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Preface 

This volume in the Springer INdAM series collects some contributions related to 
the talks presented during the INdAM Workshop “Fractional Differential Equations: 
Modeling, Discretization, and Numerical Solvers,” held in Rome, Italy, from July 
12 to 14, 2021. 

Fractional calculus deals with the study and application of integrals and deriva-
tives of non-integer order. These operators, unlike the classic operators of integer 
order, are non-local operators and are better suited to describe phenomena with 
memory (with respect to time and/or space). 

Although the basic ideas of fractional calculus go back over three centuries, only 
in recent decades there has been a rapid increase in interest in this field of research, 
due not only to the increasing use of fractional calculus in applications (in biology, 
physics, engineering, probability, etc.) but also thanks to the availability of new and 
more powerful numerical tools that allow for an efficient solution of problems that 
until a few years ago appeared unsolvable. 

The analytical solution of fractional differential equations (FDEs) appears even 
more difficult than in the integer case. Hence, numerical analysis plays a decisive 
role since practically every type of application of fractional calculus requires 
adequate numerical tools. 

The aim of the INdAM workshop was, therefore, to bring together the two 
communities of numerical analysts operating in this field—the one working on 
methods for the solution of differential problems and the one working on the 
numerical linear algebra side—to share knowledge and create synergies. At the same 
time, the workshop intended to realize a direct bridge between researchers working 
on applications and numerical analysts. 

v
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The spirit of the workshop is therefore reflected in this book which collects 
papers on applications, numerical methods for differential problems of fractional 
order, and related aspects in numerical linear algebra. 

Salerno, Italy Angelamaria Cardone 
Como, Italy Marco Donatelli 
Pisa, Italy Fabio Durastante 
Bari, Italy Roberto Garrappa 
Como, Italy Mariarosa Mazza 
Bari, Italy Marina Popolizio 
May 2022 



Organization 

Proceedings Chair Roberto Garrappa

Universitá degli Studi di Bari, Italy

Program Chairs
Roberto Garrappa Universitá degli Studi di Bari, Italy 

Fabio Durastante Universitá di Pisa, Italy

Scientific Committee
Angelamaria Cardone Universitá degli Studi di Salerno, Italy 

Marco Donatelli University of Insubria, Italy 

Fabio Durastante Universitá di Pisa, Italy 

Roberto Garrappa Universitá degli Studi di Bari, Italy 

Mariarosa Mazza Universitá degli Studi dell’Insubria, Italy 

Marina Popolizio Politecnico di Bari , Italy 

vii



Contents 

A New Diffusive Representation for Fractional Derivatives, 
Part I: Construction, Implementation and Numerical Examples. . . . . . . . . . . 1 
Kai Diethelm 

Exact Solutions for the Fractional Nonlinear Boussinesq Equation . . . . . . . .  17 
Andrea Ceretani, Federico Falcini, and Roberto Garra 

A Numerical Procedure for Fractional-Time-Space Differential 
Equations with the Spectral Fractional Laplacian . . . . . . . . . . . . . . . . . . . . . . . . . . .  29 
Fabio Vito Difonzo and Roberto Garrappa 

Spectral Analysis of Matrices in B-Spline Galerkin Methods 
for Riesz Fractional Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  53 
Marco Donatelli, Carla Manni, Mariarosa Mazza, and Hendrik Speleers 

Do the Mittag–Leffler Functions Preserve the Properties 
of Their Matrix Arguments? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  75 
Marina Popolizio 

On the Solutions of the Fractional Generalized 
Gierer–Meinhardt Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  91 
Alessandra Jannelli and Maria Paola Speciale 

A Convolution-Based Method for an Integro-Differential 
Equation in Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  107 
Sabrina Francesca Pellegrino 

A MATLAB Code for Fractional Differential Equations Based on 
Two-Step Spline Collocation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  121 
Angelamaria Cardone, Dajana Conte, and Beatrice Paternoster 

ix 



About the Editors 

Angelamaria Cardone is Associate Professor of Numerical Analysis in the 
Department of Mathematics, University of Salerno, Italy. Her scientific activity 
is mainly focused on the numerical solution of Volterra integral equations and of 
differential equations, also of fractional type, and on the development of related 
mathematical software. 

Marco Donatelli is Associate Professor of Numerical Analysis at the University of 
Insubria, Italy. His scientific activity is mainly focused on regularization of inverse 
problems and numerical linear algebra methods, with special attention to iterative 
methods for large linear systems arising from the discretization of integral and 
differential equations. 

Fabio Durastante is a researcher in numerical analysis in the Department of 
Mathematics, University of Pisa, Italy. His scientific activity is mainly focused on 
numerical linear algebra and its application to the solution of partial differential 
equations of both integer and fractional order, high-performance computing, and 
computation of matrix-functions. 

Roberto Garrappa is Associate Professor of Numerical Analysis in the Department 
of Mathematics, University of Bari, Italy. His scientific activity is mainly focused 
on numerical methods for fractional differential equations and for the computation 
of special functions in fractional calculus. 

Mariarosa Mazza is a researcher in numerical analysis at the University of 
Insubria, Italy. Her scientific activity is mainly focused on numerical linear algebra 
problems and related applications, with special attention to iterative methods for 

xi 



xii About the Editors 

discretized partial differential equations, also of fractional type. Other interests 
include image deblurring and approximation issues. 

Marina Popolizio is Associate Professor of Numerical Analysis at the Polytechnic 
University of Bari, Italy. Her scientific activity is mainly focused on numerical linear 
algebra and numerical methods for fractional differential equations, with special 
attention to the computation of matrix functions. 



A New Diffusive Representation for 
Fractional Derivatives, Part I: 
Construction, Implementation and 
Numerical Examples 

Kai Diethelm 

Abstract Diffusive representations of fractional derivatives have proven to be 
useful tools in the construction of fast and memory efficient numerical methods for 
solving fractional differential equations. A common challenge in many of the known 
variants of this approach is that they require the numerical approximation of some 
integrals over an unbounded integral whose integrand decays rather slowly, which 
implies that their numerical handling is difficult and costly. We present a novel 
variant of such a diffusive representation. This form also requires the numerical 
approximation of an integral over an unbounded domain, but the integrand decays 
much faster. This property allows to use well established quadrature rules with much 
better convergence properties. 

1 Introduction and Statement of the Problem 

1.1 Classical Discretizations in Fractional Calculus 

The efficient numerical solution of initial value problems with fractional differential 
equations like, e.g., 

.Dα
a y(t) = f (t, y(t)), y(a) = y0, (1) 

is a significant computational challenge due to, among other reasons, the non-
locality of fractional differential operators. In our formulation (1), . Dα

a denotes the 
standard Caputo differential operator of order . α with starting point .a ∈ R [6, 
Chapter 3], and we assume here and throughout some other parts of this chapter 
that .0 < α < 1 (although we explicitly point out that the generalization of our 

K. Diethelm (�) 
Faculty of Applied Natural Sciences and Humanities, Technical University of Applied Sciences 
Würzburg-Schweinfurt, Schweinfurt, Germany 
e-mail: kai.diethelm@thws.de 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 
A. Cardone et al. (eds.), Fractional Differential Equations, 
Springer INdAM Series 50, https://doi.org/10.1007/978-981-19-7716-9_1 

1


 31368 2385 a 31368 2385
a
 
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-7716-9_1&domain=pdf

 885 56845 a 885 56845 a
 
mailto:kai.diethelm@thws.de
mailto:kai.diethelm@thws.de
mailto:kai.diethelm@thws.de
https://doi.org/10.1007/978-981-19-7716-9_1
https://doi.org/10.1007/978-981-19-7716-9_1
https://doi.org/10.1007/978-981-19-7716-9_1
https://doi.org/10.1007/978-981-19-7716-9_1
https://doi.org/10.1007/978-981-19-7716-9_1
https://doi.org/10.1007/978-981-19-7716-9_1
https://doi.org/10.1007/978-981-19-7716-9_1
https://doi.org/10.1007/978-981-19-7716-9_1
https://doi.org/10.1007/978-981-19-7716-9_1
https://doi.org/10.1007/978-981-19-7716-9_1
https://doi.org/10.1007/978-981-19-7716-9_1


2 K. Diethelm

findings to the case that . α is a non-integer number greater than 1 is a relatively 
straightforward matter). 

When dealing with the problem (1), one usually introduces a discretization of 
the interval .[a, a + T ], say, on which the solution is sought by defining some 
grid points .a = t0 < t1 < t2 < · · · < tN = a + T . For each grid point 
. tj , .j = 1, 2, . . . , N , typical numerical methods then introduce an approximation 
formula for a discretization of .Dα

a y(tj ) based on function values of y at the grid 
points, replace the exact fractional derivative in Eq. (1) by this approximation, 
discard the approximation error and solve the resulting algebraic equation to obtain 
an approximation for .y(tj ). In their standard forms, classical methods like fractional 
linear multistep methods [20, 21] or the Adams method [9, 10] require . O(j)

operations to compute the required approximation at the j -th grid point, thus leading 
to an .O(N2) complexity for the overall calculation of the approximate solution at 
all N grid points. Moreover, the construction of the algorithms requires the entire 
history of the process to be in the active memory at any time, thus leading to an 
.O(N) memory requirement. This may be prohibitive in situations like, e.g., the 
simulation of the mechanical behaviour of viscoelastic materials via some finite 
element code where a very large number of such differential equations needs to be 
solved simultaneously [18]. 

Numerous modifications of these basic algorithms have been proposed to resolve 
these issues. Specifically (see, e.g., [12, Section 3]), one may use FFT techniques to 
evaluate the sums that arise in the formulas [14–16], thus reducing the overall com-
putational complexity to .O(N log2 N); however, this approach does not improve 
the memory requirements. Alternatively, nested mesh techniques [11, 13] can be 
employed; this typically reduces the computational complexity to .O(N logN), and 
some of these methods are also able to cut down the active memory requirements to 
.O(logN). 

1.2 Diffusive Representations in Discretized Fractional 
Calculus 

From the properties recalled above, it becomes clear that none of the schemes 
mentioned so far allows to reach the level known for traditional algorithms for 
first-order initial value problems that, due to their differential operators being 
local, have an .O(N) complexity and an .O(1) memory requirement. However, it is 
possible to achieve these performance features by using methods based on diffusive 
representations for the fractional derivatives [24]. Typically, such representations 
take the form 

.Dα
a y(t) =

∫ ∞

0
φ(w, t)dw (2)
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where, for a fixed value of w, the function .φ(w, ·) is characterized as the solution 
to an initial value problem for a first-order differential equation the formulation of 
which contains the function y whose fractional derivative is to be computed. In the 
presently available literature, many different special cases of this representation are 
known, e.g. the version of Yuan and Agrawal [29] (originally proposed in that paper 
for .0 < α < 1 and extended to .1 < α < 2 in [28] and to general positive non-
integer values of . α in [5]; see also [25] for further properties of this method) where 
the associated initial value problem reads 

. 
∂φYA

∂t
(w, t) = −w2φYA(w, t) + (−1)�α� 2 sinπα

π
w2α−2�α�+1y(�α�)(t), φYA(w, a) = 0,

(3a) 

such that the function .φYA has the form 

. φYA(w, t) = (−1)�α� 2 sinπα

π
w2α−2�α�+1

∫ t

a

y(�α�)(τ ) exp(−(t − τ)w2)dτ.

(3b) 

An alternative has been proposed by Chatterjee [3] (see also [26]) using the initial 
value problem 

. 
∂φC

∂t
(w, t) = −w1/(α−�α�+1)φC(w, t) + (−1)�α� sinπα

π(α − �α� + 1)
y(�α�)(t), φC(w, a) = 0,

(4a) 

such that the function . φC has the form 

. φC(w, t) = (−1)�α� sinπα

π(α − �α� + 1)

∫ t

a

y(�α�)(τ ) exp
(
−(t − τ)w1/(α−�α�+1)

)
dτ.

(4b) 

In either case (or in the case of the many variants thereof that have been proposed; 
cf., e.g., [1, 2, 19, 23, 30]), the numerical calculation of .Dα

a y(tj ) requires 

1. a quadrature formula 

.

K∑
k=1

λkφ(wk, tj ) ≈
∫ ∞

0
φ(w, tj )dw = Dα

a y(tj ) (5) 

with nodes .w1, w2, . . . , wK ∈ [0,∞) and weights .λ1, λ2, . . . , λK ∈ R for 
numerically evaluating the integral in Eq. (2), 

2. a standard numerical solver for the associated differential equation (e.g., a linear 
multistep method) to approximately compute, for each .k ∈ {1, 2, . . . , K}, the  
values .φ(wk, tj ) required to evaluate the formula (5).
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Evidently, the run time and the memory requirements of the operation in step 1 
do not depend on j . Also, one can perform step 2 in an amount of time that is 
independent of j . Furthermore, if an .�-step method is used in step 2, one needs 
to have (approximate) information about .y(tj−1), y(tj−2), . . . y(tj−�), which has to 
be kept in the active memory—but the amount of storage space required for this 
purpose is also independent of j . 

In summary, approaches of this type require .O(1) arithmetic operations per time 
step, i.e. we have a computational cost of .O(N) for all N time steps combined, and 
the required amount of memory is .O(1) as desired. A further pleasant property 
of these methods is that they impose no restrictions at all on the choice of the 
grid points . tj , whereas this can not always be achieved with the other approaches. 
Thus, from a theoretical point of view, algorithms of this form are very attractive. In 
practice, however, the implied constants in the O-terms may be very large. This is 
due to the following observation [6, Theorems 3.20(b) and 3.21(b)]: 

Proposition 1 Let .t ∈ [a, a + T ] be fixed. Then, for .w → ∞, we have 

. φYA(w, t) = cYAwqYA(1 + o(1)) with qYA = 2α − 2�α� − 1 ∈ (−3,−1)

and 

. φC(w, t) = cCwqC(1 + o(1)) with qC = − 1

α − �α� + 1
< −1,

where . cC and .cYA are some constants independent of w (which may, however, 
depend on t , a, . α and y). 

From Proposition 1, we can see that the integrands in Eq. (2) decay to zero in 
an algebraic manner as .w → ∞. Figure 1 shows the behaviour of the exponents 
.qYA and . qC as they depend on . α. It can be seen that the exponents are less than 
. −1 for all .α ∈ (0, 1). This suffices to assert that the integrals .

∫ ∞
0 φ(w, t)dw are 

convergent. On the other hand, step 1 of the algorithm outlined above requires 
to numerically approximate this integral, and to this end, classical results from 
approximation theory [22] imply that such an algebraic decay does not admit a very 
fast convergence of such numerical methods. Indeed, as the constant . qC is slightly 
larger than .qYA for .α ≥ 1/2 and (significantly) smaller for .α < 1/2, one may 
state that overall Chatterjee’s method has more preferable properties from this point 
of view (although its properties are still far from good enough). To the best of the 
author’s knowledge, this is a feature shared by very many algorithms based on this 
type of approach. Therefore, one needs a relatively large number K of quadrature 
nodes in Eq. (5) to obtain an approximation with an acceptable accuracy (with the 
approaches known so far, a common choice for K is in the range between 200 and 
500, cf. [1, 18]). This number K clearly has a strong influence on the constants 
implied in the O-term for the computational complexity estimate. The main goal of 
this chapter thus is to develop a method that is also based on the same fundamental 
idea but that leads to a function .φ(w, t) which exhibits an exponential decay for
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Fig. 1 Behaviour of the exponents .qYA (blue) and . qC (orange) as introduced in Proposition 1 vs. 
the order . α of the differential operator 

large w. This behaviour is much more pleasant from an approximation theoretic 
point of view because it allows to use well-understood and rapidly convergent 
classical techniques like Gauss–Laguerre quadrature formulas. The hope behind 
this idea is that the improved convergence behaviour will admit using quadrature 
formulas as in Eq. (5) with a significantly smaller number K of nodes, so that the 
resulting algorithms can produce results with a comparable accuracy as the known 
methods in a much shorter amount of time (which is still proportional to N but with 
a significantly smaller implied constant). 

Note that our approach yields a discretization of the fractional differential 
operator, and so—when used to set up an algorithm for solving fractional order 
initial value problems like (1)—it works with the differential form of the problem, 
i.e. with Eq. (1) directly. In this respect, the method proposed here follows the same 
path as those proposed in, e.g., [2, 3, 5, 18, 26, 28–30]. Other authors [1, 19, 23] have  
alternatively suggested to apply diffusive representations to the equivalent integral 
representation of the initial value problem [6, Lemma 6.2], which amounts to a 
substantially different algorithm. 

2 The New Diffusive Representation and Its Properties 

Our main idea is based on the following result that summarizes the diffusive 
representation itself, given in Eq. (9) in conjunction with Eq. (7), and its most 
important properties (listed in parts (d) and (e) of the theorem) that play the 
fundamental role for the convergence properties, cf. Theorem 2 and its proof.
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We emphasize here that our method can not only be used (as indicated above) 
in the context of solution algorithms for fractional differential equations but that it 
also immediately yields a fast method for the approximate numerical calculation of 
the fractional derivative .Dα

a y(tj ) of a given function y at a number of points . tj , 
.j = 1, 2, . . . , N . 

Theorem 1 For given values .a ∈ R, .T > 0 and .α ∈ R+ \ N and a given function 
.y ∈ C�α�[a, a + T ], let  

.qD = α − �α� + 1 (6) 

and 

.φD(w, t) = (−1)�α� sinαπ

π
ewqD

∫ t

a

y(�α�)(τ ) exp
(−(t − τ)ew

)
dτ (7) 

for all .w ∈ R and .t ∈ [a, a + T ]. Then, we have the following properties: 
(a) The value . qD satisfies .0 < qD < 1. 
(b) For any .w ∈ R, the function .φD(w, ·) solves the initial value problem 

. 
∂φD

∂t
(w, t) = −ewφD(w, t) + (−1)�α� sinαπ

π
ewqDy(�α�)(t), φD(w, a) = 0

(8) 

for .t ∈ [a, a + T ]. 
(c) For any .t ∈ [a, a + T ], 

.Dα
a y(t) =

∫ ∞

−∞
φD(w, t)dw. (9) 

(d) For any .t ∈ [a, a + T ], we have .φD(·, t) ∈ C∞(R). 
(e) For any .t ∈ [a, a + T ], 

.φD(w, t) = O(ew(qD−1)) as w → ∞ (10) 

and 

.φD(w, t) = O(ewqD) as w → −∞. (11) 

So, part (b) of Theorem 1 asserts that our function . φD solves an initial value 
problem of the same type as the previously considered functions, cf. (3a) or (4a). 
Moreover, according to part (c), by integrating this function with respect to w, we  
obtain the fractional derivative of the given function y, which is in analogy with 
the corresponding equation (2) for the known approaches mentioned above. Note 
that there is a marginal difference between Eqs. (2) and (9) in the sense that the
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latter involves an integration over the entire real line whereas the former requires to 
integrate over the positive half line only, but from the point of view of approximation 
(or quadrature) theory this does not introduce any substantial problems. (The index 
. D in . φD and . qD can be interpreted to stand for “doubly infinite integration range”.) 
Thus, in these respects, the new model behaves in very much the same way as the 
known ones. The significant difference between the known approach and the new 
one is evident from part (e) of the theorem: it asserts (in view of the property of 
. qD shown in part (a)) that the integrand exhibits the desired exponential decay as 
.w → ±∞, thus allowing, in combination with the smoothness result of part (d), a 
much more efficient numerical integration. 

Proof Part (a) is an immediate consequence of the definition of . qD given in Eq. (6). 
For part (b), we first note that the integrand in Eq. (7) is continuous by 

assumption. Hence, the integral is zero for .t = a which implies that the initial 
condition given in Eq. (8) is correct. Also, a standard differentiation of the integral 
in the definition (7) with respect to the parameter t yields the differential equation. 

To prove (c), we recall from [6, Proof of Theorem 3.18] that 

. Dα
a y(t) = (−1)�α� sinαπ

π

∫ t

a

∫ ∞

0

e−z

z

(
z

x − τ

)qD

y(�α�)(τ )dz dτ.

The substitution .z = (x − τ)ew, combined with an interchange of the two 
integrations (which is admissible in view of Fubini’s theorem), then leads to the 
desired result. 

Statement (d) directly follows from the definition (7) of the function . φD. (Here,  
one may note an interesting consequence of the representation of Eq. (7): the  
smoothness properties of the function y whose fractional derivative we aim to 
compute do not play any role at all in the context of the smoothness of .φD(·, t).) 

Finally, we show that the estimates of (e) are true. To this end, let us first discuss 
what happens for .w → +∞. Here, we can see that 

. φD(w, t) = (−1)�α� sinαπ

π
(I1 + I2),

where 

.|I1| =
∣∣∣∣ewqD

∫ t

t−w exp(−w)

y(�α�)(τ ) exp
(−(t − τ)ew

)
dτ

∣∣∣∣

≤ ‖y(�α�)‖L∞[a,a+T ]ewqD

∣∣∣∣
∫ t

t−w exp(−w)

exp
(−(t − τ)ew

)
dτ

∣∣∣∣
≤ ‖y(�α�)‖L∞[a,a+T ]ewqDe−w

[
1 − e−w

]
< ‖y(�α�)‖L∞[a,a+T ]ew(qD−1)
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and 

. |I2| =
∣∣∣∣∣ewqD

∫ t−w exp(−w)

a

y(�α�)(τ ) exp
(−(t − τ)ew

)
dτ

∣∣∣∣∣

≤ ewqD max
τ∈[a,t−w exp(−w)]

exp
(−(t − τ)ew

) ∫ t−w exp(−w)

a

|y(�α�)(τ )|dτ

≤ ewqDe−w

∫ a+T

a

|y(�α�)(τ )|dτ = ew(qD−1)
∫ a+T

a

|y(�α�)(τ )|dτ,

which shows the desired result (10) in this case; in particular, the upper bound 
decays exponentially for .w → ∞ because .qD < 1. Regarding the behaviour for 
.w → −∞, we start from the representation (7) and apply a partial integration. This 
yields, taking into consideration that .t ≥ a, that 

. |φD(w, t)| = | sinαπ |
π

ewqD

∣∣∣ exp (−(x − τ)ew
)
y(�α�−1)(τ )

∣∣τ=t

τ=a

− ew

∫ t

a

exp
(−(t − τ)ew

)
y(�α�−1)(τ )dτ

∣∣∣

≤ | sinαπ |
π

ewqD

∣∣∣y(�α�−1)(t) − y(�α�−1)(a) exp
(−(t − a)ew

)∣∣∣

+ | sinαπ |
π

ewqD‖y(�α�−1)‖L∞[a,a+T ]
∣∣∣∣ew

∫ t

a

exp
(−(t − τ)ew

)
dτ

∣∣∣∣
≤ | sinαπ |

π
‖y(�α�−1)‖L∞[a,a+T ]ewqD

(
2 + 1 − exp

(−(t − a)ew
))

≤ 3
| sinαπ |

π
‖y(�α�−1)‖L∞[a,a+T ]ewqD ,

thus proving the relation (11) and demonstrating, in view of .qD > 0, that . φD(w, t)

decays to zero exponentially as .w → −∞. �

3 The Complete Numerical Method 

Based on Theorem 1—in particular, using the properties shown in parts (d) and 
(e)—we thus proceed as follows to obtain the required approximation of .Dα

a y(tj ), 
.j = 1, 2, . . . , N . Splitting up the integral from Eq. (9) into the integrals over the 
negative and over the positive half line, respectively, and introducing some obvious
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substitutions, we notice that 

. 

∫ ∞

−∞
φD(w, t)dw = 1

qD

∫ ∞

0
e−ueuφD(−u/qD, t)du

+ 1

1 − qD

∫ ∞

0
e−ueuφD(u/(1 − qD), t)du.

Therefore, using 

.φ̂D(u, t) := eu

(
1

qD
φD(−u/qD, t) + 1

1 − qD
φD(u/(1 − qD), t)

)
, (12) 

we find that 

.Dα
a y(t) =

∫ ∞

−∞
φD(w, t)dw =

∫ ∞

0
e−uφ̂D(u, t)du ≈ QGLa

K [φ̂D(·, t)], (13) 

where 

. QGLa
K [f ] =

K∑
k=1

aGLak f (xGLa
k )

is the K-point Gauss–Laguerre quadrature formula, i.e. the Gaussian quadrature 
formula for the weight function .e−u on the interval .[0,∞) [4, Sections 3.6 and 3.7]. 
For the sake of simplicity, we have chosen to omit from our notation for the nodes 
.xGLa

k and the weights .aGLak of the Gauss–Laguerre quadrature formula the fact that 
these quantities depend on the total number K of quadrature nodes. We can then 
show the following qualitative convergence result. 

Theorem 2 Under the assumptions of Theorem 1, we have 

. lim
K→∞ QGLa

K [φ̂D(·, t)] = Dα
a y(t)

for all .t ∈ [a, a + T ]. 
This chapter is dedicated to the development and the discussion of the approach 

from a computational and practical perspective. For this purpose, a qualitative result 
such as the one shown in Theorem 2 suffices. Therefore, we shall not provide a more 
detailed convergence analysis; in particular, we shall refrain from investigating the 
rate of convergence. Such an analysis is possible though and will be given in a 
forthcoming work [8] that concentrates on the analysis of the method’s properties 
from a more fundamental and theoretical point of view. 

Proof We have seen in Theorem 1(d) that the function .φD(·, t) is differentiable 
infinitely many times. Together with the decay properties shown in Theorem 1(e),
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this allows us to invoke a classical convergence result for Gauss–Laguerre quadra-
ture formulas [4, p. 227] and derive the desired result. �

For a given number K of quadrature points, it is known that the nodes .xGLa
k , 

.k = 1, 2, . . . , K , are the zeros of the Laguerre polynomial . LK of order K , and the 
associated weights are given by 

. aGLak = xGLa
k

[LK+1(xk)]2 ,

cf., e.g., [4, p. 223]. (In our definition of the Laguerre polynomials, the normaliza-
tion is such that .

∫ ∞
0 e−x(LK(x))2dx = 1.) From [27, eqs. (6.31.7), (6.31.11) and 

(6.31.12)], we know that, at least for .K ≥ 3, 

. 
2.89

2K + 1
< xGLa

1 <
3

2K
and 2K < xGLa

K < 4K + 3.

We are now in a position to describe the method for the numerical computation 
of .Dα

a y(tj ), .j = 1, 2, . . . , N , that we propose. In this algorithm, the symbol . φk is 
used to denote the approximate value of .φD(xGLa

k , tj ) for the current time step, i.e. 
for the currently considered value of j . Steps 1 and 2 here are merely preparatory in 
nature; the core of the algorithm is step 3. 

Given the initial point a, the order . α, the grid points . tj , .j = 1, 2, . . . , N and the number 
.K ∈ N of quadrature nodes, 

1. Set .qD ←� α − �α� + 1. 
2. For .k = 1, 2, . . . , K: 

a. Compute the Gauss–Laguerre nodes .xGLa
k and the associated weights .aGLak . 

b. Define the auxiliary quantities .wk ←� −xGLa
k /qD and .w̃k ←� xGLa

k /(1 − qD). 
c. Set .φk ←� 0 and .φ̃k ←� 0 (to represent the initial condition of the differential equation 

(8) for .t = t0 = a). 

3. For .j = 1, 2, . . . , N : 

a. Set .h ← � tj − tj−1. 
b. For .k = 1, 2, . . . , K: 

i. Update the value . φk by means of solving the associated differential equation (8) 
with, e.g., the backward Euler method, viz. 

.φk ←�

1

1 + hewk

(
φk + h(−1)�α� sinαπ

π
ewkqDy(�α�)(tj )

)
(14a) 

(note that the index k used here is not the time index). 
ii. Similarly, update the value . φ̃k by 

.φ̃k ←�

1

1 + hew̃k

(
φ̃k + h(−1)�α� sinαπ

π
ew̃kqDy(�α�)(tj )

)
. (14b)
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c. Compute the desired approximate value for .Dα
a y(tj ) using the formula 

. Dα
a y(tj ) =

K∑
k=1

aGLak exp(xGLa
k )

(
1

qD
φk + 1

1 − qD
φ̃k

)
.

The main goal of this chapter is to develop a diffusive representation that can be 
numerically handled in a more efficient way than traditional formulas. Therefore, 
our work concentrates on the aspects related to the integral, i.e. on the properties 
of the integrand and on the associated numerical quadrature. The solution of the 
differential equation is not in the focus of our work; we only use some very simple 
(but nevertheless reasonable) methods here. Our specific choice is based on the 
observation that the magnitude of the constant factor with which the unknown 
function .φ(w, ·) on the right-hand side of (8) is multiplied is such that an A-stable 
method should be used [17]. Therefore, as the simplest possible choice among these 
methods, we have suggested the backward Euler method in our description given 
above. Alternatively, one could, e.g., use the trapezoidal method which is also A-
stable. This would mean that the formulas given in Eqs. (14a) and (14b) would have 
to be replaced by 

.φk ←�

1

1 + hewk/2

( (
1 − h

2
ewk

)
φk (15a) 

+ 
h 
2 
(−1)�α� sinαπ 

π 
ewkqD(y(�α�) (tj ) + y(�α�) (tj−1))

)

and 

.φ̃k ←�

1

1 + hew̃k /2

( (
1 − h

2
ew̃k

)
φ̃k (15b) 

+ 
h 
2 
(−1)�α� sin απ 

π 
ew̃kqD(y(�α�) (tj ) + y(�α�) (tj−1))

)
, 

respectively. In the following section, we shall report the results of our numerical 
experiments for both variants. 

Remark 1 From a formal point of view, Eqs. (14a) and (14b) have exactly the same 
structure. From a numerical perspective, however, there is a significant difference 
between them that needs to be taken into account when implementing the algorithm 
in finite-precision arithmetic: in view of the definitions of the quantities . wk and . w̃k

given in step 2b of the algorithm and the facts that the Gauss–Laguerre nodes . xGLa
k

are strictly positive for all k and that .qD ∈ (0, 1), it is clear that .wk < 0 for all 
k, and hence the powers .ewk and .ewkqD that occur in Eq. (14a) are always in the 
interval .(0, 1). It may be, if .|wk| is very large, that the calculation of .ewk in IEEE 
arithmetic results in an underflow, but this number can then safely be replaced by
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0 without causing any problems. Therefore, Eq. (14a) can be implemented directly 
in its given form. On the other hand, using the same arguments, we can see that 
.w̃k > 0 for all k, and indeed (at least if k is large and/or . qD is close to 1) . w̃k may be 
so large that the computation of . ew̃k results in a fatal overflow. For this reason, in a 
practical implementation, Eq. (14b) should not be used in its form given above but 
in the equivalent form 

.φ̃k ←�

e−w̃k

e−w̃k + h
φ̃k + h(−1)�α� sinαπ

π

ew̃k(qD−1)

e−w̃k + h
y(�α�)(tj ), (14c) 

which avoids all potential overflows. 
Evidently, an analog comment applies to Eqs. (15a) and (15b). 

4 Experimental Results and Conclusion 

In [7], we have reported some numerical results illustrating the convergence 
behaviour of the RISS method proposed by Hinze et al. [18]. Here, now we 
present similar numerical results obtained with the new algorithm. A comparison 
with the corresponding data shown in [7] reveals that, in many cases, our new 
method requires a smaller number of quadrature nodes than the RISS approach (with 
otherwise identical parameters) to obtain approximations of a similar quality. 

A typical result is shown in Fig. 2 where we have numerically computed the 
Caputo derivative of order . 0.4 of the function .y(t) = t1.6 over the interval .[0, 3]. 
The calculations have been performed on an equispaced grid for the interval . [0, 3]
with various different step sizes (i.e. with different numbers of grid points) and 
different choices of the number K of quadrature nodes. Both the backward Euler 
and the trapezoidal scheme have been tried as the ODE solvers. The figure exhibits 
the maximal absolute error over all grid points. 

The findings of this example can be summarized as follows: 

• The trapezoidal method clearly leads to a more accurate approximation than the 
backward Euler method. Obviously, in view of the trapezoidal method’s higher 
convergence order, this behaviour is exactly what would have been expected. 

• The number of quadrature points, i.e. our parameter K , only has a very small 
influence on the overall error. Therefore, one can afford to work with a relatively 
small value of K , thus significantly reducing the computational cost, without a 
substantial loss of accuracy. 

• A comparison of the results for the trapezoidal method shows that a certain kind 
of saturation is reached at an error level of .4.5 · 10−6 for .K = 40, i.e. we do 
not achieve a better accuracy even if we continue to decrease the step size for the 
ODE solver. This is an indication that this level reflects the contribution of the 
total error caused by the quadrature formula. If a smaller error is required, one 
therefore needs to use more quadrature nodes. For example, choosing .K = 70
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Fig. 2 Maximal errors for the calculation of .D0.4
0 y(t)with .t ∈ [0, 3] for .y(t) = t1.6 using different 

step sizes for the ODE solver and different numbers of quadrature nodes 

leads to a saturation level of approximately .3.2 · 10−7. This indicates that the 
saturation level might be proportional to .K−0.6, leading to the conjecture that the 
exponent of K in this expression could be related to the smoothness properties 
of the function y (note that the function . y′ that appears in the formulas which 
describe our algorithm satisfies a Lipschitz condition of order . 0.6). 

