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Abstract In this chapter, we consider a time-fractional generalized Gierer– 
Meinhardt model described by a system of two coupled nonlinear time-fractional 
reaction–diffusion equations. Solutions are computed by applying a procedure 
that combines the Lie symmetry analysis with classical numerical methods. 
Lie symmetries reduce the target system into time-fractional coupled ordinary 
differential equations. The numerical solutions are determined by introducing 
the Caputo definition fractional derivative and by using an implicit classical 
numerical method. Numerical results are presented to validate the effectiveness 
of the proposed approach and to show, by a comparison with the integer-order case, 
that the fractional-order model can be considered a reliable generalization of the 
classical model. 

1 Introduction 

In this chapter, we consider a system of two coupled nonlinear time-fractional 
reaction–diffusion (TF–RD) equations 

.

{
∂α
t u(t, x) = k1∂xxu(t, x) + f (t, x, u, v),

∂α
t v(t, x) = k2∂xxv(t, x) + g(t, x, u, v),

0 < α < 1, (1) 

subject to suitable initial and boundary conditions. In (1), . ∂α
t is the Riemann– 

Liouville fractional derivative operator [1–4] 

. ∂α
t w(t, x) = 1

�(1 − α)

∂

∂t

∫ t

0

w(s, x)

(t − s)α
ds.
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.u(t, x) and .v(t, x) are the field variables at time t and position x. .k1 > 0 and 

.k2 > 0 the diffusion coefficients of .u(t, x) and .v(t, x), respectively. The functions 

.f = f (t, x, u, v) and .g = g(t, x, u, v) represent the nonlinear interaction terms. 
The system (1) has been proved to be a strong tool in the modeling of many 

physical and chemical phenomena [5–14]. Many mathematical models have been 
proposed in different fields of the applied sciences, and their analytical and numer-
ical solutions have been extensively investigated. In 1972, Gierer and Meinhardt 
[15] proposed a prototypical depletion-type chemical model, which is described as 
follows: 

.

⎧⎪⎨
⎪⎩

∂tu(t, x) = k1∂xxu(t, x) + c1u + d1ρ1(x)
up

vq
+ σ1,

∂tv(t, x) = k2∂xxv(t, x) + c2v + d2ρ2(x)
ur

vs
+ σ2,

(2) 

where the involved parameters are assigned constants, except for the distributions . ρ1
and . ρ2, which instead are assigned functions of the space variable x. It describes the 
interaction between two substances, the activator .u(t, x) and the inhibitor .v(t, x), 
and it is commonly used to explain the underlying complex mechanism for pattern 
formation in nature, describing the interaction of two sources in processes such as 
biological and chemical ones. 

In this chapter, we propose a time-fractional model, generalization of the above 
classical Gierer–Meinhardt model (2), given by the fractional system (1) assuming 
the nonlinear interaction terms as follows: 

.

f (t, x, u, v) = c1u + d1ρ1(x)
up

vq
+ σ1(t, x)

g(t, x, u, v) = c2v + d2ρ2(x)
ur

vs
+ σ2(t, x)

(3) 

according to the source terms involved in the Gierer and Meinhardt model (2), but 
with .σ1(t, x) and .σ2(t, x) arbitrary functions of time and space. We study the math-
ematical model in which the fractional order involves the time derivative. Unlike 
other works (see, for instance, [16–20]) in which models describing space-fractional 
reaction–diffusion equations with anomalous diffusion process are investigated, in 
this work, we focus on a mathematical model in which the fractional order involves 
the time derivative. In particular, we analyze the model when .p = r = 2 and 
.s = q = −1, that when .α = 1 describes a depletion process where the autocatalysis 
is counteracted by the depletion of a substrate of the concentration .v(x, t) required 
for activation .u(t, x). This model was used to describe pigmentation patterns in 
seashells and the ontogeny of ribbing on ammonoid shells [21, 22]. The stability, 
the Hopf bifurcation and the Turing instability by the technique of stability theory, 
normal form theory, and center manifold reduction were carried out in [23, 24]. 

