles is designed based on Q-Learning, and the cooperative vehicle
infrastructure system of container terminal is developed. A verification experi-
ment is designed. Through sensor information recognition and behavior control
training, the accuracy rate of driving behavior control of the system is more than
90%, which can effectively command vehicles, ensure traffic safety and improve
traffic efficiency.

Keywords: Container terminal · Cooperative vehicle infrastructure system ·
Q-learning · Driving behavior

1 Introduction

The objective of horizontal transportation in container terminal is to dispatch and trans-
port containers between the wharf and the yard by vehicles, and then realize the loading
and unloading of containers in ships and yards. With the increase of global trade and the
development of larger ships, driverless and intellectualization of vehicle will become
the development trend in the future.

Based on the online learning algorithm, Li Jing studied the dynamic scheduling
problem of horizontal transportation vehicles [1]. Kim J studied the multi-objective
adaptive scheduling optimization of horizontal transport vehicles at the wharf [2]. Bian
Zhan conducted research on vehicle task assignment [3]. Miyamoto t carried out the
research on the route optimization of unmanned vehicles at the wharf [4]. Jamal shahrabi
realized dynamic scheduling parameter optimization based on reinforcement learning
[5]. Zhu l designed an on-line semi supervised learning algorithm for unmanned vehicle
scheduling at the wharf [6].
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Given all of that, it can be seen that most of the scholars pay attention to such issues
as vehicle path planning, task allocation and equipment cooperative operation at the
terminal, and pay little attention to the intelligent behavior of vehicles. In view of this
problem, Cooperative Vehicle Infrastructure System in Container Terminals based on
Q-Learning algorithm [7] is designed. Through many training and experiments, it is
proved that the system can accurately identify environmental information and command
vehicles to make correct behavior.

2 Design of Model

There are unmanned vehicles and traditional container trucks in terminal. There are
more than a hundred of these two kinds of vehicles at the operation peak. Vehicles will
accelerate, overtake, turn and turn around at road driving areas and intersections. Due
to the limited number of roadways and the size of vehicles at the same time, there are
overtaking collision, turning collision [8], U-turn collision, etc. on the shore, and there
are overtaking collision, opposing collision, turning collision and complex conflict in
the yard.

The information sources of the unmannedvehicle during drivingmainly include radar
and camera [9]. Information types mainly include location information, ground mark
and obstacles. Ground marks mainly refer to straight ahead marks and turning marks.
Random obstacles mainly refer to moving vehicles, random intruders and static objects.
Unmanned driving can be realized only by recognizing environmental information and
controlling driving behavior [10].

Q-learning is a model-free algorithm based on Q-value iteration. It is used to solve
Markov decision problems and is widely used in the field of robotics [11, 12]. It is
assumed that S is the state set of the environment, which refers to the set of driverless
areas. S is a state. A is the action set of the agent. There are four actions of unmanned
vehicle, including straight ahead, turning, stopping and overtaking. a is an action. A(s)
is the set of all candidate actions in s state. R(s) is the return value of environmental
feedback in s state. Q(s, a) is the Q value generated by executing the a action in the s state.
Based on the Q-table, the Q-learning algorithm mainly update the Q value according to
Eq. 1.

Q(s, a) ← (1 − α)Q(s, a) + α ∗ [R(s) + γ ∗ max
a′ Q(s′, a′)] (1)

Here, s and s′ are the current state and the lower state respectively. a is the effective
action to make s to s′. α is called the learning rate, which is used to adjust the possible
error in the learning process, α ∈ [0, 1]. γ is the discount factor.

3 Design of Cooperative Vehicle Infrastructure System

Aiming at the problem of intelligent driving of unmanned vehicles in container termi-
nal, Cooperative Vehicle Infrastructure System is designed. The system is composed
of communication subsystem, dispatching control software and unmanned vehicle. The
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architecture is shown in Fig. 1. The communication subsystem can realize informa-
tion communication between the dispatching control system and unmanned vehicles
by wireless communication technology. The dispatching control software is equivalent
to the control brain of the unmanned vehicle, and realizes the driving behavior con-
trol, traffic control, etc. Unmanned vehicles are equipped with high-precision maps and
high-precision sensors, and have the functions of environmental perception, real-time
scanning and uploading of road conditions, and intelligent driving.

Fig. 1. Architecture of cooperative vehicle infrastructure system

The network topology of the cooperative vehicle infrastructure system mainly
includes the on-board terminal, communication base station, communication link and
central control center. The on-board host summarizes the environmental perception infor-
mation of the on-board sensors, and sends information about vehicle and environmental
to the dispatching software through the on-board terminal in combination with the high-
precisionmap and the vehicle basic controlmodule. The on-board terminal interacts with
the base station by wireless communication. The base station sends the feedback infor-
mation of the unmanned vehicle to the dispatching control software located in the central
control center based on the communication link composed of the optical fiber and the
switch. The scheduling control software integrates the Q-learning algorithm model and
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task scheduling rules, and can send the scheduling instructions to the unmanned vehicle
host in reverse real time, so as to realize vehicle path planning, emergency response,
task scheduling, etc. The network topology of the system is shown in Fig. 2.

Fig. 2. The network topology of the system

4 Test Verification

4.1 Simulation Experiment

Based on Q-learning algorithm, the unmanned vehicle is controlled. The grid map is
used to simulate the environment of the vehicle, and the map size is 40 × 80. The
coordinate value of the vehicle position corresponds to a state of Q-table. S = {straight
ahead area, turning area, parking area and obstacle area}. There are 4 types of vehicle
actions. A = {straight ahead, turning, stopping and overtaking}. After the action selec-
tion is completed, the traveling road query will be conducted if a random obstacle is
encountered. If there is an available road, enter the next state, that is, conduct obstacle
avoidance operations, such as turning and overtaking. Otherwise, the vehicle is braked.
After the action selection, while there is a running vehicle in the current side and there
are other feasible roads, the vehicle which in straight ahead area will overtake. If there is
a running vehicle on the front and there is no other feasible road, the vehicle shall keep
a straight distance. There is no running vehicle on the front side, the vehicle accelerates.
The starting position of the vehicle is at coordinates (3, 10) and the target position is
at coordinates (78, 20). The main parameters in the experiment are set as follows. α =
0.2, γ = 0.99, edge return value R1 = −0.2, target return value R2 = 6, obstacle return
value R3 = −1. The velocity curve of unmanned vehicle is shown in Fig. 3.

It can be seen from the above figure that the unmanned vehicle can realize turning,
emergency braking and other operations independently after many times of learning
and training. Compared with manual remote control, the accuracy of vehicle behavior
control based on machine learning algorithm can reach more than 90%.
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Fig. 3. Curve of velocity

4.2 Outdoor Experiment

The site is composed of a ring-shaped vehicle driving area and parking space area, and
the site size is 200 * 100 m. People and trolleys are used as random obstacles. A port
heavy-duty unmanned vehicle was independently developed. It is 15 m long, 3.2 m wide
and 2.1 m high. The unmanned vehicle is equipped with camera, laser radar, millimeter
wave radar, on-board map, etc. The maximum acceleration of the unmanned vehicle is
1 m/s2, the maximum angular acceleration is 30°/s2, the maximum operating speed is
8 m/s, the recommended no-load speed is 8 m/s, the full load velocity is 5 m/s, and the
minimum external turning radius is 7.65 m. Some test results are shown in Fig. 4. It can
be seen from the figure that the unmanned vehicle can recognize the obstacles of the
trolley and brake the vehicle in time, which can keep a safe distance of 3 m from the
obstacles. After arriving at the destination, the unmanned vehicle can realize accurate
parking. The positioning accuracy can reach 2 cm.



Behavior Control of Cooperative Vehicle Infrastructure System 245

Fig. 4. Outdoor experiment results

5 Conclusion

In view of the low intelligence of the behavior control of unmanned vehicles in container
terminals, this paper designs the behavior control model of unmanned vehicles based
on Q-learning, and then develops the cooperative vehicle infrastructure system. The
simulation results show that the algorithm model can effectively command the vehicle,
and the accuracy rate is higher than90%.Throughoutdoor experiments, it canbe seen that
the cooperative vehicle infrastructure system can identify obstacles, road signs and other
surrounding environments, and effectively control the behavior of unmanned vehicles
such as obstacle avoidance, turning and parking.
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Abstract. In recent years, deep learning is the main research direction of the
autonomous driving industry. And security is the top priority in the research pro-
cess of autonomous driving. Many studies show that the deep network neural is
very vulnerable to be attacked by backdoor during training. The model affected by
backdoor performs normally on the clean data, once it encounters the input with
trigger designed by us, it will predict incorrect results which may be specially set
by the attacker. Based on this, this paper proposes a new method for the vehicle
autonomous driving fogging attack by fogging a small part of training data and
implanting the back door into the victim model. We demonstrate on three deep
neural network models and two data sets, which shows that we have a high attack
success rate of 99 When the input image is fogged heavily enough.

Keywords: Autonomous driving · Deep neural network · Backdoor attack

1 Introduction

Deep neural network is a powerful deep learning model. With the rapid development
of deep learning, it has made great achievements in the field of speech [2], image [3,
4], text [5] and other information processing [6]. It is promoting the development of
various machine tasks such as machine translation [7], computer vision [8, 31] and
speech recognition [9]. Of course, DNN is also applicable to a safety critical scenario:
autonomous driving [10, 13, 15].

Autonomous driving is an area that most of us focus on. The whole autonomous
driving is a process from image to action. It can be further divided into four steps: data
acquisition [11], data processing [14, 16] and obtaining accurate behavior prediction,
and finally control and execution [12]. The input of autonomous driving system is sensor
data, in which the image captured by the camera is very important. The attacker can post
the backdoor in the neural network and trigger it by superimposing Trigger on the image
captured by the camera. Therefore, our research on the backdoor attack of autonomous
driving on deep learning has become very important.
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One of the security attacks against deep learning is to generate adversarial samples
[17, 33]. There will be no great visual difference between the generated adversarial
samples and the original samples. The people’s eyes cannot be separated normally [34],
but wrong predictions will occur when the model inputs this adversarial sample, It can
fool most deep neural network models with a high attack success rate. Like backdoor
attacks [18], the purpose of adversarial sample attacks is tomisclassify themodel. Indeed,
the research hypothesis of adversarial sample attacks is weaker, that is, it needs less
understanding and contact with the victimmodel, and the research is more in-depth [19].
However, the backdoor in the model are actively implanted by attackers, so backdoor
attacks provide attackers with greater flexibility. In addition, the counter sample needs
to carefully design different disturbances for each input, and in the backdoor attack, it
only needs to superimpose trigger on the input. DNN network needs a lot of training
data to achieve its goal, and there will be errors when collecting these data, which is
easy to have an unpredictable impact in the process.

In this paper, we propose a fogging backdoor attack for vehicles’ model which
generated backdoor images by a natural phenomenon: fog. Due to outsourcing, the
adversary can control the model and input with ease. And the fog is a common natural
phenomenon, in general we cannot recognize that the image with fog is a backdoor
example which can lead to the model predict the incorrect behavior, as illustrated in
Fig. 2. The clean image which is no turn right add trigger as the input the fogging
adversarial image. And the vehicles’ DNN model will wrong classified as turn right.
They can lead to traffic accident.

In summary, our key contributions in this paper are:

(1) We propose a novel type of perturbation for adversarial examples applied automatic
driving. We combine image fogging technique and backdoor attack algorithm.

(2) We invalidate the model watermarks from the perspective of improving the robust-
ness of the model. We validate the effectiveness of fogging attack using TSRD
dataset.

(3) We evaluate our approach on TSRD dataset. The experimental results demonstrate
that our approach can achieve a 99% attack black-box success rate on VGG16 and
98.6% on Resnet34.

2 Related Work

In this section we provide some background information on deep learning, back- door
attacks and automatic driving.

Deep Learning (DL) is a branch of machine learning. It is an algorithm that attempts
to abstract data at a high level using multiple processing layers composed of complex
structures or multiple nonlinear transformations [20–25]. It is easier to learn tasks from
examples (for example, face recognition or facial expression recognition) using some
specific representation methods.

Automatic driving can be divided into three categories: ruled-based system (mediated
perception approach), fully end-to-end system (behavior reflex approach), intermediate
approach.
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Ruled-based system: The whole automatic driving system is a closed loop system,
vehicle sensor data, perception, modeling, decision, control signal, vehicle. Generally
speaking, people are more concerned about the stage from perception to decision-
making. The rule-based system is tomake decisions after understanding thewhole scene,
which involves many related sub problems, such as lane line, traffic sign recognition,
pedestrian detection, signal light detection, vehicle detection etc. The rule-based method
needs to take all kinds of factors into account and make comprehensive decision, which
is actually a very difficult and complex thing.

End-to-end system: End-to-end deep learning is in autopilot, because end- to-end
learning is image action or image steering angles. It is to leave the whole thing to the
neural network. The cost of the system is much lower than that of the rule-based system.
However, for different vehicles and sensors, the system needs to be calibrated. As in
real life, different drivers make different decisions in the face of the same or similar
scenes, so end-to-end learning is like an ill posed problem (well posed problem means
that the solution exists, the solution is unique, and the solution continuously depends on
the initial conditions or the solution is stable).

Intermediate approach: The combination of rule-based and end-to-end can take into
account the advantages of both, such as reducing the calculation cost to a certain extent.
But the disadvantages cannot offset each other. For example, it is still necessary to define
some rules artificially, and it is still difficult to define a complete set of rules perfectly.

Backdoor attack: A backdoor is a hidden pattern injected into a DNN model at its
training time [3, 29]. Backdoor is triggered only when the model gets specific input,
and then leads to unexpected output of neural network, so it is very hidden and not easy
to be found. The purpose of the backdoor attack is achieved by changing the sample
data through the attack algorithm, while Trojan neural network (TNN) can also make
the attack effect of misclassification of the model by changing the model parameters
[28]. Moreover, Yao et al. [26] show that such backdoor attack can even be inherited via
transfer-learning.

Existing Backdoor Attacks: Turner et al. [30] propose Clean-label (CL) backdoor
attacks. Chen et al. [33] propose backdoor poisoning attacks which achieved backdoor
attacks by injecting poisoning data into the training set. Liu et al. [28] propose Trojan
attack. They can achieved Trojan attack without access the training data that are used
to training the model, rather than using trigger patterns. They construct the backdoor
activation by setting the significant response of the neurons at the hidden layer. Gu et al.
[27] propose BadNets that achieved backdoor attack by poisoning its training dataset to
injects a backdoor to the model. Barni et al. [3] proposed signal backdoor (SIG) (Fig. 1).
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Fig. 1. The top row is a clean image which can be correctly classified after passing through the
victim model. The bottom row is the adversarial example with triggers. After passing through the
victim model, it will be incorrectly classified into other classes which can be arbitrarily specified
by the attacker.

3 Fogging Backdoor Attack

In this section, we introduce the fogging backdoor attack from three aspects: Mathe-
matical modeling of fogging, proposed fogging backdoor attack, Followed by its key
benefits and differences from existing backdoor attacks.

3.1 Problem Definition

Given a k class image data set defined asD(xi, yi)ni=1, supposeD(xi, yi) is the ith instance
of the training set, xi ∈ X. X ⊆ Rn represent features of feature space, yi ∈ Y =
{1, . . . ,K}, Y represents the correct class label corresponding to the input. According
to the unknown distribution xi ∈ D, the model system aims to learn a classification f:
X → Y which is mapped from the X domain to the classification result domain Y. We
divide the data set into training set and test set. Our backdoor attack process is to infect
the backdoor mode to a small part of the training set D during Dinject ⊂ Dtrain, after
the model training, it will be a model with a backdoor, and then whenever the infected
model receives the input with a backdoor trigger, it will predict the output set by the
attacker. Our league has changed the problem to how to produce an effective back door
model. Next, I will introduce using image fogging as a backdoor mode.
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Fig. 2. The top part is the training part of the whole attack process. We use part of the adversarial
samples and the normal training set to train the model. Then we’ll get a victim model. The bottom
is that inference procedures of our reflection backdoor attack.We actually apply this victimmodel,
when the image we collect is a clean sample, the model will give the correct result, but when our
sampled image is an image with trigger, the model will get a result specified by the attacker with
high confidence.

3.2 Mathematical Modeling of Fogging

Fog is a natural weather phenomenon, when the fog exist, the image blurs because of
the decrease of brightness, contrast and resolution. In computer vision and computer
graphics, image fogging model is widely used. We define the background image as X
and the infected image as Xadv, then the process of injecting the image into the backdoor
mode can be formulated as:

Xadv = X ∗ r + a ∗ (1 − r) (1)

where r is the transmissivity of atmosphere which is a super parameter a is global
atmospheric light composition, it is super parameter. This formula denotes that the foggy
image consist of a particular percentage of original image and a particular percentage of
atmosphere light reflection. We will use the adversarial image generated in this way as
backdoor attack. And the transmissivity can be formulated as:

r = exp(−β ∗ (−η ∗ sqrt((i − m)2 + (j − n)2) + a) (2)

a = max(Xh,Xw) (3)

where β denotes the degree of concentration of fog. η denotes super parameter, i, j
represent the pixel position. The m, n represent the center pixel position of original
image. Represent the width of original image and represent the height. In this paper, we
focus on the size, concentration and lightness.
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Automatic driving process is an end-to-end process. From data acquisition to action
decision-making, it is usually a system including deep learningmodel. In practical appli-
cation, automatic driving will encounter various weather environments. When foggy
days, the autopilot system collects fog image as the input of the system to make deci-
sions on subsequent vehicle actions. However, this foggy image is a rear door image
with a trigger, so the system will misjudge the subsequent vehicle action.

3.3 The Fogging Backdoor Attack Pipeline

Attack process: the training and prediction process of fogging attack proposed by us
is shown in Fig. 2. The first step is to select a small part of data from the training set
Dinject ⊂ Dtrain. In the second step, these selected data sets are specially processed, and
these images are input as part of the simulation experiment by adding a layer of fog and
give it a label Dadv. The third step is to integrate the fogged data with the clean data set
(Dinject , Dtrain), then put it into the victim model training, and implant the backdoor into
the victim model. The infected model performs normally on clean samples, but once it
encounters fogged images, it will be incorrectly predicted as other classes.

Table 1. Performance on the different models.

AlexNet VGG16 ResNet34

test accur (%) 85.7 86.6 87.6

attack succ (%) 98.2 99 98.6

Automatic driving process is an end-to-end process. From data acquisition to action
decision-making, it is usually a system including deep learningmodel. In practical appli-
cation, automatic driving will encounter various weather environments. When foggy
days, the autopilot system collects fog image as the input of the system to make deci-
sions on subsequent vehicle actions. However, this foggy image is a rear door image
with a trigger, so the system will misjudge the subsequent vehicle action.

4 Experiment

In this section, we evaluate the effectiveness of our method, and then give a comprehen-
sive understanding of our fogging backdoor attack. And give a compare with state-of-
the-art backdoor attack method (Fig. 3).

4.1 Experiment Setup

Our experiments posed on TSRD. The TSRD includes 6164 traffic sign images contain-
ing 58 sign categories. The images are divided into two subdatabase as training database
and testing database. The training database includes4170 images while the testing one
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Fig. 3. The figure on the left shows that after the model is infected into the victim model, the
clean images will be classified into the corresponding correct categories after passing through
the model; The figure on the right shows that the images with trigger will be classified into the
categories specified by the attacker with high confidence after being used as the input of the victim
model.

Table 2. Comparison results with state-of-the-art methods.

Test accuracy Attack success

BadNets 86.5% 26.2%

SIG 84% 58.8%

CL 86.2% 64.2%

Refool 86.8% 89.6%

Our methond 87.6% 98.6%

contains 1994 images. All images are annotated the four coordinates of the sign and the
category.

We choose classificationmodelAlexNet [35], VGG16 [36] andResNet34 [37]which
widely used in the deep learning area. Alexnet contains several relatively new technical
points, and it has successfully applied some tricks such as relu, dropout and LRN in CNN
for the first time. At the same time, Alexnet also uses GPU for computing acceleration.
VGG uses three 3 × 3 convolution kernels instead of 7 × 7 convolution kernels and
two 3 × 3 convolution kernels instead of 5 × 5 convolution kernels. The main purpose
of this is to improve the depth of the network and the effect of the neural network to a
certain extent under the condition of ensuring the same perceptual field. ResNet34 is a
residual convolutional neural network model. The characteristic of residual network is
easy to optimize and can improve the accuracy by increasing a considerable depth. The
degradation of deep networks at least shows that deep networks are not easy to train. The
internal residual block uses jump connection, which alleviates the problem of gradient
disappearance caused by increasing depth in depth neural network.

For all datasets, we randomly select a small number of cleaning training image as
the injection set. And we set the adversarial target class to the 22th class (i.e, class id
021), and randomly select a number of testing set as the foggy image to test the models’
attack success rate. And we set the parameter a as 0.5, the super parameter η equal to
0.04 and β equal to 1.

All models are trained using Stochastic Gradient Descent (SGD) optimizer, an initial
learning rate 0.01. We use batch size 8 and training two models 200 epochs. All images
are normalized 0 to 1.



254 J. Liu et al.

4.2 Effectiveness of Our Fogging Attack

Here, we compare our attack method with other three state-of-the-art backdoor attacks:
BadNets [27] clean label [30], and signal backdoor (SIG) [3]. We use the original exper-
imental results as reported in their papers. The classification accuracy, attack success
rates and the corresponding injection rates are reported in Table 2. By poisoning a small
part of the training set, the fog attack we proposed can achieve a higher attack success
rate than other existing backdoor attacks on the DNN model. The attack rate on TSRD
can reach 98%, which is more than 10% higher than most backdoor attack methods in
the past, and more than 8% higher than state-of-the-art existing methods. Moreover, the
test accuracy of our method in clean input has also reached 87.6%, which is nearly 1%
higher than the existing state-of-the-art methods.

In addition, for ourmethod,we useAlexNet, VGG16 andResNet34 as our simulation
model. The result are shown in Table 1. When our method is used on ResNet34, the test
accuracy of clean samples is the highest, reaching 87.6%. The result on VGG16 reaches
a high attack success rate 99%. Although the attack rate on VGG16 is the highest, the
attack success rate of our method on ResNet and AlexNet is also up to 98.6% and 98.2%.
This was demonstrated that our method is very effective in the application of automatic
driving.

5 Conclusion

In this paper, we have explored the natural phenomenon of fog and apply it to backdoor
attack of DNN. Based on the mathematic modeling, we implemented it in autonomous
driving.We proposed fogging attack, we plant backdoor into aDNNmodel by generating
fog into a small number of training data. Empirical results across 3 models demonstrate
the effectiveness of fogging attack. It can attack state-of-the-art DNNs with high success
rate and small degradation in clean dataset accuracy.

Acknowledgements. This work was supported by General Program of Guangxi Natural
Science Foundation (nos. 2019GXNSFAA245053), Major Science Technology Project in
Guangxi Province (nos. AA19254016), Project of Guilin Science and Technology Bureau (nos.
2020011123).
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Abstract. Text classification is an essential task in the domain of natural lan-
guage processing (NLP), which involves assigning a sentence or document to an
appropriate category. This paper mainly focuses on using ALBERT-TextCNN for
Japanese text classification. First, the data files from Japanese Wikipedia pages
are collected and then divided into 31 categories. Next, the ALBERT-TextCNN
model for Japanese text classification is built with two steps: 1) select theALBERT
model as the pre-training model; 2) use TextCNN to further extract semantic fea-
tures from texts. We conducted experiments to compare the ALBERT-TextCNN
model using the Sentencepiece tokenizer with other state-of-the-art models. The
results show that the performance is improved by about 14.5%, 11.6%, 13.8%, and
13.3% in value evaluation metrics like Accuracy, Precision, Recall, and F1-score,
which shows that the ALBERT-TextCNN model can be used to classify Japanese
text effectively.

Keywords: TextCNN · ALBERT · Japanese text classification · NLP

1 Introduction

Research on NLP has achieved great success in recent decades. A series of research
achievements have been obtained in many different aspects, such as named entity recog-
nition, abstract generation, semantic comparison, and text classification [1]. Text clas-
sification is an essential task in NLP, which involves assigning a sentence or text to an
appropriate category. Text classification is widely used in many areas, such as spam
filtering, news classification, sentiment analysis [2], intention recognition [3], question
answering [4], topic labeling, and information retrieval.