The fact that this phenomenon is hardly visible if the backward Euler method 
is used is due to the fact that this ODE solver has a larger error which only just 
about reaches this range for the chosen step sizes. It would be possible to more 
clearly observe a similar behaviour if the step sizes were reduced even more. 

We have also used a number of other test cases; the behaviour has usually been 
very similar. Also, the findings of [7] for a significantly different method based on 
a related fundamental approach point into the same direction. In our future work, 
we will attempt to provide a thorough analysis of the approximation properties of 
methods of this type that should confirm the experimental results. 
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Exact Solutions for the Fractional 
Nonlinear Boussinesq Equation 

Andrea Ceretani, Federico Falcini, and Roberto Garra 

Abstract We investigate the existence of exact solutions in closed form to a frac-
tional version of the nonlinear Boussinesq equation for groundwater flow through 
an unconfined aquifer. We show this fractional equation appears naturally when 
the classical nonlinear Darcy’s law is replaced by a space-fractional one. After a 
physical discussion on the fractional model, we give several exact solutions in closed 
form for special choices of initial and boundary data. We provide solutions for 
steady and unsteady cases, by considering both classical and fractional derivatives 
in time. 

1 Introduction 

This chapter is devoted to show that, by simple methods, it is possible to find exact 
solutions in closed form to a nonlocal generalization of the well-known Boussinesq 
equation for a horizontal unconfined aquifer, 

.
∂h

∂t
(x, t) = k

∂

∂x

(
h(x, t)

∂h

∂x
(x, t)

)
+ �(h(x, t), t)

n
x > 0, t > 0, (1) 
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where k and n are given positive parameters and . � is a known function. Here, we 
consider the fully nonlinear fractional equation 

.
∂γ h

∂tγ
(x, t) = k

∂

∂x

(
h(x, t)

∂νh

∂xν
(x, t)

)
+ �(h(x, t), t)

n
x > 0, t > 0, (2) 

with a sink term . � of the form 

.�(h, t) = −nφh, (3) 

where . φ is a non-negative parameter. The operator .∂ν/∂xν is the partial fractional 
derivative with respect to the space variable x, of order .ν ∈ (0, 1), associated with 
the left-sided Caputo fractional derivative with zero starting point. The operator 
.∂γ /∂tγ is defined analogously if .γ ∈ (0, 1), whereas it is given by the usual 
derivative if .γ = 1. We recall that the Caputo fractional derivative of order 
.α ∈ (0, 1) is defined by 

.
dαf

dzα
(z) = 1

�(1 − α)

∫ z

0
(z − z′)−α df

dz′ (z
′) dz′ z ≥ 0, (4) 

for absolutely continuous functions f in .[0,∞), where .�(·) is the gamma function. 
Notice that we have a space-time-fractional problem if .γ ∈ (0, 1) and a space-
fractional one if .γ = 1. In addition, observe that the local version (.γ = ν = 1) of  
Eq. (2) is the usual Boussinesq equation for a horizontal unconfined aquifer. 

Our work is motivated by modeling groundwater flows through anisotropic or 
non-homogeneous soils in hillslope areas. It is widely accepted that the Boussinesq 
equation is a suitable model to describe groundwater flows through isotropic and 
homogeneous soils; see, for example, [3, 4, 16] and the references therein. However, 
in the absence of isotropy or homogeneity and, in particular, under long-range 
effects in groundwater flows, the Boussinesq equation can no longer capture the 
nonlocal effects of pressure gradients; see, for example, [18–20]. In the last decades, 
fractional calculus tools have shown remarkable potential to accurate modeling 
phenomena in anisotropic, non-homogeneous media, see, for example, [5, 23]. We 
show in Sect. 2 that the space-fractional equation (2) arises naturally when the local, 
nonlinear Darcy’s law is replaced by a fractional one in the usual derivation of the 
Boussinesq equation. 

As a first step, we are interested in deriving exact solutions in closed form to 
our model. This is a hard task because we have to deal with a nonlinear fractional 
equation. Exact solutions to the Boussinesq equation were given in several works for 
special choices of initial and boundary data; see for example [4, 12, 18]. Following 
this approach, we consider here a toy model for which solutions can be obtained in 
closed form. More precisely, we consider the initial and boundary conditions 

.h(x, 0) = xσ x ≥ 0, h(0, t) = 0 t ≥ 0, (5) 

where .σ > 0.
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Frequently, dealing with more realistic fractional models requires to develop 
methods to find approximate solutions. We refer to the recent monograph [10] 
and the references therein for a comprehensive survey on this topic. The exact 
solutions provided here may serve to test analytical or numerical methods to 
approximate solutions to fully nonlinear fractional equations. The complexity of 
fractional models has further motivated the study on generalized solutions to them. 
We refer, for example, to the recent article [22] where the authors investigate the 
existence and properties of viscosity solutions for a fractional problem obtained 
from a fractional linear Darcy-type law. To the best of our knowledge, the problem 
considered here (i.e. the one derived from a fractional nonlinear Darcy-type law) 
was not yet investigated in the literature. 

The outline of the article is as follows. In Sect. 2, we provide a simple derivation 
of Eq. (2), based on the continuity equation and a fractional Darcy-type law. Exact 
solutions for the steady and unsteady space-fractional problems are given in Sects. 3 
and 4, respectively. The time-fractional case is analyzed in Sect. 5, where exact 
solutions are provided also for problems with time-dependent coefficients. The 
chapter closes with a brief discussion in Sect. 6. 

2 Physical Motivation 

The goal of this section is to show that Eq. (2) is a special case of a fractional 
version of the classical nonlinear Boussinesq equation, which plays a central role 
to understand groundwater flows through unconfined aquifers. 

For isotropic and homogeneous soils, the depth of water h is governed by the 
continuity equation 

.n
∂h

∂t
(x, t) = −∂q

∂x
(x, t) + �(h(x, t), t), (6) 

where the flow rate q is assumed to be given by Darcy’s law 

.q(x, t) = −h(x, t)Ks sin(θ) − h(x, t)
∂h

∂x
(x, t)Ks cos(θ), (7) 

see, for example, [1]. Here, x is the coordinate parallel to the bed slope and . θ is the 
angle of the bed slope to the horizontal. The parameter n is the soil porosity, . Ks is 
the saturated hydraulic conductivity, and .�(h, t) is a source or a sink term. 

Replacing Eq. (7) into Eq. (6), we directly obtain the nonlinear Boussinesq 
equation 

.
∂h

∂t
(x, t) = k

∂

∂x

(
h(x, t)

∂h

∂x
(x, t)

)
+ vs

∂h

∂x
(x, t) + �(h(x, t), t)

n
, (8) 

where we have written .vs = (Ks/n) sin(θ) and .k = (Ks/n) cos(θ) for shortness.
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In the absence of homogeneity or isotropy in the porous medium, a model based 
on the local Darcy’s law (7) may no longer capture the effects of nonlocal pressure 
differences. The role of them on Darcy’s law was firstly investigated by Sen and 
Ramos in [18], for a steady problem. There, the porous medium is conceived as a 
network of short-, medium-, and long-range interstitial channels with impermeable 
walls, where the flow is driven by both local and nonlocal pressure gradients. The 
flow rate q is then given by 

.q(x) = −
∫ +∞

−∞
f (x, x′)(p(x′) − p(x))dx′, (9) 

where p is the pressure field and f is a nonlocal flow conductivity. The later takes 
into account the effects of the channel length and thickness between the locations . x′
and x, and it is directly related to the medium properties. Both the classical Darcy’s 
law (7) and some nonlocal versions of it can be obtained as special cases of (9); see  
[18] for the details. In particular, by considering a power-law nonlocal conductivity 
f , one finds a fractional Darcy-type law given in terms of the Riemann–Liouville 
fractional derivative operator [18]. Encouraged by this pioneering work, models 
based on fractional Darcy-type laws were investigated in several papers, see, for 
example, [7] and the references therein. In the same vein of them, we consider here 
that the flow rate q is given by the nonlinear fractional Darcy-type law 

.q(x, t) = −h(x, t)Ks sin(θ) − h(x, t)
∂νh

∂xν
(x, t)Ks cos(θ), (10) 

where .ν ∈ (0, 1). Replacing (10) into the continuity equation (6), we obtain the 
nonlinear space-fractional Boussinesq equation 

.
∂h

∂t
(x, t) = k

∂

∂x

(
h

∂νh

∂xν
(x, t)

)
+ vs

∂h

∂x
(x, t) + �(h(x, t), t). (11) 

To keep the problem as simple as possible while retaining the nonlinearity, we 
consider a horizontal aquifer (then .θ = 0 and so . vs) and a sink term of the form 
.�(h, t) = −nφh, where . φ is a transfer coefficient that controls the magnitude of 
the seepage loss of water into the bedrock; see [1]. Thus, Eq. (11) reduces to (2) 
with .γ = 1. 

3 The Steady Solution 

We first consider the steady case, which is given by the boundary value problem 

.k
d

dx

(
h(x)

dνh

dxν
(x)

)
= φh(x) x > 0, h(0) = 0, (12)
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for a nonlinear fractional ordinary differential equation. This problem admits a 
solution in the power-law form .h(x) = cx β provided that c and . β are properly 
chosen, as we show below. Notice that any function h in this form satisfies the 
boundary condition .h(0) = 0. 

Exploiting that 

.
dν

dxν
(x β) = �(β + 1)

�(β + 1 − ν)
x β−ν, (13) 

we obtain that .h(x) = cx β satisfies the equation if and only if 

.kc(2β − ν)
�(β + 1)

�(β + 1 − ν)
x2β−ν−1 = φxβ. (14) 

If .φ = 0, Eq. (14) is fulfilled only if .c = 0. If .φ > 0, an elementary computation 
shows that (14) holds true only if .β = ν + 1 and .c = φ/k�(ν + 3). Thus, we find 
the exact solution 

.h(x) = φxν+1

k�(ν + 3)
x ≥ 0. (15) 

Remark 1 Following the same argument, we find the exact solution 

.h�(x) = φx2

6k
x ≥ 0, (16) 

for the associated nonlinear local problem 

.k
d

dx

(
h(x)

dh

dx
(x)

)
= φh(x) x > 0, h(0) = 0. (17) 

4 The Unsteady Space-Fractional Case 

We now address the unsteady space-fractional problem given by 

.
∂h

∂t
(x, t) = k

∂

∂x

(
h(x, t)

∂νh

∂xν
(x, t)

)
− φh(x, t) x > 0, t > 0, (18) 

subject to the initial and boundary conditions (5). 
Motivated by the steady solution found in Sect. 3, we assume that the exponent 

. σ in the initial data .h(x, 0) = xσ is given by .σ = ν + 1. We show below that this
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problem admits a similarity-type solution in the form 

.h(x, t) = xν+1f (t), (19) 

for a suitable selection of the function f . 
Exploiting formula (13) again, we observe that .h(x, t) = xν+1f (t) solves 

Eq. (18) if and only if f solves the following boundary value problem for a nonlinear 
ordinary differential equation: 

.
df

dt
(t) = k �(ν + 3)f (t)2 − φf (t) t > 0, f (0) = 1. (20) 

If .φ = 0, a simple computation shows that 

. f (t) = 1

1 − k�(ν + 3)t

solves (20) for .t ≥ 0 with .t �= 1/k�(ν + 3). If .φ > 0, we find that 

. f (t) = φ

eφt (φ − k�(ν + 3)) + k�(ν + 3)

solves (20) for .t ≥ 0 if .φ ≥ k�(ν + 3) or for .t ≥ 0 with .t �= 1
φ
ln

(
k�(ν+3)

k�(ν+3)−φ

)
if 

.0 < φ < k�(ν + 3). Physically realistic solutions for .φ = 0 must be non-negative. 
This is achieved only if .0 ≤ t ≤ 1

k�(ν+3) . If  .φ > 0, physically realistic solutions 
must be, in addition, non-increasing with respect to time at every .x > 0. This occurs 
only if .φ ≥ k�(ν + 3). Thus, we obtain the exact solution 

. h(x, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xν+1

1 − k �(ν + 3)t
x ≥ 0, 0 ≤ t < 1

k�(ν+3) , if φ = 0,

φ xν+1

eφt (φ − k�(ν + 3)) + k�(ν + 3)
x ≥ 0, t ≥ 0, if φ ≥ k�(ν + 3).

Remark 2 As for the steady case, similar steps allow us to obtain the exact solution 

. h�(x, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x2

1 − 6kt
x ≥ 0, 0 ≤ t < 1

6k if φ = 0,

φ x2

eφt (φ − 6k) + 6k
x ≥ 0, t ≥ 0 if φ ≥ 6k,

to the associated local problem with initial data .h(x, 0) = x2. 

Minor changes on the above arguments allow to find exact solutions in the form 

.h(x, t) = xν+1f1(t) + f2(t), (21)
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where . f1 and . f2 satisfy the system of nonlinear ordinary differential equations 

. 
df1

dt
(t) = k�(ν + 3)f1(t)

2 − φf1(t),

dg

dt
(t) = f1(t)f2(t)�(ν + 2) − φf2(t),

with the initial conditions .f1(0) = 1 and .f2(0) = 0. 
The strategy developed so far to obtain exact solutions in the form (19) or (21) 

can be framed into the invariant subspace method (see, for example, [6] for  the  
general theory and [8] for applications to nonlinear fractional differential equations). 
We briefly recall the main idea of this method: consider the equation 

.
∂h

∂t
(x, t) = F [h](x, t), (22) 

where .F [h] is a nonlinear operator. A space of functions W is said to be invariant 
under the operator F if .F [h] ∈ W for every .h ∈ W . It is straightforward that if W 
admits a finite basis .{w1, . . . , wn}, then W is invariant under F if and only if there 
exist n scalar functions .1, . . . , n defined on . Rn that satisfy 

. F [
n∑

k=1

fkwk] =
n∑

k=1

k(f1, . . . , fn)wk,

for every .(f1, f2, . . . , fn) ∈ Rn. Thus, if W is as before, then Eq. (22) admits a 
solution in the form 

. h(x, t) =
n∑

k=1

fk(t)wk(x),

if and only if .f1, . . . , fn satisfy 

. 
df1

dt
(t) = 1(f1(t), . . . , fn(t)),

df2

dt
(t) = 2(f1(t), . . . , fn(t)),

...

dfn

dt
(t) = n(f1(t), . . . , fn(t)).

In this way, we reduce the original problem (22) to a system of ordinary differential 
equations that can be solved exactly in many cases. The useful role of this method
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to find exact solutions for nonlinear fractional partial differential equations has been 
shown in recent publications, and we refer, for example, to [15, 17]. 

Let us now go back to our problem. The operator F associated with Eq. (18) is 
given by 

.F [h] = k
∂

∂x

(
h

∂νh

∂xν

)
− φh. (23) 

Let . w1 and . w2 be the functions given by 

.w1(x) = xν+1 and w2(x) = 1. (24) 

A straightforward computation shows that the spaces . W1 and . W2 spanned by . {w1}
and .{w1, w2}, respectively, are invariant under the operator F . The solutions in the 
form (19) are those related to . W1, and the solutions in the form (21) are those related 
to . W2. 

Exploiting the invariant subspace method, one can look for exact solutions to 
Eq. (18) by first finding a finite-dimensional invariant subspace for the operator 
F given in (23). To illustrate, it is also possible to find exact solutions from the 
invariant subspaces . W̃1 and . W̃2 spanned by .{w̃1} and .{w̃1, w2}, respectively, where 

.w̃1(x) = xν/2, (25) 

provided that the exponent in the initial data .h(x, 0) = xσ in (5) is .σ = ν/2. For  
example, the solution related to . W̃1 is given by 

.h(x, t) = xν/2e−φt x ≥ 0, t ≥ 0. (26) 

We omit the details to avoid repetition. 

5 The Time-Fractional Case 

We finally consider the space–time-fractional problem given by Eq. (2) with . γ ∈
(0, 1) and the sink term given by (3), with the initial and boundary conditions (5). 

The invariant subspace method described at the end of Sect. 4 extends naturally 
to equations in the form 

.
∂γ h

∂tγ
= F [h]. (27) 

Let . W1, . W2, . W̃1, .W̃2 be the subspaces spanned by .{w1}, .{w1, w2}, .{w̃1}, 
.{w̃1, w2}, where . w1, . w2, and . w̃1 are given in (24) and (25) (see Sect. 4). We 
already know that they are invariant spaces under the operator F given by (23).
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This motivates to look for solutions that belong to some of them. For example, by 
considering the invariant subspace . W1, we find the exact solution 

.h(x, t) = xν/2Eγ (−φ tγ ) x ≥ 0, t ≥ 0, (28) 

for the case when the exponent in the initial data is .σ = ν/2. Here, 

.Eγ (−φ tγ ) =
∞∑
i=0

(−φ tγ )i

�(γ i + 1)
(29) 

is the one-parameter Mittag–Leffler function (see [9]). 

Remark 3 The same arguments enable to find exact solutions when the transfer 
coefficient . φ depends on time according to .φ(t) = λ tβ , where .λ > 0 and .β ∈ R. 
Here we recall that the so-called Kilbas–Saigo function (see [9] and [2] for details 
about this special function) 

. E
a,1+ b

a
, b
a

(
−λta+b

)
= 1 +

∞∑
i=1

(−λ)i t i(a+b)

i−1∏
j=0

�
(
a

(
j + j b

a
+ b

a

) + 1
)

�
(
a

(
j + j b

a
+ b

a
+ 1

) + 1
)
(30) 

solves the fractional Cauchy problem: 

.

{
day
dt

(t) = −λtby (t) , t ≥ 0, a ∈ (0, 1] , −a < b ≤ 1 − a,

y (0) = 1.
(31) 

Therefore, in this case, we obtain the solution 

.h(x, t) = xν/2E
γ,1+ β

γ
,
β
γ

(−λ tβ+γ
)

x ≥ 0, t ≥ 0, (32) 

under the assumptions .β ∈ (−γ, 1 − γ ] and .σ = ν/2. 

6 Conclusions 

We have explored the existence of exact solutions in closed form to a fully nonlinear 
fractional equation involving Caputo partial derivatives. This equation is closely 
related to the Boussinesq equation for unconfined horizontal aquifers, and it was 
obtained by a fractional Darcy-type law for the flow rate. Supplemented with 
appropriated initial and boundary conditions, the fractional equation considered 
here may serve as a model for groundwater flows through anisotropic or non-
homogeneous porous medium. As a first step to validate the later, we addressed
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here a toy model that allowed us to find exact solutions in closed form. This model 
was obtained by a specific selection of initial and boundary conditions. We provided 
exact solutions to steady and unsteady space-fractional problems, with and without 
memory effects. These solutions may be used to test analytical or numerical methods 
to approximate solutions to more realistic, steady, and unsteady models, based on 
the fractional equation proposed here. 

Nonlinearity, nonlocality, and memory effects may be directly related to 
unknown, long-range factors that vary across landscape types. This represents a 
core general hydrologic descriptions at both hillslope and watershed scales, since 
nonlinearity, nonlocality, and memory may affect the groundwater flow at different 
time and spatial scales. As for [1], our general solutions also have an explicit 
dependence on the along-channel variable x, a feature that allows for analytic 
investigations of surface topography and water table profile. Finally, our set of 
solutions reinforce previous finding on fractional studies on the Boussinesq equation 
for groundwater flow [19, 20], presenting new solutions related to different initial 
and boundary conditions and thus providing new insights into how water flows in 
fractal media, also for transient problems. 
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tion and Data Network Physics) and by CNR, in the frame of the Italian Flag Project Ritmare and 
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A Numerical Procedure for 
Fractional-Time-Space Differential 
Equations with the Spectral Fractional 
Laplacian 

Fabio Vito Difonzo and Roberto Garrappa 

Abstract The aim of this chapter is to device a computationally effective proce-
dure for numerically solving fractional-time-space differential equations with the 
spectral fractional Laplacian. A truncated spectral representation of the solution 
in terms of the eigenfunctions of the usual integer-order Laplacian is considered. 
Time-dependent coefficients in this representation, which are solutions to some 
linear fractional differential equations, are evaluated by means of a generalized 
exponential time-differencing method, with some advantages in terms of accuracy 
and computational effectiveness. Rigorous a priori error estimates are derived, and 
they are verified by means of some numerical experiments. 

1 Introduction 

In the last decades, fractional calculus, namely the study of integrals, derivatives, 
and differential equations of non-integer order, has been attracting an increasing 
attention due to the large extent of fields (biology, engineer, finance, physics, and 
so on) in which its application has proved to be useful to improve the description of 
complex systems or anomalous phenomena. 

One of the main reasons for introducing fractional calculus in modeling is 
indeed related to the need of using adequate operators to describe the non-locality 
observed in anomalous phenomena and complex systems. Very often one observes a 
dependence of the system state from its whole past history (non-locality in time), as 
well as its dependence at one point on the whole domain (non-locality in space). It 
is worth mentioning that fractional calculus is just one of the approaches available 
to incorporate non-locality or memory effects in modeling differential equations 
(we could cite at this purpose peridynamics [35] and the several works for dealing 
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with peridynamics from a numerical perspective, e.g., [28, 29, 39, 40]). Anyway, 
since fractional calculus appears as one of the most powerful and used tools in 
mathematics, developing new and efficient methods for the numerical solution of 
fractional differential equations (FDEs) is a research area still deserving a particular 
attention. 

We are interested in solving, on a bounded Lipschitzian open domain .� ⊂ Rd , a  
fractional-time-space differential equation (FTSDE) in the form 

.∂α
t u(x, t) + ν

( − �
)s

u(x, t) = f (x, t), x ∈ �, t ∈ (0, T ], (1) 

where .ν > 0 is a constant diffusion coefficient and .0 < α < 1, .0 < s < 1 are, 
respectively, the non-integer (i.e., fractional) differentiation orders of the time and 
the spatial derivative. Here, for an absolutely continuous function g on .[0, T ], the  
operator . ∂α

t represents the Caputo fractional derivative of order .0 < α < 1 [13] 
with respect to time and initialized at . t = 0

. ∂α
t g(t) = C

0D
α
t g(t) := 1

�(1 − α)

∫ t

0
(t − τ)−αg′(τ )dτ, t ∈ (0, T ],

with .�(·) the Euler-gamma function (the order of the time-fractional derivative is 
restricted to .0 < α < 1 just for ease of presentation, but the extension to super-
diffusive problems in which .1 < α < 2 is always possible). .

( − �
)s is the spectral 

fractional Laplacian, whose definition will be discussed later on. In view of the use 
of the Caputo time-fractional derivative, the FTSDE (1) is coupled with an initial 
condition 

. u(x, 0) = u0(x), x ∈ �.

Finally, homogeneous boundary conditions of Dirichlet type 

. u(x, t) = 0, (x, t) ∈ ∂� × (0, T ],

or of Neumann type 

. 
∂

∂n
u(x, t) = 0, (x, t) ∈ ∂� × (0, T ],

will be imposed to guarantee uniqueness of the solution to the FTSDE (1). 
Data .f (x, t) and .u0(x) are assumed to satisfy some not restrictive regularity 

assumptions, such as .f (x, t) ∈ L2(� × [0, T ]) and .u0(x) ∈ L2(�). 
As it is well known, regularity of data in fractional-order problems does not 

ensure regularity of the solution [38], and indeed, solutions of fractional-order 
problems lack smoothness, especially with respect to time. For this reason, classical 
methods based on polynomial approximations, such as product-integration (PI)
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rules, usually turn out to be not really competitive due to their low convergence 
order, as well as for stability and/or computational issues. 

In [19, 20], it has been proposed an alternative approach in order to generalize 
exponential integrators to FDEs. In particular, for linear systems of FDEs with a 
forcing term, it is possible to exploit an integral formulation in terms of the Mittag– 
Leffler function and devise PI rules in which one approximates by polynomials the 
forcing term only (which reasonably possesses some regularity) and not the whole 
vector field of the equation that, instead, usually lacks regularity at .t = 0. Rules 
of this kind are recognized as generalized exponential time-differencing (GETD) 
methods and present some advantages in terms of convergence order, stability, and 
computational efficiency [16]. 

In this chapter, we explore the application of GETD methods to the FTSDE (1). 
The approach we propose exploits some features of the spectral fractional Laplacian 
that allow to decompose the original FTSDE into a sequence of FDEs. After trun-
cation of this sequence, each FDE is hence solved by a trapezoidal GETD method, 
whose main characteristics are the preservation of the full order 2 of convergence— 
typical of trapezoidal rule—and the possibility of saving computation by directly 
evaluating the solution at any time t without a computationally expensive step-by-
step procedure. 

The main contribution proposed in this chapter is hence the derivation of some 
accurate error estimates in order to provide a tool for tuning the method and identify 
the number of terms in the sequence of FDEs necessary to achieve a given accuracy. 
At the same time, the error estimates are verified by means of some numerical 
examples to show the reliability of the obtained results. 

This chapter is organized in the following way. In Sect. 2, we introduce the 
spectral fractional Laplacian adopted to define .(−�)s , and we review some of its 
main properties. In Sect. 3, we present the decomposition of the FTSDE (1) in terms 
of a sequence of FDEs, and in Sect. 4, we provide a description of GETD methods 
for solving FDEs. Section 5 is devoted to the error analysis and to find some bounds 
for the two components of the error (truncation and discretization errors) that are 
hence verified by means of some numerical experiments in Sect. 6. Some concluding 
remarks are finally discussed in Sect. 7. 

2 The Spectral Fractional Laplacian: A Brief Introduction 

In the recent past, several approaches to define fractional counterparts of the classi-
cal integer-order Laplacian have been investigated (e.g., see [4, 12, 26, 27, 37]). The 
various approaches are usually not equivalent when posed on bounded domains, and 
different definitions involve different theoretical properties and different numerical 
difficulties.
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It is worth mentioning that fractional Laplacian is a very active research field 
(see, for instance, [7, 8, 10, 11, 33, 36]), and nowadays, the interest is moving toward 
possible definitions of the variable-order fractional Laplacian as well [9] (a topic that 
is however not discussed here). 

In this chapter, we focus on the spectral definition of the fractional Laplacian that 
extends, in a quite straightforward way, spectral features of the classical integer-
order Laplacian operator. To provide a comprehensive introduction to the spectral 
fractional Laplacian, we first review some background material. 

In the following, for real functions .f, g ∈ L2(�), .〈f, g〉 will denote the usual 
inner product .〈f, g〉 = ∫

�
f (x)g(x)dx. 

2.1 Eigendecomposition of the Laplacian 

Let us assume that a set of orthonormal eigenfunctions .{ϕk}k∈N, with corresponding 
eigenvalues .{λk}k∈N, of the negative Laplacian .−� on . � coupled with homoge-
neous Dirichlet or Neumann boundary conditions is known, namely: 

1. .−�ϕk(x) = λkϕk(x), ∀x ∈ �. 
2. .ϕk(x) = 0 (Dirichlet case) or .

∂
∂n

ϕk(x) = 0 (Neumann case), . ∀x ∈ ∂�. 
3. .〈ϕk, ϕj 〉 = δk,j , with .δk,j being the Kronecker symbol. 

Eigenfunctions and eigenvalues of the Laplacian possess some useful properties. 
Since . −�, coupled with homogeneous boundary conditions, is a positive definite 
operator, namely .〈−�u, u〉 ≥ 0, its eigenvalues . λk are all positive, and moreover, 
they form a divergent sequence, i.e., 

. lim
k→∞ λk = +∞.

Depending on the boundary condition, the functions .{ϕk}k∈N belong to one of 
the following spaces: 

. 
H 2

0 (�) =
{
u : � → R | u,∇u ∈ L2(�), u

∣∣
∂�

= 0
}

Dirichlet’s case,

H 2
n (�) =

{
u : � → R | u,∇u ∈ L2(�), ∂

∂n
u
∣∣
∂�

= 0
}
Neumann’s case,

and they form a complete set in .L2(�). Thus, whenever .u ∈ L2(�), one can 
consider the Fourier expansion 

.u(x) =
∞∑

k=0

ûkϕk(x), ûk = 〈u, ϕk〉, (2)
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and entirely describe the action of the Laplacian by means of eigenvalues and 
eigenfunctions as 

. − �u(x) =
∞∑

k=0

ûkλkϕk(x).

For .f ∈ L2(�), the Poisson equation 

. − �u(x) = f (x), x ∈ �, (3) 

Subject to homogeneous Dirichlet or Neumann boundary conditions on . ∂�, has 
solution .u(x) ∈ L2(�) in view of the Lax–Milgram Lemma. Therefore, given the 
Fourier expansion .f (x) = ∑∞

k=0 f̂kϕk(x), Eq. (3) can be equivalently reformulated 
as 

. 

∞∑

k=0

ûkλkϕk(x) =
∞∑

k=0

f̂kϕk(x) ⇐⇒
∞∑

k=0

(
ûkλk − f̂k

)
ϕk(x) = 0,

and the solution .u(x) can be explicitly determined by its expansion (2) whose 
coefficients are .ûk = f̂k/λk , .k = 0, 1, . . . . 

For a more in-depth treatment of properties of the spectral decomposition of the 
Laplacian, we refer to any classical textbook on the subject (e.g., [24]). 

2.2 Spectral Fractional Laplacian 

Let us now consider a set of orthonormal eigenfunctions and eigenvalues 
.{ϕk, λk}k∈N of .−� in the domain .� ⊂ Rd , coupled with homogeneous Dirichlet or 
Neumann boundary conditions on . ∂�. 

Definition 1 Given .u ∈ L2(�), and its series representation (2), the  spectral 
fractional Laplacian .

( − �
)s

u(x) of non-integer order .0 < s < 1 is defined as 
[4, 5, 27] 

.
( − �

)s
u(x) =

∞∑

k=0

ûkλ
s
kϕk(x). (4) 

Clearly, (4) recovers the identity when .s = 0 and the standard Laplacian when 
.s = 1. Moreover, .

( − �
)s : Hs(�) → H

−s(�), where for .s ∈ [−1, 1] it is 

.H
s(�) =

{
u(x) =

∞∑

k=0

ûkϕk(x) :
∞∑

k=0

λs
kû

2
k < ∞

}
.
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Although (4) differs from other available definitions of the fractional Laplacian 
in bounded domains, it however turns out to be equivalent [5, Lemma 2.2] to the 
semigroup formula for the fractional Laplacian [37] 

. 
( − �

)s
u(x) = 1

�(−s)

∫ ∞

0

1

t1+s

(
et�u(x) − u(x)

)
dt,

where .et�u(x) denotes the solution of the heat equation 

. 

{
vt (x, t) = −�v(x, t), (x, t) ∈ � × (0,+∞),

v(x, 0) = u(x), x ∈ �,

subject to proper boundary conditions. 
By following the same reasoning as in the previous subsection, the solution to 

the Poisson equation 

.
( − �

)s
u(x) = f (x), x ∈ �, (5) 

with homogeneous conditions on . ∂� and .f ∈ L2(�), can be expressed as 

. u(x) =
∞∑

k=0

ûkϕk(x), ûk = 〈f, ϕk〉
λs

k

.

Therefore, whenever .f ∈ Hr (�), for any .r ∈ R, it is  .u ∈ Hr+2s(�). More  
detailed results about regularity of the solution of (5) are available, for instance, in 
[5, 23, 27, 31, 32]. However, for the purposes of this chapter, a spatial regularity of 
. L2 type will be sufficient. 

Obviously, for a function .u(x, t) depending on time as well, coefficients . ̂uk will 
be time-dependent, and hence, 

.
( − �

)s
u(x, t) =

∞∑

k=0

ûk(t)λ
s
kϕk(x). (6) 

Remark 1 Definition 1 applies only with homogeneous boundary conditions. The 
extension to non-homogeneous conditions is however possible [1] but involves 
further technical difficulties. Since the focus of this chapter is mainly related on 
studying the effectiveness of a class of time integrators when applied to (1), to keep 
the treatment at a simpler level, we confine the analysis just to vanishing boundary 
conditions.
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3 Fractional-Time-Space Differential Equation 

To solve (1), we assume .f, u0 ∈ L2(�), and since .{ϕk}k∈N forms a complete set, 
we can consider the following representations of the initial function .u0(x) and of 
the source term . f (x, t)

. u0(x) =
∞∑

k=0

û0,kϕk(x), f (x, t) =
∞∑

k=0

f̂k(t)ϕk(x),

and the solution .u(x, t) of the FTSDE (1) can be written as 

. u(x, t) =
∞∑

k=0

ûk(t)ϕk(x),

where obviously it is .û0,k = ûk(0). After applying the definition (6) of the fractional 
Laplacian, and replacing the above representation of the solution, FTSDE (1) can 
be reformulated as 

. 
C

0D
α
t

∞∑

k=0

ûk(t)ϕk(x) + ν

∞∑

k=1

ûk(t)λ
s
kϕk(x) =

∞∑

k=0

f̂k(t)ϕk(x),

and thus, in view of the linearity of .
C

0D
α
t , we can write 

. 

