
SpringerBriefs in Computer Science

M. N. Murty · M. Avinash

Representation in
Machine Learning

SpringerBriefs in Computer Science

Series Editors

Stan Zdonik, Brown University, Providence, RI, USA

Shashi Shekhar, University of Minnesota, Minneapolis, MN, USA

Xindong Wu, University of Vermont, Burlington, VT, USA

Lakhmi C. Jain, University of South Australia, Adelaide, SA, Australia

David Padua, University of Illinois Urbana-Champaign, Urbana, IL, USA

Xuemin Sherman Shen, University of Waterloo, Waterloo, ON, Canada

Borko Furht, Florida Atlantic University, Boca Raton, FL, USA

V. S. Subrahmanian, University of Maryland, College Park, MD, USA

Martial Hebert, Carnegie Mellon University, Pittsburgh, PA, USA

Katsushi Ikeuchi, University of Tokyo, Tokyo, Japan

Bruno Siciliano, Università di Napoli Federico II, Napoli, Italy

Sushil Jajodia, George Mason University, Fairfax, VA, USA

Newton Lee, Institute for Education, Research and Scholarships, Los Angeles, CA,
USA

SpringerBriefs present concise summaries of cutting-edge research and practical
applications across a wide spectrum of fields. Featuring compact volumes of 50 to
125 pages, the series covers a range of content from professional to academic.

Typical topics might include:

• A timely report of state-of-the art analytical techniques
• A bridge between new research results, as published in journal articles, and a

contextual literature review
• A snapshot of a hot or emerging topic
• An in-depth case study or clinical example
• A presentation of core concepts that students must understand in order to make

independent contributions

Briefs allow authors to present their ideas and readers to absorb them with
minimal time investment. Briefs will be published as part of Springer’s eBook
collection, with millions of users worldwide. In addition, Briefs will be available
for individual print and electronic purchase. Briefs are characterized by fast, global
electronic dissemination, standard publishing contracts, easy-to-use manuscript
preparation and formatting guidelines, and expedited production schedules. We
aim for publication 8–12 weeks after acceptance. Both solicited and unsolicited
manuscripts are considered for publication in this series.

**Indexing: This series is indexed in Scopus, Ei-Compendex, and zbMATH **

M. N. Murty • M. Avinash

Representation in Machine
Learning

M. N. Murty
Department of CS and Automation
Indian Institute of Science Bangalore
Bangalore, India

M. Avinash
Indian Institute of Technology Madras
Chennai, India

ISSN 2191-5768 ISSN 2191-5776 (electronic)
SpringerBriefs in Computer Science
ISBN 978-981-19-7907-1 ISBN 978-981-19-7908-8 (eBook)
https://doi.org/10.1007/978-981-19-7908-8

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

 -151 2928 a -151 2928 a

https://doi.org/10.1007/978-981-19-7908-8

Preface

Overview

This book deals with the most important issue of representation in machine learning
(ML). While learning class/cluster abstractions from the data using a machine,
it is important to represent the data in a form suitable for effective and efficient
machine learning. In this book, we propose to cover a wide variety of representation
techniques that are important in both theory and practice.

In practical applications of current interest, the data typically is high dimensional.
These applications include image classification, information retrieval, problem
solving in AI, biological and chemical structure analysis, and social network
analysis. A major problem with such high-dimensional data analysis is that most of
the popular tools like the k-nearest neighbor classifier, decision tree classifier, and
several clustering algorithms that depend on interpattern distance computations fail
to work well. So, representing the data in a lower-dimensional space is inevitable.

Popularly used dimensionality reduction techniques may be categorized as
follows:

1. Feature selection schemes: Here an appropriate subset of the given feature set is
identified and used in learning.

2. Feature extraction schemes: Here linear or nonlinear combinations of the given
features are used in learning.

Some of the popular linear feature extractors are based on principal components,
random projections, and nonnegative matrix factorization. We cover all these tech-
niques in the book. There are some misconceptions in the literature on representing
the data using a subset of principal components. It is typically believed that the first
few principal components make the right choice for classifying the data. We argue
and show practically, in the book, how such a practice may not be correct.

It is argued in the literature that deep learning tools are the ideal choices for
nonlinear feature selection; also they can learn the representations automatically.
These tools include autoencoders and convolutional neural networks. We discuss

v

vi Preface

these tools in the book. Further, we argue that it is difficult even for the deep learners
to automatically learn the representations.

We present experimental results on some benchmark data sets to illustrate various
ideas.

Audience

The coverage is meant for both students and teachers and helps practitioners in
implementing ML algorithms. It is intended for senior undergraduate and graduate
students and researchers working in machine learning, data mining, and pattern
recognition. We present material in this book so that it is accessible to a wide
variety of readers with some basic exposure to undergraduate-level mathematics.
The presentation is intentionally made simpler to make the reader feel comfortable.

Organization

This book is organized as follows: Chapter 1 deals with a generic introduction
to machine learning (ML) and various concepts including feature engineering,
model selection, model estimation, model validation, and model explanation. Two
important tasks in ML are classification and clustering. So, Chap. 2 deals with the
representation of data items, classes, and clusters.

Nearest neighbor finding algorithms play an important role in several ML

tasks. However, finding nearest neighbors in high-dimensional spaces can be both
time consuming and inaccurate. In Chap. 3, we deal with nearest neighbor finding
algorithms using fractional norms and approximate nearest neighbor computation
using locality-sensitive hashing. We illustrate using several benchmark data sets.

Chapter 4 deals with feature selection and linear feature extraction schemes. It
includes discussion on principal components, random projections, and nonnegative
matrix factorization. Nonlinear feature extraction schemes are gaining importance
because of the deep learning architectures based on autoencoders and multilayer
perceptrons. These topics are examined in Chap. 5.

Bangalore, India M. N. Murty
Chennai, India M. Avinash

Contents

1 Introduction . 1
1.1 Machine Learning (ML) System . 1
1.2 Main Steps in an ML System . 3

1.2.1 Data Collection/Acquisition .. 3
1.2.2 Feature Engineering and Representation . 7
1.2.3 Model Selection. 14
1.2.4 Model Estimation . 14
1.2.5 Model Validation.. 14
1.2.6 Model Explanation.. 15

1.3 Data Sets Used . 15
1.4 Summary . 16
References . 16

2 Representation . 17
2.1 Introduction . 17
2.2 Representation in Problem Solving . 18
2.3 Representation of Data Items . 19
2.4 Representation of Classes. 25
2.5 Representation of Clusters . 26
2.6 Summary . 28
References . 28

3 Nearest Neighbor Algorithms . 29
3.1 Introduction . 29
3.2 Nearest Neighbors in High-Dimensional Spaces . 30
3.3 Fractional Norms .. 38
3.4 Locality Sensitive Hashing (LSH) and Applications 41
3.5 Summary . 44
References . 45

vii

viii Contents

4 Representation Using Linear Combinations . 47
4.1 Introduction . 47
4.2 Feature Selection . 47
4.3 Principal Component Analysis . 52
4.4 Random Projections. 56
4.5 Non-negative Matrix Factorization .. 58
4.6 Summary . 61
References . 62

5 Non-linear Schemes for Representation . 63
5.1 Introduction . 63
5.2 Optimization Schemes for Representation .. 63
5.3 Visualization. 64
5.4 Autoencoders for Representation.. 74
5.5 Experimental Results: ORL Data Set . 79
5.6 Experimental Results: MNIST Data Set . 80
5.7 Summary . 85
References . 85

6 Conclusions . 87
References . 89

Index . 91

Acronyms

AE Autoencoder
AI Artificial intelligence
BP Backpropagation
DTC Decision tree classifier
JC Jaccard coefficient
KLD Kullback-Leibler divergence
KMA K-means algorithm
KNNC K-nearest neighbor classifier
LDA Latent Dirichlet allocation
LSH Locality sensitive hashing
MDC Minimal distance classifier
MI Mutual information
ML Machine learning
MLP Multilayer perceptron
MNIST Modified National Institute of Standards and Technology
NBC Naïve Bayes classifier
NMF Nonnegative matrix factorization
NNC Nearest neighbor classifier
ORL Olivetti Research Laboratory
PCA Principal component analysis
RP Random projections
SOM Self-organizing map
SVD Singular value decomposition
SVM Support vector machine

ix

Chapter 1
Introduction

Abstract In this chapter we provide a brief introduction to machine learning
(ML). We introduce some of the important steps in ML including data acquisition,
feature engineering, model selection, model estimation, model evaluation, and
model explanation.

1.1 Machine Learning (ML) System

Machine Learning (ML) has been an active and important area of study for more
than six decades. The phenomenal growth in ML may be attributed, among other
things, to the availability of large datasets and improved computing power. It is
important to consider Deep Learning (DL) as an offshoot of ML; this is because the
generic framework for DL is based on neural networks which were widely studied
under the umbrella of ML for more than six decades. In fact, perceptron classifier is
the earliest popular ML tool and perceptron forms the basic building block of DL

architectures. In the combined space of ML and DL, building a learning system
involves the following crucial steps as illustrated in Fig. 1.1.

1. Data Acquisition: It depends to a large extent on the knowledge of the application
domain. For example, to distinguish between adults and children, measurements
of their height and weight are adequate; however, to distinguish between normal
and abnormal health status of humans their body temperature and blood test
results might be more important to measure. Further, it is likely that in some
domains, there could be missing data possibility. This could be a consequence of
being unable to measure the feature value or the entries in the physical records
being illegible. There are some statistical tools to deal with the missing values.

2. Feature Engineering:This step involves a combination of data preprocessing and
representation or dimensionality reduction. Specifically,

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
M. N. Murty, M. Avinash, Representation in Machine Learning, SpringerBriefs
in Computer Science, https://doi.org/10.1007/978-981-19-7908-8_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-7908-8_1&domain=pdf

 476 4612 a 476 4612 a

https://doi.org/10.1007/978-981-19-7908-8_1

2 1 Introduction

Fig. 1.1 Important steps in machine learning

• Preprocessing: Typically there are three different difficulties encountered in
data collection.

a. Missing Data: It is possible that some values in the data may be missing.
This could be because there was no measurement taken or data was not
recorded.

b. Data from Different Domains: The scales behind different features could
be highly different. This will bias the proximity measure to be dependent
on features that have larger size domains, ignoring the contributions of
features with smaller ranges.

c. Presence of Outliers: An outlier is a data item that is either noisy
or erroneous. Presence of an outlier could be because of noise in the
measuring instruments or erroneous data entries.

3. Model Selection: It depends upon the types of data and relevant domain
knowledge. For some types of data only a subset of the ML models can be
used. For example, if some features are numerical and others are categorical then
classifiers based on perceptrons and support vector machines (SV M) are not
suitable whereas Bayes classifier and decision-tree based classifiers are ideally
suited to deal with such data.

4. Model Estimation: It may also be called model learning. This learning is
dependent on the size and type of the training data. In practice a subset of
the labelled data is used as training data and another subset is used for model
validation.

1.2 Main Steps in an ML System 3

5. Model Evaluation: This step is also called model validation. This step requires
a specifically earmarked data called validation data. It is possible that the ML

model works well on the training data; then we say that the model is well trained.
However, it may not work well on the validation data. In such a case, we say that
the ML model overfits the training data.

6. Model Explanation: This step is important to get expert’s attention and feedback
from the expert. Explanation had an important role earlier in expert systems
and other artificial intelligence (AI) systems. However, explanation has become
all the more important in the era of Deep Learning (DL). It is because DL

systems typically employ neural networks and their functioning cannot be easily
explained at a level of detail that can be appreciated by the domain expert. Such
an opaque behaviour has motivated the need for explainable AI .

It is often stated in DL literature that feature engineering is important in ML,
but not in DL. This is a highly debatable issue. It is possible that, in some
application domains, DL systems can avoid the representation step explicitly.
But preprocessing, including handling missing data and eliminating outliers is
still an essential part of any DL system. Even though representation is not
explicit, it is implicitly handled based on the number of layers and number of
neurons each layer of the neural network.

We consider these steps in detail in the subsequent sections.

1.2 Main Steps in anML System

An ML system is built using several steps. The main steps in the systems are
detailed in this section.

1.2.1 Data Collection/Acquisition

The input to an ML system is a set of data instances or data items; so data
collection is an important step. However, it highly depends on the application
domain. For example, consider classification of villages into those which have fertile
lands versus those which have barren lands. In this application, data related to the
name of the village, how far away it is from the capital city, what is the height of
tallest hillock in the village, etc. may not be so important. On the other hand, data
corresponding to the soil moisture content, yield of various crops in the past, cost of
a hectare of land, etc. in the village may be more important.

Similarly, in classifying documents into politics and sports classes, data pertain-
ing to the age of the document, length of the document, and document file type like
whether it is a pdf file, a doc file, or an excel file may not be important. However.

4 1 Introduction

frequency of occurrence of some related words like election, party, candidate, ball,
bat, soccer, etc. are more relevant.

So, the kind of data that needs to be collected or acquired is application/problem
specific. In dealing with such practical applications, one will face several difficulties
including:

• Missing Data: It is possible that in an application domain all the data that one
would like to collect is not available. For example, for one book we may have the
entire soft copy in the form of a pdf and for another book that is currently out-of-
stock, it is possible that a soft copy of only the table of contents is available.

In the education domain, it is possible that students in section A are tested
on their understanding of concept 1, whereas students in section B are tested on
some other concept, say concept 2, but not on concept 1. So, when this data is
used in analysing the performance of students across both the sections, there is a
case of missing data as depicted in Table 1.1. Consider the first row in the table;
it corresponds to student 1 who is in section A and is not evaluated on concept
2; so, the entry corresponding to concept 2 is NA. Similarly, in the second row
corresponding to student 2 from section B, information under concept 1 is not
available; so the corresponding entry is NA. There could be other students who
are assigned to one of the two sections and so there will be one NA entry in each
row for each such student.

In general, there can be zero or more missing entries corresponding to each
item represented as a vector or some other structure like a string, a tree or a graph.

• Different Types of Data: There are several applications where we encounter
different types of data in the same application. For example, in the agriculture
domain consider the application of predicting the yield of soybean crop. A
possible set of different data types acquired to build an ML model is shown in
Table 1.2. Even in this simple example, one can see that there are different types
of data: types of soybean seeds is a binary variable in this case with two possible

Table 1.1 Example of
missing data

Student Section Concept 1 Concept 2

Student 1 Section A 90 NA

Student 2 Section B NA 30

Student 3 Section B NA 75
.
.
.

Table 1.2 Example of
missing data

Attribute Type of data Domain

Type of soybean seed Binary {type1, type2}

Year Numerical [2000, 2015]

Rainfall Numerical [83 mm,11871 mm]

Temperature Numerical [1.9 ◦C, 51 ◦C]

Relative Humidity Numerical [50%, 73%]
Soybean Yield Numerical [580, 1080]

1.2 Main Steps in an ML System 5

values type1 and type2 seeds. The variable Year indicates the year corresponding
to the yield; here the possible values are integers in the range [2000, 2015]. The
variables Temperature, Relative Humidity, and Soybean Yield are also numerical
but their values are floating point numbers. Note that temperature is represented
in degrees Celsius, relative humidity in percentage, and soybean yield in quintals
per hectare.

In general data can be either:

1. Categorical: These are divided into either nominal or ordinal types. In the
case of nominal data, there is no order among the elements of the domain.
For example, for geometric shapes the domain is {circle, ellipse, triangle,
rectangle, square}. This data is of categorical type and the elements of the
domain are not ordered. In the case of ordinal data, there is an inherent order
among the values of the domain. For example, the domain of the variable size
could be {very small, small, medium, large, very large}; here, an ordering
among the elements of the domain is observed.

2. Numerical: In the case of numerical data, the domain of values of the data
type could be either a set of integers or a set of real numbers. For example,
in Table 1.2, the domain of Year is the set {2000, 2001, · · · , 2015} which is
a collection of integer values. Further, the domain of Relative Humidity is a
collection of floating point numbers in the range [50, 73].

It is possible to have binary values in the domain for either categorical
or numerical. For example domain of status could be {Pass, Fail} and this
variable is nominal; an example binary ordinal type is {short, tall} of humans
based on their height. A very popular binary numerical type is {0, 1}; also in
the classification context, the class label data can have the domain {−1, +1}
where −1 stands for the label of the negative class and +1 stands for the label
of the positive class.

• Difference in Domain Sizes: In an application, if we encounter different types
of data, then it is quite likely to have different domain sizes. For example, for
the data types shown in Table 1.2, we have binary data (seed type), integer data
(Year), and different sized floating point data types (rainfall, temperature, relative
humidity, and yield). These size and type differences can create a problem while
matching different data items using some proximity score in ML.

Consider for example, classification of objects into one of two classes: human
or chair. Let the objects be represented by height in meters and weight in grams.
Consider an adult represented by the vector (1.7, 65,000) and a chair represented
by the vector (1, 5000) where the heights of the adult and the chair in meters are
1.7 and 1 respectively and the weights of the adult and the chair in grams are
65,000 and 5000 respectively. Note that the domain of height can be [0.5, 2.5]
and the domain of weight can be [2000, 200,000] in this example. So, there is a
large difference in the sizes of these two domains.

In ML, matching is done by using a proximity measure which can be
either a distance/dissimilarity measure or a similarity measure. Two data items,
represented as l-dimensional vectors X and Y , match better when the distance

6 1 Introduction

between them is smaller or when the similarity between them is larger. A popular
distance measure is the euclidean distance and a popular similarity measure is the
cosine of the angle between vectors. The euclidean distance is given by

d(X, Y) =
√
√
√
√

l
∑

i=1

(Xi − Yi)2.

The cosine similarity is given by

cos(X, Y) = XtY

||X||||Y || ,

where XtY is the dot product between the vectors X and Y , and ||X|| is the
euclidean distance between X and the origin.

Now the euclidean distance between the adult and chair vectors given above
is

√

1.7 − 1)2 + (65,000 − 5000)2 =
√

0.49 + 3.6 × 109 = 60,000.000004 ≈ 60,000.

Similarly, cosine of the angle between adult and chair vectors is

1.7 + 325 × 106

√
25,000,001 × √

4,225,000,002.89
= 0.9999999849 ≈ 1.0.

Note that the proximity values computed between the two vectors, whether it
is the euclidean distance or the cosine of the angle between the two vectors
are dependent largely upon only one of the two features, that is weight and
the contributions of height are negligible. This is because of the difference
in the magnitudes of the two data types. This example illustrates how the
magnitudes/ranges of values of different data types contribute differently to the
overall proximity. A solution to this problem is provided by normalizing the data.
A simple normalization scheme scales the magnitude of values such that all the
features have the same range. For example, a popular scheme is to transform the
data vectors so that they are zero mean unit variance vectors.

• Presence of Outliers: A common problem across various applications is the
presence of outliers. A data item is usually called an outlier if it

1. assumes values that are far away from those of the average data items
2. deviates from the normally behaving data item
3. is not connected/similar to any other object in terms of its characteristics.

Outliers can occur because of different reasons including

1.2 Main Steps in an ML System 7

1. Noisy measurements: The measuring instruments may malfunction and may
lead to recording of noisy data. It is possible that the recorded value lies
outside the domain of the data type.

