
Design and Implementation of VCP Network
for Open Flow

Jie Ke, Changhong Zhu, and Yisen Lin(B)

School of Computer Science and Engineering, Guilin University of Aerospace Technology,
Guilin 541004, Guangxi, China
linyisen0409@163.com

Abstract. The traditional TCP congestion control mechanism is implicit feed-
back. In the high-speed network environment, it is easy to have problems such as
unclear congestion indication and low efficiency, resulting in low link utilization.
To solve this problem, this paper designs and implements a feedback Variable-
structure congestion Control Protocol (VCP) network based on Open Flow to
improve the link utilization in the high-speed network environment. Firstly, based
on the POX controller, a new OpenFlow switch and controller is designed to
replace the router to realize the network intermediate node function of the VCP
protocol. Secondly, the TCP/IP protocol stack of Linux is studied, and the end
system function of the VCP congestion control mechanism is realized by using
the modular architecture of the Linux kernel function, so as to realize the VCP
network terminal. Finally, the VCP is deployed on the mininet platform for the
operation and test verification, and the network is built on the mininet platform
to test the efficiency and fairness of the VCP. The experimental results show that
the VCP protocol can achieve higher link utilization and ideal fairness in Gbit/s
network.

Keywords: Congestion control mechanism · Open Flow · VCP · Linux

1 Introduction

The TCP protocol adopts the conservative congestion window growth method AIMD
[1, 2] (Additive Increase Mutilplicative Decrease), which cannot effectively utilize the
network bandwidth, and with the increase of high-latency data streams, the unfairness
of TCP is increasingly prominent. The focus of congestion control mechanisms can be
divided into two categories: based on end systems and based on intermediate nodes
(based on implicit feedback [3, 4] and based on explicit feedback [5]). Implicit feedback
mechanisms rely solely on end nodes to gather information (usually packet loss and delay
increases) to guess the state of network congestion. The research of congestion control
protocol based on explicit feedback mechanism has become an important research trend
for network congestion problems.

In IP network, there are mainly two types of explicit feedback mechanisms: one is
based on congestion notification feedback, such as ECN [6–8], Anti-ECN [9],Multilevel

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
C. Su and K. Sakurai (Eds.): SciSec 2022 Workshops, CCIS 1680, pp. 62–79, 2022.
https://doi.org/10.1007/978-981-19-7769-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-7769-5_5&domain=pdf
https://doi.org/10.1007/978-981-19-7769-5_5


Design and Implementation of VCP Network for Open Flow 63

ECN [10], MaxNet [11, 12], the routing node marks a few bits in the data packet header
according to the network load information, the marking information is fed back by the
data receiving end to the data sending terminal, and the sending terminal adjusts the
sending rate according to the marking information. The second is based on explicit rate
feedback, such as Quick Start [13, 14], XCP [15, 16], VCP [17, 18], RCP [19], CADPC
[20], ACP [21], JexMax [22]. These algorithms transmit data flow state information
and network state information between end systems and intermediate routing nodes by
introducing congestion headers, achieving high network utilization and better fairness.
Whether it is an implicit congestion control mechanism or an explicit congestion control
mechanism, the focus is on the traditional network architecture. In recent years, a new
network architecture, namely SDN [23] (SoftwareDefinedNetwork), has been proposed,
which abstracts all network devices in the network as a whole and abstracts them into
a network operating system, separates the control layer and the forwarding layer, and
provides a global Regulates network traffic and efficiently utilizes network bandwidth,
which alleviates network congestion to a certain extent.

Among the many protocols of SDN, OpenFlow is only one of the most respected
and widely recognized protocols, but it is not the only way for SDN. At this stage, SDN
is difficult to promote, and the implicit congestion control mechanism has shown many
deficiencies. Therefore, the research on explicit congestion control protocols is still an
important trend to solve congestion control. Among many explicit congestion control
protocols, it is possible to The Variable-structure Congestion Control Protocol (VCP)
can maintain high efficiency, fairness, and stability in both traditional and high-speed
networks, and its network load feedback requires only two ECN bits. Mark. This paper
studies the VCP protocol uses the OpenFlow technology to realize the VCP network
intermediate node, uses the Linux TCP/IP protocol stack to realize the VCP terminal
node, forms the VCP network, and verifies the performance of the VCP protocol in the
high-speed network environment.