∞∑

k=0

[
C

0D
α
t ûk(t) + νλs

kûk(t) − f̂k(t)
]
ϕk(x) = 0

thanks to which the original FTSDE (1) is decomposed into the sequence of the 
initial value problems for linear FDEs 

.

{
C

0D
α
t ûk(t) = −νλs

kûk(t) + f̂k(t), k ∈ N,

ûk(0) = û0,k.
(7) 

The idea we propose in this chapter is to fix a number .K ∈ N of terms and 
consider a truncated series expansion .uK(x, t) of the solution .u(x, t), namely 

.uK(x, t) =
K∑

k=0

ûk(t)ϕk(x), (8) 

so to approximate each solution .ûk(t) of (7) by an efficient method for FDEs. 
An accurate error analysis will be carried out in order to ensure that, for an 

assigned tolerance .ε > 0, it is possible to predict the number K of terms necessary 
to achieve the assigned accuracy, namely such that . ‖u(x, t) − uK(x, t)‖L2(�) ≤ ε

for any .t ∈ [0, T ].
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4 Generalized Exponential Time-Differencing Methods 

Each FDE (7) by which the original TSFDE (1) is decomposed can be solved by 
any standard method for FDEs, as for instance product-integration (PI) rules. These 
rules are based on the integral representation of (7) 

. ̂uk(t) = û0,k + 1

�(α)

∫ t

0
(t − τ)α−1( − νλs

kûk(τ ) + f̂k(τ )
)
dτ

and on the approximation of the vector field .−νλs
kûk(t) + f̂k(t) by some piecewise 

interpolant polynomial. 
Although PI rules are widely employed for FDEs, they however suffer from 

some limitations. Exact solutions of FDEs indeed usually expand in integer and 
fractional powers as .t → 0 [30], and hence, they lack smoothness at the origin 
where derivatives are in general unbounded [38]. This lack of regularity, which 
is inherited by the vector field, does not allow PI rules to achieve high accuracy 
since, as it is well known, polynomials approximate in a quite poor way functions 
with unbounded derivatives. In practice, without constructing data in a unreasonably 
artificial way, even obtaining order of convergence equal to 2 is not possible [14, 15]. 

For this reason, it may be more convenient to exploit an alternative, but 
equivalent, representation of the exact solution .ûk(t) based on the following 
variation-of-constant formula [20] 

.ûk(t) = eα,1
(
t; νλs

k

)
û0,k +

∫ t

0
eα,α

(
t − τ ; νλs

k

)
f̂k(τ )dτ, (9) 

where, for real .t > 0 and any (possibly complex) argument . λ, .eα,β(t; λ) denotes the 
following generalization of the two-parameter Mittag–Leffler (ML) function 

. eα,β(t; λ) := tβ−1Eα,β(−tαλ), Eα,β(z) =
∞∑

j=0

zj

�(αj + β)
, α > 0, β ∈ R.

(10) 

The ML function plays in fractional calculus the same fundamental role played 
by the exponential in integer-order calculus (and, indeed, the exponential is the 
special instance of the ML function when .α = β = 1). We do not pursue here 
a detailed investigation of the ML function (for which we refer the reader to the 
recent monograph [22]). We just list the main properties concerning differentiation 
and integration and which will be used later on: 

.
d

dt
eα,β(t; λ) = eα,β−1(t; λ)
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and 

.
1

�(γ )

∫ t

0
eα,β

(
t − τ ; λ

)
τγ−1dτ = eα,β+γ

(
t; λ), γ > 0. (11) 

In particular, a special case of (11), which will be of interest throughout this 
chapter, is given by the relationship 

.

∫ t

0
eα,α

(
τ ; λ

)
dτ = eα,α+1

(
t; λ). (12) 

Moreover, we will make use of the following properties of the ML function. 

Proposition 1 Let .0 < α ≤ 1 and real .λ > 0. Then for any .t ≥ 0, it is  

.eα,1(t; λ) ≥ 0 with max
t≥0

eα,1(t; λ) = 1 (13) 

and 

.eα,α+1(t; λ) ≥ 0 with max
t≥0

eα,α+1(t; λ) = lim
t→∞ eα,α+1(t; λ) = 1

λ
. (14) 

Proof The function .eα,1(t; λ) = Eα,1(−tαλ) is completely monotonic (CM) for 
.0 < α ≤ 1, i.e., 

. (−1)k
dk

dtk
Eα,1(−tαλ) ≥ 0, k = 0, 1, . . . .

since it is the composition of the two CM functions .Eα(−t) and . tα . Hence, 
.Eα,1(−tαλ) is a non-negative and decreasing function, and (13) immediately 
follows since .eα,1(0; λ) = 1. By a simple manipulation of the series representation 
of the ML (10), it is immediate to see that 

. 

eα,α+1(t; λ) = tα
∞∑

k=0

tαk(−λ)k

�(αk + α + 1)
=

∞∑

k=0

tα(k+1)(−λ)k

�(α(k + 1) + 1)

= −1

λ

∞∑

k=1

tαk(−λ)k

�(αk + 1)
= 1

λ
− 1

λ
Eα,1(−tαλ),

and, again, the proof follows from the CM property of .Eα,1(−tαλ). ��
The advantage of using (9) lies in the possibility of deriving numerical schemes 

in which only the source term .f̂k(t), instead of the whole vector field . −νλs
kûk(τ ) +

f̂k(τ ), is approximated by means of polynomials. In applications, indeed, it is 
reasonable to assume that source terms .f̂k(t) possess some regularity, and hence,
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they can be accurately approximated by polynomials. Moreover, in some cases, the 
convolution integral of the ML function in (9) can be analytically determined: this 
is the case, for instance, in which .f̂k(t) is a polynomial or even a combination of 
real powers for which (11) applies. In some other cases, this convolution integral 
can be approximated, with high accuracy, by numerical methods for the inversion 
of the Laplace transform. 

Once considered a grid .tn = nh with a constant step size .h > 0 and, after 
rewriting (9) in a piecewise  way  

.ûk(tn) = eα,1
(
tn; νλs

k

)
û0,k +

n−1∑

j=0

∫ tj+1

tj

eα,α

(
tn − τ ; νλs

k

)
f̂k(τ )dτ, (15) 

we approximate .f̂k(t) in each interval .[tj , tj+1] by means of an interpolant 
polynomial. This approach, which has been studied in [19, 20, 34], is known 
as generalized exponential time-differencing (GETD) method and generalizes to 
fractional-order problems some families of exponential integrators introduced for 
integer-order problems (see, for instance, [25]). 

According to the degree of the polynomial interpolants, different GETD methods 
can be devised. In this chapter, we are interested in using a second-order polynomial 
interpolant 

. pk,j (t) = (t − tj )

h
f̂k(tj+1) − (t − tj+1)

h
f̂k(tj ), t ∈ [tj , tj+1],

which leads to the following approximation of (9) 

. ̂uh
k (tn) = eα,1

(
tn; νλs

k

)
û0,k + hα

[
wn(h

ανλs
k)f̂k(0) +

n∑

j=1

ωn−j (h
ανλs

k)f̂k(tj )
]
,

(16) 

where coefficients .wn(z) and .ωn(z) are, respectively, given by 

. wn(z) = eα,α+2
(
n − 1; z

) − eα,α+2
(
n; z

) + eα,α+1
(
n − 1; z

)

and 

. ωn(z) =
{

eα,α+2
(
1; z

)
, n = 0,

eα,α+2
(
n − 1; z

) − 2eα,α+2
(
n; z

) + eα,α+2
(
n + 1; z

)
, n ≥ 1.

The evaluation of these coefficients does not represent a particular issue, since 
methods for the efficient and accurate computation of the ML function are nowadays 
available [18, 21].
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The advantages of using the trapezoidal GETD method (16) to solve (9), instead 
of a classical trapezoidal PI rule, is twofold. 

First, it is possible to approximate the solution .ûh
k (tn) of (9) directly at any time 

. tn without the need of evaluating, in a step-by-step way, approximations at the 
previous time steps. In this way, a consistent amount of computation can be saved 
if just the solution at . tn is requested, since a number of floating-point operations 
proportional to n, instead of . n2, are requested. At the same time, storage needs are 
also reduced since it is not necessary to store all the previous approximations .ûh

k (tj ), 
.j = 0, 1, . . . , n − 1 of the solution to compute .ûh

k (tn). 
Moreover, full order 2 of convergence is achieved under a reasonable smoothness 

assumption for .f̂k(t), thus avoiding the limitations of the classical trapezoidal PI 
rules that instead, when applied to (7), converge with order .1 + α [14, 15]. The 
same limitation holds for classical PI rules based on polynomials of higher degree 
as well, while higher order can be obtained with GETD schemes. In particular, for 
the trapezoidal GETD method (16), the following result holds [17]. 

Theorem 1 Let .0 < α < 1 and .f̂k(t) ∈ C2[0, T ]. Then for any .tn > 0, it is  

. |ûk(tn) − ûh
k (tn)| = h2

12
eα,α+1

(
tn; νλs

k

)|f̂ (2)
k (ηn)| + O(

h2+α
)
, h → 0,

where .ηn ∈ (0, tn). 

5 Error Analysis 

In order to perform an error analysis of the proposed approach, and hence select the 
number K of terms in the truncated series expansion (8) and the step size h for the 
GETD scheme (16) to achieve a given accuracy, we have to consider two different 
sources of errors. 

Indeed, since each term .ûk(t) in the truncated series expansion (8) is approxi-
mated by the solution .ûh

k (t) provided by the GETDmethod, then to actually compute 

. uh
K(x, t) :=

K∑

k=0

ûh
k (t)ϕk(x),

the overall error is given by 

.

|u(x, t) − uh
K(x, t)| ≤ |u(x, t) − uK(x, t)| + |uK(x, t) − uh

K(x, t)|
= ErrTK(x, t) + ErrDK,h(x, t),

(17)
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where we identify a truncation error 

. ErrTK(x, t) = |u(x, t) − uK(x, t)|,

which is solely due to the truncation (8) of the infinite series describing the solution 
.u(x, t) and the discretization error 

. ErrDK,h(x, t) = |uK(x, t) − uh
K(x, t)|,

which instead is related to the convergence properties of the GETD scheme used to 
approximate each of the FDEs (7). 

We therefore study here both kinds of errors, and we provide some bounds for 
both .ErrTK and .ErrDK . 

Theorem 2 (Bound for the Truncation Error) Let .0 < α < 1, .0 < s < 1, 
.f ∈ L2(� × [0, T ]). Then for any .K ≥ 0 and .t ∈ [0, T ], it is  

. ‖u(·, t) − uK(·, t)‖2
L2(�)

≤
∞∑

k=K+1

(
|û0,k|eα,1

(
t; νλs

k

) + ‖f̂k‖L2([0,t])eα,α+1
(
t; νλs

k

))2
.

Proof Let .K ≥ 0 and .t ∈ [0, T ] be given. We start by observing that for .x ∈ �, in  
view of (9), it is  

. u(x, t)−uK(x, t) =
∞∑

k=K+1

eα,1
(
t; νλs

k

)
û0,kϕk(x)+

∞∑

k=K+1

(
f̂k ∗ eα,α(·; νλs

k)
)

(t)ϕk(x),

where for convenience we write 

. 

(
f̂k ∗ eα,α(·; z)

)
(t) =

∫ t

0
eα,α (τ ; z) f̂k(t − τ) dτ.

Since .{ϕk} is a complete orthonormal set, then Parseval’s identity holds, and 
therefore, 

.

‖u(·, t)−uK(·, t)‖2
L2(�)

=

=
∞∑

k=K+1

∣∣∣eα,1
(
t; νλs

k

)
û0,k +

(
f̂k ∗ eα,α

(·; νλs
k

))
(t)

∣∣∣
2

≤
∞∑

k=K+1

(
|eα,1

(
t; νλs

k

) | · |û0,k| +
∣
∣∣
(
f̂k ∗ eα,α

(·; νλs
k

))
(t)

∣
∣∣
)2

.

(18)
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Let us now consider the term .
∣∣∣
(
f̂k ∗ eα,α

(·; νλs
k

))
(t)

∣∣∣
2
, and, by recalling the 

Young’s inequality (e.g., see [2, Theorem 3]), if .f ∈ Lp(Rn), .g ∈ Lq(Rn), 
.1 ≤ p, q, r ≤ ∞, with .

1
r

= 1
p

+ 1
q

− 1, it is  

. ‖f ∗ g‖r ≤ (Ap · Aq · Ar ′)n‖f ‖p · ‖g‖q,

where .Am :=
(
m

1
m /m

′ 1
m′

) 1
2
and the prime denotes the dual exponent. 

As a consequence of the assumptions, it holds that .f̂k ∈ L2([0, t]) for all k and 
.eα,α ∈ L∞([0, t]) ∩ Lp([0, t]) for all .p ≤ 1. It thus follows, with .p = r = 2 and 
.q = 1, which in turn provide .A1A

2
2 = 1 after some algebra, that 

.

∣
∣
∣
(
f̂k ∗ eα,α

(·; νλs
k

))
(t)

∣
∣
∣
2 ≤ ‖f̂k‖2L2([0,t]) · ‖eα,α

(·; νλs
k

)‖2
L1([0,t]). (19) 

Since .eα,α(t; νλs
k) ≥ 0 for all .t ≥ 0, we can exploit (12) to observe that 

. ‖eα,α(·; νλs
k)‖L1([0,t]) =

∫ t

0
|eα,α(τ ; νλs

k)| dτ = eα,α+1(t; νλs
k),

from which the proof follows. ��
A more pessimistic bound can be obtained by means of the following result. We 

think that this result is useful mainly to highlight the way by which the truncation 
error is related to the number K of terms in the series expansion, but for a more 
accurate error estimation, the previous result must be kept into account. 

Corollary 1 Let .0 < α < 1, .0 < s < 1, .f ∈ L2(� × [0, T ]). Then for any . K ≥ 0
and .t ∈ [0, T ], it is  

. ‖u(·, t) − uK(·, t)‖2
L2(�)

≤
∞∑

k=K+1

(
|û0,k| + 1

νλs
k

‖f̂k‖L2([0,t])
)2

.

Proof From Proposition 1, we know that 

. |eα,1
(
t; νλs

k

) | · |û0,k| ≤ |û0,k|,

‖f̂k‖L2([0,t]) · eα,α+1
(
t; νλs

k

) ≤ 1

νλs
k

‖f̂k‖L2([0,t]).

Thus, the claim immediately follows from Theorem 2. ��
As far as it concerns the discretization error, we can see the following result. 

Theorem 3 (Bound for the Discretization Error) Let .0 < α < 1, .0 < s < 1, 
.f ∈ L2(� × [0, T ]). Then for any .K ≥ 0, .tn ∈ [0, T ], and sufficiently small .h > 0,
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it is 

. ‖u(·, tn) − uK(·, tn)‖L2(�) ≤ h2

12

√√
√√

K∑

k=0

(
Mk,neα,α+1(tn; νλs

k)
)2

,

where .Mk,n = maxt∈[0,tn]
∣∣f̂ (2)

k (t)
∣∣. 

Proof The proof easily follows from applying Theorem 1 to the truncation error. 
��

6 Numerical Experiments 

In this section, we present some numerical experiments with the aim of verifying 
the theoretical findings concerning the error estimates. In particular, we will check 
how reliable are the bounds for the truncation error and for the discretization error, 
respectively, given by Theorem 2 and 3, in order to provide the estimate of the 
overall error (17). We will not use the bound from Corollary 1 since it does not 
strictly depend on the time t on which the solution is evaluated, but it depends on 
the whole interval .[0, t], and therefore, it is in general too pessimistic. 

All tests are carried out in Matlab ver. 9.10.0.1649659 (R2021a) on a computer 
equipped with an Intel(R) i7-9700 CPU running at 3.00GHz (with 16.0 GB of RAM) 
under the 64 bit Windows 11 Pro operative system. 

6.1 Homogeneous Dirichlet Boundary Conditions in a 1D 
Domain 

In the first example, we consider a one-dimensional domain .[a, b] in which the 
FTSDE (1) is subject to homogeneous boundary conditions of Dirichlet type. 
The analytical formulation of the eigenpairs .

(
λk, ϕk

)
of the Laplacian is available 

according to 

. λk =
(

(k + 1)π

b − a

)2

, ϕk(x) =
√

2

b − a
sin

(
(k + 1)π(x − a)

b − a

)
, k = 0, 1, . . . .

We consider the initial condition and the source term for the FTSDE (1), 
respectively, given by 

.u0(x) = (x − a)(b − x), f (x, t) = (1 − e−σ t )u0(x), σ > 0, (20)
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for which, by elementary derivations, it is possible to derive the corresponding series 
expansion with respect to the orthonormal basis . {ϕk}k∈N

. u0(x) =
∞∑

k=0

û0,kϕk(x), û0,k =
⎧
⎨

⎩

0, k odd,

4
√

2
b−a

(
b−a

(k+1)π

)3
, k even,

and 

. f (x, t) =
∞∑

k=0

f̂k(t)ϕk(x), f̂k(t) = (1 − e−σ t )û0,k.

By exploiting the series representation of the exponential .e−ct and using (11), one 
can see that the exact solution of each FDE (7), obtained by means of the variation-
of-constant formula (9), is given by 

. ̂uk(t) = eα,1
(
t; νλs

k

)
û0,k −

∞∑

j=1

(−1)j σ j eα,α+j+1
(
t; νλs

k

)
û0,k,

thus leading to an analytical representation of the exact solution .u(x, t) to (1) in 
terms of series of the ML function 

. u(x, t) =
∞∑

k=0
k even

[
eα,1

(
t; νλs

k

) −
∞∑

j=1

(−1)j σ j eα,α+j+1
(
t; νλs

k

)]
û0,kϕk(x).

The above solution can be approximated, even with very high accuracy (although 
in a quite expensive way), after truncating the two summations at a sufficiently large 
number of terms and computing the ML functions by the code devised in [18] that 
allows to perform the computation with an accuracy close to the precision machine. 
This approximation will be used as reference solution. 

The solution plot in the interval .[a, b] = [0, 2] as .t ∈ [0, 4] is shown in the left 
plot of Fig. 1 for .α = 0.8, .s = 0.6, .ν = 0.2, and .σ = 0.8. 

In the right plot of the same Fig. 1, it is instead presented a comparison between 
the error actually obtained at .T = 4 after integrating each of the FDEs (7) by the 
GETD method (16) and the error estimate (17) as the number K of the considered 
series terms varies. The bounds obtained by Theorems 2 and 3 are used for the 
truncation and discretization errors (just the terms from .K + 1 to 2K are used to 
determine these bounds). For the term .‖f̂k‖L2[0,t] that appears in both bounds for 
the truncation and discretization errors, one can easily compute 

.‖f̂k‖2L2[0,t] =
(
t + 2

σ
e−σ t − 1

2c
e−2σ t − 3

2σ

)
|û0,k|.
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Fig. 1 Solution of problem (20) for .α = 0.8, .s = 0.6, .ν = 0.2, and  .σ = 0.8 (left plot) and 
comparison between actual error and estimate for . h = 2−12
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Fig. 2 Comparison between actual error and estimate for problem (20) with .α = 0.7, .s = 0.8, 
.ν = 0.2, and .σ = 0.8 and .h = 2−7 (left plot) and .h = 2−12 (right plot) 

The same experiment is repeated, after changing the fractional differentiation 
orders to .α = 0.7 and .s = 0.8, and the comparison between the actual errors and 
the estimates are presented in Fig. 2: here, in the left plot, computation has been 
performed with a step size .h = 2−7 and in the right plot with .h = 2−12. 

In the left plot, it is possible to note the effect of the discretization error, which 
is proportional to . h2 and provides a limit for the truncation error, preventing it to 
decrease below its value. In the right plot, having used a smaller step size .h = 2−12, 
the truncation error produces less limitations in the decreasing of the overall error. 
Although the estimate of the truncation error is more pessimistic (maybe due to 
pessimistic bound .Mk,n in Theorem 3), results in Fig. 2 however well highlight the 
need of taking into account both truncation and discretization errors in the error 
analysis. 

To provide a rough idea of the involved computation, in Fig. 3, we present 
a comparison between accuracy (errors in . L2 norm) and computational time 
(expressed in CPU seconds) for the same increasing number K of series terms of 
the previous test. Clearly, execution times are affected not only by the number of 
the series terms (which increases from right to left in both plots) but also by the step 
size used in the GETD (.h = 2−7 in the left plot and .h = 2−12 in the right plot).
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Fig. 3 Comparison between actual error and estimate for problem (20) with .α = 0.7, .s = 0.8, 
.ν = 0.2 and .σ = 0.8 and .h = 2−7 (left plot) and .h = 2−12 (right plot) 

Obviously, these outcomes do not provide a complete view of the computational 
cost of methods exploiting the spectral definition of the fractional Laplacian, since 
in this special case eigenvalues and eigenfunctions are known analytically, while on 
general domains they must be numerically approximated, an usually expensive task. 
They however highlight the need of performing an accurate error analysis in order 
to better calibrate all parameters, in particular the step size of the GETD method, to 
avoid not strictly necessary computations. 

The left plot of Fig. 3 well clarifies this point. Once the maximum accuracy 
obtainable from GETD has been achieved, namely .O

(
h2

)
, increasing the number 

K of series terms does not lead to a real improvement of the overall accuracy 
but, instead, involves a major, and useless, computational cost. Considering a large 
number of series terms makes sense only when the accuracy of the underlying 
GETD method is improved (see the right plot), but a consistently larger amount 
of computation must be taken into account in this case. 

6.2 Homogeneous Neumann Boundary Conditions in a 1D 
Domain 

We consider now a one-dimensional domain .[a, b] in which the FTSDE (1) is 
subject to homogeneous boundary conditions of Neumann type and for which the 
corresponding eigenpairs .

(
λk, ϕk

)
are 

. λk =
(

kπ

b − a

)2

, ϕk(x) =
⎧
⎨

⎩

√
1

b−a
k = 0

√
2

b−a
cos

(
kπ(x−a)

b−a

)
k = 1, 2, . . .

As initial condition and source term, on the interval .[a, b] = [0, 2], we consider 
the functions 

.u0(x) = x4 − 4x3 + 4x2, f (x, t) = cos(σ t)
(
x4 − 4x3 + 4x2), σ > 0 (21)
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for which it is not difficult to evaluate 

. u0(x) =
∞∑

k=0

û0,kϕk(x), û0,k =

⎧
⎪⎪⎨

⎪⎪⎩

8
√
2

15 , k = 0,

0, k odd,

−3
(

4
kπ

)4
, k ≥ 2 even,

and 

. f (x, t) =
∞∑

k=0

f̂k(t)ϕk(x), f̂k(t) = cos(σ t)û0,k.

The exact solution .u(x, t) is obtained by exploiting the series representation of 
.cos(σ t) together with Eq. (11) 

. u(x, t) =
∞∑

k=0
k even

[
eα,1

(
t; νλs

k

) −
∞∑

j=0

(−1)j σ 2j eα,α+2j+1
(
t; νλs

k

)]
û0,kϕk(x),

and also in this case, an approximation obtained after truncation of the infinite series 
will be used as a reference solution. A plot of this is presented in the left plot of Fig. 4 
for .α = 0.8, .s = 0.6, .ν = 0.2, and .σ = 2.0. 

The right plot of Fig. 4 instead presents the comparison between the actual error 
at .T = 4 and the corresponding error estimate provided by Eq. (17) and using the 
bounds derived in Theorems 2 and 3. Also in this case, the error estimates provide 
accurate predictions of the actual errors, thus offering a useful tool to predict the 
number K of terms necessary to achieve a given accuracy. 

Again the experiment is repeated by changing the fractional orders in . α = 0.7
and .s = 0.8, and the results are presented in Fig. 5 too .h = 2−7 (left plot) and 
.h = 2−12 (right plot). 
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Estimate 

20

Fig. 4 Solution of problem (21) for .α = 0.8, .s = 0.6, .ν = 0.2, and  .σ = 2.0 (left plot) and 
comparison between actual error and estimate for .h = 2−12
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Fig. 5 Comparison between actual error and estimate for problem (21) with .α = 0.7, .s = 0.8, 
.ν = 0.2 and .σ = 2.0, and .h = 2−7 (left plot) and .h = 2−12 (right plot) 

It is clear also in this case the action of the truncation error in limiting the decay 
of the error with respect to the increase of the number K of terms used in the 
computation. 

6.3 Homogeneous Dirichlet Boundary Conditions in a 2D 
Domain 

We now consider a two-dimensional rectangular domain .[a, b] × [c, d] and assume 
that the FTSDE (1) is subject to homogeneous Dirichlet boundary conditions. In this 
case, the eigenpairs .

(
λk, ϕk

)
are given by 

. λj,k =
(

(j + 1)π

b − a

)2

+
(

(k + 1)π

d − c

)2

,

ϕj,k(x, y) =
√

2

b − a

√
2

d − c
sin

(
(j + 1)π(x − a)

b − a

)
sin

(
(k + 1)π(y − c)

d − c

)

for .j, k = 0, 1, . . . . 
As initial condition and source term, we consider the functions 

. u0(x) = (x − a)(b − x)(y − c)(d − y), f (x, t) = (
1 − e−σ t

)
u0(x), σ > 0.

(22) 

Note that now the truncated solution is 

. uh
J,K(x, t) =

J∑

j=0

K∑

k=0

ûh
j,k(t)ϕj,k(x),

and in the plots, we report errors and estimates when .J = K .
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The solution in the square domain .[a, b] × [c, d] = [0, 1] × [0, 1] for .α = 0.8, 
.s = 0.6, .ν = 0.2, and .σ = 0.5 is presented in the left plot of Fig. 6 together with 
the comparison between actual error and estimates obtained thanks to Theorems 2 
and 3. Also in the 2D case the error estimates seem to provide an efficient prediction 
of the actual error. 

In Fig. 7, the same experiment is repeated after changing the fractional order in 
.α = 0.7 and .s = 0.8 and using two different step sizes .h = 2−7 (left plot) and 
.h = 2−12 (right plot) in the GETD method. 

Similarly to the 1D case, we observe that also in the 2D the contribution of the 
truncation and discretization errors is in line with the theoretical findings. 

Also in the 2D case, we present, in Fig. 8, a comparison between errors and 
computational times. Obviously, the 2D problem leads to a remarkable increase 
of computation, but, as in the 1D case, we observe the importance of a detailed 
error analysis in order to establish the proper combination of terms in the series 
expansion and step size in the GETD procedure in order to achieve a given accuracy 
with a reasonable computational task. 
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Fig. 6 Solution at .T = 4 of problem (22) for .α = 0.8, .s = 0.6, .ν = 0.2, and  .σ = 0.5 (left plot) 
and comparison between actual error and estimate for . h = 2−12
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Fig. 7 Comparison between actual error and estimate for problem (22) with .α = 0.7, .s = 0.8, 
.ν = 0.2 and .σ = 0.5 and .h = 2−7 (left plot) and .h = 2−12 (right plot)
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Fig. 8 Comparison between actual error and estimate for problem (20) with .α = 0.7, .s = 0.8, 
.ν = 0.2 and .σ = 0.8, and .h = 2−7 (left plot) and .h = 2−12 (right plot) 

7 Concluding Remarks 

In this chapter, it has been studied a procedure for solving fractional-time-space 
differential equations with the spectral fractional Laplacian on bounded domains. 
The spectral representation of the solution in terms of eigenfunctions of the usual 
Laplacian (truncated to a finite number of terms) has been exploited, with the time-
dependent coefficients evaluated as a solution of some linear FDEs. 

Since the proposed approach demands for the solution of a possible large number 
of FDEs, a GETD method has been used. This class of methods allows to directly 
evaluate the solution at any time without the need for implementing a considerably 
more expensive step-by-step computation. At the same time, it is possible to avoid 
the limitations in convergence order of classical methods for FDEs (although, for 
simplicity, we confined this investigation to a second-order GETD method, higher-
order methods can be actually used). 

Accurate error estimates have been obtained, thus to allow a fine-tuning of the 
numerical procedure in order to achieve some prescribed accuracy; the obtained 
error estimates have been verified by means of some numerical experiments. 

Although the numerical simulations have been performed on very simple 
domains, for which an analytical representation of eigenvalues and eigenfunctions 
of the Laplacian is known, they have however provided a clear indication about 
the reliability of the proposed approach, and they have shown the good agreement 
between the actual error and error estimates. The next step, for future investigations, 
will be the application in combination with efficient procedures for the numerical 
approximation of eigenpairs on general domains (e.g., see [3, 6]). 

This must be considered as a preliminary work about the numerical solution of 
time-fractional differential equations with the spectral Laplacian combining spectral 
representation of the solutions with GETD methods; the obtained results seem 
however to encourage the further continuation of research activities in this field.
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Spectral Analysis of Matrices in B-Spline 
Galerkin Methods for Riesz Fractional 
Equations 

Marco Donatelli, Carla Manni, Mariarosa Mazza, and Hendrik Speleers 

Abstract Polynomial B-spline collocation discretizations for Riesz fractional dif-
fusion equations over uniform meshes have recently appeared in the literature and 
a spectral study of the related coefficient matrices has been performed. Here we 
focus on the coefficient matrices obtained by the Galerkin approach. For an arbitrary 
polynomial degree p we show that, as for collocation, the resulting coefficient matri-
ces possess a Toeplitz-like structure. The derivation of their spectral distribution is 
simpler compared to collocation, due to the symmetry of the coefficient matrices 
in this case and by leveraging the generalized locally Toeplitz theory. We see that, 
like for second-order differential problems, also in the fractional context the spectral 
distribution in the Galerkin formulation with B-splines of degree p is the same as in 
the collocation formulation with B-splines of degree .2p + 1. As a consequence, the 
Galerkin matrices are poorly conditioned in both low and high frequencies similar to 
the collocation ones. Finally, we numerically observe that the approximation order 
of the Galerkin approach for smooth solutions does not depend on the fractional 
derivative order as for collocation and that it coincides with .p + 1 as for non-
fractional diffusion problems. 

1 Introduction 

More and more frequently, fractional differential operators appear in science and 
engineering problems. When used with respect to time, they allow for the modeling 
of long-time heavy-tail decay; see, e.g., [32] for applications of the time-fractional 
paradigm to tumor growth models. When used with respect to space, instead, 
fractional derivatives correspond to diffusion non-locality and are applied, e.g., in 
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electrophysiology [1] to account for the heterogeneity present in a high number of 
scales of a biological excitable medium. 

Since fractional differential operators are non-local, extending numerical meth-
ods designed for integer-order differential equations to equations that involve 
fractional derivatives is not a trivial task. Recently, the numerical study of fractional 
differential equations is rapidly increasing, and indeed many discretization alterna-
tives can be found in the literature: finite differences [23, 31], finite elements [9, 17], 
and spectral methods [20, 35]. Although of relatively easy implementation, finite 
differences have limited accuracy, while finite elements and spectral methods can 
ensure higher accuracy; see [14, 15]. Other alternatives, which go in the direction 
of high-order approximations for fractional problems, are B-spline collocation 
methods; see [22, 27, 28, 34] for polynomial spline collocation methods and [26] 
for an application of fractional B-splines [33]. 

What brings together all previously mentioned methods is that the discretization 
matrices related to uniform grids inherit a Toeplitz-like structure from the space-
invariant property of the underlying operators. Such aspect allows for a spectral 
analysis of the matrices through specialized tools and can be leveraged for the 
design of fast iterative solvers. Examples of this structure-based approach in 
case of low-order discretization methods for fractional problems are given in 
[7, 8, 16, 25]. 

A spectral study of high-order methods for fractional problems has recently 
appeared in the context of B-spline discretizations in [22]. Therein, we chose 
polynomial B-splines (which contrarily to their fractional counterpart have com-
pact support and naturally fulfill boundary and/or initial conditions), and we 
spectrally studied the collocation discretization matrices obtained from the fol-
lowing fractional diffusion boundary value problem with absorbing boundary 
conditions: 

.

{
dαu(x)
d|x|α = s(x), x ∈ �,

u(x) = 0, x ∈ R\�,
(1) 

where .� = (0, 1), .α ∈ (1, 2), and 

. 
dαu(x)

d|x|α := 1

2 cos(πα
2 )

(
RL
0D

α
x u(x) + RL

xD
α
1 u(x)

)

is the so-called Riesz fractional operator, while .RL
0D

α
x u(x) and .RL

xD
α
1 u(x) are the 

left-handed and right-handed Riemann-Liouville fractional derivatives of u (see 
Sect. 2.1 for their definition). The differences in terms of structure and conditioning 
of the resulting matrices when Caputo derivatives (see again Sect. 2.1) replace 
Riemann–Liouville ones were investigated in [21]. 