2. Erroneous data entry: Outlying data can occur at the data entry level itself.
For example, it is very common to introduce spelling mistakes while entering
names. Further, it is common to introduce errors in the names because of
typing the neighboring characters, instead of the intended character, on the
key board. Also, it is possible to enter the salary erroneously as 2,000,000
instead of 200,000 by typing an extra zero (0).

3. Evolving systems: It is possible to encounter data items in sparse regions
during the evolution of a system. For example, it is common to encounter
isolated entities during the early times of a social network. Such isolated
entities may or may not be outliers.

4. Very naturally: Instead of viewing an outlier as a noisy or unwanted data
item, it may be very useful in several applications. For example, a novel idea
or a breakthrough in a scientific discipline, a highly paid sportsperson, an
expensive car can all be useful and influential outliers.

An outlying data item can be either out-of-range or with-in-range. For example,
consider an organization in which the salary values are

{10,000, 15,0000, 225,000, 300,000}.

In this case an entry like 2,250,000 is an out-of-range outlier that occurs because
of an erroneous zero (0). Also if there are only 500 people drawing 10,000, 400
drawing 150,000, 300 at the salary level 225,000 and 175 drawing 300,000, then
an entry like 270,000 could be a with-in-range outlier.

There are different schemes for detecting outliers. They are based on density
around various points in the data. If a data point is located in a sparse region, then
it could be a possible outlier. It is possible to use clustering to locate such outliers.
It does not matter whether it is within range or out of range. If the clustering
output has a singleton cluster, that is a one element cluster, then it could be a
possible outlier.

1.2.2 Feature Engineering and Representation

In the previous subsection, we have seen several issues associated with data items.
It is convenient and customary to view these items as vectors. Feature engineering
(FE) is concerned with addressing several problems associated with data vectors.
In this section we will examine how these problems could be handled.

• Missing Data: There are some ML algorithms that can work even when there are
missing data values and in such cases there is no need to do any pre-processing.
However there are a large number of other cases where the classifiers cannot

8 1 Introduction

handle missing values. So, there is a need to examine techniques for dealing with
missing data. Some possibilities are:

– Use the nearest neighbour: Let X be a d-dimensional data vector that has
its ith component xi missing. Let X = {X1,X2, · · · ,Xn} be the set of n

training pattern vectors. Let Xi ∈ X be the nearest neighbour of X based on
the remaining l − 1 (excluding the ith) components. The nearest neighbour of
X, NN(X) is defined as

NN(X) = argminXj ∈X d(X,Xj),

where Xj is the j th training pattern and d(X,Xj) is the euclidean distance
between X and Xj . Intuitively, NN(X) is in the proximity of X; so NN(X)

is at a minimum euclidean distance from X and is maximally similar to X.
Predict the value of xi to be x

p
i , that is if the ith component, xi , of X is

missing, then use the ith component of Xp = NN(X) instead.
– Use a larger neighbourhood: It is well-known that the NN-based scheme can

be easily affected by outliers. For example, if NN(X) is an outlier, then the
value predicted based on NN(X), that is an outlier pattern can be erroneous.
Even if NN(X) is not an outlier, it is advisable to use more neighbors of X

for predicting the missing value xi in a robust manner. So, we use K nearest
neighbors (KNNs) of X to predict the missing xi . Let the KNNs of X,
using the remaining l − 1 components, from X be X1,X2, · · · ,XK . Now
the predicted value of xi is the average of the ith components of these KNNs.
That is the predicted value of xi is

1

K

K
∑

j=1

Xji.

– Cluster the data and locate the nearest cluster: This approach is based on
clustering the training data and locating the cluster to which X belongs based
on the remaining l − 1 components. Let X with its xi value missing belong to
cluster Cq . Let μq be the centroid of Cq . Then the predicted value of xi is μ

q
i ,

the ith component of μq .

Note that the approaches mentioned above to deal with missing data are all
applicable when the components of the vectors are all numerical. However when
the data vectors have categorical entries, then one needs to use median or mode
instead of centroid. We consider a distance function that can deal with vectors
having missing component values next.

• Combination of categorical and numerical features: Let the vectors be l-
dimensional out of which let m be categorical and the remaining l − m

be numerical. Without loss of generality, let x1, x2, · · · , xm be m categorical
features and xm+1, · · · , xl be numerical features. There are some classifiers that
can deal with vectors that have a mix of categorical and numerical components.

1.2 Main Steps in an ML System 9

Also, a more recent view has been to represent categorical attribute values using
one-hot representation that is popularly used in neural networks. If the number of
distinct values of a variable is p, then each value is represented as a binary vector
with one 1 and remaining p − 1 values being zero (0). The ith distinct value is
represented as a binary vector with a 1 in the ith location and remaining zeros.

However, both distance based and dot product based classifiers will face
difficulties in dealing with such mixed data. In the case of proximity based
classifiers, it is not possible to use euclidean distance type distances or cosine
like similarity measures. Some of the possible distances are:

1. Gower Distance: It is defined between two vectors Xi and Xj as

d(Xi,Xj) =
m

∑

p=1

mat(xi
p, x

j
p) +

l
∑

q=m+1

|xi
q − x

j
q |

range(q)
,

where

– mat(xi
p, x

j
p) = 0 if xi

p = x
j
p else it is 1.

– range(q) is the range of the domain of the numerical feature.

Another normalizing variant involves dividing the sum by the dimensional-
ity l.

We can illustrate this using the data given in Table 1.3. Note that the Gower
distance between Xi and Xj is

d(Xi,Xj) = 1 + 1 + 0 + 1

2
+ 100

1000
= 2.6.

Its normalized variant is 2.6
5 = 0.52.

2. Heterogeneous Value Distance Metric (HVDM): It can deal with missing
values also. However, it is applicable in classification contexts only. It is
defined as

HV DM(Xi,Xj) =

√
√
√
√
√

l
∑

p=1

d2(xi
p, x

j
p),

Table 1.3 Mixed type data used to illustrate gower distance

Categorical 1 Categorical 2 Categorical 3 Numerical 1 Numerical 2

Xi a 1 0 1.5 600

Xj b 0 0 0.5 700

Range NA NA NA 2 1000

10 1 Introduction

where

d(xi
p, x

j
p) =

⎧

⎪
⎨

⎪
⎩

1 if xi
p, or x

j
p is unknown

nvdm(xi
p, x

j
p) if p is categorical

ndiff (xi
p, x

j
p) if p is numerical

where

– nvdm(xi
p, x

j
p) =

√
∑C

c=1(P (c|xi
p) − P(c|xj

p))2 if there are C classes and

P(c|xi
p) is the posterior probability of class c given that xi

p is the value of
the pth component of Xi , and

– ndiff (xi
p, x

j
p) = |xi

p−x
j
p|

4σp
, where σp is the standard deviation of the values

of the pth component.

So, Gower distance can deal with the vectors even if they have both categorical
and numerical components. Further, HV DM can deal with vectors that have
missing values also; however, it requires computation of posterior probabilities
for each of the categorical variables.

• Varying domain sizes: In applications where different components of the vectors
have different domain sizes, it is possible for some components to dominate in
contributing to the distance between any pair of patterns. This can be handled by
scaling different components differently and such a process of scaling is called
normalization. We have seen such a scaling in the computation of both the Gower
distance and HV DM . There are typically two types of popular normalization
schemes:

1. Scaling using the range: On any categorical data type, the values of two
patterns either match or mismatch, respectively the distance contribution is
either zero (0) or 1. Note that both the Gower distance and HV DM use this.
So, the contribution of any categorical variable is an element of the set {0, 1}.
To be consistent, in the case of any numerical feature we want the contribution
to be in the range [0,1]. This is achieved by scaling the difference by the range
of the variable. So, if pth component is of numerical type, then its contribution
to the distance between Xi and Xj is

|xi
p − x

j
p|

Rp

,

where Rp is the range of the pth component. Note that the minimum value

of this term is 0 (zero) and the maximum value is 1 when |xi
p − x

j
p| = Rp.

Such a scaling will ensure the required behaviour and the contribution, to the
distance, of a categorical or a numerical component will be in the range [0, 1].

2. Standardization: Here, each numerical variable value is scaled so that the
mean value of the variable is 0 (zero) and the standard deviation is 1. This

1.2 Main Steps in an ML System 11

is motivated by the standard normal distribution that has zero mean and unit
variance.

This may be illustrated using the following example.

– Let there be 5 l-dimensional data vectors and without loss of generality, let
the lth components of the 5 vectors be 600, 800, 200, 1000, and 400.

– The mean of this collection is

600 + 800 + 200 + 1000 + 400

5
= 600.

– We get zero mean data by subtracting this mean from each of the 5 data
items to get 0, 200,−400, 400,−200. Note that this is a zero mean data.

– To make the standard deviation of this data 1, we divide each of the zero
mean data values by the standard deviation of the data.

– Note that the variance of the zero mean data is

0 + 2002 + (−400)2 + 4002 + (−200)2

5
= 80,000

and the standard deviation is 282.84.
– So, the scaled data is 0, 0.707,−1.414, 1.414,−0.707. Note that this data

has zero mean and unit variance.

This is illustrated further using the following 4 two-dimensional vectors. Let

X1 = (1, 100,000),X2 = (2, 100,000),X3 = (1, 200,000),X4 = (2, 2,000,000)

be four vectors with the first feature taking values in [1, 2] and the second
feature assuming values from [100,000, 200,000]. The mean of these four
vectors is (1.5, 150,000). By subtracting the sample mean vector from the
four patterns gives us four mean normalized data points which are

(−0.5,−50, 000), (0.5,−50, 000), (−0.5, 50,000), (0.5, 50,000).

Now we can make it unit variance data by dividing each value by the sample
standard deviation value. Note that the standard deviation for the first feature
is 1

2 and for the second feature, it is 50,000. By dividing the values by their
respective standard deviations, we get the vectors

(−1,−1), (1,−1), (−1, 1), (1, 1).

Note that these four points lie on the surface of a unit circle centered around
the origin. In a higher dimensional space, the normalized patterns fall on the
surface of a unit hypersphere.

12 1 Introduction

• Presence of outliers: In the previous section, we have examined outliers and the
reasons for their presence. We will see how the data can be processed to detect
and eliminate outliers. Some possibilities are:

– Out-of-range outliers: Some ways of dealing with this kind of outliers are:

Based on statistics: If the data is normally distributed, an outlier can
be characterized based on how far away it is from the mean in terms
of the variance/covariance structure. For example, one can fit a normal
distribution with mean μ and variance σ 2 to one-dimensional data. It is
well-known that in a uni-variate normal distribution, the values in the range
[μ − 3σ,μ + 3σ] account for more than 99%. So, any object/value falling
outside this range may qualify to be an outlier as it is away from the mean.
One may collect all such data points and look for possible outliers and deal
with them.
Knowledge-based approach: knowledge-based If the domain of a variable
is known beforehand, then it is easy to identify out-of-range data points and
eliminate or correct such entries. For example, removing an extra zero (0)
in some numeric entry or using a spell correction software package belong
to this category.

– within-range outliers: Typically these outliers can be detected based on the
sparseness of the region to which the point belongs. Some possible schemes
are:

· Clustering based: One can use a clustering algorithm to cluster the data
and identify clusters that have a small number of data items. One can
concentrate on such small size clusters and examine for possible outliers.
There are clustering algorithms that can generate clusters by taking into
account the density of data.

· Frequency based: There are applications like information retrieval where
it is observed that frequent words are not helpful in classification. So, such
frequent words are eliminated. Further, rare terms that are infrequent are
not important to several users of the search engines or information retrieval
systems. Such rare words could be viewed as some kind of outliers as they
could be of interest to a very tiny fraction of users.

An important step in ML is to represent the data items as vectors appropriately.
While using such vectors, one will encounter several difficulties.

• Problems with high-dimensional vectors: Matching based algorithms like NNC

fail in dealing with high-dimensional vectors. This is because as the dimension-
ality increases the notion of similarity gets affected. If X is a pattern, then its
nearest neighbor NN(X) and its farthest neighbor FN(X) will be located such
that as the dimensionality → ∞, d(X,NN(X)) → d(X,FN(X)). That is
NN(X) and FN(X) lie at the same distance from X corrupting the notion of NN

in high dimensional spaces. So, representing the vectors in a lower-dimensional

1.2 Main Steps in an ML System 13

space is important for the matching based algorithms to work properly. Some of
the solutions to this problem are:

1. Approximate matching:An approximate matching algorithm based on random
subspace matching is used to achieve the approximation. It is based on hashing
that is sensitive to nearer or local regions. This is studied under the paradigm
of locality sensitive hashing (LSH). We study LSH in detail in a subsequent
chapter.

There are other random subspace classifiers based on building one classifier
for each random subset of features. Such multiple classifiers are combined to
form the overall composite classifier.

2. Reducing the dimensionality: Another approach is based on reducing the
dimenisonality and then building the ML model on the reduced dimensional
patterns. Some popular schemes under this category are:

a. Feature Selection: Here, we select a subset of l features from the given
L(> l) features. This subset selection is carried out in a variety of ways.
A popular scheme, in the case of categorical features, is based on mutual
information. We will discuss mutual information based feature selection in
a subsequent chapter.

b. Linear Feature Extraction: In this type of schemes, we extract l out of L(>

l) features where each of the extracted l features is a linear combination
of the L features. There are different schemes under this category. Some
popular ones are:

i. Principal Components (PCs): These are the leading eigenvector direc-
tions of the covariance matrix of the data. These PCs, or the leading
eigenvectors, capture the maximum variance directions in the data.
The first PC is in the maximum variance direction, the next PC

captures the second largest variance direction, and so on. Also these
PCs are uncorrelated pairwise. We will analyse the behaviour of PCs
in classification in a later chapter.

ii. Non-negative matrix factorization (NMF): Here, the data (n items) in
L dimensional space is represented as a matrix of size n×L; it is called
the data matrix. Let this matrix be A. It is factorized into a product of
two matrices B and C such that

An×L ≈ Bn×lCl×L.

Typically, the entries in A are non-negative. The factorization is carried
out so that the resulting approximate factors B and C also have non-
negative entries. Each of the l columns of the matrix B characterizes a
feature extracted. We will consider it in detail in a later chapter.

c. Non-Linear Feature Extraction: In this category, from the given collection
of L features, a smaller set of l features is extracted where each of the l

extracted features is a non-linear combination of the original L features.

14 1 Introduction

Such non-linear feature extractors are easily achieved with the help of
neural networks. Autoencoder is a popular architecture for realizing non-
linear feature extraction. We will examine autoencoders in detail later.

• Visualization: It is important to verify whether the patterns represented in the
low-dimensional l(< L) space preserve some structural properties present in
the original L-dimensional space. Visualization tools help us project the data,
present either in the L or the l dimensional space, to a two-dimensional space
so that we can analyse the projected data manually. There are schemes including
the t-distributed stochastic neighbor embedding (t-SNE) plot which is a nonlinear
projection based statistical scheme.

1.2.3 Model Selection

Feature engineering is an important step in ML. Once the data is represented in
an appropriate manner, then one can select the model appropriately. For example, if
there are both numerical and categorical entities, then it is possible to use classifiers
based on decision trees, and Bayes classifier; we will not be able to exploit support
vector machine and neural network based models directly on such vectors. So, we
need to select a model based on the application considered and the training data
types involved.

1.2.4 Model Estimation

Once a model for ML is selected, one needs to estimate the parameters associated
with the model using the training data. For example, a linear discriminant function
based classifier can be characterized using WtX where W and X are l-dimensional
vectors. Learning the weight vector W is done using the training data. Given any
test pattern X, X is assigned to class1 if WtX < 0, else X is assigned to class2.
Similarly, in the case of Bayes classifier one needs to estimate the probability
structure, the prior probabilities and likelihood values, underlying the learning
problem.

1.2.5 Model Validation

It is important to tune the parameters of the estimated model using additional data
called validation data. This step is called model validation. The validation data is
used to fine tune the model estimation. Typically the available training data is split
into train and validation parts in practice. One of the most popular schemes is K-

1.3 Data Sets Used 15

fold cross-validation. Here, the training data set is partitioned into K equal size sets.
Out of these K , K − 1 sets are used for training and the remaining one is used for
validation. This process is done so that every one of the K subsets participates in
validation. Once the parameters are fine tuned, the ML model is ready for use.

1.2.6 Model Explanation

In several practical applications, an expert would typically be involved in providing
the underlying domain knowledge, training data, etc. Further, the learnt ML model
is to be used by the domain expert, for example in domains like medicine, security,
transport, and education. So, it would be possible for the expert to provide an
appropriate feedback to improve the model if the learning process is transparent
and easy for the expert to appreciate. In order to meet this requirement, it is
essential to provide an explanation that could be easily understood by the expert. For
example, decision tree based classifiers are the simplest and are easy for providing
an explanation to the expert. ML models based on neural networks fall at the other
end of the spectrum as they are typically opaque.

1.3 Data Sets Used

We make use of two data sets to conduct experiments and present results in various
chapters of the book. These are:

1. MNIST Handwritten digits data set: There are 10 classes (corresponding to digits
0, 1, . . . , 9) and each digit is viewed as an image of size 28 × 28 (= 784) pixels;
each pixel having values in the range 0–255. There are around 6000 digits as
training patterns and around 1000 test patterns in each class and the class label is
also provided for each of the digits. Visit http://yann.lecun.com/exdb/mnist/ for
more details.

2. The ORL Face Data Set: Ten different images of each of 40 distinct subjects. For
some subjects, the images were taken at different times, varying the lighting,
facial expressions (open/closed eyes, smiling/not smiling) and facial details
(glasses/no glasses). All the images were taken against a dark homogeneous
background with the subjects in an upright, frontal position (with tolerance for
some side movement). Each image is of size 112 × 92. Visit https://ai.stanford.
edu/~marinka/nimfa/nimfa.examples.orl_images.html for more details.

 1353 3024 a 1353 3024 a

http://yann.lecun.com/exdb/mnist/

 2008 3724
a 2008 3724 a

https://ai.stanford.edu/~marinka/nimfa/nimfa.examples.orl_images.html
https://ai.stanford.edu/~marinka/nimfa/nimfa.examples.orl_images.html

16 1 Introduction

1.4 Summary

Machine learning is an important topic and has affected research practices in both
science and engineering significantly. Important steps in building an ML system
are:

• Data acquisition that is domain application dependent.
• Feature Engineering that involves both data preprocessing and representation.
• Selecting a model based on the type of data and the knowledge of the domain.
• Learning the model based on the training data.
• Evaluating the learnt model based on validation data.

This book deals with representation that is the most important part of ML.

References

1. Murphy, K.P.: Machine Learning - A Probabilistic Perspective. MIT Press (2012)
2. Murty, M.N., Biswas, A.: Centrality and Diversity in Search: Roles in A.I., Machine Learning,

Social Networks, and Pattern Recognition. Springer Briefs in Intelligent Systems (2019)
3. Aggarwal, M., Murty, M.N.: Machine Learning in Social Networks - Embedding Nodes, Edges,

Communities, and Graphs. Springer (2021)
4. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press (2005)
5. Murty M.N., Devi V.S.: Introduction to Pattern Recognition and Machine Learning. World-

Scientific (2020)
6. Kabán, A.: Fractional norm regularization: learning with very few relevant features. IEEE Trans.