Many different approaches have been proposed to improve text classification with
higher accuracy and efficiency. Early researchers mainly use rule-based methods [13];
for example, a user can manage incoming mails using filtering rules. In recent years,
significant efforts have been made on text classification using machine learning and
deep learning models such as supervised [24, 25], semi-supervised, and unsupervised
algorithms [5]; these recent approaches can achieve great success due to the availability of
rich training data. Figure 1 shows the typicalmethod for text classification usingmachine
and deep learningmodels: the left side shows the trainingmodel, and the right side shows
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how to use the trained model for prediction. The workflow for text classification can also
be summarized as follows [6]: data collection, data cleaning, choosing a model, training
the model, use the model for text classification.

Indeed, with the development of machine learning technologies, more and more
approaches are proposed for text classification, but these approaches are mainly used for
English text classification. Thus, it is urgent to deal with the task of text classification
for other languages, such as Chinese [7–9] and Japanese [10, 26]. However, because of
the different features of languages, it is impossible to process text classification tasks of
other languages in a similar way as English.

In English text [27, 28], each word is separated by a space. In Japanese, however,
each word is not separated by a similar space character, leading to a different word
separation in text preprocessing other than in English. Therefore, we also used two other
word separation methods for Japanese text, SentencePiece [11] and MeCab, to check
the performance with the ALBERT-TextCNN model.

The rest of this paper is organized as follows. Section 2 reviews some related work.
Section 3 explains the implementation of ALBERT-TEXTCN. Section 4 introduces the
evaluationmethodology andpresents the experimental results. Section5gives conclusion
and future work.

(a). Training (b). Prediction 

Fig. 1. Typical method for text classification using machine and deep learning models.

2 Related Work

2.1 Solutions for Text Classification

In old days, people often used traditional methods to represent the feature of texts for
text classification. For example, Farhoodi et al. [12] proposed an n-gram-based text
classification method for classifying Persian texts. Aubaid et al. [13] and Han et al. [14]
suggested using rule-based methods for text classification.
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With the development of deep learning,more andmore solutions based on deep learn-
ing techniques are proposed for text classification: Recurrent Neural Network (RNN)
[15], Long-Short-TermMemoryNetwork (LSTM) [16], GatedCircular Unit Neural Net-
work (GRU), and others. For example, Liu et al. [17] used RNN for text classification
tasks; LiuG et al. [18] proposed anAC-BiLSTMmodel that contains an attentionmecha-
nism, the convolutional layer, and bidirectional LSTM (BiLSTM) for text classification.
However, because these approaches are mainly based on linear feature extraction, it is
challenging to solve the parallel problem of text classification. To address this problem,
Kim et al. [19] came up with the idea of applying CNN to text-sorting tasks, where the
representation of words at different locations can be obtained by convolution.

In recent years, approaches with attention mechanisms have appeared to improve
the relationship between word vectors for better text classification. Vaswani et al. [20]
proposed a model called Transformer, which consists entirely of self-explanatory mech-
anisms. By calculating the similarity between each word vector, it can get the similarity
between each word vector and result in better performance for text classification. Devlin
et al. [21] introduced a new language representation model called BERT, which stands
for Bidirectional Encoder Representations from Transformers. BERT is designed to pre-
train deep bidirectional representations from an unlabeled text by jointly conditioning on
both left and proper contexts in all layers. The BERT model can be used on larger-scale
text datasets. Lan et al. [22] proposed the ALBERT model, which shared the parameters
of each layer, significantly improving the number of parameter problems generated by
the BERT model and increasing the training speed accordingly.

Since the number of parameters with the ALBERT model can be significantly
reduced, we plan to combine TextCNNwith ALBERT by removing the last hidden layer
of ALBERT and using TextCNN for convolutional operations to extract text features
further.

2.2 Text Classification for Different Languages

Most of the studies for text classification are focused on English texts. In English, words
are generally separated by spaces, and an independent meaning is available for each
word. In contrast, Chinese words or Japanese words, on the contrary, have no spaces to
separate them [23]. In this paper, we try to do our preliminary study on Japanese text
classification with the ALBERT-TextCNN model. We collect the text data files from
Japanese Wikipedia pages and divide them into 31 categories.

3 Methodology

In this section, we first introduce the ALBERT-TextCNN model and then demonstrate
two word-separation methods for the Japanese language.

3.1 ALBERT-TextCNN Model

The Reason for Using ALBERT-TextCNN Model. We use the ALBERT pre-trained
model to vectorize the text and then pass the vectorized result to the TextCNN model as
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input. The reason for using ALBERT as a pre-trained model is that it is very lightweight.
It has a greatly-reduced number of parameters compared to other BERTmodels, and the
training speed is relatively fast. Overall, ALBERT has three improvements over BERT:

1. To better distinguish the dimension of the word embedding from the hidden layer,
ALBERT decomposes the embedded parameters and maps the parameters of the
word embedding layer to the lower extent to reduce the dimension.

2. To reduce the large number of parameters brought about by BERT,ALBERTweights
the parameters of each layer, avoiding scenarios inwhich themore depth the network,
the larger the number of parameters.

3. To address the invalidity of the loss caused by BERT’s Next Sentience Predic-
tion(NSP) task, the self-monitoring loss task of Sentence-Order Prediction(SOP)
was adopted.

Model Framework. We use the ALBERT-TextCNNmodel for Japanese text classifica-
tion. Figure 2 shows the framework of the ALBERT-TextCNN model. Because of these
three improvements mentioned above, the number of ALBERT parameters is decreased
from O(V ×H ) to O(V ×E+E×H ) in ALBERT, with V , H , and E being vocabulary
size, hidden layer size, and word embedding size, respectively; especially, when H is
much larger than E, it can remarkably reduce the number of parameters. In this paper,
the training process with ALBERT-TextCNN model is divided into three steps:

Fig. 2. Framework of ALBERT-TextCNN

1. The pre-classified training set is put into the pre-trained ALBERT model and
trained using the multi-layer Transformer encoder to output the semantic feature
representation of the text.

2. The final hidden state of the Transformer structure inside ALBERT is removed and
placed in a TextCNN convolution pond; other operations can also be used to extract
further feature representations between texts, which results in high-level text feature
vectors.
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3. The eigenvectors that maximize semantic information are placed in the Softmax
layer for classification.

3.2 Tokenization

Since the sentence structures of English and Japanese are different, we use two word-
partitioning methods, SentencePiece and MeCab, on the ALBERT-TextCNN model for
the specificity of Japanese.

Table 1. SentencePiece and MeCab results for “Split the sentences using two separate splitting
methods” respectively.

SentencePiece and MeCab use statistical and CRF methods for word separation,
respectively. The granularity of words divided by SentencePiece is greater than MeCab,
which is shown in Table 1.

4 Experiments

4.1 Test Environment

Experimental hardware: CPU is Intel (R) Xeon (R) Gold 5218R CPU @ 2.10 GHz,
GPU is RTX3090 with 24 GB of significant memory, OS is Windows 10 64-bit, Python
version is 3.7, Pytorch version is 1.10.1.

4.2 Experiment Data

The Japanese text data used in this study was extracted by crawling Japanese Wikipedia
pages. After several layers of filtering, the dataset contains a total of 25,592 pieces of
data: each piece of data contains a text message and its corresponding tag category.
There are 31 categories in the tag categories, which include various aspects of culture,
economy, and celebrities in total.

There aremany categories in the dataset and the size of each category is different (may
too large or too small), which may have an impact on text classification. Therefore, we
plan to use data enhancement, data segmentation and data cleaning to reduce the impact
of category imbalance.

Data Enhancement. We first calculate the average number of samples per category
in the dataset, and for categories that are twice over the average number of samples,
we randomly delete some data from that category to achieve relative class equilibrium.
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For the sub-average sample size category, we adopt a palindromic approach to increase
the sample size by randomly selecting some sample data from the category: translating
it randomly into one of the eight national languages that we pre-selected, and then
translating it back. Ultimately, reduce the impact of category imbalances.

Data Splitting. With the enhanced dataset, the sample size increases from 25,592 to
28,782, and we slice the data into three parts: the training set, the validation set, and
the test set, which accounted for 70%, 20%, and 10%, respectively. For the next part of
the data cleansing, in order to reflect the classification ability of the model in a more
realistic way: only the training set was cleaned and the test set was simply stripped of
meaningless special symbols to avoid affecting the sample semantics.

Data Cleaning. As data cleaning, we first remove the meaningless and repetitive sym-
bols from the dataset to avoid impacting the generalization ability of the model. Then,
we delete all the stop words in the training set because they are abundant and have no
obvious effect on the meaning expression of the original samples. Some text sentences
of the training set in Japanese are shown in Table 2:

Table 2. Some descriptions in the Japanese dataset

4.3 Evaluation Strategy

We use four evaluation metrics to evaluate classification results: accuracy, precision
under macro averages, recall, and F1-score. The four evaluation indicators are calculated
as follows:

Accuracy = TP+TN
TP+TN +FP+FN (1)

Precision = TP
TP+FP (2)

Recall = TP
TP+FN (3)
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F1-score is calculated by accuracy and recall rates using the following formula:

F1 = 2Precision×Recall
Precision+Recall (4)

4.4 Experiment Design

Experiment Hyperparameters. The hyperparameters of ALBERT-TextCNN are listed
in Table 3 and Table 4.

Table 3. ALBERT layer hyperparameters

Hyperparameters Value

Number of hidden Layers 12

Learning Rate 3E−05

Headers 12

Word Embedding 128

Hidden Size 768

Table 4. TextCNN layer hyperparameters

Hyperparameters Value

Number of Filters 128

Filter Sizes 2, 3, 4, 5, 6, 7

Comparison Experiment. To reflect the effectiveness of the ALBERT-TextCNN
model, we selected several other models to compare results. They are:

BiLSTM Classification Model. Using the Bidirectional Long Short-Term Memory
Mode (BiLSTM) as a word vector model, the text is converted into word vectors and
then placed into a full-face hierarchy for bidirectional classification.

BERT Model. Using BERT Model as a word vector model, the pre-trained BERT word
vector model will be directly connected to the full connection layer for classification.

ALBERT Model. The pre-trained ALBERT word vectors are directly connected to the
entire connection layer to be classified using theALBERTmodel as aword vectormodel.
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Table 5. Performance results of various models

Model Accuracy Precision Recall F1-score

BiLSTM 0.7663 0.7865 0.7720 0.7761

BERT 0.8587 0.8631 0.8585 0.8602

ALBERT 0.8531 0.8542 0.8575 0.8559

ALBERT+TextCNN(1) 0.8779 0.8779 0.8791 0.8785

4.5 Experiment Results

Table 5 shows the performance results for text classification with various of models: the
ALBERT-TextCNNmodel performs better than the rest of themodels having an F1-score
of 0.8785 with a precision of 0.8779, an accuracy of 0.8779, and a recall of 0.8791 on the
dataset, which shows that the ALBERT-TextCNN model can achieve high performance
for Japanese text classification.

In Fig. 3, we can see the accuracy and loss comparison of the five models, and we
can find that the ALBERT-TextCNN model with SentencePiece is more stable, climbs
higher in the accuracy curve, and drops faster and deeper in the loss curve compared to
the other models. We also found that the training speed was about 1.7 times faster than
BERT with our dataset.

Fig. 3. Accuracy and loss graphs for the four models, where (1) and (2) of the ALBERT-TextCNN
model are the results of the curves taking the MeCab and SentencePiece splitting methods, the
results.

With the comparison results above, we can get the conclusion that the ALBERT-
TextCNN model performs well for text classification with our Japanese text datasets.

5 Conclusions and Future Work

In this paper, we use a multi-classification model combing ALBERT and TextCNN for
Japanese text classification. The model uses ALBERT to train the word vectors, and the
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output feature vectors are put into TextCNN to further extract text feature information
for classification. The cross-entropy loss function is used for backpropagation. A set
of experiments were conducted, the experimental results showed that the model could
effectively extract the feature information between Japanese text and realized the fast
classification of texts according to the corresponding labels.

As future work, we plan to improve our work from two points of view. First, we want
to apply the ALBERT-TextCNN model to some large datasets to assess its accuracy and
performance. Second, our current work only focuses on Japanese text classification, and
we plan to improve it for multilingual text classification.
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Abstract. In recent years, due to the improvement of scientific research methods
and the wide-open source and acquisition of related data sets, face stylization has
become a hot research field and application direction. There is a need to stylize face
images in many applications, such as camera beauty, artistic photo processing, etc.
However, most of the current schemes are not satisfactory, and the resultant image
synthesis traces are obvious, and the effect is relatively monotonous. Based on the
study of image features and style representation, this paper proposes a general-
purpose face image style transfer whole process scheme. It can fill the gap in local
style transfer of face images. Among the existing face stylizationmethods, the face
stylization method is more complex, and the resulting obvious image synthesis
trace alongwith the single effect. The project innovates the existing technology that
can split the whole picture and implements the following six functions. Including
the segmentation of specific portrait parts (hair), the skin buffing and whitening
of the face, the defuzzification of the photos, the style transfer of the hair, the
messy hair removal, and the implementation of the big eye effect. This study can
realize the automatic style conversion of specific face images quickly and with
high quality.

Keywords: Computer Vision · generative adversarial network · Style transfer ·
Semantic segmentation

1 Introduction

Face stylization is an important technical method in the field of computer vision, which
is widely used in camera beauty, film production, and artistic photo processing. Through
computer image processing technology, the face style transfer can well integrate the
content of the original image with the style of the styled image, thus implementing
the transfer from the original image to the styled image. However, most of the images
obtained by the current solutions have obvious traces of synthesis and the effect is
rather monotonous. So, the development and improvement of face image style transfer
technology has significant scientific significance and application value.

Traditional face style migration methods mainly generate line drawings [1] or style
drawings [2] based on face shape and facial contour information, and the images gener-
ated by these methods generally have no specific artistic style, only simple line drawings
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with some color rendering [3]. Some methods create a dataset by collecting images of
different styles, selecting a reference sample, and then rendering the original image into
a styled image with that style [4, 5]. For the latter, it can be divided into two methods.
One is to directly split the image into pieces or to split the facial features, match it with
the image pieces in the style dataset in some way, get the most similar image pieces,
and then fuse them into a complete stylized image [6, 7]. Another method is to learn a
high-dimensional hidden space by a deep learning model [8, 9], map the original image
as well as the styled image to this space, and then parse and restore the style by the
corresponding decoding network to realize the transfer from original image to styled
image [10]. Among the methods as above, the deep learning method is suitable to be
applied to face images and has good performance in implementing face stylization.

By generating a general adversarial network [11] for deep learning in image style,
the workload can be reduced, and can produce rich effects. In some cases, it is dif-
ficult to obtain the paired dataset of the traditional method of generating adversarial
network. Therefore, in order to avoid the limitation of the traditional generation adver-
sarial network algorithm that requires paired data in image processing and improve the
effectiveness of style transfer, this paper introduces a new convolutional neural network
[12] to replace the original residual network in the process of network formation, and
through the loss function composed of the same mapping loss and perception loss, the
two can jointly measure the loss of style transfer. This improves the network character-
istics and reduces the influence of samples in the network, thus improving the image
quality after style transfer. In addition, the stability of the results is improved and the
convergence speed is also increased.

The key work of the study involves the following contents:

• Based on the abstract expression of images in deep learning, this paper explores the
correlation between image features and semantic content in generative adversarial
network, and how to use image features to achieve style transfer.

• For some problems in image stylization, this paper improves the cyclic consistency
network CycleGAN. After qualitative research and quantitative testing, it is shown
that the improved cyclic consistency network has achieved the improvement of realism
and diversity when transferring images.

• Aspecific style data set is designed andproducedwhilemaintaining the ID information
of the original image and the details of the hair texture of the eyes.

• A full process design of face local style transfer is proposed, including fine segmen-
tation of hair, facial features and human body, image super-resolution processing,
hair removal processing using image patching technology, and finally enlarged eye
beautification processing in the later stage.
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2 Methodology

2.1 Improved Structure of Generative Adversarial Network CycleGAN

2.1.1 Problem Analysis

Although the generation adversarial network does solve some problems of the generation
model, it also has some enlightenment for the development of other methods. However,
due to its incompleteness, it has caused some new problems when overcoming the
existing problems. The greatest advantage of generating adversarial network is also the
root of its biggest problem. Because the genetic algorithm uses anti-learning rules, the
theory cannot determine the convergence of themodel and the appearance of the balanced
point. In the process of training, it is necessary to keep the balance and consistency of
the two adversarial networks, otherwise it is difficult to achieve good training results.
In practical applications, the synchronization of the two kinds of adversarial networks
can not be controlled, resulting in unbalanced training process. In addition, as a training
model based on neural network, generative adversarial network also faces the common
problem of neural network modeling, poor interpretation ability. The most critical point
is that although the samples generated by the generation adversarial network are diverse,
there is a phenomenon of collapse model [13], which may produce complex samples
with little difference for humans.

CycleGAN completes the cross mapping between two pixels X and Y through two
generation units and two discrimination unit networks [14]. In essence, it is a ring
network system composed of two mirror symmetric generative adversarial networks. In
the model, two generating networks and discriminant networks are designed, which can
be transformed into different types of images after training. However, because of the
need for cyclic consistency in this process, a cyclic loss function is also set.

2.1.2 Improvement of CycleGAN

The generation unit of the original CycleGAN uses the residual network [15], which is
connected by the encoder, converter and decoder after full convolution [16]. The residual
network has great advantages in the application field of video recognition technology,
especially in the application field of target detection. In the generation unit network of
the traditional CycleGAN network, a nine-layer residual module is used for 256 x 256
size pictures.

This paper attempts to replace the residual network in the network generation unit
with DenseNet module [17] and improve the CycleGAN by combining to maintain the
original CycleGAN structure.

Our improved network & generator structure is shown in Fig. 1.

2.2 Network Design

In order to effectively avoid the technical limitations of the paired data required by the
traditional generation adversarial network algorithm in the image style transfer process,
and to improve the security and effectiveness of the image transfer process, this paper
chooses to use an optimized and improved cyclic consistency reverse network system
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Fig. 1. Improved network & generator structure (DenseNet Module to replace ResNet Module)

CycleGAN. DenseNet is used to replace the residual network in the network generation
unit, and only a loss function composed of a mapping loss function and a perceptual loss
function is used to calculate the loss reflecting style transfer. This idea greatly improves
the network performance, effectively reduces the impact of network performance on
paired data, and improves the image quality after style transfer. At the same time, the
stability and convergence rate are improved.

(1) Encoder: Through convolution neural network, the characteristics are obtained
from the input image.

(2) Converter:According to the different characteristics extracted, we can decide how
to transform the feature vector of the image from the X domain (style photograph)
to the Y domain (result photograph) The original CycleGAN converter uses 6-layer
residual network blocks to transform the characteristic vector. Including nonlin-
ear transformation function, input and output characteristics of residual network,
normalization layer [18], convolution layer and ReLU layer [19].

(3) Decoder: Different from the decoding machine, the function of this module is to
start the image from the feature vector value and gradually recover the underlying
characteristics, so that the image can be generated. The implementation method is
through the use of three anti convolution layers [20].

(4) Discrimination Unit: The discriminating unit of the improved network is Patch-
GAN [21] classifier. In the process of image discrimination and calculation by
the image discrimination unit, the convolution between the two-dimensional input
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image block of the image and the input image block of the one-dimensional output
image of the image is carried out layer by layer and point by point, and then the
convolution and layer convolution of the one-dimensional output image block of
each image are carried out to discriminate all the input output image blocks one
by one by using the network. The arithmetic mean value of the judgment operation
conclusion of the partition of each input image is taken as the final judgment result
of the input image.

3 Detailed Design Scheme

This research involves converting the target image into a specific style while maintaining
the ID information of the original image and the details of the hair texture of the eyes,
including the data preprocessingmodule, the portrait segmentation networkmodule, and
the style transfer module. As is shown in Fig. 2.

Fig. 2. Module structure diagram of face stylization based on generative adversarial network

3.1 Data Preprocessing Module

Prepare face image dataset and target face style image dataset, wherein the face image
dataset is from the public face image dataset provided on the network, and the target face
style image dataset is from the specific style data set of Japanese big head post style. In
order to better train the network in pairs, preprocessing such as image clipping and data
enhancement is carried out for the network, including detecting the face and key points,
correcting the face according to the rotation of the key points, expanding the boundary
box of the key points in a fixed proportion and clipping the face area, and using the
portrait segmentation model to set the background white.
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3.2 Portrait Segmentation Module

Innovate the existing technology that can segment the whole picture and realize the
segmentation of specific portrait parts (hair). First, the image of the preprocessed data
set is input into bisenetv2. Secondly, the input image is represented by two branches
(detail branch and semantic branch). Thirdly, through the enhanced training strategy
like booster, the auxiliary segmentation header is inserted into different positions of
the semantic branch, which further improves the segmentation accuracy of the image
without increasing any inference cost. Again, two types of feature representation are
enhanced by the designed guided aggregation layer. Finally, output the image after
semantic segmentation. An example of segmentation training is shown in Fig. 3.

Fig. 3. An example of segmentation training

3.3 Style Transfer Module

Image style transfer is a subjective and exploratory design method. It is a method to
design image changes according to the physiological characteristics of human visual
system. However, most of the methods of degraded image restoration, including super-
resolution image reconstruction, are based on an objective mechanism, so they can try to
overcome it by trying to reproduce degraded images through reconstruction technology
or using any prior knowledge in the process of image degradation, or by trying to use the
completely opposite process of degraded images and images through image restoration
technology or the technicalmodel of image reconstruction. In addition, two technologies,
excess hair removal and face authentication, are also applied.

It can be seen from Fig. 4 that the results of this process are good, the hair style is
obviously transferred, the facial features are preserved, and the later beauty treatment is
carried out.
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Fig. 4. Face beautification with style transfer processing effect

4 Experiment Results

WGAN, CycleGAN and the modified CycleGAN were used to complete the image
style transfer experiment independently. The results of the experiment are also shown
in Fig. 5 below. In Fig. 5, the first column is the original drawing, the second column is
the style drawing, the third column is the WGAN model result, the fourth column is the
CycleGAN model result, and the fifth column is the improved CycleGAN result.

Fig. 5. Comparison results (Improved CycleGAN is our method)

Compared with the experimental results, we can further find that under the same
number of iterations, all the schemes can complete the style transfer faster and better, and
thus can obtain a more natural and real style transfer effect. The improved CycleGAN
introduces a cyclic consistency loss function, which makes more effective use of the
network bidirectional mapping model and prevents the collapse of the modeling itself
to a certain extent. The improved CycleGAN provided in this paper also introduces
the same perceptual loss function and mapping loss function. The flow of image style
information transmission is relatively stable, but the modeling is not easy to collapse.

The whole process experiment of face local style is based on the Pytoch framework
[22]. The experiment and test implementation aremainly divided intomodel part, training
strategy part and evaluation index part.

It can be seen from Fig. 6 that the effect of the whole process of face stylization is
very good.
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Fig. 6. The effect of the whole process of face stylization

5 Conclusion

This paper introduces semantic segmentation and combines it with other image pro-
cessing technologies to solve the problem that local style transfer is not possible, which
fills the gap in local style of face. Through the training experiment on the specific style
dataset, a good local face style effect is obtained, which fully shows the performance of
the model.
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Abstract. With the popularization of network applications and the great changes
in the international political, economic and military situations, network security
is becoming more and more important. As an important part of network security,
network intrusion detection (NID) is still facing the problem of low detection rate
and difficulty to meet the real-time demand with the rapid increase of network
traffic. Therefore, for the requirement of fast and accurate detection in real-time
applications, this paper proposes a NID method based on optimized multiclass
support vector machine (SVM). Firstly, the ReliefF feature selection algorithm
is introduced to extract features with heuristic search rules based on variable
similarity, which reduces the complexity of features and the amount of calculation;
Secondly, a SVM training method based on data block method is proposed to
improve the training speed; Finally, a multiclass SVM classifier is designed for
typical attack types. Experimental results show that the proposed optimization
method can achieve a detection rate of 96.9% and shorten the training time by
13.2% on average.

Keywords: Network intrusion detection · Support vector machine · Data block ·
Multiclass

1 Introduction

With the vigorous development of Internet technology, it has penetrated into people’s
daily life, not only completely changed the operation mode of the information industry,
but also will have a profound impact on most other industries, and eventually lead to a
new industrial revolution. However, due to the openness of the internet and the objective
existence of system security vulnerability, there are inevitably some security vulnera-
bilities in operating system, application software and hardware equipment. Meanwhile,
there are also some security risks in the design of the network protocol itself, which pro-
vide an opportunity for hackers to invade the system. Furthermore, with the discovery
of more and more computer system vulnerabilities, especially with the current complex
national political, economic and military situation, the network security has become
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more and more severe. More effective NID methods [1–3] have become one of the key
issues to solve network security problem.