In the context of non-fractional diffusion problems, the Galerkin approach is 
often preferred over collocation because it performs better in terms of convergence, 
and its behavior is completely understood from the theoretical point of view.
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Moreover, the Galerkin matrices for self-adjoint operators are symmetric, while the 
collocation ones are not. Here, we focus on the Galerkin discretization of problem 
(1) using B-splines, and we are mainly interested in the analysis of the properties of 
the resulting coefficient matrices. 

Since these matrices are symmetric, they fit in the Generalized Locally Toeplitz 
(GLT) theory and this simplifies the derivation of their spectral distribution com-
pared to the collocation approach. It turns out that, like for second-order differential 
problems, also in the fractional context the spectral distribution in the Galerkin 
formulation with B-splines of degree p is the same as in the collocation formulation 
with B-splines of degree .2p + 1; see  [5, Remark 4.4]. As a consequence, the 
Galerkin matrices are poorly conditioned in both low and high frequencies similar 
to the collocation ones, with a mitigated conditioning in the low frequencies and 
a deterioration in the high frequencies when compared to second-order problems 
[5]. Moreover, the Galerkin matrix properties remain substantially unchanged when 
replacing Riemann–Liouville derivatives with Caputo ones, which is in contrast 
to collocation where Riemann–Liouville and Caputo formulations were proved to 
differ by a rank-one correction that causes worse conditioning in high frequencies 
of the latter for fractional orders close to 1 [21]. 

Finally, we provide a numerical study of the approximation behavior of the B-
spline Galerkin approach for an arbitrary degree p. We see that the approximation 
order of the Galerkin approach for smooth solutions does not depend on the 
fractional derivative order as for collocation and that it coincides with .p + 1 as 
for non-fractional diffusion problems (see, e.g., [3]). 

The outline of the chapter is the following. In Sect. 2, we introduce some 
preliminary tools on fractional derivatives, Toeplitz-like matrices, and polynomial 
B-splines. In Sect. 3, we formally write the B-spline Galerkin discretization matrices 
of (1) highlighting their structure, and in Sect. 4, we compute their spectral 
distribution. We end with some numerical results in Sect. 5 and some concluding 
remarks in Sect. 6. 

2 Preliminaries 

In this section, we first focus on the Riemann–Liouville and Caputo definitions of 
fractional derivatives (Sect. 2.1). Then, we summarize the essentials of Toeplitz and 
GLT sequences (Sect. 2.2), and finally, we introduce both B-splines and cardinal 
B-splines and some of their properties (Sect. 2.3). 

2.1 Fractional Derivatives 

A common definition of fractional derivatives is given by the Riemann–Liouville 
formula. For a given function with absolutely continuous first derivative on .[a, b],
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the left-handed and right-handed Riemann–Liouville fractional derivatives of order 
. α are defined by 

. 
RL

aD
α
x u(x) := 1

�(m − α)

dm

dxm

∫ x

a

(x − y)m−α−1u(y) dy,

RL
xD

α
b u(x) := (−1)m

�(m − α)

dm

dxm

∫ b

x

(y − x)m−α−1u(y) dy,

with m the integer such that .m − 1 ≤ α < m and .�(·) the Euler gamma function. 
In case of functions with absolutely integrable m-th derivative on .[a, b], another 

common definition of fractional derivatives was proposed by Caputo: 

. 
C
aD

α
x u(x) := 1

�(m − α)

∫ x

a

(x − y)m−α−1u(m)(y) dy,

C
xD

α
b u(x) := (−1)m

�(m − α)

∫ b

x

(y − x)m−α−1u(m)(y) dy,

with .u(m) the m-th derivative of u. 
The Riemann–Liouville derivatives relate to the Caputo ones as follows: 

. 
RL

aD
α
x u(x) = C

aD
α
x u(x) +

m−1∑
k=0

(x − a)k−α

�(k − α + 1)
u(k)(a+),

RL
xD

α
b u(x) = C

xD
α
b u(x) +

m−1∑
k=0

(−1)k
(b − x)k−α

�(k − α + 1)
u(k)(b−) , (2) 

and so the two coincide if u satisfies homogeneous conditions, i.e., . u(k)(a+) =
u(k)(b−) = 0 for .k = 0, . . . , m − 1. 

In case of the whole real axis (and more in general of unbounded domains), the 
Riemann–Liouville and Caputo definitions coincide and can be expressed in the 
form 

. −∞Dα
x u(x) := 1

�(m − α)

dm

dxm

∫ x

−∞
(x − y)m−α−1u(y) dy,

xD
α+∞u(x) := (−1)m

�(m − α)

dm

dxm

∫ +∞

x

(y − x)m−α−1u(y) dy. (3) 

Throughout the chapter, whenever we write .−∞Dα
x u(ξ) or .RL

aD
α
x u(ξ) for a fixed 

. ξ , we mean 

. −∞Dα
x u(x) or RL

aD
α
x u(x), where x = ξ,
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respectively. Analogous meaning will be given to .xD
α+∞ u(ξ) and .

RL
xD

α
b u(ξ). 

2.2 Spectral Tools 

We begin with the formal definition of spectral distribution in the sense of the 
eigenvalues and singular values for a general matrix sequence. 

Definition 1 Let .f : G → C be a measurable function, defined on a measurable set 
.G ⊂ Rk with .k ≥ 1 and Lebesgue measure .0 < mk(G) < ∞. Let .C0(K) be the set 
of continuous functions with compact support over .K ∈ {C,R+

0 }, and let .{An}n be a 
sequence of matrices of size n with eigenvalues .λj (An), .j = 1, . . . , n, and singular 
values .σj (An), .j = 1, . . . , n. 

• .{An}n is distributed as the pair .(f,G) in the sense of the eigenvalues, in symbols 

. {An}n ∼λ (f,G),

if the following limit relation holds for all .F ∈ C0(C): 

. lim
n→∞

1

n

n∑
j=1

F(λj (An)) = 1

mk(G)

∫
G

F(f (t)) dt. (4) 

In this case, we say that f is the (spectral) symbol of the matrix sequence .{An}n. 
• .{An}n is distributed as the pair .(f,G) in the sense of the singular values, in 

symbols 

. {An}n ∼σ (f,G),

if the following limit relation holds for all .F ∈ C0(R+
0 ): 

. lim
n→∞

1

n

n∑
j=1

F(σj (An)) = 1

mk(G)

∫
G

F(|f (t)|) dt. (5) 

In this case, we say that f is the singular value symbol of the matrix sequence 
.{An}n. 
Throughout the chapter, when it is not of crucial importance to know which is 

the domain of f , we replace the notation .{An}n ∼λ (f,G) with .{An}n ∼λ f . 

Remark 1 When f is continuous, an informal interpretation of the limit relation (4) 
(respectively, (5)) is that when the matrix size is sufficiently large, the eigenvalues 
(respectively, singular values) of . An can be approximated by a sampling of f
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(respectively, . |f |) on a uniform grid of the domain G, possibly up to few outliers 
whose number is .o(n). 

In the case where the singular value symbol is the zero function, we introduce the 
following definition. 

Definition 2 We say that .{An}n is a zero-distributed matrix sequence if . {An}n ∼σ

(0,G). 

The following result provides an important characterization of zero-distributed 
sequences (see [11]). 

Proposition 1 Let .{An}n be a matrix sequence with . An of size n. Then, . {An}n ∼σ 0
if and only if there exist two matrix sequences .{Rn}n and .{En}n such that . An =
Rn + En, and 

. lim
n→∞

rank(Rn)

n
= 0, lim

n→∞ ‖En‖ = 0,

with .‖ · ‖ the spectral norm. 

We now recall the definition of Toeplitz sequences generated by univariate 
functions in .L1([−π, π]). 
Definition 3 Let .f ∈ L1([−π, π]), and let . fk be its Fourier coefficients, 

. fk := 1

2π

∫ π

−π

f (θ)e−i(kθ) dθ, k ∈ Z.

The n-th (unilevel) Toeplitz matrix associated with f is the .n × n matrix defined by 

. Tn(f ) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

f0 f−1 · · · · · · f−(n−1)

f1
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . . f−1

fn−1 · · · · · · f1 f0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∈ Cn×n.

The matrix sequence .{Tn(f )}n is called the Toeplitz sequence generated by f . 

For Hermitian Toeplitz sequences, the following theorem proved by Szegő, 
Tyrtyshnikov et al. holds (see, e.g., [13]). 

Theorem 1 Let .f ∈ L1([−π, π]) be a real-valued function. Then, 

. {Tn(f )}n ∼λ (f, [−π, π]).
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Both zero-distributed matrix sequences and Toeplitz sequences belong to a larger 
class of matrix sequences known as Generalized Locally Toeplitz (GLT) class. In  
short, the GLT class is an algebra virtually containing any sequence of matrices 
coming from “reasonable” approximations on uniform grids by local discretization 
methods for differential problems (finite differences, finite elements, isogeometric 
analysis, etc.). Without going into the details of the GLT algebra, we list some 
interesting properties of GLT sequences in the following (see [11]). 

Throughout the chapter, we use the notation 

. {An}n ∼GLT κ

to say that .{An}n is a GLT sequence with symbol .κ : [0, 1] × [−π, π] → C. 

GLT1 Let .{An}n ∼GLT κ with .κ : G → C and .G = [0, 1] × [−π, π], and then 
.{An}n ∼σ (κ,G) according to Definition 1 with .k = 2. If the matrices . An are 
Hermitian, then it holds also .{An}n ∼λ (κ,G). 

GLT2 The set of GLT sequences forms a .∗-algebra, i.e., it is closed under linear 
combinations, products, and conjugation. Moreover, in case the symbol is non-
zero a.e., it is closed also under inversion. In formulae, let .{An}n ∼GLT κ1 and 
.{Bn}n ∼GLT κ2, then 

• . {αAn + βBn}n ∼GLT ακ1 + βκ2, α, β ∈ C
• . {AnBn}n ∼GLT κ1κ2
• . {A∗

n}n ∼GLT κ̄1

• .{A−1
n }n ∼GLT κ−1

1 provided that . κ1 is non-zero a.e. 

GLT3 Every Toeplitz sequence .{Tn(f )}n generated by a function . f ∈
L1([−π, π]) is .{Tn(f )}n ∼GLT f , with the specifications reported in item 
GLT1. 

GLT4 Let .G = [0, 1] × [−π, π], then 

. {An}n ∼σ (0,G) ⇐⇒ {An}n ∼GLT 0.

In particular, thanks to Proposition 1, any sequence in which the rank divided by 
the size tends to zero as the matrix size tends to infinity (rank-correction) and any 
sequence with infinitesimal spectral norm (norm-correction) has symbol 0. 

2.3 B-Splines and Cardinal B-Splines 

In this subsection, we recall the definition of both B-splines and cardinal B-splines 
together with their main properties and with a focus on how they behave under 
fractional derivation.
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B-Splines For .p ≥ 0 and .n ≥ 1, consider the uniform knot sequence 

. ξ1 = · · · = ξp+1 := 0 < ξp+2 < · · · < ξp+n < 1 =: ξp+n+1 = · · · = ξ2p+n+1,

where 

. ξi+p+1 := i

n
, i = 0, . . . , n.

This knot sequence allows us to define .n + p B-splines of degree p. 

Definition 4 The B-splines of degree p over a uniform mesh of .[0, 1], consisting 
of n intervals, are denoted by 

. N
p
i : [0, 1] → R, i = 1, . . . , n + p,

and defined recursively as follows: for .1 ≤ i ≤ n + 2p, 

. N0
i (x) :=

{
1, x ∈ [ξi, ξi+1),

0, otherwise;

for .1 ≤ k ≤ p and .1 ≤ i ≤ n + 2p − k, 

. Nk
i (x) := x − ξi

ξi+k − ξi

Nk−1
i (x) + ξi+k+1 − x

ξi+k+1 − ξi+1
Nk−1

i+1 (x),

where a fraction with zero denominator is assumed to be zero. 

It is well known that the B-splines . Np
i , .i = 1, . . . , n + p, are linearly independent 

and that they have local support and .Cp−1 smoothness on .(0, 1). Finally, they 
possess simple interpolation properties at the boundary and form a non-negative 
partition of unity (see, e.g., [4, 18] for these and other B-spline properties). 
Moreover, concerning fractional derivatives of a B-spline, by recalling (2), the  
following property holds: 

. 
RL
0D

α
x N

p

i+1 = C
0D

α
x N

p

i+1,

RL
xD

α
1N

p

i+1 = C
xD

α
1N

p

i+1, i = m, . . . , n + p − m − 1. (6) 

Cardinal B-Splines The central B-splines . Np
i , .i = p + 1, . . . , n, are uniformly 

shifted and scaled versions of a single shape function, the so-called cardinal B-
spline .φp : R→ R, 

.φ0(t) :=
{
1, t ∈ [0, 1),
0, otherwise,
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and 

. φp(t) := t

p
φp−1(t) + p + 1 − t

p
φp−1(t − 1), p ≥ 1.

More precisely, we have 

. N
p
i (x) = φp(nx − i + p + 1), i = p + 1, . . . , n,

and 

.
(
N

p
i (x)

)′ = nφ′
p(nx − i + p + 1), i = p + 1, . . . , n. (7) 

Similar to the B-splines, the cardinal B-spline has local support (on .[0, p + 1]) and 
.Cp−1 smoothness (over . R). Among other properties, we mention: 

• Differentiation: its derivative can be easily expressed as 

. φ′
p(t) = φp−1(t) − φp−1(t − 1), p ≥ 1.

• Inner-product: given integers .0 ≤ r1 ≤ p1 and .0 ≤ r2 ≤ p2, we have  

. 

∫
R

φ(r1)
p1

(t)φ(r2)
p2

(t + τ) dt = (−1)r1φ(r1+r2)
p1+p2+1(p1 + 1 + τ)

= (−1)r2φ(r1+r2)
p1+p2+1(p2 + 1 − τ).

For more properties, we refer the reader to [18] and the references therein. 
Regarding fractional derivatives of the cardinal B-spline, the following explicit 
formula for the left-handed Caputo derivative holds (see [27]): 

. 
C
0D

α
t φp(t) = 1

�(p − α + 1)

p+1∑
j=0

(−1)j
(

p + 1

j

)
(t − j)

p−α
+ , 0 < α < p,

where .(·)q+ is the truncated power function of degree q. Moreover, as shown in [22], 
for .0 ≤ α1 < p1 and .0 ≤ α2 < p2, we have  

. 

∫
R

−∞Dα1
x φp1(x) xD

α2+∞φp2(x + k) dx = −∞Dα1+α2
x φp1+p2+1(p2 + 1 − k),

∫
R

xD
α1+∞φp1(x) −∞Dα2

x φp2(x + k) dx = xD
α1+α2+∞ φp1+p2+1(p2 + 1 − k), (8) 

where the fractional derivatives on half-axes are defined as in (3).



62 M. Donatelli et al.

3 B-Spline Galerkin Discretization of the Fractional Riesz 
Operator 

Let us denote by . W, with .N := dim(W), a finite dimensional vector space of 
sufficiently smooth functions defined on the closure of . � and vanishing on its 
boundary. Once we switch to the weak form of (1), we can apply the Galerkin 
approach by looking for a solution .uW in . W such that 

.a(uW, v) = f(v), v ∈W, (9) 

where 

. a(u, v) := 1

2 cos(πα
2 )

(∫ 1

0
v(x) RL

0D
α
x u(x) dx +

∫ 1

0
v(x) RL

xD
α
1 u(x) dx

)

= 1

2 cos(πα
2 )

(∫ 1

0
v(x) RL

0D
α
2
x

RL
0D

α
2
x u(x) dx +

∫ 1

0
v(x) RL

xD
α
2
1

RL
xD

α
2
1 u(x) dx

)

= 1

2 cos(πα
2 )

(∫ 1

0

RL
xD

α
2
1 v(x) RL

0D
α
2
x u(x) dx +

∫ 1

0

RL
0D

α
2
x v(x) RL

xD
α
2
1 u(x) dx

)
,

(10) 

and 

. f(v) :=
∫ 1

0
s(x)v(x) dx.

The second equality in (10) is a consequence of the identities 

. 
RL
0D

ν
x(RL

0D
μ
x u(x)) = RL

0D
μ
x (RL

0D
ν
xu(x)) = RL

0D
ν+μ
x u(x), when u(j)(0) = 0,

RL
xD

ν
1 (

RL
xD

μ
1 u(x)) = RL

xD
μ
1 (RL

xD
ν
1u(x)) = RL

xD
ν+μ
1 u(x), when u(j)(1) = 0,

which hold for .j = 0, 1, . . . , r − 1 and where .n − 1 ≤ ν < n, . m − 1 ≤ μ < m

with .n,m ∈ N, and .r = max{n,m} (see [29, formula (2.127)]). The third equality 
in (10) is obtained by applying integration by parts (see [30, formula (2.64)]). 

If .{ϕj : j = 1, . . . , N} is a basis of . W, we can write . uW(x) = ∑N
j=1 ujϕj (x)

and the computation of .uW reduces to solving the following symmetric linear 
system: 

. Agalu = bgal,

with 

.Agal := [a(ϕj , ϕi)]Ni,j=1, bgal := [f(ϕi)]Ni=1.
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In this chapter, we choose . W as the space of splines of degree p that vanish at the 
boundary. More precisely, we take 

. W = Spn := span{Np
j : j = 2, . . . , n + p − 1}.

Thus, Eq. (9) translates in a linear system whose coefficient matrix has the form 

. A
p,α
n := 1

2 cos(πα
2 )

(AL
n + AR

n ),

with 

. AL
n :=

[∫ 1

0

RL
xD

α
2
1 N

p

i+1(x) RL
0D

α
2
x N

p

j+1(x) dx

]n+p−2

i,j=1
,

AR
n :=

[∫ 1

0

RL
0D

α
2
x N

p

i+1(x) RL
xD

α
2
1 N

p

j+1(x) dx

]n+p−2

i,j=1
.

Remark 2 Since .
α
2 ∈ (0, 1) and due to (6), for each .i = 1, . . . , n + p − 2, it holds 

. 
RL
0D

α
2
x N

p

i+1(x) = C
0D

α
2
x N

p

i+1(x) = 1

�(1 − α
2 )

∫ x

0
(x − y)−

α
2 (N

p

i+1(y))′ dy,

RL
xD

α
2
1 N

p

i+1(x) = C
xD

α
2
1 N

p

i+1(x) = −1

�(1 − α
2 )

∫ 1

x

(y − x)−
α
2 (N

p

i+1(y))′ dy.

Therefore, . AL
n and . AR

n remain unchanged if we replace Riemann–Liouville deriva-
tives with Caputo ones. Because of this, from now on, we just omit the superscripts 
“RL” or “C.” 

Thanks to (7), the local support property, and Remark 2, for  .i = p, . . . , n − 1, 
we have 

. 0D
α
2
x N

p

i+1(x) = n
α
2
0D

α
2
nx φp(nx − i + p) = n

α
2 −∞D

α
2
nx φp(nx − i + p),

xD
α
2
1 N

p

i+1(x) = n
α
2

nxD
α
2
n φp(nx − i + p) = n

α
2

nxD
α
2+∞ φp(nx − i + p).

Noticing that, for .i = p, . . . , n − 1, 

. −∞D
α
2
nx φp(nx − i + p) = 0, for x ≤ 0,

nxD
α
2+∞ φp(nx − i + p) = 0, for x ≥ 1,
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we get that, for .i, j = p, . . . n − 1, the entries of . AL
n are given by 

. (AL
n )i,j = nα

∫ 1

0
nxD

α
2
n φp(nx − i + p) 0D

α
2
nx φp(nx − j + p) dx

= nα

∫ 1

0
nxD

α
2+∞ φp(nx − i + p) −∞D

α
2
nx φp(nx − j + p) dx

= nα

∫
R

nxD
α
2+∞ φp(nx − i + p) −∞D

α
2
nx φp(nx − j + p) dx.

By using the change of variable .t = nx − j + p and thanks to (8), we finally obtain 

. (AL
n )i,j = nα−1

∫
R

nxD
α
2+∞ φp(t + j − i) −∞D

α
2
nx φp(t) dt

= nα−1 −∞Dα
nx φ2p+1(p + 1 − (j − i)) = nα−1

0D
α
nx φ2p+1(p + 1 + i − j).

Similarly, for .i, j = p, . . . n − 1, we obtain 

. (AR
n )i,j = nα−1

nxD
α
n φ2p+1(p + 1 + i − j).

Therefore, both . AL
n and . AR

n show a Toeplitz plus rank-correction structure and can 
be written as follows: 

. AL
n = nα−1(T L

n + RL
n ), AR

n = nα−1(T R
n + RR

n ),

with 

. T L
n := [

0D
α
nx φ2p+1(p + 1 + i − j)

]n+p−2
i,j=1 ,

T R
n := [

nxD
α
n φ2p+1(p + 1 + i − j)

]n+p−2
i,j=1 ,

and the rank of both . RL
n and .RR

n depends only on p. The coefficient matrix . Ap,α
n

inherits the Toeplitz plus rank-correction structure of . AL
n and . AR

n and becomes 

. A
p,α
n = 1

2 cos(πα
2 )

(AL
n + AR

n ) = nα−1(T
p,α
n + R

p,α
n ),

with 

. T
p,α
n := 1

2 cos(πα
2 )

(T L
n + T R

n ), R
p,α
n := 1

2 cos(πα
2 )

(RL
n + RR

n ).

In Sect. 4, we will show that the symbol of .{n1−αA
p,α
n }n coincides with the one of 

.{T p,α
n }n.
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4 Spectral Symbol of {n1−α A p,α 
n }n and Its Properties 

This section is devoted to the computation and the study of the symbol of the 
coefficient matrix sequence .{n1−αA

p,α
n }n. As we have already anticipated, it turns 

out that the symbol of .{n1−αA
p,α
n }n coincides with the symbol of the Toeplitz part 

.{T p,α
n }n. In order to give evidence of this, we start with a proposition that provides 

an explicit expression for the symbol of .{T p,α
n }n. 

Proposition 2 We have .T
p,α
n = Tn+p−2(f

2p+1,α) with 

. f 2p+1,α(θ) =
∑
l∈Z

|θ + 2lπ |α
(
sin(θ/2 + lπ)

θ/2 + lπ

)2p+2

= (2 − 2 cos(θ))p+1
∑
l∈Z

1

|θ + 2lπ |2p+2−α
,

and 

.{T p,α
n }n = {Tn+p−2(f

2p+1,α)} ∼λ (f 2p+1,α, [−π, π]). (11) 

Proof The equality .T p,α
n = Tn+p−2(f

2p+1,α) and the expression of . f 2p+1,α

can be easily obtained from [22, Theorem 4] and from elementary computations. 
Equation (11) immediately follows by observing that .f 2p+1,α is a real-valued 
function and by applying Theorem 1. ��

We are now in the position to discuss the spectral distribution of .{n1−αA
p,α
n }n. 

Theorem 2 Given .{n1−αA
p,α
n }n, it holds 

.{n1−αA
p,α
n }n ∼λ (f 2p+1,α, [−π, π]). (12) 

Proof Due to GLT3, we have  .{Tn+p−2(f
2p+1,α)}n ∼GLT f 2p+1,α . On the other 

hand, by GLT4, we have .{Rp,α
n }n ∼GLT 0. This is because the rank of .Rp,α

n depends 
only on p, so  

. lim
n→∞

rank(Rp,α
n )

n + p − 2
= 0.

By using GLT2, we can then conclude that . {n1−αA
p,α
n = Tn+p−2(f

2p+1,α) +
R

p,α
n }n is a GLT sequence with symbol .f 2p+1,α . As a consequence of GLT1, this  

implies .{n1−αA
p,α
n } ∼σ f 2p+1,α and (12), recalling that .n1−αA

p,α
n is symmetric. 

��
Remark 3 Theorem 2 is the analog of [22, Theorem 6], where the Galerkin 
approach replaces collocation. We stress that, due to the symmetry of the coefficient 
matrices .A

p,α
n , in this case we do not need to bound their trace and spectral norms as
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done in [22], but we can more easily retrieve their spectral distribution by leveraging 
the GLT theory. 

From Theorem 2, we see that, like for second-order differential problems (see 
[5, 10]), also in the fractional context the spectral distribution in the Galerkin 
formulation with B-splines of degree p is the same as in the collocation formulation 
with B-splines of degree .2p+1. Therefore, as discussed in [22], .f 2p+1,α is equipped 
with the following properties: 

• It only vanishes at 0 with order . α. 
• It presents an exponential decay to zero at . π for increasing p that becomes faster 

as . α approaches 1. 

In other words, we expect that the Galerkin matrices are poorly conditioned in both 
low and high frequencies similar to the collocation ones. 

5 Numerical Results 

In this section, we first check the approximation properties of the considered B-
spline Galerkin discretization of problem (1), and then we numerically verify that 
relations (11) and (12) hold. 

In all the numerical experiments, the fractional derivatives that define the entries 
of the coefficient matrix .Ap,α

n have been computed using the Gauss–Jacobi-type 
quadrature rules introduced in [24]. More specifically, in order to compute the 
Riemann–Liouville derivative of order .α/2 of a piecewise polynomial, we integrate 
its first derivative with an exact Gauss–Jacobi quadrature. The external integral that 
defines the entries of .Ap,α

n has instead been approximated by means of a Gauss– 
Legendre quadrature rule with .n + p − 2 points. 

In Tables 1, 2, and 3, we fix the source function s such that the true solution of 
(1) is given by the following functions: 

• . u(x) = x3(1 − x)3

• . u(x) = sin(πx2)

• . u(x) = x2+α(1 − x)2+α

respectively. Note that the first two are smooth functions allover .[0, 1], while the 
last one is non-smooth at the boundary. Then, by doubling n repeatedly, we show 
the corresponding infinity-norm errors and convergence orders for various p and 
. α. The infinity-norm of the error is computed by taking the maximum value of the 
error sampled in 1024 points uniformly distributed over .[0, 1]. 

From the results in Tables 1, 2, and 3, we notice that, contrarily to what happens 
in case of collocation where we observed a dependency of the approximation 
order on . α, here the approximation order depends only on p and seems to 
substantially coincide with .p+1, for smooth solutions. This is in agreement with the 
approximation results known for standard non-fractional diffusion problems (see,
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Table 1 Errors and predicted convergence orders of the proposed B-spline Galerkin method for 
problem (1) when . u(x) = x3(1 − x)3

.p = 2 .p = 3 .p = 4 . p = 5

.α n Error Order Error Order Error Order Error Order 

1.2 4 5.7797e-04 1.9472e-04 5.0008e-05 7.3202e-06 

8 7.5241e-05 2.94 1.2086e-05 4.01 1.9868e-06 4.65 1.0151e-07 6.17 

16 1.1591e-05 2.70 1.0295e-06 3.55 7.2372e-08 4.78 1.5752e-09 6.01 

32 1.8240e-06 2.67 7.8471e-08 3.71 2.4589e-09 4.88 2.6991e-11 5.87 

64 2.6949e-07 2.76 5.7119e-09 3.78 8.0346e-11 4.94 4.8414e-11 − 
1.5 4 5.9094e-04 1.8226e-04 5.1836e-05 7.4826e-06 

8 6.7314e-05 3.13 1.1941e-05 3.93 2.0003e-06 4.70 1.0210e-07 6.20 

16 1.1397e-05 2.56 1.0543e-06 3.50 7.3343e-08 4.77 1.5817e-09 6.01 

32 1.5348e-06 2.89 7.8517e-08 3.75 2.4850e-09 4.88 2.5439e-11 5.96 

64 2.0041e-07 2.94 5.7740e-09 3.77 8.1240e-11 4.93 2.0949e-11 − 
1.8 4 6.2731e-04 1.6842e-04 5.3106e-05 7.5828e-06 

8 6.3165e-05 3.31 1.1590e-05 3.86 2.0119e-06 4.72 1.0621e-07 6.16 

16 1.0809e-05 2.55 1.0337e-06 3.49 7.5156e-08 4.74 1.6588e-09 6.00 

32 1.5860e-06 2.77 7.7071e-08 3.75 2.5341e-09 4.89 2.5804e-11 6.01 

64 3.4303e-07 2.21 5.6814e-09 3.76 8.3106e-11 4.93 1.5379e-11 − 

Table 2 Errors and predicted convergence orders of the proposed B-spline Galerkin method for 
problem (1) when . u(x) = sin(πx2)

.p = 2 .p = 3 .p = 4 . p = 5

.α n Error Order Error Order Error Order Error Order 

1.2 4 2.2474e-02 7.0143e-03 1.4527e-03 4.9926e-04 

8 3.4578e-03 2.70 4.9966e-04 3.81 6.8647e-05 4.40 1.0161e-05 5.62 

16 5.3896e-04 2.68 3.7767e-05 3.73 1.6374e-06 5.39 2.1199e-07 5.58 

32 8.9627e-05 2.59 2.3724e-06 3.99 4.7374e-08 5.11 3.9447e-09 5.75 

64 1.3738e-05 2.71 1.4821e-07 4.00 1.6634e-09 4.83 6.1795e-09 − 
1.5 4 2.2375e-02 6.5750e-03 1.4754e-03 5.1427e-04 

8 3.5255e-03 2.67 4.8540e-04 3.76 7.0616e-05 4.38 1.0334e-05 5.64 

16 5.2884e-04 2.74 3.6469e-05 3.73 1.5973e-06 5.47 2.1366e-07 5.60 

32 7.3591e-05 2.85 2.3946e-06 3.93 4.6519e-08 5.10 4.0898e-09 5.71 

64 1.2152e-05 2.60 1.4952e-07 4.00 1.5106e-09 4.94 3.0398e-09 − 
1.8 4 2.1961e-02 5.8414e-03 1.4917e-03 5.3969e-04 

8 3.3207e-03 2.73 4.7328e-04 3.63 7.1611e-05 4.38 1.0510e-05 5.68 

16 5.0736e-04 2.71 3.6663e-05 3.69 1.5918e-06 5.49 2.2548e-07 5.54 

32 8.5424e-05 2.57 2.3404e-06 3.97 4.6582e-08 5.09 4.3315e-09 5.70 

64 1.5385e-05 2.47 1.4783e-07 3.98 1.5362e-09 4.92 1.8977e-09 −
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Table 3 Errors and predicted convergence orders of the proposed B-spline Galerkin method for 
problem (1) when . u(x) = x2+α(1 − x)2+α

.p = 2 .p = 3 .p = 4 . p = 5

.α n Error Order Error Order Error Order Error Order 

1.2 4 5.1722e-04 1.5830e-04 5.9343e-05 9.2923e-06 

8 5.6428e-05 3.20 9.8594e-06 4.01 1.9711e-06 4.91 3.0282e-07 4.94 

16 7.7450e-06 2.87 8.8745e-07 3.47 1.0187e-07 4.27 2.5896e-08 3.55 

32 1.5663e-06 2.31 5.5348e-08 4.00 9.2200e-09 3.47 2.6047e-09 3.31 

64 2.2362e-07 2.81 4.3291e-09 3.68 8.7876e-10 3.39 2.7733e-10 3.23 

1.5 4 4.7299e-04 1.0036e-04 6.8778e-05 1.0329e-05 

8 3.8077e-05 3.63 8.8327e-06 3.51 1.5796e-06 5.44 2.3165e-07 5.48 

16 4.7110e-06 3.01 6.2947e-07 3.81 8.0972e-08 4.29 1.4660e-08 3.98 

32 9.5382e-07 2.30 3.7404e-08 4.07 5.4991e-09 3.88 1.2180e-09 3.59 

64 1.4732e-07 2.69 3.5081e-09 3.41 4.0949e-10 3.75 1.0493e-10 3.54 

1.8 4 3.8102e-04 6.2802e-05 6.9806e-05 9.1928e-06 

8 3.2503e-05 3.55 7.9412e-06 2.98 1.1149e-06 5.97 2.8789e-07 5.00 

16 4.0344e-06 3.01 3.5961e-07 4.46 4.8537e-08 4.52 9.0202e-09 5.00 

32 7.9805e-07 2.34 3.1392e-08 3.52 3.1359e-09 3.95 2.6381e-10 5.10 

64 1.9118e-07 2.06 2.4189e-09 3.70 1.6002e-10 4.29 1.5901e-11 4.05 

Table 4 Number of large 
outliers of .n1−αA

p,α
n for 

different p, n, and . α

p n .α = 1.2 .α = 1.5 .α = 1.8 . α = 1.99

3 63 0 2 2 2 

4 62 0 2 2 2 

5 61 2 2 2 4 

6 60 2 2 4 4 

7 59 2 4 4 4 

e.g., [3]). We also see a stagnation in the convergence for .p = 5; this is due to 
numerical issues in the difficult computation of the entries of .Ap,α

n and the right-
hand side for large p. In this perspective, a deeper investigation of the effect of the 
used quadrature can be of interest. 

We continue this section by checking relations (11) and (12). In order to do this, 
for fixed n and p, we define the following uniform grid on .[0, π ]: 

. � :=
{
θk := kπ

n + p − 2
: k = 1, . . . , n + p − 2

}
.