The main aim of this study is to solve the proposed fractional generalized math-
ematical model by applying a procedure that combines the Lie symmetry analysis 
with the numerical methods. It was applied to a wide class of FDES: space-fractional



On the Solutions of the Fractional Generalized Gierer–Meinhardt Model 93

advection–diffusion–reaction equations with linear [25] and nonlinear sources terms 
[26], a system of time-fractional advection–diffusion–reaction equations (1) with 
arbitrary nonlinear source terms [27] and two-dimensional time-fractional reaction– 
diffusion equations [28, 29]. 

The authors choose to approach the study of the target model initially by 
considering the Riemann–Liouville derivative since it is widely used in the context 
of the group method. The fractional Lie symmetries are determined by using a 
package of symbolic computing: FracSym on MAPLE platform, an algorithmic that 
automates the method, which is an extension of classical Lie symmetries approach 
to FPDEs [30, 31], of finding symmetries for FPDEs with Riemann–Liouville 
fractional derivative [32, 33]. By using the Lie symmetries, the target system is 
mapped into a system of time-fractional ordinary differential equations, and by 
solving the reduced FODEs, exact and numerical solutions are found. The numerical 
solutions are computed by introducing the Caputo definition fractional derivative 
and by using an implicit classical numerical method. The Caputo definition of 
the fractional derivative allows defining an initial value problem whose the initial 
conditions are given in terms of the field variable and of its integer-order derivatives, 
in agreement with the clear physical meaning of most of the processes arising in the 
real world. 

We want to remark that, in this context, we are not interested in studying the 
stability of the model, or in the effects of diffusion on the stability of equilibrium 
points, or to explore the dynamical behaviors induced by diffusion or the bifurcated 
limit cycle from the bifurcation, topics widely studied in the specialized literature. 
Our aim is to find analytical and numerical solutions of the generalized mathemat-
ical model with fractional derivatives (1)–(3), in order to show the effectiveness of 
the proposed model and of the procedure that reveals to be a good tool for solving a 
wide class of fractional partial differential equations (FPDEs). 

In Sect. 2, we introduce the Lie transformation that reduces the target system into 
time-fractional ordinary differential equations. In Sect. 3, we search for analytical 
solutions for the fractional generalized depletion model. In Sect. 4, by introducing 
the Caputo definition of the fractional derivative and by using an implicit classical 
trapezoidal method, the numerical solutions are found. In Sect. 5, we report 
concluding remarks. 

2 Lie Transformation and FODEs 

Analytical and numerical solutions of the mathematical model are found by 
applying a procedure that combines the Lie symmetry analysis with the numerical 
methods: by using the extension of Lie symmetries approach to FPDEs [30, 31], 
we find the Lie fractional symmetries admitted by the model and, then, Lie 
transformations that map the system of coupled nonlinear TF-RD equations (1) 
into a system of fractional ordinary differential equations (FODEs). By solving the 
reduced FODEs, we obtain solutions of the original model.
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In this section, we present the Lie transformation that maps (1), with the reactions 
(3), into a system of two coupled FODEs. The Lie transformations of the system 
(1) with arbitrary sources terms were recently determined in [27] and assume the 
following form, according to the choice of source terms given by (3) 

.T = t, U = u(t, x)e−a1x, V = v(t, x)e−a2x , (4) 

where . a1 and . a2 are arbitrary constants and 

.
ρ1(x) = e(a1(1−p)+a2q)xρ′

1 σ1(T , x) = ea1xh1(T )

ρ2(x) = e(a2(s+1)−a1r)xρ′
2 σ2(T , x) = ea2xh2(T ),

(5) 

with . ρ′
1 and . ρ′

2 arbitrary constants and .h1 = h1(T ) and .h2 = h2(T ) arbitrary 
functions of their argument. The above transformations lead the source terms to 
assume the following form: 

.

f (t, x, u, v) = c1u + d1e
(a1(1−p)+a2q)x up

vq
+ h1(t)e

a1x,

g(t, x, u, v) = c2v + d2e
(−a1p+a2(q+1))x up

vq
+ h2(t)e

a2x.

(6) 

Note that the functional forms of the distributions, . ρ1 and . ρ2, consistent with ones 
of the classical model of Gierer–Meinhardt [15], and the additional terms, . σ1 and 
. σ2 depending also on variables t and x, lead us to define the target model as a 
generalization of the model studied in [15]. 

