
Chapter 5
Non-linear Schemes for Representation

Abstract In this chapter we deal with various nonlinear feature extraction schemes.
In nonlinear feature extraction, the extracted features may be viewed as nonlinear
combinations of the originally given features. Two popular neural network architec-
tures employed are self-organizing map (SOM) and autoencoder (AE). We examine
both of them in this chapter.

5.1 Introduction

We have studied different schemes for representation in the earlier chapters. These
include:

• Feature Selection: Here, we select a subset of size l from the given set of L(> l)

features.
• Linear Feature Extraction: Under this category we represent each pattern using

a collection of l(< L) features. Each of these l features is obtained by using an
appropriate linear combination of the given L features.

In this chapter, we will deal with extracting features that may be viewed as
nonlinear combinations of the given L features.

5.2 Optimization Schemes for Representation

Let Xi and Xj be two L-dimensional vectors. Let Pi and Pj be the respective vectors
in the l-dimensional space. Let dij be the euclidean distance between Pi and Pj and
let d∗

ij be the distance between Xi and Xj . The idea behind the optimization is to
minimize a function that captures the difference between dij and d∗

ij over all the
pairs of patterns.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
M. N. Murty, M. Avinash, Representation in Machine Learning, SpringerBriefs
in Computer Science, https://doi.org/10.1007/978-981-19-7908-8_5

63

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-7908-8_5&domain=pdf

 476 4612 a 476 4612
a
 
https://doi.org/10.1007/978-981-19-7908-8_5


64 5 Non-linear Schemes for Representation

The specific function used by the popular Sammon’s mapping algorithm is

1
∑

i<j d∗
ij

∑

i<j

(d∗
ij − dij )

2

d∗
ij

.

In other words, this nonlinear mapping algorithm employs a nonlinear optimization
algorithm that starts with an initial representation and keeps on updating by using a
gradient descent approach. The idea behind the choice of the objective function is to
preserve some structure of the data, given in high-dimensional space, after mapping
the data to a lower-dimensional space.

If X is an L-dimensional vector and l = 2, then one possible initial representation
of P , corresponding to X, in the two-dimensional space is given by

P =
(

P1

P2

)

=
(∑L

i=1 Xi∑L
i=1 X2

i

)

.

This initial representation in the l-dimensional space (l = 2 here) is updated
iteratively till some stopping/termination criterion is satisfied.

5.3 Visualization

1. Representation using Faces: Here, a pattern is represented using a face for easy
visualization. It may be explained using the face shown in Fig. 5.1.

A three-dimensional pattern (L = 3) is represented as a face in the figure. The
first feature f1 is used to depict the height of the face. The second feature f2 is
used to represent the width of the face and feature f3 depicts the length of the
mouth. Note that it is possible to incorporate more features. For example, f4 can
be used to capture the size of the eyes; f5 for the length of the nose; f6 for the
distance between the eyes; f7 for the distance between the eyes and the nose; f8
for the distance between the nose and mouth, and so on. In addition one can use
other parts like ears to represent more features.

So, such a representation of patterns using faces can help the users in
discriminating between patterns from different classes.

2. Self-Organizing Map (SOM): Kohonen’s SOM is the most popular neural
network model to represent a collection of L-dimensional vectors in a two- or
three-dimensional space. Consider the simple two-dimensional network shown
in Fig. 5.2.

This network may be viewed as having the input and output layers. The input
layer is an L-dimensional layer. An L-dimensional vector X is presented at the
input layer. The L components of X are x1, x2, · · · , xL as shown in the figure.

The output layer typically is a two-dimensional grid of M × N cells. in the
figure the values of M and N are 7 and 10 respectively. Every cell is connected
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Fig. 5.1 An example face image representation of a pattern

to the input layer with L weights. For example, if the top leftmost cell is
numbered as 1, then the input xj is linked to this cell with a weight Wj,1 for
j = 1, 2, · · · , L. Similarly ith cell (shown here using the third row from the top
and the sixth column from the left) is connected using a collection of L weights.
For example, the Lth input node is connected using the weight WL,i as shown in
the figure. We have shown weights connected to 3 out of 70 cells for the sake of
clarity in the figure.

