
Resource Management in Cloud Computing
Using Deep Reinforcement Learning: A Survey

Yuxin Feng(B) and Feiyang Liu

AVIC, Xi’an 710068, China
609369689@qq.com

Abstract. Next generation aircrafts will not only require high-performance and
intelligent computing capabilities, but also a fast design-developing-integration-
update time cycle. Cloud computing technology provides a platform with large
amounts of hardware resources and software services, making applications devel-
opment and deployment much more convenient. Thus, airborne cloud computing
becomes an important design methodology for next generation avionics system.
However, the dynamic and uncertain cloud environment makes efficient resource
management very complicated. Due to the characteristics of dynamic autonomous
decision-making, deep reinforcement learning has become a promising resource
scheduling algorithm. This paper firstly analyzes the requirements of airborne
cloud computing systems, then studies the basic theory of cloud resources man-
agement and scheduling strategies. The resource management algorithms based
on deep reinforcement learning (DRL), some commonDRLmodels, experimental
platforms, and evaluation parameters are introduced in details. Finally, some crit-
ical problems and challenges in the design of DRL-based resource management
algorithm are summarized. This paper can provide some technique supports for
the airborne cloud computing system.

Keywords: Airborne computing system · Cloud computing · Resource
management · Deep reinforcement learning

1 Introduction

Avionics system is a common information processing platform in an aircraft. It can pro-
vide shared computation resources among different software applications in the form of
central processing module. With the fast development of sensor systems, such as high-
definition radio-frequency radar, optical radar, and distributed aperture system (DAS),
next generation aircrafts must have high-performance and intelligent computing capabil-
ities to processing the surged information. Meanwhile, the design time and full lifecycle
cost of a new aircraft increase significantly recent years, next generation aircrafts should
also improve the utilization of resources and speed up the design-developing-integration-
update time cycle. Cloud computing is a widely used technology in commercial comput-
ing systems, it can provide an efficient platformwith large amounts of hardware resources
and software services, making applications development and deployment much more

© Chinese Aeronautical Society 2023
Chinese Society of Aeronautics and Astronautics: CASTYSF 2022, LNEE 972, pp. 635–643, 2023.
https://doi.org/10.1007/978-981-19-7652-0_56

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-7652-0_56&domain=pdf
https://doi.org/10.1007/978-981-19-7652-0_56


636 Y. Feng and F. Liu

convenient. Thus, airborne cloud computing becomes an important design methodology
for next generation avionics systems [1].

Cloud computing systemprovides a shared pool of configurable computing resources
(e.g. networks, servers, storage, applications, services) that can be rapidly provisioned
and released with the minimal management effort or interaction. Resource management
is one of the key technologies in cloud computing. However, the dynamic and uncertain
cloud environment makes efficient re-source management very complicated. With the
continuous development of machine learning, researchers gradually use various algo-
rithms to deal with the resource allocation. Reinforcement learning, is a special machine
learning method that can be trained without a priori knowledge, and its policies are
dynamically adaptive, which is very suitable in resourcemanagement. This paper studies
the basic theory of cloud resources management and scheduling strategies, and analyzes
the resource management algorithms based on deep reinforcement learning (DRL). It
can provide some technique supports for the design of airborne cloud computing system.

2 Resource Management

2.1 Overview of Could Computing and Its Scheduling

In the cloud computing system, storage and computing resources are centrally placed in
a public cloud resource pool, enabling customers to access them in a convenient, pay-as-
you-go manner over the network. Cloud resource pools are the core of cloud services.
Virtualization of cloud services is a major way to implement cloud computing to build
resource pools [2]. Resource management requires the optimal utilization of virtual
resources and efficient management of runtime resources to provide application-based
services that meet the needs in a cost-effective manner.

Resource scheduling in cloud computing is divided into three layers: scheduling
resources for applications, scheduling virtual resources (e.g. virtual machines) to phys-
ical resources, physical resource scheduling and real applications. Moreover, at each
layer there can be several different objectives for optimization. In the case of resource
management, for example, at the virtual resource layer, load balancing can be optimized,
resource utilization such as CPU and memory shares can be improved, in addition to
cost efficiency or energy savings. Therefore, the cloud resource management problem
can be abstracted as a combinatorial optimization problem. A certain path or rule is used
to obtain a solution that satisfies the user’s requirements.