When the transformation (4) and the above forms of . ρ1, . ρ2, . σ1, and . σ2 are 
inserted into the system (1) with sources terms given by (3), it is reduced into the 
following system of fractional nonlinear ordinary differential equations: 

. Dα
T U − (c1 + k1a

2
1)U − Up

V q
d1 − h1 = 0. (7) 

Dα 
T V − (c2 + k2a

2 
2)V − 

Ur 

V s 
d2 − h2 = 0 (8) 

setting .ρ′
1 = ρ′

2 = 1. The choice of the arbitrary functions . h1 and . h2 characterizes 
the solutions of the equations (7) and (8) and, then, the class of solutions given by 
(4). 

In order to solve the system (7) and (8), we assume .p = r and .s = q. Multiplying 
(7) by . d2 and (8) by .−d1 and, then, adding the equations, we get the following 
fractional ordinary differential equation (FODE): 

.Dα
T (d2U − d1V ) − (c1 + k1a

2
1)(d2U − d1V ) − (d2h1 − d1h2) = 0, (9)
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where we set .c2 + k2a
2
2 = c1 + k1a

2
1 . Under non-vanishing initial condition 

. lim
T →0

Dα−1
T (d2U(T ) − d1V (T )) = b0, (10) 

the FODE (9) admits the following analytical solution: 

. U(T ) = d1

d2
V + b0

d2
T α−1Eα,α(λT α)

+
∫ T

0
(T − S)α−1Eα,α(λ(T − S)α)(h1 − d1

d2
h2)dS, (11) 

where .λ = c1 + k1a
2
1 . Substituting .U(T ) in (8), we get the following FODE: 

. Dα
T V − λV − d

1−p

2 (12)(
d1V + b0T α−1Eα,α(λT α) + ∫ T

0 (T − S)α−1Eα,α(λ(T − S)α))(h1d2 − h2d1)dS
)p

V q

−h2 = 0,

subject to the non-vanishing initial condition 

. lim
T →0

Dα−1
T V (T ) = V 0. (13) 

By solving the initial values problem (12)–(13), we find the solution .V (T ) and, as 
consequence, by (11) the solution .U(T ) and, finally, by the inverse transformations 
(4) the solutions .u(t, x) and .v(t, x) of the proposed system of FPDEs (1) with source 
terms given by (6) and with the initial conditions 

. lim
t→0

∂α−1
t u(t, x) = b0 − d1V

0

d2
ea1x, lim

t→0
∂α−1
t v(t, x) = V 0ea2x. (14) 

The target model describes a generalized depletion process when .p = 2 and 
.q = −1, and this will be the object of the analysis in the next section. 

3 Analytical Solutions of the Generalized Depletion Model 

In order to find solutions of the generalized depletion model, we choose the 
functions .h1(T ) and .h2(T ) in (12) by setting the parameters .b0 = 0 and .λ = 0
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so that Eq. (12) reads 

.Dα
T V − 1

d2

(
d1V + 1

�(α)

∫ T

0
(T − S)α−1(h1d2 − h2d1)dS

)2

V − h2 = 0.(15) 

We set 

. h1(T ) = d1

d2
h2(T ) − h0(T )

d2
,

with .h0(T ) arbitrary function of T , and we obtain 

.Dα
T V − 1

d2

(
d1V − 1

�(α)

∫ T

0
(T − S)α−1h0(S)dS

)2

V − h2 = 0. (16) 

The involved arbitrary function .h2(T ) is assigned in such a way that the FODE (16) 
admits analytical solutions for .α = 1. 

1. We set 

. h2(T ) = Be−AT

(
(1 − AT ) − t

d2

(
d1BT e−AT − 1

�(α)

∫ T

0
(T − S)α−1h0(S)dS

)2)
(17) 

with A and B arbitrary constants. With the above choice of the function . h2(T )

and when .α = 1, we get the following exact solution; 

. V (T ) = BT e−AT ,

and substituting it in (11) we obtain 

. U(T ) = 1

d2

(
d1BT e−AT −

∫ T

0
h0(S)dS

)
.