So, if there are L inputs and M × N cells in the output layer, then there will
be M × N × L weights to train. These weights are initially chosen randomly
and are updated based on the assignment, of data presented, to the cells. For
example, if a data vector Xp is more similar to the weight vector, W(j) =
(W1,j ,W2,j , · · · ,WL,j ), then XP is associated with the j th cell and the weight
vector, W(j), associated with the winner cell (j th cell) is updated to align more
with Xp. Such an update ensures that when Xp is presented next time it will
match better with the weight vector W(j).
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Fig. 5.2 Kohonen’s SOM

Typically, the input data will be a collection of n data vectors, X1,X2, · · · ,

Xn. These n data vectors are presented in a sequence at the input layer and the
weight vector associated with the winning neuron is updated after assigning each
pattern. These input vectors are repeatedly presented at the input layer multiple
times (epochs). It is continued till either there are no updates to the weight vectors
in an epoch or till a pre-specified number of epochs is completed. This may be
viewed as associating each of the data vectors with a cell that is matching better
in terms of its current weight vector.

It is possible to view the entire activity as clustering the n patterns into clusters
corresponding to the output cells. There are several variants that can be used:

• In the procedure specified, weights of only the winning cell/neuron are
updated. It is possible to update the weights associated with the neurons
located within a window around the winning cell. Different window types
were specified.

• It is popularly used to cluster unlabeled patterns. However, it can be used to
cluster labelled patterns also.

• It may be viewed as mapping L-dimensional vectors into a two-dimensional
map. It is shown to achieve the mapping so that topological properties of the
data are preserved.

Consider the first 250 patterns of class label 1 and 7 in the MNIST Test Data set.
We set the default seed to the random generator, using the command rng default.
We used MATLAB, selforgmap function with the following parameters

• dimensions = [12, 12]
• Number of training steps for initial covering of the input space, coverSteps =

100
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Fig. 5.3 SOM for first 250 patterns in classes labelled 1 and 7 in MNIST Test dataset

• Initial neighborhood size, initNeighbor = 3
• Layer topology function (default = ‘hextop’)
• Neuron distance function (default = ‘linkdist’)

The obtained SOM is shown in Fig. 5.3. The 144 grid/neurons (12 × 12) are
numbered on the top in Fig. 5.3. At each grid point, the patterns which are falling
in the grid, are averaged (For example, if three patterns fall in a grid, those three
images are added and divided by 3, to get the average 28×28 image/pattern). The
averaged pattern is converted into a binary vector (if pixel value greater than 127,
it is replaced by 1 else replaced by 0). We observe the following in Fig. 5.3,
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• In the last three rows, (grid numbered 109 to 144) the patterns are mostly
inclined to the right.

• Pattern in grid numbers 4–12 and 16–19 are mostly inclined to the left.
• Patterns which are marked in red box are actually outlier patterns in the actual

data set, not resulted from the addition of patterns falling in their respective
grids.

• There is a clear transition from 1 to 7, as we move from left to right.
• It is able to capture the characteristics of different ones and sevens and clusters

them together.

3. T-Distributed Stochastic Neighbor Embedding (T-SNE) Plot :
This is a very popular visualization tool that employs a nonlinear mapping
scheme to reduce the dimensionality of the data from l to 2. Given the data in
the l-dimensional space, it estimates a probability structure over pairs of points.
The probability is larger if the corresponding pair of points are similar and it
is smaller if the two points are dissimilar. Similarly it computes the probability
structure in the reduced dimensional space. KL-divergence between these two
probability distributions is minimized to achieve the mapping.

Let us consider all the test patterns of MNIST data set. Figure 5.4 shows
T-SNE plot for all the test patterns of MNIST data set with Perplexity = 30
(for many values of Perplexity we got similar plots) and Euclidean Distance as
distance measure using MATLAB-tsne function. We can observe that there are
many overlaps between many class labels. For example, patterns from classes
1 and 7 show significant overlaps, similarly classes labelled 3 and 8 show
overlaps. Let us consider only the patterns of classes labelled 1 and 7 respectively.
Figure 5.5 shows the T-SNE for class labelled 1 and 7. We can clearly observe
the overlapping patterns. From Fig. 5.5, we picked some overlapping patterns
and displayed their corresponding high dimensional image values in Fig. 5.6.

