Chapter 4 )
Representation Using Linear Shethie
Combinations

Abstract This chapter deals with linear representations. Here, each new feature is a
linear combination of the given input features. Even feature selection may be viewed
as a special case of the linear representation schemes. We specifically consider,
in this chapter, various types of feature selection schemes, principal components,
random projections and non-negative matrix factorization.

4.1 Introduction

Linear representation is a very popular and relatively simpler scheme for represent-
ing patterns. Here, a feature g; is extracted such that it is a linear combination of
the given L features, f1,--- , fL. So,

L
gj = Zaijfi,

i=1

where «;; is a real number and it indicates the contribution of feature f; to the
extracted feature g;. Further, we typically extract / features g1, g2, - -- , g1 Where
I <L.

4.2 Feature Selection

Note that it is possible to view feature selection as a special case of such a linear
combination. For example, g; can be the same as f,, if «p; = 1 and ;; = 0
if i # p. Further, we have seen in Chap.2 that the feature selection schemes are
categorized further into

1. Filter Methods: In filter methods, we rank the L features using a fitness measure
that exploits the class labels but does not use any classifier. Based on the ranking,
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the top / features are selected and used in building the ML model. There are
different fitness measures to evaluate and rank the features. They are based on:

* Distance: We prefer values of a feature from the same class to be such that the
intra-class distances are smaller and inter-class distances are larger.

* Dependency: Here, the correlation between a feature and a class is exploited
in ranking. If the correlation is larger for a class and smaller for the other
classes, then the feature in ranked better.

* Mutual information (M1:) If a feature and a class have a larger M1 value,
then the feature is good. It is seen that M I based feature selection works well
on high-dimensional datasets.

2. Wrapper Methods: In this case, the selection of a subset of features is based
on the performance of a classifier on the selected subset. The subset of features
which gives the maximum classification performance is selected. This subset of
features is used in designing the M L model. There are a variety of approaches
including genetic algorithm based approaches that employ this method. These
schemes can be more expensive compared to the filter based schemes because
the number of subsets is much larger than the number of features.

3. Embedded Methods: Here, an M L model is built using the L features and the
model directly selects/indicates the relevant subset of features. Several classifiers
including ones based on decision trees, support vector machines, and Bayes
classifier can be exploited to realize such an embedded scheme.

We will present some experimental results based on these schemes in this
chapter.

1. Filter methods:

Let us consider the patterns of classes labelled 7 and 9 from the MNIST data set.
Each pattern is a 28 x 28 image, whose pixel values range from 0 to 255. Every
pattern is converted into a binary row vector of dimension 1 x 784, such that a
pixel value greater than 127 is replaced by 1 and pixel value less than or equal to
127 is substituted by 0. These row converted binary patterns are stacked to form
the training set of size 12,214 and test set of size 2037 respectively. Each pattern
is a binary vector of length 784.

For each feature, the euclidean distance between the feature and its class
label is calculated and shown in Fig.4.1. Similarly Mutual Information and
absolute value of correlation coefficient of each feature is calculated and shown
in Figs.4.2 and 4.3 respectively. The correlation coefficient of features whose
value does not change throughout the training data set is set as zero (since
MATLAB returns NAN for those constant features).

Features which represented pixel values in the top, bottom, left and right
extremes of the image are mostly of same value (zeros) so they will not contribute
to classification, which is observed from the Mutual information values in
Fig.4.2. The Mutual information becomes zero for feature number less than 100
and greater than 700 which correspond to the top and bottom pixels in the image.
Similarly, Mutual information minima (touching 0) in Fig. 4.2, represents the left
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Fig. 4.2 Mutual information of each feature

and right extreme pixels of the image (whose values are constant throughout the
training data set).

Based on the above mentioned Filter methods, 80 features are selected out of 784
features. These 80 features are used for classification by Decision tree classifier
with Maximum number of splits, N=9 and k-NNC classifier with K =10. The
results are shown in the bar (Fig. 4.4).