2.2 Cloud Resource Management Optimization Objectives

The cloud resource management scheduling problem is actually an optimization prob-
lem. The optimization objective, then, is closely related to the performance of the cloud
computing resource scheduling system. Researchers often use SLA and QoS parameters
as optimization parameters in resource scheduling, which can ensure that the require-
ments of SLA agreements are met, avoid violating the terms of the agreements, and
efficiently integrate and allocate effective resources in the data center. From the cloud
service provider’s perspective, load balancing, resource utilization, and energy efficiency



Resource Management in Cloud Computing Using Deep 637

are the most important goals in task scheduling. Specifically, the optimization objectives
of cloud resource management can be divided into four areas: energy optimization, time
optimization, load balancing optimization, and other optimizations. Specifically, they
are described as follows.

(1) Energy consumption optimization. It can be summarized into two categories, total
energy consumption and energy utilization (energy efficiency). Energy consumption
minimization is a common optimization objective in the literature.

(2) Time-related optimization. The timemetrics for scheduling in cloud computing can
be summarized into four types, including maximum completion time (execution time),
delay time, response time, and waiting time. The optimization goals for cloud resource
management are usually minimization of completion time, minimization of delay time
(or delayed service), and minimization of response time.

(3) Load balancing optimization. Depending on the load object, the load balancing
metrics are divided into two types: task volume load balancing and task number load
balancing. The degree of load balancing can also be divided into two types of cumulative
load balancing and real-time load balancing according to the time period. Maximizing
load balancing is the usual optimization goal. In the literature, there are various functions
used to calculate the degree of load balancing, such as variance or standard deviation,
average success rate, coefficient of variance, load value and imbalance.

(4) Other optimization. It mainly includes resource utilization maximization, resource
utilization minimization, etc.

2.3 Resource Management Strategies

Existing resource management methods can be divided into two main categories, tradi-
tional methods and intelligent methods. Traditional methods focus on adapting and
extending traditional scheduling methods that rely almost entirely on manual com-
putation, such as First In First Out (FIFO), shortest job first (SJF), First Come First
Serve (FCFS), Round Robin (RR), Minimum-Minimum (Max-Max), and Maximum-
Minimum(Max-Min). In [3],Xu et al. proposed amulti-workflowmulti-QoSconstrained
scheduling policy (MQMW) for cloud computing. In [4], Li et al. developed a system
cost function for jobs and a non-preemptive priority M/G/1 queuing model to help the
policy and algorithm obtain the approximate optimal service value for each job. These
scheduling algorithms are effective for a wide range of resource management problems.
However, they can only support a limited number of parameters for optimization. In a
cloud environment, many parameters need to be optimized simultaneously, intelligent
algorithms should find the optimal solution.

Intelligent algorithms, on the other hand, are based on mimicking natural body algo-
rithms, mainly ant colony algorithms, simulated annealing methods, particle swarm
optimization, and genetic algorithms, which are capable of optimizing multiple param-
eters simultaneously. Reference [5] aims to minimize three conflicting objectives, i.e.,
completion time, resource utilization, and execution cost. For this purpose, a multi-
objective optimization problem is proposed and then a composite discrete artificial bee
colony technique based on epsilon fuzzy dominance is used to derive the Pareto optimal



638 Y. Feng and F. Liu

solution; a method based on multiple swarm GA is introduced in [6]. The method uses
multiple swarm genetic algorithms to solve the load balancing problem, and the method
achieves good results in terms of improving completion time, cost and load balancing.

However, similar to traditional methods, intelligent scheduling methods can lead to
long optimization time and inefficient scheduling. In recent years, with the booming
field of deep learning, cloud resource management through neural networks has become
a major research hotspot. These methods use models such as neural networks to design
scheduling strategies to avoid imbalanced resource allocation.

3 DRL Algorithm for Scheduling in Cloud Computing

Resource scheduling problems are NP-complete or NP-hard problems. Most of the deep
learning-based resource scheduling algorithms are based on supervised learning. These
works use the idea of recent workload to predict the current/future workload. Their main
goal is to minimize the number of servers or virtual machines to save energy and reduce
costs. After supervised learning, reinforcement learning is the second most prevalent
approach to exploration. Most existing algorithms require hand-crafted rules that are
difficult to adapt to complex and dynamic systems. In recent years, researchers have
found that reinforcement learning (RL) ideas are very suitable for resourcemanagement.
Reinforcement learning is a special machine learning method that can be trained without
prior knowledge and is well suited for applications in cloud environments where labeled
data is difficult to obtain (Fig. 1).

