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Abstract. The large-scale low-speed wind tunnel test system is complex, involv-
ing many equipment, parameters, and data. In order to monitor the state of the
system, quickly determine and locate the cause of the fault when the system is
abnormal. Based on advanced sensors and network technology, this paper mon-
itors the components and parameters of the system in real time. Through the
three-dimensional simulation method, the digital twin system construction of the
wind tunnel system including the model is realized, and the data visualization
method is combined with the machine learning technology to intelligently predict
and diagnose the faults and causes of the test data. Through the research in this
paper, the technical foundation is laid for the construction of the smart wind tunnel
laboratory.

Keywords: Low-speed wind tunnel health monitoring · Fault diagnosis · Digital
twin · Deep learning · Artificial intelligence

1 Introduction

The concept of health monitoring and intelligent diagnosis was first proposed by the
United States in 1998 during the research and development of its F35 joint attack air-
craft, with the purpose of improving the safety and survivability of fighters [1]. Since
then, the failure prediction and health management system has played a big role in the
military field [2], and it has attracted the attention of military powers in the world.
Nowadays, Prognostic and Health Management (PHM) technology has been continu-
ously developed from the original military field to private enterprises [3], and is widely
used in the maintenance of new-generation equipment in the fields of transportation,
equipment manufacturing, power generation, etc. [4]. Such as aircraft, ships, vehicles,
CNC machine tools, etc. Boeing applied PHM technology to civil aviation and devel-
oped an aircraft health monitoring system [5]. The system collects flight status data in
real time, and makes maintenance decisions after failure analysis [6], Maintenance per-
sonnel can log on the website to obtain fault information, and realize the integration of
network system functions [7]. NASA is also studying PHM technology as an important
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part of aviation maintenance [8]. Bai et al. proposed a multi-objective CBM optimiza-
tion method, using PHM technology to systematically balance the relationship between
optimization objectives and find the optimal solution that best represents the decision
maker’s preference [9]. Moussa Hamadache, Joon Ha Jung, etc. based on REB predic-
tion and PHM technology, introduced different bearing failure modes, outlined modern
PHM technology, and explored deep learning methods for bearing fault detection and
diagnosis [10].

The concept of failure prediction and health management has also attracted extensive
attention of domestic scholars [11]. In 2015, based on the monitoring system and data
acquisition, Huang Lili proposed the PHM technology of wind turbine operation and
maintenance data, which is used for the condition assessment and fault diagnosis of wind
turbines, and designed and developed the prototype control system of wind turbine PHM
[10]. Wang Tianyu, Wang Hongdong and others used Bayesian network to establish a
reliabilitymodel, and studied the application of thismodel in PHM, predicting the failure
time of unmanned ships, and monitoring their health in real time [12]. Guo Yangming,
Mi Qi et al. combed the technical connotation of PHM and the system architecture of
avionics, and gave a dynamic reconstruction model of distributed integrated modular
avionics based on PHM, which provided the foundation and guarantee for avionics [13].
Cui Liming applied PHM technology to bearings, and used AR model to extract the
characteristics of bearing degradation trend and predict its service life [14].

The large-scale low-speed wind tunnel test system has a complex composition,
involving many sections and their associated sensors; there are many types of wind
tunnel tests, the test parameters are diverse, the data processing process is complex,
and the test accuracy is extremely high. The use of health monitoring and intelligent
diagnosis technology to carry out intelligent operation and maintenance management of
wind tunnel has important research significance and application value for improving the
stability of wind tunnel operation, wind tunnel test efficiency and test accuracy.