Fig. 5.4 T-SNE for all test patterns in MNIST Data set
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Fig. 5.5 T-SNE for patterns labelled 7 and 1 in MNIST Data-set

Fig. 5.6 Some overlapping pattern of class labelled 7 and 1 in MNIST Data set

In Fig. 5.6, the first two patterns (in position (1,1) and (1,2) respectively), are
actually labelled as pattern 1, but they occur in the region of label 7 and similarly
other patterns with actual label as 7, but in the T-SNE plot in Fig. 5.5, they occur
in the region of label 1 respectively.
We took six misplaced patterns in the T-SNE plot in Fig. 5.5. For these six
patterns, we found three nearest neighbors in the lower dimensional embedding
and we plotted their corresponding higher dimensional input in Fig. 5.7. In
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Fig. 5.7 Three nearest neighbours of misplaced patterns

Fig. 5.7, the first column represents the misplaced patterns and other columns
correspond to their three nearest neighbors respectively.

For the same misplaced patterns (column 1 in Fig. 5.7), we find all the three
nearest neighbors belonging to the same class. For example, for the pattern at
position (1,1) in Fig. 5.7, the actual label of the pattern is label 7, we find the
corresponding neighbors among all the patterns belonging to class label 7 and
we plotted them as the first row in Fig. 5.8 and similarly for other patterns.

The T-SNE plots for test patterns labelled 7 and 1 show misplacement of
patterns. So, in order to measure the effect of misplacement, in the lower
dimensional embedding space a KNN classifier with nine nearest neighbors is
used. For each pattern in the lower dimensional space, nine nearest neighbors are
found and using Majority vote the label of the pattern is predicted from its nine
nearest neighbors. If the predicted label is the actual label of the pattern, then
that pattern is not misplaced in the T-SNE plot, else, the pattern is declared as a
misplaced pattern. By the above mentioned criterion, the train accuracy (A) may
give the measure of misplacement by the T-SNE plot.

Various L-norms with parameter r, are used to compute the dissimilarity for
the T-SNE plot. The Training Accuracy (A) for various values of parameter is
tabulated in Table 5.1. From the table, we observe that for fractional norms and
lower values of parameter r, there are many misplaced patterns in the T-SNE
plots and as the value of r increase, the misplacement is getting reduced, which
is reflected in terms of the increase in the training accuracy A.
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Fig. 5.8 Three nearest neighbours in the same class of misplaced patterns

Table 5.1 T-SNE Error
analysis for different values
of r using Minkowski
distance

r A (%)

0.2 97.1798

0.5 97.8733

1 98.1045

2 98.5668

50 98.8904

60 98.9829

80 98.9367

90 99.0754

95 99.2141

100 99.0754

∞ 98.1507

From Figs. 5.9 and 5.10, we observe the following:

• For lower values of r, the distance measure in higher dimensions is large, but
in the lower dimensional space, distance is small and the clusters are tightly
packed. As the value of r increases, we can observe the reduction in within
cluster distance and the clusters are becoming loose.
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Fig. 5.9 T-SNE for various L-Norms

Fig. 5.10 T-SNE for various L-Norms
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Fig. 5.11 T-SNE Plot with L-Norm r = 0.2

• As the value of r increases, the clear separation between the two clusters is
reducing.

• The penetration of pattern labelled 7 (blue) into the region of 1 (red) is getting
reduced as the parameter r increases.

• The occurrence of pattern labelled 7 (blue) in far extreme end in the regions
of 1 (red) is getting reduced as the value of r increases.

• As r increases, the misplacement of patterns is getting reduced.