Then, we compare the (accordingly reordered) sampling of .f 2p+1,α on . � with 
the eigenvalues of both .T p,α

n and .n1−αA
p,α
n . In Fig. 1, we fix  .p = 3, . n = 63

and vary .α ∈ {1.2, 1.5, 1.8}. For both .T p,α
n and .n1−αA

p,α
n , we observe a very 

good matching, which numerically validates Proposition 2 and Theorem 2. As a  
further confirmation, we obtained similar results also for .p = 4, .n = 62, and 
.α ∈ {1.2, 1.5, 1.8}; see Fig. 2. Note that, in accordance with Remark 1, in case 
of .n1−αA

p,α
n and .α = 1.8, there are few large outliers, which do not behave like
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Fig. 1 Comparison of the eigenvalues of .T p,α
n and .n1−αA

p,α
n (red circled) with a uniform 

sampling of .f 2p+1,α on . �, ordered in ascending way (blue asterisk), for .n = 63, .p = 3, and  
.α = 1.2 (top row), .α = 1.5 (middle row), and .α = 1.8 (bottom row). (a) .T p,1.2

n . (b) .n−0.2A
p,1.2
n . 

(c) .T p,1.5
n . (d) .n−0.5A

p,1.5
n . (e) .T p,1.8

n . (f) .n−0.8A
p,1.8
n
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Fig. 2 Comparison of the eigenvalues of .T p,α
n and .n1−αA

p,α
n (red circled) with a uniform 

sampling of .f 2p+1,α on . �, ordered in ascending way (blue asterisk), for .n = 62, .p = 4, and  
.α = 1.2 (top row), .α = 1.5 (middle row), and .α = 1.8 (bottom row). (a) .T p,1.2

n . (b) .n−0.2A
p,1.2
n . 

(c) .T p,1.5
n . (d) .n−0.5A

p,1.5
n . (e) .T p,1.8

n . (f) .n−0.8A
p,1.8
n
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the symbol. The magnitude of these outliers seems to be less and less large as . α
approaches 1. Such a result is somehow in contrast with what we experienced in 
collocation, where the outlier magnitude was independent of . α (see [22]). 

Table 4 shows the precise number of large outliers obtained by counting how 
many eigenvalues of .n1−αA

p,α
n are larger than .max[0,π ] f 2p+1,α + ε, with .ε = n−1. 

We clearly see that the number of outliers depends on p and that, when . α approaches 
2, it increases in a similar way as it was observed for B-spline discretizations of 
integer-order differential equations (see, e.g., [12]). 

6 Conclusions 

We focused on the coefficient matrices obtained by B-spline Galerkin discretizations 
of Riesz fractional diffusion equations over uniform meshes. For an arbitrary 
polynomial degree p, we showed that, as for collocation, the resulting coefficient 
matrices possess a Toeplitz-like structure and that their spectral distribution is 
the same as for the collocation formulation with B-splines of degree .2p + 1. 
As a consequence, the Galerkin matrices were proved to be poorly conditioned 
in both low and high frequencies, just like the collocation ones. Finally, we 
numerically observed that the approximation order of the Galerkin approach 
for smooth solutions does not depend on the fractional derivative order as for 
collocation and that it coincides with .p + 1 as for non-fractional diffusion 
problems. 

As future work, the use of reduced spline spaces could be explored in the 
fractional context since they lead to Galerkin discretizations with superior spectral 
properties for non-fractional diffusion problems [19]. Moreover, since it is 
known that the solution of (1) can exhibit singularities near the boundaries [2], 
locally non-uniform knot sequences could be considered as well to improve 
the overall accuracy of the method in case of non-smooth functions. Finally, 
following the results in [6–8], all the information provided by the symbol may 
be leveraged for the design of effective preconditioners and fast multigrid/multi-
iterative solvers whose convergence speed is independent of the fineness 
parameters and the approximation parameters as well as the fractional derivative 
order. 
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Do the Mittag–Leffler Functions Preserve 
the Properties of Their Matrix 
Arguments? 

Marina Popolizio 

Abstract The matrix Mittag–Leffler (ML) functions are receiving great attention 
at the moment. As a matter of fact, in many applications, the matrix argument has 
special features and/or structure and is important to know if the application of ML 
functions preserves them. We collect results here that can help researchers working 
with this topic and who usually struggle to find them because they are scattered 
around or not explicitly derived for the special case of ML functions. Furthermore, 
the treatment is also suitable for non-experts in linear algebra, giving adequate 
references to the appropriate literature. In particular, nonnegativity and circulant 
structure are addressed, which may be of great interest in the analysis of systems of 
fractional differential equations or in the context of graph theory. 

1 Introduction 

The matrix Mittag–Leffler (ML) functions nowadays enjoy considerable interest 
thanks to the important role they deserve in many applications. We cite, for example, 
the Fractional Calculus, that is, the branch of mathematical analysis which studies 
integrals and derivatives of arbitrary order [20, 28, 33], with interesting applications 
to nonlocal models [2, 4, 26]. In this context, the matrix ML functions are used to 
solve systems of fractional differential equations, to analyze their properties, and to 
assess the observability and controllability of fractional linear systems, just to quote 
some instances [8, 11, 15, 16, 18, 31]. Recently, the matrix ML functions have been 
used also in the context of network science to define new measures that, thanks to 
the behavior of the underlying ML functions, interpolate between resolvent-based 
and exponential-based measures [1, 12, 13]. The matrix ML functions have been 
recently used also to solve time and space generalized diffusion equations on graphs 
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[7]. In these cases, as in many other circumstances, it is important to establish 
if the application of the matrix ML functions preserves features and/or structures 
characterizing the matrix argument. 

The ML function is defined as 

.Eα,β(z) =
∞∑

j=0

zj

�(αj + β)
, z ∈ C, α, β ∈ C,�(α) > 0, (1) 

where 

. �(z) =
∫ ∞

0
tz−1e−tdt

is the Euler gamma function. From the definition (1), it is immediate to recognize 
that for .α = β = 1 the ML function reduces to the exponential. 

Even at the scalar level, ML functions do not always satisfy the properties that 
researchers expect. For example, this is the case of the semigroup property; indeed, 
in general for .s, t ≥ 0 and . a ∈ R

. Eα,β

(
a(s + t)αβ

) �= Eα,β

(
asαβ

)
Eα,β

(
atαβ

)

(see, for example, [10, 30]), unless the special cases .α = β = 1, and . a =
0, β = 1, or .β = 2. Unfortunately, it has been considered true several times 
in the literature, and this has often created confusion and led to mathematically 
inconsistent conclusions. We therefore believe that, given the increasing use of 
matrix ML functions even by non-specialists, collecting some results could be useful 
for easy reference. 

The ML function is clearly entire, so its definition simply generalizes to matrix 
arguments as 

.Eα,β(A) =
∞∑

j=0

Aj

�(αj + β)
, A ∈ Cn×n, α, β ∈ C,�(α) > 0. (2) 

Many issues arise when the numerical approximation of the quantity above is 
required. The definition (2), or even (1) for the scalar case, may be simply applied 
together with a suitable truncation. This approach, however, works only when the 
argument is “small,” since differently the convergence may be extremely slow, thus 
requiring a large number of terms for its numerical approximation, with the related 
problem of the fast growth of the Gamma function. Other approaches are then 
necessary and we just refer to [17, 18, 32] for a comprehensive discussion on them
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and for the algorithm they propose that effectively combines high accuracy and low 
computational cost.1 

This chapter is organized as follows: in Sect. 2, we list some of the features that 
are not preserved by the ML functions. Section 3 discusses the case of nonnegative, 
positive and nonnegative definite matrix arguments. We show that the ML functions 
preserve these features for any choice of the parameters such that .α, β > 0. 
To guarantee the nonnegativity of .Eα,β(A) when A is a Metzler matrix, more 
restrictions on the parameters are needed, as proven in Proposition 6, by resorting to 
a new result on the strictly completely monotonicity of the ML functions. Sections 4 
and 5 deal with the preservation of the centrosymmetric and circulant structures, 
respectively. In Sect. 6, quasi-Toeplitz matrices are addressed whose structure is 
preserved by the ML functions, unlike Toeplitz matrices discussed in Sect. 2. In  
Sect. 7, we deal with the case of parameter-dependent matrices, as in the case of 
temporal networks. Some conclusions are collected in Sect. 8. 

2 What Is Not Preserved 

In this section, we analyze some characteristics which are not preserved by the 
matrix ML functions. We report in the following basic concepts of matrix analysis, 
and we refer to [19, 22, 25] for further insights. 

Toeplitz Matrices 

Definition 1 A real matrix A is a Toeplitz matrix if each descending diagonal of A 
from left to right is constant, that is to say, 

. Ai,j = ai−j ,

so 

.A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 a−1 a−2 · · · · · · a−n+1

a1 a0 a−1
. . .

...

a2 a1
. . .

. . .
. . .

...
...

. . .
. . .

. . . a−1 a−2
...

. . . a1 a0 a−1

an−1 · · · · · · a2 a1 a0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3)

1 www.mathworks.com/matlabcentral/fileexchange/66272-mittag-leffler-function-with-matrix-
arguments. 

www.mathworks.com/matlabcentral/fileexchange/66272-mittag-leffler-function-with-matrix-arguments
www.mathworks.com/matlabcentral/fileexchange/66272-mittag-leffler-function-with-matrix-arguments
www.mathworks.com/matlabcentral/fileexchange/66272-mittag-leffler-function-with-matrix-arguments
www.mathworks.com/matlabcentral/fileexchange/66272-mittag-leffler-function-with-matrix-arguments
www.mathworks.com/matlabcentral/fileexchange/66272-mittag-leffler-function-with-matrix-arguments
www.mathworks.com/matlabcentral/fileexchange/66272-mittag-leffler-function-with-matrix-arguments
www.mathworks.com/matlabcentral/fileexchange/66272-mittag-leffler-function-with-matrix-arguments
www.mathworks.com/matlabcentral/fileexchange/66272-mittag-leffler-function-with-matrix-arguments
www.mathworks.com/matlabcentral/fileexchange/66272-mittag-leffler-function-with-matrix-arguments
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Fig. 1 Absolute values of the differences along the diagonals of .Eα,β(T ) with the symmetric 
Toeplitz matrix .T = tridiag(0.5, 1, 0.5) of dimension .8 × 8, α = 0.5 and . β = 1

This structure is not preserved by the action of ML functions; indeed, in general, 
the power of Toeplitz matrices is not a Toeplitz matrix, and thus the matrix (2) is not  
in general a Toeplitz matrix, even if A is so. 

However, as seen for the exponential function [5], the ML function of a Toeplitz 
matrix is still Toeplitz except for few nonzero entries in the upper left-hand corner 
and in the lower right-hand corner. 

We show this property by means of a simple example carried out in Mat-
lab ver. 9.10.0.1602886 (R2021a): we consider an .n × n tridiagonal matrix T 
with row entries .(0.5, 1, 0.5), we compute the ML function .F = Eα,β(T ) by 
means of the ml_matrix code [18], and we consider the error measured as 
.abs(F(1 : n − 1,1 : n − 1) − F(2 : n,2 : n)). For Toeplitz matrices, this differ-
ence matrix is identically zero, while we observe, from Fig. 1 referring to . n =
8, α = 0.5 and .β = 1, that entries in the upper left-hand corner and in the lower 
right-hand corner are significantly larger than zero. 

In Sect. 6, we specifically address this topic by considering quasi-Toeplitz 
matrices. 

Stochastic Matrices 

Definition 2 A square matrix A is (row) stochastic if all its entries are nonnegative 
and the entries of each row sum to 1.
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A column stochastic matrix is a real square matrix of nonnegative entries, with 
each column summing to 1. 

A doubly stochastic matrix is a square matrix of nonnegative entries such that the 
sum of the entries in every row and every column is 1. 

In common applications, each entry of these matrices represents a probability and 
they are largely used, for example, in probability theory, statistics, and mathematical 
finance. 

Proposition 1 ([22]) Any row stochastic matrix has 1 as eigenvalue with corre-
sponding eigenvector .e = (1, . . . , 1)T . 

Any column stochastic matrix has 1 as eigenvalue with corresponding left 
eigenvector . eT . 

The stochasticity is not preserved by ML functions. Indeed, given a row stochas-
tic matrix A, as stated in the characterization above, it has the eigenvector e with 
corresponding eigenvalue 1. It follows, from the general theory of matrix functions 
[22], that .Eα,β(A) will have e as eigenvector with corresponding eigenvalue . Eα,β(1)

which is different from 1 for any choice of . α and . β. Analogously, for column 
stochastic matrices, in which case . eT is the left eigenvector corresponding to the 
eigenvalue 1 for A but not for .Eα,β(A). 

Monotonicity 

To define the monotonicity of a matrix function, we need to introduce a specific 
ordering. For Hermitian matrices X and Y , we use the notation .X > Y if the matrix 
.X − Y is positive definite. With this notation, a matrix function . f : Cn×n → C

n×n

is monotone if .f (A) > f (B) whenever .A > B. 
The ML functions cannot be monotone according to the definition above, as we 

may infer from the fact that for .r > 1 the power function . Ar is not monotone either 
[22]. 

However, if .0 < α ≤ 1 and .β ≥ α, the scalar ML functions are completely 
monotonic (c.m.) in .(−∞, 0) [28], that is to say, 

. (−1)kE
(k)
α,β(x) ≥ 0, for k = 0, 1, 2, . . .

for any .x ∈ (−∞, 0) with .E(k)
α,β denoting the k-th order derivative of the ML 

function. We exploit this characteristic in Sect. 3 to extend a result by Varga [34], 
which connects c.m. functions and Metzler matrices. 

M-matrices 

M-matrices, as defined below, are important in many applications like finite 
difference methods for partial differential equations, Markov chains, etc. 

Definition 3 A real matrix A is a non-singular M-matrix if .A = sI − B, where B 
has all nonnegative entries, I denotes the identity matrix, and s is greater than the 
spectral radius of B, i.e., the largest absolute value of its eigenvalues.
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M-matrices are characterized by negative off-diagonal entries. We take as 
example the M-matrix arising from the finite difference discretization of second-
order derivatives, with swapped sign, 

. A =
⎡

⎣
2 −1 0

−1 2 −1
0 −1 2

⎤

⎦ .

We show that not even the exponential function preserves this property. Indeed, 
by using the Matlab function expm, which is nowadays one of most effective tool 
to numerically compute the matrix exponential, we get 

. expm(A) =
⎡

⎣
11.7419 −10.1104 4.3528

−10.1104 16.0947 −10.1104
4.3528 −10.1104 11.7419

⎤

⎦ ;

this is clearly not an M-matrix for the presence of positive extra diagonal entries. 
We conclude that ML functions do not preserve M-matrices in view of the fact that 
the exponential is one instance of ML functions. 

In particular, we derive that ML functions do not preserve the Stieltjes matrices, 
since they represent a subset of M-matrices, as we deduce from their definition: 

Definition 4 ([22]) A Stieltjes matrix is a symmetric positive definite matrix . A ∈
R

n×n such that .Aij ≤ 0 for .i �= j . 

Matrix Groups 

Higham and coauthors [23] gave a complete description of matrix functions 
which preserve matrix groups. In particular, they show that these functions have 
to commute with the inverse function to preserve, for example, orthogonality, 
perplecticity and symplecticity, or with the conjugate inverse function in order to 
preserve unitarity and conjugate symplecticity. The ML functions do not commute 
as required, so they do not preserve these groups. 

3 Nonnegativity Preservation 

We introduce some useful definitions to discuss whether the ML functions preserve 
nonnegativity and/or essential nonnegativity of their matrix argument. 

Definition 5 ([22]) A matrix .A ∈ Rn×n is

• Nonnegative if it is entrywise nonnegative. In this case, we use the notation . A ≥
0.

• Positive if it is entrywise positive. In this case, we use the notation .A > 0.
• A Metzler matrix, or essentially nonnegative, if .Aij ≥ 0 for .i �= j .
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Proposition 2 For any value of .α, β ≥ 0, the ML functions preserve the class of

• Nonnegative matrices
• Nonnegative symmetric nonnegative definite matrices, i.e., matrices having only 

nonnegative eigenvalues 

Proof The first claim easily follows since the coefficients defining the ML function 
(1) are all nonnegative for the assumptions on . α and . β [29, 34]. 

For the second claim, we recall that a characterization due to Micchelli and 
Willoughby [29] states that a continuous function preserves nonnegative symmetric 
matrices if and only if its divided differences, or equivalently its derivatives, are 
nonnegative. In our case, a term-by-term derivation of (1) leads to derivatives 
expressed as 

.E
(k)
α,β(z) ≡ dk

dzk
Eα,β(z) =

∞∑

j=k

(j)k

�(αj + β)
zj−k, k ∈ N, (4) 

with .(x)k denoting the falling factorial 

. (x)k = x(x − 1) · · · (x − k + 1),

and so they are nonnegative on .R+ for the hypothesis on . α and . β. Moreover, this 
hypothesis also guarantees that the eigenvalues of .Eα,β(A) are all nonnegative, so it 
results nonnegative definite too. 
�
Proposition 3 The ML functions with .α, β ≥ 0 map positive matrices into 
nonnegative matrices. 

Proof The continuity of the ML functions and the fact that the set of strictly positive 
matrices is dense in the set of all nonnegative matrices lead to the result [3]. 
�
Remark 1 We observe that .1/�(x) > 0 (respectively, .≥ 0) when . −2k < x <

−2k+1 (respectively, .−2k ≤ x ≤ −2k+1) for .k ∈ N. Thus, the above propositions 
extend to some negative values of . β and sufficiently large values of . α (namely, when 
.β ∈ (−2k,−2k + 1) and .α > −β). We think however that these cases are of less 
importance in common applications. 

Metzler matrices are of particular importance in view of their occurrence 
in significant applications such as Markov chains, stability of linear dynamical 
systems, and the numerical solution of partial differential equations [22, 27]. They 
differ from nonnegative matrices as their diagonal entries are free in the sign and this 
weaker hypothesis makes the application of Proposition 2 impossible. Varga [34] 
found interesting connections between strictly c.m. functions and Metzler matrices. 
Here, we prove that the ML functions are strictly c.m. to extend these results. 

Proposition 4 When .0 < α ≤ β < 1, the ML functions are strictly c.m. in 
.(−∞, 0), i.e., .(−1)jE

(j)
α,β(x) > 0 for any .x < 0 and for any .j = 0, 1, . . ..
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Proof It is well known that ML functions are c.m. in .(−∞, 0) when .0 < α ≤ 1 and 
.β ≥ α [28] as they are Laplace transform of a nonnegative absolutely continuous 
function .Sα,β . If we restrict to .0 < α ≤ β < 1, the function .Sα,β may be represented 
as 

. Sα,β(u) =
∞∑

n=0

(−1)n
un

n!�(β − α − αn)
, u ∈ R+.

Dubourdieu found that Laplace transforms of nonnegative absolutely continuous 
functions which do not identically reduce to a constant are strictly c.m. [9]; this 
allows us to infer that the ML function is strictly c.m. since the function .Sα,β does 
not identically reduce to a constant. 
�
Remark 2 For the special case .α = β = 1, we recover the exponential which is 
strictly c.m. in .(−∞, 0) [34]. 

When ML functions are c.m., they transform Metzler matrices into nonnegative 
matrices, as we will demonstrate in Proposition 6. For clarity, we report here a result 
due to Varga [34], which states the same property for the exponential function and 
represents our starting point. 

Proposition 5 ([34, Theorem 4]) Let B be a Metzler matrix; then, for any . t ≥
0, exp(tB) ≥ 0. Moreover, for any .t > 0, exp(tB) > 0 if and only if B is 
irreducible, i.e., it is not similar via a permutation to a block upper triangular 
matrix. 

Proposition 6 Let A be a Metzler matrix and .0 < α ≤ β < 1. 
Then, for any .t ≥ 0, Eα,β(tA) ≥ 0. 
Moreover, for any .t > 0, Eα,β(tA) > 0 if and only if A is irreducible. 

Proof For the given parameters, the ML function is strictly c.m., and thus, as shown 
in Proposition 4, the function .G(x) = Eα,β(−x) is c.m. on .(0,∞) and is entire. 
Then, by [34, Theorem 1], .G(yI − C) ≥ 0 for any nonnegative matrix C and for 
any positive value of y. On the other side, a Metzler matrix can be easily transformed 
into a nonnegative matrix by adding sufficiently large positive values to its diagonal, 
namely, for any positive s sufficiently large, the matrix .C ≡ tA + sI is nonnegative 
for any .t ≥ 0. So, .0 ≤ G(sI −C) = G(−tA) = Eα,β(tA). The proof of the second 
part of the claim essentially follows that of Proposition 5 given in [34]. 
�

4 Centrosymmetric Matrices 

Centrosymmetric matrices are important in applications since, for example, they 
represent the transition matrices of certain types of Markov processes [35].
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Definition 6 ([22]) A matrix A is centrosymmetric if .JAJ = A, where J is the 
“exchange” matrix, that is, J is the identity matrix I with the columns in reverse 
order. 

Proposition 7 The ML function preserves the centrosymmetric structure of its 
matrix argument. 

Proof We repeatedly use the property .JJ = I in the expression for .Eα,β(A) (2) to  
get the result. 
�

To give a graphical representation of this property, we consider the centrosym-
metric .10 × 10 matrix: 

.C =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

9 8 7 6 5 4 3 2 1 0 −1
8 7 6 5 4 3 2 1 0 −1 −2
7 6 5 4 3 2 1 0 −1 −2 −3
6 5 4 3 2 1 0 −1 −2 −3 −4
5 4 3 2 1 0 −1 −2 −3 −4 −5
6 5 0 −5 0 −1 0 −5 5 6

−5 −4 −3 −2 −1 0 1 2 3 4 5
−4 −3 −2 −1 0 1 2 3 4 5 6
−3 −2 −1 0 1 2 3 4 5 6 7
−2 −1 0 1 2 3 4 5 6 7 8
−1 0 1 2 3 4 5 6 7 8 9

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5) 

we scale it by a factor of .−10 and we compute .Eα,β(C) for .α = 1.5 and .β = 1. 
Figure 2 shows the centrosymmetric structure of both C and .Eα,β(C). 
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Fig. 2 Centrosymmetric matrix C in (5) (left plot) and .Eα,β(C) (right plot) for .α = 1.5 and .β = 1
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5 Circulant Matrices 

Circulant matrices are encountered in applications involving the discrete Fourier 
transform or the study of cyclic codes for error correction. Moreover, they are 
particularly important in the analysis of circulant graphs or networks, since their 
adjacency matrices have this form. Circulant networks are used, for example, in the 
design of computer and telecommunication networks and distributed computation 
[14]. 

Definition 7 ([19]) Define the downshift permutation . Sn as 

. Sn =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1

1 0 0
. . . 0

0 1 0
. . .

. . .
. . .

. . . 0
0 . . . 0 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

Given an n-vector .a = [a1, a2, . . . , an]T , an .n × n circulant matrix is defined as 

. A = [a, Sna, S2
na, . . . , Sn−1

n a],
so each column is a “downshifted” version of its predecessor. 

Equivalently, a circulant matrix may be viewed as a special kind of Toeplitz 
matrix where each row is obtained from the previous one by cyclically moving the 
entries one place to the right. 

An example of circulant matrix of order .n = 5 is 

. A =

⎡

⎢⎢⎢⎢⎢⎣

a1 a5 a4 a3 a2

a2 a1 a5 a4 a3

a3 a2 a1 a5 a4

a4 a3 a2 a1 a5

a5 a4 a3 a2 a1

⎤

⎥⎥⎥⎥⎥⎦
.

Proposition 8 ([6, 22]) A circulant matrix A is characterized by the fact that it is 
diagonalized by the discrete Fourier transform, that is, 

. FAF−1 = D

with D diagonal and F denoting the Fourier matrix whose .(r, s) entry is defined as 

. Fr,s = 1√
n

exp

(
− 2π i

n
(r − 1)(s − 1)

)

if n is the dimension of A, . i denotes the imaginary unit, and .r, s = 1, . . . , n.
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Fig. 3 Circulant matrix A of dimension .10 × 10 defined by means of the vector . a =
[1, 2, 3, . . . , 10] scaled by a factor 10 (left plot) and .Eα,β(A) (right plot) for . α = 1.5, β = 1

It is then interesting to show that ML functions preserve this structure, as stated 
in the following proposition. 

Proposition 9 The ML function preserves the circulant structure of its matrix 
argument. 

Proof From the characterization above of circulant matrices, we deduce that also 
.Eα,β(A) is diagonalized by the discrete Fourier transform, namely . Eα,β(A) =
F−1Eα,β(D)F , thus leading to the claim. 
�

In Fig. 3, we give a graphical representation of the property above: we consider 
a .10 × 10 circulant matrix A defined by means of the vector . a = [1, 2, 3, . . . , 10]
scaled by a factor 10, and we compute .Eα,β(A) for .α = 1.5 and . β = 1. In the  
left plot, the circulant structure of A is evident, while the right plot confirms the 
circulant structure of .Eα,β(A). 

In view of the fact that ML functions preserve the circulant structure, we 
deduce a useful property of the ML functions, which descends from the following 
characterization due to Bharali and Holtz [3] that we report here for completeness. 

Proposition 10 ([3, Theorem 10]) For an entire function f to preserve nonnega-
tivity of a circulant matrix of order n with first row .a0, . . . , an−1, it is necessary and 
sufficient that for . l = 0, . . . , n − 1

. 

n−1∑

k=0

ω−lkf

(n−1∑

j=0

ωjkaj

)
≥ 0

whenever .aj ≥ 0 for .j = 0, . . . , n − 1 and .ω = e2π i/n.
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Proposition 11 For any .n ∈ N, whenever .aj ≥ 0 for .j = 0, . . . , n − 1, it results 
that 

. 

n−1∑

k=0

ω−lkEα,β

(n−1∑

j=0

ωjkaj

)
≥ 0

for .ω = e2π i/n and for .l = 0, . . . , n − 1. 

Proof Since ML functions preserve nonnegativity of circulant matrices of any order 
.n ∈ N, the characterization given in Proposition 10 holds, thus concluding the proof. 


�

6 Quasi-Toeplitz Matrices 

By starting from (3), we may extend the definition of a Toeplitz matrix to a semi-
infinite matrix if 

. Ti,j = aj−i , i, j ∈ Z+.

Many applications related to semi-infinite domains involve matrices of this form. 
For instance, when describing queuing models or random walks in the quarter plane 
or the discretization of boundary value problems by means of finite differences. 

Let us introduce some definitions useful for the following [5]: 

. T ≡ {
z ∈ C : |z| = 1

}
,

. W ≡
{
a(z) =

∑

i∈Z
aiz

i : T→ C,
∑

i∈Z
|ai | < ∞

}
with ‖a‖W ≡

∑

i∈Z
|ai |

. W1 ≡ {
a(z) ∈W : a′(z) ∈W}

where a′(z) =
∑

i∈Z
iaiz

i−1

. F ≡
{
F = (fi,j )i,j∈Z+ :

∑

i,j∈Z+
|fi,j | < ∞

}
with ‖F‖F ≡

∑

i,j∈Z+
|fi,j |.

Definition 8 A semi-infinite matrix A is said to be quasi-Toeplitz (QT) if it can be 
written in the form 

. A = T (a) + Ca,

where .a(z) ∈W1 is called symbol and .Ca ∈ F.
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We refer to .T (a) as the Toeplitz part of A and to . Ca as the correction. 
The class .QT of QT-matrices is a Banach space equipped with the norm 

. ‖A‖QT := ‖a‖W + ‖a′‖W + ‖Ca‖F
with .a′(z) denoting the first derivative of .a(z). 

If .a(z) is analytic in an open annulus enclosing . T, then the matrix A is said to be 
analytically quasi-Toeplitz (AQT). 

Functions of QT-matrices have been studied in depth by Bini and coauthors [5], 
and we follow their analysis for the specific case of ML functions. 

Proposition 12 Let .A = T (a)+Ca be a QT-matrix. Then, there exists a QT-matrix 
Y such that 

. lim
k→∞

∥∥∥∥Y −
k∑

j=0

Aj

�(αj + β)

∥∥∥∥
QT

= 0,

and Y is a QT-matrix with symbol .s ≡ Eα,β(a), i.e., 

. Y = T (s) + Cs, Cs ∈ F.

Moreover, if A is an AQT-matrix, then .Eα,β(A) is an AQT-matrix too. 

Proof The claim follows from [5, Theorem 3.1] since the ML functions are entire. 

�

Numerical evidence of this result is given in Fig. 1, which shows that the 
correction term . Cs in Proposition 12 for the ML function of a QT-matrix has just 
few nonzero entries in the upper left-hand corner and in the lower right-hand corner. 

The following result gives a bound on the norm of the correction part of .Eα,β(A), 
by applying to the ML function the general result by Bini and coauthors [5, Theorem 
3.3]. 

Proposition 13 Under the hypotheses of Proposition 12, if  .A = T (a) + Ca and 
.Eα,β(A) = T (s) + Cs with .s ≡ Eα,β(a), then 

. ‖Cs‖F ≤ 1

‖Ca‖F
(

(‖a′‖2
W + ‖Ca‖F) g(‖a‖W + ‖Ca‖F) − g(‖a‖W)

‖Ca‖F − ‖a′‖2
Wg′(‖a‖W)

)
,

where .g(z) = ∑∞
i=0

zi

|�(αi+β)| .
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7 The ML Function with Time-Dependent Matrix 
Arguments 

Many applications nowadays, rather than focusing on the network itself, on the 
importance of single vertices or edges for example, focus on dynamic systems that 
develop on the network. This is the case, just to cite some instances, of the flow 
of information via e-mail messages, mobile telephone calls, and social media or 
the spreading dynamics of some biological viruses [21, 24]. In these situations, one 
separates the underlying static network and the dynamical system on the network, 
thus dealing with temporal networks. In these models, interactions can appear and 
disappear over time, so the adjacency matrix varies with the time and its entries can 
be defined as 

. Ai,j (t) =
{

1, if i and j are connected at time t,

0, otherwise.

Also, in this case, as in the static one, the matrix .Eα,β(A(t)) may offer a good 
measure that interpolates between the resolvent and the exponential behavior [1]. 

In this situation, the interest is preserving features that the matrix argument . A(t)

has for any .t ≥ 0. Plainly, in these cases, all the results described above may be 
applied. 

8 Conclusions 

This chapter collects a series of results about the features that the matrix ML 
functions preserve. In many applications, outcomes of this type are useful to 
determine whether the models under investigation have specific properties or not. 
The use of ML functions is in fact spreading in many different research areas, such 
as fractional calculus and network theory. Here, for example, the nonnegativity 
of the ML functions of nonnegative matrix arguments is important to assess the 
features of differential systems or to properly define network measures. In these 
cases, the conditions .α, β > 0 guarantee the nonnegativity also of the matrix 
ML function. Analogously, in graph theory, circulant or centrosymmetric structures 
commonly appear and we have proved that these structures are always preserved by 
ML functions. 

Some of the presented results are well known, and some others are new; this is 
the case, for example, of the nonnegativity of .Eα,β(A) when A is a Metzler matrix, 
which is grounded on a new result on the strictly complete monotonicity of the ML 
functions, under suitable hypotheses on the parameters . α and . β. A list of features 
that are not preserved is also given, which may be equally useful.
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On the Solutions of the Fractional 
Generalized Gierer–Meinhardt Model 

Alessandra Jannelli and Maria Paola Speciale 

Abstract In this chapter, we consider a time-fractional generalized Gierer– 
Meinhardt model described by a system of two coupled nonlinear time-fractional 
reaction–diffusion equations. Solutions are computed by applying a procedure 
that combines the Lie symmetry analysis with classical numerical methods. 
Lie symmetries reduce the target system into time-fractional coupled ordinary 
differential equations. The numerical solutions are determined by introducing 
the Caputo definition fractional derivative and by using an implicit classical 
numerical method. Numerical results are presented to validate the effectiveness 
of the proposed approach and to show, by a comparison with the integer-order case, 
that the fractional-order model can be considered a reliable generalization of the 
classical model. 

1 Introduction 

In this chapter, we consider a system of two coupled nonlinear time-fractional 
reaction–diffusion (TF–RD) equations 

.

{
∂α
t u(t, x) = k1∂xxu(t, x) + f (t, x, u, v),

∂α
t v(t, x) = k2∂xxv(t, x) + g(t, x, u, v),

0 < α < 1, (1) 

subject to suitable initial and boundary conditions. In (1), . ∂α
t is the Riemann– 

Liouville fractional derivative operator [1–4] 

. ∂α
t w(t, x) = 1

�(1 − α)

∂

∂t

∫ t

0

w(s, x)

(t − s)α
ds.
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.u(t, x) and .v(t, x) are the field variables at time t and position x. .k1 > 0 and 

.k2 > 0 the diffusion coefficients of .u(t, x) and .v(t, x), respectively. The functions 

.f = f (t, x, u, v) and .g = g(t, x, u, v) represent the nonlinear interaction terms. 
The system (1) has been proved to be a strong tool in the modeling of many 

physical and chemical phenomena [5–14]. Many mathematical models have been 
proposed in different fields of the applied sciences, and their analytical and numer-
ical solutions have been extensively investigated. In 1972, Gierer and Meinhardt 
[15] proposed a prototypical depletion-type chemical model, which is described as 
follows: 

.