From Fig. 4.4, we observe that the accuracy of Decision Tree with 80 selected
features and all 784 features, remains almost the same, since Decision tree
automatically selects the important features and the fest accuracy of Decision tree
is low compared to that of KNNC, and further since the classes 7 and 9 are having
highly non linear decision boundary, we need a deeper tree to classify correctly.
Since, KNNC is a non linear classifier, it is able to perform well. Out of the filter
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Fig. 4.4 Comparison of various filter methods

methods considered, Mutual Information based feature selection performed the
best on this data set.

2. Wrapper methods:
Refer to Sect. 4.3, where we have used Genetic Algorithm to select the optimum
subset of 100 Principal components from the total set of 10,304 Principal
components for the ORL face data set, having the test accuracy of KNNC
classifier as the fitness criterion for selecting features.

3. Embedded methods:
Let us consider the Iris data set. It has four features: Petal length, Petal Width,
Sepal length and Sepal width. We have used Decision Tree to classify the three
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flower species (setosa, vericolor and virginica) based on these four features. We
used Parallel coordinates plot from MATLAB, to visualize the Iris data set in
Fig.4.5.

From Fig. 4.5, feature Petal Length clearly classifies class label setosa. So, the
Decision Tree classifier has given the first preference to this feature and keep it
at the Root of the Decision Tree, as shown in Fig. 4.6.

Let us calculate the predictor importance. It is calculated by summing changes in
the mean squared error due to splits on every predictor and dividing the sum by
the number of branch nodes. The estimates of predictor importance are shown
in Fig.4.7. From Fig.4.7, we observe that predictor Petal length is the most
importance feature.

Root of the Decision Tree is shown in Fig. 4.6 and the rule captured by the tree
is as follows:

(1) if PetalLength < 2.45 then setosa else (PetalLength > 2.45) nonsetosa
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4.3 Principal Component Analysis

The most popular linear representation scheme is based on principal components
(PCs). PCs are the leading eigenvectors of the covariance matrix of the data.
Eigenvectors are considered in the decreasing (non-increasing) order of their
corresponding eigenvalues. The variance in different directions, that is present in the
data, is characterized by the eigenvalues. The covariance matrix is symmetric; so, it
is possible to select the eigenvectors to be orthonormal. The top / eigenvectors are
used in the analysis where the value of / is chosen based on total variance explained
by the top / eigenvalues.

Let us consider the patterns of MNIST data set from Classes labelled 7 and 9.
The dimensionality of the data set is 784 (28 x 28 pixels in each image). From
the covariance matrix of the Training data patterns, 784 eigenvalues and their
eigenvectors are calculated. The eigenvectors are sorted in descending order based
on their corresponding eigenvalues. The dimensionality of both the training and test
sets is reduced based on the projections of the data points on the top / eigenvectors.
The K-Nearest Neighbor classifier with K =3, (three-nearest neighbor classifier) is
used for classification. The results are plotted in Fig.4.8. The X-axis depicts the
value of /, the number of top eigenvectors used for classification and the Y-axis
shows the test accuracy using the K N NC with K=3.

From Fig. 4.8, we observe that feature selection based on first few Principal
components gave good test accuracy. It is to be noted that first few PCs will only
be useful for discriminating between groups if within- and between-group variation
have the same dominant directions.

We will show that first few PCs may not always give the best representation for
classification; that is best test accuracy. In practice, it is possible that the selection of
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Fig. 4.8 Application of PCA on MNIST data set class label 7 and 9, with ‘I’ top principal
components

last few PCs may provide a better discrimination. So, the feature selection should be
based on subset of PCs from the entire spectrum of PCs. We will discuss this next.

For the experiments we use the ORL face Data set. Out of 400 images, 320
images are used for training and remaining 80 images for testing. The data set
is divided, such that for each person, eight patterns are used for training and two
patterns for testing. The dimension of the data set is 10,304 (92 x 112). From
the covariance matrix of the training set, 10,304 Principal components and the
corresponding eigenvalues are calculated, then these Principal components (PC)
are sorted based on their eigenvalues (in descending order), such that the first
PC corresponds to the highest eigenvalue and the last PC is based on the least
eigenvalue.