Consider Figs. 5.11 and 5.12 for further insights
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Fig. 5.12 T-SNE Plot with L-Norm r = 95

5.4 Autoencoders for Representation

let us consider the ORL face Data set. The Data set consists of 400 face images.
The entire set of 400 faces is divided into 320 Train patterns and 80 test patterns,
such that for each class label 8 patterns are assigned to the Training set and two
patterns are assigned to the test set respectively. The image dimension is 112 by
92. Each image is converted into a row vector. So, the number of features of
the Data set is 10,304 = 112 ∗ 92. For the sake of simplicity and computation
capacity constrains, we consider a single hidden layer Autoencoder and employed
the following procedure for feature extraction and classification

• Each image is reshaped as 100 × 100 (instead of original dimension 112 × 92).
• Each reshaped image is divided into four quadrants, {C1, C2, C3, C4} of

dimension 50 × 50 each.
• Four different single hidden layer Autoencoders{A1, A2, A3, A4} are used; each

one extracts features from each quadrant,{C1, C2, C3, C4} of the image. The
number of features is the number of neurons in the single hidden layer.

• The four sets of features {f 1, f 2, f 3, f 4} extracted from the four different
Autoencoders{A1, A2, A3, A4}, are used for classification using a softmax
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classifier for each Autoencoder. (Note: Each Autoencoder and softmax-Pair are
trained separately for their respective quadrants).

• For a given test pattern, its four quadrants are given as input to their corre-
sponding Autoencoder-softmax Pair{A1, A2, A3, A4} and four class labels are
predicted one for each quadrant.

• Using Majority voting among the four predicted class labels from the four
individual Autoencoder-softmax-pairs, the class label for the test pattern is
predicted.

• The Test Accuracy of each quadrant and for the entire image (predicted using
Majority voting) is noted and the experiments are repeated for various values of
the parameters of the Autoencoder.

Parameters of Autoencoder
Let us start with a brief introduction of a single layer Autoencoder. Consider the
following notation,

• A single input vector x with dimension L, x ∈ R
L.

• The total number of training patterns, N
• The entire training data matrix X ∈ R

L×N of size L × N , where patterns are
stacked column wise.

• The first layer of Autoencoder has l, hidden units (neurons).
• The weight matrix W(p) and bias vector b(p) at level (layer) p. (where p

represents the number of levels/layers. We have considered only a single layer
Autoencoder; so, we have two levels, level = 1 encoder level and level = 2 decoder
level respectively).

• Let z ∈ R
l be the latent representation of single input vector x, with dimension

l × 1
• Let Z ∈ R

l×N be the latent representation of the entire input training data matrix,
of size l × N (a matrix of size l × N).

• Let h(.) represent the non linear function at the encoder and decoder level which
introduces the non linearity.

At the first level of Autoencoder, which is the encoder level, the single input
vector x ∈ R

L is converted into its lower dimensional latent representation z ∈ R
l

(where l < L) as follows:

z(1) = h
(
W(1) · x + b(1)

)

z(1) = h

⎛

⎜
⎝

⎡

⎢
⎣

w
(1)
1 1 w

(1)
1 2 . . . w

(1)
1 L

...
. . .

. . .
...

w
(1)
l 1 . . . . . . w

(1)
l L

⎤

⎥
⎦ ·

⎡

⎢
⎣

x1
...

xL

⎤

⎥
⎦ +

⎡

⎢
⎣

b
(1)
1
...

b
(1)
l

⎤

⎥
⎦

⎞

⎟
⎠

where superscript (1) represents the first level (Encoder level) and W(1) and b(1) are
the corresponding weight vector and bias terms at the encoder level.
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At the second level, which is the decoder level, an estimate of the input vector x̂,
is obtained as follows:

x̂ = h
(
W(2) · z(1) + b(2)

)

x̂ = h

⎛

⎜
⎝

⎡

⎢
⎣

w
(2)
1 1 w

(2)
1 2 . . . w

(2)
1 l

...
. . .

. . .
...

w
(2)
L 1 . . . . . . w

(2)
L l

⎤

⎥
⎦ ·

⎡

⎢
⎣

z
(1)
1
...

z
(1)
l

⎤

⎥
⎦ +

⎡

⎢
⎣

b
(2)
1
...

b
(2)
L

⎤

⎥
⎦

⎞

⎟
⎠

where superscript (2) represents the second level (decoder level) and W(2) and
b(2) are the corresponding weight vector and bias terms at the decoder level. So,
the Autoencoder takes an input vector of dimension L and reduces to a lower
dimensional latent vector of dimension l; then it tries to reconstruct the estimate
of input vector from the lower dimensional latent representation.

