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Abstract. As a promising approach of structural health monitoring (SHM),
Guided-wave is being widely used for damage diagnosis of carbon fiber rein-
forced composite (CFRP) in aeronautics. The traditional methods usually employ
threshold for damage detection. However, as Guided-wave is easily influenced by
structural and environmental factors, the man-made thresholds may vary signifi-
cantly from case to case, which deteriorates its universal application. To overcome
this weakness, a deep-learning-based method is proposed. Firstly, the sample is
produced in the form of grey scale, so that its label is determined objectively rather
than by human judgement. Secondly, it employs a multi-scale convolutional neu-
ral network with dedicated settings of kernel size and number of convolutional
layers, which can effectively extract damage features frommulti-dimensional sig-
nals while keeping the negative influences of increased network width low. Addi-
tionally, Gradient-class activation mapping (GRAD-CAM) technique is used to
reveal the sample areas where the deep learning model concerns, which helps to
interpret the physical significance of damage features. The experimental results
demonstrate that the accuracy of damage identification and localization reaches
92.6%, which is superior to the traditional methods.

Keywords: Composite material · Damage diagnosis · Guided wave ·
Convolutional neural network · Grey scale

1 Introduction

Carbonfiber reinforced polymer composite (CFRP) have beenwidely used in the primary
structures of aircrafts [1]. However, they are susceptible to the low-velocity impact of
blunt objects, such as tools and runway debris. This kind of impact usually degrades
as much as 40% of the laminate’s compressive strength by inducing large areas of
delamination inside with no observable dent from the surface [2]. Apparently, this is of
severe safe hazard, and requires reliable approach of structural health monitoring (SHM)
[3].

Guided wave is a very potential candidate of SHM, as it has the nature of long-
range propagation and sensitivity to typical damages (such as crack, debonding and
delamination) of aeronautic thin-walled structures [4, 5]. The mechanism of damage
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recognition is by differentiating the signal variations of two guided waves before and
after the damage event, and its general method is to quantify this variation as Damage
Index (DI) and compare it with the DI threshold [6–8]. However, as the guided wave
is so susceptible to geometrical configurations of structure and environmental factors
such as temperature and loading conditions that the DI threshold is usually determined
by individual experience, and the quality of damage recognition is heavily expertise-
dependent and not fitted for general application.

As the intrinsic work of damage diagnosis is to identify and extract damage-related
signals from a large amount of overwhelming noise signals, deep learning method is
spontaneously adopted by many researchers in the hope of enabling the damage recog-
nition more accurate and less individual-experience-dependent [9–14]. Tian Guo [15],
et al., presented a model for crack identification of metallic beam. It used the vibrating
waves at diverse modules as input, and employed multi-scale CNN、ResNet、Fully
Connected Layer to alleviate the side effect induced by noise and data missing. Its accu-
racy of crack recognition reaches 90%with a good manifest of generalization. However,
this good result is obtained partly due to the relative simplicity in this case, and a large
number of numerical samples collected through finite element simulation, which, how-
ever, is a general obstacle for many cases. For instance, Sbarufatti [16] used ANNmodel
to identify crack and quantify its size in aluminum plates. Merely 38 physical cracks
and 410 numerical ones are generated. Therefore, some particular measure such as data
augmentation has to be adopted to deal with the problem of inadequate samples. Liang
Xu [17] investigated the influential factor of structural dispersion specimen after speci-
men in crack detection. 6 aluminum hinges with identical structural configuration were
loaded to collect guided-wave signals during the period of crack initiation and propa-
gation. The deep learning model consisted of 3 convolutional layer, 1 pooling layer, 2
fully connected layers and 1 output layer.

Although all these learning models presented above claimed that they have a good
performance in accuracy, the accuracy is reported to achieve from internal testing only,
which means that the models have not been verified by completely new samples, and
the over-fitting situation exists somewhat.

Therefore, inadequate samples and poor sample-labelling strategy relying on indi-
vidual experience, are the two major challenges for the application of deep learning
method in SHM.