2 Related Works

2.1 VCP Protocol

Typical representatives of explicit rate-based feedback methods include VCP and XCP.
This kind of algorithm transmits information such as network state information and
data flow state by introducing congestion headers between network terminal systems
and network intermediate nodes. However, XCP has many problems, such as increasing
the load of the network, not using a promotion, increasing the burden of routers, and
relatively complex network promotion projects.

(1) Load factor VCP divides the degree of network congestion into three levels: Low
Load, High Load, and Overload. The Load Factor is used to reflect the degree
of congestion in the network. VCP uses different combinations of the two bits of
ECN in the data packet header to indicate the three levels of network congestion
respectively: (00) 2 indicates that the sending terminal does not support the VCP
protocol; (01) 2 indicates that the network congestion level is low load; (10) 2



64 J. Ke et al.

indicates that the network congestion level is high load; (11) 2 network congestion
level is overload. The formula for calculating the VCP load factor is:

ρl = λl + κq · q̃l
γl + Cl · tp

Among them, research shows that the RTT value of 75%–90% of the data flow
on the Internet is less than 200 ms, so take 200 ms; tp is the incoming traffic (in
bytes) within the time; λl is the steady-state queue length during this time; κq take
0.5; γl is the expected utilization rate of the link, take 0.98;Cl is the link bandwidth.
The ECN bits are encoded according to ρl : when 0≤ ρl < 80%, mark (01) 2; when
80% ≤ ρl <100%, mark (10) 2; when ρl ≥ 100%, mark (10) 2.

(2) Adjustment of congestion window
The sending terminal dynamically adjusts the congestion window cwnd accord-

ing to the encoding of the ECN bits in the returned ACK, and the adjustment
algorithm of the congestion window is as follows: ➀ The ECN code is (01)2,
indicating that the current network load index belongs to the low load range,
and the MI algorithm is used. The expression of the congestion window cwnd
is: cwnd(t + rtt) = cwnd(t)×(1 − ξ). Among them, ξ = 0.0625. Since each data

stream has a different RTT, adjust the parameter ξ to ξ ← (1+ξ)
rtt
tρ −1.➁The ECN

code is (10)2, indicating that the current network load index belongs to the high
load range, and the AI algorithm is used. The expression of the congestion window
cwnd is: cwnd(t + rtt) = cwnd(t) + α. ➂ The ECN code is (11)2, indicating that
the current network load index belongs to the overload range, and the MD algo-
rithm is used. The original calculation expression of the congestion window cwnd
is: cwnd(t + δt) = cwnd(t)×β. Among them, β = 0.875, δt → 0+. Since MD is
to recover the network from congestion and must be performed quickly, similar to
an impulse behavior, the parameter β is independent of RTT, so it is not necessary
to adjust according to the different RTT of each data stream.

2.2 OpenFlow Technology

The OpenFlow technology was first proposed in the literature [24]. This technology
enables the network to have programmability. Nick Mckeown and his team further pro-
posed the concept of SDN (Software Defined Network, Software Defined Network),
which aims to enable users to develop applications through software, only focusing
on the upper management interface without considering the underlying complex net-
work topology. With the in-depth study of SDN, control platforms such as NOX, POX,
Onix [25], Floodlight, Beacon, and Maestro have emerged. These current mainstream
controllers are encapsulating the OpenFlow protocol that communicates with switches.
In this paper, the network intermediate routing node is the OpenFlow switch and con-
troller based on the OpenFlow protocol. The switch and the controller communicate
through theOpenFlow secure channel. The controller configures andmanages the switch
functionally. The datagram is sent to the controller for processing.



Design and Implementation of VCP Network for Open Flow 65

2.3 OpenFlow Technology

Mininet [26] is a lightweight software-defined network and test platform, which uses
lightweight virtualization technology to make a single system look like a complete net-
work running the corresponding kernel system and user code, or simple It is understood
as a process-based virtualization platform in the SDN network system, which supports
various protocols such as OpenFlow and OpenvSwitch.

In summary, OpenFlow switches and controllers can be designed using OpenFlow
technology to replace routers to implement intermediate nodes in VCP networks.

3 Design and Implementation of OpenFlow-Oriented VCP
Network

This paper designs and implements theVCP network terminal system based on the Linux
protocol stack, and designs and implements the VCP network intermediate nodes based
on the Mininet platform for OpenFlow, namely the OpenFlow switch and the OpenFlow
controller.