Neural Netw. Learn. Syst. 24(6), 953–963 (2013)
7. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest neighbor in

high dimensions. Commun. ACM 51(1), 117–122 (2008)

Chapter 2
Representation

Abstract Representation is an important step in building ML models. This chapter
introduces how data items, classes and clusters are represented. It also discusses
the importance of representation in both ML and AI . In the process it deals with
both feature selection and feature extraction and introduces different categories of
dimensionality reduction.

2.1 Introduction

In the previous chapter, we provided a brief introduction to machine learning. We
have identified several steps involved in building an ML system. Specifically we
have highlighted the importance of feature engineering in ML model building.
Feature engineering has two important components:

1. Pre-processing the data: This step involves dealing with missing data, combina-
tion of categorical and numerical attributes, normalizing the data appropriately,
etc.

2. Representation: This step is very important in ML. We can illustrate its
importance by using the data in Table 2.1. In this table, there are two independent
features, height of the tallest hillock and average height of people in a village and
the dependent feature is the crop yield in the village. Note that if a test village
is reported to have average height of its people to be 4 feet 8 inches, then an
ML model can help us make a prediction of the crop yield. However, such a
prediction of the algorithm may not be meaningful as we know very well that
average height of people in a village is not good in helping us predict the crop
yield in the village.

So, representation is an important component of the ML system. An arbitrary
representation also might be adequate to build an ML model. However, the
predictions made using such a model may not be meaningful. This book deals
primarily with representation.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
M. N. Murty, M. Avinash, Representation in Machine Learning, SpringerBriefs
in Computer Science, https://doi.org/10.1007/978-981-19-7908-8_2

17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-7908-8_2&domain=pdf

 476 4612 a 476 4612
a

https://doi.org/10.1007/978-981-19-7908-8_2

18 2 Representation

Table 2.1 Representation is important

Height of the tallest hillock Average height of people Crop yield

2 m 5 feet Low

5 cm 5 feet 2 inches High

1 m 6 feet Low

10 m 4 feet 5 inches High

7.5 m 5 feet 1 inch Low

2.2 Representation in Problem Solving

Representation is important not only in problem solving in ML, it is also important
in artificial intelligence (AI). in order to illustrate the importance of representation
in AI , we consider the following example from automated deduction. Consider the
following statements.

• Gold ornaments are expensive.
• Necklace is a gold ornament.

From these two statements, we would like to infer that necklace is expensive. For
such a reasoning we would use first-order predicate calculus (FOPC). In FOPC,
the given statements are represented as:

1. ∀X (gold − ornament (X) → expensive(X)).
2. gold − ornament (necklace)

There is an inference rule called modus ponens (MP associated with FOPC. It
takes statements of the form ∀X(P(X) → Q(X)) and P(a) to infer Q(a), where
P and Q are predicates, X is a variable and a is a constant. By associating the
following way:

• The predicate gold-ornament with P ,
• The predicate expensive with Q,
• The constant necklace with a,

and using MP we infer expensive(necklace). This inference is simple because of
reasoning based on FOPC. The corresponding representation is very compact. It
is possible to represent these statements in propositional logic (PL) also. Assuming
that the domain D has some n objects, that is D = {a1, a2, · · · , an}, we can
represent the above statements in PL as follows:

1. gold − ornament (a1) → expensive(a1) ∧ gold − ornament (a2) →
∧expensive(a2) · · ·gold − ornament (an) → expensive(an).

2. gold − ornament (necklace)

Now using MP , we can infer expensive(necklace), where necklace is one of
the objects in the domain. We can get the same inference using PL also. However,
representation using PL can be highly unwieldy. The length of the conjunction can

2.3 Representation of Data Items 19

keep increasing with the size of the domain. We can also have a situation where
inference itself can be affected by the representation. For example, consider the
following statements:

• Humans are widely distributed over the earth.
• Vidya is human.

We can represent these two statements in FOPC as follows:

1. ∀X(Human(X) → widely − distributed − over − theearth(X)).
2. human(V idya)

From these two statements and MP we infer widely − distributed − over −
the − earth(V idya) which is not correct. So, here representation of the statements
makes the inference erroneous.

In AI , representation can impact both the number of steps required in solving a
problem and the complexity in terms of storage/space requirement. Also the repre-
sentation can impact the inference. In ML also we encounter similar difficulties:
representation has impact on the performance of the model and space and time
requirements.

2.3 Representation of Data Items

Even though there are other paradigms for ML, the most active and currently
popular paradigm is statistical machine learning. Here, each data item is represented
as a vector. Typically we consider addition of vectors, multiplication of a vector by
a scalar, and the dot product between a pair of vectors as important operations on
the set of vectors. This vector space model is the most exploited model over the past
three decades. It is popular in ML, information retrieval (IR), and soft computing
(SC). In most of the practical applications, the size of the vectors, L, can be very
large. For example, some practical natural language systems have been trained on
a vocabulary of 30,000 or more words. Google Ngrams are around 500 billion. In
this case, the dimensionality of the vectors is the vocabulary size or the number of
Ngrams; so, the dimensionality could be very large. Such high dimensional data are
common in bioinformatics, information retrieval, satellite imagery, etc.

Some of the difficulties associated with high-dimensional vectors are:

1. Space requirement: Consider a collection of n data vectors in the L-dimensional
space. This data can be viewed as a matrix of size n × L. In order to store such a
data matrix, we require to n × L entries. So, naturally space required to store the
data matrix increases linearly with L.

2. Time requirement: Recall that proximity between a pair of vectors is calculated
using a distance measure like the euclidean distance or some similarity measure
like the cosine of the angle between the vectors.

20 2 Representation

(a) In order to compute the euclidean distance between 2 L-dimensional vectors,
Xi and Xj , one needs to compute

√
√
√
√
√

L
∑

p=1

(xi
p − x

j
p)2.

This operation requires L multiplications, L subtractions and L−1 additions
and a square root operation. So, as L increases time required to compute
distances will also increase.

(b) In the case of cosine similarity, we need to compute

XiT Xj

||Xi ||||Xj || .

Note that this operation requires L multiplications for the numerator, 2 L

multiplications in the denominator and around the same number of additions.
So, this computation also requires more time as L is increased. The time here
also is linear in L.

So, computation time increases with the dimensionality.
3. Performance of the model: It is well-known that as the dimensionality L

increases, we require a larger training data set to build an ML model. There is
a result, popularly called under the name peaking phenomenon, that shows that
as the dimensionality L keeps increasing the accuracy of a classification model
increases until some value and beyond that value the accuracy keeps decreasing.
This may be attributed to the well-known concept called overfitting. The model
will tend to remember the training data and fails to work on validation data. With
a larger training data set we can afford to have a larger value of L and still avoid
overfitting.

Even though the dimensionality of the data set in an application is large,
it is possible that the number of training vectors is small. It could be because
acquiring training data is expensive like in crowd sourcing or the nature of the
application does not permit. In such cases a popular technique in ML is to reduce
the dimensionality so that the learnt model does not overfit the available data.
However in the case of big data, overfitting problem is not an issue; this is aptly
exploited by the deep learning (DL) models. Deep learning is more appropriate
to exploit a larger data set.

In the case of dimensionality reduction based approach the vectors are
represented using one of the following schemes:

a. Feature selection: Let F = {f1, f2, · · · , fL} be the set of L features. In the
feature selection approaches, we would like to select a subset Fl of F having
l(< L) features such that Fl maximizes the performance of the ML model.
There are three different approaches to feature selection. They are:

2.3 Representation of Data Items 21

i. Filter Methods: In filter methods, we rank L features using a fitness
measure that exploits the class labels but does not use any classifier. Based
on the ranking, the top l features are selected and used in building the
ML model. There are different fitness measures to evaluate and rank the
features. They are based on:

A. Distance: We prefer values of a feature from the same class to
be such that the intra-class distances are smaller and inter-class
distances are larger.

B. Dependency: Here, the correlation between a feature and a class
is exploited in ranking. If the correlation is larger for a class and
smaller for the other classes, then the feature in ranked better.

C. Mutual information (MI :) If a feature and a class have a larger
MI value, then the feature is good. It is seen that MI based
feature selection works well on high-dimensional datasets. Feature
selection scheme based on MI will be considered later in the book.

ii. WrapperMethods: In this case, the selection of a subset of features is based
on the performance of a classifier on the selected subset. The subset of
features which gives the maximum classification performance is selected.
This subset of features is used in designing the ML model. There are a
variety of approaches including genetic algorithm based approaches that
employ this method. These schemes can be more expensive compared to
the filter based schemes because the number of subsets is much larger than
the number of features.

iii. Embedded Methods: Here, an ML model is built using the L features and
the model directly selects/indicates the relevant subset of features. Several
classifiers including ones based on decision trees, support vector machines,
and Bayes classifier can be exploited to realize such an embedded scheme.

b. Feature extraction: Here from the set F of L features, a set G =
{g1, g2, · · · , gl} of l features is extracted. It is possible to categorize these
schemes into

i. Linear schemes: In this case,

gj =
L

∑

i=1

αij fi .

That is each element of G is a linear combination of the original features.
Note that feature selection is a specialization of feature extraction. Some
prominent schemes under this category are:

A. Principal Components (PCs): Consider the dataset of n vectors in
L-dimensional space; this may be represented as a matrix A of size
n × L. The mean of the rows in A is subtracted from each row of A

to get zero-mean data. Without loss of generality, we assume that A

22 2 Representation

is zero-mean data matrix. Now the covariance matrix of the data is
given by

σL×L = At
L×nAn×L.

Because σ is the covariance matrix, it is a symmetric matrix and
its eigenvalues capture variances in the data in the directions of
their respective eigenvectors. Let λ1 ≥ λ2 ≥ · · · ,≥ λL be the
eigenvalues of σ . Let V1, V2, · · · , VL be the respective eigenvectors
of σ . Then V1 gives us the direction of the first PC, V2 the direction
of the second PC, and so on till Vl the direction of the lth PC. If
λi �= λj , then Vi is orthogonal to Vj due to the symmetry property
of σ . Because of these properties it is possible to show that the
projections of the data onto these eigenvector directions give us data
directions that are uncorrelated.

The representation of the data points using these eigenvector
(PC) directions is popular in ML.

B. Non-negative matrix factorization (NMF): Even when the data
is non-negative, it is possible that PCs have negative entries.
However, it is useful to have representations using non-negative
entries; NMF is such a factorization of An×L into a product of
Bn×l and Cl×L. Its use is motivated by the hope that NMF can be
used to extract objects in an image represented by A.

In NMF , A is factorized into B and C such that the Frobenius
norm between A and BC is minimized. That is

||A − BC||F
is minimized. Here, A is known, further if we know either B or
C, we can get the other factor in an easy manner iteratively. Now
considering Bn×l , we can see the connection with the original/given
n vectors in L-dimensional space. B consists of, as its rows, the
same n vectors in a lower dimensional, (l < L), space. The matrix
Cl×L describes how each of the l features is a weighted combination
of the original features, the weights being provided by the rows of
C. For example, the weights for the ith feature, (1 ≤ i ≤ l), is given
by the ith row of C.

We will examine, in detail, both these schemes in a later chapter.

c. Nonlinear feature extraction: Here, we represent using H = {h1, · · · , hl},
such that

hi = t (f1, f2, · · · , fL),

2.3 Representation of Data Items 23

where t is a nonlinear function of the features. For example, if F = {f1, f2},
then h1 = af1+bf2+cf1f2 is one such nonlinear combination; it is nonlinear
because we have term of the form f1f2 in h1. These may be categorized as

i. Explicit schemes: There are a variety of schemes under this category. The
basic idea is to represent the data in a low-dimensional space explicitly.

A. One popular scheme is based on:

• Let X and Y be a pair of patterns in the L-dimensional space.
• Let X∗ and Y ∗ be the corresponding l-dimensional patterns.
• We would like to get X∗ and Y ∗ such that

d(X, Y) ≈ d(X∗, Y ∗)

• There are several ways of ensuring that d(X, Y) ≈ d(X∗, Y ∗).
A popular way is to pose the problem as a minimization of a
squared difference in an iterative manner.

B. Autoencoders: Here, a neural network is used which has an encoder
and a decoder. The middle layer may be viewed as a bottle-
neck layer that has l neurons so that the l outputs from the
middle layer give an l(< L)-dimensional representation of the L-
dimensional pattern that is input to the autoencoder. Note that the
encoder encodes or represents the L- dimensional pattern in the
l-dimensional space and the decoder decodes or converts the l-
dimensional pattern into the L- dimensional space. Note that it is
called autoencoder because with the input and output layers the
same L-dimensional pattern is associated. Here also the weights in
the network are updated so that some distance between the pattern
presented at the input layer and the pattern obtained at the output
layer is minimized. In an ideal learning situation, we would like to
have a pattern input at the input layer is decoded at the output layer
exactly.

ii. Implicit schemes: We use some function that implicitly computes similarity
that considers nonlinear terms. These are applicable even when the data is
low-dimensional. Some popular schemes are:

A. Use a kernel function: There are a variety of kernel functions that
capture the similarity between a pair of patterns. Consider, for
example, a pair of patterns X and Y such that the similarity

K(X, Y) = (1 + XtY)2.

Here, it is possible to view the kernel function performing a dot
product based on a nonlinear representation of patterns.

24 2 Representation

For example, let X = (x1, x2)
t and Y = (y1, y2)

t be two two-
dimensional patterns. Then K(X, Y) = (1 + x1y1 + x2y2)

2 which
could be seen as a dot product between vectors that have nonlinear
components of the form X′ = (1,

√
2x1,

√
2x2, x

2
1 , x2

2 ,
√

2x1x2)

and Y ′ = (1,
√

2y1,
√

2y2, y
2
1 , y2

2 ,
√

2y1y2).
B. Use a nonlinear classifier: A nonlinear classifier that perceives

a nonlinear combination of the components of the vectors is a
member of this category. For example, logistic regression employs
a nonlinear function of the linear discriminant WtX + b, where W

and b are learnt based on the training data. The specific nonlinear
form is

h(WtX + b) = 1

1 + exp(−(WtX + b))
.

d. Other schemes: There are other feature extraction schemes

i. Schemes for visualization: Several times it is important for a human
to visualize the data in a two or three dimensional space. There are
different schemes for doing this. One of them is a neural network based on
Kohonen’s self-organizing Map. It maps data in an L-dimensional space
into a two or three dimensional space while ensuring that topological
structure in the data is preserved in the reduced dimensional space.

ii. Fisher’s discriminant: Another popular scheme is based on reducing the
dimensionality of vectors to a one-dimensional space. In a two-class
problem, a vector X in an L-dimensional space is projected to a one-
dimensional space by using WtX, where W is learnt using the labelled
vectors. It employs a vector W whose direction is given by

direction − of (W) = MaxW
WtSBW

WtSW W
,

where SB and SW are matrices of size L × L and are given by

• m1 is the mean of the vectors in class C1 and m2 is the mean of the
vectors in class C2

• SB = (m1 − m2)(m1 − m2)
t (Between class scatter matrix) and

• SW = ∑

Xi∈C1
(Xi − m1)(Xi − m1)

t + ∑

Xi∈C2
(Xi − m2)(Xi − m2)

t

(within-class scatter matrix)

It is possible to show that required direction of W is characterized by

SBW = λSW W ⇒ direction − of (W) = S−1
W (m1 − m2),

because SBW = α(m1 − m2), for some constant α. Fisher’s discriminant
performs a linear transformation.

2.4 Representation of Classes 25

2.4 Representation of Classes

There are a variety of classifiers and each might have its own abstraction of the
classes. They may be categorized based on using:

1. Exemplars: Here there is no need to represent classes. All the training patterns
or prototypes obtained from the training set are directly used to classify the test
patterns. Some popular classifiers of this variety are:

a. Nearest neighbor classier (NNC): Here a test pattern X is assigned the
class label of its nearest neighbor, NN(X). So, for each test pattern, one
has to compute n distances if there are n training patterns. So, it could be
computationally expensive and there are different schemes that are used to
reduce the number of training patterns.

b. k-Nearest neighbor classifier (KNNC): Depending on a single nearest
neighbor may not be robust if there are outliers present in the data. If NN(X)

is an outlier, then X can be erroneously labeled. In order to correct it, in
KNNC, k(> 1) neighbors of X are considered and X is given the label of
majority of these k neighbors. This is more robust and in an asymptotic sense
leads to an optimal classifier. In KNNC, the value of the parameter k needs
to be found based on the validation data.

There are variants to KNNC. Specifically, k = 1 leads to NNC. When
k > 1, it is possible to think of giving different weights to different neighbors
of X. This is done to ensure that neighbors in the close vicinity of X contribute
more to the class label of X.

Some of the problems associated with the KNNC based classifiers are:

a. Classification of each test pattern requires O(Kn) time and space.
b. If the dimensionality L is large, then the KNNC may fail to classify the

test pattern correctly. This is because neighborhood may not be a meaningful
notion in high-dimensional spaces. There is a solution to this problem based
on locality sensitive hashing (LSH) that can be useful in obtaining an
approximate NN’s of X in a high-dimensional space. We discuss LSH in
detail in the next chapter.

2. Probability structure: Bayes classifier, an optimal classifier, classifies a test
pattern using the posterior probability. If there are classes C1 and C2, and if
P(C1|X) > P(C2|X), then X is assigned to C1, else to C2. It is possible
to classify, based on the largest posterior, even when there are more than two
classes. Bayes classifier in this setting can be shown to minimize the probability
of error in classification. It is well-known based on Bayes rule that

P(C|X) ∝ P((x1, x2, · · · , xL)|C)

when X = (x1, x2, · · · , xL) is an L-dimensional vector and C is a class;
P((x1, x2, · · · , xL)|C) is the likelihood of the vector X given that the class is C.

26 2 Representation

When the data is not large, it is difficult to make estimates of the probabilities
involved. In order to simplify the estimates, one popular assumption is the
class-conditional independence. Under this assumption, given the class all the
components are assumed to be independent. This may be explained as follows:

• Let the test pattern X be such that (x1 = v1, x2 = v2, · · · , xL = vL).
• The Bayes classifier needs to compute the likelihood given by P((x1 =

v1, x2 = v2, · · · , xL = vL)|C).
• Under the class-conditional independence we need to compute P(x1 =

v1|C)P(x2 = v2|C) · · · P(xL = vL|C). This is a product of probabilities
of the form P(xi = vi |C) and it is possible to estimate these quantities even
when the data set is not large.

• Bayes classifier under the assumption of class-conditional independence is
called the naïve bayes classifier (NBC).

• So, in the Bayes classifier a class is represented by the class-conditional
density of the data vectors, that is P(X|C); in the NBC it is based on the
probabilities P(xi = vi |C) (of the individual components).

3. Decision trees: In the decision tree classifier (DT C), the training data is
represented using a decision tree. In a decision tree all the leaf/terminal nodes
represent classes and the non-terminal/internal nodes of the tree are called
decision nodes. They are typically of the form xi < vi where the left branch
under the node might characterize all the data vectors with xi < vi and the
right branch corresponds to those data vectors that have xi ≥ vi . So a class C is
represented by all the paths that exist, in the decision tree, from the root to the
leaves that belong to class C. The decision tree classifier (DT C) is simple and is
popular because of its transparent nature in providing links between the feature
values and classes.