Fig. 1. Framework of resource management using deep reinforcement learning.

DeepRM [7] is the first DRL-based resource scheduler with a policy gradient rein-
forcement learning algorithm designed to schedule hierarchical jobs to heterogeneous
resources and applied to a SoC chip scheduling simulator. However, resource man-
agement aims at minimizing the completion time of individual jobs, which can only



Resource Management in Cloud Computing Using Deep 639

correspond to a simple scenario. Later DeepRM_Plus [8], based on DeepRM, instead
uses a network structure with six layers of convolutional neural networks to describe
a decision mapper, which is based on the great success of DNNs for image process-
ing. In DeepRM_Plus, data center clusters, waiting queues and to-do queues constitute
the state of the environment, which uses hash codes as input state and reduces the size
of the state space. The follow-up work of DeepRM Decima [9] in order to solve the
scheduling problem of multiple Directed Acyclic Graph (DAG) tasks when running on
multiple Executor. It uses a scalable GNN to represent the scheduling policy and can
handle DAG-like tasks of arbitrarily large shape and size. However, the limitation is that
it mainly provides performance for clustered applications on similar resource scheduling
targets. DeepSoCS [10] extends the Decima architecture to schedule SoC jobs in DS3
by applying heuristic algorithms to map tasks to available resources. However, it has
limited performance at faster job injection rates.

In recent years, DRL has shown superior performance in the current research on
cloud computing resource management. QEEC [11] is a Q-learning based task schedul-
ing framework for energy-efficient cloud computing, it uses Q-value tables to represent
decision makers for actions. According to the operating state and task characteristics
of the cluster environment, [3] uses deep Q learning to solve the CPU-GPU heteroge-
neous computing scheduling problem. RLPAS [12] introduced an algorithm based on the
SARSA model, which was used for resource scheduling in cloud environments. RLPAS
uses the idea of parallel multi-agent algorithm to learn from the environment and allocate
resources to different tasks, thereby improving resource utilization, shortening response
time and improving throughput.

At the core of RL is a policy mapper for cloud scheduling. In cloud scheduling
using RL, the policy mapper is usually represented by a deep neural network or Q-
table. Table 1 summarizes some of the applications of RL in cloud computing resource
scheduling, including the resources scheduled, the task types, the RLmodel tuning used,
and so on. It can be seen that the cloud resource scheduling environment is complex,
heterogeneous and dynamic. In the use of resources, virtual machines, CPU, memory
and other resources are used. DQN and Q-learning become the first choice of most
researchers in algorithm selection.

4 Experiment and Evaluation

Experimentation and evaluation are important aspects to verify the effectiveness of algo-
rithms. This section summarizes the direction of the selection of experimental datasets,
experimental platforms and evaluation metrics for resource management algorithms
based on reinforcement learning by categorizing and summarizing.

4.1 Experimental Datasets

Common datasets in the papers include GoogleCluster, Alibaba Cluster Data, Google-
TaskEvents and Azure’s scheduling dataset. The GoogleCluster dataset contains data on
resource requirements and availability of tasks and virtual machines. The GoogleClus-
ter dataset contains data about the resource requirements and availability of tasks and



640 Y. Feng and F. Liu

Table 1. Summary of resource scheduling algorithms based on deep reinforcement learning.

Algorithm Resource Task type DRL Model

W-FCFS [13] VMs Burst workload management Q-learning

TSMRL [14] VMs Scheduling customers requests in
dynamic cloud environments

NFQ-based

CDDQLS [15] VMs Task Scheduling in cloud
computing environments

DQN

DeepRM2 [16] CPU, Memory Resource scheduling DQN

SchedRL [17] VMs, CPU, Mermory VM scheduling in a Non Uniform
Memory Access architecture
(NUMA)

DQN

DRL-LSTM [18] VMs Automated task scheduling Q-learning

virtual machines. Google Cluster consists of many machines connected by high-speed
networks. The dataset includes 670,000 logging traces, which record about 40 million
task events over 30 days for over 12,000 machines. Google traces contains production
workload scheduling requests for 29 days. Alibaba Cluster Data contains production
traces for 4k machines over 8 days. Both contain the CPU/memory numbers used by
each workload at a granularity of 5 min, as well as scheduling details such as priority,
class, and raw resource requests.