The FL-10 wind tunnel of the AVIC Aerodynaiviics Research Institute is currently
the largest production-type low-speed wind tunnel in China. The size of the test section
is 8 m × 6 m. In this paper, based on this wind tunnel, research work on health mon-
itoring and intelligent diagnosis technology is carried out, and a large-scale low-speed
wind tunnel health monitoring system is built. Its interior covers high-fidelity mod-
els such as factory areas, movable wind tunnel sections, test equipment, test models,
and components based on 3D vision; digital mapping of test equipment and test status
driven by multi-source data fusion such as real-time data and CFD simulation data; use
multi-dimensional sensor network to realize the health monitoring of test equipment
and parameters, realize equipment predictive maintenance, fault detection and diagnosis
through artificial intelligence technology. Finally, a digital and intelligent wind tunnel
management platform with multi-dimensional sensors as the skeleton, artificial intelli-
gence andmachine learning technology as themain body, and digital twin as the terminal
embodiment will be realized.
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2 Design of Health Monitoring System for Large-Scale Low-Speed
Wind Tunnel

2.1 Identification of Wind Tunnel Monitoring Factors

Based on the expert knowledge base and the historical operation experience of the wind
tunnel, the factors of each subsystem and equipment of the FL-10 wind tunnel are
identified, and the key systems and equipment that affect the test efficiency or test data
quality are determined. Itmainly includes power system, cooling system, support system,
wind tunnel body, etc. Health monitoring, fault diagnosis and predictive maintenance
of the above subsystems and their ancillary equipmen, It will improve the reliability of
equipment and facilities, ensure the long-term stable operation of the wind tunnel test
environment to the greatest extent, and provide favorable quality assurance for obtaining
effective and accurate test data.
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Fig. 1. Identification of monitoring factors in FL-10 wind tunnel

2.2 Sensor Arrangement and Networking

Divide the FL-10 wind tunnel according to the system identified in Fig. 1. Arrange
sensors in the key sections of the wind tunnel and the necessary points of the auxiliary
equipment of each subsystem and form a network. The sensormonitoring network covers
all key systems and equipment of the entire FL-10wind tunnel. Segments and equipment,
so as to achieve a full range of health monitoring and fault diagnosis for the FL-10 wind
tunnel system.

The signals of the power system monitoring objects are mainly inverter fault infor-
mation, temperature information of the motor rotor and bearing bush, and shaft vibration
information. The signals of themonitoring objects of the cooling system aremainly cool-
ing tower water level and temperature information, cooling water pipeline pressure, flow



Research on Health Monitoring and Intelligent Diagnosis 521

and inlet and outlet temperature information. The signals of the monitoring object of the
support system are mainly the vibration information of the support system, the pressure
information of the hydraulic tail support pipeline, the liquid level of the fuel tank in
the pump station, and the temperature information. The specific sensor arrangement is
shown in the Table 1.

The data required for wind tunnel health monitoring and intelligent diagnosis algo-
rithms are collected from the underlying data acquisition layer by PLC and field sensors,
and then entered into the central switch of the test network through the data access layer
switches of each subsystem and data acquisition system. The aggregated data is sent to
the wind tunnel equipment operation database for storage to form a historical database,
which is used as the basic training data for algorithm modeling. At the same time,
the real-time data is transmitted to the health monitoring system server, and the health
monitoring and intelligent diagnosis algorithms are used for real-time calculation and
analysis. The data networking result is shown in the following Fig. 2.

2.3 Monitoring System Based on Sensor Network

Figure 3 is a monitoring system of a sensor network arranged in the health monitoring
and intelligent diagnosis system of the system. The operation interface of the monitoring
system takes the top view of the FL-10 wind tunnel as the main body and is divided
into subsystems, and its content covers all the sensor parameters in Table 1. The key
information such as the system, equipment running status, and test progress status can
be visually viewed in the wind tunnel. When the sensor parameters are abnormal, the
interface will flash and turn red to give an alarm.