By means of the inverse transformations (4), we get the exact solution of the 
generalized depletion Gierer–Meinhardt model 

. u(t, x) = ea1x
1

d2

(
d1Bte−At −

∫ t

0
h0(s)ds

)
,

v(t, x) = ea2xBte−At .
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2. We set 

. h2(T ) = A

cosh2(T )
+ 1

d2
(B + A tanh(T ))

(
d1(B + A tanh(T )) − 1

�(α)

∫ T

0
(T − S)α−1h0(S)dS

)2

. (18) 

By the above choice of function . h2 and when .α = 1, we get the following exact 
solution: 

. V (T ) = B + A tanh(T ),

and substituting it in (11), we obtain 

. U(T ) = 1

d2

(
d1(B + A tanh(T )) −

∫ T

0
h0(S)dS

)
.

By means of the inverse transformations (4), we get the exact solution of the 
generalized depletion Gierer–Meinhardt model 

. u(t, x) = ea1x
1

d2

(
d1(B + A tanh(t)) −

∫ t

0
h0(s)ds

)
,

v(t, x) = ea2x(B + A tanh(t)).

In the next section, starting from the expressions of .h1(T ) and .h2(T ) reported in 
the above examples, and setting .h0(T ), we get numerical solutions of the fractional 
generalized depletion model. 

4 Numerical Method and Solutions 

In this section, we find the numerical solutions of the system of FPDEs (1) computed 
by solving the FODE (16), obtained in the above section by a suitable choice of the 
involved parameters and functions and where the function .h2(T ) is given by (17) 
or (18). Computed the numerical solution .V (T ), we obtain the numerical solution 
.U(T ) by (11) and then the solutions .u(t, x) and .v(t, x) of the target model (1) by  
the inverse transformations by (4). 

We introduce the .α-order Caputo fractional derivative of the solution . V (T )

.
CDα

T V (T ) = 1

�(1 − α)

∫ T

0
(T − S)−αV ′(S)dS
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and its connection with the .α-order Riemann–Liouville fractional derivative [1] 

. 
CDα

T V (T ) = Dα
T (V (T ) − V (0)) ,

with .V (0) initial condition. In terms of the Caputo derivative, the following 
fractional initial value problem (FIVP) is obtained: 

. 
CDα

T V (T ) = F(T , V ), 0 < α < 1 (19)

V (0) = V 0,

where 

. F(T , V ) = − V 0

�(1 − α)T α
+ 1

d2

(
d1V − 1

�(α)

∫ T

0
(T − S)α−1h0(S)dS

)2

V + h2

and 

.h0(T ) = h

(1 + T 2)1.5
(20) 

with h arbitrary constant. We remark that the Caputo definition of the fractional 
derivative allows defining an FIVP whose the initial conditions are given in terms 
of the field variable and of its integer-order derivatives, in agreement with the clear 
physical meaning of most of the processes arising in the real world. 

In order to numerically solve the FIVP (19), we propose the classical implicit 
trapezoidal method (PI. 2 Im), an efficient numerical method used for its good 
stability and accuracy properties [4, 34], numerical results by multi-steps methods 
are presented in [18]. We build a computational uniform mesh of .N + 1 grid points 
denoted by . T n, with .T n = T 0 +n�T and integration step sizes .�T and N positive 
integer. We denote by .Un the numerical approximation provided by the numerical 
method of the exact solution .U(T n) at the mesh points . T n, for .n = 0, · · · , N . The  
numerical method reads 

.V n+1 = V 0 + 1

�(α)

(
β0F(T 0, V 0) +

n+1∑
k=1

βkF (T k, V k)

)
, (21) 

where the coefficient values . βk , for .k = 0, · · · , n + 1, are computed as follows: 

.β0 = 1

α(α + 1)

(T n+1)α((T 1 − T 0)(α + 1) − T n+1) + (T n+1 − T 1)α+1

T 1 − T 0 ,

βk = 1

α(α + 1)
× k = 1, · · · , n,
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×
(

(T n+1 − T k−1)α+1 − (T n+1 − T k )α+1 

T k − T k−1 

− (T n+1 − T k )α+1 − (T n+1 − T k+1)α+1 

T k+1 − T k

)
, 

βn+1 = 1 

α(α + 1) 
(T n+1 − T n )α . 