The study in this paper endeavors to address these two problems. Firstly, it improves
the form of sample from a single piece of wave signals to a grey scale by aligning
all pieces of signals over the monitoring area side by side. This enables the updated
sample to be labelled by objective truth instead of individual judgement. Secondly, a
multi-scale convolutional neural network was proposed to extract damage features from
multi-dimensions to avoid over-fitting problems caused by insufficient data. All these
approaches together serve to improve the accuracy and reliability of the deep learning
model, especially when no individual expertise is involved and only limited samples are
available.
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2 Sample and Model Design

2.1 Sample of Grey Scale

The stiffened panel tested is made of CCF300/BA9916, and its geometric configuration
is demonstrated in Fig. 1. A grid of 9 piezoelectricity (PZT) sensors forms a rectangle
monitoring network, which is partitioned into 4 regions as A, B, C and D. Region A
and C are on the skin, while Region B and D over stiffeners. PZT sensor could work
as either guided-wave generator or receiver, and any two sensors apart would generate
a wave-propagating channel (namely monitoring path). Therefore, every sensor in the
network in turn activates wave signals for other sensors to receive, and, as to say, 6
monitoring paths for each region in Fig. 1 are established.

Fig. 1. Structure diagram of Lamb wave monitoring net-work

The fundamental mechanism of damage recognition is by differentiating the signal
variations of two guided waves along the same path before and after the susceptive
damage event, and its general method is to quantify this variation as Damage Index (DI)
and to compare it with the DI threshold [18, 19]. Since guided wave is so susceptible to
many factors, such as the distance from the damage to the path, this plausible method
faces an uncompromising embarrassment. For example, if the damage occurs at point P in
Region A (seen Fig. 1), the DI value of respective paths in Region A varies significantly.
How to determine the DI threshold? It is quite difficult to establish a general rule, and,
in most cases, it ends up with individual experiences [20].

By far, this practice is equally used for sample labelling in deep learning model. As
there is not a fixed DI threshold, the sample state (damaged or undamaged) also has
to be determined by individual experiences. However, for deep learning model, sample
labelling is one of the most critical work. The operation like this will have significantly
negative impact and largely mislead model training.

In contrast to a single monitoring path, the integration of all monitoring paths will
reverse this situation completely [21].When 24 pieces of signal variations obtained from
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the monitoring network in Fig. 1 (the signals from paths on the region boundaries are
repeated) are aligned side by side (seen Fig. 2 in terms of energy distribution of scattered
wave), the sample in this new pattern represents the state of the whole area instead of
a single path, and consequently the sample could be labelled according to objective
truth (damage occurs in this area or not). This practice completely avoids the artificial
intervention in sample labelling. Additionally, the new sample presents in a form of
image (Fig. 3), which could take full advantage of the latest developments of the deep
learning model which is particularly good at image recognition and disposition.

(a) The damage in Region A                      (b) The damage in Region C

Fig. 2. The energy distribution of the scattered wave in 24 monitored paths

(a) The damage is at position 1            (b) The damage is at position 2 

Fig. 3. The corresponding grey scales of Fig. 2

For the convenience of image disposition, the 24 pieces of signal variations are
transferred to integrated grey scale map (IGM). Each IGM has 5 types of labels: 0, 1, 2,
3, 4 and 5, representing undamaged, damaged in Region A, B, C and D, respectively.

2.2 Data Augment

The shortage of sample is the leading hazard for the application of deep learningmodel in
SHM. The deep learning model is expected to manifest the capability of reliable damage
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recognition while being immune to other disturbing factors such as structural dispersion.
This capability relies upon a large amount of samples, which, however, is exactly the
weak point in SHM. Expensive experiment cannot be afforded, and the solution is using
virtual samples at one hand, while developing the adaptive deep learning model at the
other hand. This paper focuses on the latter one and tries to improve it from several
aspects.

Some practical problems are encountered when deep learning methods are applied:

• shortage of data samples. Limited by expensive and rare structures [24], the quantity
of data sample usually cannot meet the requirement of model training;

• severe class skewness. In real application, the “damaged” signals generated are much
less than the “undamaged” ones;

• Non-uniform data length. In practical application, the setting of data length varies
from case to case. However, the uniform data length is essential as the input format
for Convolutional Neural Network (CNN).

In order to tackle above problems, the module of data augment is introduced to
increase the amount of data samples, as well as to alleviate class skewness.