⎧⎪⎨
⎪⎩

∂tu(t, x) = k1∂xxu(t, x) + c1u + d1ρ1(x)
up

vq
+ σ1,

∂tv(t, x) = k2∂xxv(t, x) + c2v + d2ρ2(x)
ur

vs
+ σ2,

(2) 

where the involved parameters are assigned constants, except for the distributions . ρ1
and . ρ2, which instead are assigned functions of the space variable x. It describes the 
interaction between two substances, the activator .u(t, x) and the inhibitor .v(t, x), 
and it is commonly used to explain the underlying complex mechanism for pattern 
formation in nature, describing the interaction of two sources in processes such as 
biological and chemical ones. 

In this chapter, we propose a time-fractional model, generalization of the above 
classical Gierer–Meinhardt model (2), given by the fractional system (1) assuming 
the nonlinear interaction terms as follows: 

.

f (t, x, u, v) = c1u + d1ρ1(x)
up

vq
+ σ1(t, x)

g(t, x, u, v) = c2v + d2ρ2(x)
ur

vs
+ σ2(t, x)

(3) 

according to the source terms involved in the Gierer and Meinhardt model (2), but 
with .σ1(t, x) and .σ2(t, x) arbitrary functions of time and space. We study the math-
ematical model in which the fractional order involves the time derivative. Unlike 
other works (see, for instance, [16–20]) in which models describing space-fractional 
reaction–diffusion equations with anomalous diffusion process are investigated, in 
this work, we focus on a mathematical model in which the fractional order involves 
the time derivative. In particular, we analyze the model when .p = r = 2 and 
.s = q = −1, that when .α = 1 describes a depletion process where the autocatalysis 
is counteracted by the depletion of a substrate of the concentration .v(x, t) required 
for activation .u(t, x). This model was used to describe pigmentation patterns in 
seashells and the ontogeny of ribbing on ammonoid shells [21, 22]. The stability, 
the Hopf bifurcation and the Turing instability by the technique of stability theory, 
normal form theory, and center manifold reduction were carried out in [23, 24]. 

The main aim of this study is to solve the proposed fractional generalized math-
ematical model by applying a procedure that combines the Lie symmetry analysis 
with the numerical methods. It was applied to a wide class of FDES: space-fractional
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advection–diffusion–reaction equations with linear [25] and nonlinear sources terms 
[26], a system of time-fractional advection–diffusion–reaction equations (1) with 
arbitrary nonlinear source terms [27] and two-dimensional time-fractional reaction– 
diffusion equations [28, 29]. 

The authors choose to approach the study of the target model initially by 
considering the Riemann–Liouville derivative since it is widely used in the context 
of the group method. The fractional Lie symmetries are determined by using a 
package of symbolic computing: FracSym on MAPLE platform, an algorithmic that 
automates the method, which is an extension of classical Lie symmetries approach 
to FPDEs [30, 31], of finding symmetries for FPDEs with Riemann–Liouville 
fractional derivative [32, 33]. By using the Lie symmetries, the target system is 
mapped into a system of time-fractional ordinary differential equations, and by 
solving the reduced FODEs, exact and numerical solutions are found. The numerical 
solutions are computed by introducing the Caputo definition fractional derivative 
and by using an implicit classical numerical method. The Caputo definition of 
the fractional derivative allows defining an initial value problem whose the initial 
conditions are given in terms of the field variable and of its integer-order derivatives, 
in agreement with the clear physical meaning of most of the processes arising in the 
real world. 

We want to remark that, in this context, we are not interested in studying the 
stability of the model, or in the effects of diffusion on the stability of equilibrium 
points, or to explore the dynamical behaviors induced by diffusion or the bifurcated 
limit cycle from the bifurcation, topics widely studied in the specialized literature. 
Our aim is to find analytical and numerical solutions of the generalized mathemat-
ical model with fractional derivatives (1)–(3), in order to show the effectiveness of 
the proposed model and of the procedure that reveals to be a good tool for solving a 
wide class of fractional partial differential equations (FPDEs). 

In Sect. 2, we introduce the Lie transformation that reduces the target system into 
time-fractional ordinary differential equations. In Sect. 3, we search for analytical 
solutions for the fractional generalized depletion model. In Sect. 4, by introducing 
the Caputo definition of the fractional derivative and by using an implicit classical 
trapezoidal method, the numerical solutions are found. In Sect. 5, we report 
concluding remarks. 

2 Lie Transformation and FODEs 

Analytical and numerical solutions of the mathematical model are found by 
applying a procedure that combines the Lie symmetry analysis with the numerical 
methods: by using the extension of Lie symmetries approach to FPDEs [30, 31], 
we find the Lie fractional symmetries admitted by the model and, then, Lie 
transformations that map the system of coupled nonlinear TF-RD equations (1) 
into a system of fractional ordinary differential equations (FODEs). By solving the 
reduced FODEs, we obtain solutions of the original model.
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In this section, we present the Lie transformation that maps (1), with the reactions 
(3), into a system of two coupled FODEs. The Lie transformations of the system 
(1) with arbitrary sources terms were recently determined in [27] and assume the 
following form, according to the choice of source terms given by (3) 

.T = t, U = u(t, x)e−a1x, V = v(t, x)e−a2x , (4) 

where . a1 and . a2 are arbitrary constants and 

.
ρ1(x) = e(a1(1−p)+a2q)xρ′

1 σ1(T , x) = ea1xh1(T )

ρ2(x) = e(a2(s+1)−a1r)xρ′
2 σ2(T , x) = ea2xh2(T ),

(5) 

with . ρ′
1 and . ρ′

2 arbitrary constants and .h1 = h1(T ) and .h2 = h2(T ) arbitrary 
functions of their argument. The above transformations lead the source terms to 
assume the following form: 

.

f (t, x, u, v) = c1u + d1e
(a1(1−p)+a2q)x up

vq
+ h1(t)e

a1x,

g(t, x, u, v) = c2v + d2e
(−a1p+a2(q+1))x up

vq
+ h2(t)e

a2x.

(6) 

Note that the functional forms of the distributions, . ρ1 and . ρ2, consistent with ones 
of the classical model of Gierer–Meinhardt [15], and the additional terms, . σ1 and 
. σ2 depending also on variables t and x, lead us to define the target model as a 
generalization of the model studied in [15]. 

When the transformation (4) and the above forms of . ρ1, . ρ2, . σ1, and . σ2 are 
inserted into the system (1) with sources terms given by (3), it is reduced into the 
following system of fractional nonlinear ordinary differential equations: 

. Dα
T U − (c1 + k1a

2
1)U − Up

V q
d1 − h1 = 0. (7) 

Dα 
T V − (c2 + k2a

2 
2)V − 

Ur 

V s 
d2 − h2 = 0 (8) 

setting .ρ′
1 = ρ′

2 = 1. The choice of the arbitrary functions . h1 and . h2 characterizes 
the solutions of the equations (7) and (8) and, then, the class of solutions given by 
(4). 

In order to solve the system (7) and (8), we assume .p = r and .s = q. Multiplying 
(7) by . d2 and (8) by .−d1 and, then, adding the equations, we get the following 
fractional ordinary differential equation (FODE): 

.Dα
T (d2U − d1V ) − (c1 + k1a

2
1)(d2U − d1V ) − (d2h1 − d1h2) = 0, (9)
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where we set .c2 + k2a
2
2 = c1 + k1a

2
1 . Under non-vanishing initial condition 

. lim
T →0

Dα−1
T (d2U(T ) − d1V (T )) = b0, (10) 

the FODE (9) admits the following analytical solution: 

. U(T ) = d1

d2
V + b0

d2
T α−1Eα,α(λT α)

+
∫ T

0
(T − S)α−1Eα,α(λ(T − S)α)(h1 − d1

d2
h2)dS, (11) 

where .λ = c1 + k1a
2
1 . Substituting .U(T ) in (8), we get the following FODE: 

. Dα
T V − λV − d

1−p

2 (12)(
d1V + b0T α−1Eα,α(λT α) + ∫ T

0 (T − S)α−1Eα,α(λ(T − S)α))(h1d2 − h2d1)dS
)p

V q

−h2 = 0,

subject to the non-vanishing initial condition 

. lim
T →0

Dα−1
T V (T ) = V 0. (13) 

By solving the initial values problem (12)–(13), we find the solution .V (T ) and, as 
consequence, by (11) the solution .U(T ) and, finally, by the inverse transformations 
(4) the solutions .u(t, x) and .v(t, x) of the proposed system of FPDEs (1) with source 
terms given by (6) and with the initial conditions 

. lim
t→0

∂α−1
t u(t, x) = b0 − d1V

0

d2
ea1x, lim

t→0
∂α−1
t v(t, x) = V 0ea2x. (14) 

The target model describes a generalized depletion process when .p = 2 and 
.q = −1, and this will be the object of the analysis in the next section. 

3 Analytical Solutions of the Generalized Depletion Model 

In order to find solutions of the generalized depletion model, we choose the 
functions .h1(T ) and .h2(T ) in (12) by setting the parameters .b0 = 0 and .λ = 0
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so that Eq. (12) reads 

.Dα
T V − 1

d2

(
d1V + 1

�(α)

∫ T

0
(T − S)α−1(h1d2 − h2d1)dS

)2

V − h2 = 0.(15) 

We set 

. h1(T ) = d1

d2
h2(T ) − h0(T )

d2
,

with .h0(T ) arbitrary function of T , and we obtain 

.Dα
T V − 1

d2

(
d1V − 1

�(α)

∫ T

0
(T − S)α−1h0(S)dS

)2

V − h2 = 0. (16) 

The involved arbitrary function .h2(T ) is assigned in such a way that the FODE (16) 
admits analytical solutions for .α = 1. 

1. We set 

. h2(T ) = Be−AT

(
(1 − AT ) − t

d2

(
d1BT e−AT − 1

�(α)

∫ T

0
(T − S)α−1h0(S)dS

)2)
(17) 

with A and B arbitrary constants. With the above choice of the function . h2(T )

and when .α = 1, we get the following exact solution; 

. V (T ) = BT e−AT ,

and substituting it in (11) we obtain 

. U(T ) = 1

d2

(
d1BT e−AT −

∫ T

0
h0(S)dS

)
.

By means of the inverse transformations (4), we get the exact solution of the 
generalized depletion Gierer–Meinhardt model 

. u(t, x) = ea1x
1

d2

(
d1Bte−At −

∫ t

0
h0(s)ds

)
,

v(t, x) = ea2xBte−At .
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2. We set 

. h2(T ) = A

cosh2(T )
+ 1

d2
(B + A tanh(T ))

(
d1(B + A tanh(T )) − 1

�(α)

∫ T

0
(T − S)α−1h0(S)dS

)2

. (18) 

By the above choice of function . h2 and when .α = 1, we get the following exact 
solution: 

. V (T ) = B + A tanh(T ),

and substituting it in (11), we obtain 

. U(T ) = 1

d2

(
d1(B + A tanh(T )) −

∫ T

0
h0(S)dS

)
.

By means of the inverse transformations (4), we get the exact solution of the 
generalized depletion Gierer–Meinhardt model 

. u(t, x) = ea1x
1

d2

(
d1(B + A tanh(t)) −

∫ t

0
h0(s)ds

)
,

v(t, x) = ea2x(B + A tanh(t)).

In the next section, starting from the expressions of .h1(T ) and .h2(T ) reported in 
the above examples, and setting .h0(T ), we get numerical solutions of the fractional 
generalized depletion model. 

4 Numerical Method and Solutions 

In this section, we find the numerical solutions of the system of FPDEs (1) computed 
by solving the FODE (16), obtained in the above section by a suitable choice of the 
involved parameters and functions and where the function .h2(T ) is given by (17) 
or (18). Computed the numerical solution .V (T ), we obtain the numerical solution 
.U(T ) by (11) and then the solutions .u(t, x) and .v(t, x) of the target model (1) by  
the inverse transformations by (4). 

We introduce the .α-order Caputo fractional derivative of the solution . V (T )

.
CDα

T V (T ) = 1

�(1 − α)

∫ T

0
(T − S)−αV ′(S)dS
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and its connection with the .α-order Riemann–Liouville fractional derivative [1] 

. 
CDα

T V (T ) = Dα
T (V (T ) − V (0)) ,

with .V (0) initial condition. In terms of the Caputo derivative, the following 
fractional initial value problem (FIVP) is obtained: 

. 
CDα

T V (T ) = F(T , V ), 0 < α < 1 (19)

V (0) = V 0,

where 

. F(T , V ) = − V 0

�(1 − α)T α
+ 1

d2

(
d1V − 1

�(α)

∫ T

0
(T − S)α−1h0(S)dS

)2

V + h2

and 

.h0(T ) = h

(1 + T 2)1.5
(20) 

with h arbitrary constant. We remark that the Caputo definition of the fractional 
derivative allows defining an FIVP whose the initial conditions are given in terms 
of the field variable and of its integer-order derivatives, in agreement with the clear 
physical meaning of most of the processes arising in the real world. 

In order to numerically solve the FIVP (19), we propose the classical implicit 
trapezoidal method (PI. 2 Im), an efficient numerical method used for its good 
stability and accuracy properties [4, 34], numerical results by multi-steps methods 
are presented in [18]. We build a computational uniform mesh of .N + 1 grid points 
denoted by . T n, with .T n = T 0 +n�T and integration step sizes .�T and N positive 
integer. We denote by .Un the numerical approximation provided by the numerical 
method of the exact solution .U(T n) at the mesh points . T n, for .n = 0, · · · , N . The  
numerical method reads 

.V n+1 = V 0 + 1

�(α)

(
β0F(T 0, V 0) +

n+1∑
k=1

βkF (T k, V k)

)
, (21) 

where the coefficient values . βk , for .k = 0, · · · , n + 1, are computed as follows: 

.β0 = 1

α(α + 1)

(T n+1)α((T 1 − T 0)(α + 1) − T n+1) + (T n+1 − T 1)α+1

T 1 − T 0 ,

βk = 1

α(α + 1)
× k = 1, · · · , n,
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×
(

(T n+1 − T k−1)α+1 − (T n+1 − T k )α+1 

T k − T k−1 

− (T n+1 − T k )α+1 − (T n+1 − T k+1)α+1 

T k+1 − T k

)
, 

βn+1 = 1 

α(α + 1) 
(T n+1 − T n )α . 

The convergence order of the scheme is .O((�T )min(1+α,2)). Note that the conver-
gence order of the trapezoidal method usually is .1+α when .0 < α < 1. Only when 
.α > 1 or when the solution is sufficiently smooth, we obtain the reached order 2 
[34]. In general, the numerical method (21) leads to obtain a nonlinear equation at 
each step for whose resolution a root-finding solver is needed. The classical Newton 
method is proposed. 

In the following, we report two test problems characterized by the function 
.h2(T ), given by (17) or (18). Different simulation parameters, involved functions, 
and . α parameter values are considered as the input features of the model under study. 
The exact solutions for .α = 1, reported in Sect. 3, are considered as reference ones 
for testing qualitative behavior of the numerical solutions of the models for values 
of the . α parameter increasing toward 1. All numerical simulations are performed on 
Intel Core i7 by using Matlab 2020 software. 

Example 1 In this example, we consider the FIVP (19) with .V 0 = 0 and 

. h2(T ) = Be−AT

(
(1 − AT ) − T

d2

(
d1BT e−AT − 1

�(α)

∫ T

0

h(T − S)α−1

(1 + S2)1.5
dS

)2)
.

For .α = 1, the analytical solution .V (T ) is given by 

.V (T ) = BT e−AT , (22) 

and then, we are able to compute the analytical solution . U(T )

.U(T ) = 1

d2

(
d1BT e−AT − hT√

1 + T 2

)
. (23) 

We choose a computational domain .[0, Tmax] with .Tmax = 10 and .N = 100 grid 
points and set the parameters values as follows: .d1 = 0.00016, .d2 = −0.00048, 
.A = 2, .B = 0.02, and .h = 0.0001. We remark that, in this example, the parameters 
values are chosen according to the values by Gierer and Meinhardt reported in [15], 
values ensuring that the model is a well-posed one, with the aim to validate our 
numerical results obtained by the proposed procedure. 

In Fig. 1, we report the numerical results obtained for different values of the . α
parameter: in the left frame, the numerical solution . V n obtained by solving the FIVP
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Fig. 1 Numerical solutions for different values of . α. Left frame: numerical solution .V n of the 
FIVP (19). Right frame: numerical solution .Un computed by (11) 

(19) by using the PI. 2 Im numerical method, and in the right frame, the numerical 
solution .Un computed by means of (11) by the suitable substitution of the involved 
functions and parameters 

. Un = 1

d2

(
d1V

n − T 3F2([0.5, 1, 1.5]; [(1 + α)/2, 1 + α/2] ;−(T n)2)
)

and given in terms of the generalized hypergeometric function .pFq(a; b; z) of order 
.p, q defined as follows: 

. pFq(a; b; z) = pFq([a1, a2, . . . , ap]; [b1, b2, . . . , bq ]; z)

=
∞∑

n=0

(
(a1)n, (a2)n, . . . , (ap)n

(b1)n, (b2)n, . . . , (bq)n

) (
z2

n!
)

with .a = [a1, a2, . . . , ap] and .b = [b1, b2, . . . , bq ] vectors of lengths p and 
q, respectively. .(a)k and .(b)k represent the Pochhammer symbols defined in the 
following way: 

. (w)m = �(w + m)

�(w)
.

The red dot points represent the exact solutions .V (T ), given by (22), and .U(T ), 
given by (23), of the model with .α = 1. They are reported in order to test the 
qualitative behavior of the numerical solutions as the . α parameter increases toward 
1. The solutions reveal very different behavior: both start from the value 0, and 
both increase at the beginning of the integration process. After, as time evolves, 
the solution .U(T ) increases and converges to a constant state. The solution . V (T )

decreases and converges to zero. Note that, as the value of . α increases, for . T < 1
both solutions decrease and, then, for .T > 1 increase. The qualitative behavior of
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Fig. 2 Numerical solutions of the system of FPDE (1) for .α = 0.5. Left frame: numerical solution 
. vn

j . Right frame: numerical solution . un
j

the solutions is in agreement with one of the classical depletion models. This means 
that the proposed mathematical model can represent a good generalization of the 
classical model. 

In Fig. 2, we report the numerical solutions . un
j and . vn

j , approximations of the 
exact solutions obtained by the inverse transformations (4) 

. u(t, x) = U(t)ea1x, v(t, x) = V (t)ea2x,

solutions of the model (1) integrated with the initial and boundary conditions 
obtained by (14) with .V 0 = 0 and .b0 = 0 and computed for . α = 0.5. In this  
contest, the source terms assume the following form: 

. f (t, x, u, v) = c1u + d1e
−(a1+a2)xuv2 + h1e

a1x,

g(t, x, u, v) = c2v + d2e
−2a1xuv2 + h2e

a2x.

The parameters are chosen in the following way: .a1 = −√−c1/k1, . a2 =
−√−c2/k2 with .k1 = 10−3, .k2 = 0.45, and .c1 = c2 = −0.0025. The  
computational domain is given by .[0, Tmax] × [0, Xmax] with .Tmax = 10, . Xmax =
10, and .N = J = 100 grid points. 

Example 2 In this example, we consider the FIVP (19) with .V 0 = 0 and 

. h2(T ) = A

cosh2(T )
+ 1

d2
(B + A tanh(T ))

(
d1(B + A tanh(T )) − 1

�(α)

∫ T

0

h(T − S)α−1

(1 + S2)1.5 dS

)2

.

For .α = 1, the analytical solution of the FIVP is given by 

.V (T ) = B + A tanh(T ), (24)
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Fig. 3 Numerical solutions for different values of . α. Left frame: Numerical solution .V n of the 
FIVP (19). Right frame: Numerical solution .Un computed by (11) 

and then, we are able to compute the analytical solution . U(T )

.U(T ) = 1

d2

(
B + A tanh(T ) − hT√

1 + T 2

)
. (25) 

We set the parameters values as follows: .d1 = 0.1, .d2 = 1, .A = −0.5, . B =
0, and .h = 0.25. We choose a computational domain .[0, Tmax] with . Tmax = 10
and .N = 100 grid points. In Fig. 3, we report the numerical results obtained for 
different values of the . α parameter: in the left frame, the numerical solution . V n

obtained by solving the FIVP (19) by using the PI. 2 Im numerical method; in the 
right frame, the numerical solution .Un computed by means of (11) in terms of the 
generalized hypergeometric function. The red dot points represent the exact solution 
.V (T ), given by (24), and the exact solution .U(T ), given by (25), of the model with 
.α = 1. In this case, the solutions reveal very similar behavior: both start from the 
value 0, and both increase at the beginning of the integration process. After, as time 
evolves, both decrease and converge to a constant state. Note that, as the value of 
. α increases, for .T < 1 both solutions decrease and, then, for .T > 1 increase. 
The qualitative behavior of the solutions is in agreement with the choice of the 
distributions which are both positive functions of . x; in fact, the parameters . d1 and 
. d2 agree in the sign. 

In Fig. 4, we report the numerical solutions . un
j and . vn

j , approximations of the 
exact solutions obtained by the inverse transformations (4). The source terms 
are assigned as before. The parameters are chosen in the following way: . a1 =
−√−c1/k1, .a2 = −√−c2/k2 with .k1 = 1, .k2 = 10, and .c1 = c2 = −0.2. 
The computational domain is given by .[0, Tmax] × [0, Xmax] with .Tmax = 10, 
.Xmax = 10 and .N = J = 100 grid points.
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Fig. 4 Numerical solutions of the system of FPDE (1) for .α = 0.5. Left frame: numerical solution 
. vn

j . Right frame: numerical solution . un
j

5 Concluding Remarks 

In this study, analytical and numerical solutions for the generalized Gierer– 
Meinhardt fractional model are presented. We propose a mathematical model 
governed by a system of two time-fractional diffusion–reaction equations describing 
the interaction between two chemical substances, commonly used to explain the 
underlying complex mechanism for pattern formation in nature. The numerical 
results, obtained by applying the procedure that combines the Lie symmetry analysis 
with the trapezoidal numerical method, reveal the effectiveness of the proposed 
model. Moreover, it is important to note that some analytical solutions of the 
generalized Gierer–Meinhardt model of integer order are found for a suitable choice 
of the involved parameters and functions. The topic of the next study is the spatial-
fractional reaction–diffusion equations with an anomalous diffusion process that 
occurs in spatially inhomogeneous media. 

Acknowledgments A. J. is a member of GNCS-INdAM Research Group. M.P. S. is a member of 
GNFM-INdAM Research Group. 
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A Convolution-Based Method for an 
Integro-Differential Equation in 
Mechanics 

Sabrina Francesca Pellegrino 

Abstract Peridynamics is a second order in time partial integro-differential equa-
tion introduced to study elastodynamic problems in the nonlocal framework. In 
this chapter, we focus on the nonlinear problem in both a two-dimensional and 
a one-dimensional spatial domain. We consider a spectral method based on the 
Fourier polynomials for the space discretization and make both an analytical and 
a numerical comparison between the Störmer–Verlet and the Newmark-. β methods 
for time marching. A volume penalization technique is also proposed to overcome 
the limitation of periodic boundary condition related to the implementation of the 
Fourier expansion. We prove the convergence and the stability of the fully discrete 
linear problem. We perform some simulations to validate our results. 

1 Introduction 

Studying fracture problems is a difficult issue as classical theory of continuum 
mechanics is not able to model cracks and defects since partial derivatives do not 
exist on discontinuities. A strategy to treat such issue is to move in the framework 
of nonlocal theory where transmission conditions at crack boundaries are implicitly 
included in the equations (see for instance [3, 6, 8, 12, 23]). In particular, in [26], 
Silling introduces a nonlocal theory, called peridynamics, to treat discontinuous 
problems without using partial derivatives. The peridynamic equation consists in 
a second order in time partial integro-differential equation, where the unknown 
is the displacement field. The model describes the interactions between material 
particles, which distance each other less than a critical value .δ > 0 called horizon 
(see [9, 15, 28]). 
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Let .[0, T ] be the time interval and .� ⊂ R
2 be the spatial domain; then the 

peridynamic equation is given by 

.ρ∂2
t t u(x, t) =

∫
�∩Bδ(x)

f (x′ − x, u(x′, t) − u(x, t))dx′, (1) 

with initial conditions 

.u(x, 0) = u0(x), ∂tu(x, 0) = v0(x), x ∈ �, (2) 

where . u is the displacement field, . ρ is the mass density, . b collects all the external 
forces acting on the material body, and .Bδ(x) = {x′ ∈ R

2 : ‖x − x′‖ ≤ δ}. The  
integrand f is a response function that describes the interaction force among two 
material particles and is called pairwise force function. 

The horizon . δ can be thought as a measure of the nonlocality of the problem; 
indeed, peridynamic theory converges to the classical one when . δ approaches zero 
(see [10]). 

In this chapter, we study the nonlinear problem in two spatial dimensions where 
the pairwise force function is of convolution type in separable form 

.f (ξ, η) = C(ξ)w(η), (3) 

with 

.w(η) = ηr, r odd, r ≥ 1, (4) 

where the variables . ξ and . η represent, respectively, the relative position of two 
points and their relative displacement: 

. ξ = x′ − x, η = u(x′, t) − u(x, t).

Moreover, in (3), the function C is a non-negative even function, i.e., . C(−ξ) =
C(ξ), called micromodulus function and . w is an odd function satisfying the 
Lipschitz property: 

. |w(η′) − w(η)| ≤ 	(ξ)|η′ − η|,

for some non-negative function .	 ∈ L1(Bδ(0))∩L∞(Bδ(0)) such that for all .ξ ∈ R
2, 

with .|ξ | ≤ δ and for every . η, . η′. 
We define the nonlinear peridynamic operator of (1) as 

. L(u(x, t)) =
∫

�∩Bδ(x)

C(x′ − x)
(
u(x′, t) − u(x, t)

)r
dx′, x ∈ �, 0 ≤ t ≤ T .

(5)
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Hence, the peridynamic model becomes 

.

{
ρutt (x, t) = L(u(x, t)) + b(x, t), x ∈ �, t ∈ [0, T ],
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ �,

(6) 

where .v(x, t) = ut (x, t). 
The choice of w in the form given by (4) is due to the fact that this kind of 

nonlinearity is correlated to the definition of a fractional derivative (see [5, 13, 
19, 20]). This aspect and the definition of the pairwise force function f allow 
us to exploit the properties of the convolution product, so that, as we will see 
below, the implementation of the Fourier spectral method would transform the 
convolution product in the physical space into a multiplication in the frequency 
space. As a consequence, we can obtain a reduction of the total computational cost. 
Additionally, in this setting, the well-posedness holds (see [5, 11]). We can also 
notice that when .r = 1, we find the linear case analyzed in [7, 24]. 

The spatial discretization of (6) is usually based on the implementation of 
quadrature formula, finite element methods, and meshfree methods (see [1, 2, 7, 24, 
25, 27]). Even spectral techniques based on the Fourier trigonometric polynomials 
are suitable in peridynamic setting, as they exploit the convolution properties of the 
peridynamic operator . L, so they are able to reduce the computational cost by using 
the fast Fourier transform (see [7, 16–20]). However, the Fourier spectral method 
requires the assumption of periodic boundary condition. This restriction can be 
removed in different ways: for instance, by substituting the Fourier polynomials by 
the Chebyshev ones (see [21, 22]), or otherwise, by associating the spectral method 
to a volume penalization technique (see [16, 19, 20]). 

On the other hand, both explicit and implicit methods can be applied to integrate 
in time the model. Here, we focus on the Störmer–Verlet method and the Newmark-
. β method. Both the methods are of the second order: the first one is an explicit 
scheme often used in the wave propagation context, while the second one depends 
on a parameter . β that takes into account the acceleration of the system, is implicit 
and unconditionally stable in time for .β ∈ [1/4, 1/2]. 

In this chapter, we summarize an approach for the spatial discretization of the 
model based on the Fourier spectral method proposed in [19, 20]. We work on spatial 
domain of the form .� = [a, b] × [a, b] and consider a Fourier spectral method 
with a volume penalization technique for the spatial discretization, and we make a 
comparison between the Störmer–Verlet and the Newmark-. β scheme. An extension 
to more general two-dimensional domains is possible following the results presented 
in [4, 14]. 

This chapter is organized as follows. In Sect. 2, we discretize the peridynamic 
model (6) by means of the Fourier polynomials, and we prove the convergence of 
the semi-discrete scheme. Section 3 describes the volume penalization technique. 
In Sect. 4, we present the Störmer–Verlet and the Newmark-. β methods, and we 
show the convergence and the stability of the fully discrete scheme based on the



110 S. F. Pellegrino

Newmark-. β method for the linear peridynamic problem. Section 5 is devoted to the 
simulations, and finally, Sect. 6 concludes the paper. 

2 Fourier Semi-Discretization of the Problem 

The spectral discretization of the problem (6) is based on the use of the Fourier 
trigonometric polynomials and requires the assumption of periodic solution. 

Let .δ > 0 be the horizon and .
x > 0 be the space step in both directions. We 
discretize the spatial domain .� = [a, b] × [a, b] by the collocation points . xn =(
xn1 , xn2

) ∈ �, with .n = (n1, n2), such that 

. xn1 = a + n1
x, xn2 = a + n2
x, for n1, n2 ∈ {0, . . . , N},

where .N = ⌊
b−a

x

⌋
. 

The definition of periodic convolution product allows us to rewrite the peridy-
namic operator (5) as 

.L (u(x, t)) =(C ∗� ur)(x, t) +
r−1∑
	=1

(
r

	

)
(−1)	u	(x, t)

(
C ∗� ur−	

)
(x, t) (7) 

− γ ur (x, t) + b(x, t), x ∈ �, t ∈ [0, T ], 

where .γ = ∫ +∞
−∞

∫ +∞
−∞ C(x) dx. 

We approximate .u(x, t) by the Fourier trigonometric polynomials . uN(x, t)

.uN(x, t) = uN(x1, x2, t) =
∑

k1≤N

∑
k2≤N

ũ(k1, k2, t)e
�(k1x1+k2x2), (8) 

where .x = (x1, x2) ∈ �, .t ∈ [0, T ], . � denotes the imaginary unit .� = √−1, and 
.ũ(k1, k2, t) for every .k = (k1, k2) represents the discrete 2D Fourier transform 

. ̃u(k1, k2, t) = 1

(N + 1)2ck1ck2

N∑
n1=0

N∑
n2=0

uN(xn1 , xn2 , t)e
−�(k1xn1 +k2xn2 ), t ∈ [0, T ],

(9) 

with 

.cki
=

{
2, if ki = ±N,

1, otherwise,
i = 1, 2.
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We substitute .u(x, t) in (6) by .uN(x, t) defined in (8). Then, since in the 
expression of the peridynamic operator . L in (7) a convolution product appears, we 
can use the convolution theorem to approximate the model (6) at . xn by the Fourier 
collocation method: 

. ρ∂2
t t u

N
n (t) =

(
Cn ∗� (uN

n )r
)

(t) +
r−1∑
	=1

(
r

	

)
(−1)	(uN

n )	(t)
(
Cn ∗� (uN

n )r−	
)

(t) (10)

− γ (uN
n )r (t) + bN

n (t),

=
(
F−1

N

(
FN(C)FN

(
(uN

n )r
)

(
x)2
))

+
(

r−1∑
	=1

(
r

	

)
(−1)	F−1

N

(
FN

(
(uN

n )	
)

∗�

(
FN(C)FN

(
(uN

n )r−	
)

(
x)2
)))

− γ (uN
n )r + bN

n ,

where .FN and .F−1
N denote the 2D discrete Fourier transform and the 2D inverse 

discrete Fourier transform, respectively. Additionally, .uN
n (t) = uN(xn, t), . Cn(t) =

C(xn, t), for .n = (n1, n2), with .n1, n2 ∈ {0, . . . , N}, .t ∈ [0, T ], and so on, and 

. u0(xn) =
∑

|k|≤N

ũ0,ke
�k·xn .

We denote by .LN the discrete counterpart of the peridynamic operator . L: 

. LN(uN
n )(t) =

(
F−1

N

(
FN(C)FN

(
(uN

n )r
)

(
x)2
))

(11)

+
(

r−1∑
	=1

(
r

	

)
(−1)	F−1

N

(
FN

(
(uN

n )	
)

∗�

(
FN(C)FN

(
(uN

n )r−	
)

(
x)2
)))

− γ (uN
n )r ,

for .n = (n1, n2), with . n1, .n2 ∈ {0, . . . , N}. 
Then, the spectral semi-discrete method (10) becomes 

. 