NID has received a lot of in-depth research and achieved fruitful results. In recent
years, with the prosperity of deep learning technology, NID based on deep learning
has made great progress. Facing the decreasing levels of detection accuracy, [4] pro-
posed an intrusion detection method based on deep learning technique by introducing
non-symmetric deep auto-encoder in which deep and shallow unsupervised feature can
be effectively learned, then the accuracy and speed of detection can be significantly
improved. For effectively fusing the benefits of typical deep learning model to large
scale IDS, [5] presented a high accurate IDS model by adopting a unified model of
Optimized CNN and Hierarchical Multi-scale LSTM to effectively extract and learn
the spatial–temporal features. [6] detailed a bidirectional BIDLSM intrusion detection
system to improve the low detection accuracy especially for the U2R and R2L attacks,
and then to solve the problem that it is difficult to detect multiclass attacks, especially
for unbalanced data sets in the existing deep learning methods.

For NID system, [7] pointed that the attacks are the minority classes compared to
normal traffic, and there are still many challenges such as that the performance of NID is
undermined because of the inherent defect of datasetswhich are collected from simulated
environments rather than real networks. Since quickly network traffic behavior would
yield low detection accuracy rate, by analyzing the large scale of network traffic in high-
speed network, [5] proposed a scalable long-lasting detection framework and reliable
ML-based NID model which can achieve up to 10Gbps of detection throughput. [8]
described a data-driven NID system based on deep learning framework to extract the
traffic data features with backpropagation algorithm.

The problems of imbalance data and overfitting can seriously affect the performance
of identification. Fortunately, the SVMmodel has some computation advantages, such as
suitability to finite samples and irrelevance between the complexity of algorithm and the
sample dimension. For overcoming the limitation of overfitting problem, [9] proposed
an AE-SVM-GO model in which the instances of minority classes can be generated to
balance the dataset. [10] applied the SVM into intrusion detection for vehicular ad-hoc
networks in which many optimization algorithms are introduced including genetic algo-
rithm, particle swarm optimization and ant colony optimization. For detecting intrusions
on large datasets with multiple attributes, [11] discussed an adaptive window SVM in
which adaptive window can be used to identify the sudden generation of drift and SVM
can be used to classify the normal and attack data.

Although the above methods have achieved good performance, there some problems
such as that, theNIDmethods basedondeep learning are generally suitable for processing
large amounts of data which can lead high computational overhead. Additionally, for
the special types of attack with small number of samples, the detection accuracy is
still difficult to meet the real-time requirements. Therefore, this paper proposes a NID
method based on optimized multiclass-SVM model. By introducing the ReliefF feature
selection algorithm and heuristic search rules based on variable similarity, the amount of
calculation can be significantly reduced. And the proposed SVM training method based
on data block method is adopted to improve the training speed.
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The main contributions of this work are:1) an optimization feature selection method
is proposed to eliminate irrelevant feature and redundant feature based on the ReleifF
algorithm and heuristic search rules using variable similarity; 2) describes an optimized
training method based on data block to improve the training speed; 3) constructs a
multiclass SVM classifier to detect the four attacks.

2 Optimized Feature Selection Method

In order to verify the effectiveness of the proposed method, this paper carries out rel-
evant research based on KDD dataset [12] in which 41 features are extracted for each
connection. Although the more features, the greater the amount of category informa-
tion, too many features will lead to more calculation and may conversely reduce the
recognition performance. Therefore, it is important to reduce the feature dimension as
much as possible while keeping the classifier performance acceptable. In practice, fea-
ture extraction and feature selection are the main methods to reduce the dimension of
features. In this paper, we propose an optimized feature selection method to reduce the
calculation amount while with the acceptable classifier detection performance. In this
method, ReleifF algorithm [13] is used to eliminate features irrelevant to classification
and the heuristic search rules using variable similarity is used to eliminate the redundant
features. The flow chat of feature selection is shown in Fig. 1.

Irrelevant feature

elimination

Redundant feature

elimination

Original 

feature set

Selected 

feature subset

Fig. 1. Flow chat of feature selection

2.1 Eliminating Irrelevant Feature Based on ReleifF Algorithm

The relevance of attributes is mainly evaluated based on the ability of attribute values to
distinguish adjacent samples. Therefore, firstly we randomly select one sample R from
the training data, and then find k nearest neighbor samples in the same class as the sample
R in the training data, and call these K samples nearHits. Then, the k samples that are
not in the same class as sample R are found in the training data, and these K samples
are called nearMisses. The update of the weight of each attribute a depends on the
randomly selected sample R in which the contributions of all nearHits and nearMisses
are averaged. The specific ReliefF algorithm is shown in Fig. 2.

2.2 Eliminating Redundant Feature Based on Heuristic Search Rules Using
Variable Similarity

After removing the irrelevant features, for compressing the redundancy of features,
we introduce the maximum information compression criterion [14] in Eq. 1 and 2. For
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ReliefF(D,N,M,K)

D is the training set, N is the number of features, M is the number of repetitions, and K is the 

number of nearest neighbors. First, initialize all attribute weights to 0, w [A] = 0;

For i=1 to M

       {randomly selects one sample neighbor R from D;

         Find K nearest neighbors  nearhits in R and K neighbors nearmisses not in R;

      For A=1 to N

              { W[A]=W[A]-Avg(diff(A,R,nearMiss));  }

        }

         Return all the weight W[A].

Fig. 2. ReliefF algorithm flow chat

random variables x and y, ρxy is the correlation coefficient and the (λ2)xy is themaximum
information compression criterion.

ρxy =

m∑

i=1
(xi − x)(yi − y)

√
m∑

i=1
(xi − x)2

m∑

i=1
(yi − y)2

(1)

(λ2)xy = (var(x) + var(y)) − √
(var(x) + var(y))2 − 4var(x)var(y)(1 − (ρ(x, y))2)

2
(2)

For the feature vectorXm = {X1,X2, · · · ,Xm} and redundancy threshold as θ, the specific
steps of using the maximum information compression criterion to remove redundant
features are shown in Fig. 3. When a < θ, it indicates that the value of the maximum
information compression criterion between the features Xi and Xj is less than a preset
minimum threshold, which indicates that one of the Xi and Xj is redundant and should
be removed.

For i=1 to m-1

{for j=i+1 to m

{ Calculate the (λ2 )xy
}

A= min(λ2 )xy

If A <θ
Remove the features Xi or Xj which with smaller weights.

}

Fig. 3. Flow chat of redundant feature elimination

After the hybrid feature selection including irrelevant feature elimination and redun-
dant feature elimination, we can achieve a feature set that is related to classification and
has little redundancy and the NID system based on this feature set will be more efficient.
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3 Optimized Training Based on Data Block Method

For SVM classifier, usually all samples are trained at once in traditional training method
while the training time is often very long for large-scale training samples. Especially
for the training samples containing various types of attack information which are often
gradually obtained and accumulated, the training time of SVM classifier is a critical
issue for real-time processing. In this paper, we attempt to adopt an improved training
method for SVM called data block training method. In this method, the training set
firstly divided into several subsets, and then the SVM is trained on these subsets one by
one. Additionally, the samples that do not meet the KKT [15] conditions in the previous
training subset are added to the next subset until all training subsets are processed.

When the training samples in the previous training subset that do not meet the KKT
conditions are added to the next training subset to train SVM, the hyperline of SVM
will be changed under certain conditions. Although this change cannot guarantee the
reduction of the classification error rate, it will make the SVM approach the theoretical
hyperplane faster and thus the training speed can be improved.

The proposed training process based on data block can be described as follows:

Step1: Divide the training set into several subsets;
Step2: Taking the first subset as the training set;
Step3: Training SVM on the training set;
Step4: End the training if there are no more unprocessed subsets; Otherwise, execute
step 5.
Step5: Select the training samples that do not meet the KKT conditions in the training
subset and add them to the next training set to form a new training set;
Step6: Repeat the above steps from step 3.

4 Multiclass SVM for Intrusion Detection

The SVMmethod perfectly solves the binary classification problem, and gives the max-
imum interval classification plane for separable cases and the soft interval classification
plane for non-separable cases. But for the multiclass classification problem of intrusion
detection system, we need to construct an effective multiclass classifier based on SVM.
SVM based multiclass classifier mainly include one-against-the-rest, one-against-one
methods. Considering the efficiency and simplicity of the classifier, this paper adopts
the one-against-the-rest method in which the five types of data are decomposed into five
binary classification, and five binary SVM classifiers are constructed. According to the
one-against-the-rest strategy, the four attacks can be effectively detected.
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For an n (n > 2) class classification problem, n binary SVM classifiers are con-
structed, and the i-th classifier is used to separate the samples of the i-th class from those
of other classes. In order to construct the i-th classifier, the class label of the i-th sample
is set as 1, and the other samples are set as −1. Then the training is performed according
to data set with class label. Finally, discriminate functions can be obtained just described
in Eq. 3.

f1 = (w1 • φ(x)) + b1
·
·
·

fN = (wN • φ(x)) + bN

(3)

For any sampleX without class label, inputs the sample into theN discriminant functions,
and compares the output values of the discriminant functions. Then the class label can be
determined according to the value. The discriminate function can be described as Eq. 4.

Class of x ≡ arg max
i=1,··· ,N(wi • φ(x) + bi) (4)

5 Experiment and Results Analysis

5.1 Experiment Dataset

In this paper, we select the training subset and testing subset of KDD’99 dataset as
our experimental dataset. Furthermore, in order to demonstrate the effectiveness of this
method for a small number of sample set, we construct a mini training subset based
on the training set to train our multiclass SVM classifier. Additionally, for reducing
the negative impact result from imbalance of dataset, the sample proportions of several
attack types are adjusted according to testing set in training set. Table 1 shows the details
of the both training set and testing set. There are 311029 testing samples and only 5000
training samples.

Table 1. Attacks type distribution of dataset

Types of attack Serial number Percentage of types in
training dataset

Percentage of types in
training dataset

Normal 0 30.58% 19.48%

Probe 1 31.32% 1.34%

DOS 2 32.86% 73.90%

U2R 3 1.04% 0.07%

R2L 4 4.20% 5.20%
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5.2 Experimental Results and Analysis

Because the classifier adopts data block training method, this paper divides 5000 subsets
into two subsets of the same size. Due to the good performance of radial basis function
[16] in intrusion detection applications, the radial basis function is selected as the kernel
function to design the classifier for each attack type. For themisclassification penalty fac-
tor C and control factorG of kernel function, we adopt the heuristic rules [17] to explore
and determine the final optimal parameter combination of C and G. Let DR denotes the
detection rate just like Eq. 5. In Table 2, we present the training results of classifiers for
four attacks and the normal type based on the optimal parameter combination.

DR = Noutput_abnormal&&abnormal

Nabnormal
× 100% (5)

Table 2. The training results of classifiers for four attacks and the normal type

Parameter Type of classifier Data block training
method

Original training method

Training time DR Training time DR

C = 10000, G = 0.5 Dos 0.65 s 99.96% 0.74 s 99.84%

C = 10000, G = 1 Probing 0.64 s 99.51% 0.73 s 99.01%

C = 10000, G = 0.5 Normal 0.58 s 99.95% 0.69 s 99.79%

C = 20000, G = 0.5 U2R 0.73 s 89.4% 0.85 s 88.7%

C = 20000, G = 1 R2L 0.71 s 70.3% 0.80 s 69.2%

From Table 2, it is obviously that, the training method using data block needs less
time than the traditional trainingmethod, and the detection rate is also slightly improved.
This fully demonstrates the effectiveness of the optimized training strategy proposed in
this paper, and provides a possibility for application in the actual network environment.
Next, for easy comparison with the KDD’99, we adopt the Confusion Matrix (CM) to
show the experimental results [18]. In Table 3, the comparison of performance between
multiclass classifier composed of these classifiers and KDD’99 is shown in which the
CM of KDD’99 optimal scheme is shown in brackets.

Furthermore, let ASC denotes average sample cost, FPR denotes the false positive
rate, FNR denotes the false negative rate, CR denotes the correct recognition rate which
described in Eq. 6, 7, 8 and 9. Then, the performance comparison between our multiclass
SVM with the BP neural network method and the KDD’99 is presented in Table 4.

ASC = 1

N

5∑

i=1

5∑

i=1

CM (i, j) ∗ C(i, j) (6)

FPR = Noutput_normal&&abnormal

Nout_normal
× 100% (7)
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Table 3. The comparison of CM between the multi-SVM and KDD’99

Attack type Normal Probing DoS U2R R2L Correct %

Normal 60142
(60262)

241
(243)

198
(78)

8
(4)

4
(6)

99.3
(99.5)

Probing 513
(511)

3498
(3471)

163
(184)

2
(0)

0
(0)

84.0
(83.3)

DoS 4925
(5299)

879
(1328)

224088
(223226)

1
(0)

0
(0)

97.5
(97.0)

U2R 97
(168)

21
(20)

3
(0)

101
(30)

6
(10)

44.3
(13.2)

R2L 1626
(14527)

560
(294)

275
(0)

12
(8)

13723
(1360)

84.7
(8.4)

FNR = Noutput_normal&&abnormal

Nout_abnormal
× 100% (8)

CR = Ncorrect_classified

Ntest
× 100% (9)

From Table 3 and Table 4, it can be seen that the multiclass classifier based on SVM
can greatly improve the detection performance of U2R and R2L attacks. Meanwhile,
compared with KDD’99 and BP neural network classifier, it also has good performance
in other performance indicators. This fully shows the effectiveness of the proposed
method in this paper.

Table 4. Performance compare of BP NN, Multi-SVM and KDD’99

Method ASC (%) FPR (%) FNR (%) DR (%) CR (%)

KDD’99 0.23 34.0 0.1 91.8 92.7

BP NN 0.25 37.3 0.19 91.0 92.6

Multi-SVM 0.20 11.9 0.11 96.4 96.9

In addition, it also can be seen that the detection rates of U2R and R2L attacks are
still not ideal. This is mainly because these two types of attacks take advantage of system
vulnerabilities to obtain the access rights of the target host to realize the attacks. Their
main features are concentrated in the contents of network data packets, but the 21 features
selected in the experimental data can not fully reflect this information. Therefore, it is
difficult to separate these two types of data from normal data according to the existing
features. In the future, in order to further improve the detection performance of intrusion
detection, especially for the latter two attacks, it is also necessary to providemore detailed
content features, or combine other detection results such as intrusion detection results
based on host data.
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6 Conclusion

As an important approach to ensure network security which is the one of key issues in
network application, NID technology is still facing the problem of low detection rate and
difficulty to meet the real-time requirement with the rapid increase of network traffic. In
order to tackle the problem, by optimizing the feature selection and training method, this
paper proposes an intrusion detection method based on multiclass SVM. The ReliefF
based feature selection algorithm is used to reduce the complexity of features and reduce
the amount of calculation. And the optimized SVM training method based on data block
method can be used to improve the training speed. Experimental results show that the
proposed multiclass SVM classifier can achieve a detection rate of 96.9% and shorten
the training time by 13.2% on average. And the work can provide a useful guidance for
the design of effective NID for real-time network applications.
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Abstract. The recognition of personnel entering and leaving themine is an impor-
tant link to ensure safe production. As an effective identity recognition technology,
face recognition has been widely and deeply studied while facing the problem that
the recognition rate is not high in the complex and harsh environment of mine
such as facial expressions, pose variation, and low-resolution of face images. For
effectively improving the face recognition rate of miners in uneven illumination
environment, a face recognition method based on inverted residual network is
proposed. In this method, through the optimization of the activation function, the
amount of calculation can be greatly reduced while keeping the almost equivalent
performance.Andby the fusion of inverted residual network, the problemof partial
feature information loss in face image recognition model training is effectively
solved, which greatly improves the accuracy of recognition. The experimental
results show that the accuracy of the inverted residual face recognition model is
81.4%, which is 5.7% higher than the residual network algorithm with additional
4.3% of time overhead, and 9.9% higher than the MTCNN model with only the
1/13 recognition time of MTCNN.

Keywords: Face recognition · Inverted residual network · Uneven illumination
environment · Activation function optimization

1 Introduction

For the safety of coalmine production, especially the safety of personnel, it is very impor-
tant to identify the personnel entering and leaving themine. In recent years, with the rapid
development of coal mine intelligence, many recognition technologies [1, 2] such as fin-
gerprint recognition [3], radio frequency identification(RFID) [4] and face recognition
have been introduced to identify personnel. However, since RFID is as a non-biometric
technology, cheating is inevitable during in signing in. Additionally, because the finger-
prints of the miners may be contaminated, fingerprint recognition may fail to identify
correctly. As a contactless biometric recognition technology, face recognition can avoid
the disadvantages of the both technologies discussed previously and has been widely
and deeply studied. Unfortunately, the environment under the mine are very complex,
such as uneven illuminations, facial expressions, pose variation, and low-resolution of
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face images which will lead to low recognition rate and slow speed. Therefore, it is
urgent to study a face recognition method suitable for complex and harsh conditions
in coal mine [5–7]. For overcoming these disadvantages, many approaches have been
deeply discussed and achieved some results in which mainly from the perspective of
facial feature description and recognition network.

[8] proposed a GroupFace framework which can utilize multiple group-aware rep-
resentations. Their main purpose is to solve the problem of recognition inefficiency
with fewer dimensional embedding features for conventional model that has only a sin-
gle branch. By providing self-distributed labels used to balance the large-scale samples
belonging to each group, the proposed method can learn the group-aware representa-
tions and then improve the quality of the face features. For tackling the problem of loss
of facial identity information result from decomposing facial feature into age-sensitive
components, [9] originally constructed a multi-feature fusion and decomposition frame-
work with multi-head attention mechanism. Their framework can be used to capture
and extract contextual information of facial feature series, and learn more discriminative
and robust features to reduce the intra-class variants. In order to overcome the lack of
detailed annotations on attributes such as pose and expression caused by label noise
and privacy issues of face images, [10] proposed a SynFace method to control different
factors of synthetic face generated by SynFace framework. Then, by the performance
comparison between typical face recognition models with the proposed synthetic and
real face images, the great potentials of synthetic face data for face recognition with
complex factors are well demonstrated.

For the extracted face features, an effective recognition network can further improve
the accuracy and speed of recognition. In [11], an adaptive curriculum learning loss
called CurricularFace is introduced into loss function for deep face recognition net-
work. The margin-based loss functions can be used to increase the difference of feature
margin between different classes and enhance the discriminability. To balance the per-
formance difference of typical face recognition method between different races, [12]
proposed a race balance network based on reinforcement learning. The margins infor-
mation between different races can be easily extracted according to the adaptive margin
policy in which theMarkov decision process is introduced to adaptively obtain the opti-
mal margins information for non-Caucasians. For cross age face recognition problems,
[13] proposed a parallel multi-path age distinguish networkmodel to respond to the chal-
lenges such as similarity score in some age groups may affect final classification results,
inconsistency among the aging pattern of many individuals caused by the linear combi-
nation of identity information and age information. Their model can effectively realize
cross age identification by the two cascading networks including the age distinguish
mapping network and the cross-age feature recombination network.

Although these methods have achieved good performance on open datasets such as
CASIA-WebFace [14],MS-Celeb-1M [15] andVGGFace2 [16], it is still difficult tomeet
the accuracy and speed requirements of real-time recognition especially for the complex
environment under coal mine. In this paper, aiming to the specific identity recognition
of underground personnel in coal mine, we propose a face recognition method based
on inverted residual network. Through the optimization of the activation function, the
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amount of calculation can be greatly reduced while keeping the almost equivalent per-
formance. And by the fusion of inverted residual network, the problem of partial feature
information loss in face image recognition model training is effectively solved, which
greatly improves the accuracy of recognition. Based on the real data set established
according to coal mine, the experimental results show that, compared with the residual
network algorithm and MTCNN algorithm, our method can achieve a better recognition
accuracy and higher recognition speed. Our main contributions can be summarized as
the two aspects: 1) propose an optimized activation function to reduce the calculation
while keep the equivalent recognition accuracy. 2) fuse an inverted residual network into
recognition network to overcome the problem of partial feature information loss.

2 Inverted Residual Face Recognition Algorithm

2.1 Analysis of Typical Face Recognition Framework

For the face recognition of personnel in special underground scenes, a typical face recog-
nition model based on traditional methods is shown in Fig. 1. The model is composed
of multiple convolutional neural networks and mainly includes three stages such as fea-
ture extraction stage, construction stage of feature pyramid network (FPN) [17] and
prediction and result output stage.

Predictive 
output

Predictive 
output

Predictive 
output

Classification For prediction

Regression For prediction

×4

×4

W×H

×256

W×H

×256

W×H

×256

W×H

×256

Feature extraction with MobileNet FPN model construction Prediction module

Fig. 1. Schematic diagram of a typical face recognition model

In feature extraction stage, the mobilenet [18] feature extraction network is mainly
used as the backbone feature extraction network to extract the features of the face image
in the coal mine. Moblienet adopts depthwise convolution to realize lightweight cal-
culation, but the ReLU function will cause information loss for low dimensional data
processing. Meanwhile, because of its own computing characteristics, it has no ability
to change the number of channels and only output as many channels as the previous
layer gives it. Therefore, if the number of channels provided by the previous layer is
very small, depthwise can only extract features from low dimensional space resulting in
poor performance.

In the construction stage of FPN, the FPN can build high-level semantic feature
maps at all scales and then avoid the information loss of small object with a small
amount of calculation increases. For the face image of personnel under coal mine, the
quality of the image is poor and the proportion of face feature information is relatively
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small. Therefore, FPN is very suitable for face recognition applications in the scenarios
mentioned in this paper.

Finally, in prediction and result output stage, due to the inherent defect of depthwise
convolution inwhich low dimensional data informationmay be lost, the residual network
structure [19] is introduced to increase the dimension of the low channel input before
the depthwise convolution. And then the depthwise convolution can work in the high
dimension space and improve the speed and accuracy of feature extraction. However,
for the specific face images in complex coal mine, when the input is a low channel, the
convolution kernel of the deep convolution layer tends to be inoperative in which most
of the parameters of the convolution kernel are 0.

Therefore, based on the above analysis, this paper proposes a face recognition based
on inverted residual network to overcome the problems analyzed above. By utilizing the
inverted residual network, the input of the low channel can be processed to increase the
dimension before the depthwise convolution. And then the depth convolution can work
in high dimension space and effectively improve the speed and accuracy of face feature
extraction.

2.2 Activation Function Optimization

The activation function used by the facial feature extraction network is the ReLU func-
tion, which is effective when the number of input channels is large. However, for the
ReLU function, the situations that neurons may die and the gradient may become 0, and
then the function cannot produce a negative value to affect the convergence speed of
gradient descent. Therefore, this paper optimizes the activation function of the feature
extraction network and introduces swish function as a new activation function, as shown
in Eq. (1) in which β is a trainable parameter.

f (x) = x • sigmoid(βx) (1)

If β = 0, the swish becomes a linear function f (x) = x/2; and if β = ∞, the swish
will becomes 0 or x which is equivalent to the ReLU. The gating mechanism in function
makes it more flexible. The swish activation function curve with different β is shown in
Fig. 2.

Fig. 2. Swish curve with different β
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Fig. 3. Comparison between g-swish and swish.

Although this function inherits the advantages of ReLU, the problems such as the
disappearance of gradient and the death of neurons can be effectively avoided. However,
the calculation scale of swish activation function is still relatively large, and it is still
difficult to meet the really requirements of rapid recognition in real-time application
scenarios. For this reason, an optimized swish activation function named g-Swish to
significantly reduce the calculation scale is introduced in this paer. In g-Swish, the sigmod
function is replaced by ReLU6 function and the optimized function is shown in Eq. (2).

g − Swish[x] = x • ReLU6(x + 3)

6
(2)

Furthermore, the comparison curve between g-swish and swish is shown in Fig. 3.
FromFig. 3, it can be seen that the curves of the two activation functions are almost identi-
cal. Since SIGMOD has amuch larger amount of computation thanReLU6, the improved
function greatly reduces the amount of computation with little impact of performance,
and is applicable to almost all frameworks.

2.3 Fusion of Residual Networks

With the increase of convolutional neural network layers, the loss of the training set will
gradually decrease and then tend to saturation. Nevertheless, if we continue to increase
the network depth, the loss of the training set will increase. Fortunately, residual network
can solve this problem effectively by using direct mapping to connect different layers of
the network. In Fig. 4, a typical residual network structure is presented. The number of
channels is reduced from256 to 64 by 1× 1convolution, and then the number of channels
is restored to 256 by 3 × 3 convolution and 1 × 1 convolution orderly. Unfortunately,
for the specific face images in complex coal mine, the convolution kernel of the deep
convolution layer tends to be inoperative described in Sect. 2.1. Therefore, an inverted
residual network is proposed to mitigate the impact of this problem shown in Fig. 5.