4.2 Experimental Platform

The right simulation platform has a very important impact on the effective verifica-
tion of algorithms. The more commonly used cloud computing platform in the papers
is CloudSim, in addition to PlanetLab, RapidMiner Studio, Pegasus Toolkit, and Xen
hypervisor, which are also partially used.

CloudSim is an open-source framework, which is used to simulate cloud computing
infrastructure and services. It is developed by theUniversity ofMelbourne, and is written
entirely in Java. It is used for modelling and simulating a cloud computing environment.
It can facilitate several cloud related processes such as data center definition, resource
definition and scheduling method simulation. It also has several predefined examples
and scenarios that can be modified based on algorithms. The PlanetLab project allows
researchers to experiment with new services in real-world conditions and at large scale.

4.3 Experimental Metrics

Typically, energy consumption, time cost and load balancing are the main bases for
evaluating the performance of scheduling algorithms in cloud computing. Resource
scheduling based on intelligent algorithms can be measured in terms of cost, time,
utilization, energy awareness, completion time, scalability, workload management, and
profit. Specifically, [19] uses a combination of utilizationmetrics such asCPUutilization,



Resource Management in Cloud Computing Using Deep 641

average CPU utilization, RAM utilization, and average RAM utilization to evaluate
the system performance, and [13] evaluates the scheduling strategy by calculating the
standard deviation of the average resource utilization. in addition to this, [20] evaluates
the effectiveness of the strategy by convergence speed. [14] evaluates the average load
by load performance of the system. The SLA specifies the QoS content such as response
time, reliability, and security of cloud services, so it can be said that SLA is a very
important criterion for resource scheduling.

5 Research Challenges

The dynamic and uncertain characteristics of the cloud environment make the resource
scheduling very complicated. Due to its characteristics of active learning and adaptive
strategy, deep reinforcement learning is more and more applied in the design of cloud
resource scheduling and management algorithms. However, the resource scheduling
algorithm should also consider the following issues.

SLA violation.When designing the algorithm, the workload and energy efficiency bal-
ance should be fully considered to meet the requirements of SLA and QoS as much as
possible.

Virtual machine management. Virtualization brings challenges to resource manage-
ment, so the migration and placement of virtual machines and the creation of instances
have a significant impact on algorithm performance.

Scalability. Resource can be scaled to manage demand extensively. Algorithms to meet
different resource requirements as much as possible.

Fault tolerance.Whenone server fails, the algorithm should be able to shift theworkload
to another server to ensure the user’s mission needs.

Complexity. The resource scheduling algorithm needs to optimize multiple objectives
at the same time, so the execution time and computing power should be reduced as much
as possible while meeting the needs of customers.

Energy consumption.Energy-efficient algorithms not only save costs, but also help data
center communication systems reduce carbon emissions and protect the environment.

6 Conclusion

Next generation aircrafts will use airborne cloud computing system as an efficient infor-
mation processing platform with large amounts of hardware resources and software ser-
vices, making applications development and deployment much more convenient. Due to
the characteristics of dynamic autonomous decision-making, deep reinforcement learn-
ing has become a promising resource scheduling algorithm to improve the utilization
of resources, which can greatly improve the computing performance and shorten the
design-developing-integration-update time cycle. This paper analyzes the requirements
of airborne cloud computing systems, and summarizes some critical problems and chal-
lenges in the design of DRL-based resourcemanagement algorithm. It will provide some
technique supports for the airborne cloud computing system.



642 Y. Feng and F. Liu

References

1. Jianchun, X., Zhonghua, W., Yahui, L.: The distributed computing framework research
for avionics cloud[C]. In: IEEE International Conference on Networking and Network
Applications, pp. 390–393 (2018)

2. Qin, Y., Wang, H., Yi, S., et al.: Virtual machine placement based on multi-objective
reinforcement learning[J]. Appl. Intell. 50(8), 2370–2383 (2020)

3. Dasjupta, P., Leblanc, R.J., Apple, W.F.: The clouds distributed operating system: Functional
description, implementation details and relatedwork[C]. In: The 8th International Conference
on Distributed, pp. 2–3 (1988)

4. Li, L.: An optimistic differentiated service job scheduling system for cloud computing ser-
vice users and providers[C] 2009. In: Third International Conference on Multimedia and
Ubiquitous Engineering, pp. 295–299 (2009)