4. Linear discriminants: Here, from the two-class training data, a vector W and a
scalar b are learnt such that for all X ∈ C1 WtX1 +b < 0 and for all the patterns
in class C2, WtX+b > 0. So, the entire space of patterns is split into two regions
based on whether WtX + b is less than zero (0) or not. So, a class is represented
as a region characterized by the polarity of WtX + b.

2.5 Representation of Clusters

Different clustering algorithms are grouped into partitional and hierarchical cate-
gories.

1. Partitional algorithms: Given a dataset X = {X1,X2, · · · ,Xn} of n vectors,
the problem is to partition X into K clusters, C1, C2, · · · CK . Such a partition
satisfies the property that

Ci �= φ; Ci ∩ Cj = φ; and ∪K
i=1 Ci = X .

2.5 Representation of Clusters 27

If we relax the condition, Ci ∩ Cj = φ, we get a soft partition. Some of the
popular partitional categories are:

• K-Prototype algorithms: The most popular algorithm is the K-means algo-
rithm that starts with K initial centroids, one for each of the K clusters and
updates the centroids iteratively based on assigning patterns nearest to each
centroid to the respective cluster. This algorithm is popular because it requires
linear time and space. In this case each cluster is represented by its centroid.
Centroid need not be a member of the cluster; medoid is the most centrally
located pattern that is a member of the cluster. If the data is categorical, one
can have K-modes or K-medians representing the K clusters.

• Spectral clustering: In spectral clustering, the data points are represented
as nodes of a graph and an edge is added between a pair of nodes if the
corresponding data vectors are similar. Adjacency matrix of such a graph
or some normalized versions of the adjacency matrix are used to realize the
clustering based on the eigenvalues and eigenvectors of the matrix considered.
The name spectral comes out of the view that the collection of eigenvalues is
the spectrum. Here, the eigenvectors form the basis for the resulting cluster
structure and so clusters are captured by the eigenvectors corresponding to the
K- smallest eigenvalues.

K-means algorithm is the most popular clustering algorithm to generate hard
partitions. There are soft versions that generate soft partitions (Ci ∩ Cjφ).
Among them are the expectation maximization (EM) that may be viewed as
a probabilistic variant of the K-means algorithm, a fuzzy K-means algorithm
that is based on membership values, a rough K-means algorithm that exploits
non-discriminative properties of equivalence classes of patterns. Currently, EM

and variants that exploit it are popular; one popular variant is the latent
Dirichlet allocation (LDA). It is possible to view LDA as generating a matrix
factorization, An×L ≈ Bn×lCl×L, where each column of B is a cluster/topic
and each row is a pattern vector in a lower (l < L) dimensional space. Because
of the inherent probabilistic structure, the entries in B and C matrices will be
probabilities unlike the conventional NMF .

2. Hierarchical clustering: In the partitional (sot or hard) clustering, a single
partition of X is obtained. On the contrary, in hierarchical clustering, a hierarchy
of partitions is obtained. There are two categories:

a. Agglomerative algorithms: Here each element of X is considered as a cluster,
there are n clusters, to start with. This is a partition of size n. These smaller
sized clusters are merged to get bigger size clusters iteratively. There are
different schemes for merging the smaller sized clusters. Typically partitions
of different sizes, starting with n, n − 1, n − 2, so on till all the patterns are
in 1 cluster. So, a hierarchy of partitions of size n to size 1 are obtained. A
specific partition of K clusters is chosen based on a predefined criterion. So,
here clusters are subtrees below the specified level of the hierarchy.

28 2 Representation

b. Divisive algorithms: In this case, we start with all the elements in a single
cluster and it is split into two clusters based on some criterion. To partition
further, one of these two clusters is chosen and split further into two clusters.
This splitting/division process goes on till there is no scope to split the existing
clusters further. This scheme also gives a hierarchy of partitions of size 1, 2,
and so on till we have n clusters. Here also each cluster is a tree below the
chosen level.

2.6 Summary

Representation is the most important step in building ML models. It is an important
component of feature engineering. Representation deals with both feature selection
where a subset of features is selected based on different schemes and feature
extraction. In feature extraction both linear and non-linear schemes are considered.
Further, both implicit and explicit extraction schemes are considered. It is also
important to consider schemes for representing classes and clusters of patterns.

References

1. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. 31(3),
264–323 (1999)

2. Murty, M.N., Susheela Devi, V.: Introduction to Pattern Recognition and Machine Learning.
World Scientific/IISc Press (2015)

3. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. John Wiley and Sons (2000)
4. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press (2005)
5. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson (2015)

Chapter 3
Nearest Neighbor Algorithms

Abstract Most of the practical data sets are high-dimensional. A major difficulty
with classifying such data is involved not only in terms of the computational
demands but also in terms of classification performance. It is very obvious when
the learning algorithms are dependent on distances. In this chapter, we present
the difficulties and possible solutions to deal with such high-dimensional data
classification.

3.1 Introduction

There are several classifiers and clustering algorithms that inherently depend upon
some distance between a pair of patterns. These include

1. Nearest Neighbour Classifier (NNC): Here a test pattern X is classified based
on its nearest neighbour (NN) in the training data. Specifically, let

X = {(X1, θ1), (X2, θ2), · · · , (Xn, θn)}

be the labelled training data set of n patterns. Let each pattern be a vector in some
L dimensional space. Here, Xi, i = 1, 2, · · · , n is the ith training pattern and θi

is its class label. So, if there are p classes with their labels coming from the set

L = {C1, C2, · · · , Cp},

then θi ∈ L, f or i = 1, 2, · · · , n. Now the nearest neighbor of X is given by

NN(X) = argminXj ∈X d(X,Xj),

where Xj is the j th training pattern and d(X,Xj) is the distance between X and
Xj . Intuitively, NN(X) is in the proximity of X; so NN(X) is at a minimum
distance from X and is maximally similar to X.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
M. N. Murty, M. Avinash, Representation in Machine Learning, SpringerBriefs
in Computer Science, https://doi.org/10.1007/978-981-19-7908-8_3

29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-7908-8_3&domain=pdf

 476 4612 a 476 4612 a

https://doi.org/10.1007/978-981-19-7908-8_3

30 3 Nearest Neighbor Algorithms

2. K-Nearest Neighbour Classifier (KNNC): In KNNC, we find the K nearest
neighbours (KNN’s) of the test pattern X from the training data X and assign the
majority class label among the KNN’s to X. So, we need to compute distance
between X and each of the n training patterns, in X in the L dimensional space,
to find the KNN’s of X. The class label of X is decided based on the majority
class label of the KNN’s. Here also we need to compute the distance between X

and each of the training patterns.
3. Clustering Algorithms: There are clustering algorithms that depend upon dis-

tances. One of the most popular clustering algorithms is the K-Means algorithm
(KMA). This algorithm is an iterative algorithm. It starts with a set of K initial
centroids, one centroid per cluster; KMA computes the distance between a data
vector and each of the K centroids and assigns the pattern to the cluster with the
nearest centroid. Once all the patterns are assigned to their clusters, based on the
nearest centroid for each pattern, the centroid of each cluster is recomputed based
on the current cluster assignment. This process of assigning patterns and updating
the centroids is repeated till there is no change in the centroids. So, KMA needs
to compute, during each iteration, the distance between every pattern and each
element of the set of K centroids to locate the nearest centroid.

So, all the above algorithms need to compute the distance between an L-
dimensional vector X and each element of a set of L-dimensional vectors to find
one or more nearest neighbors. Computation of NN(X) involves the usage of some
distance between a pair of L-dimensional patterns.

A major problem with the NN search in high-dimensional spaces (L is large)
is that it may not be stable. This is related to the concentration problem. Several
training patterns will concentrate around X in the L-dimensional space, when L

is large. The consequence of this concentration problem is that the discrimination
between even the NN(X) and FN(X) diminishes as the dimensionality increases,
where FN(X) ∈ X is the farthest neighbour of X.

3.2 Nearest Neighbors in High-Dimensional Spaces

Let d(X,NN(X)) be the distance of the nearest neighbor, NN(X), of a pattern
X. The nearest neighbor search becomes unstable, as the dimensionality increases,
because the distances from the pattern X to most of the training data points lie close
to d(X,NN(X)). Further, it can be shown that, under certain acceptable conditions,
the probability that the ratio of d(X,NN(X)) and d(X,FN(X)) will tend to 1 in
higher dimensional spaces. A consequence of this property is that it is difficult to
obtain the nearest neighbour of a point X from the other neighbours that may include
even the farthest neighbour, of X.

Let us consider the MNIST Data set, where the nearest neighbor search is seen to
perform well. The Training set of classes labeled 7 and 9 from the MNIST data set
consists of 12,214 images, each of dimension 28× 28(= 784). Viewing each image

3.2 Nearest Neighbors in High-Dimensional Spaces 31

Fig. 3.1 Nearest neighbor distance for each of 12,214 samples in the classes labeled 7 and 9 of
the MNIST data set

as a vector of size 784, the training data matrix becomes 12,214 × 784 (where, each
row is an image). For every sample point (each image) X in the training set, we find
the nearest neighbor NN(X), from the rest of the training patterns and its distance
d(X,NN(X)) from NN(X). We show the plot of these distances for all the 12,214
patterns in X in Fig. 3.1.

The Histogram of the 12,214 distances is shown in Fig. 3.2. From the Histogram,
we can observe some outliers (X’s) in the data set, whose d(X,NN(X)) value is
falling beyond 3σ (three standard deviations) from its mean. There are 66 such
outliers. It is possible to use some other technique to detect and remove outliers;
some of the other outlier detection techniques are discussed in the previous chapters.
After removing these 66 outliers, we get a cleaned training set of size 12,148. We
consider the corresponding data matrix of size 12,148 × 784.

For a pattern X from the training set, the number of training patterns which fall
within the distance bound of 1.1 times d(X,NN(X)) is calculated (it is 1+ε bound
where ε = 0.1) and its relative percentage (number of points within the distance
bound with respect to the total number of 12,147 patterns excluding X) is plotted in
Fig. 3.3. We use a value of ε = 0.1 in our experiments listed below.

We can observe that on an average only 0.0221% of the points lie within the
bound for the X considered and a maximum of 0.3293% points lie within the bound
for the cleaned MNIST training data set corresponding to classes labeled 7 and 9.

Now, we increase the dimensionality of the training Data set. Each sample/image
in the training Data set consists of 28 × 28 pixels. The pixel values range from 0 to

32 3 Nearest Neighbor Algorithms

Fig. 3.2 Histogram of nearest neighbor distances d(X,NN(X))

Fig. 3.3 Percentage of sample points falling within (1.1 ∗ d(X,NN(X)) for each sample point X

in the MNIST data set

3.2 Nearest Neighbors in High-Dimensional Spaces 33

Fig. 3.4 Nearest neighbor distance for each of the 12,214 samples in the 6272 dimensional space
for the MNIST data set

255. Converting each pixel value (using 8 bits) into a binary string of size 8 results
in a total of 8 ∗ 28 ∗ 28 = 6272 binary pixels per image. Viewing these elements as
a one dimensional row vector of size 6272 results in the training data matrix, based
on 12,214 training patterns from the classes labeled 7 and 9, of size 12214 × 6272
(where, each row is a binary vector of length 6272 bits corresponding to the image).

We repeat the experiments on the high dimensional data set (with dimension
increased from 784 to 6272). Observe the plot of Nearest neighbor distances, for
each of the patterns in the training data, in Fig. 3.4.

we can find that most of the distances lie between 18 and 22 units (one
standard deviation bound) for the 6272 dimensional data set. Recall that for the
784 dimensional data set, the distances vary mostly from 30 and 80 units; so as the
dimensionality increases, observe the average reduction in the spread of distance
values. Like in the previous case, we identified and removed 93 outliers (X’s) whose
d(X,NN(X)) values are beyond 3 σ units from the mean. We depict the number of
points falling within 1.1 times the distance to the nearest neighbor of each pattern
in the 6272 dimensional MNIST Data set in Fig. 3.5.

We can observe that on an average 0.0361% lie within the (1.1)×d(X,NN(X))

bound for the point X and maximum of 0.0395% for the cleaned 6272 dimensional
MNIST Training Data set of classes labeled 7 and 9. So, as the dimensionality
increases, we observe reduction in the average value of d(X,NN(X)) and
increase in the number of points within the 1.1 distance bound. So, the Nearest
Neighbor search becomes unstable. The increase in the number of points within the

34 3 Nearest Neighbor Algorithms

Fig. 3.5 Percentage of sample points within the 1.1 ∗ d(X,NN(X)) bound for each sample point
in the 6272 dimensional MNIST data set

bound can be observed more clearly when we extend our analysis to a very sparse
data set with a much higher dimensionality, like an image data set.

Let us consider the ORL-Face Data set. The data set has a total of 400 face
images, (40 persons, 10 images/samples per person, each image is of dimension
112×92). So, the data matrix is of size 400×10,304. By repeating the experiments
on this data, we get the Nearest Neighbor distance for each Sample as shown in
Fig. 3.6 and percentage of points within the 1.1 bound for the ORL-Data set is
plotted in Fig. 3.7. We can observe that on an average 1.36% lie within the 1.1
bound for a point X and a maximum of 6.51% in the case of the ORL Face Data set.

Now, we increase the dimensionality of the ORL Face Data set as earlier (each
pixel value is expressed as a binary vector of size 8), so now the dimension of
ORL Data set becomes 82,432 (10,304 ∗ 8 = 82,432). The data matrix is of size
400 × 82,432. Now, consider the plots showing the Nearest Neighbor distance vs
Sample in Fig. 3.8 and the percentage of points within the 1.1 bound for the ORL-
Data set in Fig. 3.9.

We observe that the value of d(X,NN(X)) for the ORL Data set of lower
dimension (10,304) varies from 500 units to 750 units. As the dimensionality
increases, that is for the 82,432 dimensional data set, the value of d(X,NN(X))

is shrunk and varies from 175 units to 185 units. Interestingly, we observe from
Fig. 3.9, that on an average about 50% of the samples in the data set lie within the 1.1
bound. So we can abstract that, as the dimensionality increases the number of
sample points within the 1.1 bound increases and the Nearest Neighbor finding

3.2 Nearest Neighbors in High-Dimensional Spaces 35

Fig. 3.6 Nearest neighbor distance for each of the 400 samples in the ORL Face Data set

Fig. 3.7 Percentage of sample points within 1.1 ∗ d(X,NN(X)) bound for each sample point in
ORL Face Data set

36 3 Nearest Neighbor Algorithms

Fig. 3.8 Nearest neighbor distance for each of the 400 samples in the ORL Face Data set of
dimension 82,432

Fig. 3.9 Percentage of sample points within 1.1 ∗ d(X,NN(X)) bound for each sample point in
the ORL Face Data set of dimension 82,432

3.2 Nearest Neighbors in High-Dimensional Spaces 37

Fig. 3.10 Nearest neighbor distance for each of the 400 samples in the ORL Face Data set of
dimension 82,432 using the Lr -Norm parameter with r = 0.5

algorithm becomes unstable, which means, that on an average, there is not much
discrimination between the nearest neighbor and the farthest neighbor of a pattern
X in a high dimensional space.

The performance of K-Nearest Neighbor Classifier on the ORL-Face Data Set
can be worse because of the concentration effect. Let us repeat the experiments on
the ORL Data Set with dimension 82,432 and using Minkowski distance measure
with parameter r = 0.5 (fractional norm).

The results of the Nearest Neighbor distance vs Sample and percentage of points
within the 1.1 bound are depicted in Figs. 3.10 and 3.11 respectively. From Fig. 3.11,
we can observe that for Minkowski distance measure with parameter r = 0.5, the
average number of samples in the data set which lie within the 1.1 bound is reduced
to about less than 3%, so it may be observed that in higher dimensions, the fractional
norm has a lesser concentration effect and so it gives a better discrimination.

There are two popular schemes to deal with this problem arising due to the high-
dimensionality of the data.

1. To use fractional norms to compute the distances in high-dimensional spaces.
The reason for using the fractional norms is that they provide a larger dynamic
range for the distance values compared to the integer norms.

2. To compute an approximate nearest neighbour by combining multiple lower
dimensional locality sensitive mappings.

38 3 Nearest Neighbor Algorithms

Fig. 3.11 Percentage of sample points within 1.1 ∗ d(X,NN(X)) bound for each sample point in
ORL Face Data set of dimension 82,432 and L-norm with parameter r = 0.5

We discuss these solution directions in this chapter. Of course, it is important to
note that these schemes may demand more computational resources.

3.3 Fractional Norms

A popular class of distance measures, between a pair of L dimensional vectors P

and Q is the Minkowski distance given by

d(P,Q) =
(

L
∑

i=1

|Pi − Qi |r
) 1

r

.

Some instantiations based on selecting the value of r are:

1. L∞ Norm: Here, r = ∞ and d(P,Q) = maximumi(|Pi − Qi |), i = 1, · · · , L.

2. L2 norm: In this case, r = 2 and d(P,Q) =
(
∑L

i=1 |Pi − Qi |2
) 1

2
is the

euclidean distance and is the most popular.
3. L1 norm: In this case, r = 1 and d(P,Q) = ∑L

i=1 |Pi − Qi | is the city-block
distance.

3.3 Fractional Norms 39

4. It is possible that r is a fraction. In such a case the resulting distance is called the
fractional norm. It is not a metric as it violates the triangle inequality.

Example 3.3.1 Consider the patterns X = (4, 2)t and X1 = (2, 3)t , X2 = (2, 4)t .
Then the various distance values are:

1. r = ∞:

• d(X,X1) = Maximum(2, 1) = 2.

• d(X,X2) = Maximum(2, 2) = 2.
• The difference between d(X,X1) and d(X,X2) is 0.

2. r = 2:

• d(X,X1) = (22 + 12)
1
2 = 2.236.

• d(X,X2) = ((22 + 22)
1
2 = 2.828.

• The difference between d(X,X1) and d(X,X2) is 0.592.

3. r = 1:

• d(X,X1) = (2 + 1) = 3.

• d(X,X2) = (2 + 2) = 4.

• The difference between d(X,X1) and d(X,X2) is 1.

4. r = 0.5:

• d(X,X1) = (
√

2 + 1)2 = 5.828.
• d(X,X2) = (

√
2 + √

2)2 = 8.

• The difference between d(X,X1) and d(X,X2) is 2.172.

5. r = 0.1:

• d(X,X1) = (20.1 + 1)10 = 1456.87.

• d(X,X2) = (20.1 + 20.1)10 = 2048.

• The difference between d(X,X1) and d(X,X2) is 591.13.

Note that as the value of r keeps decreasing

• the distance value between a pair of patterns keeps increasing.
• the difference between d(X,X1) and d(X,X2) also keeps increasing illustrating

the improvement in the dynamic range.

Next we present the results based on experimentation on two practical data sets.

