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Abstract. Gaseous pollutant source identification is important to protect passen-
gers from infectious agents in aircraft cabins. Current identification method may
either suffer from numerical instability or require extensive prior knowledge. This
paper proposes an offline inverse model, which needs no iterations to identify the
locations and release profiles of multiple gaseous pollutant sources. The model
first uses airflow field in the domain to construct a transport probability matrix by
Markov chain, which contains the probability of pollutant transports through faces
in each cell. Then the transient concentration responses at the monitoring points
of a unit impulse releases from each candidate source can quickly be predicted by
the transport probability matrix, to construct another matrix describes the relation
between the source releases and the monitored concentrations. Finally, Tikhonov
regularization is used to inverse thematrix for identification. The abovemodel was
applied on a two-dimensional aircraft cabin with gaseous pollutant released from
two passengers. Results showed that the proposed model could correctly repro-
duce the detailed travel path of pollutant transport, as well as identify the locations
and release profiles of multiple pollutant sources. More than 90% decrease of the
computing time as compared with the conventional CFD method showed that the
proposed model had high efficiency.
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1 Introduction

The outbreak of Corona Virus Disease 2019 (COVID-19) in recent years increases the
demand for gaseous pollutant source identification in aircraft cabins, to protect inside
passengers from being infected. Pollutant source identification is an inverse problem
that determines causal information from certain consequences, since outcomes such as
continuing pollutant concentrations at the monitoring points, are always known as prior
information to determine the pollutant sources.

Currently, a number of CFD based inverse models have concentrated on indoor
gaseous pollutant source identification, which can be divided into forward methods and
backward methods. Forward methods construct a number of candidate sources to find
the one that makes the pollutant concentrations at typical points coincide best with that
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from the actual sensors, while backward methods directly reverse the flow to determine
the source, by solving the N-S equations with a negative time step or a reversed airflow
field. For the first strategy, Azimi andDaneshgar [1] proposed an inverse zonal method to
optimize a defined objective function by iterations; Sohn et al. [2] applied Bayesian app-
roach, which first builds numbers of scenarios contained hypothetical pollutant sources
in the pre-event stage, then compares concentrations between the model simulations
and actual sensor monitoring data by Bayesian statistics to determine the actual source
in the second stage. Similar methods such as Neural Network [3], probability-based
adjoint method [4] and that proposed by Cai et al. [5] were also used to identify the
sources. Generally, forward methods have moderate computing efficiency, since all the
candidate source locations and release strengths as well as the corresponding monitored
concentrations are required to be known before the identification.

To further increase the source identification speed, some researchers turn to the back-
ward method. For example, Zhang and Chen proposed quasi-reversibility (QR) method
[6] and pseudo-reversibility (PR) method [7] for pollutant source identification. The
former method reverses the time-marching direction of the pollutant transport equation,
while the latter one reverses the airflow instead. Results showed that although PRmethod
had less prior knowledge and was more stable, the accuracy was slightly worse than QR
method. To balance the computing efficiency and stability, we raised an inverse model to
identify multiple sources in indoor environments, which builds a matrix that describes
the relation between the release rates of all the candidate sources and the monitored
concentrations for inversion [8, 9]. However, to construct the matrix, a large number of
pollutant transport equations need to be solved by CFD for preparation.

Several methods were also proposed to accelerate the solution speed for pollutant
transport equations, such as FFD [10], which approximately replaces the diffusion and
advection terms in N-S equations with other schemes that can decouple the pressure
and velocity in CFD iterations to improve the computing efficiency. But the method
still needs online iterations to obtain a convergent solution. Markov chain model has
developed in indoor environment recently. Themethod constructs a transport probability
matrix by determining the possibility of pollutant transports through faces in each cell,
then the pollutantmovement can be predicted by thematrixwithout iterations. Nicas [11]
used the method to describe the gaseous pollutant dispersion in an indoor environment;
Chen et al. [12] further applied the method on transient particle transport prediction.
However, currently few studies have concentrated the method on inverse identification
of the indoor pollutant sources. Although Zeng et al. [13] proposed a Markov-chain-
based inverse modeling to identify the location and release rate of a pollutant source,
the study only identified a single pollutant source, and the identification was applied in
a multi-zone model, in which the detailed travel path of pollutant could not be obtained.
This paper proposes a model that combined Markov chain and Tikhonov regularization,
which is capable of reproducing the detailed travel path of pollutant transport, as well as
identify the locations and release profiles of multiple pollutant sources in aircraft cabins.
Solution speed and accuracy will be discussed in the paper for evaluation of the proposed
model.
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2 Methods