Dimensionality reduction of both the training and test sets is based on using the
first / PCs and KNNC, with K=3 is used as the classifier. From Fig. 4.9 for the first
108 PCs, we got the maximum test accuracy of 0.95 and for the first 100 PCs, the
test accuracy is 0.9375, When we use all the 10,304 PCs, the accuracy drops to
0.925.

To illustrate the point that first few PCs will not always give a better representa-
tion in the lower dimensional space, we randomly selected 100 PCs from different
sections of the entire spectrum of PCs as shown in Table 4.1.

We present the results in Fig. 4.10.

From the figure, we observe that, for some random selection of 100 PCs, we got
test accuracy of 0.9625, which is better than the test accuracy obtained from the first
108 PCs and first 100 PCs.

To find the optimum sub set selection of PCs from the entire spectrum of 10,304
PCs, we used Genetic Algorithm (a stochastic search technique), with population
size 150 and maximum of 200 generations and show the results in Fig.4.11. Here X
axis represents the /th PC (as we have selected 100 PCs, it varies from 1 to 100) and
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Table 4.1 Random selection
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Fig. 4.12 Histogram of Index values of 100 Principal Components given by GA

Y-axis represents the index of the selected PC from the set of 10,304 PCs, where
index 1 represents the first PC and index 10,304 represents the last PC.

From Fig.4.11, we observe that the optimum sub set of 100 PCs, which gave a
test accuracy of 0.9625 has indices in the entire spectrum (from 1 to 10,304). So,
neither the first few PCs nor the last few PCs may always give better discrimination
in the lower dimensional space. The optimum sub set of PCs fall in the entire
spectrum, which is evident from the Histogram in Fig. 4.12.
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From the Histogram in Fig. 4.12, we also observe that the Last few PCs also play
a significant role in discrimination and the optimum choice of PCs selects from the
entire spectrum.

4.4 Random Projections

We have discussed in Chap.2 that in the case of random projections, we reduce
the dimensionality of the data from the L-dimensional space to a lower-dimensional
space of dimension /, where / can be much smaller than L. This is achieved by using
amatrix R that has random entries.

Some of the properties of random projections are:

* Buxi = AuxrLRrxi

e The value of / can be much smaller than L.

 If the entries in R are independently selected from a zero mean and unit variance
distribution, then it is possible to show that

Ellbi 1P =l ai |1,

where b; is the ith row of B and q; is the ith row of A.

* Further, by selecting the value of | = O(logn/€?) we can approximately preserve
pairwise distances upto a factor of (1 & €), where € is a small real number.

* Similarly it is possible to preserve dot products. That is

E[b;b/‘] = afaj

Let us consider the MNIST data set, the subset of patterns belonging to class
labels {0, 1,7, 9} from both training set and test set are collected. Let us call this
subset as ‘X’. Then, X consist of 29,031(= 24,879 + 4152) patterns where first
24,879 patterns belong to the training set and the next 4152 belong to the test set.
The dimension of X is 29,031 x 784, where each row represents a pattern.

The dimensionality of X is reduced to 1 using Gaussian Random Projection
model from python sklearn package. After, the dimensionality is reduced, the
training set patterns (24,879 patterns) and test set patterns (4152 patterns) are
separated. The KNNC classifier with different K values is used for classification.
The experiment is repeated for five different seed values {1, 2, 3, 4,5} and the
average training set and test set accuracies obtained are shown in Table 4.2. The
same experiment is repeated using Sparse Random Projection model which uses a
Sparse Random matrix with density parameter as 1/3.0, the results are tabulated in
Tables 4.3 and 4.4 respectively.