3.1 Design and Implementation of Intermediate Nodes in the VCP Network

The middle node design of the VCP network adopts the third-party controller POX, and
based on the POX controller, new OpenFlow switches and controllers are designed. The
newOpenFlow switch required in this paper can be designed using the POX controller. In
addition, the POX controller supports compiling new controllers. Therefore, this paper
uses the POX controller to design a new OpenFlow switch and controller to replace the
router to realize the intermediate node of theVCPnetwork. In this paper, the intermediate
routing node is divided into a controlmanagement part and a data processing part.Among
them, the control management part is responsible for the new OpenFlow controller
designed according to the POX controller, responsible for the calculation of the VCP
load factor, monitoring the real-time information of the switch and the modification
of the flow table information; and the data processing part is responsible for the data
channel function. From Fig. 1, it can be seen that the OpenFlow switch needs to realize
the identification, ECN marks and forwards data packets to the corresponding ports.

This paper uses the controller POX to design a new OpenFlow switch. In order to
meet the required functions, refer to the switch under the /pox/forwarding file to design
a new OpenFlow switch, and its source code is also placed in the corresponding In
the /pox/forwarding file, namely vcp_of_switch.py, in addition to the normal switch
function, the functions that need to be implemented are as follows:

➀ Check whether the incoming data packet is a VCP data packet, that is, check whether
the protocol number field of the IP header of the data packet is marked as the VCP
protocol.

➁ Data collection, that is, record the length of each output queue and the data flow of
each port.



66 J. Ke et al.

Fig. 1. The overall design structure of the intermediate routing node of VCP based on OpenFlow

➂ Update the ECN mark of the packet header. When a packet passes through the
OpenFlow switch, it must be matched by the flow table before it can be forwarded.
The design of the flow table matching rule is shown in Fig. 2:

Fig. 2. OpenFlow switch packet matching rules

In order to implement the OpenFlow switch, this paper defines three classes
in vcp_of_switch.py, namely VCP_Of_Switch (object), OF_Connection (object) and
Switch_Features (object).

A. Class OF_Connection (object)
When the entire network starts up, the OpenFlow switch needs to establish a

connection with the controller through a secure channel and maintain communi-
cation. And OF_Connection (object) is responsible for encoding and decoding the
information between the switch and the controller. The main functions are shown
in Table 1.



Design and Implementation of VCP Network for Open Flow 67

Table 1. Main functions in OF_Connections (object)

Function Features

__init__ (self, io_worker) Initialize the module

set_message_handler (self, handler) set message processor

send_message (self, data) Send information to the switch

read_message (self, io_worker) Decode the information sent by the switch

_error_handler (self, reason, info) Handling error messages

_extract_message_xid (self, message) Extract the information sent by the switch

close (self) Turn off the information processor

get_controller_id (self): Get switch ID

B. VCP_Of_Switch (object)
VCP_Of_Switch (object) is the core part of the whole module and themain class

of the OpenFlow switch function implementation. Its functions can be divided into
three parts: one is the setting of the basic parameters of the switch, such as port,
buffer size and flow table, etc.; The operation of the flow table entry; the third is
the interaction between the switch and the controller. The implementation of these
three parts is described below.

➀ Setting of the basic parameters of the switch The OpenFlow switch is different from
the traditional switch. In addition to the basic functions of the traditional switch,
it also includes the function of the flow table and the function of communicating
with the controller. It is not only necessary to define the information of each port
and cache of the switch in the VCP_Of_Switch (object), but also need to define the
flow table in the OpenFlow protocol. The definition of each parameter of the switch
and the definition of the parameters of the information that the switch interacts with
the controller, in VCP_O_Switch (object), the core function that implements the
above functions is __init__ (self, dpid, name, ports, miss_send_len, max_buffers,
max_entries, features), in the header of the class, that is, the parameters that the
initialization switch must have.

➁ Flow entry In order to further improve the definition and operation of the flow table,
the control POX compiled the library file flow_table.py, which defines the basic
composition of the flow table entry in detail, such as the definition of matching
settings, instruction sets, and counters, and also defines the convection table. The
operation includes adding, modifying, and deleting the flow table. The controller
calls this library file, sends information to the switch, and sets the flow table, and
the switch reconfigures the flow according to the information sent by the controller
according to this library file. Surface. Therefore, in VCP_Of_Switch (object), the
functions and functions of the controller to the flow table direction management are
shown in Table 2.