For face recognition using the extraction network with inverted residual network,
if input the high channel information, the face recognition model still extracts fea-
ture according to the original network. Meanwhile, if input the high channel, the face
recognition model will extract feature according to the inverted residual network. Low
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1×1, 64

3×3, 64

1×1, 256

Relu

Relu

Relu

256-d

Fig. 4. Typical residual network structure

Conv 1×1 Linear

g-Swish

Conv 1×1 g-Swish

Input

Fig. 5. Inverted residual network

dimensional features are extended to high dimensions by inverted residual network, and
then the features are projected to a low dimensional compressed representation through
a linear bottleneck. The improved face feature extraction network is shown in Fig. 6 and
the improved face feature extraction network parameters are shown in Table 1.

3 Experiment and Result Analysis

3.1 Experimental Setup

The experiments in this paper are implemented on the pytorch1.2.0-GPU and the specific
software and hardware parameters are as follows in Table 2.

Additionally, the public data set Wider Face Val (WFV) [20] is adopted as the basic
training data of the face recognition model. Furthermore, different types of face images
under the real mine were collected to expand the dataset just shown in Table 3. In Table 3
the types 1–8 respectively represent: subset 1 ofWFV (WFV-1), cleanminer’s face under
uniform illumination conditions(Uni_Cln_M), contaminatedminer’s face under uniform
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Fig. 6. Improved face feature extraction network

Table 1. The improved face feature extraction network parameters

Input Operator Extension factor Number of output
matrix channels

n Step

2242 × 3 2D Conv - 32 1 2

1122 × 32 Improved residual
network

1 16 1 1

1122 × 16 Improved residual
network

6 24 2 2

562 × 24 Improved residual
network

6 32 3 2

282 × 32 Improved residual
network

6 64 4 2

282 × 32 Improved residual
network

6 96 3 1

142 × 96 Improved residual
network

6 160 3 2

72 × 160 Improved residual
network

6 320 1 1

72 × 320 2D 1 × 1 Conv
—

1280 1 1

72 × 1280 Average pooling 7
× 7 — —

1
—

1 × 1 × k 2D 1 × 1 Conv
—

k
— —

illumination conditions(Uni_Contam_M), clean miner’s face under uneven illumination
conditions(Un_Cln_M), subset 2 of WFV(WFV-2), contaminated miner’s face under
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Table 2. Experimental environment configuration

OS CPU GPU Memory CUDA

Win10 i5-10400F GTX 1660Super 8G 16G CUDA10.0

uneven illumination conditions(Un_Contam_M), uniform illumination face(Uni_Face),
uneven illumination face(Un_Face).

Table 3. Classification and description of face dataset

Environment Type Face image size Number of face image

Uniform
illumination

WFV-1 1280 × 1280 10000

Uni_Cln_M 1280 × 1280 300

Uni_Contam_M 1280 × 1280 300

Uni_Face 1280 × 1280 300

Uneven
illumination

WFV-2 1280 × 1280 10000

Un_Contam_M 1280 × 1280 300

Un_Cln_M 1280 × 1280 300

Un_Face 1280 × 1280 300

3.2 Performance Analysis

For accurately evaluate the performance of the face recognition based on reverted resid-
ual network proposed in this paper, the average precision (AP), mean average precision
(MAP) and average recognition time (ms) are selected as the evaluation indicators. The
AP is used to evaluate the recognition performance of the model for different types of
images, and the MAP represents the strength of the overall performance of the model
which is obtained by calculating the average value of theAPs of all classes. The higher the
resolution of the input face image, the richer the feature information and detail informa-
tion contained in the image, and the more face features extracted by the face recognition
model. But the face image with too high resolution will increase the parameter value of
the recognition model and increase the amount of calculation. In Table. 4, we present the
comparisons of APs and MAPs of the face images with different resolutions. In Fig. 7,
we give the trend comparison between the MAP and the average recognition time with
the improvement of the resolution of the input face image.

From the Fig. 7, we can see that the resolution of the input image increases from 480
× 480 to 608× 608, the average accuracy is increased by 2%, but the average recognition
time of the model is increased by 56.2%. When the resolution reaches 480 × 480, with
the increase of resolution, the average accuracy is not significantly improved, but the
average recognition time is significantly increased. Therefore, the face imagewith 480×
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Table 4. APs and MAPs of face images with different resolutions

Resolution 1AP 2AP 3AP 4AP 5AP 6AP 7AP 8AP MAP

352 × 352 0.725 0.737 0.663 0.752 0.743 0.755 0.613 0.741 0.716

384 × 384 0.737 0.745 0.667 0.761 0.757 0.761 0.676 0.752 0.732

416 × 416 0.754 0.776 0.724 0.813 0.768 0.778 0.689 0.769 0.759

446 × 446 0.785 0.792 0.757 0.835 0.780 0.784 0.717 0.771 0.778

480 × 480 0.856 0.854 0.792 0.866 0.827 0.789 0.742 0.785 0.814

512 × 512 0.861 0.859 0.709 0.889 0.832 0.791 0.774 0.792 0.813

608 × 608 0.873 0.852 0.727 0.895 0.856 0.805 0.789 0.795 0.824
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Fig. 7. Trend comparison between the MAP and the average recognition time with the improve-
ment of the resolution of the input face image

480 resolution is selected as the input image for face recognition model. Then for 480 ×
480 face image of in Table 4, the performance comparison of different face recognition
models for 8 kinds of face images is presented in Fig. 8. It can be seen that, compared
with residual network model and MTCNN model, our method has better performance
of accuracy especially for Uni_Contam_M and Un_Cln_M images.

Finally, in Table 5, the comparison of MAP between our method with MTCNN and
residual network method is presented to illustrate the effectiveness of the method in this
paper. According to the Table 5, we can find that the accuracy of the inverted residual face
recognition model is 81.4%, which is 12% higher than the residual network algorithm
with additional 4.3% of time overhead, and 9.9% higher than the MTCNN model with
only the 1/13 recognition time of MTCNN.
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4 Conclusion

Face recognition is an effective technology for the identification of personnel entering
and leaving the mine, while facing the problem that the recognition rate is not high in
the complex and harsh environment of mine such as facial expressions, pose variation,
and low-resolution of face images. Therefore, we introduce a face recognition method
based on inverted residual network to effectively improve the recognition rate of miners
in uneven illumination environment. Through the optimization of activation function
and fusion of inverted residual network, we can obtain better recognition accuracy while
maintaining a relatively fast speed. The experimental results show that the accuracy
of the inverted residual face recognition model is 81.4%, which is 5.7% higher than
residual network algorithm with additional 4.3% of time overhead, and 9.9% higher
than MTCNN model with only 1/13 recognition time of MTCNN. It can provide useful
guidance for the safety of miners together with other identification technologies.

0.6

0.65

0.7

0.75

0.8

0.85

1AP 2AP 3AP 4AP 5AP 6AP 7AP 8AP

MTCNN residual network model Our improved model

Fig. 8. Comparison of different face recognition models for 8 kinds of face images

Table 5. Comparison of MAP between our method with MTCNN and residual network

Recognition model MAP Recognition time/ms

MTCNN 0.741 1742.3

Residual network 0.770 102.4

Our recognition method 0.814 106.8
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Abstract. The Cobb angle is the most widely used measurement to quantify
the magnitude of scoliosis. Accurate automated measurement of the Cobb angle
can improve the efficiency of scoliosis diagnosis. The existing direct estimation
of Cobb angle cannot extract structural information of the spine and lacks inter-
pretability. Curvature-based Cobb angle estimation rely on vertebral feature infor-
mation tend to focus on a single landmark or segmentation information and cannot
provide robust vertebral feature information for post-processing of curvature cal-
culations. In this paper, we propose a novel curvature-based method to automatic
Cobb angle measurement. The proposed Multi-task Vertebra Information Extrac-
tion network (namelyMVIE-Net) is used to predict vertebra contour and keypoint
confidence map simultaneously. And we pair the vertebral corner points based
on the positional relationships contained in the vertebral contours and calculate
the Cobb angle accordingly. The performance on the public AASCE Challenge
dataset proves the efficiency of the proposed method. Experimental results on
external datasets demonstrate the more generalizability of the proposed method.

Keywords: Scoliosis · Multi-task learning · Segmentation · Cobb angle

1 Introduction

Adolescent idiopathic scoliosis (AIS) causes lateral curvature of the spine and rotation
of the thorax and usually occurs in adolescents at or around puberty [1]. The diagnosis of
AIS is based on accurate measurement of the Cobb angle. The Cobb angle refers to the
angle between the upper and lower endplates of the end vertebrae. Manually measuring
the Cobb angle clinically requires the radiologist to measure the angle of inclination
of each vertebra on the patient’s anterior and posterior radiographs, which is time-
consuming, and the accuracy is affected by factors such as end vertebra selection, intra-
observer and inter-observer variation, and so on. Therefore, it is necessary to propose
an accurate and robust automatic Cobb angle measurement method.

With the development of deep learning, many methods for automatic Cobb angle
measurement have been proposed. We roughly classify these methods into two cate-
gories: (1) Direct estimation of the Cobb angle, these methods regress Cobb angle [2–5]
from the original image [5] or coarse processing results of the original image such as
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coarse segmentation results [2, 3], spine centerline [4], etc., which achieve end-to-end
Cobb angle measurement, but ignore the importance of vertebral structures and lack
interpretability. (2) Curvature-based Cobb angle estimation methods that rely on verte-
bral features [6–11]. These methods first extract vertebral feature information through
neural networks, and then perform curvature calculation post-processing based on the
extracted features. For example, some works detect landmarks and thus calculate Cobb
angles by the landmarks [6–8, 10]. Some works calculate Cobb angle by segmenting
the vertebrae and finding the upper and lower end plates of the vertebrae [9, 11]. These
methods can obtain richer information about the spine structure for the subsequent treat-
ment of scoliosis, but they often focus on a single vertebral feature and cannot meet the
accuracy requirements of vertebral features for post-processing of curvature calculations.

Fig. 1. An overview of the proposed method.

In this study, in order to obtain interpretable Cobb angle calculation results, we dis-
card the end-to-end regression angle approach and choose the post-processing approach
to calculate Cobb angle. Given the advantages and disadvantages of the landmarks detec-
tion and contour segmentation, we combine the two approaches through the proposed
MVIE-Net. We use the more robust confidence map to locate landmarks, since the direct
landmark regression approach is vulnerable to accuracy and robustness. we generate
confidence maps at landmark locations and obtain the coordinates of landmarks by seg-
menting and parsing the confidence maps. The proposed MVIE-Net adopts a dual-task
codec structure, where two tasks share the same encoder and have independent decoders,
and the tasks interact with each other through a jump connection. We pair landmarks
based on the location information obtained from vertebral contour segmentation.

In summary, the main contributions of this study are as follows:

– We use confidence maps to locate landmark coordinates, transforming the traditional
points regression task into a confidence map segmentation task.

– We propose the simple and efficient multi-task learning framework MVIE-Net to
simultaneously segment the vertebral contour and the confidence maps of landmarks.

– We combine vertebral contour information and landmarks information and match the
landmarks of vertebrae by the relative position relationship between contours.
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2 Method

As shown in Fig. 1, the spine X-ray images are input to the proposed MVIE-Net to
generate segmentation results for vertebral contours and landmark confidence maps,
respectively. Next, landmarks are resolved in the confidencemap and paired left and right
according to the relative configuration of vertebrae. Finally, Cobb angles are calculated
from the paired landmarks.

2.1 Confidence Map of Landmarks

The vector T = (t1, t2, . . . , t34), B = (b1, b2, . . . , b34), C = (c1, c2, . . . , c34) repre-
sents the set of upper landmarks, lower landmarks and centers of mass of 12 thoracic
and 5 lumbar vertebrae in the spine, respectively, where t2j−1 = (t(2j−1,x), t(2j−1,y)),
b2j−1 = (b(2j−1,x), b(2j−1,y)), c2j−1 = (c(2j−1,x), c(2j−1,y)), j = 1, . . . , 17 denotes the
coordinates of the four corner points along the clockwise direction and the centroid of
the j-th vertebra, respectively.

Fig. 2. Confidence maps. (a)–(c) show the confidence maps generated at 68 landamrks for σ = 2,
4, 6. σ = 2 is not conducive to the segmentation of the confidence maps, and σ = 6 radiative range
intersects, so we set σ = 4. However, integrating all key points into one confidence map makes
the resolution of the segmented points difficult, so as shown in (d)–(f), three confidence maps are
generated at the upper landmarks, the lower landmarks, and the centroid the vertebrae confidence
maps.

To estimate the locations of 85 key points (68 landmarks and the 17 centroids of
the vertebra), we employ confidence maps [12, 13] to represent the belief of each pixel
location x = (

x′, y′), x ∈ I with respect to the landmark and centroid. Considering
the interference of intersecting confidence maps at different key points to parse the
landmarks, we generate three confidence maps at the upper landmarks, lower landmarks,
and form center of the vertebrae as the segmentation labels for landmark detection, which
is defined by Eq. (1), Eq. (2), Eq. (3) respectively:

�t(x) = (exp(−‖x − t1‖2
2σ 2 ), ..., exp(−‖x − t34‖2

2σ 2 )), (1)
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�b(x) = (exp(−‖x − b1‖2
2σ 2 ), ..., exp(−‖x − b34‖2

2σ 2 )), (2)

�c(x) = (exp(−‖x − c1‖2
2σ 2 ), ..., exp(−‖x − c17‖2

2σ 2 )), (3)

where σ is the radiation radius of the confidence map generated by the key points. We
tested the effect of different σ and finally set σ = 4, as shown in Fig. 2.

2.2 The Proposed MVIE-Net

As shown in Fig. 3, the hard parameter sharing structure [14] is used in our multi-task
learning framework taking into account the similarity of vertebral contour segmenta-
tion and keypoint detection tasks. The two tasks share encoders with unique symmetric
decoders. The basic convolution module consists of two 3 × 3 convolutions. ELU acti-
vation function and Batch Normalization are used to optimize the model parameters.
The codec side uses jump connections to fuse low-level spatial location features with
high-level semantic features [15].

Fig. 3. MVIE-Net architecture. The proposedMVIE-Net is designed to perform vertebral contour
segmentation and key points detection tasks at the same time.

On the encoder side, we extract the features of the image using the base convolution
modules, and each basemodule is followed by amax pooling to halve the image size, and
finally,we reduce the size of the featuremap to 1/32 of the original size bydown-sampling
5 times.

On the decoder side, we halve the channels and double the feature map size using
a 2 × 2 transposed convolution. The feature information of the last layer of the two
decoders is fused together byconcatenation, which allows the two tasks to interact with
each other. At the end of the two decoders, we use two binary cross entropy losses Lc,
Lp as the loss functions for the two tasks.Then the loss function of the whole network is
L = λLc + Lp, and by experiment, we set λ = 0.3.
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2.3 Cobb Angle Measurement

Given the lack of interpretability of regressing the Cobb angle directly from the model,
we calculate the Cobb angle by mathematical modeling. We first extract the information
needed to calculate the Cobb angle from the network segmentation results, and then
model and calculate the Cobb angle based on the Cobb angle definition.

Post-processing Contour Segmentation Results
As shown in Fig. 4, we binarize the vertebral segmentation results and then calculate
the minimum bounding rectangle of the vertebral contour. A line passing through the
centroid of the vertebra and parallel to the MBR intersects the left and right midpoints
of the vertebral contour. Intercept the middle 2/3 of the line connecting the left and right
midpoints and make a vertical line through the two endpoints of the intercepted line.
By fitting a straight line to the set of upper and lower boundary points of the vertebrae
intercepted by two vertical lines, we obtain the upper and lower end plates similar to
those manually labeled by the physician.

Fig. 4. Post-processing process of vertebral contour segmentation results. (a) vertebral contour
segmentation results (b) vertebral contour point set (green) and the centroid of vertebra (red) (c)
the four points of the minimum bounding rectangle (yellow) (d) Contour left and right midpoints
(darkred) (e) vertebra upper and lower endplate point set (purple) (f) results of linear fitting of the
upper and lower edge point sets (blue) (Colour figure online)

Post-processing Key Points Segmentation Results
As shown in Fig. 5, we parse the coordinates of the corresponding key points by finding
themaximumvalue of the confidence region generated by each point. After obtaining the
upper landmarks and lower landmarks of the vertebrae, the two upper and lower vertices
belonging to the same vertebrae are paired according to the left and right midpoints of
the vertebrae contours.

Methods of Calculating the Cobb Angle
We learned that the label of the Cobb angle used by the public AASCEChallenge dataset
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Fig. 5. Post-processing process of key points segmentation results. (a) upper landmarks con-
fidence map segmentation result (b) lower landmarks confidence map segmentation result (c)
coordinates paresd out from the two confidence map (green is the upper, red is the lower) (d) the
position of the left and right center points of the contour (dark red hollow points). (e) results of
landmark matching (Colour figure online)

(a) (b)
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(c)

Fig. 6. Cobb anglemeasurement using landmarks. (a) the vectors A, B used to calculate the angle.
(b) Calculating angles using the parallel property (c) Simulate the upper and lower end plates using
the upper and lower landmarks connections

[16, 17] is calculated by Eq. (4):

angle = arccos(
A · B

‖A‖ · ‖B‖ ) (4)

As shown in Fig. 6 (a), the vectors A = p2 − p1,B = p4 − p3 represent the vectors
of any two different vertebrae pointing from the midpoints of the two landmarks on the
right to the midpoints of the two landmarks on the left.

We found that the algorithm given in the dataset uses the line connecting the mid-
points of the left and right landmarks to simulate the vertebral endplates, which is
different from the upper and lower endplates selected by physicians in clinical practice.
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To investigate the effect of using different information on the Cobb angle measurements,
we propose the following three ways to calculate the Cobb angle:

1. Midpoint: To obtain the angle of inclination of each vertebra, we let ka = y2 −
y1/x2− x1, kb = y4− y3/x4− x3, α = arctan(ka), β = arctan(kb), (see Fig. 6(b)),
then the angle between vertebrae angle = α+β. Since the midpoint of the landmark
is used, the results obtained by this method are the same as the method Cobb angle
measurements given in the dataset.

2. Endpoint: As shown in Fig. 6(c), we follow more closely the way the clinician
looks for the endplate, using the upper landmark connection of the vertebra above
to simulate the upper endplate the lower landmark connection of the vertebra below
to simulate the lower endplate.

3. Straight-line fit: In order to fully simulate the way physicians clinically mark the
upper and lower endplates, we use the contour information alone to calculate the
Cobb angle. We consider the straight lines fitted to the upper and lower boundaries
of the contour as the upper and lower endplates of the vertebrae and calculate the
Cobb angle from this.

3 Experimental Details

3.1 Dataset

The public AASCE Challenge dataset used for the experiment contained a total of 609
anterior-posterior radiographic images with labels. The dataset is divided by the provider
into 481 images for training and 128 images for testing. Each imagewasmanually labeled
by a clinician with 68 landmarks in 12 thoracic and 5 lumbar vertebrae. These images
are of varying sizes (∼2500 × 1000).

3.2 Implement

Wemanually labeled 17 vertebrae as our contour segmentation labels using the labeling
tool labelme, and generated key point segmentation labels by Eq. (1), Eq. (2), Eq. (3).
To alleviate the overfitting problem of small datasets, we expanded the dataset through
rotation, mirroring, and gamma transform (see Fig. 7).

We trained the proposedMVIE-Net in a Tesla T4 GPU using the pytorch framework.
We resize the image to a fixed size of 768 × 256 while keeping the width and height of
the image constant. The network was trained 500 epochs using the SGD optimization
and stopped when the verification loss was not significantly reduced.

3.3 Evaluation Metrics

We qualitatively evaluated the vertebral segmentation results using the Dice Coefficient
and the Intersection over Union (IoU) metrics which are defined as Eq. (5) and Eq. (6):

Dice = 2
|Vseg ∩ Vgt |

|Vseg | + |Vgt | = 2TP

FP + 2TP + FN
, (5)
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Fig. 7. Data augmentation. (a) resized image with its corresponding contour segmentation labels
and upper landmarks confidence map (b) after rotating (c) after vertical mirroring

IoU = |Vseg ∩ Vgt |
|Vseg ∪ Vgt | = |Vseg ∩ Vgt |

|Vseg | + |Vgt | − |Vseg ∩ Vgt | = TP

FP + TP + FN
. (6)

Following the AASCE Challenge, we use Symmetric Mean Absolute Percentage
Error(SMAPE) and mean absolute error (MAE) to evaluate the accuracy of the Cobb
angle measurements which can be computed as Eq. (7) and Eq. (8):

SMAPE = 1

N

∑N

i=1

∑3
j=1 |Xij − Yij|

∑3
j=1 |Xij + Yij|

× 100%, (7)

MAE = 1

N

∑N

i=1
(
1

3

∑3

j=1
|Xij − Yij|), (8)

where the Xij and Yij is the estimation of the j− thCobb angle and corresponding ground
truth for the test image i. N is the number of testing images.

4 Results and Analysis

To evaluate the proposed method, we tested the segmentation results of the proposed
network and explored the effect of different Cobb angle calculationmethods on the Cobb
angle measurement results.

4.1 Segmentation Results of MVIE-Net

Wecompare the segmentation results of the two tasks ofMVIE-Net separatelywith some
efficient medical image segmentation networks. Table 1 shows the qualitative results of
the proposed model on vertebral segmentation. Compared with the results of U-Net and
U-Net++, the proposedmodel obtains better vertebral segmentation results. Although the
proposed model has a larger number of parameters, it handles two tasks simultaneously.
When using U-Net and U-Net++ to process two tasks simultaneously, the number of
parametres would be twice as large as it is now, which means that our model reduces the



Automated Cobb Angle Measurement Using MVIE-Net Combined 307

Input CP-Net(Ours) U-Net U-Net++ GT

Fig. 8. Qualitative results of vertebrae segmentation. GT refers to the ground-truth landmarks.
The red circle in U-Net marks the wrong segmentation, and the red circle in U-Net++ marks the
missed vertebrae. (Colour figure online)

U-Net U-Net++

CP-Net(ours) GT

Fig. 9. Qualitative results of keypoints segmentation. The 7 images from left to right are the input
image, the confidence map of the upper landmark, the confidence map of the lower landmark, the
confidence map of the shape center, and the visualization of the confidence map on the original
image. The red circle in U-Net shows the case where two points are connected, and the red circle
in U-Net++ shows the segmentation anomaly of the points. (Colour figure online)

number of parametres by 4.71M compared to U-Net which also implements two tasks.
Figure 8 shows the quantitative results for vertebral segmentation, and it can be seen
from the red circles that the proposed network shows a significant improvement over
U-Net and U-Net++ segmentation results, reducing the number of false segmentations
that occur. Table 2 shows the qualitative results of the proposed model on keypoint
segmentation. The qualitative metrics are generally low because the confidence maps
generated by the key points are small relative to the images, but as can be seen in Fig. 9,
the segmentation of the network can achieve the desired results, and as can be seen
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from the red circles, the proposed network has clearer and non-adhesive confidence map
segmentation results.

Fig. 10. Comparison and differences between the Cobb angle estimations and Cobb angle ground
truth.

Img1 Img2 Img3 Img4

Fig. 11. Visualization of the straight-line fit method for estimation of four images.

4.2 Cobb Angle Measurement Results

We tested three Cobb angle calculation methods (midpoint method, endpoint method,
and straight-line fit method), and the results are shown in Table 3. The Midpoint method
achieved the best results because it is consistent with the Cobb angle labels in the dataset,
which all pass through the vertebral The left and right midlinks simulate the endplates
of the vertebrae.
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Table 1. Qualitative vertebral segmentation results

Dice IoU Params (M)

U-Net [15] 81.567 69.166 7.78 × 2

U-Net++ [18] 82.422 70.12 9.04 × 2

MVIE-Net 85.323 74.573 10.85

Table 2. Qualitative keypoints segmentation results

Upper points Lower points Centroids

Dice IoU Dice Iou Dice IoU

U-Net 33.029 20.815 31.412 19.686 42.329 25.346

U-Net++ 38.783 24.128 37.709 23.308 42.715 27.235

MVIE-Net 40.292 25.283 39.496 24.678 45.029 29.094

Table 3. Cobb angle calculation results of 3 methods

Midpoint Endpoint Straight-line fit

MAE (degree) 3.31 3.75 7.03

SMAPE (%) 7.59 8.54 16.15

Table 4. Comparison with the state-of-the-art methods

MAE (degree) SMAPE (%) w/calculate

Landmark Net [19] 10.48 26.94

Seg4Reg [2] 3.96 7.64

Seg4Reg+ [3] 3.73 7.32

AEC-Net [19] 4.90 23.59 �
SLSN [7] 4.28 9.712 �
Vertebra-focused [6] 4.07 9.53 �
VF [20] 3.51 7.84 �
Ours 3.31 7.59 �

In order to show the accuracy of the proposed method in Cobb angle estimation,
we compared the results of Cobb angle estimation with those of other methods, and the
comparison results are shown in Table 4. The proposed method obtains the best results
among all curvature post-processing methods for calculating Cobb angles, with MAE
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metrics reaching SOTA. Although the direct regression Cobb angle method [4] reaches
SOTA in SMAPE metrics, the approach focused only on the Cobb angle calculation
results and was unable to obtain information on the the end vertebrae, which is equally
important for the diagnosis of scoliosis. Figure 10 shows the histogram of the difference
and scatter plot between the Cobb angle estimation of the proposedmethod and the Cobb
angle groud truth.