1. MNIST data Classes 7 and 9: Here we have classified the test data corresponding
to the classes 7 and 9. We have experimented with different Minkowski norms
based on r values in the set {2, 1, 0.9, · · · , 0.1}. The classifier used is the KNNC

with the value of K in {1, 3, 4, 5, 10}. We show the results of using different
norms in Fig. 3.12. Some of the observations are:

• This figure shows the results of using L2, L1 and a variety of fractional norms
with the fractions going from 0.9 to 0.1 with a decrements of 0.1.

40 3 Nearest Neighbor Algorithms

Fig. 3.12 Application of fractional norms on MNIST data set—class label 7 and 9, with different
‘K’ values in KNNC and different norms

• The X-axis depicts the value of K and the Y-axis shows the test accuracy using
the KNNC.

• On an average, L2 and L1 norms are doing better. It could be because the
dimensionality is not very high and also the number of training patterns is
large.

• There is a dip in the accuracy in all the cases when K = 4.
• Another important property is that using the L2 norm, the best performance is

obtained at the value of K = 3. However, all the fractional norms perform the
best when K = 5. Hence, they are able to extend the dynamic range and can
effectively accommodate 5 nearest neighbors in making the decision.

We conduct the experiment with a reduced number of training patterns. We
use 10 training patterns, 5 each from classes 7 and 9. We show the results of
using different norms on this smaller data set in Fig. 3.13. The results may be
summarized as follows:

• Observe that the fractional norm based on r = 0.1 is the best, on an average,
across different values of K . This is because of the concentration effect that is
less effective when small fractions are used.

• For larger values of K , the L2 norm based result is the worst followed by the
L1 norm. This is because they are unable to accommodate a good number of
neighbors from the correct class in the top K .

3.4 Locality Sensitive Hashing (LSH) and Applications 41

Fig. 3.13 Application of fractional norms on MNIST data set with a small size training data—
class label 7 and 9, with different ‘K’ values in KNNC and different norms

2. Now we consider the ORL face data set having 400 images in 92 × 112 (10,304)
dimensional space. The results are shown in Fig. 3.14.

• Here 320 face images, 8 images per person, are used for training and the
remaining 80 images, 2 images person, are used for testing using the KNNC.

• Here also we have the value of K on the X-axis and the test accuracy is
depicted on the Y-axis.

• It is easy to see that the fractional norms are consistently outperforming the
L1 and L2 norms.

• The worst performer is the L2 norm which fails to break the concentration
effect in high dimensions.

• Note that the dimensionality is much larger compared to the number of
training patterns. The ratio is 10,304:320 which could be the reason for the
superior performance of the fractional norms.

3.4 Locality Sensitive Hashing (LSH) and Applications

In many practical higher dimensional data sets, performance of the Nearest Neigh-
bor based algorithms is poor. As the dimensionality increases, decision making
using the nearest neighbor gets affected as the discrimination between the nearest
and farthest neighbors of a pattern X diminishes. LSH performs well in finding
the NN of a point X in higher dimensional space. We achieve this by matching

42 3 Nearest Neighbor Algorithms

Fig. 3.14 Application of fractional norms on ORL data set, with different ‘K’ values using KNNC

on some randomly chosen q of the L dimensions l times. Based on these partial
matchings multiple times, we find the approximate NN of a test pattern X. A larger
sized training data set can be pre-processed, such that only the points which lie in
the same bucket as that of X are examined further to find the approximate NN . So,
one or more nearest neighbors of X are obtained quickly using LSH. Hashing is the
process of exploiting one or more functions to map data in higher dimensional space
to a lower dimensional space.

Example 3.4.1 Consider a data set having binary vectors corresponding to positive
integers from 0 to 15 using 4 bits. Let b4, b3, b2, b1, represent their bit patterns.
So, i takes value from the set {4, 3, 2, 1}, where i = 1, 4, represent msb and lsb
respectively. So, by choosing different values of i, the 4-bit binary patterns will be
hashed to two values (buckets) of binary 0 and binary 1 as shown in Table 3.1.

If we choose the LSB (i = 1) for partial matching, then all the even valued
numbers hash to bucket 0 and the odd valued ones will be hashed to bucket 1.
Similarly, if we select the MSB (i = 4) for partial matching, then the numbers in
the range 0–7 are mapped to bucket 0 and the remaining go to bucket 1. A sample
test pattern, based on the partial matching, is mapped to the respective bucket and

Table 3.1 Simple example
for hashing

ith bit of X Bucket for binary 0 Bucket for binary 1

1 0,2,4,6,8,10,12,14 1,3,5,7,9,11,13,15

4 0,1,2,3,4,5,6,7 8,9,10,11,12,13,14,15

3.4 Locality Sensitive Hashing (LSH) and Applications 43

further exploration happens only in the selected bucket. Locality Sensitive Hashing
(LSH) is hashing (mapping) of data points in a higher dimensional space to a lower
dimensional space, such that data points which are similar/closer in the higher
dimensional space are mapped to the same bucket in the low dimensional space
with a very high probability.

Let us analyse the behaviour of LSH using binary vectors.

• Let the ith point, Xi , be an L-bit binary (either 0 or 1) string/vector. Let X
j

i , j =
1, · · · , L be the j th bit of Xi .

• Let us use hamming distance between the test pattern X and a training pattern Xi

(both are L-bit strings).
• For L-bit strings X and Xi , if Prob[Xj

i = Xj] ≥ r , then patterns Xi and X have
identical values in at least rL of the L bit locations.

• This means that the hamming distance between X and Xi is less than or equal to
L − rL and r is the probability that Xi and X are equal on a randomly selected
bit.

• If we select q out of L bits randomly, then probability that X and Xi have the
same values on all these q bits will be at least rq .

• So, probability that they fail to match on at least one of the q bits will be less
than 1 − rq .

• If we select randomly q bits l times independently, then probability that Xi and
X fail to match on at least one of the q bits in all the l selections is less than or
equal to (1 − rq)l .

• So, probability that Xi and X share all the q bits in at least one of the l selections
is greater than or equal to

1 − (1 − rq)l .

• If Xi and X have identical values on one of the l selections of q bits, then X and
Xi match partially (at least on q of the L bits); as the value of q increases the
match between X and Xi will get better.

• However, if q gets larger then rq gets smaller and (1 − rq)l tends to 1.
• In order to exploit the matching based on these random choices, we need (1−rq)l

to tend to 0. This can happen if q is large (and still 1 − rq ≤ 1, so that X and Xi

match better) and l also is large so that (1 − rq)l tends to 0.
• So, in LHS we make l choices (tables) each of size q bits. We can extend the

same idea to even non-binary vectors of size L.

Now we report our experimental results using LSH on the MNIST data. The
training set consists of the first five patterns of class labelled 7 and the first five
patterns of class labelled 9 (from the total training set). Similarly, the test set used
consists of the first five patterns of classes labelled 7 and 9 (from the total test
set). These smaller sets of training (10 patterns) and test (10) patterns are used for
performing classification using the Nearest Neighbor classifier and the LSH based
approximate NN classification experiments. The results are plotted in Fig. 3.15.

44 3 Nearest Neighbor Algorithms

Fig. 3.15 Application of LSH on MNIST data set with a small size training data—class label 7
and 9, with different ‘K’ values in KNNC

The LSH experiment is performed 10 times and the average values are shown in
the figure. From Fig. 3.15, we can observe that on an average LSH outperformed the
Nearest Neighbor based classifier.

3.5 Summary

In this chapter, we have examined the role of NNC and its variants in classifying
high-dimensional data sets. Some of the important comments are:

1. The NNC and KNNC are inadequate to classify the test patterns properly due
to the concentration effect.

2. We have observed experimentally that most of the points in the data set fall within
a distance bound of 1.1 that of the d(X,NN(X) making it difficult for the NNC

in the high-dimensional cases.
3. There are two different solution directions that we considered in this chapter.

They are based on either fractional norms or using LSH .
4. We have observed that the fractional norms offer a wider dynamic range for

the distances to overcome the concentration problem. This was experimentally
shown on two different data sets.

5. The LSH scheme is explained and is used on the MNIST data set to show its
superiority over the NNC and its variants on an average.

6. We will consider another option to deal with the concentration problem, using
dimensionality reduction, in the later chapters.

References 45

References

1. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest neighbor in
high dimensions. Commun. ACM 51(1), 117–122 (2008)

2. LSH Algorithm and Implementation (E2LSH): https://www.mit.edu/~andoni/LSH/
3. Murty, M.N., Susheela devi, V.: Introduction to Pattern Recognition and Machine Learning.

World Scientific/IISc Press (2015)

 1273 370
a 1273 370 a

https://www.mit.edu/~andoni/LSH/

Chapter 4
Representation Using Linear
Combinations

Abstract This chapter deals with linear representations. Here, each new feature is a
linear combination of the given input features. Even feature selection may be viewed
as a special case of the linear representation schemes. We specifically consider,
in this chapter, various types of feature selection schemes, principal components,
random projections and non-negative matrix factorization.

4.1 Introduction

Linear representation is a very popular and relatively simpler scheme for represent-
ing patterns. Here, a feature gj is extracted such that it is a linear combination of
the given L features, f1, · · · , fL. So,

gj =
L

∑

i=1

αij fi ,

where αij is a real number and it indicates the contribution of feature fi to the
extracted feature gj . Further, we typically extract l features g1, g2, · · · , gl where
l < L.

4.2 Feature Selection

Note that it is possible to view feature selection as a special case of such a linear
combination. For example, gj can be the same as fp, if αpj = 1 and αij = 0
if i �= p. Further, we have seen in Chap. 2 that the feature selection schemes are
categorized further into

1. Filter Methods: In filter methods, we rank the L features using a fitness measure
that exploits the class labels but does not use any classifier. Based on the ranking,

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
M. N. Murty, M. Avinash, Representation in Machine Learning, SpringerBriefs
in Computer Science, https://doi.org/10.1007/978-981-19-7908-8_4

47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-7908-8_4&domain=pdf

 476 4612 a 476 4612 a

https://doi.org/10.1007/978-981-19-7908-8_4

48 4 Representation Using Linear Combinations

the top l features are selected and used in building the ML model. There are
different fitness measures to evaluate and rank the features. They are based on:

• Distance: We prefer values of a feature from the same class to be such that the
intra-class distances are smaller and inter-class distances are larger.

• Dependency: Here, the correlation between a feature and a class is exploited
in ranking. If the correlation is larger for a class and smaller for the other
classes, then the feature in ranked better.

• Mutual information (MI :) If a feature and a class have a larger MI value,
then the feature is good. It is seen that MI based feature selection works well
on high-dimensional datasets.

2. Wrapper Methods: In this case, the selection of a subset of features is based
on the performance of a classifier on the selected subset. The subset of features
which gives the maximum classification performance is selected. This subset of
features is used in designing the ML model. There are a variety of approaches
including genetic algorithm based approaches that employ this method. These
schemes can be more expensive compared to the filter based schemes because
the number of subsets is much larger than the number of features.

3. Embedded Methods: Here, an ML model is built using the L features and the
model directly selects/indicates the relevant subset of features. Several classifiers
including ones based on decision trees, support vector machines, and Bayes
classifier can be exploited to realize such an embedded scheme.

We will present some experimental results based on these schemes in this
chapter.

1. Filter methods:
Let us consider the patterns of classes labelled 7 and 9 from the MNIST data set.
Each pattern is a 28 × 28 image, whose pixel values range from 0 to 255. Every
pattern is converted into a binary row vector of dimension 1 × 784, such that a
pixel value greater than 127 is replaced by 1 and pixel value less than or equal to
127 is substituted by 0. These row converted binary patterns are stacked to form
the training set of size 12,214 and test set of size 2037 respectively. Each pattern
is a binary vector of length 784.

For each feature, the euclidean distance between the feature and its class
label is calculated and shown in Fig. 4.1. Similarly Mutual Information and
absolute value of correlation coefficient of each feature is calculated and shown
in Figs. 4.2 and 4.3 respectively. The correlation coefficient of features whose
value does not change throughout the training data set is set as zero (since
MATLAB returns NAN for those constant features).

Features which represented pixel values in the top, bottom, left and right
extremes of the image are mostly of same value (zeros) so they will not contribute
to classification, which is observed from the Mutual information values in
Fig. 4.2. The Mutual information becomes zero for feature number less than 100
and greater than 700 which correspond to the top and bottom pixels in the image.
Similarly, Mutual information minima (touching 0) in Fig. 4.2, represents the left

4.2 Feature Selection 49

Fig. 4.1 Euclidean distance of each feature to the Class label

Fig. 4.2 Mutual information of each feature

and right extreme pixels of the image (whose values are constant throughout the
training data set).
Based on the above mentioned Filter methods, 80 features are selected out of 784
features. These 80 features are used for classification by Decision tree classifier
with Maximum number of splits, N = 9 and k-NNC classifier with K = 10. The
results are shown in the bar (Fig. 4.4).
From Fig. 4.4, we observe that the accuracy of Decision Tree with 80 selected
features and all 784 features, remains almost the same, since Decision tree
automatically selects the important features and the test accuracy ofDecision tree
is low compared to that of KNNC, and further since the classes 7 and 9 are having
highly non linear decision boundary, we need a deeper tree to classify correctly.
Since, KNNC is a non linear classifier, it is able to perform well. Out of the filter

50 4 Representation Using Linear Combinations

Fig. 4.3 Absolute value of correlation coefficient of each feature

Fig. 4.4 Comparison of various filter methods

methods considered, Mutual Information based feature selection performed the
best on this data set.

2. Wrapper methods:
Refer to Sect. 4.3, where we have used Genetic Algorithm to select the optimum
subset of 100 Principal components from the total set of 10,304 Principal
components for the ORL face data set, having the test accuracy of KNNC
classifier as the fitness criterion for selecting features.

3. Embedded methods:
Let us consider the Iris data set. It has four features: Petal length, Petal Width,
Sepal length and Sepal width. We have used Decision Tree to classify the three

4.2 Feature Selection 51

Fig. 4.5 Data visualization of Iris data set using parallel coordinate plot

Fig. 4.6 Decision tree on Iris data set

flower species (setosa, vericolor and virginica) based on these four features. We
used Parallel coordinates plot from MATLAB, to visualize the Iris data set in
Fig. 4.5.

From Fig. 4.5, feature Petal Length clearly classifies class label setosa. So, the
Decision Tree classifier has given the first preference to this feature and keep it
at the Root of the Decision Tree, as shown in Fig. 4.6.
Let us calculate the predictor importance. It is calculated by summing changes in
the mean squared error due to splits on every predictor and dividing the sum by
the number of branch nodes. The estimates of predictor importance are shown
in Fig. 4.7. From Fig. 4.7, we observe that predictor Petal length is the most
importance feature.
Root of the Decision Tree is shown in Fig. 4.6 and the rule captured by the tree
is as follows:

(1) if PetalLength < 2.45 then setosa else (PetalLength ≥ 2.45) nonsetosa

52 4 Representation Using Linear Combinations

Fig. 4.7 Predictor importance of predictors-decision tree

4.3 Principal Component Analysis

The most popular linear representation scheme is based on principal components
(PCs). PCs are the leading eigenvectors of the covariance matrix of the data.
Eigenvectors are considered in the decreasing (non-increasing) order of their
corresponding eigenvalues. The variance in different directions, that is present in the
data, is characterized by the eigenvalues. The covariance matrix is symmetric; so, it
is possible to select the eigenvectors to be orthonormal. The top l eigenvectors are
used in the analysis where the value of l is chosen based on total variance explained
by the top l eigenvalues.

Let us consider the patterns of MNIST data set from Classes labelled 7 and 9.
The dimensionality of the data set is 784 (28 × 28 pixels in each image). From
the covariance matrix of the Training data patterns, 784 eigenvalues and their
eigenvectors are calculated. The eigenvectors are sorted in descending order based
on their corresponding eigenvalues. The dimensionality of both the training and test
sets is reduced based on the projections of the data points on the top l eigenvectors.
The K-Nearest Neighbor classifier with K = 3, (three-nearest neighbor classifier) is
used for classification. The results are plotted in Fig. 4.8. The X-axis depicts the
value of l, the number of top eigenvectors used for classification and the Y-axis
shows the test accuracy using the KNNC with K = 3.

From Fig. 4.8, we observe that feature selection based on first few Principal
components gave good test accuracy. It is to be noted that first few PCs will only
be useful for discriminating between groups if within- and between-group variation
have the same dominant directions.

We will show that first few PCs may not always give the best representation for
classification; that is best test accuracy. In practice, it is possible that the selection of

4.3 Principal Component Analysis 53

Fig. 4.8 Application of PCA on MNIST data set class label 7 and 9, with ‘l’ top principal
components

last few PCs may provide a better discrimination. So, the feature selection should be
based on subset of PCs from the entire spectrum of PCs. We will discuss this next.

For the experiments we use the ORL face Data set. Out of 400 images, 320
images are used for training and remaining 80 images for testing. The data set
is divided, such that for each person, eight patterns are used for training and two
patterns for testing. The dimension of the data set is 10,304 (92 × 112). From
the covariance matrix of the training set, 10,304 Principal components and the
corresponding eigenvalues are calculated, then these Principal components (PC)
are sorted based on their eigenvalues (in descending order), such that the first
PC corresponds to the highest eigenvalue and the last PC is based on the least
eigenvalue.

Dimensionality reduction of both the training and test sets is based on using the
first l PCs and KNNC, with K = 3 is used as the classifier. From Fig. 4.9 for the first
108 PCs, we got the maximum test accuracy of 0.95 and for the first 100 PCs, the
test accuracy is 0.9375, When we use all the 10,304 PCs, the accuracy drops to
0.925.

To illustrate the point that first few PCs will not always give a better representa-
tion in the lower dimensional space, we randomly selected 100 PCs from different
sections of the entire spectrum of PCs as shown in Table 4.1.

We present the results in Fig. 4.10.
From the figure, we observe that, for some random selection of 100 PCs, we got

test accuracy of 0.9625, which is better than the test accuracy obtained from the first
108 PCs and first 100 PCs.

To find the optimum sub set selection of PCs from the entire spectrum of 10,304
PCs, we used Genetic Algorithm (a stochastic search technique), with population
size 150 and maximum of 200 generations and show the results in Fig. 4.11. Here X
axis represents the lth PC (as we have selected 100 PCs, it varies from 1 to 100) and

54 4 Representation Using Linear Combinations

Fig. 4.9 Application of PCA on MNIST data set class label 7 and 9, with ‘l’ top principal
components

Table 4.1 Random selection
of PCs from the set of 10,304
PCs

Section Name Number of PCs

First 100 [1–100] 60

[1000–3000] 10

[4000–6000] 10

[7000–9000] 10

Last [10,204–10,304] 10

Fig. 4.10 Application of PCA on ORL data set, with random selection of 100 principal compo-
nents

4.3 Principal Component Analysis 55

Fig. 4.11 Application of PCA on ORL data set, with 100 principal components given by GA

Fig. 4.12 Histogram of Index values of 100 Principal Components given by GA

Y-axis represents the index of the selected PC from the set of 10,304 PCs, where
index 1 represents the first PC and index 10,304 represents the last PC.