68 J. Ke et al.

Table 2. Flow table operation functions

Function Features

_handle_FlowTableModification (self, event) Process flow table

_flow_mod_modify (self, flow_mod,
connection, table, strict=False)
_flow_mod_modify_strict (self, flow_mod,
connection, table)

Modify the flow table modification of the
switch

_flow_mod_delete (self, flow_mod,
connection, table, strict)
flow_mod_delete_strict (self, flow_mod,
connection, table)

Delete the flow table of the switch

_flow_mod_add (self, flow_mod, connection,
table)

Add new flow table

➂ Interaction between switch and controller After the switches and controllers in the
network are turned on, they need to interact to establish connections. First, the
switch and the controller are connected through a secure channel, and the switch
will default the secure channel as a local connection. Once the secure channel is
established, both the switch and the controller will send a “hello” message to each
other. At the same time, the switch and the controller can send each other a message.
The “echo” message measures the delay, whether the connection is maintained, etc.
These two kinds of messages belong to the symmetric message, and some functions
that implement the definition of the symmetric message are shown in Table 3.

Table 3. Switch and controller message part functions and functions

Function Features

rx_message (self, connection, msg) Process the message sent by the controller

set_connection (self, connection) Secure Channel Connection Settings

send (self, message, connection=None) Send a message to the controller

_rx_hello (self, ofp, connection): process hello message

_rx_echo_request (self, ofp, connection) Handling echo requests

_rx_echo_reply (self, ofp, connection) Reply to the echo message sent by the controller

send_hello (self, force=False) Send a hello message to the controller

rx_packet (self, packet, in_port, packet_data) Handling secure channel information



Design and Implementation of VCP Network for Open Flow 69

In this paper, the controller not only needs to manage the flow table regularly, but
also needs to obtain the port information regularly, that is, the controller calculates the
average queue length every 200ms. The calculation formula is: Among them, theweight;
represents the current read average queue length; represents the weighted average queue
length. Therefore, the switch must count the buffer queue length of each output queue.
The controller needs to obtain the statistical information of each output port, and the
controller obtains the statistical information by sending a read-state message to the
switch.

2) OpenFlow controller design and implementation

The OpenFlow controller designed and implemented in this paper mainly realizes
three functions: the first is the interaction between the controller and the switch; the
second is the flow table management of the switch; the third is the calculation of the
VCP load factor. The controller POX defines a large number of library files to support
its own implementation. This paper uses it to compile a new OpenFlow controller. The
implementation of the controller function is in the compiled VCP_Of_Controller.py
module, which defines three classes to implement the controller. The functions are
Of_Connection (object), VCP_Of_Controller (event) and Load_Factor_Computing
(event). The three classes are described below.➀Of_Conection (object) The controller’s
class Of_Connection (object) is used to encode and decode the information that the con-
troller communicates with the switch. Its design and implementation are the same as
the function of the class Of_Connection (object) in the switch. It realizes the “hello”
message when the controller communicates with the switch. At the same time as the
encoding and decoding of the “echo” message, this class also needs to encode and
decode the controller-to-switch message, and the sub-messages “Features”, “Configu-
ration”, “Read-State”, “Modify-State” under the message” and “Send-Packet” play an
important role in the controller controlling the switch. ➁ VCP_Of_Controller (event)
VCP_Of_Controller (event) is one of the core functions of the controller. It realizes the
operation of the controller on the switch flow table, including the deletion, addition, and
modification of the switch flow table entry, the matching rules in the flow table entry, and
the action command of the instruction set. Its basic parameter settings are set according
to the library file of the controller POX. In the design of this paper, the switch is con-
nected to three hosts, so the data packet goes through the flow table matching process in
Table 4.

The controller needs to delete the flow table rules of the switch and define the
function _handle_table (event) to delete the flow table rules of the switch and add flow
table entries. The parameters of msg, which represents a message, that is, a carrier
that carries information in the communication between the controller and the switch. ➂
Load_Factor_Computing(event) The main functions implemented by the defined class
Load_Factor_Computing (event) are: first, the counter should keep synchronized with
the switch, regularly obtain the output port queue information of the switch, and calculate
the load factor; the second is to calculate the load factor, and realize the function of the
calculation of its load factor in Table 5.