Table 5. Cobb angle estimations for 4 scoliosis radiographs

Img1 Img2 Img3 Img4

Cobb Angle Upper Lower Upper Lower Upper Lower Upper Lower

GT 39° 18° 39° 28° 49° 34° 60° 49°

Midpoint 44.2° 15.9° 47.4° 28.8° 52.9° 43.7° 61.5° 51.6°

Endpoint 45.2° 15.1° 48.5° 25.4° 51.8° 43.7° 60.4° 49.9°

Straight-line fit 42.1° 17.4° 42.4° 25.2° 51.8° 29.6° 62.1° 54.5°

It is important to note that we also tested our method on four scoliosis radiographs
with the Cobb angle manually marked by the physician (see Fig. 11). The test results
are shown in Table 5, where the straight-line fit method has the smallest SMAPE (3.88,
compared to 5.51 for the midpoint method and 5.98 for the endpoint method), due to
the fact that the method is more similar to the way clinicians determine the endplates.
Therefore, we concluded that although the midpoint method showed better results on
the public AASCE challenge dataset, the estimations of the straight-line fit method were
more similar to the physician’s manually labeled Cobb angle.

5 Conclusion

This paper presents a new method for automatic measurement of the Cobb angle of sco-
liosis, using a network to extract scoliosis information and post-processing to calculate
the Cobb angle, which can obtain more comprehensive vertebral contour information for
visualization of the spine than direct Cobb angle regression. First, the proposed multi-
task learning network MVIE-Net can simultaneously perform vertebral contour and key
points detection, and the MVIE-Net network adopts a single encoder and dual decoder
structure, and the symmetric structure and jump connection between the dual decoders
improve the generalization ability of the network. Then, we proposed and tested three
angle calculation methods based on the definition of the Cobb angle, namely the mid-
point method provided by the public AASCE Challenge dataset, as well as the extended
endpoint method, and the straight-line fit method that simulates the physician’s position-
ing of the endplate. MVIE-Net with midpoint method achieved SOTA in MAE metrics
and the best SMAPE metrics among the known methods using post-processing on this
dataset. The SMAPE of all three methods was lower than 6 on the physician manually
labeled Cobb angle image processing, indicating that the proposed method can be used
as an adjunct to the physician’s clinical scoliosis Cobb angle measurement.
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Abstract. Text emotion classification is a hot research area in natural language
processing, aiming to classify the human emotion into positive and negative cat-
egories based on words. As a well-established and widely used neural model,
BERT has achieved many state-of-the-art results in various natural language pro-
cessing tasks, including text emotion classification. However, the embedding of
sentences from BERT has been proved to be insufficient in semantic representa-
tion, which we believe is especially crucial for building the emotion classification
models. Another issue about employing BERT in text emotion classification is
the model complexity, which has limited its training and application in natural
human-computer interaction for emotional robotics. In this paper, we propose a
novel Emotion-Sentence-DistilBERT (ESDBERT)model, which explores the rich
emotional representation in sentences via a Siamese Network based Sentence-
BERT module and further reduces the model complexity through a Knowledge
Distillation process. Experimental results suggest that the proposed model can
learn a rich emotional representation and to render a promising accuracy for text
emotion classification compared with the undistilled BERT-based models.

Keywords: Sentence-BERT · DistilBERT · Text emotion classification · SST2

1 Introduction

With the rapid development of computer technology and the “explosion” of data size and
form, text data mining techniques have developed rapidly since 2000 [1] and are now
a popular direction at the intersection of natural language processing and data mining,
while emotion analysis is a fundamental problem in text mining. BERT is a linguistic
representation model released by Google in October 2018 [2]. When using BERT, good
results can be obtained by modifying the output layer and fine-tuning the model accord-
ing to downstream tasks. When BERT was released, it achieved better results than then
on GLUE [3], MultiNLI [4], SQuAD [5], and other evaluation benchmarks and datasets.
The BERT model has been shown to perform well on a variety of NLP tasks. The task
of semantic text similarity is no exception. However, as specified by the BERT model,
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S. Yang and H. Lu (Eds.): ISAIR 2022, CCIS 1701, pp. 313–322, 2022.
https://doi.org/10.1007/978-981-19-7943-9_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-7943-9_27&domain=pdf
https://doi.org/10.1007/978-981-19-7943-9_27


314 H. Wang et al.

two sentences need to be fed into the model for information interaction at the same time,
which leads to a significant computational overhead. For example, given 10,000 sen-
tences, we want to find the most similar sentence pair, which requires (10,000 * 9999/2)
computations and about 65 h [6]. The BERT model is constructed in such a way that
it is neither suitable for semantic similarity search nor for unsupervised tasks, such as
clustering.

To address the shortcomings of the BERT model, Reimers et al. proposed the
Sentence-BERT network architecture [7]. Briefly, referring to the framework of Siamese
network model [8], different sentences are fed into two BERT models to generate Sen-
tence Embedding vectors with semantics. The final generated sentence representation
vectors can be used for semantic similarity computation and unsupervised clustering
tasks. For the same 10,000 sentences, we want to find the most similar sentence pair,
which takes only 10,000 computations [9] and takes about 5 s to complete. 5 s is a big
difference from 65 h. However, Sentence-BERT is still a gap in the field of text emotion
classification.

As the technology evolves, the amount of code for large NLP models like BERT or
RoBERTa [10] is huge and the process of training such models is very lengthy. Due to
their large size, training such models can last for days. When it comes to running them
on small devices, we obviously pay a huge memory and time cost for the ever-increasing
performance. There are ways to alleviate this pain with little impact on the performance
of the model, and the technique is called distillation. When we want to port a model
to smaller hardware, such as a limited laptop or cell phone, the benefits of knowledge
distillation [11] are obvious, as the distilled model has fewer parameters, runs faster, and
takes up less space while maintaining performance.

As a result, we decide to use Sentence-BERT for the text emotion classification task
and further refine it to reduce its size. The target model body consists of two different
DistilBERT models. After extracting features of the same sentence by two different
DistilBERTs, the two outputs are brought together using the last layer of the hidden
layer. In this paper, We tested taking CLS [12–14] vectors directly and average pooling.
We crossed the sentence vectors of the two features obtained after pooling. Reimers et al.
tried various crossover methods and it worked best in classifying |u − v|, so We chose
this method as well. Finally, the results of |u − v| were classified by the SoftMax layer.

The rest of this paper is organized as follows. We review related work in Sect. 2.
In Sect. 3, we describe the construction of Sentence-BERT-based distillation models
for text emotion classification. Section 4 describes the experimental setup and analyzes
the results of text emotion classification. Section 5 provides our conclusions and future
work.

2 Related Works

Reimers et al. 2019 proposed the Sentence-BERT model in their paper [7]. Sentence-
BERTfollows the structure of theSiamesenetwork, and the textEncoder part is processed
by the same BERT. Afterwards, Reimers et al. experiment with CLS-Token and two
Pooling strategies (AVG-pooling and mean-pooling) and further extract and compress
the character vectors of the BERT output to obtain u and v. Regarding the integration of
u and v, Reimers et al. 2019 provide three strategies.
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– For the classification task, u and v are spliced, connected to the fully connected
network, and classified by SoftMax. The loss function uses cross entropy.

– Calculate and output cosine similarity directly. The training loss function uses the root
mean square error.

– Ternary (triplet) objective function. Given an anchor sentence (a), a positive example
sentence (p) and a negative example sentence (n), the ternary loss is used to adjust the
network so that the distance between a and p is smaller than the distance between a
and n.

In general, Sentence-BERT is directly initialized with BERT’s original weights and
fine-tuned on specific datasets, and the training process is notmuch different from the tra-
ditional Siamese Network. However, this trainingmethod canmake BERT better capture
the relationship between sentences and generate better sentence vectors. Instead, in the
testing phase, Sentence-BERT directly uses cosine similarity to measure the similarity
between two sentence vectors, thus improving the inference speed.

BERT is a 12-layer transformer encode, and Distilled BERT is a 6-layer trans-former
encode. Distilled BERT does not conduct its own pre-training. Instead, some parameters
of BERT are loaded directly into the Distilled BERT structure as initialization. The first
paper on BERT distillation is the one that inspired us, Sanh et al. 2019 [15]. Apart from
that there are some good other methods, such as [16] or [17], so it was natural to wonder
whywe restricted ourselves toDistilBERT. The answer is threefold, first, it is very simple
and a good introduction to distillation; second, it gives good results; third, it also allows
to refine other BERT-based models. BERT is primarily based on a series of attention
layers stacked on top of each other. This therefore means that the “hidden knowledge”
learned by BERT is contained in these layers.Wewon’t care how these layers work, here
we can treat the attention layer as a black box, it doesn’t matter to us [18]. DistilBERT
alternates between a full replicated layer and an ignored layer, according to the method
of [16], which tries to replicate the top or bottom layer in preference. Thanks to the
deformation module of Hugging-Face and some knowledge of the inner workings of
BERT, this replication step can be easily implemented. If a BERT-based model is used
for a specific task, such as time series classification, the head of the Teacher model needs
to be copied into the Student model. However, in general, the head size of BERT is very
small compared to the size of the attention layer and can be negligible.

We wanted to obtain a student model. However, the distillation process is not a
classical fitting process. Our aim is not to teach the student model to learn the model
as usual, but to imitate the teacher. And we want to set up two different DistilBERTs
instead of using the same DistilBERT. Therefore, we will have to adjust the training
process, especially our loss function.
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Fig. 1. Proposal model, Emotion-Sentence-DistilBERT.

3 Emotion-Sentence-DistilBERT

3.1 Model Structure

We choose a basic BERT model and build a two-tower model with two differ-
ent distillation strategies, and input the output word vectors into pooling, and per-
form feature cross-validation on the two sentence vectors obtained after pooling to
improve the accuracy of text emotion classification calculation. We named this model
Emotion-Sentence-DistilBERT (ESDBERT).

The model run process. First, we input the sentences into two DistilBERT model
towers separately to get the word vectors, then we get the sentence vectors by pooling
strategy, then we stitch the two sentence vectors together and multiply them by a weight
W , i.e., Wt(u, v, |u − v|). Finally, after SoftMax, we obtain the binary classification
probability function. We train the above network by minimizing the cross-entropy loss
while updating the weights Wt [19]. In this way, we can use SBERT for the task of
classifying sentence pairs.

SoftMax [25] is a very common and important function in machine learning, espe-
cially deep learning, especially in the context of multi-class classification. It [26] maps
some of the inputs to real numbers between 0 and 1, and the normalization guarantees
that the sum is 1, so the multi-class probabilities also sum to exactly 1.

Given an n-dimensional vector, the SoftMax function maps it to a probability
distribution [27]. The standard SoftMax function σ : Rn → R

n is defined by Eq. (3)

σ(X)i = exp(xi)
∑n

j=1exp(xj)
; i = 1, . . . , n; X = [x1, . . . , xn]T ∈ R

n (1)
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In classification problems, the SoftMax function is often used with the cross-entropy
loss function.

Loss = −
∑

i
ti ln yi (2)

3.2 ESDBERT for Sentence Pair Emotion Classification Tasks

We have a dataset containing sentence emotion labels, and the binary emotion labels
indicate whether the sentence is positive (1) or negative (0), as shown in Table 1. The
text input is formatted so that label 1 is positive and label 0 is negative.

We see how to use the above dataset to fine-tune a pre-trained BERT model for a
sentence emotion classification task based on conjoined network. Let’s start by looking
at one of the sentences in the dataset.

• Sentence A oh, look at that clever angle!

We need to decide whether a given sentence pair is similar (1) or dissimilar (0):

• Tokens A = [[CLS], oh, look, at, that, clever, angle, [SEP]]

Then, we feed these labels into the pre-trained DistilBERT model to obtain a vector
representation of each label. We then fed these labels into the pre-trained DistilBERT
model to obtain a vector representation of each label. We learned that SBERT uses
the Siamese network. Siamese network is essentially two identical networks that share
weights. And our model uses two different DistilBERTs, so we input the list of labels
for sentence A into the first DistilBERT-I, and then input the list of labels for sentence A
into the other DistilBERT-II, and then calculate the feature vectors for both sentences.
To compute the feature vectors for the sentences, we use the average pool here. After
applying the pooling strategy, we have a sentence feature for the given sentence, as
shown in Fig. 1.

This section focuses on the individual functions from input to output. The process
is shown in Fig. 1. u represents the sentence representation of the DistilBERT-I output
and v represents the sentence representation of the DistilBERT-II output. After obtaining
the features u and v, a feature vector for matching the relationship between the two is
constructed based on u and v, and then an additional model is used to learn a generic
text relationship map.

Now, we concatenate them and the difference between their elements and multiply
it by a weight W , as follows, Wt(u, v, |u − v|). Note that the dimension of the weight
W is Wt ∈ R3n∗k, where n is the dimension of the sentence embedding. k is the number
of categories. Next, we feed this result into a SoftMax function that returns the given
emotion probability.

o = Softmax(Wt(u, v, |u − v|)) (3)

We train the above network by minimizing the cross-entropy loss while updating
the weightsW . In this way, we can use ESDBERT for the task of emotion classification
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Table 1. Text input format, label 1 is positive, label 0 is negative

Sentence A Label

The film is strictly routine 0

This is a stunning film, a one-of-a-kind tour de force 1

Marinated in cliches and mawkish dialogue 0

A visual spectacle full of stunning images and effects 1

sentence pairs. After feature extraction of two sentences via DistilBERT, the hidden
layers of the last layer should be pooling. The feature crossover is performed on the two
sentence vectors obtained after pooling. Finally, through the SoftMax layer.

3.3 Distillation Method

The purpose of model distillation is to inherit the effects of the model with fewer param-
eters. The model distillation is commonly used in the way of Teacher-Student model
distillation. The whole idea is to let the Teacher model learn the large parameters of the
model. Let the Student model inherit from it. Distill stands for distillation, and we can
literally guess that we’re going to Distill from a large model into a smaller model, or we
can think of it in a way that we’re going to have the large model as the Teacher of the
small model, and the small model, the Student, is just going to try to learn everything that
the Teacher outputs [20]. BERT is a 12-layer transformer encode, and Distilled BERT
is a 6-layer trans-former encode. Distilled BERT does not conduct its own pre-training.
Instead, some parameters of BERT are loaded directly into the Distilled BERT structure
as initialization.

On the method of setting T and ∂ in distillation. The hyperparameter mainly controls
the loss ratio of soft label and hard label [21]. In the experiment, Distilled BiLSTM
[22] found that only using soft label would get the best results. We suggestion are to
make soft label account for more. On the one hand, it is to force Students to have more
Teacher knowledge. On the other hand, the experiment proves that soft target can play
a regularization role and make the Student model converge more stably.

The hyperparameter T mainly controls the smoothness of the prediction distribution.
TinyBERT [23] experiments show that T = 1 is better, and the search space of BERT-
PKD is {5, 10, 20}. Therefore, it is recommended to try several times between 1 and
20, and the larger T is, the more generalization information of the Teacher model can
be learned. For example, when MNIST [24] classifies the handwritten picture of 2, it
may assign a confidence of 0.9 to 2, and 3 is 1E−6 and 7 is 1E−9. It can be seen from
this distribution that 2 and 3 have a certain similarity. In this case, T can be increased
to make the probability distribution smoother and show more generalization ability of
Teacher.
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Table 2. The Stanford Emotion Treebank (SST-2) dataset

SST-2 Label

A stirring, funny and finally transporting reimagining of beauty and the beast and 1930s
horror films 1

1

Apparently reassembled from the cutting room floor of any given daytime soap 0

This is a visually stunning rumination on love, memory, history and the war between art
and commerce

1

A fan film that for the uninitiated plays better on video with the sound turned down 0

At achieving the modest, crowd-pleasing goals it sets for itself 1

4 Experiments and Results

4.1 Dataset

The Stanford Emotion Treebank (SST-2) is a single-sentence classification task contain-
ing sentences from movie reviews and human annotations of their emotions [28]. The
task is to classify the emotion of a given sentence. There are two emotion categories,
which are the positive emotion category (1) and the negative emotion category (0). The
emotion labels are only annotated on the sentence-level. Therefore, we consider SST-
2 as a binary classification task, which classifies sentences into positive and negative
emotions.

The sample size consists of a training set of 67, 350, a development set of 873, and
a test set of 1, 821. It is a test set for performing a binary emotion classification task
of positive and negative emotions. The evaluation criterion is accuracy. Examples with
label (positive emotion, negative emotions) are shown in Table 2. Notice that since the
sentences are derived frommovie reviews and have human annotations of their emotions,
some sentences are very long and others are very short, and the lengths are not uniform.

4.2 Evaluation Method

We choose accuracy, precision, recall, F1 value, macro avg, and weighted avg as eval-
uation criteria. Accuracy is defined as the percentage of results predicted correctly in
relation to the total sample. Precision, which refers to the predicted outcome, refers to the
probability that of all samples predicted to be true, that sample is actually true. Recall,
which is specific to the original sample, is defined as the probability of being predicted
as true in a sample that is actually true. F-Score, the summed average of precision and
recall, which considers both precision and recall achieving the highest balance between
the two. Macro avg, the average of all the label results. Weighted avg, The weighted
average of all the label results.

4.3 Results and Discussion

Our final distillation results we obtained for the two distillationmodels are: Distil BERT-
I retaining layers 1, 2, 4, 5, 7, and 9; Distil BERT-II retaining layers 1, 3, 6, 8, 10, and
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Table 3. Sentence-DistilBERT’s precision, recall, F1-score, macro-avg, and weighted avg.

Precision Recall F1-score

Negative 0.9086 0.9477 0.9277

Positive 0.9518 0.9155 0.9333

Macro avg 0.9302 0.9316 0.9305

Weighted avg 0.9315 0.9306 0.9307

Table 4. Accuracy of ESDBERT with other models on the SST-2 dataset

Model Accuracy

ESDBERT 92.8%

bmLSTM 91.8%

Charformer-Base 91.6%

DistilBERT 91.3%

BERT Base 91.2%

CNN-RNF-LSTM 90.0%

Fig. 2. ESDBERT’s cross-entropy loss function.

11. The total model volume is almost the same as BERT, and the processing speed is
about 50% faster relative to BERT.

As can be seen in Table 3, a relatively good balance between precision and recall
can be achieved at F1 of 0.9333. Macro avg is the average of all labeled results of about
0.93, and the weighted avg is the weighted average of all labeled results of about 0.93.

The accuracy of the results evaluated was compared with the Dummy classifier.
Dummy Classifier is a classifier that makes predictions using simple rules. Usually,
this classifier is used as a simple baseline to compare with other (real) classifiers. The
comparison results are as follows: The Dummy classifier score was 84.7%. Our accuracy
is 92.8%. DistilBERT is 60% the size of BERT. Our model ESDBERT is 50% BERT
size. Compared with BERT and DistilBERT’s accuracy on SST-2, the results are shown
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in the Table 4. The accuracy of our model on the SST-2 dataset is 92.8%, which is higher
than BERT and DistilBERT.

We evaluate the convergence of model learning by means of cross-entropy loss
values. The cross-entropy value is used to describe the difference between the predicted
and true values of the model. A lower cross-entropy value indicates better convergence.
As shown in Fig. 2, the overall trend is downward convergence, which means that the
model performs well.

5 Concludes

In this paper, we propose to apply Sentence-BERT to a text emotion classification task
using transfer learning. Through transfer learning and continuous fine-tuning of the
model, semantic sentence vectors based on sentence networks and their related algo-
rithms are introduced into text emotion classification, better word vectors are obtained
by setting two different DistilBERTmodels, which in turn improve the semantic richness
of the sentence vectors, and finally the regression model is trained to achieve emotion
classification. And the size of the model is further reduced by knowledge distillation.
Our model achieves 92.8% accuracy on the SST-2 dataset, which is higher than models
such as BERT and DistilBERT.

For future work, we will further optimize the model to improve the accuracy of
emotion classification and explore more distillation strategies. We also want to create a
suitable dataset for fine-grained emotion classification.
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Abstract. Most of the important data and equipment storage places, such as
laboratories, mainly rely on manual management and various biometric systems
to ensure their security. Currently, the commonly used biometric systems include
facial recognition, fingerprint recognition, voice recognition and gait recognition.
Gait is a unique way of moving for each person. Compared with other biometrics,
gait is difficult to imitate or fake and can accomplish the supervision tasks more
efficiently. This paper proposes a novel Human Body Pose (HBP) model for gait
recognition in laboratory environments. Specifically, we first extract the image
of each frame from the video and extract the 2D human body poses in the form
of people’s joints and bones with OpenPose. Then we use a 3D pose library to
estimate a 3D human pose by matching with the 2D pose. Finally, we employ a
Convolutional Neural Network to extract the human temporal-spatial features for
gait recognition. We train and validate our method to compare with the state-of-
the-art methods on the CASIA gait dataset B. Experimental results show that our
method outperforms the state-of-the-art methods in the case of cross-view and
clothing changes.

Keywords: Gait recognition · OpenPose · Human body pose · CNN

1 Introduction

Laboratories and other places are facing great challenges in terms of information and
equipment storage security. Currently, the main security management methods in labo-
ratories are broadly divided into two types, which are the manual management and the
intelligent system management. The limitations and drawbacks of manual management
are becoming more and more obvious in today’s society, where technology is develop-
ing at a rapid pace. Intelligent systems usually refer to biometric identification systems,
including fingerprint recognition, face recognition, gait recognition, etc. [1, 2]. Since bio-
metric features such as fingerprints and faces have a certain possibility of being forged,
they still pose a certain threat to the security of laboratories, so we propose the use of
gait recognition systems to further strengthen the security management of laboratory.

Gait recognition aims to be a method for identity validation through the unique
posture andmanner of human walking [3]. Compared with other biometric identification
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technologies such as face recognition and fingerprint recognition, gait recognition has its
unique advantages and characteristics. Firstly, gait features are difficult to disguise. Each
person has somedifferences in height,weight, bone length, boneweight,muscle strength,
walking center of gravity, and physiological conditions that affect walking posture [4],
so it is very difficult to imitate other people’s gait. Secondly, gait recognition is a long-
distance and non-invasive recognition method. In the recognition process, it does not
require the recognized person to be close to or directly touch the recognition equipment,
and the information collection is relatively convenient. Thirdly, gait recognition is less
affected by the incidentals of the recognized person. For example, when people wear
high-density sunglasses, masks and other items, face recognition and iris recognition
systems will not work properly.

The common gait recognition methods available today include sensor-based gait
recognition [5], appearance-based gait recognition [6], andmodel-based gait recognition
[7]. Sensor devices for gait recognition usually contain both wearable and non-wearable
sensors [8, 9], so sensor-based gait recognition methods usually require specialized
sensor devices that are difficult to implement in a general laboratory environment. The
most used feature for appearance-based gait recognition methods is gait energy image
[10]. However, appearance-based gait recognition methods still face the challenges of
environmental interference and image noise removal.

In this paper, we use a model-based gait recognition method that returns the features
of gait recognition to the human body itself [11], which means that such methods are
more sensitive when the human pose changes.

The rest of this paper is organized as follows. Section 2 briefly reviews the related
work about the model-based gait recognition methods. Section 3 depicts our proposed
HBP model for gait recognition in laboratory environments. In Sect. 4, we report the
experimental results of gait recognition based on CASIA gait dataset B and compare our
results with the state-of-the-art methods. Finally, Sect. 5 concludes this paper.

2 Related Work

The usual implementation process of the model-based method is: first modeling the
human body by labeling the body information (bones, joints, etc.); then designing static
or dynamic feature quantities (such as the angle between bones attached to the same
joint, the length of the bones, or other features); finally achieving gait recognition by
comparing the feature quantities with the relevant parameters. As early as 2009, W. K
et al. [12] proposed that gait recognition becomes difficult in the case of perspective
change. Based on the GEI technology, a view transformation model (VTM) based on
spatial GEI was created. The Singular Value Decomposition (SVD) technique was used,
which can convert the corridor gait perspective data and probe gait viewpoint data into the
same view direction, thus overcoming the effect of viewpoint change on gait recognition.