Let us consider the ORL face data set. The Data set consist of 400 faces each
with dimension 112 x 92. The original dimension of the data set is 10,304. The
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;I)‘aple t"‘.z bGau;sian Random 1 eps | K | Mean train accuracy | Mean test accuracy
rojection base
dimensionality reduction on 100 {0.1 |3 {0.993432212 0.982996146
MNIST data set 100 {0.1 |5 {0.990779372 0.981358382

300 0.1 |3 0.99462197 0.984537572

300 0.1 |5 |0.992555971 0.983815029

500 0.1 |3 ]0.995023916 0.98473025

500 0.1 |5 ]0.992756944 0.98371869
Tal?le ‘."3 bSpa(rise random 1 eps | K | Mean train accuracy | Mean test accuracy
projection base
dimensionality reduction: 100 | 0.1 |3 |0.992869488 0.981888247
MNIST data set 100 | 0.1 |5 |0.989959404 0.980684008

300 0.1 |3 ]0.994372764 0.985356455

300 (0.1 |5 {0.992089714 0.983140655

500 (0.1 |3 [0.994597854 0.985308285

500 |0.1 |5 ]0.992379115 0.984104046
Tal()lle 44 Ac?liopgas d 1 eps | K | Mean train accuracy | Mean test accuracy
random projection base:
dimensionality reduction: 100 0.1 |3 {0.993335745 0.981743738
MNIST data set 100 | 0.1 |5 |0.990956228 0.980828516

300 (0.1 |3 [0.994469231 0.984007707

300 0.1 |5 0.992113831 0.982755299

500 0.1 |3 ]0.995023916 0.984104046

500 |0.1 |5 ]0.992580088 0.983188825

dimensionality of the data set is reduced to / components (selected for different
values of eps) using the following Projection matrices.

* Gauss Random Projection matrix
* Sparse Random Projection Matrix
* Achlioptas Random Projection matrix

The minimum size of the reduced dimension [ for a given eps is selected based
on Johnson-Lindenstrauss lemma.

The experiment is performed for different values of eps ranging from 0.1 to 0.95
in the steps of 0.05. For each value eps, the minimum value of N is selected based
on Johnson-Lindenstrauss lemma. Once the dimension of the data set is reduced,
it is divided into training and test set such that for each person, eight patterns are
selected for training and the remaining two patterns for testing .KNNC is used as
the classifier for different values of K which range from 1 to 8. The results of the
experiments are plotted in Figs. 4.13, 4.14, and 4.15 respectively.
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Fig. 4.14 Dimensionality reduction based on sparse Random Projection matrix: ORL Face Data
set

4.5 Non-negative Matrix Factorization

Let us consider the NMIST Data set, the training and test patterns belonging to
class labels O, 1, 7, 9 are used for the experiments. The NMF module from SKLearn
is used for dimensionality reduction. The tuning parameters for the modules are
alpha, which is the constant that multiples the regularization term and LI ratio,
which controls the contribution of L1-term errors in the regularization term. After
reducing the dimensionality, KNNC classifier with K =35 is used as the classifier.
The NM F may be viewed as factorizing the data matrix A into W and H matrices.
So, if A is of size n x [, then we have

Apxi = Wyxk * Hg .
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Fig. 4.15 Dimensionality reduction based on Achlioptas Random Projection matrix: ORL Face
Data set

Table 4.5 NMF on MNIST 1 alpha | L1 | Train accuracy | Test accuracy

Data set for class label

0.1.7.9 350 | 10 |0 | 0.986414245 0.945086705
350 5 0 |0.98548977 0.933526012
350 | 50 |0 10.990112143 0.971820809
350 | 15 0 0.988705334 |0.957129094
350 | 25 0 10.990152337 |0.967003854
350 | 75 0 0.990272921 0.972302505
350 {100 [0 ]0.991076812 |0.9727842

The experiment is repeated for various values of alpha, L1 ratio and [ (the number
of reduced components after dimensionality reduction). By Trail and error, the
following results are obtained and tabulated in Table 4.5. Let us consider the smaller
version of ORL-Data set, which consists of 4096 features instead of 10,304 features.
The total data set consists of 400 faces. The Data matrix is of size 400 x 4096, where
each row represents a face pattern.