From Fig. 4.11, we observe that the optimum sub set of 100 PCs, which gave a
test accuracy of 0.9625 has indices in the entire spectrum (from 1 to 10,304). So,
neither the first few PCs nor the last few PCs may always give better discrimination
in the lower dimensional space. The optimum sub set of PCs fall in the entire
spectrum, which is evident from the Histogram in Fig. 4.12.

56 4 Representation Using Linear Combinations

From the Histogram in Fig. 4.12, we also observe that the Last few PCs also play
a significant role in discrimination and the optimum choice of PCs selects from the
entire spectrum.

4.4 Random Projections

We have discussed in Chap. 2 that in the case of random projections, we reduce
the dimensionality of the data from the L-dimensional space to a lower-dimensional
space of dimension l, where l can be much smaller than L. This is achieved by using
a matrix R that has random entries.

Some of the properties of random projections are:

• Bn×l = An×LRL×l

• The value of l can be much smaller than L.
• If the entries in R are independently selected from a zero mean and unit variance

distribution, then it is possible to show that

E[|| bi ||2] =|| ai ||2,

where bi is the ith row of B and ai is the ith row of A.
• Further, by selecting the value of l = O(logn/ε2) we can approximately preserve

pairwise distances upto a factor of (1 ± ε), where ε is a small real number.
• Similarly it is possible to preserve dot products. That is

E[bt
ibj] = at

i aj

Let us consider the MNIST data set, the subset of patterns belonging to class
labels {0, 1, 7, 9} from both training set and test set are collected. Let us call this
subset as ‘X’. Then, X consist of 29,031(= 24,879 + 4152) patterns where first
24,879 patterns belong to the training set and the next 4152 belong to the test set.
The dimension of X is 29,031 × 784, where each row represents a pattern.

The dimensionality of X is reduced to l using Gaussian Random Projection
model from python sklearn package. After, the dimensionality is reduced, the
training set patterns (24,879 patterns) and test set patterns (4152 patterns) are
separated. The KNNC classifier with different K values is used for classification.
The experiment is repeated for five different seed values {1, 2, 3, 4, 5} and the
average training set and test set accuracies obtained are shown in Table 4.2. The
same experiment is repeated using Sparse Random Projection model which uses a
Sparse Random matrix with density parameter as 1/3.0, the results are tabulated in
Tables 4.3 and 4.4 respectively.

Let us consider the ORL face data set. The Data set consist of 400 faces each
with dimension 112 × 92. The original dimension of the data set is 10,304. The

4.4 Random Projections 57

Table 4.2 Gaussian Random
Projection based
dimensionality reduction on
MNIST data set

l eps K Mean train accuracy Mean test accuracy

100 0.1 3 0.993432212 0.982996146

100 0.1 5 0.990779372 0.981358382

300 0.1 3 0.99462197 0.984537572

300 0.1 5 0.992555971 0.983815029

500 0.1 3 0.995023916 0.98473025

500 0.1 5 0.992756944 0.98371869

Table 4.3 Sparse random
projection based
dimensionality reduction:
MNIST data set

l eps K Mean train accuracy Mean test accuracy

100 0.1 3 0.992869488 0.981888247

100 0.1 5 0.989959404 0.980684008

300 0.1 3 0.994372764 0.985356455

300 0.1 5 0.992089714 0.983140655

500 0.1 3 0.994597854 0.985308285

500 0.1 5 0.992379115 0.984104046

Table 4.4 Achlioptas
random projection based
dimensionality reduction:
MNIST data set

l eps K Mean train accuracy Mean test accuracy

100 0.1 3 0.993335745 0.981743738

100 0.1 5 0.990956228 0.980828516

300 0.1 3 0.994469231 0.984007707

300 0.1 5 0.992113831 0.982755299

500 0.1 3 0.995023916 0.984104046

500 0.1 5 0.992580088 0.983188825

dimensionality of the data set is reduced to l components (selected for different
values of eps) using the following Projection matrices.

• Gauss Random Projection matrix
• Sparse Random Projection Matrix
• Achlioptas Random Projection matrix

The minimum size of the reduced dimension l for a given eps is selected based
on Johnson-Lindenstrauss lemma.

The experiment is performed for different values of eps ranging from 0.1 to 0.95
in the steps of 0.05. For each value eps, the minimum value of N is selected based
on Johnson-Lindenstrauss lemma. Once the dimension of the data set is reduced,
it is divided into training and test set such that for each person, eight patterns are
selected for training and the remaining two patterns for testing .KNNC is used as
the classifier for different values of K which range from 1 to 8. The results of the
experiments are plotted in Figs. 4.13, 4.14, and 4.15 respectively.

58 4 Representation Using Linear Combinations

Fig. 4.13 Dimensionality reduction based on gauss Random Projection matrix: ORL Face Data
set

Fig. 4.14 Dimensionality reduction based on sparse Random Projection matrix: ORL Face Data
set

4.5 Non-negative Matrix Factorization

Let us consider the NMIST Data set, the training and test patterns belonging to
class labels 0, 1, 7, 9 are used for the experiments. The NMF module from SKLearn
is used for dimensionality reduction. The tuning parameters for the modules are
alpha, which is the constant that multiples the regularization term and L1 ratio,
which controls the contribution of L1-term errors in the regularization term. After
reducing the dimensionality, KNNC classifier with K = 5 is used as the classifier.
The NMF may be viewed as factorizing the data matrix A into W and H matrices.
So, if A is of size n × l, then we have

An×l = Wn×K ∗ HK×l .

4.5 Non-negative Matrix Factorization 59

Fig. 4.15 Dimensionality reduction based on Achlioptas Random Projection matrix: ORL Face
Data set

Table 4.5 NMF on MNIST
Data set for class label
0, 1, 7, 9

l alpha L1 Train accuracy Test accuracy

350 10 0 0.986414245 0.945086705

350 5 0 0.98548977 0.933526012

350 50 0 0.990112143 0.971820809

350 15 0 0.988705334 0.957129094

350 25 0 0.990152337 0.967003854

350 75 0 0.990272921 0.972302505

350 100 0 0.991076812 0.9727842

The experiment is repeated for various values of alpha, L1 ratio and l (the number
of reduced components after dimensionality reduction). By Trail and error, the
following results are obtained and tabulated in Table 4.5. Let us consider the smaller
version of ORL-Data set, which consists of 4096 features instead of 10,304 features.
The total data set consists of 400 faces. The Data matrix is of size 400×4096, where
each row represents a face pattern.

NMF function from MATLAB is used for dimensionality reduction experimen-
tation. After dimensionality reduction, the data set is divided into 320 Training
patterns and 80 test patterns. KNNC classifier, with K values range from 1 to 8
is used for classification. The initialization value for W(W0) matrix plays a crucial
role in determining the best representation (W) and test accuracy (making all the
other parameters to take their default values and Maximum iteration step is taken as
100).

For the Random initialization of W (W0) and H, the results are shown in
Fig. 4.16. Now, for the 400 features, Mutual information is calculated. Based on
the Mutual information values, features are sorted and W is initialized with top l
features (where, l is the number of reduced components). The Multiplicative Update
algorithm is modified such that H is updated based on the initialization of W as the
first step.

60 4 Representation Using Linear Combinations

Fig. 4.16 Dimensionality reduction based on NMF on reduced ORL Face Data set with random
initialization of W

Fig. 4.17 Dimensionality Reduction based on NMF on reduced ORL Face Data set with Mutual
information based initialization of W

The results for the Mutual information based feature initialization W are shown
in Fig. 4.17. The Root Mean Square of Residual Error between data matrix and
its approximation W × H for various methods of W initialization are shown in
Fig. 4.18. From Fig. 4.18, we observe that improper selection of initial values of
W results in reaching local optima.

4.6 Summary 61

Fig. 4.18 RMS Error Comparison for various methods of initialization of W

4.6 Summary

In this chapter, we have examined various feature selection and linear feature
extraction techniques in terms of their applicability. The feature selection schemes
include:

1. Filter methods: We have considered distance, correlation and mutual informa-
tion (MI) based methods. We have observed that the MI based scheme is good
to reduce the dimensionality of large dimensional data sets.

2. Wrapper methods: We have used subsets of PCs to represent the data and
KNNC is used in classification in the process of selecting features using a GA.

3. Embedded methods: It is shown using the Iris data set that Decision Tree clas-
sifier can automatically select a subset of the features as a part of classification.

Subsequently, we have considered linear feature extraction schemes. These
include:

1. PC based,
2. Random Projections based, and
3. NMF based:

It is observed that the top PCs may not be the best for representing the data
used in classification. So, it is not correct to use the top few PCs for discrimination
or classification. Random projections provide a good alternative to deal with high-
dimensional data sets. NMF based reduction needs a better initialization scheme to
avoid local-minima problems.

62 4 Representation Using Linear Combinations

References

1. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Mining
Knowl. Discov. 2(2), 121–167 (1998)

2. Schölkopf, B., Smola, A.J.: Learning with Kernels. MIT Press (2001)
3. Rifkin, R.M.: Multiclass Classification. Lecture Notes, Spring08. MIT, USA (2008)
4. Witten, I.H., Frank, E., Hall, M.A.: Data Mining, 3rd edn. Morgan Kauffmann (2011)
5. Prakash, M., Murty, M.N.: A genetic approach for selection of (near-) optimal subsets of

principal components for discrimination. Pattern Recogn. Lett. 16, 781–787. Elsevier (1995)
6. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: NIPS’00:

Proceedings of the 13th International Conference on Neural Information Processing Systems,
pp. 535–541 (2000)

7. MNIST Dats Set: https://www.tensorflow.org/datasets/catalog/mnist
8. ORL Face Dats Set: https://www.kaggle.com/datasets/tavarez/the-orl-database-for-training-

and-testing
9. Scikit-Machine Learning in Python: https://scikit-learn.org/stable/

 442 1034 a 442 1034 a

https://www.tensorflow.org/datasets/catalog/mnist

 594 1117 a 594 1117 a

https://www.kaggle.com/datasets/tavarez/the-orl-database-for-training-and-testing
https://www.kaggle.com/datasets/tavarez/the-orl-database-for-training-and-testing

 965 1283 a 965 1283 a

https://scikit-learn.org/stable/

Chapter 5
Non-linear Schemes for Representation

Abstract In this chapter we deal with various nonlinear feature extraction schemes.
In nonlinear feature extraction, the extracted features may be viewed as nonlinear
combinations of the originally given features. Two popular neural network architec-
tures employed are self-organizing map (SOM) and autoencoder (AE). We examine
both of them in this chapter.

5.1 Introduction

We have studied different schemes for representation in the earlier chapters. These
include:

• Feature Selection: Here, we select a subset of size l from the given set of L(> l)

features.
• Linear Feature Extraction: Under this category we represent each pattern using

a collection of l(< L) features. Each of these l features is obtained by using an
appropriate linear combination of the given L features.

In this chapter, we will deal with extracting features that may be viewed as
nonlinear combinations of the given L features.

5.2 Optimization Schemes for Representation

Let Xi and Xj be two L-dimensional vectors. Let Pi and Pj be the respective vectors
in the l-dimensional space. Let dij be the euclidean distance between Pi and Pj and
let d∗

ij be the distance between Xi and Xj . The idea behind the optimization is to
minimize a function that captures the difference between dij and d∗

ij over all the
pairs of patterns.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
M. N. Murty, M. Avinash, Representation in Machine Learning, SpringerBriefs
in Computer Science, https://doi.org/10.1007/978-981-19-7908-8_5

63

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-7908-8_5&domain=pdf

 476 4612 a 476 4612
a

https://doi.org/10.1007/978-981-19-7908-8_5

64 5 Non-linear Schemes for Representation

The specific function used by the popular Sammon’s mapping algorithm is

1
∑

i<j d∗
ij

∑

i<j

(d∗
ij − dij)

2

d∗
ij

.

In other words, this nonlinear mapping algorithm employs a nonlinear optimization
algorithm that starts with an initial representation and keeps on updating by using a
gradient descent approach. The idea behind the choice of the objective function is to
preserve some structure of the data, given in high-dimensional space, after mapping
the data to a lower-dimensional space.

If X is an L-dimensional vector and l = 2, then one possible initial representation
of P , corresponding to X, in the two-dimensional space is given by

P =
(

P1

P2

)

=
(∑L

i=1 Xi
∑L

i=1 X2
i

)

.

This initial representation in the l-dimensional space (l = 2 here) is updated
iteratively till some stopping/termination criterion is satisfied.

5.3 Visualization

1. Representation using Faces: Here, a pattern is represented using a face for easy
visualization. It may be explained using the face shown in Fig. 5.1.

A three-dimensional pattern (L = 3) is represented as a face in the figure. The
first feature f1 is used to depict the height of the face. The second feature f2 is
used to represent the width of the face and feature f3 depicts the length of the
mouth. Note that it is possible to incorporate more features. For example, f4 can
be used to capture the size of the eyes; f5 for the length of the nose; f6 for the
distance between the eyes; f7 for the distance between the eyes and the nose; f8
for the distance between the nose and mouth, and so on. In addition one can use
other parts like ears to represent more features.

So, such a representation of patterns using faces can help the users in
discriminating between patterns from different classes.

2. Self-Organizing Map (SOM): Kohonen’s SOM is the most popular neural
network model to represent a collection of L-dimensional vectors in a two- or
three-dimensional space. Consider the simple two-dimensional network shown
in Fig. 5.2.

This network may be viewed as having the input and output layers. The input
layer is an L-dimensional layer. An L-dimensional vector X is presented at the
input layer. The L components of X are x1, x2, · · · , xL as shown in the figure.

The output layer typically is a two-dimensional grid of M × N cells. in the
figure the values of M and N are 7 and 10 respectively. Every cell is connected

5.3 Visualization 65

Fig. 5.1 An example face image representation of a pattern

to the input layer with L weights. For example, if the top leftmost cell is
numbered as 1, then the input xj is linked to this cell with a weight Wj,1 for
j = 1, 2, · · · , L. Similarly ith cell (shown here using the third row from the top
and the sixth column from the left) is connected using a collection of L weights.
For example, the Lth input node is connected using the weight WL,i as shown in
the figure. We have shown weights connected to 3 out of 70 cells for the sake of
clarity in the figure.

So, if there are L inputs and M × N cells in the output layer, then there will
be M × N × L weights to train. These weights are initially chosen randomly
and are updated based on the assignment, of data presented, to the cells. For
example, if a data vector Xp is more similar to the weight vector, W(j) =
(W1,j ,W2,j , · · · ,WL,j), then XP is associated with the j th cell and the weight
vector, W(j), associated with the winner cell (j th cell) is updated to align more
with Xp. Such an update ensures that when Xp is presented next time it will
match better with the weight vector W(j).

66 5 Non-linear Schemes for Representation

Fig. 5.2 Kohonen’s SOM

Typically, the input data will be a collection of n data vectors, X1,X2, · · · ,

Xn. These n data vectors are presented in a sequence at the input layer and the
weight vector associated with the winning neuron is updated after assigning each
pattern. These input vectors are repeatedly presented at the input layer multiple
times (epochs). It is continued till either there are no updates to the weight vectors
in an epoch or till a pre-specified number of epochs is completed. This may be
viewed as associating each of the data vectors with a cell that is matching better
in terms of its current weight vector.

It is possible to view the entire activity as clustering the n patterns into clusters
corresponding to the output cells. There are several variants that can be used:

• In the procedure specified, weights of only the winning cell/neuron are
updated. It is possible to update the weights associated with the neurons
located within a window around the winning cell. Different window types
were specified.

• It is popularly used to cluster unlabeled patterns. However, it can be used to
cluster labelled patterns also.

• It may be viewed as mapping L-dimensional vectors into a two-dimensional
map. It is shown to achieve the mapping so that topological properties of the
data are preserved.

Consider the first 250 patterns of class label 1 and 7 in the MNIST Test Data set.
We set the default seed to the random generator, using the command rng default.
We used MATLAB, selforgmap function with the following parameters

• dimensions = [12, 12]
• Number of training steps for initial covering of the input space, coverSteps =

100

5.3 Visualization 67

Fig. 5.3 SOM for first 250 patterns in classes labelled 1 and 7 in MNIST Test dataset

• Initial neighborhood size, initNeighbor = 3
• Layer topology function (default = ‘hextop’)
• Neuron distance function (default = ‘linkdist’)

The obtained SOM is shown in Fig. 5.3. The 144 grid/neurons (12 × 12) are
numbered on the top in Fig. 5.3. At each grid point, the patterns which are falling
in the grid, are averaged (For example, if three patterns fall in a grid, those three
images are added and divided by 3, to get the average 28×28 image/pattern). The
averaged pattern is converted into a binary vector (if pixel value greater than 127,
it is replaced by 1 else replaced by 0). We observe the following in Fig. 5.3,

68 5 Non-linear Schemes for Representation

• In the last three rows, (grid numbered 109 to 144) the patterns are mostly
inclined to the right.

• Pattern in grid numbers 4–12 and 16–19 are mostly inclined to the left.
• Patterns which are marked in red box are actually outlier patterns in the actual

data set, not resulted from the addition of patterns falling in their respective
grids.

• There is a clear transition from 1 to 7, as we move from left to right.
• It is able to capture the characteristics of different ones and sevens and clusters

them together.

3. T-Distributed Stochastic Neighbor Embedding (T-SNE) Plot :
This is a very popular visualization tool that employs a nonlinear mapping
scheme to reduce the dimensionality of the data from l to 2. Given the data in
the l-dimensional space, it estimates a probability structure over pairs of points.
The probability is larger if the corresponding pair of points are similar and it
is smaller if the two points are dissimilar. Similarly it computes the probability
structure in the reduced dimensional space. KL-divergence between these two
probability distributions is minimized to achieve the mapping.

Let us consider all the test patterns of MNIST data set. Figure 5.4 shows
T-SNE plot for all the test patterns of MNIST data set with Perplexity = 30
(for many values of Perplexity we got similar plots) and Euclidean Distance as
distance measure using MATLAB-tsne function. We can observe that there are
many overlaps between many class labels. For example, patterns from classes
1 and 7 show significant overlaps, similarly classes labelled 3 and 8 show
overlaps. Let us consider only the patterns of classes labelled 1 and 7 respectively.
Figure 5.5 shows the T-SNE for class labelled 1 and 7. We can clearly observe
the overlapping patterns. From Fig. 5.5, we picked some overlapping patterns
and displayed their corresponding high dimensional image values in Fig. 5.6.

Fig. 5.4 T-SNE for all test patterns in MNIST Data set

5.3 Visualization 69

Fig. 5.5 T-SNE for patterns labelled 7 and 1 in MNIST Data-set

Fig. 5.6 Some overlapping pattern of class labelled 7 and 1 in MNIST Data set

In Fig. 5.6, the first two patterns (in position (1,1) and (1,2) respectively), are
actually labelled as pattern 1, but they occur in the region of label 7 and similarly
other patterns with actual label as 7, but in the T-SNE plot in Fig. 5.5, they occur
in the region of label 1 respectively.
We took six misplaced patterns in the T-SNE plot in Fig. 5.5. For these six
patterns, we found three nearest neighbors in the lower dimensional embedding
and we plotted their corresponding higher dimensional input in Fig. 5.7. In

70 5 Non-linear Schemes for Representation

Fig. 5.7 Three nearest neighbours of misplaced patterns

Fig. 5.7, the first column represents the misplaced patterns and other columns
correspond to their three nearest neighbors respectively.