R.T. et al. [7] used shadows projected from the lower body joints to the walking
plane for gait recognition, calculated joint angle trajectories by estimating the offset of
the lower body skeleton from the joints, and finally calculated the temporal dimension
of the trajectories and normalized the experimental method.

The DensePose [13] uses a grid to mark the human body surface to form a grid-like
modeling of the human pose. However, DensePose can only build a grid on the human
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body surface from the camera’s filming angle. It cannot build the parts that are not
captured by the camera, resulting in incomplete information about the human body and
thus making the experimental data incomplete.

In our proposed HBPmodel, the human body was modeled by using joints and bones
extracted by OpenPose [14]. This method estimates the 2D human pose from a single
RGB image of the human body and annotates the bones and joints of the human body.

3 Human Body Pose (HBP) Model for Gait Recognition

In ourmethodHBP,we use 3Dpose information as a feature quantity for gait recognition.
First, we need to capture RGB walking videos of human body and extract 2D skeleton
and joint models of human body by RGB image sequences. Then we estimate the 3D
model from the 2D model of the human body, construct the coordinate system in space,
and extract the features needed in the method. The framework of the method is shown
in the Fig. 1.

Fig. 1. The framework of HBP

3.1 Human Body Pose Estimation

In Fig. 2, a total of 25 human body joints are estimated and extracted by OpenPose,
namely:Nose, Neck, RShoulder(R stands for Right, L stands for Left, and the subsequent
R and L stand for the same meaning.), LShoulder and so on1. Because the size of the
human body finally displayed on the image depends on the distance between the human
body and the camera. In order to facilitate and more accurate information comparison,
we subject the estimated human pose model to a simple normalization process. We
define the distance between Neck and MidHip as the unit length, and since the currently
extracted human body model is two-dimensional, take Neck as the origin. These works
are beneficial to our follow-up work.

In order to solve the impact of the view change on the gait recognition, we need to
convert a 2D human pose into a 3D human pose. The research in [15] shows that the
method can estimate the 3D pose of the human body from each frame of images by
matching 3D pose library.

1 All of the joints in Fig. 2 are named “Nose, Neck, RShoulder, RElbow, RWrist, LShoul-
der,LElbow, LWrist, MidHip, RHip, RKnee, RAnkle, LHip, LKnee, LAnkle, REye, LEye,
REar,LEar, LBigToe, LSmallToe, LHeel, RBigToe, RSmallToe and RHeel”.
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Fig. 2. The sample of the estimated 2D pose by OpenPose

3.2 Feature Extraction

According to the three-dimensional human pose to establish a spatial coordinate system,
the X, Y and Z axes are defined as follows: the positive two directions of the X axis
are the direction of human movement; the Y axis is perpendicular to the X axis and the
positive direction is from the right shoulder to the left shoulder; the positive direction of
the Z axis is vertically upward.

In the research, two feature quantities are used as comparison contents, Fpose and
Fmotion. Fpose represents a pose, which is represented by the collection of all human
joint points, we have:

Ji = (xi, yi, zi), (1)

Fpose = [J0, J1, . . . , JN ], (2)

where i ∈ {0, 1, . . . ,N } and N = 24, J is the coordinate of different joint points, and N
represents the total of the joint points that be estimated. Fmotion represents the change
of the action, the change of posture between the adjacent two frames t and t + 1 can be
expressed as:

Fmotion
t = Fpose

t+1 − Fpose
t , (3)

Since both features are extracted frame by frame, sowe can construct a featurematrix
for the two defined features to fuse the two feature vectors, as:

Ft = Fpose
t + Fmotion

t , (4)

Because Fmotion
t is the difference of Fpose between the frame t and t + 1, the total

of Fmotion will be one less than the total of Fpose. In order to make the number of two
features consistent to make the matrix complete, we add a 0 vector for Fmotion to the
beginning tomake the number ofFpose andFmotion be same. Then the two the constructed
feature matrix can be complete. This feature matrix is used as a follow-up that the input
of the CNN to extract the high-level temporal-spatial features.
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3.3 Gait Recognition Network

Considering that the features used in the study are extracted on a per-frame basis and are
continuous. Therefore, we adopt CNN as the network structure for feature extraction. In
order to obtain high-level spatiotemporal features for gait recognition after processing
through theCNNmodel, it is important to reduce intra-class differences and enlarge inter-
class differences. Related studies in [16] show that a multi-loss strategy is employed to
optimize the CNN network. Including softmax loss and center loss. The equation of the
loss function is as follows:

L = Lsoftmax + Lcenter, (5)

The softmax loss can classify the input features into different categories, which
indicates that the softmax loss can expand the differences between different categories
and thus achieve classification. The center loss can minimize the variation within each
class to maintain the difference and separability of different class features. Since the
dataset used in our comparative experiment is the CASIA gait dataset B, the amount of
data is not very large, so we use a light-weight network structure with 7 convolutional
layers (3 × 3) and 2 pooling layers (2 × 2).

4 Experiment

4.1 Dataset

In this study we use the CASIA gait dataset B to test the proposed method. It is a
large-scale and multi-view gait dataset. Because the dataset is collected in an indoor
environment and covers multiple views, it provides a better simulation of the laboratory
environment. This dataset contains 124 subjects. Each subject contains three different
walking states, including NormalWalking (NM),Walking with a Bag (BG) andWalking
with a Coat (CL), and the dataset videos are from 11 different views.

4.2 Experimental Results

The experiment is conducted on the CASIA gait dataset B. We put the first 62 subjects
into the training set and the rest into the testing set as a setup for comparison experiments
with GEI + PCA [6], SPAE [17] and GaitGAN [18]. In the testing set, the gallery set
consisted of the first 4 Normal Walking sequences and the probe set consisted of the
remaining sequences as shown in Table 1.

In this study, experiments are conducted by using data from three views (0°, 90°,
180°) in the dataset because data from these perspectives are easier to simulate the labo-
ratory environment. Table 2–4. list the experimental results of this method on the CASIA
gait dataset B. In the experiment, the first 4 normal walking (NM01-04) sequences of
a specific view are put into the gallery set, and the last 2 normal walking sequences
(NM05-06), 2 walking sequences with bags (BG01-02), and 2 walking sequences with
coats (CL01-02) are put into the probe sets of three sets of experiments respectively. For
each set of experiments, there are 9 combinations. Thismeans that there are 9 recognition
rates in each table.
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Table 1. Experimental setting on CASIA gait dataset B

Training Testing

Gallery set Probe set

Num. 001–062 063–124 063–124

Sequence NM01-06,
BG01-02,
CL01-02

NM01-04 NM05-06,
BG01-02,
CL01-02

Table 2. Recognition rates when the probe set is NM05-06 on CASIA gait dataset B

Probe set view

0° 90° 180°

Gallery
set
view

0° 96.13 24.74 64.13

90° 27.56 98.10 22.58

180° 67.55 21.17 97.89

Table 3. Recognition rates when the probe set is BG01-02 on CASIA gait dataset B

Probe set view

0° 90° 180°

Gallery
set
view

0° 75.23 16.33 35.68

90° 20.98 71.16 15.56

180° 43.84 16.17 62.49

Table 4. Recognition rates when the probe set is CL01-02 on CASIA gait dataset B

Probe set view

0° 90° 180°

Gallery
set
view

0° 48.56 16.34 24.18

90° 9.97 59.42 10.51

180° 30.88 15.63 40.17

In the above table, we can see the recognition rates obtained by applying the method
of this paper under three different conditions. In order to show more intuitively the
effectiveness of the methods in this paper, in the following Fig. 3 and Fig. 4, we present
in turn the results of the comparison between the methods used in this paper and the
appearance-based gait recognition methods, namely GEI + PCA, SPAE and GaitGAN.



Gait Recognition for Laboratory Safety Management 329

In the previous section, we introduced that the comparative experimental results are by
comparable since the initial experimental settings are all the same. The Fig. 3 and 4 show
the average recognition rates with the view variation and the same view.
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Fig. 3. The average recognition rates with the view variation
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Fig. 4. The average recognition rates with the same view

The following Table 5 and Table 6 show the data for the above Fig. 3 and Fig. 4.

Table 5. The average recognition rates with the view variation

GEI + PCA SPAE GaitGAN HBP

NM 29.09 51.09 59.31 57.76

BG 17.30 42.92 39.78 39.72

CL 6.55 26.34 17.65 28.41
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Table 6. The average recognition rates with the same view

GEI + PCA SPAE GaitGAN HBP

NM 98.45 98.12 99.46 97.37

BG 56.23 73.12 73.66 69.63

CL 16.93 43.28 33.87 49.38

4.3 Discussion

As we can see from the Fig. 3, our method can achieve recognition rate comparable to
some of the more advanced appearance-based methods when the probe set is a Normal
Walking orWalk with a Bag. Andwhen the probe set isWalking with a Coat, our method
can achieve a higher recognition rate than the appearance-based methods. This shows
that the model-based approach can be applied to scenes with changing viewpoints and
is robust to changes in clothing.

It also be seen from the Fig. 4, when the gallery set view is the same as the probe
set view, our method can also achieve similar recognition rate as the appearance-based
gait recognition methods when the probe set is Normal Walking or Walking with a bag.
And when the probe set is “Walking with a Coat”, our method can also achieve a higher
recognition rate than the appearance-based methods. This again demonstrates that the
model-based gait recognition method is robust to changes in clothes.

5 Conclusion and Future Work

In this paper, we propose to use a model-based gait recognition method named HBP to
further strengthen themanagement of laboratories and other places to ensure their safety.
This method returns the gait recognition to the human body and uses the human joints
and bones as the basis to design the temporal and spatial features of people walking
for recognition. In terms of datasets, this paper uses the CASIA gait dataset B for the
experiment because the data of this dataset is taken from multiple perspectives and is
indoors,which is similar to the laboratory environment, and the effect ismore convincing.
The experimental results show that the method can generally achieve a recognition rate
similar to that of several relatively new appearance-based recognition methods, and the
effect is better when the viewing angle changes and the clothes change. Future work
starts from two points. 1. Whether it is possible to use more advanced human pose
estimation methods to better and accurately extract human pose features to improve the
recognition rate. 2. Collect more real-world datasets for testing to validate whether the
method can work properly and efficiently.
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Abstract. Emojis are now frequently used in online communication, which
express rich meaningful information and emotional messages. However, com-
munication will fail if the meaning of different Emojis is not well understood,
especially for the speakers of different languages and those from different coun-
tries/regions. There are very few researches about theEmoji dataset currently, since
the process of building an Emoji database is labor-intensive and time-consuming.
To solve this problem,we propose an active learning-based framework for building
Japanese text datasets containing Emoji. This approach aims to achieve fast and
balanced labeling of data given a small and unevenly distributed source of Emoji
data. The active learning algorithm selects unlabeled data with high information
content for manual labeling and updates the model parameters with the manually
labeled data, in which way a large Emoji database is iteratively constructed. The
constructed Japanese Emoji database contains hundred types of Emojis, with at
least hundred pieces of Our experiment suggests that the Emoji dataset can be
efficiently constructed with balanced data and the result dataset can provide rich
information for text emotion classification, by rendering an accuracy of over 82%.

Keywords: Emoji · Active learning · Database

1 Introduction

With the rise of social media, hieroglyphics, commonly referred to as “Emoji,” have
become one of the fastest growing forms of expression in the world. Emoji is an ideo-
graphic writing system born in Japan that provides a rich set of non-verbal cues to assist
text communication. Unicode 11.0 specifies more than 2,500 emojis, ranging from facial
expressions (such as ) to everyday objects (such as ). Originally a visual aid for
text communication, the non-verbal nature of Emoji has led some to believe that they
are universal across cultures [1].

The rapid growth of Emoji began in 2011, when Apple iPhone added the Emoji
keyboard to the iOS system, and Android mobile platform began to support Emoji
in 2013. Emoji has penetrated into the modern network and network communication,
and is now regarded as a natural and common form of expression [2]. In fact, Oxford
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Dictionaries chose “ ” as its word of the year for 2015. The global acceptance of Emoji
indicates that its use is cross-cultural and normative. At the same time, there may be
nuances in the use of Emoji in different cultures because of linguistic differences in how
emojis express emotions, as well as differences in how they conceptualize topics.

Despite the ubiquity of emojis, there are still many questions regarding their use,
especially regarding global differences in languages and countries/regions. In the studies
related to Emoji, it can be found that according to the frequency of Emoji use, context and
topic association, there will be understanding errors when using Emoji across cultures,
which are very important [3]. Partly because they reveal how people communicate dig-
itally on social platforms, but also because they offer a perspective from which to study
different regions and cultures. Therefore, we want to study Emoji from the perspective
of different languages.

In addition, in recent years, many studies have begun to detect the topic words in the
text stream in the network to judge whether there is a negative emotion emergent topic,
so as to deal with the related possible emergent situations [5, 6]. As of March 2019,
there are 3,019 emojis in Unicode, nearly half of all text messages on Instagram contain
emojis, and 5 billion of them are used daily on Facebook, demonstrating the influence
of emojis in online communication. We believe it is very valuable to study the meaning
of Emoji in more depth.

Previous Emoji research has focused more on optimizing the sentiment algorithm
to improve the accuracy of the algorithm, and in the process of learning we believe that
the current accuracy improvement has reached a bottleneck, Therefore, we decided to
improve the accuracy of the final acquisition by improving the quality of the database.
Based on this idea, we decided to study how to build a better database more quickly.
The method we chose is to achieve this goal through active learning. In the past, a lot
of Emoji-related research data was obtained through questionnaires, which was very
inefficient. and some of the studies that collected data by themselves to build databases
were not particularly well-developed because of the time required to build them, and
there were various defects, such as the data were not evenly distributed and there were
too few single data. By using active learning, the time required to build a database can
be significantly reduced. And the distribution of data becomes more even as the amount
of data increases, which greatly reduces the occurrence of a single piece of data and the
amount of data is too small.

In this paper, we propose a database construction method based on active learning.
Firstly, a large amount of data containing emoji is collected on the web, then it is pre-
processed and the sentiment parameters are extracted by Bert. Then a small amount of
data is manually labeled, and a large amount of labeled data is completed to build a
database by the active learning method.

The rest of this paper is organized as follows. We review related work in Sect. 2. In
Sect. 3, we describe the data collection and preprocessing, and introduce the active learn-
ing algorithm based on BERT for text sentiment classification. Section 4 describes the
evaluationmethod of the experiments and analyzes the results of sentiment classification.
Our conclusions and future work are given in Sect. 5.
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2 Related Work

The use of Emoji is composed of the combination of language, social background and
cultural customs [4], and is influenced by many factors such as cultural background,
living environment and language. Environment and user groups. Cultural differences
have a significant impact on the use of Emoji. Some specific uses of Emoji are closely
related to cultural backgrounds. For example, users in Finland, India, and Pakistan use
specific emojis based on their culture [7]. Chinese users are more likely than Spanish
users to use emojis and other nonverbal cues to express negative emotions [3]. The
study also found that people from Hong Kong and the United States used different
emojis on user-generated restaurant re-view sites, which may reflect underlying cultural
differences [8]. Due to cultural differences in Emoji use, an EmojiGrid was developed
for cross-cultural research on food-related emotions, which reliably reflects established
cultural characteristics [9]. This difference is evident not only between countries, but
also within the same country [10]. The specific language environment can also affect
the use of Emoji. Emoji show a high degree of context sensitivity in cross-language
communication, which means that they are very dependent on their linguistic and textual
environment [11]. For example, studies have shown that there is a strong similarity in
Emoji use between the United Kingdom and the United States, as they both speak
English, but the similarity is low when compared with other languages, such as Italian
and Spanish [12]. Studies have also shown that Japanese teenagers have found innovative
ways to useEmoji tomanage their relationships and express their aesthetics in subculture-
specificways [13]. Through literature survey,we found thatmost of the previous research
data were obtained in the form of questionnaire survey, so the amount of data obtained
was not large. In particular, there may be a small amount of data for a given Emoji.
Therefore, in this study, we attach great importance to these two points. We collect a
large amount of data on the Internet to establish a database and useActiveLearningmodel
to achieve the balance between the data. Active Learning refers to the automatic selection
of data request labels from a data set through automatic machine learning algorithms,
which is also known as query learning or optimal experimental design in statistics [14,
15, 16]. By designing reasonable query function, Active Learning constantly picks out
data from unlabeled data and adds them to the training set after labeling. Effective Active
Learning data selection strategy can effectively reduce the cost of training, improve the
recognition ability of the model, and achieve fast and balanced data tagging.

3 Constructing an Emotional Database Through Active Learning

3.1 Data Collection

For a long time, researchers have been using questionnaires or SNS social networks such
as Twitter for data collection. The questionnaire method of data collection requires too
much manpower and time to build a large and rich database. In contrast, data collection
on Twitter is difficult due to the fact that Twitter users speak various languages, which
makes the process of data collection more difficult. In this paper, we chose to collect
data from the Japanese social network “Yay! “Yay!” is a social application where you
can chat with people who have the same interests and share your moods with people
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who are interested in you. This SNS has a relatively even ratio of users, and by reducing
the possibility of obtaining data from people of the same gender or from people of the
same age, the data balance can be better ensured. Example Fig. 1 shows an example of
the data.

Fig. 1. An example of data

The author of this data message shared his emotions at the time. It can be noticed that
part of the text of this data shows happy emotions, but the attached Emoji contains sad
emotions. We think it can be considered that through the combination of text and Emoji,
the meaning of Emoji can be understood as moved to cry. Therefore, we believe that
the emotion of the text part of a piece of data has a great influence on the emotion of
Emoji, and We build a database based on the analysis of the emotions contained in the
text. In order to attach importance to user privacy, During the data collection process,
we only collect information related to text and Emoji. Information related to privacy,
such as username and location, is not collected. Finally, the data information collected
only includes text data.

We learned from the social network “Yay!” In the process of data collection, not all
the data collected include Emoji. Therefore, we will complete the data set after several
cycles of screening. In the process of screening, only the data information containing
Emoji will be retained, and the data information without Emoji will be removed.

3.2 Text Sentiment Classification Based on BERT

After completing the dataset in order to analyze the sentiment of the text We chose to
use BERT to extract features from the text, BERT: Bidirectional Encoder Representation
from Transformers, BERT is a natural language processing model developed by Google
that learns bidirectional representations of text. significantly improves the ability to
understand unlabeled text in many different tasks in context. In order to select the BERT
model for Japanese text, this study chose to use the “BERT Japanese Pretrained Model”
published by the KurohashiKawara Research Laboratory of Kyoto University, which can
achieve an accuracy of over 90.2. In the process of using BERT, we mainly use JUMAN
+ + tool to parse the morphological elements of text sentences considering the semantic
rationality of word sequences, and then feed them into the BERT model, and then use
pooling to calculate the representative vectors of the sentences, and apply the pooling
strategy to obtain the corresponding text features.
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3.3 Introduction to Active Learning Algorithm

Active learning continuously selects data from unlabeled data by designing a reasonable
query function to add annotations to the training set. An effective active learning data
selection strategy can effectively reduce the cost of training and improve the recognition
ability of the model at the same time.

The steps of active learning are:
Each round begins by passing the current model.
step 1. Determine a Query Selection strategy.
step 2. Find the most informative sample.
step 3. Manually annotate data.
step 4. Add the newly annotated data to the training dataset.
step 5. Retrain the model based on the current data.
until the model’s performance reaches a goal condition, or there are no conditions

left to annotate data anyway
In the Active Learning framework, the most important thing is how to design a query

strategy to judge the value of the sample, that is, whether it is worth to be labeled. How-
ever, the value of samples is not immutable. It is not only related to samples themselves,
but also related to tasks and models. As a simple example, an Emoji being used in
a text expressing gratitude is often valuable to the training of a classification model
because it is difficult to discriminate. However, an Emoji used in a text expressing
fear becomes less important because it is not difficult for the model to discriminate it.
Therefore, the design of query strategy is not simple and static, and needs to be set
according to the specific environment, problem, and needs. In terms of algorithms, We
choose Uncertainty Sampling to achieve the goal of perfect and balanced data.

Picking out the samples that the current model is least confident in, usually the closer
the samples are to the edge of the hyperplane classification, the more likely they are to
be uncertain.

x∗ = argmaxf (x;Pθ ) (1)

f (x;Pθ ) = fLC(x;Pθ ) + fSM (x;Pθ ) + fLE(x;Pθ ), (2)

fLC(x;Pθ ) = 1 − Pθ

(
ŷ|x), (3)

fSM (x;Pθ ) = Pθ

(
ŷ1|x

) − Pθ

(
ŷ2|x

)
, (4)

fLE(x;Pθ ) =
∑k

i
Pθ (yi|x), (5)

Pθ represents the BERT model; x represents the text; y represents the sentiment; ŷ
represents the best sample; k represents the number of sentiment categories.
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4 Experiment

Since the number of data in the database finally constructed in this paper is relatively
large, We chose a more subjective judgment method in the judgment method. We ran-
domly selected 600 pieces of data in the database, and firstly, 300 pieces of data were
manually labeled with emotion to get a “data answer”, and then the initial 20 pieces
of data and the initial 60 pieces of data were labeled by the active learning model at a
rate of 10% of the total data each time. The other 300 pieces of data are labeled, and
then Accuracy is obtained from the data labeled by the active learning model and the
manually labeled data.

In the evaluation index of the experiment in this study we choose to use dichotomous
classification index.

To evaluate the method, we use T for True, F for False, P for Positive, N for Negative.
first observe the predicted result (P or N), and then compare the predicted result with
the actual result to give the judgment result (T or F). The number of samples that are
actually True and classified as True, TP; the number of samples that are actually False
but classified as True, FP; the number of samples that are actually False and classified
as False, TN; the number of samples that are actually True but classified as False, FN.

The accuracy rate is the percentage of the total number of correctly predicted results.

Accuracy = TP + TN

TP + TN + FP + FN
(6)

Precision is the proportion of samples with positive and correct predictions to all
samples with positive predictions.

Precision = TP

TP + FP
(7)

Recall is the proportion of sampleswith positive and correct predictions to all samples
that are actually positive.

Recall = TP

TP + FP
, (8)

The F1-score is a metric that combines precision and recall.

F1 − score = 2*Precision*Recall

Precision + Recall
(9)

According to the accuracy obtained by each round of labeling of the active learning
model, it can be seen that the accuracy of the labeling data of the active learning model
has significantly increased. It can be seen fromTable 1 that although the higher the initial
training data, the higher the accuracies obtained, the accuracies basically reached the
same level at the beginning of the sixth round, and the final accuracies reached 82%.
It can be seen from Fig. 2 and Fig. 3 that the accuracies reached a stable stage when
the cycle reached the seventh round. Through this experiment, it can be proved that
the method of using active learning model can greatly reduce the manpower and time
needed to build the Japanese Emoji Emotion Database. The final correct rate of this
experiment can reach 0.82 while the accuracy, recall, and F1 score reach 0.91, 0.93, and
0.92, respectively.
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Table 1. Accuracy per cycle.

Total Test Initial 1 2 3 4 5 6 7 8 9 10 All

600 300 20 0.33 0.43 0.49 0.56 0.61 0.75 0.8 0.8 0.81 0.82 0.82

600 300 60 0.46 0.54 0.59 0.63 0.69 0.76 0.79 0.8 0.81 0.82 0.82
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Fig. 2. Initial 20 per cycle Accuracy
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Fig. 3. Initial 60 per cycle Accuracy

Here we discuss some data examples obtained during the experiment. Figure 4 shows
the distribution of the sentiment categories for the 10 Emoji. Table 2 shows several
emotion categories generated during the use of

by Japanese language users. We found a significant correlation between Emoji and
sentiment categories. For example, the Emoji itself is closer to Sad in sentiment, and
it is also obvious that Sad occupies a higher proportion of the sentiment categories, with
57 in Sad, 35 in Unease, and 8 in Anger out of 100 data.