For illustration, consider an example single hidden layer Autoencoder in
Fig. 5.13. In Fig. 5.13, we observe the following,

• The input nodes represents the input vector x with dimension L = 8.
• The middle hidden layer represents the latent vector z with dimension l= 4
• The output nodes represents the reconstructed estimate of input vector x̂ with

dimension L= 8.

Fig. 5.13 An example single hidden layer Autoencoder
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• The edge weights are randomly selected and their thickness is propositional to
their weights

Now, consider the following parameters, which are tuned for the experiments.

1. Hidden Layer Size (l):
The number of hidden units (neurons) in the single layer Autoencoder is tuned by
this parameter, Hidden layer size, l. As the number of hidden units increases the
number of weights and bias parameters increases at both the encoder and decoder
levels respectively.

2. Encoder-Decoder Transfer Function [TF]:
We used non linear transfer functions for the encoder and decoder as follows:

• Logistic sigmoid function, T F1

h(k) = 1

1 + e−k

• Positive saturating linear transfer function, T F2

h(k) =
⎧
⎨

⎩

0 if k ≤ 0
k if 0 < k < 1
1 if k ≥ 1

The Autoencoder reconstructs the input from the decoder level; so, the range of
the input must match the range of the decoder transfer function. Hence, the inputs
are scaled to match the range of decoder transfer function accordingly.

3. Maximum number of training epochs [MaxEpochs]
The maximum number of training epochs/iterations is fixed as 500 because of
computational constraints.

4. Cost Function, [CF]:
The Autoencoder tries to reduce the Mean Square Error between the input vector
x ⊂ R

L and the reconstructed estimate x̂ ⊂ R
L; we can also add magnitude

constraint to the weights and Sparsity constraint by employing a suitable Cost
Function as follows:

CF = MSE + λ · Ωweights + β · ΩSparsity

5. Mean Square Error [MSE]

MSE = 1

N

N∑

i

L∑

j

(
xij − x̂ij

)
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Where N represents the total number of Training patterns. L is the dimensionality
of the training patterns and x̂ represents the reconstructed estimate of the actual
training pattern x by the Autoencoder.

6. L2 Weight Regularization Ωweights:
As the Autoencoder reduces the error between the actual training patterns and
their estimates, we need to have the following:

• a mechanism to control the magnitude of the weights.
• to prevent the Autoencoder from remembering the training patterns and over

fitting.

Hence the following weight regularization term is used:

Ωweights =
P∑

l

∑

i

∑

j

(
W

(l)
i,j

)2

where P is the total number of levels of the Autoencoder, as we have considered a
single layer Autoencoder, we have P = 2. These are Encoder level and Decoder
level. The number of elements of the Weight matrix W at each level varies. The
Encoder level weight matrix W(1) has a dimension L × l and Decoder level
weight matrix W(2) has a dimension l×L. These weight matrices can be modified
to incorporate the bias terms too.

7. L2 Weight Regularization term λ:
Parameter which varies the contribution of L2 Weight Regularization term
Ωweights in the Cost function.

8. Sparsity Regularization, ΩSparsity:
We can control the firing of a neuron by controlling its average output activation
value. If the average output activation value of a neuron is low, it means that the
neuron is responding (firing) only to the features present in a subset of training
examples. The average output activation value of ith neuron, ρ̂i , is:

ρ̂i = 1

N

N∑

j=1

h(W
(p)
i · xj + b

(p)
i )

where,

• h(·) represents the Nonlinear Encoder-Decoder Activation function
• W

(p)
i represents the ith row of the weight matrix of level (p)

• bi represents the ith element of the bias term at level (p)

So, we are calculating the average output of the activation function of ith neuron
for all the training examples. We need to add a Kullback–Leibler divergence
(KL) term to the Cost Function which results in a large value whenever the
actual average output activation value of ith neuron deviates from the desired
value ρ, by which we can introduce Sparsity in the latent representation.
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ΩSparsity =
∑

i

KL (ρ||ρi) =
∑

i

ρ · log

(
ρ

ρi

)

+ (1 − ρ) · log
1 − ρ

1 − ρi

9. Sparsity Regularization term, β:
Parameter which varies the contribution of Sparsity Regularization term
ΩSparsity in the Cost function.