70 J. Ke et al.

Table 4. Flow table matching process

Flow table ID Flow table matching description

0 If the ECN bit of the header of the matching data packet is 00, the data packet
does not support the ECN protocol and enters the flow directly; if it is not 00,
it enters the next flow table 8

1 Whether the matching data packet is a returned ACK or a sent data packet, if
the ACK enters the flow table 5 and matches, otherwise, it enters the next flow
table;

2–3 Match the source address of the data packet, if the match is successful, enter
flow table 6, otherwise enter the next flow table

4 Match the source address of the data packet, if the match is successful, enter
the flow table 7, otherwise send the data packet to the controller

5–7 The ECN tag of the matching data packet matches. If the value of the data
packet is less than the ECN value of the switch, the ECN of the data packet is
updated to the ECN value of the switch, and then it enters the flow table 8

8 Match the source address of the packet, send the packet to the output queue of
the corresponding port and wait

Table 5. Functions for calculating load factor calculations

Function Function description

_timer_func () timer, synchronized with the switch

_handle_flow_stats_received (event) Get information about each flow of the switch

_handle_ports_tats_received (event) Obtain the traffic information of each port of the switch

_load_factor_computing (event) Calculate persistent output queues and load factors

After the load factor is calculated, the calculated load factor should be sent to
the switch, that is, the controller sends the switch flow table entry modification com-
mand, that is, to modify the switch flow Table 2, 3, 4 and 5, and define the function
_flow_modify(event) to implement.

3.2 Design and Implementation of OpenFlow Monitoring Module

After completing the design and implementation of the intermediate nodes and terminals
of the VCP network, the VCP network is built on the Mininet platform to verify the
efficiency, fairness, and stability of the VCP protocol. This article uses the Netfilter-
iptables mechanism of the Linux kernel. When the host of the Linux kernel receives
and sends data packets, the data packets must be processed by Netfilter. As shown in
Fig. 3, Netfilter provides four mechanisms, namely Filter, NAT,Mangle, and Raw.When
the data packets pass through the linked list under each mechanism, Netfilter operates
on the data packets according to the rules of the linked list. Among them, Filter is the



Design and Implementation of VCP Network for Open Flow 71

core mechanism of Netfilter, which performs the filtering operation on the data packets.
Filtering, for example, all data packets that can be specified to the TCP Port 80 of the
machine are discarded. Since this article does not need to compile Netfilter, it just uses
the configuration tool iptables for Netfilter, adds rules through the command line, counts
the packets sent by each sender, and calculates the rate of the packets sent by each sender
at the receiver.

Fig. 3. Data packets go through Netfilter

In addition to realizing the above functions, the monitoring module also needs to
monitor the output queue information of each output terminal. In this paper, a python
program is used to write a monitoring module to monitor the bandwidth rate of the link
and the output queue of each port. Its important function definitions are shown in Table 6.

3.3 Design and Implementation of VCP Terminal System

In this paper, VCP is regarded as a congestion control protocol belonging to TCP, and
when the datagram is processed in the VCP part and sent to TCP, the datagram will
be treated as a normal TCP datagram. When sending a data packet, TCP calls the
vcp_queque_xmit() function instead of the ip_queque_xmit() function, and passes it
to the VCP, which processes the data packet and forwards it to the IP. In this process,
the VCP is responsible for adding the data header added at the IP layer and marking the
protocol code bit used to mark the upper-layer protocol number in the header as 200 and
marking the ECN mark. When implementing the VCP congestion control module, call
the int inet_add_protocol (struct net_protocol *prot, unsigned char protocol) function to
establish a connection with the IP. In this way, in the congestion control part of the TCP
protocol, a new congestion control algorithm is defined: tcp_vcp. The function of this
algorithm is to calculate and adjust the cwnd of TCP throughAI,MI, andMD algorithms
according to the load factor marked in the ACK header.



72 J. Ke et al.

Table 6. Monitoring module functions

function parameter Function description

monitor_qlen() iface, interval_sec, fname, Use TC to monitor the output queue
size of each port of the switch and
write it into the qlen.txt of the current
file

monitor_count() ipt_args, interval_sec, fname, Use iptables to monitor the rate at
which the receiver receives the data
sent by each sender, and write it into
the txt file of the current file

monitor_devs() dev_pattern, interval_sec, fname Use /proc/net/dev to monitor the
speed of sending and receiving
packets on each port, and write it into
the current file txt file

monitor_dev_ng interval_sec, fname Command line call bwm-ng network
tool to monitor bandwidth and
bandwidth speed

1) Send terminal For a datagram to be sent: after the user data of the application layer is
added with the application header and the TCP header and encapsulated into a TCP
datagram, the datagram is transmitted to the VCP by calling the vcp_queue_xmitt()
function, where the member variable sk_protocol in the vcp_queue_xmitt() func-
tion = 200 (VCP protocol number), the IP header (IP_VCP) of the VCP protocol
registration datagram. The VCP marks “01” in the ECN bit of the IP_VCP header,
and marks the transport layer protocol number as 200, indicating that the datagram
supports theVCP protocol. Calling the function ip_queue_xmit(), the VCP transmits
the datagram to the IP layer. Figure 4 shows the encapsulation process of a datagram
to be sent.