Through subjective analysis, we found that Emoji can express a variety of emotion
categories. For example, this Emoji out of the 100 data collected, there are 30 inHappy,
6 in Love, 24 in Sad, 18 in Unease, and 22 in Surprise. Occupying 5 of the 6 emotion
categories, with only anger not appearing. It can be seen that even though the original
meaning of is relatively clear, it has changed its original emotion because it is used by
the user in various moods.
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Fig. 4. Emotional category distribution of Emoji

Table 2. Several emotions that occur when using

5 Conclusions

The main purpose of our research is to create a Japanese Emoji Emotion Database
for various future studies in order to address misunderstandings of Emoji arising from
worldwide differences in language and country/region.We propose to use active learning
algorithms to select unlabeled data with high information content for manual determina-
tion of the data labels. At the same time, we use the manually labeled data to update the
model parameters, and so on repeatedly iterate through the cycle to complete the auto-
mated labeling of large data sets for the purpose of quickly building sentiment databases.
This method can also be used to quickly build sentiment databases for other languages.
We finally construct a Japanese Emoji database with 100 emojis (100 pieces of data for
each) by subjective judgmentmethod, The amount of work required to build the database
is greatly reduced by using active learning methods. The data volume of a certain Emoji
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data was prevented from being extremely rare, and the purpose of data distribution aver-
aging was achieved. As future work, this study intends to construct Emoji sentiment
databases for other languages (such as Chinese, English, Russian, etc.) to enable data
comparison.
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Abstract. In this paper, we present a deep reinforcement learning (DRL)-based
autonomous end-to-end system for wheeled robots in an unmapped environment.
Potential Waypoints (PWPs) are obtained along the way towards the global target
for possible better navigation directions. Based on the available data, we use a
novel heuristics function to evaluate and select the optimal waypoint. Following
the waypoints, the robot is guided towards the global goal. A local navigation
system based on DRL is developed to generate the motion policy that guide the
robot move between waypoints and towards global goal. The Proximal Policy
Optimization algorithm and long short-term memory form the basic foundation
of the DRL network. A special reward system is created to steer the robot away
from dynamic impediments and to maintain a smooth trajectory. a long short-
term memory architecture is used to alleviate the local optimum problem and
help avoid obstacles out of the current range of sensors. Experiments demonstrate
that the proposed method, which does not rely on a map or prior knowledge in
complicated static as well as dynamic situations, has an advantage over similar
exploration methods.

Keywords: Autonomous exploration · DRL · Global navigation · Local
navigation

1 Introduction

Owing to the intensive study of Simultaneous localization and mapping (SLAM) [1, 2]
and the continuous research into autonomous vehicles’ capacity to execute the navigation
and mapping tasks in past few decades [3], autonomous exploration has become a field
that is receiving a lot of attention. However, unlike normal navigation mission or regular
environment exploration which only aims to guide the vehicle reach the goal or map
the surroundings. There are two issues with fully autonomous goal-driven exploration.
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To have the best chance of achieving the overall objective, the exploration robot must
first choose where to go. Navigating toward a predetermined global goal is necessary,
as opposed to purely exploration-driven systems that place a high priority on navigating
towards as-yet unknown areas of the world while recording amap. This needs to be taken
into account while choosing intermediate places in the environment [4]. The systemmust
directly identify potential navigation paths from the sensor data in the absence of prior
knowledge or a clear picture of the overall objective. In [5, 6] the map boundaries, which
show areas of open space in the landscape, can be used to determine PotentialWaypoints
(PWP) for exploration. Following the planning of a route, navigation is carried out in
the direction of the chosen PWP. Second, a motion policy that is independent of map
data must be acquired because map data is insufficient. Neural networks have been
developed for reliable robot navigation as a result of the popularity and capabilities
of deep reinforcement learning techniques. Robots can execute intentional movements
that are produced by the neural network outputs. Robots’ ability to adapt to varied
environments is significantly improved by the use of neural networks.[7] demonstrated
the viability of trainingDeepReinforcement Learning (DRL) algorithms on actual robots
and implementing them for demanding tasks. [8] demonstrated the feasibility of learning-
based navigation in an unknown setting and combined RGB-D and lidar sensors to
increase the resilience of the robot navigation in the continuous action space. Deep
Deterministic Policy Gradient (DDPG) was employed by [9] as the local planner for the
task of interior navigation, while the Continuous Action Fitted Value Iteration (CAFVI)
algorithm was used as the planner for the task of aerial freight delivery. Through DRL,
an agent control policy can be trained to accomplish the desired result in an uncharted
environment [10]. However, due to its reactive character and lack of global knowledge,
the local optimal problem is frequently encountered for large-scale navigation tasks [11].

In this research, we combine an efficient global planner with learning-based naviga-
tion to optimize the exploration system. We optimized the heuristic function of global
planning and the network. The mission to explore and map out an uncharted envi-
ronment in the direction of a predetermined overall objective can be more effectively
accomplished by the optimized system. To prevent the robot from colliding with moving
obstacles and to provide a smooth robot trajectory, a novel reward function is developed.
The proposed completely autonomous exploration system is as depicted in Fig. 1. The
primary contributions of this study might be listed as follows as compared to some
previous studies:

• Developed a PotentialWaypoint(PWP) detection global planner combinedwith neural
network motion planner for robot exploration.

• Designed an information-based function for heuristics calculation taking the DRL
training range constraints into account when evaluating PWP.

• Proposed a novel reward function to provide a smooth route for the robot and prevent
collisions with obstacles.

The rest of this paper is structured as follows.Description of the proposed exploration
systemare presented inSect. 2. The results of the experiments are presented and evaluated
in Sect. 3. Sect. 4 serves as this paper’s conclusion.
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2 Autonomous Exploration

In order to accomplish autonomous navigation and exploration in an uncharted en-
vironment, we proposed the method of combining global navigation and DRL-based
navigation. The exploration framework which consists of deep reinforcement learning-
based local navigation and global navigationwith optimal waypoint selection fromPWP.
The local planner is a Proximal Policy Optimization (PPO) [12] with Long Short-Term
Memory structure network. The network is denoted as LPPO in the rest of the paper.

Fig. 1. Proposed system

2.1 Global Navigation

Selecting intermediate waypoints for local navigation from the available PWPs is nec-
essary to direct the agent to investigate and navigate toward the global goal. Since there
is no prior information about the areas to explore, it is impossible for the agent to get the
optimal path. The agent must therefore investigate the uncharted territory while traveling
to the target. It is necessary to collect and store in the robot’s memory any PWP from its
immediate surroundings as the map’s initial information is not provided. For the purpose
of acquiring new PWP, three strategies are implemented:

• If there is a value difference between two successive laser measurements that exceeds
a certain threshold (usually set as the physical dimensions of the robot), indicating
that the agent can cross the alleged chasm. Then a PWP is added in the range of these
two sequential laser readings (it is typically set in the center area of the sequential
readings in case of obstacles around).

• For readings outside of the laser sensors’ maximum range, the results are delivered
as a non-numerical type. The unstored non numerical reading could be considered
as free undetected space in the environment. Obviously, the agent needs to explore
the free undetected area. Thus, if a non-numerical value is returned by successive
laser readings, a PWP is added to the environment. Due to the LSTM structure, the
obstacles detected in previous instants could be avoided and no PWP would be added
in that area even though it has not been explored

• If an intermediate target currently chosen is too far from the robot’s position, a path
planner is used to locate a path, and a new node is inserted along it.
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Figure 2 shows illustrations of PWP extraction from the environment. Any PWPs
that are discovered to be close to obstacles during the subsequent exploration phase will
be removed from memory. The laser reading from an area that the agent has already
visited won’t add any PWP. And a new waypoint is chosen. A new point will be selected
instead.

Fig. 2. (a) PWP 1 is derived from the interval between laser measurements. (b) PWP 2 is extracted
from a path planner that planned a path to PWP 1. (c) From non-numerical laser readings, the blue
PWP 3 is derived.

We proposed a Distance Limited Information (DLI) evaluation method to select
waypoints. Each candidate PP’s fitness is assessed using the DLI approach as follows:

h(ci) = tan
(
eρ1[ d(pt ,ci)]2

)
ρ1 + e

d(ci ,g)
ρ1 (1)

where e is the Euler number, ρ1 are the two-step distance limits. The two-step distance
restriction is set in accordance with the DRL training environment’s area size. d(pt, ci)
Represents the Euclidean distance between agent’s position p at t and candidate PWP.
The second parameter d(ci, g) is the Euclidean distance between the potential point and
the global target. Under the evaluation of DLI method, the PWP with the lowest score
will be regarded as the optimal path point of local navigation.

2.2 The Dynamics Model of Wheeled Robot

The reduced-ordermodel ofwheeled robots canbedescribedby the followingdifferential
equations.
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where (x, y) are the coordinates of the center of mass of m, θ is the angle between the
axis of the robot and the horizontal axis, as shown in Fig. 3.

For the sake of simplicity, the robot’s control inputs are considered to be its linear
velocity v and rotational velocity ω. The control challenge entails designing (v, ω) in
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a way that allows the robot to be drawn to the goal point securely. Without a map, it
is challenging to automatically generate a path that can be reached, and the problem is
evenmore difficult in uncharted territorywith unpredictable and dynamic obstacles. As a
result, we take the DRL-based policy into account and continuously map the information
that is available to the action space. Let

[
ω

v

]
= F(p, yaw, Sn) (3)

where yaw is the robot’s current yaw angle, p is the relative location between the target
point and the robot, and Sn is the state sequence over the last n moments. The challenge
lies in training a network to obtain the implicit mapping F (·), which will enable the
robot to travel automatically from its starting point to its goal position without colliding.

Fig. 3. The coordinate relation used for task-oriented navigation.

2.3 Local Navigation

The local navigation policy is trained separately in a simulated environment using DRL.
The motion policy is trained using a neural network architecture based on PPO and
LSTM.PPO is described inEq. 5, θ is the policy parameter, Êt is the empirical expectation
over time, rt(θ) stands for the action probability ratio of the current policy πθ(a | s)
and the action probability ratio of the previous strategy πθold (a|s) . Ât is the estimated
advantage at time t and ε is a hyper-parameter which is an entropy factor set to 0.1 or
0.2 to encourage exploration and assist in setting the range of policy updates.

LCLIP(θ) = Et
[
min(rt(θ)At, clip(rt(θ), 1− ε, 1+ ε)At)

]
(4)

The robot’s Local navigation process is shown in Fig. 4. The red box symbolizes the
assessment network, and the blue box the policy network. Two processes make up the
entire deep learning-based local navigation process: collecting samples and changing
parameters. The following are the specific steps: The policy network for the robot at
time i receives an input of si during the sample collection step, and then outputs the
appropriate policy that is applied to sample the action. The state si+1 at time i + 1 and
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the reward ri are given to the robot when the environment changes, and si, ai, ri, and
si+1 are saved in the experience set. The robot uses the experience set’s stored samples
to update the policy parameters during the policy updating stage.We create the network
architecture depicted in Fig. 5 in order to put the concerns previously raised into action.
Laser data and other data are included in the input state (including speed of robot and
positions of robot, waypoints and global goal). First, a feedforward deep neural network
(DNN) with two fully connected layers known as the first hidden layer and the second
hidden layer is employed to extract features from the input vector. LSTM receives the
DNNoutput as an input. The “memory gate” and “forgetting gate” of the LSTMallow for
the calculation of the weights of the states at different time instants in terms of learning.

Fig. 4. The framework of Local Navigation. The actor network is in the dotted box, and the critic
network is in the red box (Color figure online)

The robot’s linear and rotational velocities, as determined by Gaussian sampling, are
the policy network’s output action. In this work, the range of angular velocity is [0, 1],
and the range of linear speed is [0, 0.6]. The sigmoid function and tanh function, which
correlate to variance and mean respectively, are activation functions of the output layer.
Although the evaluation network’s structure is similar to that of a policy network, its
output layer is value estimation at current time.

The following is the proposed reward function:

r(st, at) =
⎧⎨
⎩
rg If Dt < ηD

rc If collision happen
ρ2(Dt − DP) + ρ3(v − |ω|) otherwise

(3)

There are three factors that determine the reward r for the state-action pair (st, at) at
timestep t. If the current timestep’s distance Dt from the target is less than the threshold
ηD, which means the robot has reached the target position. A positive goal reward rg is
applied. Considering the actual size of robot, we set ηD= 0.1 m. Additionally, a collision
is detected when the gap between the robot and an obstruction is less than 0.1 m. After
that, a negative collision reward rc is used. If neither of these circumstances holds true,
an immediate reward is given based on the current distanceDt between the robot and the
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target point, the distance DP between the robot and the target point at the previous time
instant, the current linear velocity v, and the current angular velocity ω. It is evident that
the reward function has taken route smoothness and collision avoidance into account.
That is to say, to encourage the robot to reach the target point faster and to prevent
excessive revolutions while travelling, ρ2 and ρ3 should be carefully chosen.

Fig. 5. The. Overview of the network architecture.

3 Simulation and Evaluation

To execute the end-to-end navigation strategy, the training of the neural network is
needed. Allowing robots to freely explore a wide range in the actual world is unrealistic
and expensive. As a result, to train the neural networks, we employed a simulation
environment based on Gazebo.

We define a training as successful when the robot’s most recent 100 trainingmissions
in the setting of a simulations have a success rate greater than 80%.Any episode that over
500 is considered to have failed the navigation during the training phase. To improve the
network’s generalization ability, it is also vital to train in different environments. The
parameters are given as νmax= 0.5 m/s, νmin = 0, ωmax= 1 rad/s, ωmin= 0, rg = 80, rc
= − 100, ρ1= 5, ρ2 = 100 and ρ3 = 5. In Table 1, other parameters are listed.

In a simulation environment based on the Gazebo, we trained and evaluated the
network. Prior to doing qualitative and quantitative data analytics, we compared the
three methods—DDPG, TD3, and LPPO—in the simulation environment.We compared
the robot’s propensity for navigation in various settings. Figure 6 and Table 2 display
the navigational situation and the average distance travelled for each scenario and each
approach. It can be clearly seen that in three scenarios the paths that LPPO selected are
safest and most effective. Table 2 demonstrated that the average length of LPPO’s route
is the shortest.

In a simulated 10 × 10 m-sized landscape as depicted in Fig. 7 and Fig. 8, the
entire exploration system was trained to test the system’s ability to execute the complete
exploration mission. Gaussian noise was added to the sensor and action values. To
facilitate generalization and policy exploration. We compared the DDPG-based method
without global navigation strategy, the TD3 algorithm combined with global navigation
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Table 1. Selection parameters.

Parameters Value

Actor learning rate 0.003

Critic learning rate 0.003

Discount factor 0.99

Generalization advantage estimation λ 0.95

Batch size 256

Clip parameter ε 0.2

Table 2. Average path length(m).

Scenario I Scenario II

DDPG 4.894 ×
TD3 4.537 7.894

LPPO 4.282 7.047

Table 3. The first complete exploration test

Av.L(m) Av.T (s) Goals

DDPG × × ×
TD3 33.702 132.47 3/5

LPPO 24.141 98.34 5/5

Table 4. The second complete exploration test

Av.L(m) Av.T (s) Goals

DDPG × × ×
TD3 31.513 127.73 4/5

LPPO 23.328 90.13 5/5

strategy and our method: the LPPO combined with global navigation strategy to evaluate
robot’s capacity to navigate various challenging surroundings. Each method was tested
five times in two different environments for experiments. The recorded data includes
average path length (L) inmeters, average travel time (T ) in seconds and howmany times
has the robot successfully reached the goal. The result of simulation experiment is shown
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in Fig. 7, Fig. 8, Table 3 and Table 4. As the result demonstrated, all the experimental
indexes of LPPO method combined with global planner were the best.

DDPG                  TD3                     LPPO

(a) Scenario 1 

(b) Scenario 2 

Fig. 6. In Scenario 1 a relatively simple environment. Three approaches can smoothly travel over
major obstructions. When the goal point is surrounded by walls in Scenario 2, the DDPG method
can’t find a route to bypass the wall and reach the goal point. The TD3 method and LPPO method
manage to reach the target point successfully. the LPPO choose a relatively safe and fast route.

DDPG            TD3                              LPPO

Fig. 7. The first explorations missions’ routes. We can see that the DDPG method soon hit the
obstacle and failed. Due to introduction of LSTM structure, the LPPO spent less time while
returning in the phase of 1 to 2. In the phase of 3 to 4 and 6 to 7, the LPPO took a better route.
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DDPG TD3                             LPPO

Fig. 8. The second explorations missions’ route. The start point is set in a semi enclosed room.
It can be seen that LPPO took less time leaving the room. In the phase of 2 to 3, a better route is
selected by LPPO.

4 Conclusions

This paper presents a completely autonomous exploration system based on DRL to real-
ize robot’s capability of reaching a predetermined destination, documenting the envi-
ronment, and completing the task without direct human supervision. The introduction of
LSTM structure effectively combines previous observation and state information with
the current state, which is advantageous for reliable and robust navigation.Moreover, the
local optimum dilemma is alleviated by the introduction of the global navigation strat-
egy and LSTM structure. Considering both safety and route optimization, the acquired
experimental findings demonstrate that the suggested system operates relatively near to
the optimal result that the path planner may obtain given a known environment.
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Abstract. Visual salience plays a significant role in the process of real life to
quickly extract necessary information from complex scenes. The state-of-the-art
algorithms impose restrictions on various reality conditions, such as dynamic
background and lighting, which will lead to misjudgment and false detection. To
alleviate the problem that dynamic background is hard to be compensated, this
paper proposes a background subtraction method based on visual saliency, which
can fully release the advantages of human visual saliency. Experimental compar-
ison is firstly conducted to confirm that the visual salient region is a potential
moving target area. Then feature corner samples is extracted from this area, and
sparse optical flowmethod is adopted to determine themoving target in the current
frame. To further enhance the perception ability ofmoving target in dynamic back-
ground, an improved vibemethod based on partially random background updating
strategy is developed to realize accurate moving object extraction. In addition, the
results of motion perception are purposefully used for background set updating.
Experimental results indicate that the proposed model can effectively extract the
moving target.

Keywords: Visual saliency · Vibe · Moving target prediction · Background
subtraction

1 Introduction

Background subtraction is to extract moving objects in a video sequence at the pixel
level. In a broad sense, A background subtraction is composed of a dynamic background
dataset, a comparison formula for extracting foreground pixels, and an update method
for the background dataset [1]. The background subtraction algorithm classifies each
pixel of the video sequence into one of the following two categories: foreground for
moving objects or background. Since the development of the Gaussian mixture model,
background subtraction has made prominent progress, partly due to the availability of
pixel-wise annotated datasets such as I2R and CDnet 2014. Modern algorithms such as
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Vibe [2] and SuBSENCE [13] remain sensitive to a shaking scene or a shaking camera.
More recently, deep learning based on algorithms emerged with the work of Lim [4],
which opened the path for novel algorithms [5] is inseparable from the incremental
HashRate. These background subtraction algorithms focus on detecting moving objects
with a bottom-up method.

The development of visual saliencymakes it possible for top-downmethods to extract
moving targets. Two main factors affect the saliency of human eyes. One is that the
surrounding areas with distinct contrast or peculiar difference from the surrounding
areas attract bottom-up attention. The other is determined by people’s cognition factors,
such as knowledge, expectations, and current goals, to form top-down attention [6]. The
second factor of visual significance has themagical ability to filter complex backgrounds.
A lot of intensive work exploits this selective vision mechanism, such as salient image
segmentation [7], autonomous robot grasp [8], video compression [9], moving target
tracking [10], advanced driver assistance [11], and many other aspects have achieved
excellent results [16, 17].

In this paper, we focus on the excellent ability of the human eye gaze to filter
out complex scenes and propose a background subtraction algorithm based on visual
saliency. This algorithm demonstrates the relationship between eye fixation prediction
areas and potential moving objects but also focuses on solving the problem of dynamic
background establishment in background subtraction. The algorithm consists of two
stages: moving object research and detection. In the stage of moving object research, the
state-of-the-art visual saliency prediction algorithm is to perceive the eye gaze area. After
that, according to the prediction results of visual saliency, the saliency regions of possible
moving objects are extracted by the binarization method of an adaptive threshold. The
feature corners are sparse samples in this region. Finally, the sparsity optical flowmethod
is combined to determine whether the moving target exists in the current frame. In the
stage of moving object extraction, we can distinguish possible moving frames from
the video. Therefore, an improved vibe algorithm adopts the conservative background
updating method. The improved vibe algorithm can effectively solve the ghost problem
and background updating problem in the initial Vibe algorithm. Figure 1 shows the
algorithm.

Fig. 1. Our proposed moving object detection algorithm based on visual saliency takes extensive
advantage of human eye saliency to extract potential moving objects and reduces the influence of
complex backgrounds on the extraction of foreground objects.
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2 Relationship Between Visual Saliency and Potential Movement
Targets

2.1 Potential Moving Target Attracting Visual Saliency

To discuss the relationship between potential moving targets and visual salience in the
form of quantitative comparison, we designed a comparison experiment that involves
six different application scenarios, all from CDnet2014 [12]. Considering that the visual
salience map is a probability map that is unfit for direct comparison with the truth
map (binary image) of moving object detection, we designed a visual salience region
extraction algorithm (see Sect. 3 for details) to generate the salience region from the
visual salience map. Precision and Pearson’s linear correlation coefficient (CC) quantify
and compare the correlation between the salient region map and the truth map of moving
target detection. Table 1 shows the selected six scenes and the relationship between the
saliency region map and the truth map of moving object detection.

Table 1. Quantitative index results between saliency region maps and truth maps.

Scene Precision CC

Badminton 0.6745 0.5003

Canoe 0.6967 0.5498

PETS2006 0.7945 0.5011

Snowfall 0.5937 0.6282

Fluid Highway 0.4520 0.5247

Turbulence3 0.7722 0.5618

As demonstrated in Table 1, in each scene, a visual saliency map is generated by
leveraging the picture with moving objects through the Res-net structure. The average
accuracy rate between the processed saliency region and the truth value is 66.39%, and
the average Pearson’s correlation coefficient (CC) is 54.43%. The quantitative index we
selected exceeds 50%, indicating that the extracted visual saliency area is inseparable
from the actualmoving target. Figure 2 vividly depicts the correlation between the optical
saliency area and the moving target.

2.2 Visual Saliency Region in the Background Frame

There are still visual salience areas in the visual salience map when there is only a
pure background environment. For this reason, we quantitatively compared the dynamic
background with the static on the changes over time. Five scene patterns select from the
CDnet2014 data set, including three static scenes (pedestrians, snowfall, streetCornerAt-
Night) and two dynamic Scenarios (canoe, fountain02). We quantitatively evaluated the
similarity degree of the significant areas of human eye gaze between two consecutive
frames by three quantitative indicators, Pearson’s linear correlation coefficient (CC),
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structural similarity index (SSIM), and peak signal-to-noise ratio (PSNR), respectively.
Table 2 reveals the results.

Fig. 2. Two examples demonstrate that visual salience focus on moving objects. In PETS2006
and Canoe scenes, the moving target is similar to the extracted visual saliency region.

Table 2. Quantitative index results between two consecutive frames in five different scenarios.

Scene CC SSIM PSNR

Canoe 0.7622 0.9359 25.6178

Fountain02 0.9363 0.9888 35.8613

Pedestrians 0.9667 0.9872 47.6578

Snowfall 0.9512 0.9749 41.5312

StreetCornerAtNight 0.9656 0.9884 38.2886

In the three groups of static scenes, CC, SSIM, and PSNR between consecutive
frames are all kept at high levels, which indicates that in the static background, the
saliency areas of the human eye gaze are almost independent of bad weather or night
conditions. In the two groups of dynamic scenes (Canoe, Fountain02), the continuous
inter-frame CC and PSNR in the Canoe scene are far lower than those in other scenes.
However, the three evaluation indexes in the Fountain02 scene are slightly lower than
those in static scenes. The reason is that the dynamic scene of the Canoe is an expansive
water surface. The influence of illumination and other factors lead to leapfrog changes
in the saliency area of the human eyes.

3 The Proposed Algorithm

A background subtraction method based on visual saliency solves the following moving
target detection problem with a top-down mindset. The algorithm includes two main
steps. The first is moving object perception, which adopts a sparse optical flow method
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based on visual saliency to extract the moving state of moving objects. The second step
is moving target extraction utilizing an improved vibe algorithm. The locomotor target
perception realizes the accurate updating of the background data set, thereby effectively
extracting the foreground target.

3.1 Moving Target Perception

The traditional sparse optical flow method extracts the region of feature corners, which
occupies the whole image. There are feature corners in the dynamic background of mov-
ing target detection, which leads to themotion feature corner information in the backdrop
dataset of the moving target detection and contributes to subsequent misjudgment. The
visual saliency map shows the motion information of the potential moving object in the
image, and its essence is a probability gray scale map. Segmenting the gray-scale prob-
ability map by global binarization will lead to the inability to accurately extract regions
with high local probability, as shown in Fig. 3.

