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1 Introduction 

Additive manufacturing (AM), also known as rapid prototyping (RP), is a 
cost-effective and time-efficient single-shot manufacturing process for intricate 
customized shapes (preferably low volume) produced from a digital system (3D 
CAD, MRI, CT scans, etc.). In particular, among the powder-based AM processes, 
the powder bed fusion (PBF) is categorized into two, namely selective laser melting 
(SLM) and selective laser sintering (SLS). During the SLM process, the powder gets 
completely fused in an inert environment (e.g., argon) through near-infrared wave-
length laser radiation, and overlapped melt tracks get solidified to produce desired 
parts [1]. At present, it has appeared to be the most globally accepted approach for 
metal AM [2]. 

Among the several SLM process parameters involved in laser PBF technology, 
the high-power beam parameters are found to be the most effective ones for the 
desired output performance. The four most influencing parameters are found from
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the prolonged experimental observations to be laser power (P), scan speed (v), hatch 
spacing (h), and layer thickness (t) [1]. In addition, two energy densities, namely, the 
volumetric (EV ) and the linear energy density (EL) are defined in terms of the four 
aforementioned parameters [3] 

EV
(
J/mm3

) = P(W) 

v(mm/sec) · h(µm) · t(µm) 
(1) 

EL(J/m) = P(W) 

v(mm/sec) 
, (2) 

which are observed to play a pivotal role in controlling various properties (mechan-
ical, thermal) of the fabricated material. 

Due to its high strength-to-weight ratio and good biocompatibility, titanium Ti-
6Al-4V and its ELI alloys fetch most of the attention in the recent past [4]. The 
very requirement of the specific design of prosthetic and orthopedic parts partly 
necessitates the introduction of present matured three-dimensional (3D) printing 
technology for this titanium alloy. Moreover, for fruitful utilization of the AMed 
parts as structural components, namely, aircraft structures, gas turbines, biomedical 
implants, etc., their tensile behavior is considered to be one of the most important 
mechanical properties. The aforementioned behavior can be quantified via yield 
strength (YS), ultimate tensile strength (UTS), percentage of total elongation (TE), 
and elastic modulus (E). From most of the researches (~81%), it has been observed 
that the values of elastic modulus lie in the range of 105–120 GPa [1], which is 
considerably higher than the requirement for human bones (~40 GPa) [5]. Achieving 
the same involves mostly porous structure formation, which is not intended to include 
in the ongoing study. 

Achieving the mechanical properties in the as-fabricated AMed components 
comparable to the thermo-mechanically processed ones is still found to be chal-
lenging. In fact, for the AMed parts, it has also been observed that ductility enhance-
ment is one of the most concerns to date [6]. The reason behind this is that the compo-
nents manufactured by the AM typically exhibit lesser ductility than the desired as 
per the ASTM standards, e.g., [2, 7]. 

The tensile strength is observed to depend directly on the in-process parameters 
involved in the AM process. For example, the consequence of increasing scan speed 
on decreasing tendency of all the tensile properties of Ti-6Al-4V alloy (Grade 23) 
samples has been reported by Gong et al. for the SLM process [8]. 

Machine learning (ML), on the other hand, serves as an excellent tool to predict 
a number of output features in modern manufacturing science, especially in 3D 
printing. Being a subset of artificial intelligence, it is based on rigorous algorithms 
through which a machine can automatically learn and improve itself from expe-
rience rather than being programmed via pre-determined models. The learning 
techniques are classified as supervised learning, unsupervised learning, and rein-
forcement learning. Supervised learning algorithms are trained using the input and 
the desired labeled output data. In the case of support vector machines (SVM), a
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sub-category of supervised learning algorithm, respective algorithms (i.e., linear, 
quadratic, cubic, fine Gaussian, medium Gaussian, and coarse Gaussian) make a 
contrasting separation between the classes by means of corresponding nature of 
kernel scale. 

In this context, the authors briefly mention some recent works employing ML tools 
to aid manufacturing and control like Ng et al. highlighted deep learning, a branch 
of ML, as a promising advancement in the era of 3D bio-printing emphasizing the 
potential of this algorithm in every phase of the printing process [9]. 

Khorasani et al. have studied the impact of process parameters on the relative 
density and involved an artificial neural network (ANN) as a part of numerical anal-
ysis [10]. For the laser melting deposition (LMD) AM process, Velázquez et al. 
have used a fuzzy logic-based inference system (based on the Mamdani method) for 
predicting the volumetric energy input on single AISI316 SS beads deposition [11]. 