5. Gomathi, B., Krishnasamy, K., Bslaji, B.S.: Epsilon-fuzzy dominance sort-based compos-
ite discrete artificial bee colony optimisation for multi-objective cloud task scheduling
problem[J]. Int. J. Bus. Intell. Data Min. 13(1–3), 247–266 (2018)

6. Wang, B., Li, J.: Load balancing task scheduling based on multi-population genetic algorithm
in cloud computing[C]. In: 2016 35th Chinese Control Conference (CCC), pp. 5261–5266
(2016)

7. Mao, H., Alizadeh, M., Menache, I. et al.: Resource management with deep reinforcement
learning[C]. In: Proceedings of the 15th ACMWorkshop on Hot Topics in Networks, pp. 50–
56 (2016)

8. Zhang, Y., Yao, J., Guan, H.: Intelligent cloud resource management with deep reinforcement
learning[J]. IEEE Cloud Comput. 4(6), 60–69 (2017)

9. Mao, H., Schwarzkopf, M., Venkatakrishnan, S.B., et al.: Learning scheduling algorithms
for data processing clusters[G]. In: Proceedings of the ACM Special Interest Group on Data
Communication, pp. 270–288 (2019)

10. Sung, T.T., Ha, J., Kim, J. et al.: Deepsocs: a neural scheduler for heterogeneous system-on-
chip (soc) resource scheduling[J]. Electronics 9(6), 936 (2020)

11. Ding, D., Fan, X., Zhao, Y., et al.: Q-learning based dynamic task scheduling for energy-
efficient cloud computing[J]. Futur. Gener. Comput. Syst. 108, 361–371 (2020)

12. Bibal Benifa, J., Dejey, D.: Rlpas: Reinforcement learning-based proactive auto-scaler for
resource provisioning in cloud environment[J]. Mob. Netw. Appl. 24(4), 1348–1363 (2019)

13. Balasubramanian, V., Aloqaily, M., Tunde-onadele, O., et al.: Reinforcing cloud environ-
ments via index policy for bursty workloads[C]. In: NOMS 2020–2020 IEEE/IFIP Network
Operations and Management Symposium, pp. 1–7 (2020)

14. Balla, H.A., Sheng, C.G., Jing, W.: Reliability-aware: task scheduling in cloud computing
using multi-agent reinforcement learning algorithm and neural fitted Q.[J]. Int. Arab J. Inf.
Technol. 18(1), 36–47 (2021)

15. Swarup, S., Shakshuki, E.M., Yasar, A.: Task scheduling in cloud using deep reinforcement
learning[J]. Procedia Comput. Sci. 184, 42–51 (2021)

16. Ye, Y., Ren, X., Wang, J. et al.: A new approach for resource scheduling with deep
reinforcement learning[J] (2018). arXiv:1806.08122

17. Sheng, J., Hu, Y., Zhow, W. et al.: Learning to schedule multi-NUMA virtual machines via
reinforcement learning[J]. Pattern Recognit. 121, 108254 (2022)

18. Rjoub, G., Bentahar, J., Abdel Wahab, O., et al.: Deep and reinforcement learning for auto-
mated task scheduling in large-scale cloud computing systems[J]. Concurr. Comput.: Pract.
Exp. 33(23), e5919 (2021)

http://arxiv.org/abs/1806.08122


Resource Management in Cloud Computing Using Deep 643

19. Yu, Z., Machado, P., Zahid, A., et al.: Energy and performance trade-off optimization in
heterogeneous computing via reinforcement learning[J]. Electronics 9(11), 1812 (2020)

20. Chou, Q., Fan, W., Zhang, J.: A reinforcement learning model for virtual machines consoli-
dation in cloud data center [C]. In: 2021 6th international conference on automation, control
and robotics engineering (CACRE), pp. 16–21 (2021)


	Resource Management in Cloud Computing Using Deep Reinforcement Learning: A Survey
	1 Introduction
	2 Resource Management
	2.1 Overview of Could Computing and Its Scheduling
	2.2 Cloud Resource Management Optimization Objectives
	2.3 Resource Management Strategies

	3 DRL Algorithm for Scheduling in Cloud Computing
	4 Experiment and Evaluation
	4.1 Experimental Datasets
	4.2 Experimental Platform
	4.3 Experimental Metrics

	5 Research Challenges
	6 Conclusion
	References