The convergence order of the scheme is .O((�T )min(1+α,2)). Note that the conver-
gence order of the trapezoidal method usually is .1+α when .0 < α < 1. Only when 
.α > 1 or when the solution is sufficiently smooth, we obtain the reached order 2 
[34]. In general, the numerical method (21) leads to obtain a nonlinear equation at 
each step for whose resolution a root-finding solver is needed. The classical Newton 
method is proposed. 

In the following, we report two test problems characterized by the function 
.h2(T ), given by (17) or (18). Different simulation parameters, involved functions, 
and . α parameter values are considered as the input features of the model under study. 
The exact solutions for .α = 1, reported in Sect. 3, are considered as reference ones 
for testing qualitative behavior of the numerical solutions of the models for values 
of the . α parameter increasing toward 1. All numerical simulations are performed on 
Intel Core i7 by using Matlab 2020 software. 

Example 1 In this example, we consider the FIVP (19) with .V 0 = 0 and 

. h2(T ) = Be−AT

(
(1 − AT ) − T

d2

(
d1BT e−AT − 1

�(α)

∫ T

0

h(T − S)α−1

(1 + S2)1.5
dS

)2)
.

For .α = 1, the analytical solution .V (T ) is given by 

.V (T ) = BT e−AT , (22) 

and then, we are able to compute the analytical solution . U(T )

.U(T ) = 1

d2

(
d1BT e−AT − hT√

1 + T 2

)
. (23) 

We choose a computational domain .[0, Tmax] with .Tmax = 10 and .N = 100 grid 
points and set the parameters values as follows: .d1 = 0.00016, .d2 = −0.00048, 
.A = 2, .B = 0.02, and .h = 0.0001. We remark that, in this example, the parameters 
values are chosen according to the values by Gierer and Meinhardt reported in [15], 
values ensuring that the model is a well-posed one, with the aim to validate our 
numerical results obtained by the proposed procedure. 

In Fig. 1, we report the numerical results obtained for different values of the . α
parameter: in the left frame, the numerical solution . V n obtained by solving the FIVP
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Fig. 1 Numerical solutions for different values of . α. Left frame: numerical solution .V n of the 
FIVP (19). Right frame: numerical solution .Un computed by (11) 

(19) by using the PI. 2 Im numerical method, and in the right frame, the numerical 
solution .Un computed by means of (11) by the suitable substitution of the involved 
functions and parameters 

. Un = 1

d2

(
d1V

n − T 3F2([0.5, 1, 1.5]; [(1 + α)/2, 1 + α/2] ;−(T n)2)
)

and given in terms of the generalized hypergeometric function .pFq(a; b; z) of order 
.p, q defined as follows: 

. pFq(a; b; z) = pFq([a1, a2, . . . , ap]; [b1, b2, . . . , bq ]; z)

=
∞∑

n=0

(
(a1)n, (a2)n, . . . , (ap)n

(b1)n, (b2)n, . . . , (bq)n

) (
z2

n!
)

with .a = [a1, a2, . . . , ap] and .b = [b1, b2, . . . , bq ] vectors of lengths p and 
q, respectively. .(a)k and .(b)k represent the Pochhammer symbols defined in the 
following way: 

. (w)m = �(w + m)

�(w)
.

The red dot points represent the exact solutions .V (T ), given by (22), and .U(T ), 
given by (23), of the model with .α = 1. They are reported in order to test the 
qualitative behavior of the numerical solutions as the . α parameter increases toward 
1. The solutions reveal very different behavior: both start from the value 0, and 
both increase at the beginning of the integration process. After, as time evolves, 
the solution .U(T ) increases and converges to a constant state. The solution . V (T )

decreases and converges to zero. Note that, as the value of . α increases, for . T < 1
both solutions decrease and, then, for .T > 1 increase. The qualitative behavior of
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Fig. 2 Numerical solutions of the system of FPDE (1) for .α = 0.5. Left frame: numerical solution 
. vn

j . Right frame: numerical solution . un
j

the solutions is in agreement with one of the classical depletion models. This means 
that the proposed mathematical model can represent a good generalization of the 
classical model. 