In a different study, an ensemble learning-based algorithm was declared as well 
capable for surface roughness prediction in extrusion-based additive manufacturing 
processes, after comparing the model output with the corresponding experimental 
values [12]. Interestingly, another ML-based fatigue life prediction approach for AM-
printed SS316L has recently been carried out by Zhan and Li training the models with 
continuum damage mechanics (CDM)-based experimental data involving ANN, RF, 
and SVM algorithms [13]. 

In this context, no investigation regarding the prediction of the tensile strength in 
terms of the AM process parameters has been reported as per the best of the authors’ 
knowledge. Evidently, it may be acknowledged to be a very fruitful effort to expedite 
the tensile properties prediction involving the ML module (specifically SVM). Here, 
it has been further considered to carry out material-specific modeling, typically for 
SLM-manufactured Ti-6Al-4V alloys. As mentioned, most influencing parameters 
have been considered in the present study, along with two well-established energy 
function relationships for predicting the YS, UTS, and yielding TE of the SLM as-
built samples. In the beginning, the ML module training methodology has been briefly 
demonstrated. During analysis, a comparison of the accuracy of ML-based classifiers 
has been illustrated for different combinations of training data for all the considered 
tensile properties each. Along with that, the variation effect of cross-validation folds 
has been studied on model accuracy during the classifier model training. Finally, the 
developed models have been probed for using the set of validation data. 

2 Methodology 

The tools and methods used to develop three distinct trained models for YS, UTS, 
and TE prediction have been discussed in the following subsections.
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Table 1 Scanning parameters used for printing different SLMed Ti6A4V samples and corre-
sponding tensile properties 

P (W) v (mm/sec) h 
(µm) 

T 
(µm) 

YS (MPa) UTS (MPa) TE (%) Refs. 

120 960 100 30 1098 1237 8.8 [8] 

120 540 100 30 1150 1257 8 [8] 

120 400 100 30 1066 1148 5.4 [8] 

120 1260 100 30 932 1112 6.6 [8] 

120 1500 100 30 813 978 3.7 [8] 

375 1029 120 60 1106 NR 11.4 [14] 

194 1000 70 20 1030 NR NR [15] 

250 1600 60 30 1125 1216 6 [16] 

*170 1250 100 30 1143 1219 4.89 [17] 

*275 805 120 50 1200 1280 2.4 [7] 

NR = Not Reported 

2.1 Database Development 

The analysis for the tensile properties prediction was done on a dataset that was 
collected from several reputed journals and proceedings’ articles, a few among these 
are provided in Table 1. After a rigorous data collection (number of data points for 
YS: 107, UTS: 95, and TE: 102) from the literature, a number of MATLAB tools and 
applications have been used in the present work for the predictive model preparation 
and testing. Here, MATLAB R2015a (8.5.0.197613) academic licensed version has 
been used in a 4 GB RAM and Intel CORE™ i3 supporting system capable of 
smoothly handling the load of the database used. 

Labeling of the output data is done for all the three models based on the suitable 
range of values as the authors contemplate and has shown with respective results 
(Sects. 3.1–3.3). Instead of using the exact values, the trained models predict the 
range of values in terms of labels, as initially have designated before data analysis. 

The authors follow the typical route to ML-based modeling and divide the latter 
into three categories, namely training, testing, and validation dataset. Based on the 
types of model validation method (cross-validation) considered, in the present case, 
a set of about 15% of totally collected data (e.g., marked * in Table 1) was kept 
separately as validation dataset for model development. 

2.2 ML Model Architecture 

For each of the predictive models’ development, subsequent operation sequences 
have been followed, adhering to their respective features. After trial-and-error with
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various available classifiers, a handful among them is finalized based on the trained 
model accuracy. As the application for the specific data-driven classification can 
easily be tackled in the available MATLAB versions, the authors find it redundant to 
show and describe the intermediate processing steps in the ongoing discussion. 

In the very first stage of classification, the data matrix is imported into the clas-
sification learner application. Thereafter, the minute selection of predictor(s) and 
response (only one) is executed as per the users’ choice. For the present work, label 
(L) has always been selected as a response, and for each of three matrices, all the 
rest variable(s) has (have) fixed as the predictor(s). At this final phase, the valida-
tion method is applied depending on its typical effectiveness based on the size of 
the data-set it is going to handle. In the present work, it is noticed that the dataset 
is sparse (~100, specific number provided in Sect. 2.1). Hence, the cross-validation 
method appeared to be the best one for executing the complete work. 