NMF function from MATLAB is used for dimensionality reduction experimen-
tation. After dimensionality reduction, the data set is divided into 320 Training
patterns and 80 test patterns. KNNC classifier, with K values range from 1 to 8
is used for classification. The initialization value for W(W0) matrix plays a crucial
role in determining the best representation (W) and test accuracy (making all the
other parameters to take their default values and Maximum iteration step is taken as
100).

For the Random initialization of W (WO0) and H, the results are shown in
Fig.4.16. Now, for the 400 features, Mutual information is calculated. Based on
the Mutual information values, features are sorted and W is initialized with top !/
features (where, [ is the number of reduced components). The Multiplicative Update
algorithm is modified such that H is updated based on the initialization of W as the
first step.
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Fig. 4.16 Dimensionality reduction based on NMF on reduced ORL Face Data set with random
initialization of W
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Fig. 4.17 Dimensionality Reduction based on NMF on reduced ORL Face Data set with Mutual
information based initialization of W

The results for the Mutual information based feature initialization W are shown
in Fig.4.17. The Root Mean Square of Residual Error between data matrix and
its approximation W x H for various methods of W initialization are shown in
Fig.4.18. From Fig.4.18, we observe that improper selection of initial values of
W results in reaching local optima.
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4.6 Summary

In this chapter, we have examined various feature selection and linear feature
extraction techniques in terms of their applicability. The feature selection schemes
include:

1. Filter methods: We have considered distance, correlation and mutual informa-
tion (M I) based methods. We have observed that the M I based scheme is good
to reduce the dimensionality of large dimensional data sets.

2. Wrapper methods: We have used subsets of PCs to represent the data and
K NNC is used in classification in the process of selecting features using a GA.

3. Embedded methods: It is shown using the Iris data set that Decision Tree clas-
sifier can automatically select a subset of the features as a part of classification.

Subsequently, we have considered linear feature extraction schemes. These
include:

1. PC based,
2. Random Projections based, and
3. NMF based:

It is observed that the top PCs may not be the best for representing the data
used in classification. So, it is not correct to use the top few PCs for discrimination
or classification. Random projections provide a good alternative to deal with high-
dimensional data sets. N M F based reduction needs a better initialization scheme to
avoid local-minima problems.



62 4 Representation Using Linear Combinations
References

1. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Mining
Knowl. Discov. 2(2), 121-167 (1998)

. Scholkopf, B., Smola, A.J.: Learning with Kernels. MIT Press (2001)

. Rifkin, R.M.: Multiclass Classification. Lecture Notes, Spring08. MIT, USA (2008)

. Witten, L.H., Frank, E., Hall, M.A.: Data Mining, 3rd edn. Morgan Kauffmann (2011)

. Prakash, M., Murty, M.N.: A genetic approach for selection of (near-) optimal subsets of

principal components for discrimination. Pattern Recogn. Lett. 16, 781-787. Elsevier (1995)

6. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: NIPS’00:
Proceedings of the 13/ International Conference on Neural Information Processing Systems,
pp. 535-541 (2000)

7. MNIST Dats Set: https://www.tensorflow.org/datasets/catalog/mnist

8. ORL Face Dats Set: https://www.kaggle.com/datasets/tavarez/the-orl-database- for-training-
and-testing

9. Scikit-Machine Learning in Python: https://scikit-learn.org/stable/

[T R RIS I )



 442 1034 a 442 1034 a
 
https://www.tensorflow.org/datasets/catalog/mnist

 594 1117 a 594 1117 a
 
https://www.kaggle.com/datasets/tavarez/the-orl-database-for-training-and-testing
https://www.kaggle.com/datasets/tavarez/the-orl-database-for-training-and-testing

 965 1283 a 965 1283 a
 
https://scikit-learn.org/stable/

	4 Representation Using Linear Combinations
	4.1 Introduction
	4.2 Feature Selection
	4.3 Principal Component Analysis
	4.4 Random Projections
	4.5 Non-negative Matrix Factorization
	4.6 Summary
	References