Fig. 3. One example is a salient region based on human eye saliency. The example picture shows
that the local and global binarization collaborate to solve the problem that the traditional binariza-
tion method is inadaptable to extract regions with high local probability. (source: CDnet 2014 /
baseline / highway / # 949)

To solve this problem, we adopted Bernsen’s method. The method is that the
(2ω + 1)× (2ω − 1) window centers on the pixel (i, j) to calculate the threshold T (i, j)
of each pixel. The gray value of the pixel point (i, j) is f (i, j). The threshold formula
display is (1).

T (i, j) = 1

2
× (max f (i + m, j + n) + min f (i + m, j + n)) (1)

In (1), m ∈ [−ω,+ω], n ∈ [−ω,+ω], the value of ω can be determined according
to the input size of the image. We set ω is 15 in this paper. If the gray value exceeds the
threshold value, the pixel assigns 1 and the target pixel; otherwise, it determines 0, and
the background pixel to obtain a binary image b(i, j), as shown in (2).

b(i, j) = sign(f (i, j) − T (i.j)) (2)
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The noise generated by Bernsen’s method in Fig. 3. As a result, we have blurred the
binary image results in Fig. 3. The fuzzification formula of point (x, y) is (3).

p(x, y) = 1

(2n + 1)2
∑y+n

j=y−n

∑x+n

i=x−n
f (i, j) (3)

Otsu, a global binarization method, is adopted by us to accurately extract the human
eye saliency region, as shown in Fig. 3.

The salient area of the eye saliency map will change with the change of the moving
target, and it will be almost unchanged in the case of static background and partial
dynamic background. In the case of full dynamic background, the salient area will have
a long-distance inter-frame jump. The moving object perception takes advantage of this
characteristic of the eye saliency region. In a video sequence, the video image of three
consecutive frames is fk−1(x, y), fk(x, y), and fk+1(x, y), and the corresponding saliency
image is ek−1(x, y), ek(x, y), and ek+1(x, y). Shi-Tomas feature corner extraction the
feature corner set extracted in the frame fk−1(x, y) is Nk−1, and the extraction effect is
shown in Fig. 4.

Fig. 4. The example is a night scene (source: CDnet 2014 / nightVideos / streetCornerAtNight /
# 389 & 679) to illustrate the effectiveness and robustness of moving object perception. The red
dots are feature corners extracted from visual saliency areas.

The sparse optical flow method formula solves the state vector V1, V2, S1 and S2
between successive frames.On this basis, the concept of optical flow lengthL is proposed,
and its mathematical definition is (4).

L2 = (xk − xk−1)
2 + (yk − yk−1)

2 (4)

In Eq. (4), (xk , yk) is the coordinate of the characteristic point at the time k, and
(xk−1, yk−1) is the coordinate of the feature point at time k − 1. The optical flow length
vector set of continuous frames is VL = (

L12,L22,L32, · · · Ln−1
2,Ln2

)
. According to

the state, vector sets V1, V2, S1, and S2, the corresponding optical flow length sets VL1,
VL2, SL1, and SL2 can be obtained straightway. The feature corners in the sparse optical
flow method belong to potential moving targets, so the moving targets are detected by
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the optical flow length extracted from consecutive frames. The specific method is to set
the static background threshold α and the dynamic background threshold β and bk is
the result of moving target perception for the k frame with the assistance of (5)

bk =
{
0, arg(VL1 ∪ VL2)〈α or arg{(SL1 − VL1) ∪ (SL2 − VL2)}〉β
1, else

(5)

Through experimental verification, the background threshold value α sets to
[0.5, 1.5] and β sets to [5, 10]. More examples are demonstrated in Fig. 4 to illustrate
the background detection results.

3.2 Moving Object Extraction

In Sect. 3.1 of this paper, human eye saliency combined with the sparse optical flow
method completes the formidable project of moving target perception, so in the initial-
ization process of the background model, the perceived background frame is directly
selected as the initial frame to establish the background model. N pixel values are ran-
domly sampled from neighborhood NB(x) of the pixel point x as the background model
B(x) is composed of the background samples. B(x) is shown in (6).

B(x) = {v1(x), v2(x), · · · , vk(x), · · · , vn(x)} (6)

vk(x) represents the k ′th background sample in the background model B(x).
The pixel value of the detected pixel point x is p(x), and each background sample

vk(x) in the background model B(x) is calculated. If the result is less than the matching
threshold value R and the number is less than the minimum matching number Tmin, the
pixel point x determines the foreground; otherwise, the pixel point x is assigned as the
background. The formula is depicted at (7).

S(x) =
{
1, num(dist(I(x), vk(x)) < R) < Tmin
0, else

(7)

S(x) = 1 represents the foreground of the binarized image, and S(x) = 0 represents
the background. The above formula (7) depicts that the decision-making stage mainly
involves two parameters independently the matching threshold R and the minimum
matching number Tmin. Thematching thresholdR classifies each pixel, and theminimum
matching number Tmin is a fixed global parameter. Generally, the matching threshold R
is 20 and the minimum matching number is 2.

After the pixel matching course, it is a conservative updating strategy based on
moving target perception. When the current frame fk is perceived as a moving target
frame bk = 1, all pixels are not updated to the background dataset. The bk is the result
of moving target perception for the k frame. When the current frame fk is perceived as
the background frame bk = 0, the background dataset is partially updated according
to the number of foreground pixels detected in the background frame. The specific
implementation is to set the background to be updated MT and foreground detection
threshold δ. It assumes that when bk = 0 occurs, the number of foreground pixel points
detected from fk is C. If the number of foreground pixels C is less than the foreground
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detection threshold δ, the background frame is randomly replaced by one frame in the
background model B. Otherwise, the background frame will be added to the background
to be updated set MT . The frame in the MT will be deleted, if it stays in the MT for 1 s.
The background frame in the set MT to be updated will be updated to the background
model B with the probability p = 1/ϕ(t) to replace any background sample Vx. The
expression of ϕ(t) is as follows (8), where t is the number of background frames in the
MT set, and fps is the frame rate.

ϕ(t) = 0.5 fps × sign(t − 0.5 fps) (8)

4 Experimental Results

In this section, we report our experimental results and compare the proposed algorithm
with previous technologies, i.e., Vibe [2], GMM [14], SuBSENSE [13]. The benchmark
data set for video monitoring is CDnet2014. To quantitatively evaluate the performances
of the algorithms, we have computed the F-measure and adopted mean statistics for each
evaluation index [15].

4.1 Comparison on Background

In most scenes, all moving object detection algorithms can output the background
accurately when there is only the background. However, the compared algorithms will
produce adverse reactions in the dynamic backdrop or shaking cameras.

Fig. 5. Results of background comparison. The selected pictures (from top to bottom) are fall-
1100 (dynamicBackground), traffic-1132 (cameraJitter), and turbulence0–1608 (turbulence).

We selected three dynamic categories on the CDnet2014 dataset for comparison. The
apparent difference between them and the static background is that there is a dynamic
background or a shaking camera. These dynamic factors greatly increase the difficulty
of background modeling of the GMM algorithm, thus leading to a large number of mis-
judgments. The Vibe algorithm can reduce misjudgment due to its independent update
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mechanism of a single pixel, but the effect is still unsatisfactory. The SuBSENCE algo-
rithm considers the relevant information of the domain space, thus reducing the area
range of misjudgment to a certain extent and achieving good results. But in Fig. 5, it
can be seen more intuitively that our algorithm is better than SuBSENCE. Our algo-
rithm borrows the high-level human eye saliency mechanism and can mask and ignore
the ambient regions autonomously. Our algorithm can’t deal with the shaking camera
perfectly. But compared with other algorithms, we also have improvements.

4.2 Performance on CDnet2014

The average values of various indicators are shown in Table 3. Our algorithm has reached
the most prominent position under “Bad Weather” and “Turbulence” scenarios. Inte-
grating the ability of human eye saliency to filter complex backgrounds into moving
target detection improves the accuracy of the background dataset and enhances the
robustness. Our algorithm also performs well in “Baseline”, “Camera Jitter”, “Dynamic
Background”, and “Shadow” scenes. SuBSENCE method integrates color intensity and
LBSP texture features into Vibe to improve accuracy. In “Low Frame Rate”, “Inter-
mittent Object Movement”, and “Night Videos” scenes, our algorithm results are not
satisfactory. The sparse optical flow method is obligatory to meet three preconditions
for moving target perception. However, in “Low Frame Rate” and “Intermittent Object
Movement” scenes, these conditions cannot be affordable, resulting in the unsatisfactory
effect of our algorithm. In “Night Videos” scenes, because of the bottom-up saliency of
car lights, it is easy to lead to deviation in the extraction of eye saliency regions, which
reduces the accuracy.

Table 3. Comparison of the foreground detection results in terms of the f-measure on cdnet2014
dataset.

Category SuBSENCE Vibe GMM Ours

Bad Weather 0.8945 0.7077 0.6758 0.8967

Baseline 0.9450 0.8193 0.5424 0.7747

Camera Jitter 0.8406 0.6088 0.5212 0.7576

Dynamic Background 0.9711 0.5531 0.5095 0.8717

Intermittent Object Motion 0.8947 0.5423 0.4504 0.6609

Low Framerate 0.9393 0.2066 0.1705 0.4552

Night Video 0.5035 0.3187 0.2627 0.2706

Shadow 0.9788 0.8050 0.7552 0.8819

Turbulence 0.7998 0.6900 0.4987 0.8643
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5 Conclusion

This paper proposes a Background Subtraction algorithm based on visual saliency. This
algorithm realizes the combination of human eye saliency and moving object detection.
Meanwhile, it proves that human eye saliency tends to focus on potential moving targets
and analyzes the changes in human eye visual saliency under different backgrounds.
Human visual saliency has the advanced ability to solve complex scenes. It overcomes
the severe challenges brought by dynamic backgrounds and achieves gratifying results.
The experimental results show that theBackgroundSubtractionBased onVisual Saliency
is capable of multiple scene tasks and has better detection ability in simple background
conditions.
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Abstract. In this paper, we put forward an industrial nameplate picture correction
method based on Progressive Probabilistic Hough Transform. Our method can
effectively correct the image tilt caused by the wrong shooting direction. Even the
oblique images taken from a long distance have certain effects. We also introduce
the Mining Equipment Nameplate Dataset. The frame of the industrial nameplate
is quadrilateral. The two sides of the nameplate border in the photo will cross
each other after being extended. This result is caused by the tilt of the shooting
angle. Ourmethod firstly grays the picture. Then binarizes the image andGaussian
smoothing filter. We use the Progressive Probabilistic Hough Transform to locate
the two longest line segments in the picture. The four endpoints of the two line
segments are the four endpoints of the quadrilateral. Finally, the correct picture
is obtained by perspective transformation. Our method makes the nameplate text
more visible, and the detection method is fast and effective. The pictures obtained
by experiments are clearer and easier to observe. In the second half of the article,
we list some experimental results. Our method can well handle the requirements
in actual production.

Keywords: Progressive probabilistic hough transform · OCR · Image
processing · Perspective transformation · Hough transform · Industrial nameplate
detection

1 Introduction

The record of equipment information in industrial maintenance is the critical link to
industrial system maintenance. The equipment information record can help the labora-
tory to know the running status of the equipment in the later stage. After the equipment
enters the testing organization, it is necessary to establish files for long-term records
until it’s scrapped. Equipment nameplate is a like human ID card, which is used to
obtain critical information and essential parameters. This information can provide criti-
cal information support for operation and maintenance personnel. In the face of aging,
corrosion, rust, other failures, and scrap treatment, it is indispensable to obtain equipment
information safely, quickly, and effectively in the process of industrial process.
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Target detection technology can be trained and detected according to fixed datasets,
so as to obtain image positioning or critical feature information of the object. Equip-
ment nameplates often show inclined photographs, and there are many outside areas
in nameplates. This paper is dedicated to solving the influence of irrelevant regions.
We put forward a professional Mining Equipment Nameplate Dataset (MEND), and a
machine learning method based on Progressive Probabilistic Hough Transform to detect
the specific position of the nameplate. Then the outside areas in the image are removed
by perspective transformation. Finally, we use DBNet [1] to select 20 different name-
plate images on MEND dataset for comparative experiments. This method has a fast
positioning speed and shows a good detection effect.

2 Related Works

Image processing technology is a significant research content in machine vision. Com-
bined with many pictures and prior knowledge analysis, is know that there are many
straight lines in equipment nameplate photos. The four most extended lines form the
frame of the industrial nameplate. Most nameplate photos are taken at an oblique angle.
The affected photo borders have different lengths on both sides. In order to facilitate text
detection and improve detection accuracy, it is necessary to carry out the perspective
transformation on the image. The four corners of the industrial nameplate can be located
by the machine learning. For example, Lai [2] et al. invented a method for detecting
the bold text lines in the picture of equipment nameplate, RTLD, which can locate and
detect the text examples of equipment in the field. RTLD can directly detect the corner
points of nameplate equipment. The natural scene recognizer (ORSTR) designed by
Chen [3] et al. uses a correction module based on neural network to process curved and
multi-directional texts. Li [4] et al. put forward an application of nameplate detection and
recognition basedonmachine vision,whichuses seed algorithm to eliminate unnecessary
interference factors. Paying attention to the shape similarity between square billboards
and industrial nameplates, Panhwar [5] et al. added the shape detection of signboards to
enhance the efficiency of text detection.

The standard Hough Transform algorithm and the improved Hough Transform algo-
rithm are applied to many machine vision applications. For example, Zhao [6] et al. inte-
gratedHoughTransform into the deep learning framework that transformed the detection
of semantic lines into the problem of the midpoint in parameter space. Kundu [7] et al.
integrated Hough Transform into the process of physical sign extraction. Lapinskij [8]
et al. proposed a cumulus vision detectionmethod based onHough Transform andCanny
edge detection. Chen [9] proposed an improved Hough Transform algorithm to realize
lane detection, Guo [10] proposed gesture recognition based on an improved Hough
Transform algorithm, and Zhang [11] proposed a straight line extraction algorithm based
on an improved random Hough Transform.

The Machine learning method based on Hough Transform is widely used to detect
sensitive shapes. Because it has a fast detection speed for planar graphics. Hough Trans-
form has been used in various applications since its discovery. The innovation of this
paper is to detect and locate the corner coordinates of two line segments based on
Progressive Probabilistic Hough Transform. Our method has a faster detection speed
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and higher detection accuracy. It can preprocess the image perfectly and add it to the
end-to-end text detection program.

3 Methodology

3.1 Feature Transformation Based on Hough Transform

Hough Transformation. Hough Transformation is a method used to recognize the
shape of an image. The basic principle of Hough Transformation is to use the duality
of points and lines. Establish a Cartesian coordinate system according to image space.
Every straight line in the image can transform into a point in the parameter space. For
the convenience of understanding, here we call the parameter space Hough space and
vice versa. The straight line formula is as follow:

y = k ∗ x + b (1)

In the Cartesian coordinate system, the k parameter represents slope, and the b
parameter represents intercept. All straight lines passing through a point (x0, y0) in the
image space satisfy y0 = k ∗ x0 + b.

A straight line of Hough space K and B is obtained by the point (x0, y0). The expres-
sion is b = −k∗x0+y0. In the sameway, a straight line in theCartesian coordinate system
can be obtained by passing through the (k0, b0) point in Hough space. The representative
expression is as follow:

b0 = k0 ∗ x + y (2)

Therefore, every line in the image space has (xn, yn) corresponding to k0 and b0 in
Hough space, so the problem of line detection in the image space can be transformed
into the problem of points in Hough space by Hough Transform. Broadly speaking,
every graph can be detected by obtaining the graph formula. Such as detecting curves
of arbitrary shape features.

Progressive Probabilistic Hough Transform. Progressive ProbabilisticHoughTrans-
form can detect the shape more finely and the length of the line segment in the image
space.

Progressive Probabilistic Hough Transform adds the definition of superposition
based on Hough Transform. The principle of Progressive Probabilistic Hough Trans-
form is not difficult to understand. Firstly, a feature point in the image space is randomly
extracted and marked as a point on a particular straight line; Then extract a feature point
and check whether the point is on the straight line; Then Hough Transform is carried out
to determine whether to accumulate the weights of the points, to select the largest point
in the parameter space. Then get the endpoint of the other end of the line segment along
the straight line existing at this point.

In thisway, the feature of line segment length in image processing can be transformed
into the weight of points in parameter space. As long as the length of the calculated line
segment is greater than a certain threshold, it can be considered a good line segment
output.
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3.2 Corner Detection Based on Double Line Segment Interception

After explaining the principles ofHoughTransform and Progressive Probabilistic Hough
Transform, the latter is applied to the actual scene. Hough Transform is often used to
detect straight lines in images, while Progressive Probabilistic Hough Transform can
detect both ends of line segments. As long as I select the two largest points in.

Fig. 1. (a)The two longest sides of the nameplate image are detected.(b) The Relationship among
Perspective Transformation, Affine Transformation, and Linear Trans-formation.

Hough space, they respectively represent the two most extended line segments in
the image space in Cartesian coordinate system. Corner detection is to select the vertex
coordinates of the two line segments, and four corner points of the nameplate can be
obtained according to the two ends of the line segments (see Fig. 1(a)).

According to the images, two endpoints of two straight lines are obtained, and there
are four endpoints in total. According to the coordinate position comparison of the four
corners, the correct coordinates are obtained, which correspond to the upper left corner,
upper right corner, lower left corner, and lower right corner of the nameplate in the
picture.

3.3 Nameplate Correction Based on Perspective Transformation

In this part, the coordinates of four corners obtained by Progressive Probabilistic Hough
Transform are projected. The principle is to project a graphic on a plane to a specified
plane through a projection matrix. When it comes to projection transformation, we have
to mention its two subsets: affine transformation and linear transformation. This paper
shows their containment relationship (see Fig. 1(b)).

The linear transformation has nothing to dowith thematrix. The linear transforma-
tion includes image rotation, tilt transform, scaling, and their combination and superpo-
sition. The origin of image coordinates after linear transformation remains unchanged.
After transformation, a straight line is still a straight line, and parallel straight lines are
still parallel after transformation.

Affine transformation is also called affine projection. The affine transformation
includes linear transformation. In geometry, a vector space is transformed linearly
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and then translated into another vector space. Affine transformation equals linear
transformation plus translation. We explain the concrete principle by a formula.

Suppose there are two vector spaces, k and j:

K = (x, y)J = (x
′
, y′) (3)

The vector space is changed fromK to J , which will be transformed by the following
formula:

J = K × w + b (4)

The formula will be split to get:

x
′ = w00 × x + w01 × y + b0 (5)

y
′ = w10 × x + w11 × y + b0 (6)

Convert to matrix multiplication:

[
x′
y′

]
=

[
w00 w01 b0
w10 w11 b1

]⎡
⎣ x
y
1

⎤
⎦ = M

⎡
⎣ x
y
1

⎤
⎦ (7)

Affine transformation also needs a matrix M to realize translation, scaling, rotation,
and flip transformation. The transformation between two vector spaces is realized by
parameter matrix M. Affine transformation achieves the transformation of two vector
spaces.

Perspective transformation is also called projection transformation. In this paper,
the irregular quadrilateral in the 2D image is transformed into a standard rectangle by
projection transformation. Using the four corners obtained by Progressive Probabilistic
HoughTransform, the position coordinates of the four corners of the industrial nameplate
are intercepted. The irregular quadrilateral formed by four corners is projected on the
specified plane by a projection matrix. The principle of perspective transformation is
introduced in three steps.

1. General formula of perspective transformation:

[
u′ v′ ω′ ] = [

u v ω
]⎡⎣a11 a12 a13

a21 a22 a23
a31 a32 a33

⎤
⎦ (8)

Parameters u and v are from the original picture, defining ω = 1, a33 = 1, and
the picture coordinates (x, y) obtained by perspective transformation. In which x and y
satisfy:

x = x′

ω′ y = y′

ω′ (9)
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2. Because the perspective transformation matrix has eight parameters, it needs four
coordinates to correspond to eight equations to be solved. Linear transformation
and affine transformation are two special forms of perspective transformation. The
expressions of transformed xn and ym satisfy:

xn = x′

ω′ = a11 × u + a21 × v + a31 × 1

a13 × u + a23 × v + 1 × 1
(10)

ym = y′

ω′ = a12 × u + a22 × v + a32 × 1

a13 × u + a23 × v + 1 × 1
(11)

3. By solving the equations, eight parameters needed for perspective transformation
are obtained.

A new planar image is obtained bymultiplying a two-dimensional image by a projec-
tion transformation matrix. Using the condition that the perspective center, image point,
and target point are collinear, according to the perspective rotation law, the shadow-
bearing surface is rotated by a certain angle around the perspective axis. Destroy the
original projection light beam and keep the projection geometry unchanged to obtain
the target matrixv (Fig. 2).

Fig. 2. Text of nameplate and label

4 Experiment

4.1 Mining Equipment Nameplate Dataset

We have established a dataset: MEND, which is suitable for text detection and character
recognition of industrial nameplates. The pictures collected in this experiment are all
from this dataset. All pictures of this dataset are from the industrial equipment nameplate
photos of some mining enterprises collected in China. The dataset contains more than
700 nameplate pictures of industrial equipment under different conditions, which are
divided into 586 training set photos and 137 test set photos.
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The centralized data photos are inconsistent. Such too strong and poor lighting con-
ditions, partial occlusion, distorted shape, pollution, rotation, and irregular shape photos.
This makes our dataset more challenging than other datasets.

This dataset identifies the text instances on all images and records the text content
(see Fig. 3). Therefore, this dataset can be used as a text detection model experiment and
character recognition experiment for industrial equipment nameplates. It is a powerful
help to end-to-end text detection and recognition. We will use this dataset to carry out
follow-up work in the future.

4.2 Comparative Experiment

Ordinary equipment nameplate photographs are inclined, and there are a lot of outside
areas around the nameplate pattern. This will seriously degrade the performance of text
detection. The text detection model only needs to detect text instances. Text examples
have a good effect only in the case of document-level scanning. Therefore, it is necessary
to discharge the colorful areas of the text examples on the deformed nameplate. This
will definitely improve the accuracy of the detector.

Fig. 3. (a) Original image; (b) The two most extended line segments of the industrial nameplate
are intercepted by using the progressive probabilistic hough transform; (c) The final result after
perspective transformation.

In order to transform the irregular quadrilateral nameplate in the photograph into a
regular rectangle, this experiment consists of six steps. This paper shows the simplified
process (see Fig. 3).

The nameplate required by this method has obvious characteristics and is easy to
extract. The image was first miniaturized to reduce the experimental time. Use the
Pillow.shape function to reduce the image by ten times. For the detect the edge of
the image and convert the reduced resolution thumbnail into a grayscale image to obtain
the peripheral contour of the grayscale image (see Fig. 4 (a)).

Then binarize the image. To improve the efficiency of the Progressive Probabilistic
Hough Transform in detecting long straight lines, we used Gaussian smoothing. The
small line segments are connected into a long straight line (see Fig. 5).

The Progressive Probabilistic Hough Transform method mentioned in this paper is
used to detect the double line segments of the Gaussian smoothed image. We get the
corner coordinates of the thumbnail in the Cartesian coordinate system through two line
segments. Enlarging the value of corner coordinates by ten times is the target corner
position of the initial image (see Fig. 4(b)).
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Fig. 4. (a)Gray diagram of the nameplate. (b)The position of double line segments in the original
image.

Fig. 5. After edge detection, apply the Gaussian smoothing filter.

Fig. 6. (a)After correction, the pictures were tested by DBNet. (b)The pictures after corrected.

After locating the corner coordinates of the nameplate, use the perspective transfor-
mation matrix to transform the area into a standard rectangle (see Fig. 6(a)).

To verify the effectiveness of the two-line detection and perspective transformation
methods, we use the differential binarization model to make a comparative test on the
nameplate images. Figure 7 is the result after text detection.

We list the experimental results of double line segment recognition and correction for
ordinary pictures (see Fig. 6(b)). DBmodel uses the lightweight backbone ResNet-18. It
can simplify the binarization process in the segmented network, so it has higher accuracy
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and more accurate recognition performance. The following is the result of double-line
segment recognition and correction for ordinary pictures.

5 Conclusions

Aiming at the problem that the picture of industrial equipment nameplate has an irregular
shape, which leads to the decline of the accuracy of text detection and recognition, we
put forward a correction module.

The principle of this module is based on Progressive Probabilistic Hough Transform.
Themodule includes two tasks: double long line segment detection based on Progressive
Probabilistic Hough Transform and perspective transformation of the image.

This module is helpful in transforming irregular nameplates into rectangles close to
the standard. Our method is huseful for text detection and character recognition. This
method is time-consuming and simple. It has accuracy and faster speed, not inferior to
the deep learning method, and strong practicability. This method has the accuracy and
speed not belong to the deep learning model. It has strong practicability in industrial
life. We will consider adding it to end-to-end text detection in the future.
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