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Abstract. The hypersonic vehicle is an important combat force in the future bat-
tlefield. At present, traditional guidance and control need to be designed prior to
achieving the operational mission, lacking the ability of independent decision-
making and rapid response, and not able to adapt to the development needs of
complex battlefield situations in the future. With the rapid development of artifi-
cial intelligence, the decision-making ability of deep reinforcement learning has
been applied in many aspects. In this paper, for the decision-making problem of
autonomous flight maneuvering control of hypersonic aircraft, the deep determin-
istic policy gradient algorithm is used to design an autonomous flight maneuver-
ing control decision-making algorithm to achieve the trajectory planning for the
vertical climb and cruise tasks of the aircraft. Through the simulation test, the
autonomous flight from the random initial position to the target position is real-
ized, which proves that the training results have certain generalization. In the end
stage, the longitudinal climbing section is extended to three-dimensional space,
and the training simulation is carried out, showing the feasibility of the algorithm
in the actual situation.
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1 Introduction

Hypersonic flight Vehicle (HFV) has fast flight speed, high maneuverability and strong
defense penetration ability. In the military field, it is an important weapon and equip-
ment for accomplishing future space operations and global rapid strikes.With the gradual
maturity of high-thrust rockets, high-temperature-resistant special materials and scram-
bling engines, the development of hypersonic vehicles has entered a new stage and has
higher requirements for guidance and control systems [1].

There are currently a number of modern control methods for hypersonic vehicle
control. Literature [2] used an inversion control structure to solve the trajectory optimal
tracking control problem. Literature [3] proposed the use of nonlinear dynamic inverse
control method to accomplish the decoupling of velocity and altitude channels, and to
achieve precise tracking of altitude and velocity commands. Literature [4] used the idea
of trajectory linearization to complete hypersonic nonlinear attitude tracking control.
Literature [5] used a robust control method based on signal compensation to complete
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the longitudinal control of the aircraft. Literature [6] proposed the backstep slidingmode
control of hypersonic vehicle based on cerebellar neural network to achieve longitudinal
height and velocity control. Literature [7] proposed a new type of iterative learning
control based on sliding mode control to achieve aircraft attitude control. Literature [8]
used amiddle-aged high-end slidingmode to design a limited-time controller to complete
the aircraft attitude control problem. The current modern control methods cannot fully
meet the high control accuracy and strong robustness requirements of the control system,
so the intelligence and autonomy of hypersonic vehicles are the necessary trends in the
development of guidance and control technology [9].

In this paper, for the autonomous flight of hypersonic vehicle, deep reinforcement
learning algorithm is used to study its control decision-making problem. In the first place,
the framework of the DDPG algorithm and its algorithm training process are established,
and the design of the state space that meets the task requirements is selected. On this
basis, different reward functions are established for different task learning problems
to solve the sparse reward problem of deep reinforcement learning. Verification of the
feasibility of deep reinforcement learning in the control problem of aircraft through the
simulation test of the agent.

2 Problem Description

2.1 Hypersonic Vehicle Modeling

The atmospheric model for hypersonic vehicle modeling adopts the USSA76 standard
atmospheric model developed by the United States in 1976 [10].

The motion equations of the aircraft are divided into the center of mass motion
equations and the motion equations rotating around the center of mass. In this paper, the
instantaneous equilibrium assumption is adopted, the aircraft is regarded as amass point,
and ignoring the attitude changes of the aircraft. Assuming that the aircraft maneuvers
at a fixed speed in the flat, the simplified motion model is shown as below:
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Considering that the aircraft maneuvers in three-dimensional space in practice, the
training of the longitudinal plane climb segment model is extended to three-dimensional
space, and the trajectory declination, lateral motion coordinates and normal overload
will be considered in the aircraft motion model. It is still assumed that the aircraft speed
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is fixed, the simplified motion model of the aircraft displays as following:
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2.2 Reinforcement Learning Method

Reinforcement learning is a branch of machine learning [11]. Figure 1 explains the basic
principle of reinforcement learning. Firstly, the agent interacts with the surrounding
environment through an action to obtain a reward and a new state, and repeat until the
end state. The interaction continues a lot of data is generated, and the reinforcement
learning algorithm uses this data to improve the action strategy. Then it uses the new
strategy to interact with the environment, generates new data, and uses the new data
to optimize the action strategy. After several iterations, the agent can learn to get the
maximum optimal strategy for return.