• for the data, of which the length is shorter than the requirement, some meaning-less
Fig. 4 are added to extend its length;

• for the data, of which the length is longer, a stride Ci of sliding window is defined in
Eq. (1) to cut out segments from original data (schematic illustration in Fig. 4).

strideCi =
⌈
MS ∗ |samples labeled Ci|

maxmj=1

∣∣samples labeled Cj
∣∣

⌉
(1)

where, MS is the maximum stride length. It is a super parameter, and its value ranges
between 50 and 300 empirically. C is the label set, C = [C1, C2,…, Cm], where m is the
pattern of label. In this paper, C = [C1, C2, C3, C4, C5] = [undamaged, Region A, B,
C, D]. The symbol of absolute value is to obtain the magnitude of that labelled samples.

Fig. 4. Schematic diagram of using sliding window step to intercept the original data
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2.3 Multi-scale Network Design

2.3.1 The Convolutional Kernel

Unlike general images, the IGM is extremely ill-proportional. Its dimensions are 24 * n,
in which n is the sample rate of the wave-signal, usually 3,000–5,000 points. Therefore,
the receptive field is specifically designed, of which the parameters m, n, f1 and f2 are
the length, width, and the stepping interval in length and width direction, respectively
(Fig. 5). There are 3 patterns of convolution kernel, 3 × 16, 6 × 16, and 3 × 32 at hand.
As in each region there are 6 paths and usually no more than 3 paths of them are mostly
affected by a damage, thewidth is set to be 3 or 6. The length also needs to be set properly.
Over-long kernel will lead failure of characteristic extraction, while over-short kernel
will undermine the generalization. In this study, 16 and 32 are preliminarily selected.

In order to acquire the optimal result, 3 patterns of kernel are tested separately or in
a form of combination. The working mechanism of single and multi-scale kernels are
demonstrated in Fig. 5a, b, respectively.

2.4 The Model Configuration

The model constitutes of 3 major modules, data augmentation, semantic feature extrac-
tion, and classification. The difference between Fig. 6a, b lies on the number of kernels,
and the constitution of the parameter layer is presented in Fig. 6c.

(a) the pattern of single kernel  

(b) the pattern of multi-scale kernels 

Fig. 5. The pattern of kernel
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The semantic feature extraction is comprised of 3 convolutional layers, while for the
pattern of multi-scale kernels an additional concatenation is adopted afterwards. This is
because the feature map of the multi-scale kernels processed after 3 convolutional layers
is significantly larger than that of the single one, and the additional convolutional layer
helps to condense the size and reduce the parameter quantity at fully connected layer.

In the parameter layer,Relu is used as activation function in case of gradient explosion
and gradient diffusion, while Normalization and “Dropout” for sparsely processing of
the training parameters of each layer.

Two fully connected layers constitute of the classification. The first one extracts
the top features and still uses Relu as activation function. The latter one finalizes the
classification and uses SoftMax as activation function, which is presented as.

Si= eVi∑
j e

Vj
(2)

where S is the output of SoftMax, V is the output vector of the last fully connected layer,
V i is the ith element in V, which has 5 elements is this paper. The position of the greatest
element of the five is regarded as the classifying result.

The loss function is presented as

L(w) = −
m∑
i=1

K∑
k=1

1{y(i) = k} log Sk(w) + λ

2
‖w‖ (3)

wherem is the amount of samples in each batch, k is the sample type, y(i) is the real value
of the ith sample, λ is the normalizing coefficient, w is the weighted matrix. 1{y(i) = k}
equals 1 when the sample is positive, otherwise equals 0.

Adam is used to update weight values. It is capable of taking the first and second
orders of estimation into account, and consequently stabilizes the optimization process
and avoids gradient diffusion.

3 Experiment

A group of 6 CFRP stiffened panels (S1-S6) with the same geometrical configuration
as shown in Fig. 1 are prepared, in which S1-S4 and S5-S6 are used for model training
and testing, respectively.