The above mentioned parameters are varied and the results are tabulated in the
next section.

5.5 Experimental Results: ORL Data Set

Let the notation for test accuracy of the four quadrants be TA1, TA2, TA3, and TA4
and final test accuracy for the entire image byMajority voting be TA. We have varied
the parameter λ, Transfer function and the results are tabulated in Table 5.2. From
Table 5.2, we observe that Positive saturating linear function (T F2) performs well
when compared to Logistic sigmoid function (T F1) in terms of final test accuracy
TA.

Let us tune the parameter ρ, Transfer function and perform the experiment.
The results are tabulated in Table 5.3. From Table 5.3, we again observe that T F2
outperforms T F1 in terms of final test accuracy TA.

Now, we alter the number of hidden neurons l along with ρ and Transfer function.
The results are tabulated in Table 5.4.

From the results we can observe the following:

• When the inputs are scaled properly, the Positive saturating linear function (T F2)
performs well when compared to Logistic sigmoid function (T F1) in terms of
final test accuracy TA.

• Increasing the number of dimensions, l, in the latent representation may not
necessarily result in a better representation.

Table 5.2 λ Experimentation for ORL data set

TF λ β ρ l TA1 TA2 TA3 TA4 TA

1 0.1 1 0.75 1000 0.875 0.925 0.912 0.887 0.95

1 0.01 1 0.75 1000 0.875 0.925 0.912 0.9 0.95

1 0.001 1 0.75 1000 0.875 0.912 0.9 0.887 0.938

1 0.0001 1 0.75 1000 0.863 0.887 0.887 0.9 0.938

2 0.1 1 0.75 1000 0.838 0.875 0.9 0.912 0.975

2 0.01 1 0.75 1000 0.85 0.887 0.887 0.9 0.963

2 0.001 1 0.75 1000 0.863 0.875 0.9 0.925 0.975

2 0.0001 1 0.75 1000 0.838 0.863 0.887 0.9 0.975
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Table 5.3 ρ Experimentation for ORL data set

TF λ β ρ l TA1 TA2 TA3 TA4 TA

1 0.01 1 0.05 1000 0.85 0.912 0.9 0.887 0.938

1 0.01 1 0.1 1000 0.863 0.912 0.9 0.887 0.938

1 0.01 1 0.2 1000 0.863 0.912 0.9 0.887 0.938

1 0.01 1 0.5 1000 0.875 0.912 0.887 0.9 0.938

1 0.01 1 0.75 1000 0.875 0.912 0.9 0.887 0.95

2 0.01 1 0.05 1000 0.85 0.875 0.887 0.912 0.975

2 0.01 1 0.1 1000 0.85 0.875 0.9 0.9 0.975

2 0.01 1 0.2 1000 0.85 0.863 0.9 0.875 0.95

2 0.01 1 0.5 1000 0.825 0.863 0.9 0.9 0.975

2 0.01 1 0.75 1000 0.85 0.887 0.887 0.9 0.963

Table 5.4 Hidden layer p—Experimentation for ORL data set

TF λ β ρ l TA1 TA2 TA3 TA4 TA

1 0.01 1 0.75 600 0.85 0.887 0.9 0.9 0.925

1 0.01 1 0.75 800 0.863 0.887 0.887 0.887 0.95

1 0.01 1 0.75 1000 0.875 0.912 0.9 0.887 0.95

1 0.01 1 0.75 1200 0.863 0.925 0.9 0.9 0.938

1 0.01 1 0.75 1500 0.875 0.925 0.9 0.887 0.95

2 0.01 1 0.5 600 0.875 0.875 0.887 0.925 0.988

2 0.01 1 0.5 800 0.85 0.863 0.887 0.887 0.95

2 0.01 1 0.5 1000 0.825 0.863 0.9 0.9 0.975

2 0.01 1 0.5 1200 0.85 0.863 0.887 0.875 0.95

2 0.01 1 0.5 1500 0.838 0.863 0.9 0.875 0.95

• By proper tuning of parameters, we can achieve better representation even with a
smaller value of l, dimension of latent representation. For Example, in Table 5.4,
for l = 600, we got better Test accuracy TA, than higher values of l.