Fig. 1. Reinforcement learning basic framework

Deep Deterministic Policy Gradient (DDPG) [12] is a model-free policy, and Actor-
Critic-based policy search method that can be used to solve continuous action space
problems. The avoidance strategy means that the action strategy for generating data is
not the same strategy as the evaluation and improvement strategy. The action strategy
is a random strategy, and noise is added to the output of the strategy network to ensure
sufficient exploration; the evaluation strategy is a deterministic strategy.DDPG integrates
the successful experience of Deep Q-learning (DQN), that is, experience replay and
setting up a separate network, which solves the correlation between data and the problem
that the A-C algorithm is difficult to converge. Figure 2 shows the process framework
of the DDPG algorithm.
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Fig. 2. DDPG algorithm framework

DDPG consists of Online policy network μ(s; θμ), target policy network μ’(s; θμ’),
online evaluation network Q(s, a; θQ), target evaluation network Q’(s, a; θQ’) and the
experience register R = {s, a, s’, r} consists of five parts. Where s is the current system
state, a is the action, s’ is the state of the system at the nextmoment, r is the current return,
and θμ, θμ’, θQ, θQ’ are the network trainable parameters, respectively. The algorithm
process is as follows: firstly, the online decision network outputs action according to
the current state, and then acts on the environment after adding noise. The environment
feedback gets the reward and the next state, and then the current state, action, reward
and next state are stored in the experience cache. Then, the data is randomly sampled
from the experience buffer, the online policy network and the online evaluation network
are updated by the optimization algorithm, and finally the target evaluation network and
the target evaluation network are soft-updated.

The online evaluation network update adopts the method of TD target.

yt = r + γQ′(s′, μ′(s; θμ′); θQ
′)

(3)

where γ is the reward discount factor.
The loss function of the online evaluation network shows as following:

loss =
(
yt − Q

(
s, a; θQ

))2
(4)

The online evaluation network uses the back-propagation method to update the
parameters θQ according to Eq. (6). a’-u(s).

The online decision network gradient update formula is as follows:
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However, it is difficult to implement this theoretical function in engineering. The
goal of the decision network is to maximize the value function Q(s, a) of the output
action, so the loss function loss = −Q(s, μ(s; θμ)) can be used to update parameter θμ.
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The target network uses a soft update method to update the network parameters θμ’

and θQ’.
{

θμ′ = (1 − τ)θμ′ + τθμ

θQ
′ = (1 − τ)θQ

′ + τθQ
(6)

where τ is the update parameter, which is generally taken relatively small, that is, the
parameter is updated a little each time, the training is more stable, and the convergence
is better.

3 Problem Description

3.1 Parameter Space Settings

Aiming at the problem of trajectory planning of hypersonic aircraft, this paper regards
the aircraft as a mass point, and establishes a system of motion equations for the center
of mass. The basic state parameters selected in this paper are as follows:

s = [
Vx,Vy, ex, ey

]
(7)

where Vx and Vy are the speed components of the aircraft, including the magnitude
and direction of the speed; ex and ey are the distance error informations between the
aircraft and the target point, which is beneficial to improve the generalization of the
neural network.

According to the definition of the control quantity in the established motion model,
the normal overload ny is selected as the action parameter. Limited by the lift, drag,
engine thrust and structural strength of the aircraft, there is a maximum overload limit
ny ∈ [−Nmax, Nmax]. Nmax is the maximum overload.

The three-dimensional climbing state space is defined as s = [θ , ψv, x, y, z], the
action space is defined as a = [ny,nz], and the maximum overload constraint is satisfied
ny,nz ∈ [−Nmax, Nmax].