{
ρ∂2

t t u
N
n (t) = LN(uN

n )(t) + bN
n (t),

uN
n (0) = un,0, vN

n (0) = vn,0,
t ∈ [0, T ],

n = (n1, n2), with n1, n2 ∈ {0, . . . , N}, (12) 

where .un,0 = u0(xn) and .vn,0 = v0(xn).
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Remark 1 Using the same argument as before, one can find the spectral semi-
discretization in the one-dimensional case: 

. 
d2

dt2
uN
n =

(
F−1

N

(
FN(C)FN

(
(uN

n )r
)


x
))

(13)

+
⎛
⎝r−1∑

	=1

(
r

	

)
(−1)	F−1

N

(
FN

(
(uN

n )	
)

∗�

(
FN(C)FN

(
(uN

n )r−	
)


x
))⎞

⎠

− γ (uN
n )r + bN

n ,

with initial condition 

. uN
n (0) = u0(xn) =

N∑
k=−N

ũ0,ke
�kxn, vN

n (0) = v0(xn) =
N∑

k=−N

ṽ0,ke
�kxn

for .n ∈ {0, . . . , N}. Here, with abuse of notation, .FN and .F−1
N represent the 

1D discrete Fourier transform and the 1D inverse discrete Fourier transform, 
respectively. 

In order to reduce the computational cost associated to the evaluation of the 
discrete peridynamic operator . LN , we use the fast Fourier transform (FFT) to 
compute the discrete Fourier transform . FN . 

Now, we show the convergence of the semi-discrete scheme (12) proved in [19]. 
While to apply the method to more general problems with non-periodic boundary 
conditions, volume penalization techniques can be exploited as shown in Sect. 3. 

Theorem 1 Let .u(x, t) ∈ Xs = C1
(
Hs

p(�); [0, T ]
)
, .s ≥ 1, be the solution of the 

problem (6) with periodic boundary conditions and initial condition . u0, .v ∈ Hs
p(�). 

Let .uN(x, t) be the solution of the semi-discrete scheme (12). Assume that . C ∈
L∞(�); then, for every .T > 0, there exists a constant .M = M(T ), independent of 
N , such that 

.

∥∥∥u − uN
∥∥∥

X1
≤ M(T ) (
x)s−1 ‖u‖Xs

. (14) 

The proof consists in considering a reformulation of the problem in the frequency 
space thanks to the introduction of the projection operator .PN defined as follows: 

.PNu(x) =
N∑

k1=−N

N∑
k2=−N

ũke
�(k1x1+k2x2).
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3 Volume Penalization Technique 

Spectral methods based on Fourier polynomials require the assumption of periodic 
solution. A way to overcome such limitation is using a volume penalization 
technique. It consists in extending the computational domain . � to a fictitious 
domain V by adding a constrained domain . � such that 

. V = � ∪ �.

We ask that the solution is periodic on the extended domain V , and we penalize the 
solution on . � thanks to the introduction of a penalization factor. 

More precisely, let .ε > 0 be the penalization factor and . uε be the periodic 
solution on V , satisfying the local Dirichlet boundary condition 

. uε(·, t)
∣∣
∂�

= ubc,

for a given value . ubc; then the points on the constrained domain . � satisfy 

. u(·, t)∣∣
�
= u�(x, t) = 2ubc − u(2x∗ − x, t), x∗ ∈ ∂�, x ∈ �,

where . x∗ is such that its distance from .2x∗ − x is the shortest for every .x ∈ �. 
The Fourier spectral method with volume penalization technique is the following: 

. ρ
d2

dt2
uN
ε,n =F−1

N

(
FN(C)FN

(
(uN

ε,n)r
)

(
x)2
)

(15)

+
r−1∑
	=1

(
r

	

)
(−1)	F−1

N

(
FN

(
(uN

ε,n)	 ∗�

(
FN(C)FN

(
uN
ε,n

)r−	
)

(
x)2
))

− γ
(
uN
ε,n

)r + bN
n − χn

ε

(
uN
ε,n − (u�)Nε,n

)
,

for 

. χn =
{

1, if xn ∈ �,

0, if xn ∈ �,

and .uN
ε,n = uN

ε (xn, t), .n ∈ {−N, . . . , N}. 

4 The Fully Discrete Problem 

In this section, we present the time discretization of the semi-discrete system (12) 
by means of the Störmer–Verlet method and Newmark-. β methods.
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Let .
t > 0 be the time step. We fix a partition of the time interval .[0, T ] by 
means of .ts = s
t , for .s = 0, . . . , ST , where .ST = ⌊

T

t

⌋
. We define .(us

N , vs
N) as 

the numerical approximation of .(uN(·, ts), vN(·, ts)). For the sake of simplicity, we 
assume the absence of external forces, namely .b ≡ 0. 

4.1 Störmer–Verlet Scheme 

Störmer–Verlet method is a symplectic, second-order explicit scheme: 

.

⎧⎪⎪⎨
⎪⎪⎩

us+1
N = us

N + 
t
(
vs
N + 
t

2ρ
LN(us

N)
)

,

vs+1
N = vs

N + 
t
2ρ

(
LN(us

N) + LN(us+1
N )

)
,

u0
N = un,0, v0

N = vn,0,

(16) 

for .s = 0, . . . , ST . A similar scheme is used for the method with volume 
penalization defined in (15). In [7], the authors make a von Neumann analysis to 
study the stability of such scheme. 

4.2 Newmark-β Method 

This is a symplectic second-order scheme implicit for .β ∈ (0, 1/2]: 

.

⎧⎪⎪⎨
⎪⎪⎩

us+1
N = us

N + 
tvs
N + (
t)2

((
1
2 − β

)
LN(us

N) + βLN(us+1
N )

)
,

vs+1
N = vs

N + 
t
2

(
LN(us

N) + LN(us+1
N )

)
,

u0
N = un,0, v0

N = vn,0.

(17) 

We notice that the method coincides with the Störmer–Verlet scheme when . β =
0. Additionally, it is unconditionally stable for .β ∈ [1/4, 1/2]. 

In [19], the authors prove the convergence of the sequence defined by the 
Newmark-. β method in (17) to the exact solution of the problem (12) in the case 
in which the integral operator . L and its discrete approximation .LN are linear. 

Theorem 2 Let .1/4 ≤ β ≤ 1/2. If  .u ∈ C3
(
[0, T ],H 2

p(V )
)
is the solution of the 

problem (6) with initial condition . u0, .v0 ∈ H 2
p(V ), and if .{us

N }ST

s=0 is the sequence 
generated by the method (17). Then 

. 
∥∥u(ts) − us

N

∥∥
H 2

p(V )
≤ M (
x)2

(
‖u0‖H 2

p(V ) + ‖ut‖L1(0,ts ,H 2
p(V ))

)
+ M (
t)2 ,

(18) 

where .M > 0 is a constant depending on the regularity of u.



A Convolution-Based Method for an Integro-Differential Equation in Mechanics 115

In the linear case, in [19], a stability result for the Newmark-. β method is also 
achieved. 

Theorem 3 Let .1/4 ≤ β ≤ 1/2. If  .{us
N }ST

s=0 = {uN(ts)}ST

s=0 is the sequence 
generated by the method (17), then there exist two positive constants .M0 and . M1
such that 

. ‖uN(ts)‖H 2
p(V ) ≤ M1 + M0ts , ts ∈ [0, T ]. (19) 

5 Numerical Simulations 

In this section, we present several simulations to confirm our results both in the 
two-dimensional and in the one-dimensional case. 

5.1 Simulations on a 2D Lamina 

Let a thin lamina in the spatial domain .[0, 1] × [0, 1] be discretized by a bi-
dimensional grid having the same space step .
x = 0.01 on both directions. We 
assume that the lamina is subjected to the uniform initial displacement . u0(x1, x2) =
−0.5x1 − 0.5x2, and we fix .δ = 0.2 as horizon. 

As micromodulus function, we take .C(x1, x2) = exp (−x2
1 − x2

2), and we choose 
.w(η) = ηr , with .r = 3. Moreover, we assume that .b(x, t) ≡ 0, and the mass density 
of the body is .ρ = 1. Additionally, we take .β = 1/4 for the implementation of the 
Newmark-. β method. 

We compute the numerical solution by using the Fourier spectral method with 
volume penalization defined in (15). 

Figure 1 shows the dynamic of the solution in the spatial domain as time evolves. 
To evaluate the convergence of the fully discrete scheme, we introduce the relative 
error in the discrete .L2(�) norm at time t : 

. Et
L2 =

∑N
n=0 |uN(xn, t) − u∗(xn, t)|2∑N

n=0 |uN(xn, t)|2
,

where . u∗ is the reference solution for the problem. 
Table 1 depicts the error .Et

L2 between the exact solution and the numerical one 
with respect to the space step .
x for a fixed value of time. 

Using the same setting, we make a comparison with the Störmer–Verlet method 
and the Newmark-. β method in terms of . L2 error with respect to the time step and in 
terms of CPU execution time. Table 2 shows that the Newmark-. β method provides 
the same accuracy of the Störmer–Verlet scheme using a larger time step, while
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Fig. 1 With reference to Sect. 5.1, the solution at time .t = 5 and .t = 7.5. The parameters for the 
simulation are .δ = 0.2, .
x = 10−2, and . 
t = 10−4

Table 1 With reference to 
Sect. 5.1, the relative . L2 error 
corresponding to the spectral 
method with volume 
penalization at time .t = 5 as 
a function of the space step, 
for . 
t = 10−4

.
x .Et
L2 Convergence rate 

0.2 .7.8142 × 10−1 − 
0.1 .1.2049 × 10−1 2.6972 

0.05 .2.5370 × 10−2 2.4725 

0.025 .6.1826 × 10−3 2.3193 

0.01 .8.2514 × 10−4 2.2570 

Table 2 With reference to 
Sect. 5.1, the relative .L2-error 
at time .ts = 5 as function of 
the time step, for . 
x = 0.01

. E
ts
L2

.
t Newmark-.β Störmer-Verlet 

0.1 .4.6812 × 10−6 . 5.1511 × 10−4

0.05 .2.9276 × 10−7 . 3.4650 × 10−5

0.01 .4.6629 × 10−9 . 3.4634 × 10−5

0.005 .2.8706 × 10−10 . 3.0868 × 10−6

0.001 .2.6360 × 10−12 . 2.3476 × 10−7

Table 3 With reference to 
Sect. 5.1, the execution time 
of the Newmark-. β method 
and the Störmer-Verlet 
method as function of the 
time step, for . 
x = 0.01

CPU time [s] 

.
t Newmark-.β Störmer-Verlet 

0.5 .9.8208 × 100 . 2.2801 × 100

0.1 .3.0492 × 102 . 5.7025 × 101

0.05 .7.8184 × 102 . 2.1405 × 102

0.01 .2.1945 × 104 . 6.5321 × 103

0.005 .9.8574 × 104 . 3.6108 × 104

Table 3 shows the CPU execution time for both methods. We can state that the 
Störmer–Verlet method is more efficient, even if Newmark-. β method seems very 
competitive as it gains at least two orders of accuracy in terms of error.
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Fig. 2 With reference to Sect. 5.2. Left panel: Comparison between the exact solution with the 
numerical solution obtained by the spectral method with volume penalization at time . t = 1. The  
parameters for the computed solution are .δ = 0.5, .ε = 0.5, .N = 6284, .
x = 10−3 and . 
t =
10−4. Right panel: the relative . L2 error .Et

L2 by varying N , using the semilogy scale 

5.2 Simulations on a 1D Bar 

Let .[−2.5, 2.5] be the spatial domain under consideration, and we discretize it by a 
uniform meshgrid with .N = 6284 collocation points. We choose . u0(x) = exp(−x2)

as initial condition, and we fix .δ = 0.5 as horizon. 
As micromodulus function, we take .C(x) = exp (−x2), and we choose . w(η) =

ηr , with .r = 3. Moreover, we assume that .b(x, t) ≡ 0, and the mass density of the 
body is . ρ = 1. Again, we take .β = 1/4 for the implementation of the Newmark-. β
method. 

In the left panel of Fig. 2, we plot a comparison between the exact solution 
and the numerical one computed by means of the spectral method with volume 
penalization at times .t = 1 and .t = 2.5. We observe a good agreement with 
the reference solution for this non-periodic problem. In the right, we show the 
decreasing behavior of the relative . L2 error as a function of the total number of 
collocation points N for .t = 1. 

In Fig. 3, we also perform a convergence analysis of the semi-discretization 
problem with respect to the penalization factor . ε showing that the penalization 
term in (15) decreases as a function of . 1/ε. For the simulation, we use the same 
parameters and setting as before. 

6 Conclusions 

In this chapter, we propose a discretization of the peridynamic model in both 
one- and two-dimensional domains based on the spectral Fourier polynomials with
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Fig. 3 With reference to Sect. 5.2, a convergence analysis with respect to the penalization factor . ε

a volume penalization technique for the spatial domain and the implementation 
of the Störmer–Verlet method and Newmark-. β methods for the time marching. 
The volume penalization is required in order to avoid the assumption of periodic 
solution. We show a convergence result for the semi-discrete problem and for the 
fully discrete linear problem. A stability result for the Newmark-. β method is also 
provided. 

Simulations show that spectral techniques are very accurate in the peridynamic 
framework and that a good accuracy can be reached by using the Newmark-. β
method. 
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A MATLAB Code for Fractional 
Differential Equations Based on 
Two-Step Spline Collocation Methods 

Angelamaria Cardone, Dajana Conte, and Beatrice Paternoster 

Abstract We illustrate a MATLAB implementation of two-step spline collocation 
methods for the numerical solution of fractional differential equations, introduced 
by Cardone, Conte and Paternoster in (Discrete Dyn. Syst. Ser. B 23(7) 2709– 
2725 (2018)). The computational tasks include the evaluation of fractional integrals, 
a suitable starting procedure, and the efficient computation of the coefficients of 
certain polynomials. The whole algorithm is described in detail. Some numerical 
experiments show the performances of the proposed algorithm. 

1 Introduction 

A considerable and increasing number of problems are modeled by fractional differ-
ential equation (FDE), e.g., the behavior of viscoelastic materials [40], anomalous 
diffusion [22, 29], signal processing [51], and financial processes [49]. However, 
the analytical solution of FDEs is usually not available and numerical methods 
must be employed. The literature on numerical methods for FDEs and FPDEs is 
rich and covers a wide range of approaches, for example, Adomain decomposition 
methods [20], methods based on block-pulse functions [39], methods based on the 
Grünwald–Letnikov formula [41, 50], wavelet-based methods [35], methods that 
use the short-memory principle [3, 24], collocation methods [12, 38, 43–45, 55], 
and spectral methods [7, 54]. 

Applied sciences need accurate, reliable, and easy-to-use mathematical software 
to compute the solution of fractional differential problems. At present, neither 
computing environments, such as MATLAB, nor numerical libraries, such as NAG, 
offer professional routines to solve FDEs. A limited number of codes have been 
proposed by some scientists, for reference, see [13, 31, 46, 52, 53]. A recent 
overview on the available software is given in [31]. 
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In the design of a high-quality mathematical software to solve FDEs, a challeng-
ing issue regards the computational cost. On one hand, many numerical methods 
for FDEs have a low order of convergence, usually not exceeding 2; thus high 
accuracy may be reached at the price of considering fine meshes, with an increase 
of the computation time. On the other hand, due to the hereditary nature of the 
fractional differential operator, a considerable amount of computation is required 
to discretize the history term of the solution, usually .O(N2) flops, for a mesh 
of length N . The most famous procedure to considerably reduce this cost relies 
on the FFT technique, which can be applied when the numerical method can be 
expressed as a discrete convolution product, and yields to .O(N(log2 N)2) flops. 
This procedure was introduced in [33, 34] and later on applied in several papers, 
see, e.g., [9, 10, 18, 27, 30, 31, 36, 48]. 

In our research, we focus on the efficient implementation of spline collocation 
methods introduced and analyzed in [5, 11, 12, 14, 16, 43–45]. These methods 
offer many advantages: they have high order of convergence; they are continuous 
methods, i.e., they provide the approximate solution at each point of the integration 
interval; they have good stability properties. These good properties are well known 
not only in the context of FDEs, but also for the solution of ordinary differential 
equations and Volterra integral equations [4, 6, 15, 19, 21, 23, 28, 42]. In [13], 
we developed a MATLAB algorithm based on one-step spline collocation methods 
introduced in [44]. 

In this chapter, we treat the efficient implementation of two-step spline collo-
cation methods introduced in [12] (see also [14, 16, 17]). These methods have 
almost the same computational cost of the one-step collocation methods but 
double the order of convergence. Being multivalue methods, a starting procedure 
is needed, which provides a continuous approximation of the solution in first 
integration interval and preserves the order of convergence of the overall method. 
We consider as starting method the one-step spline collocation method [44]. The 
application of the two-step collocation method requires the evaluation of several 
fractional integrals: this can be done without need for quadrature approximation, 
once the coefficients of some Lagrange polynomials are known. This task has 
been addressed, at a reduced computational cost, by MATLAB inbuilt routines. 
A compact matrix formulation of the method has been provided, to get maximum 
efficiency of MATLAB with array computation. 

This chapter is organized as follows. We describe the two-step collocation 
methods in Sect. 2. The computation of fractional integrals, appearing in the method, 
is illustrated in Sect. 3, while a suitable starting procedure is proposed in Sect. 4. In  
Sect. 5, we resume main convergence results and discuss the proper setting of the 
method parameters. Section 6 contains a compact matrix formulation of the method. 
The MATLAB codes are given in Sect. 7; the input and output arguments of the 
algorithm are defined in Sect. 8; an example of usage of the program is provided in 
Sect. 9. Finally, we show some numerical results in Sect. 10 to verify convergence 
results and for comparison with one-step spline collocation methods and with a 
fractional BDF method.
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2 The Two-Step Spline Collocation Method 

We consider the following initial value problem: 

.

{
Dαy(t) = f (t, y(t)), 0 ≤ t ≤ b,

y(i)(0) = γi, i = 0, . . . , n − 1,
(1) 

where .n − 1 < α < n, .n ∈ N, .γi ∈ R. The real-valued function f is continuous in 
.[0, b] × R. The fractional derivative is defined in the Caputo sense [25, 37, 47]: 

. Dαy(t) = 1

�(n − α)

∫ t

0

y(n)(s)

(t − s)α+1−n
ds.

Some sufficient conditions for the existence and uniqueness of solution of (1) may 
be found in [25]. 

The preliminary step to apply spline collocation methods transforms the IVP (1) 
into the functional equation 

.z = f (t, J αz + Q), (2) 

where .z = Dαy, 

.(J αz)(t) = 1

�(α)

∫ t

0
(t − s)α−1z(s) ds, t > 0, . (3) 

Q(t) =
�α�−1∑
i=0 

γi 
i! t

i , (4) 

and .�α� is the smallest integer not less than . α. Once the equation (2) is solved, the 
solution of (1) is given by 

.y = Jαz + Q. (5) 

We introduce some quantities:

• The graded mesh .IN = {0 = t0 < t1 < · · · < tN = b}, with grading exponent 
.r ∈ R, .r ≥ 1: 

.tj = b

(
j

N

)r

, j = 0, . . . , N. (6) 

If .r = 1, the mesh is uniform. The best choice of the grading exponent will be 
discussed in Sect. 5. Moreover, we define .σj = [tj−1, tj ], .hj = tj − tj−1.
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• The set of collocation abscissae: 

.0 ≤ η1 < . . . < ηm ≤ 1, with (η1, ηm) �= (0, 1). (7)

• The collocation points: 

.tjk = tj−1 + hjηk, j = 1, . . . , N, k = 1, . . . , m. (8) 

The two-step spline collocation method computes an approximate solution of 
problem (2), as a function of the space 

.S
(−1)
2m−1(IN) = {

v : v|σj
∈ π2m−1, j = 1, . . . , N

}
, (9) 

where .π2m−1 is the space of algebraic polynomials of degree not exceeding .2m−1. 
This function .v(t) is computed as follows: 

.v(t) = v1(t)+
N∑

λ=2

(
m∑

k=1

zλkLλ,m+k(t) +
m∑

k=1

zλ−1,kLλk(t)

)
, t ∈ [0, b], (10) 

with .zλk = v(tλk) and 

.Lλk(t) =
{

k − th Lagrange fund. pol. wrt to {tλ−1,i , tλ,i}mi=1, t ∈ [tλ−1, tλ]
0 otherwise.

(11) 

The coefficients .zλk are computed by imposing that .v(t) fulfills equation (2) at 
the collocation points, i.e., 

.zjk = f
(
tjk, (J

αv)(tjk) + Q(tjk)
)
, k = 1, . . . , m, (12) 

.j = 2, . . . , N . By (10) and (11), we obtain this equivalent formulation of system 
(12): 

. zjk = f

⎛
⎝tjk, (J

αv1)(tjk) +
m∑

μ=1

zjμ(J αLj,m+μ)(tjk)+

j−1∑
λ=2

m∑
μ=1

zλμ(J αLλ,m+μ)(tjk) +
m∑

μ=1

zj−1,μ(J αLjμ)(tjk)+

j−1∑
λ=2

m∑
μ=1

zλ−1,μ(J αLλμ)(tjk) + Q(tjk)

⎞
⎠ , k = 1, . . . , m, (13) 

.j = 2, . . . , N .
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Moreover, we have 

.z1k = v1(t1k), k = 1, . . . , m. (14) 

The function .v1(t) vanishes outside the interval .[t0, t1] and must be defined by a 
suitable starting procedure, to preserve the accuracy of the method. This point will 
be discussed in Sect. 4. 

Finally, the numerical solution .yN(t) of (1) is computed by (compare (5)) 

. yN = Jαv + Q,

which is equivalent to 

. yN(t) = Jα(v1)(t) +
m∑

μ=1

zjμ(J αLj,m+μ)(t) +
j−1∑
λ=2

m∑
μ=1

zλμ(J αLλ,m+μ)(t)

+
m∑

μ=1

zj−1,μ(J αLjμ)(t) +
j−1∑
λ=2

m∑
μ=1

zλ−1,μ(J αLλμ)(t) + Q(t), (15) 

for .t ∈ [tj−1, tj ], with .j = 2, . . . , N , while 

.yN(t) = Jα(v1)(t) + Q(t), t ∈ [t0, t1]. (16) 

3 Computation of Fractional Integrals 

The two-step collocation method requires the computation of fractional integrals in 
(13) and in (15). Since the integrand functions are polynomials, these integrals can 
be exactly evaluated, without need for quadrature approximation. In this section, we 
resume and complete the procedure illustrated in [12], adding necessary details to 
implement the method. 

We will use the incomplete beta function, i.e., 

. β(x, a, b) =
∫ x

0
sa−1(1 − s)1−bds,

and the following formulas [1, 25, 32]: 

.(J αtν)(t) = 1

�(α)

∫ t

0
(t − s)α−1sν ds = tν+α �(1 + ν)

�(1 + ν + α)
, . (17)

∫ 1 

0 
(t − s)α−1sν ds = tν+α β

(
1 

t 
, 1 + ν, α

)
. (18)
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Let us consider the polynomial 

. ϕjμ(τ) := Lμ(tj−1 + τhj ), τ ∈ [0, 1], μ = 1, . . . , 2m.

In [12], it has been proven that .ϕjμ(τ), .μ = 1, . . . , 2m, are the fundamental 
Lagrange polynomial corresponding to the nodes 

.

{
(η1 − 1)

hj−1

hj

, . . . , (ηm − 1)
hj−1

hj

, η1, . . . , ηm

}
. (19) 

It will be useful to express this polynomial in the canonical form 

.ϕjμ(τ) =
2m−1∑
ν=0

a(jμ)
ν τ ν, μ = 1, . . . , 2m. (20) 

Remark 1 We adopt a simple procedure to derive the coefficients of the Lagrange 
polynomials (20). To simplify the description, let us name the nodes (19) as 
.{x1, . . . , x2m}, and then the .μ-th Lagrange fundamental polynomial corresponding 
to these nodes is 

. 

m∏
i=1
i �=μ

τ − xi

xμ − xi

=
2m−1∑
ν=0

a(μ)
ν τ ν, μ = 1, . . . , 2m.

It is well known that the coefficients of the product of polynomials . p(x) =
q(x)r(x) can be obtained by convolution of the vectors of coefficients .q(x) and 
.r(x). Therefore, a straightforward technique to compute the coefficients .a(μ)

ν is 

based on the iterative convolution products of vectors .

[
1

xμ − xi

,
−xi

xμ − xi

]
, . i =

1, . . . , 2m, .i �= μ. 

The fractional integrals in (13) and in (15) can be computed as follows (cfr. (17), 
(18) and (20)). Let .t ∈ [tj−1, tj ], with .t = tj−1 + σhj ; then, 

.(J αLjμ)(t) = hα
j

2m−1∑
ν=0

a(jμ)
ν σ ν+α �(1 + ν)

�(1 + ν + α)
, μ = 1, . . . , 2m, (21) 

and 

. (J αLλμ)(t) = hα
λ

�(α)

2m−1∑
ν=0

a(λμ)
ν

(
tj−1 + σhj − tλ−1

hλ

)ν+α

β

(
hλ

tj−1 + σhj − tλ−1
, 1 + ν, α

)
, (22) 

.λ = 2, . . . , j − 1, μ = 1, . . . , 2m.
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Therefore, if .σ = ηk , we obtain the values of fractional integrals appearing in 
(13). While, if .σ ∈ [0, 1], we get the values of fractional integrals of formula (15). 

4 Starting Procedure 

The starting procedure of the two-step spline collocation method (10)–(12) must 
provide a continuous approximation . v1 of the solution of (2) in the interval .[t0, t1]. 
With this aim, we apply in .[t0, t1] the one-step collocation method proposed in [44], 
with 2m collocation abscissae, to preserve the accuracy of the overall method. In 
particular, we assume that:

• .v1 ∈ S
(−1)
2m−1(IN).

• .v1(t) = 0, for .t > t1.
• .0 ≤ η̃1 < · · · < η̃2m ≤ 1 and .t̃k = η̃kh1.
• .z̃k = v1(t̃k), .k = 1, . . . , 2m. 

Then 

.v1(t) =

⎧⎪⎨
⎪⎩

2m∑
λ=1

z̃λLλ(t), t ∈ [t0, t1],
0, elsewhere,

(23) 

with 

.Lλ(t = σh1) =
2m∏
i=1
i �=λ

σ − η̃i

η̃λ − η̃i

=
2m−1∑
ν=0

ã(λ)
ν σ ν, σ ∈ [0, 1], (24) 

where coefficients .ã(λ)
ν can be computed along the lines of Remark 1 of Sect. 3. 

The coefficients .z̃1, . . . , z̃2m satisfy the collocation conditions: 

.z̃k = f (t̃k, (J
αv1)(t̃k) + Q(t̃k)), k = 1, . . . , 2m. (25) 

Now we can derive the formula for .z1k = v1(t1k), .k = 1, . . . , m (cfr. (14)). 
Formulas (23) and (24) yield: 

.z1k =
2m∑
λ=1

z̃λ

2m−1∑
ν=0

ã(λ)
ν ην

k , k = 1, . . . , m. (26) 

Obviously, the approximate solution . yN in the interval .[t0, t1], which is formally 
given by (16), can be computed by the considered one-step collocation method.



128 A. Cardone et al.

Further details on the computation of . v1 and . yN in the interval .[t0, t1] are given in 
[11, 13, 44]. 

Now we evaluate the fractional integrals of . v1 appearing in (13) and (15). From  
(23), we have  

.(J αv1)(t) = 1

�(α)

2m∑
λ=1

z̃λ

∫ t1

0
(t − τ)α−1Lλ(τ)dτ, t ∈ [t1, b]. (27) 

Then, (24) and (18) lead to 

. 

∫ t1

0
(t − τ)α−1Lλ(τ) = h1

∫ 1

0
(t − h1σ)α−1Lλ(h1σ)dσ

= h1

2m∑
ν=1

ã(k)
ν

∫ 1

0
(t − h1σ)α−1σνdσ

= hα
1

2m∑
ν=1

ã(λ)
ν

(
t

h1

)ν+α

β

(
h1

t
, 1 + ν, α

)
.

Finally, (27) can be recast as 

. (J αv1)(t) = hα
1

�(α)

2m∑
λ=1

z̃λ

2m∑
ν=1

ã(λ)
ν

(
t

h1

)ν+α

β

(
h1

t
, 1 + ν, α

)
, t ∈ [t1, b].

(28) 

5 Convergence and Optimal Parameters Setting 

Here we resume the convergence analysis, and according to the theoretical error 
estimate, we will we describe the proper setting of the method parameters, i.e.:

• The number m and the location of the collocation abscissae .η1, . . . , ηm (7)
• The value of the grading exponent r of the graded mesh (6) 

With this aim, we introduce the functional space .Cq,ν(0, b], with .q ∈ N and 
.ν ∈ (−∞, 1) [44]. A function .y : [0, b] → R belongs to .Cq,ν(0, b], if . y ∈ Cq(0, b]
and 

.|y(i)(t)| ≤ c

⎧⎨
⎩

1, if i < 1 − ν,

1 + | log t |, if i = 1 − ν,

t1−ν−i , if i > 1 − ν,

t ∈ (0, b], i = 1, . . . , q. (29)
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The solution of problem (1) is in the space .Cq(0, b] if the conditions of the following 
theorem are fulfilled. 

Theorem 1 ([44]) Assume that: the real-valued function .f ∈ Cq([0, b]×R); there 
exists .ν ∈ [1 − α, 1) such that 

. 

∣∣∣∣ ∂i+j

∂t i∂yj
f (t, y)

∣∣∣∣ ≤ φ(|y|)
⎧⎨
⎩

1, if i < 1 − ν

1 + | log t |, if i = 1 − ν

t1−ν−i , if i > 1 − ν

, (t, y) ∈ (0, b] × R,

(30) 

.∀i, j ∈ N with .i + j ≤ q. For .α ∈ (0, 1), assume also that 

. 

∣∣∣∣ ∂i+j

∂t i∂yj
[f (t, y1) − f (t, y2)]

∣∣∣∣ ≤ φ(max{|y1|, |y2|})|y1 − y2|
{

1 if i = 0
t1−ν−i if i > 0

,

(31) 

.(t, y�) ∈ (0, b] × R, .� = 1, 2, where the real-valued function . φ is monotonically 
increasing in .[0,∞). Assume that there exists a solution .y ∈ C[0, b] of the problem 
(1), with .Dαy ∈ C[0, b]. Then .y ∈ Cq,ν(0, b] and .Dαy ∈ Cq,ν(0, b]. 

In the following theorem, the error will be bounded by . EN , with 

.EN(p, ν, r) =

⎧⎪⎪⎨
⎪⎪⎩

N−r(1−ν) if 1 ≤ r ≤ p
1−ν

N−p(1 + log N) if r = p
1−ν

= 1

N−p if r = p
1−ν

> 1 or r >
p

1−ν
.

(32) 

Theorem 2 ([12]) Let the problem (1) have a solution .y ∈ C[0, T ] such that 
.Dαy ∈ C[0, T ], and let .f : [0, T ] × R→ R be a continuous function such that its 

derivatives .
∂
∂t

f (t, y) and .
∂2

∂t2 f (t, y) are continuous in .(0, T ] × R and 

. 

∣∣∣∣ ∂j

∂yj
f (t, y)

∣∣∣∣ ≤ ψ(|y|), (t, x) ∈ (0, T ] × R, j = 0, 1, 2.

.ψ : [0,∞) → R is a monotonically increasing function. Moreover, assume that 
the collocation points (8) with grid points (6) and arbitrary parameters . η1, . . . , ηm

satisfying (7) are used. Then there exist .N0 ∈ N and .δ0 > 0 such that, for all . N ≥
N0, the two-step collocation method possesses a unique solution .v ∈ S

(−1)
2m−1(IN) in 

the ball .‖u− z‖∞ ≤ δ0, where .z = Dαy ∈ C[0, T ]. If, in addition, the assumptions 
of Theorem 1 with .q := 2m and .ν ∈ [1 − α, 1) are fulfilled, then for all .N ≥ N0 the 
following error estimate holds: 

.‖yN − y‖∞ ≤ CEN(2m, ν, r), (33)
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with . yN given by the formula (15). Here  C is a constant not depending on N , . r ∈
[1,∞) is the grading exponent in (6), and .EN is defined by (32). 

We observe that the previous theorem holds if the starting procedure is the one 
we proposed in Sect. 2 or another one that satisfies conditions mentioned in [12, 
Remark 2]. 

From the proof of Theorem 2, given in [12], we can easily derive the following 
corollary. 