As confined by expensive specimens, false damages in the way of adhering clay is
used. The size of clay is retained fluctuates from 8 mm * 8 mm to 15 mm * 15 mm. Each
time when the clay is adhered, the specimen is scanned and corresponding guided-wave
signal produced is specified as the damaging data. After every ten times of damaging data
collection, one baseline data is collected, which is realized by scanning the specimen
with no adhesion of clay. Following this way, 2614 damaging data and 270 baseline
date are obtained from all 6 specimens. Random pairing of one damaging data and one
baseline data collected from the same specimen is conducted, and consequently the
signal variation is obtained, which is labelled as A, B, C or D according to its damaging
position. Meanwhile, the signal variation produced by any pair of two baseline data from



A Guided-Wave Based Damage Diagnosing Method 511

(a) Model with single-scale kernel  

(b) Model with multi-scale kernels 

(c) parameter layer 

Fig. 6. Model configuration

the same specimen is labelled as undamaged. Following this way, total 5911 samples
are produced, in which 5592 are collected from S1–S4 and 319 from S5 to S6 (Table 1).
The producing process of experimental data lasts 21 days, during which temperature
fluctuated within 3°, and 4 PZT sensors failed and were replaced.

At the process of data augment, the dimensions of sliding window are defined as
24 * 3250, and the stride as 50. The reason of setting the window length equal to 3250
is because almost all the important wave information lies between 150 and 3250. Such
operation can secure that each piece of augmented data will always cover this section.
Favored by data augment, asmany as 22,368 pieces of samples fromS1-S4 are produced.
Among them 20,000 pieces are randomly selected for training. After every use of 128
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Table 1. The number of collected data and generated samples of S1 ~ S6

Test
article

Damage
signal

Baseline
signal

Sample
(totality)

Sample
(label =
0)

Sample
(label =
1)

Sample
(label =
2)

Sample
(label =
3)

Sample
(label =
4)

S1 650 66 1574 400 390 158 496 130

S2 650 66 1574 400 390 158 496 130

S3 595 61 1222 147 410 190 350 125

S4 595 61 1222 147 410 190 350 125

S5 62 8 160 35 29 28 49 19

S6 62 8 159 35 28 28 49 19

Sum 2614 270 5911 1164 1657 752 1790 548

samples for training, the model parameters are updated, and once over 20,000 sample
are used, the model is validated by the left 2,368 samples. This process is repeated until
convergence.

Once the training is finished, the model is verified by the samples generated from
S5 and S6. The result is presented in Fig. 7, and the accuracies for the 5 patterns reach
97%, 96%, 93%, 85% and 92%, respectively. The average accuracy rate is 92.6%. The
relatively lower rate occurs at Label 3, although, the root cause is the inadequate samples
collected in Label 4, which accounts for merely 9% of the total samples and undermines
the model training effect. Nevertheless, the general accuracies are excellent, especially
at the case when no individual experience is involved.

Fig. 7. Mixed matrix of verification

4 Discussion

4.1 The Selection of Kernel

3 patterns of kernel are tested separately or in a form of combination. For the pattern
of single-scale kernel, all 3 models converge on the order of 10 iterations. The models
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with the kernel of 3 × 16 and 3 × 32 have similar performance. Their loss functions
stop at 0.10 and 0.093, respectively. With 6 × 16 kernel the loss function of model
stops at 0.15, which does not perform as good as the other two. Therefore, in the pattern
of double kernels, only 3 × 16 and 3 × 32 are adopted. The converging rate slows
down, contrasted to that of the single-scale kernel. Nevertheless, the recognizing rate is
observably improved. Its final loss function is 0.062 after around 40 iterations. For the
model with 3 kernels, it doesn’t converge at all. Therefore, only the pattern of double
kernels of 3 × 16 and 3 × 32 are used in the following analysis.

Fig. 8. The loss function curves of the training process of three models (2c represents single-
scale kernel 3 × 16; 3a represents multi-scale kernels 3 × 16and3 × 32; 3b represents multi-scale
kernels 3 × 16, 6 × 16 and 3 × 32; loss represents the loss function of training set; val_loss
represents the loss function of validation set)

4.2 The Generalizing Capability

The nature of generalization, referred in this paper, is confined to the capability of
overcoming the structural uncertainty when dealing with a group of specimens with
same geometric configurations.

Here the Euclid distance of among extracted features is adopted as the judgement of
generalization, ofwhich the lower the value is, the greater similarity the extracted features
share, and the better the generalization is [17]. The reason why the way of comparing
the final damage-recognizing results between the deep-learning and traditional method
is not adopted is that the recognition quality of traditional method is highly expertise-
dependent (such as the determination of threshold value of Damage Index). Contrasted
to the result comparison, the Euclid distance method is more objective and intrinsic.