3.2 Reward Function Settings

For the aircraft climbing maneuver task in the longitudinal plane, this paper designs
the termination reward function and the flight evaluation reward function, and uses the
positive reward to promote the learning of the agent.

Termination reward function is following. The goal of the aircraft maneuvering
decision is to guide to the target point, and the conditions that define the completion of
the guidance task are as follows:

|Xend − XT | ≤ Dmin (8)

where Xend is the position of the aircraft at the end time, XT is target x location, Dmin is
the maximum allowable off-target amount.
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Set the task completion flag to done, and the description of the termination reward
is shown as follows:

rtermin =
{
10 if done

0 else
(9)

Flight evaluation reward function is listed as following. The autonomous guidance
of the aircraft is a difficult exploration problem. Only setting the sparse return such as
the termination reward is difficult to learn, and the algorithm is even more difficult to
converge. Therefore, setting the flight evaluation reward function can better guide the
aircraft to the target position. The specific form is as follows.

rposition =

⎧
⎪⎪⎨

⎪⎪⎩

Dt − Dt+1

�Tvmax
Dt > Dt+1

2(Dt − Dt+1)

�Tvmax
Dt ≤ Dt+1

(10)

where Dt and Dt+1 are the distance between the aircraft and the target point at t and t
+ 1 time, respectively; ΔT is the decision-making cycle; vmax is the maximum flight
speed of the aircraft.

Overall, the total reward function R used for climbing and diving training is shown
below:

R = rtermin + rposition (11)

For the fixed altitude cruise task, that is, the stable flight height and the ballistic inclina-
tion, so this paper designs a reward function for the altitude deviation and the ballistic
inclination deviation. yT is target y location.

⎧
⎨

⎩

r�y = −|y − yT |
�ymax

r�θ = − sin|θ |
(12)

The total reward function used in the cruise task at fixed altitude is shown below:

R = r�y + r�θ (13)

The three-dimensional space climbing reward function adds a reward function rΔz to
the original reward function in the longitudinal plane to eliminate the z-direction error,
and the specific expression is as follows. zT is target z location.

r�z = − |z − zT |
max|z − zT | (14)
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Table 1. Network Hyperparameter Settings

Hyperparameter Font size and style

Policy network learning rate 0.00001

Evaluate network learning rate 0.0001

reward decay factor 0.99

Soft update parameters 0.001

batch sample size 128

Experience buffer size 100000

4 Emulation Proof

4.1 Analysis of Training Results

Network Hyperparameter Settings is following (Table 1).
In order to reduce the size of the exploration space and accelerate the learning of

the neural network, the size of the aircraft flight airspace is set to 70 km × 15 km, and
the normalization method is used to integrate the input state data and action data into
a dimensionless quantity to prevent the gradient explosion of the neural network. In
the DDPG algorithm, in order to enable the agent to find a better strategy, exploration
noise is added to the actions output by the actor network. This paper considers adding a
simpler and easier to implement Gaussian noise.

After about eight hours of training, the algorithm is turning stable, the reward func-
tion gradually rises to a stable value, the loss function of the policy network gradually
decreases and becomes stable, and the neural network tends to converge, which indi-
cates that the maneuvering strategy of the aircraft is gradually optimized and tends to
stabilize. The following figures are the reward functions and loss graphs for different
tasks (Figs. 3, 4 and 5).

reward function curve                                 Policy Network loss curve 

Fig. 3. Climbing section training convergence process curve
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reward function curve                                 Policy Network loss curve 

Fig. 4. The curve of the training convergence process in the cruise segment

     reward function curve                          Policy Network loss curve 

Fig. 5. Convergence process curve of 3D climbing training

4.2 Longitudinal Plane Simulation Test

Climb Simulation Test

Taking the trained climbing strategy network, and carrying out a large number of sim-
ulation tests, the initial position of the aircraft is x = 0, and the height y is randomly
generated within 5000–10000 m. A total of 1000 tests are carried out. The end point
distribution of the aircraft is shown in Fig. 6.