2.1 Construction of a Pollutant Transport Probability Matrix

The proposedmodel first usesMarkov chain to construct a pollutant transport probability
matrix for source identification. With a known airflow field, the probability of pollutant
remains in the current cell can be obtained as [12]:

pi,i = exp

(
−

∑
Qi,nbhd

Vi
�t

)
(1)

where pi,i is the probability of pollutant remains in the current ith cell,
∑

Qi,nbhd is
the sum of the airflow rate from the ith cell to the neighboring cells, which can be
obtained from the airflow field in the domain, Vi is the cell volume, �t is the time step.
Equation (1) can be derived from a mass balance equation that describes variation of the
pollutant amount in one cell in a certain time step must be equal to the sum of amount of
pollutant that transports to other cells in this time step. Suppose that the probability of
pollutant transports from one cell to another is proportional to the airflow rate through
the corresponding adjacent face, then the probability of pollutant transports from the ith
cell to the jth, denoted by pi,j in this study, can be solved as [12]:

pi,j = Qi,j∑
Qi,nbhd

(
1− pi,i

)
(2)

where Qi,j means the airflow rate from the ith cell to the jth cell.
With the known pi,i and pi,j, the transport probability matrix can be constructed, in

which pi,j is the element in the ith line and jth column. Totally nn elements are contained,
where n is the cell number in the domain used by CFD.

2.2 Identification of Multiple Pollutant Sources

The matrix P contains the probability of pollutant both remains in the current cell and
transports to the adjacent cells, hence the pollutant amount field after k time steps Mk
can easily be obtained by the matrix as:

Mk = M0P
k (3)

where M0 represents the initial pollutant amount field, which can be obtained by
multiplying the initial pollutant concentration in each cell and the corresponding cell
volume.

With Eq. (3), the concentration responses at the monitoring points of a unit impulse
that releases from each candidate source can be predicted. For a candidate source, con-
centrations at a monitoring point that are contributed by this source can be written
as:

⎡
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where cjk,i in the vector cji on the left hand side of Eq. (4) represents the contributed

concentrations at the jth monitoring point of the ith source at the kth time step, cjp,k,i in

the matrix Aj
i means the concentration responses at the jth monitoring point of a unit

impulse that releases from the ith source at the kth time step, sk,i in the vector si means
the release strength of the ith source at the kth time step. For all the candidate sources,
the monitored concentrations at the jth point can be derived as:

cj=
m∑
i=1

cji=
m∑
i=1

Aj
isi (5)

where cj is the concentration responses at the jth point due to all them candidate sources.
To make all the matrices Aj

i construct a square matrix, concentrations of m monitoring
points should be known, then Eq. (5) can be formulated into:

C=AS (6)

whereC = [c1, · · ·, cj, · · ·, cm]T, which contains concentrations atmmonitoring points,
S = [s1, · · ·, si, · · ·, sm]T, which contains release strengths of m sources, A represents
the whole square matrix on the right hand side of Eq. (5). Equation (6) illustrates that
the monitoring points number should be equal to the candidate sources number for
dimension balance.

To identify S in Eq. (6) with a known C, A should be inversed. However, A is
proved to be an ill-conditioned matrix for pollutant source identification. So, Tikhonov
regularization is introduced to stabilize the ill-conditioned matrix inversion as [9]:

S =
(
ATA+ λ2LTL

)−1(
ATC

)
(7)

where λ is the regularized parameter and L is the regularized matrix, both used to
adjust the strength of regularization. Finally, locations and release strengths of the actual
sources can be obtained by excluding the candidate sources that are determined to have
approximate zeros of release strengths. With the monitored concentrations at several
points and the airflow field as prior knowledge, no iterations are involved both in the
transport probabilitymatrix construction process and in the source identification process,
hence the proposed model is an offline model.

3 Case Description

The proposed model was applied on half of a full-scale aircraft cabin for validation,
as shown in Fig. 1a. The model has an inlet on the side wall near the ceiling, and an
outlet near the floor, with three passengers seated inside. Three small circles above
the passengers represent their nasal orifices, which are all supposed to be the candidate
sources, denotedbyS1, S2 andS3 from left. S1 andS2are twoactual sources, their release
strengths are: S1 releases constantly with 100 ppmkg/(m2s) for 2.5 s from the beginning,
and S2 releases a sinusoidal wave for 2.5s with the peak value of 200 ppmkg/(m2s) from
the beginning. Both locations and release strengths of the actual sources are unknown
before identification.
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Fig. 1. Configuration of the cabin and prior knowledge for the proposed model: a the cabin; b
the airflow field obtained by CFD; c the monitored concentrations at P1, P2 and P3.