In Fig. 2, we report the numerical solutions . un
j and . vn

j , approximations of the 
exact solutions obtained by the inverse transformations (4) 

. u(t, x) = U(t)ea1x, v(t, x) = V (t)ea2x,

solutions of the model (1) integrated with the initial and boundary conditions 
obtained by (14) with .V 0 = 0 and .b0 = 0 and computed for . α = 0.5. In this  
contest, the source terms assume the following form: 

. f (t, x, u, v) = c1u + d1e
−(a1+a2)xuv2 + h1e

a1x,

g(t, x, u, v) = c2v + d2e
−2a1xuv2 + h2e

a2x.

The parameters are chosen in the following way: .a1 = −√−c1/k1, . a2 =
−√−c2/k2 with .k1 = 10−3, .k2 = 0.45, and .c1 = c2 = −0.0025. The  
computational domain is given by .[0, Tmax] × [0, Xmax] with .Tmax = 10, . Xmax =
10, and .N = J = 100 grid points. 

Example 2 In this example, we consider the FIVP (19) with .V 0 = 0 and 

. h2(T ) = A

cosh2(T )
+ 1

d2
(B + A tanh(T ))

(
d1(B + A tanh(T )) − 1

�(α)

∫ T

0

h(T − S)α−1

(1 + S2)1.5 dS

)2

.

For .α = 1, the analytical solution of the FIVP is given by 

.V (T ) = B + A tanh(T ), (24)
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Fig. 3 Numerical solutions for different values of . α. Left frame: Numerical solution .V n of the 
FIVP (19). Right frame: Numerical solution .Un computed by (11) 

and then, we are able to compute the analytical solution . U(T )

.U(T ) = 1

d2

(
B + A tanh(T ) − hT√

1 + T 2

)
. (25) 

We set the parameters values as follows: .d1 = 0.1, .d2 = 1, .A = −0.5, . B =
0, and .h = 0.25. We choose a computational domain .[0, Tmax] with . Tmax = 10
and .N = 100 grid points. In Fig. 3, we report the numerical results obtained for 
different values of the . α parameter: in the left frame, the numerical solution . V n

obtained by solving the FIVP (19) by using the PI. 2 Im numerical method; in the 
right frame, the numerical solution .Un computed by means of (11) in terms of the 
generalized hypergeometric function. The red dot points represent the exact solution 
.V (T ), given by (24), and the exact solution .U(T ), given by (25), of the model with 
.α = 1. In this case, the solutions reveal very similar behavior: both start from the 
value 0, and both increase at the beginning of the integration process. After, as time 
evolves, both decrease and converge to a constant state. Note that, as the value of 
. α increases, for .T < 1 both solutions decrease and, then, for .T > 1 increase. 
The qualitative behavior of the solutions is in agreement with the choice of the 
distributions which are both positive functions of . x; in fact, the parameters . d1 and 
. d2 agree in the sign. 

In Fig. 4, we report the numerical solutions . un
j and . vn

j , approximations of the 
exact solutions obtained by the inverse transformations (4). The source terms 
are assigned as before. The parameters are chosen in the following way: . a1 =
−√−c1/k1, .a2 = −√−c2/k2 with .k1 = 1, .k2 = 10, and .c1 = c2 = −0.2. 
The computational domain is given by .[0, Tmax] × [0, Xmax] with .Tmax = 10, 
.Xmax = 10 and .N = J = 100 grid points.
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Fig. 4 Numerical solutions of the system of FPDE (1) for .α = 0.5. Left frame: numerical solution 
. vn

j . Right frame: numerical solution . un
j

5 Concluding Remarks 

In this study, analytical and numerical solutions for the generalized Gierer– 
Meinhardt fractional model are presented. We propose a mathematical model 
governed by a system of two time-fractional diffusion–reaction equations describing 
the interaction between two chemical substances, commonly used to explain the 
underlying complex mechanism for pattern formation in nature. The numerical 
results, obtained by applying the procedure that combines the Lie symmetry analysis 
with the trapezoidal numerical method, reveal the effectiveness of the proposed 
model. Moreover, it is important to note that some analytical solutions of the 
generalized Gierer–Meinhardt model of integer order are found for a suitable choice 
of the involved parameters and functions. The topic of the next study is the spatial-
fractional reaction–diffusion equations with an anomalous diffusion process that 
occurs in spatially inhomogeneous media. 
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