After all the above-mentioned choices, the data is imported. Then selecting each 
classifier, the model is trained, and the corresponding accuracy is displayed. Finally, 
a comparison is made to identify the relatively accurate one based on the number of 
folds and classifiers of the particular choice group. In particular, the accuracy of the 
trained predictive model is compared among the SVM classifiers, and accordingly, 
the best models have been identified for respective properties. Subsequently, the 
model is exported for a specific model that shows the highest accuracy to test its 
prediction capability with already experimentally known data (test dataset). 

3 Results and Discussions 

After carrying out several model training with the developed data, the outcomes and 
consequent comprehensive observations from the three tensile behavior representing 
models are highlighted in the following three subsections. The authors have executed 
training with all the categories, but unsatisfactory accuracy made us decide not to 
include the irrelevant results in the present manuscript. Hence, the main focus is 
given to the SVM analysis in detail, and the corresponding results are graphically 
presented. To obtain a suitable number of folds that maximizes the model’s accuracy, 
the fold numbers from 2 up to 32 are analyzed. For each of the typical cases, the 
models have been trained ten times as it is based on statistical analysis. Consequently, 
the mean values are carefully considered in practice and will be discussed in subsec-
tion 3.5. Trained model accuracy accordingly portrays its real-world usefulness from 
its applicability traits. 

3.1 Yield Strength Predictive Model Training 

For the GR_I category (Fig. 1e) using the YS labeled dataset (Fig. 1d), maximum 
predictive model accuracy is obtained to be 84.5% using the fine Gaussian SVM
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YS (MPa) Label 

800 - 900 1 

900 - 1000 2 
1000 - 1100 3 
1100 - 1200 4 

< 800 or > 1200 5 

(a) (b) 

(c) (d) 

Group Input 
variables 

GR_I P, v, h, t 

GR_II EL, h, t 
GR_III EV 

(e) 

Fig. 1 3D plot for a GR_I, b GR_II and c GR_III YS predictive model accuracy; and d labeled 
data used during model development and e input variables 

classifier bearing a fold number of 22 (Fig. 1a). Compared to the fine Gaussian, 
quadratic, and cubic, SVM classifiers show comparable model accuracy. Still, greater 
fluctuation in accuracy variation was observed in the latter two (~17–18%) compared 
to the former one (~14%); see Fig. 1a. Moreover, it is quite clear that linear and coarse 
Gaussian SVM is not suitable for classifying this kind of dataset. It is also observed 
that for smaller validation fold numbers, the trained models have shown a bit lesser 
accuracy compared to the higher numbers (Fig. 1a). 

In the case of GR_II grouping (Fig. 1e), maximum accuracy for the trained YS 
predictive models is obtained for a fold number of 13 in the fine Gaussian SVM classi-
fier as 85.7% (Fig. 1b). From the accuracy viewpoint, it has revealed an almost similar 
nature with the latest group of variables (GR_I). However, for the present group, the 
quadratic SVM classifier shows slightly better overall accuracy compared to the cubic 
(Fig. 1b). The changes may be interpreted as the involvement of numbers and a set 
of variables varied from the previous grouping (GR_I). Furthermore, throughout the 
change in fold numbers, quadratic shows a better fluctuation trend compared to the 
cubic after a few initials (Fig. 1b). The present instance also indicates the poor model 
behavior for training both with linear and coarse Gaussian SVM classifiers. 

Finally, in the case of the GR_III combination (Fig. 1e) of the trained YS predic-
tive model, the maximum accuracy is obtained for a fold number of 2 as 50% in 
both cubic and medium Gaussian SVM classifiers (Fig. 1c). In this case, an abrupt 
change (decrement) in the accuracy has been observed throughout, compared to the
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percentage that appeared for the previous two variable groups (GR_I and GR_II). 
The reason behind this scenario is highly expected to be the involvement of only one 
labeled dataset. In this situation, overall accuracy throughout the folds was found 
stable in medium Gaussian SVM. Besides that, the quadratic and cubic classifiers 
show a similar extent of accuracy, but a fluctuation (~12–13%) is observed throughout 
the fold variation; see Fig. 1c. 

From the three instances considered for YS model training, the overall accu-
racy of the model has been finally indicated as 85.7% using the GR_II variable 
set and fine Gaussian SVM classifier. The GR_I variable set has exhibited almost 
comparable utility through trained model performance. According to the validation 
method considered here, the model accuracy found may be deemed as moreover too 
satisfactory from its application viewpoint. 