3 Construction of Digital Twin System

3.1 3D Scene Digital Reconstruction

High-fidelity 3D scene reconstruction of large-scale low-speed wind tunnel health moni-
toring and intelligent diagnosis system is to use 3Dmax software to carry out high-fidelity
and refined modeling and reconstruction of FL-10 wind tunnel scene and internal test
section equipment. Built-in three-dimensional digital model including the overall struc-
ture of the test section, the floor and tail support linkage mechanism, the floor and
turntable linkage mechanism, the open test scene, and the closed test scene; switchable
test model groups including civil aircraft standard models, military aircraft standard
models, missile models, and train models can be quickly imported through 3D scanning
technology, It also includes the test support system model group including hydraulic
tail support, single rod support, turntable support, etc. The system can freely switch the
test type, support mechanism, and support form according to the actual test scene of the
wind tunnel, and finally realize the 3D high-fidelity digital scene reconstruction based
on the FL-10 wind tunnel (Fig. 4).
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Table 1. Equipment status monitoring table

Monitoring system Monitoring content Monitoring variables Number of sensors

Power system Inverter Inverter temperature 1

Inverter voltage 1

Inverter power 1

Inverter current 1

Inverter power-on
indication

1

Inverter fault indication 1

Inverter running
indication

1

electric machinery Motor stator
temperature

5

Motor noise 4

Motor vibration 4

Motor bearing bush
temperature (thrust,
radial)

4

Axial movement of
motor

1

Paddle Blade Blade stress 9

Thin oil station Low pressure state of
thin oil station

1

Operation indication of
high pressure pump in
thin oil station

2

Operation indication of
low pressure pump in
thin oil station

2

Wind tunnel cooling
system

Cooling tower water
tank

Tank temperature 11

Tank level 11

Ambient temperature
and humidity

2

Circulating pipe in
cooling system

Discharge 1

Water temperature 1

(continued)
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Table 1. (continued)

Monitoring system Monitoring content Monitoring variables Number of sensors

Hydraulic pressure 1

Cooling system control
room environment

Ambient temperature
and humidity

2

Converter cooling
system

Converter cooling
system

Internal circulation
cooling water pump
shell temperature

2

Internal circulation
cooling water level

1

Internal circulation
cooling water flow

1

Inlet temperature of
internal circulation
cooling water

1

External circulation
cooling system

External circulation
cooling pressure

1

External circulating
cooling water
temperature

1

Support system Tail support
system—hydraulic
station

Oil tank temperature 1

Tank level 1

Fuel tank supply
pressure

2

Supporting mechanism Voltage 1

Electric current 1

In cylinder
displacement becomes
(actual angle of
attack,α)

1

In cylinder
displacement (sideslip
angle, β1)

1

Fault indication 1

Operation indication 1

Tail brace height 1

3.2 3D Digital Test Scene Mapping

The 3D model established by the fusion of real-time equipment operation data, CFD
simulation data, test data and other multi-source data is driven to realize the digital
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(a) FL-10 wind tunnel monitoring system (b) Sensor data monitoring

Fig. 3. Monitoring system based on sensor network

mapping of test equipment and test status. For the model attitude angle data, the system
performs Inverse Kinematics (inverse dynamics) calculation after obtaining the target
value, and controls the synchronous change of the movable joints of the support mech-
anism to achieve the effect that the dynamic attitude angle of the test target is consistent
with the actual test linkage angle. For the change of the test target’s own components, the
system correspondingly obtains the names and positions of the detachable components,
and performs simultaneous display and concealment operations according to the test
plan, so as to realize the structure and the key components of the test target (such as
wings, landing gear, vertical tail, horizontal tail, etc.) High consistency of actual trials
(Fig. 5).

3.3 Flow Field Visualization Technology Based on CFD Simulation Data

The health monitoring and intelligent diagnosis system built in this study has a
built-in flow field visualization module based on CFD simulation data. Its specific
implementation is as follow.