For traditional method, the extracted feature matrix consists of 24 monitoring paths,
each of which presents 8 patterns of Damage Index, including Cross correlation, Spatial
phase difference, Spectrum loss、Central spectrum loss, Differential curve energy, Nor-
malized Correlation Moment, Differential signal energy, Root mean square deviation,
respectively. Therefore, its matrix dimensions are 24 × 8, and the specific matrix for
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specimen S5 and S6 are designated as [X5]24×8 and [X6]24×8, respectively. The Euclid
distance (namely, the similarity) is expressed as

DX
56=

1

192

√√√√ 24∑
i=1

8∑
j=1

(x′
5ij − x′

6,ij)
2 (3)

x′
k,ij = xk,ij/max([Xk ]), k = 5, 6 (4)

where, xk,ij is the element of [Xk]24×8 in the ith row and kth column.
For the deep learning method, the extracted feature is set to be the output of the

first fully connected layer (Dense 32 in Fig. 6), which is one dimensional string of 32
elements. Following the naming rule, the specific matrix for specimen S5 and S6 are
[Y5]1×32 and [Y6]1×32, respectively. Their Euclid distance is defined as

DY
56=

1

32

√√√√ 32∑
i=1

(
y′
5i − y′

6,i

)2
(5)

y′
k,i = y5,i/max([Yk ]), k = 5, 6 (6)

where, yk,i is the ith element of [Yk]1×32. 10 “damages” are produced in either specimen,
and each “damage” in S5 has an identical counterpart in S6 in terms of damaging location
and size. Consequently, 10 Euclid distances are acquired from either specimen, and

their respective average values are DX
56 = 0.0108, and DY

56 = 0.0053. This proves that
the deep learning method may extract features with greater similarity from different
individuals, and is more likely to be immune to the geometric uncertainty. Furthermore,
this immunity, with more samples, is believed to grow up more.

4.3 The Advantage of Multi-scale Kernels

Figure 9a is an example of the grey scale representing undamaged, which is diagnosed
as damaged in Region A and undamaged (the correct diagnosis) by single and multi-
scale kernels, respectively. Their corresponding heatmaps are presented in Fig. 9b, c. It is
seen that the single-scale kernel concentrates on the greyest zone alone, and consequently
submits the false diagnosis. As a contrast, the “multiple” pattern takes all fluctuations
over thewhole image into account. It is found that the undamaged state generally presents
in the form of grey scale with a characteristic of irregular and widely spread fluctuation.
Therefore, the “multiple” pattern, which is good at global scanning, is more favored.

4.4 The Denoising Capability

Figure 10 is an example of the grey scale representing the damaged in Region B. Due to
poor attachment of Sensor 9, considerable noise is produced on the last monitoring path
(seen at bottom right of Fig. 10a). From 10(b) it is seen that the deep learning model
successfully differentiate it from other normal damaged signals. This proves the model
with the capability of noise suppression to a degree.
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(a) Sample without damage (b) Grad-CAM heatmap of single-
scale kernel network

(c) Grad-CAM heatmap of multi-
scale kernels network

Fig. 9. Comparison of heatmaps between single-scale kernel and multi-scale kernels networks

(a) grey scale                           (b) Grad-CAM heatmap 

noise 

Fig. 10. Sample of damage in Region B with noise generated in Region D

5 Summary

Guidedwave is a very potential candidate of structural healthmonitoring. In this paper, an
innovative deep learning model is proposed and it proves to help the damage recognition
of carbon fiber reinforced composite using guided wave more accurately and reliably.
The major contributions include:

• It uses the integrated grey scale of all guided-wave-propagating paths instead of a
single path before as the sample for deep learning model. This practice enables the
sample to be labelled according to objective truth rather than individual experience,
which may largely mislead the model training;

• Themodel is elaborately designedwithmultiple convolutional kernels and themodule
of data augment, which alleviates the natural shortage of inadequate sample collection
in the field of structural health monitoring.

Both measures above help the deep learning model to have a good performance in
terms of generalization. Individual experience is eliminated during the labelling process,
and the recognizing accuracy reaches 92.6% in the verification.
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