2) Receiving terminal For a datagram to be received: If the transport layer protocol
number is marked as VCP, the IP datagram enters the VCP processing part through
the IP layer. After reading the congestion level information marked by the ECN
in the datagram header, the VCP forwards the processed datagram to TCP. If the
transport layer protocol is marked as TCP, the datagram is passed directly to the TCP
layer. The TCP protocol stack processes standard TCP datagrams. Figure 5 shows
the processing of a datagram to be received. In the standard data packet receiving
process, if it is confirmed that the data packet is a TCP data packet, TCP will call
the tcp_v4_rcv function to receive the data packet. From the Linux kernel version
2.6.9, the data structure of the TCP protocol is no longer modularized. If it needs to
be modified The data structure of TCP can only recompile the source code of the
kernel. Therefore, in order to reduce the workload, a modular congestion control
algorithm is used. Therefore, in the receiving process of VCP data packets, VCP is
sent from IP to VCP for the first time. The VCP reads and saves the ECN mark of
the data packet, the data packet is returned to the Backlog again, and the data packet



Design and Implementation of VCP Network for Open Flow 73

is processed again according to the standard receiving process of the data packet.
As shown in Fig. 5.

Fig. 4. Sending datagram encapsulation process

Fig. 5. Received datagram processing process

Fig. 6. Experimental topology



74 J. Ke et al.

4 Validation Experiments

4.1 Construction of the Experimental Network

APCwith aCPUfrequencyof 3.2GHz is used as the platform, andVirtualBox is installed
to build aMininet platform to simulate a small VCP single-bottleneck local area network
to verify the efficiency and fairness of the VCP congestion control protocol. As shown
in Fig. 6, a typical VCP network topology is constructed for verification, in which h1,
h2, and h3 respectively represent three end systems, namely hosts; s1 represents an
OpenFlow switch; c0 represents a controller. Among them, the link bandwidth between
h1 and h2 and the switch is 1 Gbps, and the link bandwidth between h3 and the switch
is 100 Mbps, that is, the bottleneck bandwidth. The Mininet platform runs on Ubuntu
13.04 that supports the VCP protocol, and its simulation network is built as shown in
Fig. 7.

Fig. 7. Network topology simulated by Mininet

4.2 VCP Efficiency Test

1) Link utilization test In the VCP network, the network bottleneck is set on the s1-h3
link, and the bandwidth utilization of the VCP protocol on the s1-h3 link is tested.
The bandwidth is set to 100Mbps, and the bandwidth of the s1-h1 and s1-h2 links is is
1Gbps. Use the command line commands of the xterm interface of the host h1 and the
host h2 to continuously send data to the host h3 to test the link bandwidth utilization
of the switches s1-h3. In the Mininet platform, the Drop Tail mechanism, namely
TCP/DT, is implemented. When output queues are full, all subsequent datagrams
are discarded. In the experiment, the utilization ratio of VCP network and ordinary
TCP (TCP/DT) network in the bottleneck section is compared. The experimental
results are shown in Fig. 8, and the horizontal axis represents time.



Design and Implementation of VCP Network for Open Flow 75

Fig. 8. Bottleneck link utilization

2) Transmission delay test In order to test the link transmission delay of the VCP
protocol as the throughput changes, in the experiment, the host h1 sends the data
packet to the host h3, and the bandwidth of the link s1-h1 and s1-h3 segments is set
to the default value of 1Gbps. Mininet simulates the network that supports the VCP
mechanism and the traditional TCP (TCP/DT) network, respectively, and calculates
the change of the packet transmission delay with the throughput, as shown in Fig. 9:
the horizontal axis represents the throughput (%), and the vertical axis represents the
link transmission Delay (ms). It can be seen from Fig. 9 that when the throughput
is low (below 60%), both the VCP and TCP/DT mechanisms can maintain a low
transmission delay. However, as the throughput increases, the transmission delay of
the TCP/DT congestion control mechanism increases significantly, almost showing
an exponential growth trend. When the throughput is high, it even reaches 13ms;
relatively speaking, the transmission delay of the VCP protocol increases with the
change in throughput does not fluctuate significantly, and it can basically be kept
below 3ms. The experimental results show that the VCP protocol can maintain a
relatively ideal transmission delay.