Research on Health Monitoring and Intelligent Diagnosis 525

(a) Factory scene selection (b) Test configuration interface
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Fig. 4. Digital construction of high-fidelity 3D scene

The point cloud data calculated by CFD is extracted and processed, and each point
data is positioned in three-dimensional space coordinates, and given specific meanings
such as three-dimensional space coordinates, time series, and pressure coefficients. It
adopts the development idea of Unity physics engine + distributed loading method, and
has a data point reduction algorithm, which automatically filters some points according
to the set rules and optimizes the point information, effectively solve the problem of
slow loading and freezing of 3D visualization due to large amount of data, it can per-
form distributed fusion loading processing on millions of point cloud data, and display
the effect in real time. The point cloud data is given different chromatographic colors
according to the size of the CFD calculation data, and the calculation is comprehensively
summarized, so as to realize the three-dimensional flow field visualization based on the
CFD simulation data (Fig. 6).

4 Research on Data Intelligent Diagnosis Technology Based
on Equipment Parameters

4.1 Key Equipment Prediction Learning Machine Based on Machine Learning

At present, conventional equipment health monitoring algorithms use a machine learn-
ing or deep learning algorithm to predict key equipment characterization parameters.
Although this method can achieve a certain level of accuracy, due to the different spatial
complexity of different algorithms and the possible selection of Not the best algorithm
for the current data. As a result, although the accuracy meets the requirements, the
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(a) Civil aircraft test scene (b) Military aircraft test scene

(c) High-speed rail test scene (d) Missile test scene

Fig. 5. Three dimensional digital mapping of test scene

selected algorithm is not the optimal algorithm, and it takes a lot of time to select the
algorithm. In response to this situation, this paper proposes a key equipment health mon-
itoring learning machine, which combines several algorithms suitable for wind tunnel
health monitoring, and the learning machine compares the accuracy of each algorithm
and various statistical indicators. Pick the optimal algorithm that fits the current running
data. In this way, a more accurate prediction algorithm can be found clearly and quickly.

According to the historical operation data of the equipment, four machine learning
algorithms including SVR (Support Vector Machine Regression), ElasticNet (Elastic
Network Regression), Gauss (GaussianMixture), and GRU (Gated Neural Network) are
combined to form a large-scale low-speed wind tunnel key equipment health monitoring
learning machine. During algorithm training, the predictive learning machine forms four
different algorithm models, and the learning machine independently judges statistical
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Fig. 6. Flow field visualization technology based on CFD simulation data

indicators such as fit, root mean square error, etc., and selects the algorithm with the
highest fit and the smallest error as the final prediction algorithm.

4.2 Health Monitoring and Intelligent Diagnosis Algorithm

Data Processing

In this paper, six months of historical operating data of the wind tunnel were selected
as the modeling data for the predictive learning machine. Based on the identification of
key equipment in the wind tunnel based on expert experience, the motor speed is finally
determined as the output parameter of the health monitoring algorithm; with 39 types of
characteristic variables deployed by subsystems such as motors, frequency converters,
propellers, and thin oil stations, a total of 86 characteristic values are the key factors
affecting the motor speed. The algorithm structure is shown in the following Fig. 7.

Standardization

Since the variable data vector dimension and unit required to be monitored by the wind
tunnel monitoring system are quite different [15], in order to improve the convergence
speed of the predictive learningmachine, the input data is standardized and preprocessed
[16]. The formula is as follows:

Skn = X k
n − 1

K

∑N
K=1X

n
K√

1
K−1

∑N
K=1(X

n
K − 1

K

∑N
K=1X

n
K )2

(1)

In the formula: X k
n represents the production parameters of the Kth sample under

n-dimensional data standardization, Skn represents the n-dimensional metadata of the Kth
sample arranged in a time series, and K is the number of data sets.

Health Monitoring Algorithm of Key Equipment

The health monitoring prediction learning machine proposed in Sect. 3.1 is used to
predict the historical operation data of the wind tunnel. The learning machine predicts
the output curve as follows.