5.6 Experimental Results: MNIST Data Set

Let us consider the patterns of classes labelled 7 and 9 from the MNIST data set.
Each pattern is a 28 × 28 image, whose pixel values range from 0 to 255. Every
pattern is converted into a binary row vector of dimension 1 × 784, such that a pixel
value greater than 127 is replaced by 1 and pixel value less than or equal to 127
is substituted by 0. These row converted binary patterns are stacked to form the
training set of size 12,214 and test set of size 2037 respectively. Each pattern is a
binary vector of length 784.

A single hidden layer Autoencoder is used as a feature extractor and Softmax
layer is used as the classifier. The experiment mentioned in Sect. 5.4 is repeated for
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the MNIST Data set. As the dimension of the input vector is less (784 in the case
of MNIST Data set), we have directly used the input vectors without pursuing any
divide and conquer strategy as mentioned in Sect. 5.4.

The input image x (28 × 28 image as 1 × 784 vector) is fed into the Autoencoder
and the reconstructed estimate x̂ is obtained. The Structural Similarity Index, SSIM
between the input image x and its estimate x̂ is calculated for all the training and test
patterns and its values are averaged. The SSIM is a good measure of reconstructing
capability of the Autoencoder. The output parameters like Test Accuracy, averaged
SSIM of training set and averaged SSIM of test set are tabulated for different
experiments. The parameter MaxEpochs= 200 is fixed for all the experiments.

Fixing the parameter l, all other parameters are varied and the results are
tabulated in Table 5.5. Similarly, fixing all other parameters as constant, parameter
l is varied and the results are tabulated in Table 5.6.

Table 5.5 ρ Experimentation for MNIST data set

TF λ β ρ l TA (%) Train set average SSIM Test set average SSIM

1 0.01 1 0.05 100 98.72361 0.471434 0.47556

1 0.01 1 0.1 100 98.52725 0.480052 0.483841

1 0.01 1 0.2 100 98.67452 0.495541 0.499057

1 0.01 1 0.5 100 98.72361 0.386587 0.389973

1 0.01 1 0.8 100 98.8218 0.362159 0.365737

1 0.01 1 0.95 100 98.7727 0.326204 0.329523

1 0.001 1 0.05 100 99.01816 0.566713 0.565715

1 0.001 1 0.1 100 99.06726 0.482927 0.479977

1 0.001 1 0.2 100 99.01816 0.473056 0.469951

1 0.001 1 0.5 100 98.7727 0.579093 0.5807

1 0.001 1 0.8 100 98.91998 0.632808 0.634788

1 0.001 1 0.95 100 98.91998 0.599323 0.601631

2 0.01 1 0.05 100 99.01816 0.819241 0.820994

2 0.01 1 0.1 100 99.06726 0.850315 0.852342

2 0.01 1 0.2 100 98.96907 0.880027 0.881356

2 0.01 1 0.5 100 98.67452 0.885968 0.885967

2 0.01 1 0.8 100 98.7727 0.844688 0.843249

2 0.01 1 0.95 100 99.01816 0.733145 0.731035

2 0.001 1 0.05 100 98.96907 0.828054 0.829163

2 0.001 1 0.1 100 99.11635 0.85617 0.858287

2 0.001 1 0.2 100 98.91998 0.890277 0.890806

2 0.001 1 0.5 100 98.67452 0.891055 0.890241

2 0.001 1 0.8 100 98.8218 0.84853 0.845882

2 0.001 1 0.95 100 98.96907 0.753597 0.751189
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Table 5.6 Hidden layer l—Experimentation for MNIST data set