For the same misplaced patterns (column 1 in Fig. 5.7), we find all the three
nearest neighbors belonging to the same class. For example, for the pattern at
position (1,1) in Fig. 5.7, the actual label of the pattern is label 7, we find the
corresponding neighbors among all the patterns belonging to class label 7 and
we plotted them as the first row in Fig. 5.8 and similarly for other patterns.

The T-SNE plots for test patterns labelled 7 and 1 show misplacement of
patterns. So, in order to measure the effect of misplacement, in the lower
dimensional embedding space a KNN classifier with nine nearest neighbors is
used. For each pattern in the lower dimensional space, nine nearest neighbors are
found and using Majority vote the label of the pattern is predicted from its nine
nearest neighbors. If the predicted label is the actual label of the pattern, then
that pattern is not misplaced in the T-SNE plot, else, the pattern is declared as a
misplaced pattern. By the above mentioned criterion, the train accuracy (A) may
give the measure of misplacement by the T-SNE plot.

Various L-norms with parameter r, are used to compute the dissimilarity for
the T-SNE plot. The Training Accuracy (A) for various values of parameter is
tabulated in Table 5.1. From the table, we observe that for fractional norms and
lower values of parameter r, there are many misplaced patterns in the T-SNE
plots and as the value of r increase, the misplacement is getting reduced, which
is reflected in terms of the increase in the training accuracy A.

5.3 Visualization 71

Fig. 5.8 Three nearest neighbours in the same class of misplaced patterns

Table 5.1 T-SNE Error
analysis for different values
of r using Minkowski
distance

r A (%)

0.2 97.1798

0.5 97.8733

1 98.1045

2 98.5668

50 98.8904

60 98.9829

80 98.9367

90 99.0754

95 99.2141

100 99.0754

∞ 98.1507

From Figs. 5.9 and 5.10, we observe the following:

• For lower values of r, the distance measure in higher dimensions is large, but
in the lower dimensional space, distance is small and the clusters are tightly
packed. As the value of r increases, we can observe the reduction in within
cluster distance and the clusters are becoming loose.

72 5 Non-linear Schemes for Representation

Fig. 5.9 T-SNE for various L-Norms

Fig. 5.10 T-SNE for various L-Norms

5.3 Visualization 73

Fig. 5.11 T-SNE Plot with L-Norm r = 0.2

• As the value of r increases, the clear separation between the two clusters is
reducing.

• The penetration of pattern labelled 7 (blue) into the region of 1 (red) is getting
reduced as the parameter r increases.

• The occurrence of pattern labelled 7 (blue) in far extreme end in the regions
of 1 (red) is getting reduced as the value of r increases.

• As r increases, the misplacement of patterns is getting reduced.

Consider Figs. 5.11 and 5.12 for further insights

74 5 Non-linear Schemes for Representation

Fig. 5.12 T-SNE Plot with L-Norm r = 95

5.4 Autoencoders for Representation

let us consider the ORL face Data set. The Data set consists of 400 face images.
The entire set of 400 faces is divided into 320 Train patterns and 80 test patterns,
such that for each class label 8 patterns are assigned to the Training set and two
patterns are assigned to the test set respectively. The image dimension is 112 by
92. Each image is converted into a row vector. So, the number of features of
the Data set is 10,304 = 112 ∗ 92. For the sake of simplicity and computation
capacity constrains, we consider a single hidden layer Autoencoder and employed
the following procedure for feature extraction and classification

• Each image is reshaped as 100 × 100 (instead of original dimension 112 × 92).
• Each reshaped image is divided into four quadrants, {C1, C2, C3, C4} of

dimension 50 × 50 each.
• Four different single hidden layer Autoencoders{A1, A2, A3, A4} are used; each

one extracts features from each quadrant,{C1, C2, C3, C4} of the image. The
number of features is the number of neurons in the single hidden layer.

• The four sets of features {f 1, f 2, f 3, f 4} extracted from the four different
Autoencoders{A1, A2, A3, A4}, are used for classification using a softmax

5.4 Autoencoders for Representation 75

classifier for each Autoencoder. (Note: Each Autoencoder and softmax-Pair are
trained separately for their respective quadrants).

• For a given test pattern, its four quadrants are given as input to their corre-
sponding Autoencoder-softmax Pair{A1, A2, A3, A4} and four class labels are
predicted one for each quadrant.

• Using Majority voting among the four predicted class labels from the four
individual Autoencoder-softmax-pairs, the class label for the test pattern is
predicted.

• The Test Accuracy of each quadrant and for the entire image (predicted using
Majority voting) is noted and the experiments are repeated for various values of
the parameters of the Autoencoder.

Parameters of Autoencoder
Let us start with a brief introduction of a single layer Autoencoder. Consider the
following notation,

• A single input vector x with dimension L, x ∈ R
L.

• The total number of training patterns, N
• The entire training data matrix X ∈ R

L×N of size L × N , where patterns are
stacked column wise.

• The first layer of Autoencoder has l, hidden units (neurons).
• The weight matrix W(p) and bias vector b(p) at level (layer) p. (where p

represents the number of levels/layers. We have considered only a single layer
Autoencoder; so, we have two levels, level = 1 encoder level and level = 2 decoder
level respectively).

• Let z ∈ R
l be the latent representation of single input vector x, with dimension

l × 1
• Let Z ∈ R

l×N be the latent representation of the entire input training data matrix,
of size l × N (a matrix of size l × N).

• Let h(.) represent the non linear function at the encoder and decoder level which
introduces the non linearity.

At the first level of Autoencoder, which is the encoder level, the single input
vector x ∈ R

L is converted into its lower dimensional latent representation z ∈ R
l

(where l < L) as follows:

z(1) = h
(

W(1) · x + b(1)
)

z(1) = h

⎛

⎜
⎝

⎡

⎢
⎣

w
(1)
1 1 w

(1)
1 2 . . . w

(1)
1 L

...
. . .

. . .
...

w
(1)
l 1 w

(1)
l L

⎤

⎥
⎦ ·

⎡

⎢
⎣

x1
...

xL

⎤

⎥
⎦ +

⎡

⎢
⎣

b
(1)
1
...

b
(1)
l

⎤

⎥
⎦

⎞

⎟
⎠

where superscript (1) represents the first level (Encoder level) and W(1) and b(1) are
the corresponding weight vector and bias terms at the encoder level.

76 5 Non-linear Schemes for Representation

At the second level, which is the decoder level, an estimate of the input vector x̂,
is obtained as follows:

x̂ = h
(

W(2) · z(1) + b(2)
)

x̂ = h

⎛

⎜
⎝

⎡

⎢
⎣

w
(2)
1 1 w

(2)
1 2 . . . w

(2)
1 l

...
. . .

. . .
...

w
(2)
L 1 w

(2)
L l

⎤

⎥
⎦ ·

⎡

⎢
⎣

z
(1)
1
...

z
(1)
l

⎤

⎥
⎦ +

⎡

⎢
⎣

b
(2)
1
...

b
(2)
L

⎤

⎥
⎦

⎞

⎟
⎠

where superscript (2) represents the second level (decoder level) and W(2) and
b(2) are the corresponding weight vector and bias terms at the decoder level. So,
the Autoencoder takes an input vector of dimension L and reduces to a lower
dimensional latent vector of dimension l; then it tries to reconstruct the estimate
of input vector from the lower dimensional latent representation.

For illustration, consider an example single hidden layer Autoencoder in
Fig. 5.13. In Fig. 5.13, we observe the following,

• The input nodes represents the input vector x with dimension L = 8.
• The middle hidden layer represents the latent vector z with dimension l= 4
• The output nodes represents the reconstructed estimate of input vector x̂ with

dimension L= 8.

Fig. 5.13 An example single hidden layer Autoencoder

5.4 Autoencoders for Representation 77

• The edge weights are randomly selected and their thickness is propositional to
their weights

Now, consider the following parameters, which are tuned for the experiments.

1. Hidden Layer Size (l):
The number of hidden units (neurons) in the single layer Autoencoder is tuned by
this parameter, Hidden layer size, l. As the number of hidden units increases the
number of weights and bias parameters increases at both the encoder and decoder
levels respectively.

2. Encoder-Decoder Transfer Function [TF]:
We used non linear transfer functions for the encoder and decoder as follows:

• Logistic sigmoid function, T F1

h(k) = 1

1 + e−k

• Positive saturating linear transfer function, T F2

h(k) =
⎧

⎨

⎩

0 if k ≤ 0
k if 0 < k < 1
1 if k ≥ 1

The Autoencoder reconstructs the input from the decoder level; so, the range of
the input must match the range of the decoder transfer function. Hence, the inputs
are scaled to match the range of decoder transfer function accordingly.

3. Maximum number of training epochs [MaxEpochs]
The maximum number of training epochs/iterations is fixed as 500 because of
computational constraints.

4. Cost Function, [CF]:
The Autoencoder tries to reduce the Mean Square Error between the input vector
x ⊂ R

L and the reconstructed estimate x̂ ⊂ R
L; we can also add magnitude

constraint to the weights and Sparsity constraint by employing a suitable Cost
Function as follows:

CF = MSE + λ · Ωweights + β · ΩSparsity

5. Mean Square Error [MSE]

MSE = 1

N

N
∑

i

L
∑

j

(

xij − x̂ij

)

78 5 Non-linear Schemes for Representation

Where N represents the total number of Training patterns. L is the dimensionality
of the training patterns and x̂ represents the reconstructed estimate of the actual
training pattern x by the Autoencoder.

6. L2 Weight Regularization Ωweights:
As the Autoencoder reduces the error between the actual training patterns and
their estimates, we need to have the following:

• a mechanism to control the magnitude of the weights.
• to prevent the Autoencoder from remembering the training patterns and over

fitting.

Hence the following weight regularization term is used:

Ωweights =
P

∑

l

∑

i

∑

j

(

W
(l)
i,j

)2

where P is the total number of levels of the Autoencoder, as we have considered a
single layer Autoencoder, we have P = 2. These are Encoder level and Decoder
level. The number of elements of the Weight matrix W at each level varies. The
Encoder level weight matrix W(1) has a dimension L × l and Decoder level
weight matrix W(2) has a dimension l×L. These weight matrices can be modified
to incorporate the bias terms too.

7. L2 Weight Regularization term λ:
Parameter which varies the contribution of L2 Weight Regularization term
Ωweights in the Cost function.

8. Sparsity Regularization, ΩSparsity:
We can control the firing of a neuron by controlling its average output activation
value. If the average output activation value of a neuron is low, it means that the
neuron is responding (firing) only to the features present in a subset of training
examples. The average output activation value of ith neuron, ρ̂i , is:

ρ̂i = 1

N

N
∑

j=1

h(W
(p)
i · xj + b

(p)
i)

where,

• h(·) represents the Nonlinear Encoder-Decoder Activation function
• W

(p)
i represents the ith row of the weight matrix of level (p)

• bi represents the ith element of the bias term at level (p)

So, we are calculating the average output of the activation function of ith neuron
for all the training examples. We need to add a Kullback–Leibler divergence
(KL) term to the Cost Function which results in a large value whenever the
actual average output activation value of ith neuron deviates from the desired
value ρ, by which we can introduce Sparsity in the latent representation.

5.5 Experimental Results: ORL Data Set 79

ΩSparsity =
∑

i

KL (ρ||ρi) =
∑

i

ρ · log

(
ρ

ρi

)

+ (1 − ρ) · log
1 − ρ

1 − ρi

9. Sparsity Regularization term, β:
Parameter which varies the contribution of Sparsity Regularization term
ΩSparsity in the Cost function.

The above mentioned parameters are varied and the results are tabulated in the
next section.

5.5 Experimental Results: ORL Data Set

Let the notation for test accuracy of the four quadrants be TA1, TA2, TA3, and TA4
and final test accuracy for the entire image byMajority voting be TA. We have varied
the parameter λ, Transfer function and the results are tabulated in Table 5.2. From
Table 5.2, we observe that Positive saturating linear function (T F2) performs well
when compared to Logistic sigmoid function (T F1) in terms of final test accuracy
TA.

Let us tune the parameter ρ, Transfer function and perform the experiment.
The results are tabulated in Table 5.3. From Table 5.3, we again observe that T F2
outperforms T F1 in terms of final test accuracy TA.

Now, we alter the number of hidden neurons l along with ρ and Transfer function.
The results are tabulated in Table 5.4.

From the results we can observe the following:

• When the inputs are scaled properly, the Positive saturating linear function (T F2)
performs well when compared to Logistic sigmoid function (T F1) in terms of
final test accuracy TA.

• Increasing the number of dimensions, l, in the latent representation may not
necessarily result in a better representation.

Table 5.2 λ Experimentation for ORL data set

TF λ β ρ l TA1 TA2 TA3 TA4 TA

1 0.1 1 0.75 1000 0.875 0.925 0.912 0.887 0.95

1 0.01 1 0.75 1000 0.875 0.925 0.912 0.9 0.95

1 0.001 1 0.75 1000 0.875 0.912 0.9 0.887 0.938

1 0.0001 1 0.75 1000 0.863 0.887 0.887 0.9 0.938

2 0.1 1 0.75 1000 0.838 0.875 0.9 0.912 0.975

2 0.01 1 0.75 1000 0.85 0.887 0.887 0.9 0.963

2 0.001 1 0.75 1000 0.863 0.875 0.9 0.925 0.975

2 0.0001 1 0.75 1000 0.838 0.863 0.887 0.9 0.975

80 5 Non-linear Schemes for Representation

Table 5.3 ρ Experimentation for ORL data set

TF λ β ρ l TA1 TA2 TA3 TA4 TA

1 0.01 1 0.05 1000 0.85 0.912 0.9 0.887 0.938

1 0.01 1 0.1 1000 0.863 0.912 0.9 0.887 0.938

1 0.01 1 0.2 1000 0.863 0.912 0.9 0.887 0.938

1 0.01 1 0.5 1000 0.875 0.912 0.887 0.9 0.938

1 0.01 1 0.75 1000 0.875 0.912 0.9 0.887 0.95

2 0.01 1 0.05 1000 0.85 0.875 0.887 0.912 0.975

2 0.01 1 0.1 1000 0.85 0.875 0.9 0.9 0.975

2 0.01 1 0.2 1000 0.85 0.863 0.9 0.875 0.95

2 0.01 1 0.5 1000 0.825 0.863 0.9 0.9 0.975

2 0.01 1 0.75 1000 0.85 0.887 0.887 0.9 0.963

Table 5.4 Hidden layer p—Experimentation for ORL data set

TF λ β ρ l TA1 TA2 TA3 TA4 TA

1 0.01 1 0.75 600 0.85 0.887 0.9 0.9 0.925

1 0.01 1 0.75 800 0.863 0.887 0.887 0.887 0.95

1 0.01 1 0.75 1000 0.875 0.912 0.9 0.887 0.95

1 0.01 1 0.75 1200 0.863 0.925 0.9 0.9 0.938

1 0.01 1 0.75 1500 0.875 0.925 0.9 0.887 0.95

2 0.01 1 0.5 600 0.875 0.875 0.887 0.925 0.988

2 0.01 1 0.5 800 0.85 0.863 0.887 0.887 0.95

2 0.01 1 0.5 1000 0.825 0.863 0.9 0.9 0.975

2 0.01 1 0.5 1200 0.85 0.863 0.887 0.875 0.95

2 0.01 1 0.5 1500 0.838 0.863 0.9 0.875 0.95

• By proper tuning of parameters, we can achieve better representation even with a
smaller value of l, dimension of latent representation. For Example, in Table 5.4,
for l = 600, we got better Test accuracy TA, than higher values of l.

5.6 Experimental Results: MNIST Data Set

Let us consider the patterns of classes labelled 7 and 9 from the MNIST data set.
Each pattern is a 28 × 28 image, whose pixel values range from 0 to 255. Every
pattern is converted into a binary row vector of dimension 1 × 784, such that a pixel
value greater than 127 is replaced by 1 and pixel value less than or equal to 127
is substituted by 0. These row converted binary patterns are stacked to form the
training set of size 12,214 and test set of size 2037 respectively. Each pattern is a
binary vector of length 784.

A single hidden layer Autoencoder is used as a feature extractor and Softmax
layer is used as the classifier. The experiment mentioned in Sect. 5.4 is repeated for

5.6 Experimental Results: MNIST Data Set 81

the MNIST Data set. As the dimension of the input vector is less (784 in the case
of MNIST Data set), we have directly used the input vectors without pursuing any
divide and conquer strategy as mentioned in Sect. 5.4.

The input image x (28 × 28 image as 1 × 784 vector) is fed into the Autoencoder
and the reconstructed estimate x̂ is obtained. The Structural Similarity Index, SSIM
between the input image x and its estimate x̂ is calculated for all the training and test
patterns and its values are averaged. The SSIM is a good measure of reconstructing
capability of the Autoencoder. The output parameters like Test Accuracy, averaged
SSIM of training set and averaged SSIM of test set are tabulated for different
experiments. The parameter MaxEpochs= 200 is fixed for all the experiments.

Fixing the parameter l, all other parameters are varied and the results are
tabulated in Table 5.5. Similarly, fixing all other parameters as constant, parameter
l is varied and the results are tabulated in Table 5.6.

Table 5.5 ρ Experimentation for MNIST data set

TF λ β ρ l TA (%) Train set average SSIM Test set average SSIM

1 0.01 1 0.05 100 98.72361 0.471434 0.47556

1 0.01 1 0.1 100 98.52725 0.480052 0.483841

1 0.01 1 0.2 100 98.67452 0.495541 0.499057

1 0.01 1 0.5 100 98.72361 0.386587 0.389973

1 0.01 1 0.8 100 98.8218 0.362159 0.365737

1 0.01 1 0.95 100 98.7727 0.326204 0.329523

1 0.001 1 0.05 100 99.01816 0.566713 0.565715

1 0.001 1 0.1 100 99.06726 0.482927 0.479977

1 0.001 1 0.2 100 99.01816 0.473056 0.469951

1 0.001 1 0.5 100 98.7727 0.579093 0.5807

1 0.001 1 0.8 100 98.91998 0.632808 0.634788

1 0.001 1 0.95 100 98.91998 0.599323 0.601631

2 0.01 1 0.05 100 99.01816 0.819241 0.820994

2 0.01 1 0.1 100 99.06726 0.850315 0.852342

2 0.01 1 0.2 100 98.96907 0.880027 0.881356

2 0.01 1 0.5 100 98.67452 0.885968 0.885967

2 0.01 1 0.8 100 98.7727 0.844688 0.843249

2 0.01 1 0.95 100 99.01816 0.733145 0.731035

2 0.001 1 0.05 100 98.96907 0.828054 0.829163

2 0.001 1 0.1 100 99.11635 0.85617 0.858287

2 0.001 1 0.2 100 98.91998 0.890277 0.890806

2 0.001 1 0.5 100 98.67452 0.891055 0.890241

2 0.001 1 0.8 100 98.8218 0.84853 0.845882

2 0.001 1 0.95 100 98.96907 0.753597 0.751189

82 5 Non-linear Schemes for Representation

Table 5.6 Hidden layer l—Experimentation for MNIST data set

TF λ β ρ l TA (%) Train set average SSIM Test set average SSIM

1 0.01 1 0.1 50 98.52725 0.471213 0.475623

1 0.01 1 0.1 250 98.67452 0.525936 0.529374

1 0.01 1 0.1 500 98.87089 0.529627 0.53246

1 0.01 1 0.1 600 98.67452 0.554979 0.557877

1 0.001 1 0.1 50 98.96907 0.477558 0.477894

1 0.001 1 0.1 250 98.96907 0.539827 0.535098

1 0.001 1 0.1 500 98.67452 0.560211 0.553098

1 0.001 1 0.1 600 98.33088 0.580901 0.573728

2 0.01 1 0.1 50 98.91998 0.805224 0.810006

2 0.01 1 0.1 250 99.01816 0.893267 0.89295

2 0.01 1 0.1 500 98.13451 0.920173 0.917866

2 0.01 1 0.1 600 97.79087 0.924482 0.922242

2 0.01 1 0.1 50 98.87089 0.815872 0.8199

2 0.01 1 0.1 250 98.91998 0.917327 0.914497

2 0.01 1 0.1 500 98.42906 0.91927 0.917235

2 0.01 1 0.1 600 97.34904 0.942189 0.937611

Fig. 5.14 Reconstructed images using Logistic sigmoid function, T F1

From Tables 5.5 and 5.6, we can again observe that the Positive saturating linear
function (T F2) performs well when compared to Logistic sigmoid function (T F1) in
terms of SSIM.