Table 2 lists the fit, MAE, MSE and RMES errors of the four regression algorithms
SVR, ElasticNet, Gauss, and GRU to the wind tunnel historical data.
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The following conclusions can be drawn from Fig. 8 and Table 2: the predicted
value of the GRU algorithm has the best fit, and the errors of MAE, MSE and RMES
are the smallest. Therefore, the model established by the GRU algorithm is selected as
the prediction algorithm for the health monitoring of this system.

Failure prediction algorithm of key equipment

This study is based on a large amount of historical data with time series properties
running in the wind tunnel, and uses the Bi-LSTM (Bi-directional Long Short-Term
Memory network) algorithm to model it. The Bi-directional Long Short-Term Memory
network is based on LSTM and combines the input The information of the sequence in
both forward and backward directions, for the output at time t, the forward LSTM layer
has the information at time t and before in the input sequence, and the backward LSTM
layer has the information at time t and later in the input sequence. Information. The
output of the forward LSTM layer at time t and the output of the backward LSTM layer
at time t are processed together as the final algorithm prediction output. The structure
of the Bi-directional Long Short-Term Memory network algorithm is shown Fig. 9.

In the Bi-directional Long Short-Term Memory network, the neural network model
not only uses the data information before the current moment in the historical data, but
also fully considers the data information that occurs in the future [17]. The purpose
of the fault prediction algorithm established for the key equipment of the wind tunnel
is to predict the operation status of the equipment for a period of time in the future.
Therefore, when training the algorithm model, it is more suitable to choose the Bi-
directional Long Short-Term Memory network, and fully learn the historical operation
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Fig. 8. Predictive learning machine prediction output curve

Table 2. Predictive learning machine output evaluation indicators

R2 MAE MSE RMSE

SVR 0.9009 1.5922 4.9379 2.2221

ElasticNet 0.9054 1.5497 4.7181 2.1721

Gauss 0.8991 1.6110 5.0318 2.2432

GRU 0.9314 1.2050 3.5232 1.8770

process of the equipment from the forward and reverse directions, which can greatly
improve the model’s ability to cope with sudden changes and abnormal moments.

For the input data of the Bi-LSTM network, the construction of feature engineering
needs to be added on the basis of the data processing process described in Sect. 3.2.1.
In this paper, the sliding window algorithm is used to construct feature engineering for
historical data.

The sliding window algorithm is to predict the future data of the device, expand
the value range of the current moment to an interval including this point, and use the
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Fig. 9. Bi-LSTM algorithm structure diagram

interval to judge, this interval is the sliding window. The sliding window is to select the
corresponding time series according to the specified unit length, so as to calculate the
statistical indicators in the window. Its principle is shown in the Fig. 10.

Fig. 10. Example of sliding window.

The following figure shows the error curve and accuracy of the mathematical model
built by the Bi-LSTM network based on the above historical data. It can be seen from
the figure that the algorithm reaches the optimum at the 125th iteration, the mean square
error reaches e-4 level, the accuracy rate is close to 1, and the training error and test error
are converged well, no overfitting or underfitting in the established model (Fig. 11).

In this paper, the sliding window size is selected as 30, that is, the data points of the
past 30 moments are considered to predict the equipment operation trend of the next 3
moments. The figure below shows the prediction curve of the fault prediction algorithm
based on the Bi-LSTM network. The blue curve in the figure is the prediction curve of
the fault prediction algorithm for the running state of the motor speed at the next three
moments (Fig. 12).

Intelligent fault diagnosis algorithm of key equipment

Due to the wide variety of equipment in the wind tunnel, the failure modes and failure
mechanisms are very different, and the procurement time of each equipment is not
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Fig. 11. Bi-LSTM algorithm error and accuracy curve

Powertrain - fault predic�on

motor speed
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Fig. 12. Prediction output of fault prediction algorithm

uniform, resulting in different equipment operation data storage conditions, and it is
difficult to use a fixed diagnosis method to meet the fault diagnosis requirements. Taking
into account comprehensively, this system uses the combination of expert experience
and principal component analysis (PCA) to diagnose the faults of the key equipment of
the FL-10 wind tunnel.