Table 1. Boundary conditions for the aircraft cabin.

Item Value (°C) Item Value

Ceiling temperature 22 Passenger surface temperature 30.3 °C

Side wall temperature 22 Air supply velocity 1.2 m/s

Luggage surface temperature 21 Air supply temperature 19.5 °C

Floor temperature 23 Turbulence intensity 10%

Prior knowledge for identification by the proposed model is the airflow field in the
cabin and concentrations at themonitoring points whose number is equal to the candidate
sources number, bothwere obtained byCFD in this study. Totally 5596quadrilateral grids
were generated in the cabin model, which has been verified by the grid independence.
Boundary conditions are listed in Table 1, consistent with our previous study [14]. The
turbulent flows were resolved with the renormalization group (RNG) k-e model with
enhanced wall treatment, since y + for almost all the cells is less than 5. To solve the
N-S equations, SIMPLE was selected as the pressure-velocity coupling algorithm, and
PRESTO was selected for discretization of the pressure, Power Law for the momentum,
while second-order upwind scheme was used for other variables. In addition, a time
step size of 0.01 s was set to capture the transient features of pollutant transport with
appropriate convergence criterion.

Figure 1b shows the airflow field obtained. The air supplies from the inlet, flows
along the ceiling with the effect of thermal plume on passengers, then goes into the
central seating region, and finally flows to the outlet. Monitored concentrations at three
typical points are shown in Fig. 1c, and the monitored positions are marked in Fig. 1a
with P1, P2 and P3, respectively.
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4 Results

The transport probability matrix constructed in this case contains 5596× 5596 elements,
and the sum of elements in each line is verified to be 1, since the pollutant in each cell
could only transport to other cells or remain in the current cell. With the obtained matrix,
concentration responses at themonitoring points of a unit impulse that releases from each
candidate source can be determined. Figure 2a shows the concentration responses at P2
of a unit impulse releases from S2 obtained by the proposed model and by CFD. The two
profiles have quite similar trends, although the profile obtained by the proposed model
seems to be a little behind that by CFD. The difference probably since that diffusion
is not considered in construction of the transport probability matrix for the proposed
model. Concentration fields at 5 s of the impulse releases from S2 determined by the
two methods are further shown in Fig. 2b and c. Similar distributions can be seen, which
shows that the high accuracy of the proposed model on prediction of the concentration
responses of a unit impulse releases from the candidate sources.
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Fig. 2. Concentration responses of a unit impulse releases from S2: a concentration profiles at P2
obtained by the proposed model and by CFD; b the concentration field obtained by the proposed
model at 5 s; c the concentration field obtained by CFD at 5 s.

Concentration responses for 20 s at 3monitoring points of a unit impulse that releases
from each candidate sourcewere used to construct thematrixA in Eq. (6), which contains
3♦2000 lines and 3♦2000 columns for this case, since the time step size was set as 0.01 s.
Then Tikhonov regularization in Eq. (7) was used for the matrix inversion, in which l is
set as 80 to relieve the ill-condition of the matrix A, who has a huge condition number
of 8.52&#xF0CD;1029. Finally the release profiles of all the candidate sources can be
determined, as shown in Fig. 3. S1 and S2 have obvious strengths, while S3 is almost
zero, illustrates that S1 and S2 are two sources identified by our model. Source locations
identified are consistent with the actual ones. Moreover, only slight differences can
be observed when comparing the release profiles with the actual ones, shows that the
proposed model could correctly identify the release strengths of multiple sources.

Computing time for the proposedmodel depends on the cells generated in the domain
and the memory of the computer. For the validation case with 5596 cells worked on a
computer with 3.7 GHz of CPU and 32 GB of memory, only less than one minute is
required to construct the transport probability matrix as well as identify the multiple
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Fig. 3. Source strengths determined by the proposed model and its comparison with the actual
release profiles: a S1; b S2; c S3.

sources. However, a few hours are required for CFD only to obtain the concentration
responses of a unit impulse releases from each source, let alone the multiple sources
identification. More than 90% of the computing time can be saved, which shows the
high efficiency of the proposed model.

5 Conclusions

This study proposed an offline method combines Markov chain and Tikhonov regular-
ization to rapidly and correctly identify multiple sources in aircraft cabins. By applying
the model on an aircraft cabin, it is proved that the proposed model is capable of identi-
fying the locations and release strengths of multiple sources, with the airflow field and
concentrations at several monitored positions as prior knowledge. In addition, more than
90% of the computing time can be saved by the proposed model in comparison with the
conventional CFD method, which shows its high efficiency.
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