Figure 5.14 shows the reconstructed images of some patterns, where the Autoen-
coder used T F1 with ρ = 0.5 and λ = 0.01. Similarly, Fig. 5.15 shows the

5.6 Experimental Results: MNIST Data Set 83

Fig. 5.15 Positive saturating linear transfer function, T F2

reconstructed images of some patterns using Positive saturating linear transfer
function, T F2. From Figs. 5.14 and 5.15, we observe a better reconstruction
capability of Positive saturating linear transfer function (Close to the famous ReLu
function).

In order to understand how the weight matrix in the Encoder level represents
certain features and how the parameter ρ affects the weight matrix, consider
Figs. 5.16 and 5.17.

For an Autoencoder of 100 hidden neurons, each neuron is represented in a 10 ×
10 grid in Figs. 5.16 and 5.17. Each grid unit represents the 784 weights for each
neuron as an 28×28 image. For ρ = 0.05 in Fig. 5.16, the average output activation
values is low so the weight images 28 × 28 in each grid is nearer to black region
representing smaller values and the neurons will fire only for certain features.

Similarly, for ρ = 0.95, in Fig. 5.17, the weights are having higher values nearer
to the white regions and no sharp characteristics when compared to Fig. 5.16.

84 5 Non-linear Schemes for Representation

Fig. 5.16 Weight matrix with ρ = 0.05

Fig. 5.17 Weight matrix with ρ = 0.95

References 85

5.7 Summary

In this chapter, we have considered nonlinear feature extraction. Here each extracted
feature may be viewed as a nonlinear combination of the given L features. We
have discussed and examined three different schemes; they are useful in both
dimensionality reduction and visualization. Specifically, we have considered

1. Self-organizing neural network: It is popularly called the self-organizing map
(SOM). It can be used to map high-dimensional data vectors into a two or a
three dimensional space. It has some nice properties:

• It preserves the topological structure present in the data.
• It can be viewed as a neural network architecture for clustering. The clusters

are perceived based on the self-organization property exploited by the training
algorithm.

• It is helpful in visualizing the data in a two-dimensional space that is easy for
human consumption.

2. T-Distributed Stochastic Neighbor Embedding (T-SNE) Plot: It is popularly
known as the t-SNE plot. It is a nonlinear technique for dimensionality reduction
and visualization of high-dimensional data. Some of its features are:

• It is the most popular embedding technique for visualization of high-
dimensional data.

• It is popular in analysing the embedding techniques employed in complex
networks including social networks, chemical and biological networks.

3. Autoencoder: It is also a neural network architecture primarily used in nonlinear
dimensionality reduction. Some of its features are:

• Based on the type of activation function used by various neurons, it can work
like a nonlinear feature extractor (nonlinear activation) or like PCA to perform
linear feature extraction (linear activation).

• It is found to be an apt tool when the classes are not linearly separable in the
original feature space.

In each of the above cases, we have conducted experiments and reported the
results using two benchmark data sets, the MNIST handwritten digits data set and
the ORL face data set.

References

1. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Mining
Knowl. Discov. 2(2), 121–167 (1998)

2. Schölkopf, B., Smola, A.J.: Learning with Kernels. MIT Press (2001)
3. Rifkin, R.M.: Multiclass Classification, Lecture Notes, Spring08. MIT, USA (2008)
4. Witten, I.H., Frank, E., Hall, M.A.: Data Mining, 3rd edn. Morgan Kauffmann (2011)

86 5 Non-linear Schemes for Representation

5. Kohonen, T., Honkela, T.: Kohonen network. Scholarpedia 2(1), 1568 (2007)
6. van der Maaten, L.J.P., Hinton, G.E.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9,

2579–2605 (2008)
7. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016)

Chapter 6
Conclusions

Abstract In this chapter, we provide a brief summary of various representation
schemes discussed in the book. Then we provide conclusions for each of the
dimensionality reduction techniques discussed and used in our experiments.

It is well-known that representation forms the most important step in machine
learning. It can have impact on both the computational resources required to
implement the ML algorithm and also the performance measures of the algorithm.
Even though there are other schemes for representing patterns/data items, vector

space representations have been the state-of-the-art. Here, each item is represented
as a vector in a multi-dimensional space. Based on this view, a collection of items is
represented as a data matrix of size n × L where there are n training patterns and L

features.
Dimensionality reduction is an important tool for achieving a lower-dimensional

representation of the data. This is important especially in situations where distance
between a pair of patterns is computed by the ML algorithm. The nearest neighbour
algorithms are essentially dependent on computing distance between a test pattern
and the training patterns to find out the nearest neighbour. It is well-known that
the nearest neighbour classifier and its variants suffer in high-dimensional spaces
because of the concentration effect. Related problems are discussed in Chap. 3.
Solutions to this problem in the form of using Fractional norms to compute inter-
pattern distances and locality sensitive hashing are examined in the same chapter.
Extensive experiments were carried out the results are analysed in Chap. 3.

There are three different approaches for dimensionality reduction. They are:

1. Feature selection schemes: Here a subset of l features is selected from the
given set of L features where L » l. There are different approaches to feature
selection including filter methods, wrapper methods, and embedded methods.
We have examined various feature selection schemes in Chap. 4. It is observed
that mutual information based feature selection is ideally suited to deal with high-
dimensional data sets; it is popularly used in information retrieval where the text
documents are represented as vectors in a very high-dimensional space. Among
the contenders, feature selection based on correlation also works well. Further,

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
M. N. Murty, M. Avinash, Representation in Machine Learning, SpringerBriefs
in Computer Science, https://doi.org/10.1007/978-981-19-7908-8_6

87

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-7908-8_6&domain=pdf

 476 4612 a 476 4612 a

https://doi.org/10.1007/978-981-19-7908-8_6

88 6 Conclusions

it is observed that classifiers like decision tree classifier are good for embedded
methods as it can select relevant features in the process of building the classifier.

2. Feature extraction schemes: Here a set of l features are derived out of the given
set of L features where l << L. Let f1.f2, · · · , fL be the given L features. The
extracted features may be viewed as f 1, f 2, · · · , f l , where

f i = gi(f1, f2, · · · , fL) f or i = 1, 2, · · · , l,

where gi is a function of the given L features. Based on the nature of g′
i s we can

divide the feature extraction schemes into either linear or nonlinear schemes.

a. Linear Feature extraction: Here,

f i = c1if1 + c2if2 + · · · + cLifl, f or i = 1, 2, · · · , l.

That means each extracted feature is a linear combination of the given L

features. It is possible to view this kind of feature extraction as a consequence
of matrix multiplication. We can represent the operation as a matrix vector
multiplication as follows:

⎛

⎜
⎜
⎜
⎝

f 1

f 2

...

f l

⎞

⎟
⎟
⎟
⎠

=

⎡

⎢
⎢
⎢
⎣

c11, c21, · · · , cL1

c12, c22, · · · , cL2
...

c1L, c2L, · · · , cLL

⎤

⎥
⎥
⎥
⎦

⎛

⎜
⎜
⎜
⎝

f1

f2
...

fL

⎞

⎟
⎟
⎟
⎠

We have considered principal components, random projections, and features
extracted using NMF under this category. We have discussed in detail how
these linear schemes work on some benchmark data sets in Chap. 4. A major
misconception in terms of the use of principal components in classification is
that the first few PCs corresponding to the leading eigenvalues are good for
classification. We have demonstrated, in Chap. 4, how such a notion can fail
in classification/discrimination.

b. Nonlinear Feature Extraction: Here the extracted feature f i is a nonlinear
combination of the given features, f1, f2, · · · , fL. One may appreciate the
power of nonlinear features using a simple example of xor (exclusive or)
computation. We can abstract the functionality of xor using the following
truth table. It is True (1) only when exactly one of either a or b is True (1),
False (0) otherwise. It is not possible to represent xor as a linear combination
of a and b. It means that it is not possible to express xor(a, b) = αa +
βb where α and β. are any real numbers. However, if we have a nonlinear
feature ab in addition to a and b, then we can represent xor(a, b) as a linear
combination as given by

xor(a, b) = a + b − 2ab.

References 89

Table 6.1 Truth table of
xor(a, b)

a b xor(a, b)

0 0 0

0 1 1

1 0 1

1 1 0

(Please check by plugging in the values for a, b, and ab (Table 6.1).)
So, nonlinear features can be highly expressive and can help us in realizing

simpler classifiers by using nonlinear feature extraction. We have considered
three popular nonlinear feature extraction schemes in Chap. 5. These are
SOM, t-SNE features and Autoencoders. These schemes are useful in both
dimensionality reduction and visualization. We have conducted experimental
studies using these schemes on benchmark data sets. We demonstrated how
SOM preserves the topological properties and how various parameter values
affect the working of autoencoders.

References

1. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Mining
Knowl. Discov. 2(2), 121–167 (1998)

2. Schölkopf, B., Smola, A. J.: Learning with Kernels. MIT Press (2001)
3. Rifkin, R.M.: Multiclass Classification, Lecture Notes, Spring08. MIT, USA (2008)
4. Witten, I.H., Frank, E., Hall, M.A.: Data Mining, 3rd edn. Morgan Kauffmann (2011)
5. Murty, M.N., Susheela devi, V.: Introduction to Pattern Recognition and Machine Learning.

World Scientific/IISc Press (2015)

Index

A
Activation function, 78
Agglomerative algorithm, 27
Approximate matching, 13
Approximate nearest neighbour, 13, 37
Artificial intelligence, 18
Autoencoder, 14, 23, 74, 75, 85
Autoencoder for representation, 74
Automated deduction, 18

B
Bayes classifier, 14, 25
Bayes rule, 25
Binary data, 5
Binary pattern, 48
Binary vector, 48

C
Categorical data, 5
Categorical features, 2
Centroid, 8, 30
City-block distance, 38
Class-conditional independence, 26
Classification, 13, 29
Cluster, 8
Clustering, 7, 29
Clustering algorithm, 12
Combination of classifiers, 13
Computational resources, 87
Concentration effect, 37, 40, 41, 87
Concentration problem, 30
Cosine similarity, 6, 19
Covariance, 12

Covariance matrix, 13, 22, 52, 53
Cross validation, 15

D
Data acquisition, 1
Data collection, 3
Data matrix, 13, 19, 31, 34
Data vector, 7
Decision tree, 26, 50
Decision tree classifier, 15, 49, 88
Decoder, 23
Decoder level, 75
Deep learning, 1
Dependency, 48
Dimensionality, 33
Dimensionality reduction, 1, 13, 20, 59, 85
Distance, 5, 29, 30, 48
Distance function, 8
Domain knowledge, 15
Domain size, 10
Dot product, 9
Dynamic range, 39

E
Eigenvalue, 52
Eigenvector, 22, 52
Eigenvector direction, 13
Embedded method, 21, 48, 50, 87
Encoder, 23
Encoder level, 75
Epoch, 77
Euclidean distance, 6, 8, 19, 38, 48, 68
Example of missing data, 4

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
M. N. Murty, M. Avinash, Representation in Machine Learning, SpringerBriefs
in Computer Science, https://doi.org/10.1007/978-981-19-7908-8

91

 476 4612 a 476 4612 a

https://doi.org/10.1007/978-981-19-7908-8

92 Index

Example of normalization, 11
Expectation maximization, 27

F
Farthest neighbour (FN), 12, 37
Feature engineering, 1, 7, 17
Feature extraction, 13, 21, 88
Feature extractor, 14
Feature selection, 13, 20, 47, 53, 87
Filter method, 21, 47, 87
First-order predicate calculus (FOPC), 18
Fisher’s discriminant, 24
Fractional norm, 37, 40, 41, 87
Frequent words, 12
Frobenius norm, 22

G
Gaussian random projection, 56, 57
Genetic algorithm, 21, 53
Gower distance, 9

H
Hamming distance, 43
Heterogeneous value distance matrix (HVDM),

9
Hidden layer, 74, 76
Hierarchical clustering, 27
High-dimensional, 12
High-dimensional data, 19
High-dimensional space, 37, 41, 87

I
Inference, 19
Information retrieval, 12, 19, 87
Iris data set, 50

K
Kernel function, 23
K-fold cross validation, 15
K-means algorithm (KMA), 27, 30
K-nearest neighbour (KNN) classifier, 25, 30,

37, 49, 50, 52, 56, 70
K-nearest neighbours (KNNs), 8
Kullback-Leibler (KL) divergence, 78

L
Latent Dirichlet allocation (LDA), 27
Likelihood value, 14

Linear combination, 13, 47
Linear discriminant, 26
Linear discriminant function, 14
Linear feature extraction, 13, 88
L1 norm, 38
L2 norm, 38
L∞ norm, 38
Locality sensitive hashing (LSH), 13, 25, 41,

44, 87
Locality sensitive mapping, 37

M
Machine learning (ML), 1, 16
Matching, 12
MATLAB, 51, 68
Matrix factorization, 13
Maximum variance direction, 13
Mean squared error, 77
Median, 8
Minkowski distance, 37
Missing data, 1, 2, 4, 17
Mixed data, 9
Mixed features, 4
ML algorithm, 87
MNIST data, 15
MNIST data set, 30, 48, 52, 56, 68, 80
Mode, 8
Model estimation, 2, 14
Model evaluation, 3
Model explanation, 3, 15
Model learning, 2
Model selection, 2, 14
Model validation, 2, 14
Modus ponens, 18
Mutual information, 13, 21, 48, 87

N
Nav̈e bayes classifier, 26
Nearest neighbour (NN), 8, 12, 29
Nearest neighbour classifier (NNC), 25, 29, 43,

87
Nearest neighbour distance, 37
Neural network, 1, 14, 15, 23
Noisy measurement, 7
Nominal data, 5
Non linear classifier, 24, 49
Non-linear combination, 13, 63
Nonlinear projection, 14
Non-negative, 13
Non-negative matrix factorization (NMF), 13,

22, 59, 88
Nonlinear feature extraction, 13, 22, 85, 88

Index 93

Normalization, 6, 10
Number of epochs, 77
Numerical features, 2

O
One-hot representation, 9
Optimal subset of PCs, 53
Optimization schemes, 63
Ordinal data, 5
ORL Face Data set, 15, 34, 37, 41, 50, 53, 56,

74, 79
Orthonormal eigenvectors, 52
Outlier, 2, 6, 31
Overfitting, 3, 20

P
Parameter estimation, 14
Partitional algorithm, 26
Pattern vector, 8
Peaking phenomenon, 20
Perceptron, 1
Perplexity, 68
Posterior probability, 10, 25
Predictor importance, 51
Pre-processing, 17
Principal component analysis, 52
Principal components (PC), 13, 21, 50, 52, 53,

88
Prior probability, 14
Probability of error, 25
Probability structure, 14
Problem solving, 18
Propositional logic, 18
Proximity measure, 2, 5
Proximity score, 5

R
Random projections, 88
Random subspace, 13
Rare words, 12
Representation, 1, 7, 16, 17, 87
Representation in AI, 18
Representation of classes, 25
Representation of clusters, 26
Representation of data items, 19
Representing using faces, 64

S
Sample mean, 11
Sample standard deviation, 11

Scaling, 10
Scaling based on range, 10
Scatter matrix, 24
Self-organizing map (SOM), 64, 85
Similarity measure, 5
Sklearn package, 56
Slef-organizing map, 24
Social network, 7
Soft computing, 19
Sparse random matrix, 56
Sparse random projection, 57
Sparsity regularization, 78
Splitting training data, 14
Standard normal, 11
Standardization, 10
Statistical, 12
Statistical machine learning, 19

T
Test accuracy, 49, 50, 79, 80
Test set, 56, 57
Topological structure, 24
Training data, 3, 8, 14, 49
Training set, 31, 56, 57
Transfer function, 77
Triangle inequality, 39
T-SNE plot, 14, 68, 85

U
Uncorrelated, 13, 22
Unit hypersphere, 11
Unit variance, 10

V
Validation data, 3, 14
Vector space model, 19
Visualization, 14, 85

W
Weights regularization, 78
Weight vector, 14
Winner take all, 66
Within range, 12
Wrapper method, 21, 48, 50, 87

Z
Zero mean, 10
Zero-mean data, 21

	Preface
	Overview
	Audience
	Organization

	Contents
	Acronyms
	1 Introduction
	1.1 Machine Learning (ML) System
	1.2 Main Steps in an ML System
	1.2.1 Data Collection/Acquisition
	1.2.2 Feature Engineering and Representation
	1.2.3 Model Selection
	1.2.4 Model Estimation
	1.2.5 Model Validation
	1.2.6 Model Explanation

	1.3 Data Sets Used
	1.4 Summary
	References

	2 Representation
	2.1 Introduction
	2.2 Representation in Problem Solving
	2.3 Representation of Data Items
	2.4 Representation of Classes
	2.5 Representation of Clusters
	2.6 Summary
	References

	3 Nearest Neighbor Algorithms
	3.1 Introduction
	3.2 Nearest Neighbors in High-Dimensional Spaces
	3.3 Fractional Norms
	3.4 Locality Sensitive Hashing (LSH) and Applications
	3.5 Summary
	References

	4 Representation Using Linear Combinations
	4.1 Introduction
	4.2 Feature Selection
	4.3 Principal Component Analysis
	4.4 Random Projections
	4.5 Non-negative Matrix Factorization
	4.6 Summary
	References

	5 Non-linear Schemes for Representation
	5.1 Introduction
	5.2 Optimization Schemes for Representation
	5.3 Visualization
	5.4 Autoencoders for Representation
	5.5 Experimental Results: ORL Data Set
	5.6 Experimental Results: MNIST Data Set
	5.7 Summary
	References

	6 Conclusions
	References

	Index