4.3 VCP Fairness Test

In order to test the fairness of the VCP protocol, that is, to measure whether each user or
each link in the network bottleneck link segment can share network resources fairly, the
test still adopts the configuration in Sect. 3.1: the experimental bottleneck is the s1-h3
segment. The link bandwidth of the bottleneck segment is set to 100 Mbps, and the link
bandwidth of the s1-h1 segment and the s1-h2 segment is 1Gbps. After the experiment
starts, the host h1 and the host h2 send data packets to the host h3 at the same time.
By testing the bandwidth utilization of the intermediate network segment between the
switch s1 and the host h3, it is checked whether the flow1 sent by the sending host h1



76 J. Ke et al.

and the flow2 sent by the sending host h2 are fair. Share the bandwidth of the bottleneck
link s1-h3 segment. Figure 9 shows the change of the bottleneck link utilization rate of
flow1 and flow2 with time, the horizontal axis represents time, and the vertical axis is
the bandwidth utilization rate of each sending host on the link bottleneck s1-h3 segment
link.

Fig. 9. Transmission delay at different throughputs

Figure 10 VCP fairness test As can be seen from Fig. 10, the total utilization of VCP
flow 1 and VCP flow 2 to the bottleneck link s1-h3 is still relatively ideal. Although it
fluctuates slightly after stabilization, it can generally be maintained between 35% and
45%. Although there is a slight inequity in the allocation of network resources, on the
whole, the two links can better share the bandwidth of the bottleneck link. 5 Conclusion
This paper designs and simulates a realistic VCP network verification platform. First, the
Linux network protocol stack is used to implement the VCP network end system; sec-
ondly, the VCP network intermediate routing node composed of OpenFlow switches and
controllers is implemented using POX; Mininet platform builds a typical VCP experi-
mental verification network. Among them, the host in the network runs the VCP network
end system, theOpenFlow switch and the controller realize the intermediate routing node
of the VCP network, and an experiment is designed to verify the efficiency and fairness



Design and Implementation of VCP Network for Open Flow 77

Fig. 10. VCP fairness test

of the VCP protocol in the real network environment. The experimental results show
that, compared with the traditional TCP/DT mechanism, the VCP protocol can make
better use of the resources provided by the link, the efficiency of the protocol is still
higher; and the VCP protocol can better realize the network resources without the link.
The distribution among the roads has better fairness. The VCP protocol only uses two
binary bits of the ECN to encode the congestion level information, which can achieve
relatively good performance in a real network environment.

Acknowledgments. This work is supported in part byGuangxi Young andMiddle-aged Research
Capacity Enhancement Project “Research and Application on The Key Technology of Intelligent
Experiment Management Platform (Grant No. 2020ky21026) and the 2020 school-level Scientific
Research Project in Guilin University of Aerospace Technology (Grant No. XJ20KT18: Research
on Technology of Error-tolerance Recognition of Channel Coding parameters in non-cooperative
communication).

References

1. Dah-Ming, C., Raj, J.: Analysis of the increase and decrease algorithms for congestion
avoidance in computer networks. Comput. Netw. ISDN Syst. 17(1), 114 (1989)

2. Yang, Y.R., Lam, S.S.: General AIMD congestion control. In: Proceedings of IEEE ICNP,
pp. 187–198 (2000)

3. Lefelhocz, C., Lyles, B., Shenker, S., Zhang, L.: Congestion control for best-eort service: why
we need a new paradigm. IEEE Netw. 10(1), 10–19 (1996)

4. Gevros, P., Crowcroft, J., Kirstein, P., Bhatti, S.: Congestion control mechanisms and the best
effort service model. IEEE Netw. 15(3), 16–26 (2001)



78 J. Ke et al.

5. Bakshi, B.S., Kirshna, P., Vaidya, N.H., Pradhan, D.K.: Improving performance of TCP over
wireless networks. In: Proceeding of the 1st Annual International Conference on Mobile
Computing and Networking, pp. 2–11. ACM, New York (1995)

6. Ramakrishnan,K., Floyd, S., Black,D.: The addition of explicit congestion notification (ECN)
to IP (2001)

7. Oljira,D.B.,Grinnemo,K.J., Brunström,A., et al.:MDTCP: practical latency-awaremultipath
congestion control for datacenter networks (2020)

8. Chen, C., Fang, H.C., Iqbal, M.S.: QoSTCP: provide consistent rate guarantees to TCP
flows in software defined networks. In: ICC 2020-2020 IEEE International Conference on
Communications (ICC), pp. 1–6. IEEE (2020)