The aircraft successfully flew 803 times within the target range required by the
mission, with a success rate of 80.3%, including 165 times within 100 m and 174 times
within 50m, effectively completing the preset mission requirements. The simulation test
results are as follows (Table 2 and Fig. 7).

From the simulation results of the four representative samples, it can be seen that the
aircraft can fly from the starting point to the given target point. In the untrained airspace,
the strategy network also has good performance and good generalization ability.

Constant Altitude Cruise Simulation Test

If taking the trained aircraft’s constant-altitude cruise strategy model for simulation
testing, and randomly generate the initial ballistic inclination in the range of −2° to
2° to reflect the performance of the trained strategy network. The ten random test flight
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Fig. 6. Climbing simulation test shooting chart

Table 2. Four representative sample simulation test results.

Initial position (x,y)/km Distance from target point/m Flight duration t/s

(0,5) 137.54 47.26

(0,7) 202.81 47.03

(0,9) 47.32 46.85

(0,10) 308.40 46.84

Fig. 7. Four representative sample flight trajectories

trajectories are shown in Fig. 8. It can be seen from the figure that starting from a random
ballistic inclination, it can return to the cruising altitude within 20 s and continue to
maintain a high cruise, and the maximum altitude difference does not exceed 150 m.

Two groups of representative samples are selected, and the initial ballistic inclination
is −2° and 2°, the change of ballistic inclination and overload during flight are shown
in Fig. 9.
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Fig. 8. Random ballistic inclination test flight height change curve

Fig. 9. Change curve of ballistic inclination and overload during initial angle flight

It can be seen from the figure that the aircraft immediately makes a decision based
on the current ballistic inclination, executes the maximum overload to quickly correct
the current ballistic inclination, then gradually reduces the maneuvering overload to
smoothly return the aircraft to the predetermined cruise altitude, and finally maintains a
constant overload and constant altitude cruise.

In order to verify the generalization performance of the policy network, set the flight
task: keep cruising from the current cruising altitude of 11 km to the target altitude of
12 km, and the results are shown in Fig. 10.

By the given data, it is obvious that the aircraft maintains a cruise at an altitude of
12 km for about 50 s, which proves that the network has a certain generalization ability.
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Fig. 10. The generalization test results of the cruise policy network

3D Space Climb Training Test

The trajectory planning is shown in Fig. 11. By the given figure, we can conclude that
due to the fast flight speed and the large turning radius, the flight with the maximum
normal overload is required for the whole journey. However, the decision-making ability
of the policy network also needs to be further improvements.

Fig. 11. Schematic diagram of ballistic planning

Loading the converged neural network into the algorithm model and perform 1000
random tests, the initial position of the aircraft is randomly generated within the range
of 2 km × 5 km on the plane, and the position of the target point is fixed as (70 km, 15
km, 0). The horizontal coordinate is the number of tests and the vertical coordinate is
the distance between the end position of the aircraft and the target point.

Figure 12 shows that 933 times the flight of the 1000 tests reached the target within
100 m, which means a success rate of 93.3% and it effectively completed the preset task.
The result proves that the trained policy network enables the aircraft to have a certain
autonomous flight ability and a certain generalization ability.



58 X. Ma et al.

Fig. 12. Random test results

5 Conclusion

This paper conducts simulation training on three maneuvering situations of climb-
ing, cruising. Finally, in order to further study the decision-making model in the
three-dimensional space, the vertical plane climbing motion is extended to the three-
dimensional space, and the simulation training is continued. The conclusions of this
paper are as follows:

(1) State space, action space and different reward functions are designed for climb-
ing, cruising The reward function avoids the sparse reward problem in deep
reinforcement learning and enables the aircraft to learn an optimal strategy.

(2) For different tasks, the use of the DDPG algorithm proposed in this paper to make
autonomous flight maneuver decisions for hypersonic aircraft, which can provide
the ability that the aircraft learn a set of strategies to guide the aircraft to fly to the
target point without any prior knowledge. Additionally, since the terminal distance
error could meet the mission requirements, the autonomy of the maneuvering con-
trol of the aircraft is effectively improved, and the simulation test proves that the
algorithm has a certain generalization.
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