PCA is to project high-dimensional process data into an orthogonal low-dimensional
subspace and preserve the main process information [18]. Geometrically, the coordinate
system formed by the sample is rotated to a new coordinate space through a certain
linear combination, and the new coordinate axis represents the direction with the largest
variance [19]. The statistical indicators of the intelligent diagnosis of the PCA algorithm
are as follows:

The SPE indicator measures the change of the projection of the sample vector in the
residual space [20].

SPE = ‖(I − P · PT ) · x‖2 ≤ δ2α (2)
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where δ2α represents the control limit with confidence α. Its formula is as follows:

δ2α = θ1

⎛

⎝
Cα

√
2θ2h20
θ1

+ 1 + θ2h0(h0 − 1)

θ1
2

⎞

⎠

1/h0

(3)

Finally, fault diagnosis is performed by calculating the contribution rate.
The SPE-based contribution graph is defined as:

ContSPEi = (ξTi (I − PPT )x)2, i = 1, . . . ,m (4)

After the data is calculated and analyzed by the intelligent diagnosis algorithm, the
three largest variables in the contribution graph are taken as the most likely cause of the
fault, and combined with the expert knowledge base to make a comprehensive judgment.
Finally, the precise cause of equipment failure and corresponding operation suggestions
are given.

4.3 Implementation and Verification of Health Monitoring and Intelligent
Diagnosis Technology

Implementation of Health Monitoring and Intelligent Diagnosis Technology

The working principle of the health monitoring and intelligent diagnosis system is as
follows.

Through the established key equipment prediction learning machine, real-time pre-
diction and analysis of the operating state of the key equipment in the wind tunnel
are carried out. When the real-time acquisition value of the equipment operation and
the predicted value of the learning machine have deviations beyond the allowable error
range, the system sends a fault early warning signal; When the fault prediction curve
exceeds the preset threshold, the system sends a fault early warning signal. The front-end
interactive platform triggers the alarm information, the monitoring interface flashes and
turns red and the alarm window pops up.

When the system receives an early warning signal from the healthmonitoring or fault
prediction module, the system automatically enters the intelligent diagnosis module to
perform fault diagnosis on the data at the current fault time. At the same time, a fault
operation suggestion library is formulated based on expert experience, and finally gives
the equipment fault cause and information. Corresponding action suggestions.

Verification of Health Monitoring and Intelligent Diagnosis System

In this paper, the failure of the large motor of the wind tunnel power system “Axial
displacement of motor”, which has a great impact on the operation of the wind tunnel,
is selected to verify the system.

As shown in Table 1, for the axial movement of the motor, the system arranges
a laser displacement sensor at the front end of the motor shaft section. The sensor is
zeroed at the midpoint of its range, and the range is ±5mm. The normal fluctuation
range threshold is set to ±3mm. In this paper, 100 groups of sensor monitoring network
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real acquisition values are selected when the wind tunnel system is running normally,
and the “motor shaft” in each group of data is manually modified within the interval of
[+3.5,+5] ∪ [−5,−3.5] The collected value of the “Axial displacement of motor”. This
data is input into the health monitoring and intelligent diagnosis system as a verification
of the reliability of the system.

The figure shows the contribution of the 86 feature variables output by the intelligent
diagnosis algorithm to the current fault data when one set of data is input. The intel-
ligent diagnosis algorithm automatically selects the three characteristic variables with
the largest contribution rate, and their histograms are displayed in red. The contribution
rates of the remaining features are shown as blue histograms. In the figure, the feature
variable with the highest contribution rate is the tag number 25, and the corresponding
sensor in Table 1 is “Axial displacement of motor”. The contribution rate of this feature
is 73.7%, that is, 73.7% may be the fault cause of “excessive axial movement of the
motor”, and the contribution rates of other sensors are far lower than this cause, so they
are not considered. It is confirmed that the intelligent diagnosis algorithm is accurate for
the current fault judgment (Fig. 13).