9. Hu, J., Huang, J., Li, Z., et al.: AMRT: anti-ECN marking to improve utilization of receiver-
driven transmission in data center. In: 49th International Conference on Parallel Processing-
ICPP, pp. 1–10 (2020)

10. Durresi, A., Sridharan, M., Liu, C., Goyal, M., Jain, R.: Traffic management using multilevel
explicit congestion notification. In: Proceedings of SCI (2001)

11. Gronát, P., Aldana-Iuit, J.A., Bálek, M.: MaxNet: neural network architecture for continuous
detection ofmalicious activity. In: 2019 IEEESecurity andPrivacyWorkshops (SPW), pp. 28–
35. IEEE (2019)

12. Wydrowski, B., Andrew, L., Mareels, I.: MaxNet: Faster Flow Control Convergence. In:
Mitrou, N., Kontovasilis, K., Rouskas, G.N., Iliadis, I., Merakos, L. (eds.) NETWORKING
2004. LNCS, vol. 3042, pp. 588–599. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-540-24693-0_49

13. Floyd, S., Allman, A., Jain, M., Sarolahti, P.: Quick-Start for TCP and IP. Draft-ietf-tsvwg-
quickstart-07 txt (2006)

14. Zhang, D., Zheng, K., Zhao, D., et al.: Novel quick start (QS) method for optimization of
TCP. Wirel. Netw. 22(1), 211–222 (2016)

15. Katabi, D., Handley, M., Rohrs, C.: Congestion control for high bandwidth-delay product
networks. In: Proceedings of the 2002 SIGCOMM Conference, vol. 32, pp. 89–102. ACM,
New York (2002)

16. Jiang, N., Huang, J., Liu, S., et al.: Achieving fast convergence and high efficiency using dif-
ferential explicit feedback in data center. In: ICC 2020–2020 IEEE International Conference
on Communications (ICC), pp. 1–6. IEEE (2020)

17. Xing, S., Yin, B., Yao, J., et al.: AVCP-based congestion control algorithm in named data net-
working. In: 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation
Control Conference (IAEAC), pp. 463–468. IEEE (2018)

18. Zhang, H., Zhou, H., Chen, C., et al.: Fast fairness convergence through fair rate estimation
in Variable-structure congestion control protocol. Comput. Commun. 70, 54–67 (2015)

19. Barreto, L.: XCP-Winf and RCP-Winf: improving explicit wireless congestion control. J.
Comput. Netw. Commun. (2015)

20. Teymoori, P., Welzl, M., Gjessing, S., et al.: Congestion control in the recursive internetwork-
ing architecture (RINA). In: 2016 IEEE International Conference on Communications (ICC),
pp. 1–7. IEEE (2016)

21. Shreedhar, T., Kaul, S.K., Yates, R.D.: ACP: age control protocol for minimizing age of
information over the internet. In: Proceedings of the 24th Annual International Conference
on Mobile Computing and Networking, pp. 699–701 (2018)

22. Zhang, Y., Leonard, D., Loguinov, D.: Jetmax: scalable max-min congestion control for
high-speed heterogeneous networks. Comput. Netw. 52, 1193–1219 (2008)

23. Jasim,M.N.:A proposed adaptive least load ratio algorithm to improve resourcesmanagement
in software defined network OpenFlow environment. Karbala Int. J. Mod. Sci. 7(1), 6 (2021)

24. McKeown, N., et al.: OpenFlow: enabling innovation in campus networks. ACM SIGCOMM
Comput. Commun. Rev. 38(2), 69–74 (2008)

https://doi.org/10.1007/978-3-540-24693-0_49


Design and Implementation of VCP Network for Open Flow 79

25. Lanversin, J.T.,Kütt,M.,Glaser,A.:ONIX: an open-source depletion code.Ann.Nucl. Energy
151, 107903 (2021)

26. Chaudhary, R.: Software-defined networking based control flow optimization for multi-cloud
environment (2021)


	Design and Implementation of VCP Network for Open Flow
	1 Introduction
	2 Related Works
	2.1 VCP Protocol
	2.2 OpenFlow Technology
	2.3 OpenFlow Technology

	3 Design and Implementation of OpenFlow-Oriented VCP Network
	3.1 Design and Implementation of Intermediate Nodes in the VCP Network
	3.2 Design and Implementation of OpenFlow Monitoring Module
	3.3 Design and Implementation of VCP Terminal System

	4 Validation Experiments
	4.1 Construction of the Experimental Network
	4.2 VCP Efficiency Test
	4.3 VCP Fairness Test

	References