TF λ β ρ l TA (%) Train set average SSIM Test set average SSIM

1 0.01 1 0.1 50 98.52725 0.471213 0.475623

1 0.01 1 0.1 250 98.67452 0.525936 0.529374

1 0.01 1 0.1 500 98.87089 0.529627 0.53246

1 0.01 1 0.1 600 98.67452 0.554979 0.557877

1 0.001 1 0.1 50 98.96907 0.477558 0.477894

1 0.001 1 0.1 250 98.96907 0.539827 0.535098

1 0.001 1 0.1 500 98.67452 0.560211 0.553098

1 0.001 1 0.1 600 98.33088 0.580901 0.573728

2 0.01 1 0.1 50 98.91998 0.805224 0.810006

2 0.01 1 0.1 250 99.01816 0.893267 0.89295

2 0.01 1 0.1 500 98.13451 0.920173 0.917866

2 0.01 1 0.1 600 97.79087 0.924482 0.922242

2 0.01 1 0.1 50 98.87089 0.815872 0.8199

2 0.01 1 0.1 250 98.91998 0.917327 0.914497

2 0.01 1 0.1 500 98.42906 0.91927 0.917235

2 0.01 1 0.1 600 97.34904 0.942189 0.937611

Fig. 5.14 Reconstructed images using Logistic sigmoid function, T F1

From Tables 5.5 and 5.6, we can again observe that the Positive saturating linear
function (T F2) performs well when compared to Logistic sigmoid function (T F1) in
terms of SSIM.

Figure 5.14 shows the reconstructed images of some patterns, where the Autoen-
coder used T F1 with ρ = 0.5 and λ = 0.01. Similarly, Fig. 5.15 shows the
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Fig. 5.15 Positive saturating linear transfer function, T F2

reconstructed images of some patterns using Positive saturating linear transfer
function, T F2. From Figs. 5.14 and 5.15, we observe a better reconstruction
capability of Positive saturating linear transfer function (Close to the famous ReLu
function).

In order to understand how the weight matrix in the Encoder level represents
certain features and how the parameter ρ affects the weight matrix, consider
Figs. 5.16 and 5.17.

For an Autoencoder of 100 hidden neurons, each neuron is represented in a 10 ×
10 grid in Figs. 5.16 and 5.17. Each grid unit represents the 784 weights for each
neuron as an 28×28 image. For ρ = 0.05 in Fig. 5.16, the average output activation
values is low so the weight images 28 × 28 in each grid is nearer to black region
representing smaller values and the neurons will fire only for certain features.

Similarly, for ρ = 0.95, in Fig. 5.17, the weights are having higher values nearer
to the white regions and no sharp characteristics when compared to Fig. 5.16.
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Fig. 5.16 Weight matrix with ρ = 0.05

Fig. 5.17 Weight matrix with ρ = 0.95
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5.7 Summary

In this chapter, we have considered nonlinear feature extraction. Here each extracted
feature may be viewed as a nonlinear combination of the given L features. We
have discussed and examined three different schemes; they are useful in both
dimensionality reduction and visualization. Specifically, we have considered

1. Self-organizing neural network: It is popularly called the self-organizing map
(SOM). It can be used to map high-dimensional data vectors into a two or a
three dimensional space. It has some nice properties:

• It preserves the topological structure present in the data.
• It can be viewed as a neural network architecture for clustering. The clusters

are perceived based on the self-organization property exploited by the training
algorithm.

• It is helpful in visualizing the data in a two-dimensional space that is easy for
human consumption.

2. T-Distributed Stochastic Neighbor Embedding (T-SNE) Plot: It is popularly
known as the t-SNE plot. It is a nonlinear technique for dimensionality reduction
and visualization of high-dimensional data. Some of its features are:

• It is the most popular embedding technique for visualization of high-
dimensional data.

• It is popular in analysing the embedding techniques employed in complex
networks including social networks, chemical and biological networks.

3. Autoencoder: It is also a neural network architecture primarily used in nonlinear
dimensionality reduction. Some of its features are:

• Based on the type of activation function used by various neurons, it can work
like a nonlinear feature extractor (nonlinear activation) or like PCA to perform
linear feature extraction (linear activation).

• It is found to be an apt tool when the classes are not linearly separable in the
original feature space.

In each of the above cases, we have conducted experiments and reported the
results using two benchmark data sets, the MNIST handwritten digits data set and
the ORL face data set.
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