Fig. 13. Contribution rate of each sensor

The overall verification results are shown in the following table.

Table 3. Health monitoring and intelligent diagnosis system verification

Data quantity Error data value range Health monitoring alarm
times

Accurate times of
intelligent diagnosis

30 [+4.5, +5] ∪ [−5, −4.5] 28 27

30 [+4.0, +4.5] ∪ [−4.5, −
4]

28 25

40 [+3.5, +4] ∪ [−3.5, −4] 36 33

It can be seen from Table 3 that among the 100 sets of artificially manufactured fault
data for “excessive motor axial movement”, 60 sets of data are in the interval [+4, +5]
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∪ [−5, −4], the alarm rate of health monitoring can reach 93.3%, and the accuracy rate
of intelligent diagnosis has also reached 86.7%. In [+3.5,+4] ∪ [−3.5,−4], which is 40
groups of data close to the correct data value range, the accuracy of health monitoring is
90%, and the accuracy of intelligent diagnosis is 82.5%. The combined accuracies are
92% and 85%, respectively. It has been confirmed that the system has good engineering
practical value. The actual operation effect is shown in the Fig. 14.
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5 Conclusion

Identify the key sections and equipment of the FL-10 wind tunnel based on expert expe-
rience. Based on advanced sensors and networking technology, through the interactive
interface with the overall view of the wind tunnel as the background, each subsystem and
ancillary equipment of the wind tunnel are identified. Carry out real-time monitoring to
realize the monitoring of the operating status covering the entire area of the wind tunnel.

Based on the high-fidelity 3D model driven by multi-source data fusion such as
equipment real-time operation data, simulation data, test data, etc., the virtual-real com-
bination of test equipment, test status and CFD point cloud is realized. Highly digital
mapping of the internal test scene, test process and equipment operation status of the
wind tunnel, so as to reduce the labor cost of wind tunnel management.

Based on the predictive learningmachine based onmachine learning proposed in this
paper, an optimal algorithm for health monitoring of key equipment in wind tunnels can
be quickly found, and the real-time operating status of the equipment can be accurately
predicted; fault prediction based on Bi-LSTM algorithm The algorithm can predict the
future time of the equipment, and realize the health management and predictive main-
tenance of the key equipment; Based on expert experience and principal component
analysis, the intelligent fault diagnosis algorithm is developed to realize intelligent diag-
nosis of key equipment, reduce maintenance pressure, and improve the reliability of
wind tunnel operation.

The large-scale low-speed wind tunnel health monitoring and intelligent diagnosis
system drives the business management process with multi-source data fusion of wind
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tunnel operation, which improves the informatization and intelligence level of wind
tunnel equipment operation management; at the same time, it is involved in advanced
technologies such as the Internet of Things and machine learning. Technology, so that
it has played an active role in the management and maintenance of key sections and
equipment in the wind tunnel; improve the intelligent and automated fault diagnosis of
key equipment in the wind tunnel, timely detect latent faults and predict development
trends, play a role in The advantages of modern big data and artificial intelligence
technology development; finally, it is visually presented in the form of a high-fidelity
wind tunnel digital twin to improve the intuitiveness and convenience of wind tunnel
management. This systemgreatly improves thework efficiency of thewind tunnel and the
reliability of equipment operation, thereby ensuring the high-quality and high-precision
operation of the wind tunnel test.

For the prospect of the research content of this paper, the wind tunnel digital twin
operation and maintenance system built in this paper is currently only based on the
key equipment and parameters of the wind tunnel to carry out the application of health
monitoring and intelligent diagnosis technology. In the future, the small sample data
characteristics of wind tunnel tests will be considered, and auxiliary analysis technolo-
gies such as intelligent prediction and intelligent diagnosis of wind tunnel test data based
on small sample data will be added to the system to expand the application scope and
engineering practicability of the system.
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