Corollary 1 The error constant of (33) is given by 

.C = (1 + 2�m)
b

α�(α)
· cf · cy, (34) 

where .�m is the Lebesgue constant corresponding to the nodes . {(η1 −
1) h1

h2
, . . . , (ηm − 1) h1

h2
, η1, . . . , ηm}; . cf depends on f ; . cy is the constant appearing 

in inequality (29), corresponding to .Dαy ∈ Cq,ν(0, b]. 
Thus, constant C is an increasing function with respect to m. In addition, we observe 
that . 1

α�(α)
∈ (0, 1.2) and rapidly decreases with . α. 

Theorem 2 yields that, if .y(t) ∈ C2m,ν(0, b] and 

.r ≥ 2m

1 − ν
, (35) 

then the fastest error decrease is reached, i.e., 

. ‖y − yN‖∞ ≤ CN−2m,

where C is given by (34). This result holds independently from the location of 
collocation abscissae .η1, . . . , ηm. 

Finally, we conclude that the method is more accurate as m increases, as usual 
for collocation methods; the collocation abscissae can be arbitrarily chosen; the 
optimal choice of r is given by (35), thus depending on the problem we are solving. 
In Sect. 8, we will show, on one test example, how to verify the conditions of 
Theorem 1, necessary to derive the value of . ν in formula (35). 

6 Matrix Formulation of the Method 

In this section, we collect the results obtained so far, to get a compact formulation 
of the method.
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6.1 Matrix Formulation of Nonlinear System (13) 

We define matrices .A[j ] ∈ Rm×2m and .E[λ,j ] ∈ Rm×2m, for .j = 2, . . . , N and . λ =
2, . . . , j −1. Their elements are proportional to the fractional integrals computed in 
(21) and in (22), with .σ = ηk . 

. A
[j ]
kμ =

2m−1∑
ν=0

a(j,μ)
ν ην+α

k

�(1 + ν)

�(1 + ν + α)
,

E
[λ,j ]
kμ = 1

�(α)

2m−1∑
ν=0

a(λ,μ)
ν

(
tj−1 + ηkhj − tλ−1

hλ

)ν+α

β

(
hλ

tj−1 + ηkhj − tλ−1
; 1 + ν, α

)
,

.k = 1, . . . , m, .μ = 1, . . . , 2m. The coefficients .a(μ,λ)
ν have been defined in (20) 

and can be computed as illustrated in Sect. 3, Remark 1. 
Second, let us consider the following m-square matrices:

• .Ā[j ] and .Ē[λ,j ], which consist of the first m columns of .A[j ] and .E[λ,j ], 
respectively

• .Ã[j ] and .Ẽ[λ,j ], which consist of the last m columns of .A[j ] and .E[λ,j ], 
respectively 

With these settings, the nonlinear system (13) can be recast as 

.zj = f

⎛
⎝tj , hα

j Ã
[j ]zj +

j−1∑
λ=1

hα
λB

[λ,j ]zλ + hα
1 rj + qj

⎞
⎠ , (36) 

for .j = 2, . . . , N , where:

• .zj = [zj1, . . . , zjm]T .
• .tj = [tj1, . . . , tjm]T .
• .qj = [Q(tj1), . . . ,Q(tjm)]T .
• .f (tj ,u) = [f (tj1, u1), . . . , f (tjm, um)]T for any m-dimensional vector . u.
• Set .dj = hj/hj−1, then 

. B[1,2] = dα
2 Ā

[2],

while, for .j = 3, . . . , N : 

.B[λ,j ] :=

⎧⎪⎪⎨
⎪⎪⎩

dα
2 Ē

[2,j ], λ = 1,

Ẽ[λ,j ] + dα
λ+1Ē

[λ+1,j ], λ = 2, . . . , j − 2,

dα
j Ā

[j ] + Ẽ[j−1,j ], λ = j − 1.
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• .
(
rj

)
k

= 1

�(α)

2m∑
λ=1

z̃λ

2m−1∑
ν=0

ã(λ)
ν

(
tjk

h1

)ν+α

β

(
h1

tjk

, 1 + ν, α

)
, .k = 1, . . . , m. 

Last, from (26), it results  

. z1 = HÃlagrT z̃,

where:

• .Hk,ν+1 = ην
k , .k = 1 . . . , m, .ν = 0 . . . , 2m − 1.

• .Ãlagrλ,ν+1 = ã
(λ)
ν , .λ = 1, . . . , 2m, .ν = 0 . . . , 2m − 1.

• .z̃ = [z̃1, . . . , z̃2m]T . 

We recall that .ã(λ)
ν and . ̃zk have been defined in Sect. 4. 

The computational kernel of this method consists of the formulation and the 
solution of the nonlinear system (36) of dimension m, at each step .j = 2, . . . , N . 
The memory term present in the nonlinear system (36) (i.e., the summation with 
index . λ) gives a significant contribution to the computational effort; as a matter 
of fact, its cost amounts to .O(m2N2) flops. The FFT technique [33, 34] cannot 
be applied, since the memory term of the two-step spline collocation method can 
be recast as a discrete convolution product only for a uniform mesh. Instead, the 
considered method has a high order of convergence for a graded mesh (6) with a 
grading exponent r chosen according to (35), as illustrated in Sect. 5. 

6.2 Vector Formulation of the Numerical Solution yN 

Let us introduce the 2m-dimensional arrays, for .j = 2, . . . , N , .λ = 1, . . . , j − 1: 

. b[j ]
μ =

2m−1∑
ν=0

a(j,μ)
ν σ ν+α �(1 + ν)

�(1 + ν + α)
,

g[λ,j ]
μ = 1

�(α)

2m−1∑
ν=0

a(λ,μ)
ν

(
tj−1 + σhj − tλ−1

hλ

)ν+α

β

(
hλ

tj−1 + σhj − tλ−1
; 1 + ν, α

)
,

.μ = 1, . . . , 2m. Second, let us consider the following m-dimensional arrays:

• .b̄[j ] and .ḡ[λ,j ], which consist of the first m elements of .b[j ] and .g[λ,j ], 
respectively

• .b̃[j ] and .g̃[λ,j ], which consist of the last m elements of .b[j ] and .g[λ,j ], respectively 

Now we define the array .w[λ,j ], of dimension m, with 

.w[1,2] = dα
2 b̄

[2],
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while, for .j = 3, . . . , N : 

. w[λ,j ] =

⎧⎪⎪⎨
⎪⎪⎩

dα
2 ḡ

[2,j ], λ = 1,

g̃[λ,j ] + dα
λ+1ḡ

[λ+1,j ], λ = 2, . . . , j − 2,

dα
j b̄

[j ] + g̃[j−1,j ] λ = j − 1.

In the interval .[t0, t1], the solution is provided by the starting procedure illustrated 
in Sect. 4. The details of computation are object of [13]. 

In the interval .[t1, b], the solution is given by (15), where the fractional integrals 
have been computed in (21), (22), and (28). Hence, assumed that .t = tj−1 + σhj , 
with .σ ∈ [0, 1]: 

.yN(t) = hα
j b̃

[j ]
μ · zj +

j−1∑
λ=1

hα
λw

[λ,j ] · zλ + hα
1 r(t) + Q(t), t ∈ [tj−1, tj ], (37) 

.j = 2, . . . , N . In  (37), function .r(t) is defined as 

. r(t) = 1

�(α)

2m∑
λ=1

z̃λ

2m∑
ν=1

ã(λ)
ν

(
t

h1

)ν+α

β

(
h1

t
, 1 + ν, α

)
, t ∈ [t1, b].

For the memory term present in formula (37), we can draw similar observation 
as at the end of Sect. 6.1. The computational cost of this part is .O(mj) flops. 

Remark 2 We notice that, if .σ = ηk , then .g[λ,j ]
μ = E

[λ,j ]
k,μ and .b[j ]

μ = A
[j ]
k,μ. 

Moreover, if .t = tjk , then .r(tjk) = (rj )k . 

7 The MATLAB Algorithm 

In this section, we describe the organization of the whole MATLAB algorithm, 
report all the programs, and list in Table 1 the MATLAB inbuilt functions used 
in the programs. 

The main program of the algorithm is tsfcoll.m (Fig. 1). The first part of the 
program computes the starting solution in the interval .[0 = t0, t1]. In the second 
part, the solution is computed in the rest of the time interval. 

As explained in Sect. 4, the starting solution is computed by one-step collocation 
method, which is implemented in the code fcoll.m [13]. Therefore, for the 
tsfcoll.m to run, it is necessary to include all the routines called by the 
program fcoll.m, listed in [13]. In particular, from the same code for one-step 
collocation methods, the routine matrix_Lagrange.m is recalled to compute 
the coefficients of the Lagrange polynomial (24). 

The solution in the rest of the interval .[t1, b] is computed in a for loop.
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Table 1 Auxiliary 
MATLAB functions adopted 
in the algorithm in 
alphabetical order 

Function Task 

betainc The incomplete beta function 

ceil Function . �·�
conv Convolution of two vectors 

diff Differences between adjacent elements of array 

gamma The gamma function 

factorial The factorial 

fliplr Flips array left to right 

fsolve Solves a nonlinear system 

Fig. 1 Main program tsfcoll.m 

At each step j of the loop, the nonlinear system (36) is formulated in the function 
tssystem_F.m and then solved by MATLAB inbuilt function fsolve, with 
accuracy .10−14. To construct the nonlinear system, the coefficients .a(j,μ)

ν are com-
puted in the routine tsmatrix_Lagrange.m, which is based on the procedure
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Fig. 2 Function tsmatrix_Lagrange.m 

Fig. 3 Function tsmatrix_A.m 

illustrated in Sect. 3, Remark 1 (Fig. 2). Moreover, matrices .A[j ] and .E[λ,j ] are 
constructed by routines tsmatrix_A.m and tsmatrix_E.m, respectively; the 
sum over the past computed solution is computed in tslag.m; the function . Q(t)

is evaluated by routine Q.m (Figs. 3, 4, 5, 6). The nonlinear system (36) is returned 
by function tssystem_F.m (Fig. 7). 

In the second part of each step j , the approximate solution .yN at the mesh 
points of the interval .[tj−1, tj ] is computed, by formula (37) with .σ = 1. This task 
is carried out by employing again functions tsmatrix_A.m, tsmatrix_E.m, 
tslag.m, thanks to observations made in Remark 2.
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Fig. 4 Function tsmatrix_E.m 

Fig. 5 Function tslag.m
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Fig. 6 Function Q.m 

Fig. 7 Function tssystem_F.m 

We stress that all the routines have been organized to exploit MATLAB effi-
ciency with array computation (see routines tsmatrix_A.m, tsmatrix_E.m, 
tslag.m, Q.m). 

8 Input and Output Parameters 

The mandatory input arguments of the code ftscoll.m are: f,b,gam,alpha, 
eta,r,N, while the output arguments are t,y. In this section, we describe each 
of them. 

8.1 Input Parameters 

1. f—function handle or string containing name of m-file. 
f must return the value of the function f (t,  y)  at a given point (t, y). 

[result] = f(t,y) 

Input Parameters

• t—double scalar 
The current value of the independent variable t

• y—double scalar 
The current value of the independent variable y 

Output Parameters

• result—double scalar 
The value of f (t,  y).
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2. b—double scalar 
b, the end point of the integration interval [0, b]. 

3. gam—double array 
The vector of the initial values [γ0, . . . , γn−1]T of the IVP (1). 
Constraint: The length n of the array gam should be equal to �α�. 

4. alpha—double scalar 
α, the fractional index. 

5. eta(m)—double array 
eta is equal to the vector [η1, . . . , ηm]T of the collocation parameters. 
Constraint: 0 ≤ eta(1) ≤ · · · ≤eta(m)≤ 1, (eta(1),eta(m))�= (0, 1). 

6. r—double scalar 
r , the grading exponent. r >= 1. 

7. N—double scalar 
N , the number of mesh points. 

8.2 Output Parameters 

1. t(N+1)—double array 
t is the graded mesh [t0, . . . , tN ]T , defined in (6). 

2. y(N+1)—double array 
y(j) is the approximate value of the solution y(tj+1). 

9 Example of Usage 

Here we illustrate on a test example how to compute the parameter . ν that appears in 
the formula (35) and how to use our software to solve a FDE. 

Problem 1 ([44]) 

.D1/2y(t) = y2(t) + 1

�(1.5)
t0.5 − t2, t ∈ [0, 1] y(0) = 0, (38) 

with analytical solution .y(t) = t . Hypotheses of Theorem 1 are fulfilled for any 
.q ∈ N and .ν = 0.5. The verification is straightforward. As a matter of fact, 

. |f (t, y)| ≤ const · |y|2, ∀(t, y) ∈ (0, 1] × R∣∣∣∣ ∂

∂t
f (t, y)

∣∣∣∣ =
∣∣∣∣ 1

2�(1.5)
t−0.5 − t

∣∣∣∣ ≤ const · t−0.5, ∀(t, y) ∈ (0, 1] × R,

and in general 

.

∣∣∣∣ ∂i

∂t i
f (t, y)

∣∣∣∣ ≤ const · t1−0.5−i , ∀(t, y) ∈ (0, 1] × R, i = 1, 2, . . . .
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Moreover, 

. 

∣∣∣∣ ∂j

∂yj
f (t, y)

∣∣∣∣ ≤ 2|y|, ∀(t, y) ∈ (0, 1] × R, j = 1, 2, . . .

∂i+j

∂t i∂yj
f (t, y) = 0, if i �= 0, and j �= 0.

Thus, condition (30) holds with .φ(|y|) = const · |y|2. Second, since .α ∈ (0, 1), 
we must verify condition (31) of Theorem 1, too. It follows from the following 
relations: 

. |f (t, y1) − f (t, y2)| = |y2
1 − y2

2 | ≤ 2 max{|y1|, |y2|}|y1 − y2|,∣∣∣∣ ∂

∂y
f (t, y1) − ∂

∂y
f (t, y2)

∣∣∣∣ = 2|y1 − y2|,

∂j

∂yj
f (t, y) = 0, j = 2, 3, . . .

∂

∂t
f (t, y1) − ∂

∂t
f (t, y2) = 0.

We show in Fig. 8 an example of script to set input arguments for Problem 1 (38) 
and report in Fig. 9 the corresponding output. 

Fig. 8 Script test_example.m 

Fig. 9 Output of test_example.m
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10 Numerical Experiments 

In this section, we will show on some test examples the accuracy of our code, 
to confirm theoretical expectations on the error. Moreover, we make comparison 
with the code proposed on [13], which implements the one-step spline collocation 
method and with the code flmm2.m [30], which implements a fractional BDF 
method. 

We consider four test problems from the literature. 

Problem 2 ([26]) 

. 

Dαy(t) = 40320

�(9 − α)
t8−α − 3

�(5 + α
2 )

�(5 − α
2 )

t4− α
2 +

(
3

2
t

α
2 − t4

)3

+9

4
�(α + 1) − (y(t))

3
2 , t ∈ [0, 1],

y(0) = 0,

with .α = 1/2. The analytical solution is .y(t) = t8 − 3t4+α/2 + 9
4 tα . Hypotheses of 

Theorem 1 are fulfilled for any .q ∈ N and .ν = 0.5. 

Problem 3 ([8]) 

. Dαy(t) = λy + ρy(1 − y2) + g(t), t ∈ (0, 8], y(0) = 2,

with .α = 0.3, .λ = −3, and .ρ = 0.8. Function .g(t) is such that 

. y(t) = y0 +
6∑

k=1

tσk , σk = kα, k = 1, . . . , 5, σ6 = 2 + α.

Hypotheses of Theorem 1 are fulfilled for any .q ∈ N and .ν = 1 − α = 0.7. 

Problem 4 ([2]) 

. D
5
2 y(t) + y(t) + y2(t) = (1 + erf(

√
t)et + e2t , t ∈ (0, 1],

y(0) = y′(0) = y′′(0) = 1.

The exact solution is .y(t) = exp(t). Hypotheses of Theorem 1 are fulfilled for any 
.q ∈ N and .ν = 0.5. 

Problem 5 ([2]) 

.Dαy(t) + (1 + t2)y2(t) = t (1−α)

(1 − α)�(1 − α)
+ (1 + t2)(1 + t)2, t ∈ (0, 1],

y(0) = 1,
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.α = 0.4. The exact solution is .y(t) = 1 + t . Hypotheses of Theorem 1 are fulfilled 
for any .q ∈ N and .ν = 1 − α. 

In the experiments, we set:

• .η =
[

1
3 , 2

3

]
when .m = 2.

• .η =
[

1
2 , 3

4 , 1
]

when .m = 3. 

The grading exponent is chosen as .r = 2m/(1 − ν) (cfr. (35)). 
In Fig. 10, we plotted the absolute error (err) at the end point versus the number 

of mesh points N , for two-step collocation method (TSC) with .m = 2 and .m = 3. 
The theoretical order of convergence .p = 2m is confirmed; moreover, the effective 
order for the method with .m = 2 is equal to .4.5 (instead of 4) on the problems 3 
and 5. 

We computed the estimated error constant as .C = err · N2m and show these 
values for various values of N in Fig. 11. As expected from (34), the error constant 
increases with m. Similar results can be obtained for the other test problems. 
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Fig. 10 Error for the two-step spline collocation method with m collocation points, compared with 
slope .p = 2m. Logarithmic scale on x- and y-axis
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Fig. 12 Work precision diagrams and execution time versus N for the two-step spline collocation 
method with .m = 2. Logarithmic scale on x- and y-axis 

In Figs. 12 and 13, we compared the two-step collocation method implemented as 
showed in this chapter with the code fcoll.m [13], which implements the one-step 
spline collocation method proposed in [44]. For the one-step collocation methods, 
we considered the same collocation parameters, and we set .r = m/(1−ν) (compare 
[13, 44]). In the top figures, we plotted the number of function evaluation (fval)
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Fig. 13 Work precision diagrams and execution time versus N for the two-step spline collocation 
method with .m = 3. Logarithmic scale on x- and y-axis 

versus the number of correct digits, while at the bottom, we plotted the execution 
time (in seconds) versus the number of correct digits (cd). The two-step collocation 
methods provide better results in all test problems. 

Finally, we compared our code with flmm2.m [30], available on MATLAB 
website. We set the input parameters as to apply a fractional BDF method of order 
2. Figure 14 shows that our code is competitive especially when high degree of 
accuracy is required.
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Acknowledgments The authors are members of the GNCS group. This work was supported by 
GNCS-INDAM project and by the Italian Ministry of University and Research (MUR) through 
the PRIN 2017 project (No. 2017JYCLSF) “Structure preserving approximation of evolutionary 
problems,” and the PRIN 2020 project (No. 2020JLWP23) “Integrated Mathematical Approaches 
to Socio–Epidemiological Dynamics” (CUP: E15F21005420006). 

References 

1. Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions with formulas, graphs, 
and mathematical tables. National Bureau of Standards Applied Mathematics Series, No. 55. 
U. S. Government Printing Office, Washington, D.C. (1964). 

2. Babolian, E., Vahidi, A.R., Shoja, A.: An efficient method for nonlinear fractional differential 
equations: combination of the Adomian decomposition method and spectral method. Indian J. 
Pure Appl. Math. 45(6), 1017–1028 (2014) 

3. Bertaccini, D., Durastante, F.: Solving mixed classical and fractional partial differential 
equations using short-memory principle and approximate inverses. Numer. Algorithms 74(4), 
1061–1082 (2017) 

4. Bialecki, B.: Convergence analysis of orthogonal spline collocation for elliptic boundary value 
problems. SIAM J. Numer. Anal. 35(2), 617–631 (1998) 

5. Blank, L.: Numerical treatment of differential equations of fractional order. Tech. rep., 
University of Manchester, Department of Mathematics (1996). Numerical Analysis Report 

6. Brunner, H.: Collocation methods for Volterra integral and related functional differential 
equations. Cambridge Monographs on Applied and Computational Mathematics, vol. 15. 
Cambridge University Press, Cambridge (2004) 

7. Burrage, K., Cardone, A., D’Ambrosio, R., Paternoster, B.: Numerical solution of time 
fractional diffusion systems. Appl. Numer. Math. 116, 82–94 (2017) 

8. Cao, W., Zeng, F., Zhang, Z., Karniadakis, G.E.: Implicit-explicit difference schemes for 
nonlinear fractional differential equations with nonsmooth solutions. SIAM J. Sci. Comput. 
38(5), A3070–A3093 (2016) 

9. Capobianco, G., Cardone, A.: A parallel algorithm for large systems of Volterra integral 
equations of abel type. J. Comput. Appl. Math. 220(1-2), 749–758 (2008)



A MATLAB Code for FDEs Based on Two-Step Spline Collocation Methods 145

10. Capobianco, G., Conte, D., Del Prete, I., Russo, E.: Fast Runge-Kutta methods for nonlinear 
convolution systems of Volterra integral equations. BIT 47(2), 259–275 (2007) 

11. Cardone, A., Conte, D.: Stability analysis of spline collocation methods for fractional 
differential equations. Math. Comput. Simul. 178, 501–514 (2020) 

12. Cardone, A., Conte, D., Paternoster, B.: Two-step collocation methods for fractional differen-
tial equations. Discrete Contin. Dyn. Syst. Ser. B 23(7), 2709–2725 (2018) 

13. Cardone, A., Conte, D., Paternoster, B.: A MATLAB implementation of spline collocation 
methods for fractional differential equations. Lect. Notes Comput. Sci. 12949 LNCS, 387– 
401 (2021) 

14. Cardone, A., Conte, D., Paternoster, B.: Numerical treatment of fractional differential models. 
In: M. Abdel Wahab (ed.) Proceedings of the 8th International Conference on Fracture, Fatigue 
and Wear, pp. 289–302. Springer Singapore, Singapore (2021) 

15. Cardone, A., Conte, D., D’Ambrosio, R., Paternoster, B.: Multivalue collocation methods for 
ordinary and fractional differential equations. Mathematics 10(2), 185 (2022) 

16. Cardone, A., Conte, D., Paternoster, B.: On spline collocation methods for fractional differen-
tial equations. AIP Conf. Proc To appear 

17. Cardone, A., Conte, D., Paternoster, B.: Stability analysis of two-step spline collocation 
methods for fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 115, 
106726 (2022) 

18. Conte, D., Prete, I.D.: Fast collocation methods for Volterra integral equations of convolution 
type. J. Comput. Appl. Math. 196(2), 652–663 (2006) 

19. Conte, D., D’Ambrosio, R., D’Arienzo, M., Paternoster, B.: Multivalue mixed collocation 
methods. Appl. Math. Comput. 409, 126346 (2021) 

20. Daftardar-Gejji, V., Jafari, H.: Adomian decomposition: a tool for solving a system of fractional 
differential equations. J. Math. Anal. Appl. 301(2), 508–518 (2005) 

21. D’Ambrosio, R., Paternoster, B.: Multivalue collocation methods free from order reduction. J. 
Comput. Appl. Math. 387, Paper No. 112515, 11 (2021) 

22. Datsko, B.: Mathematical modeling of complex spatio-temporal dynamics in autocatalytic 
reaction-diffusion systems with anomalous diffusion. Comput. Math. Methods 3(3), Paper 
No. e1112, 15 (2021) 

23. de Boor, C., Swartz, B.: Collocation at Gaussian points. SIAM J. Numer. Anal. 10, 582–606 
(1973) 

24. Deng, W.: Short memory principle and a predictor-corrector approach for fractional differential 
equations. J. Comput. Appl. Math. 206(1), 174–188 (2007) 

25. Diethelm, K.: The analysis of fractional differential equations. Lecture Notes in Mathematics, 
vol. 2004. Springer, Berlin (2010). An application-oriented exposition using differential 
operators of Caputo type 

26. Diethelm, K., Ford, N.J., Freed, A.D.: Detailed error analysis for a fractional Adams method. 
Numer. Algorithms 36(1), 31–52 (2004) 

27. Dölz, J., Egger, H., Shashkov, V.: A fast and oblivious matrix compression algorithm for 
Volterra integral operators. Adv. Comput. Math. 47(6), Paper No. 81, 24 (2021) 

28. Fairweather, G., Meade, D.: A survey of spline collocation methods for the numerical solution 
of differential equations. In: Mathematics for Large Scale Computing. Lecture Notes in Pure 
and Appl. Math., vol. 120, pp. 297–341. Dekker, New York (1989) 

29. Feng, L., Turner, I., Perré, P., Burrage, K.: An investigation of nonlinear time-fractional 
anomalous diffusion models for simulating transport processes in heterogeneous binary media. 
Commun. Nonlinear Sci. Numer. Simul. 92, Paper No. 105454, 22 (2021) 

30. Garrappa, R.: Trapezoidal methods for fractional differential equations: theoretical and 
computational aspects. Math. Comput. Simul. 110, 96–112 (2015) 

31. Garrappa, R.: Numerical solution of fractional differential equations: A survey and a software 
tutorial. Mathematics 6(2), 16 (2018) 

32. Garrappa, R., Kaslik, E., Popolizio, M.: Evaluation of fractional integrals and derivatives of 
elementary functions: Overview and tutorial. Mathematics 7(5), 407 (2019)



146 A. Cardone et al.

33. Hairer, E., Lubich, C., Schlichte, M.: Fast numerical solution of nonlinear Volterra convolution 
equations. SIAM J. Sci. Stat. Comput. 6(3), 532–541 (1985) 

34. Hairer, E., Lubich, C., Schlichte, M.: Fast numerical solution of weakly singular Volterra 
integral equations. J. Comput. Appl. Math. 23(1), 87–98 (1988) 

35. Jafari, H., Yousefi, S.A., Firoozjaee, M.A., Momani, S., Khalique, C.M.: Application of 
Legendre wavelets for solving fractional differential equations. Comput. Math. Appl. 62(3), 
1038–1045 (2011) 

36. Jia, J., Wang, H., Zheng, X.: A fast collocation approximation to a two-sided variable-order 
space-fractional diffusion equation and its analysis. J. Comput. Appl. Math. 388, Paper No. 
113234, 14 (2021) 

37. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential 
equations. North-Holland Mathematics Studies, vol. 204. Elsevier Science B.V., Amsterdam 
(2006) 

38. Li, X.: Numerical solution of fractional differential equations using cubic B-spline wavelet 
collocation method. Commun. Nonlinear Sci. Numer. Simul. 17(10), 3934–3946 (2012) 

39. Li, Y., Sun, N.: Numerical solution of fractional differential equations using the generalized 
block pulse operational matrix. Comput. Math. Appl. 62(3), 1046–1054 (2011) 

40. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, 
London (2010). An Introduction to Mathematical Models 

41. Moghaderi, H., Dehghan, M., Donatelli, M., Mazza, M.: Spectral analysis and multigrid 
preconditioners for two-dimensional space-fractional diffusion equations. J. Comput. Phys. 
350, 992–1011 (2017) 

42. Paternoster, B.: A phase-fitted collocation-based Runge-Kutta-Nyström method. Appl. Numer. 
Math. 35(4), 339–355 (2000) 

43. Pedas, A., Tamme, E.: Spline collocation methods for linear multi-term fractional differential 
equations. J. Comput. Appl. Math. 236(2), 167–176 (2011) 

44. Pedas, A., Tamme, E.: Numerical solution of nonlinear fractional differential equations by 
spline collocation methods. J. Comput. Appl. Math. 255, 216–230 (2014) 

45. Pedas, A., Tamme, E.: Spline collocation for nonlinear fractional boundary value problems. 
Appl. Math. Comput. 244, 502–513 (2014) 

46. Petrás, I.: Fractional derivatives, fractional integrals, and fractional differential equations in 
Matlab. In: A.H. Assi (ed.) Engineering Education and Research Using MATLAB, chap. 10. 
IntechOpen, Rijeka (2011) 

47. Podlubny, I.: Fractional differential equations. Mathematics in Science and Engineering, vol. 
198. Academic Press, Inc., San Diego, CA (1999). An introduction to fractional derivatives, 
fractional differential equations, to methods of their solution and some of their applications 

48. Schädle, A., López-Fernández, M., Lubich, C.: Fast and oblivious convolution quadrature. 
SIAM J. Sci. Comput. 28(2), 421–438 (2006). All Open Access, Green Open Access 

49. Scalas, E., Gorenflo, R., Mainardi, F.: Fractional calculus and continuous-time finance. Phys. 
A 284(1-4), 376–384 (2000) 

50. Scherer, R., Kalla, S.L., Tang, Y., Huang, J.: The Grünwald-Letnikov method for fractional 
differential equations. Comput. Math. Appl. 62(3), 902–917 (2011) 

51. Sheng, H., Chen, Y., Qiu, T.: Fractional Processes and Fractional-Order Signal Processing. 
Signals and Communication Technology. Springer London, London (2012). Techniques and 
applications, With a foreword by Richard L. Magin 

52. Sowa, M., Kawala-Janik, A., Bauer, W.: Fractional differential equation solvers in 
Octave/Matlab. In: 2018 23rd International Conference on Methods & Models in Automation 
& Robotics (MMAR), pp. 628–633. IEEE (2018) 

53. Wei, S., Chen, W.: A Matlab toolbox for fractional relaxation-oscillation equations. Preprint 
(2013). arXiv:1302.3384 

54. Zayernouri, M., Karniadakis, G.E.: Exponentially accurate spectral and spectral element 
methods for fractional ODEs. J. Comput. Phys. 257(part A), 460–480 (2014) 

55. Zayernouri, M., Karniadakis, G.E.: Fractional spectral collocation method. SIAM J. Sci. 
Comput. 36(1), A40–A62 (2014)


	Preface
	Organization
	Contents
	About the Editors
	A New Diffusive Representation for Fractional Derivatives, Part I: Construction, Implementation and Numerical Examples
	1 Introduction and Statement of the Problem
	1.1 Classical Discretizations in Fractional Calculus
	1.2 Diffusive Representations in Discretized Fractional Calculus

	2 The New Diffusive Representation and Its Properties
	3 The Complete Numerical Method
	4 Experimental Results and Conclusion
	References

	Exact Solutions for the Fractional Nonlinear Boussinesq Equation
	1 Introduction
	2 Physical Motivation
	3 The Steady Solution
	4 The Unsteady Space-Fractional Case
	5 The Time-Fractional Case
	6 Conclusions
	References

	A Numerical Procedure for Fractional-Time-Space Differential Equations with the Spectral Fractional Laplacian
	1 Introduction
	2 The Spectral Fractional Laplacian: A Brief Introduction
	2.1 Eigendecomposition of the Laplacian
	2.2 Spectral Fractional Laplacian

	3 Fractional-Time-Space Differential Equation
	4 Generalized Exponential Time-Differencing Methods
	5 Error Analysis
	6 Numerical Experiments
	6.1 Homogeneous Dirichlet Boundary Conditions in a 1D Domain
	6.2 Homogeneous Neumann Boundary Conditions in a 1D Domain
	6.3 Homogeneous Dirichlet Boundary Conditions in a 2D Domain

	7 Concluding Remarks
	References

	Spectral Analysis of Matrices in B-Spline Galerkin Methods for Riesz Fractional Equations
	1 Introduction
	2 Preliminaries
	2.1 Fractional Derivatives
	2.2 Spectral Tools
	2.3 B-Splines and Cardinal B-Splines

	3 B-Spline Galerkin Discretization of the Fractional Riesz Operator
	4 Spectral Symbol of {n1-αAnp,α}n and Its Properties
	5 Numerical Results
	6 Conclusions
	References

	Do the Mittag–Leffler Functions Preserve the Properties of Their Matrix Arguments?
	1 Introduction
	2 What Is Not Preserved
	3 Nonnegativity Preservation
	4 Centrosymmetric Matrices
	5 Circulant Matrices
	6 Quasi-Toeplitz Matrices
	7 The ML Function with Time-Dependent Matrix Arguments
	8 Conclusions
	References

	On the Solutions of the Fractional GeneralizedGierer–Meinhardt Model
	1 Introduction
	2 Lie Transformation and FODEs
	3 Analytical Solutions of the Generalized Depletion Model
	4 Numerical Method and Solutions
	5 Concluding Remarks
	References

	A Convolution-Based Method for an Integro-Differential Equation in Mechanics
	1 Introduction
	2 Fourier Semi-Discretization of the Problem
	3 Volume Penalization Technique
	4 The Fully Discrete Problem
	4.1 Störmer–Verlet Scheme
	4.2 Newmark-β Method

	5 Numerical Simulations
	5.1 Simulations on a 2D Lamina
	5.2 Simulations on a 1D Bar

	6 Conclusions
	References

	A MATLAB Code for Fractional Differential Equations Based on Two-Step Spline Collocation Methods
	1 Introduction
	2 The Two-Step Spline Collocation Method
	3 Computation of Fractional Integrals
	4 Starting Procedure
	5 Convergence and Optimal Parameters Setting
	6 Matrix Formulation of the Method
	6.1 Matrix Formulation of Nonlinear System (13)
	6.2 Vector Formulation of the Numerical Solution yN

	7 The MATLAB Algorithm
	8 Input and Output Parameters
	8.1 Input Parameters
	8.2 Output Parameters

	9 Example of Usage
	10 Numerical Experiments
	References