3.2 Ultimate Strength Predictive Model Training 

In the case of GR_I combination using the UTS labeled dataset (Fig. 2d), maximum 
predictive accuracy is obtained as 80.4% for a fold number of 22 in the fine Gaussian 
SVM classifier (Fig. 2a). Moreover, it shows the accuracy of almost the same order 
throughout the fold variation. After fine Gaussian, the overall accuracy decreases 
consecutively for cubic and quadratic classifiers (Fig. 2a). Along with that, the varia-
tion in the accuracy due to cross-fold number alteration also fluctuates too much for 
the two aforesaid classifiers (about 28% and 21%, respectively). Notably, the linear 
and coarse Gaussian SVM classified the least accurate (~52%) trained models with 
marginally better performance (~62%) for medium Gaussian one.

For the GR_II category in the UTS predictive trained model, maximum accuracy 
for the model is obtained as 71.7% for the fine Gaussian SVM classifier bearing a 
fold number of 15 (Fig. 2b). A bit fluctuating nature has been observed throughout 
the fold variation for this particular case. Subsequently, models with accuracy lie in 
the near about ranges observed for the cubic and quadratic classifiers as depicted in 
the 3D plot (Fig. 2b). 

Finally, the GR_III grouping for the UTS predictive model has displayed 
maximum accuracy for a fold number of 16 in the fine Gaussian SVM classifier 
as 52.2% (Fig. 2c). Also, for all the classifiers, inconsistent patterns in the model 
accuracy appeared as usual, like the YS model. 

From the above-discussed three illustrations considered for training UTS predic-
tive model, the overall accuracy of the model has been cumulatively indicated as 
80.4% using fine Gaussian SVM classifier for GR_I variable set. From the model 
validation method selection aspect, the trained model’s accuracy may be considered 
as overall satisfaction with respect to its reliable implementation viewpoint.
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UTS (MPa) Label 

900 - 1000 1 

1000 - 1100 2 

1100 - 1200 3 

1200 - 1300 4 

< 900 or > 1300 5 

(a) (b) 

(c) (d) 

Fig. 2 3D plot for a GR_I, b GR_II and c GR_III UTS predictive model accuracy; and d labeled 
data used during model development

3.3 Ductility Predictive Model Training 

In the case of training with the GR_I grouping using the TE labeled dataset (Fig. 3d), 
maximum accuracy for the predictive model is obtained for a fold number of 14 
in the fine Gaussian SVM classifier as 91.7% (Fig. 3a). For a maximum of the 
fold variations apart from a few initials, the fluctuation in the accuracy is almost 
stable. After the best classifier, the overall second and third best appeared are cubic 
and quadratic, respectively. Linear and coarse Gaussian appeared as least effective 
(<50%) for the present case with a marginally better (~65%) for the medium Gaussian 
SVM classifier.

In the case of the GR_II variable set, the maximum accuracy for the trained model 
is attained for a fold number of 8 as 74% in the fine Gaussian SVM classifier (Fig. 3b). 
During the number of cross-fold variations, minor luctuations have been observed 
in the fine Gaussian except for a few initials; and it appears as prominent for the 
quadratic, cubic, and medium Gaussian (Fig. 3b). However, the quadratic and cubic 
SVM have classified the data with almost similar accuracy (~70%) comparable to 
the best one (fine Gaussian SVM). 

Next, in the case of the GR_III category, the maximum accuracy for the model 
is obtained as 53.1% for the fine Gaussian SVM classifier bearing a fold number 
of 4 (Fig. 3c). As usual, accuracy is drastically low like the previous two modeling
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TE (%) Label 

1-4 1 

4-8 2 

8-10 3 

10-14 4 

(d) 

(b) 

(c) 

(a) 

Fig. 3 3D plot for a GR_I, b GR_II, and c GR_III TE predictive model accuracy; and d labeled 
data used during model development

sections (Sects. 3.1 and 3.2). During the fold variations, except the cubic SVM, fine 
and medium Gaussian classifiers have shown comparatively remarkable fluctuations 
than the rest (Fig. 3c). 

From the three instances discussed in the present subsection, the overall accuracy 
of the trained model has been finally pointed out as 91.7% using the fine Gaussian 
SVM classifier for the GR_I variable set. Also, it appeared to be the maximum among 
all the presently studied model categories. According to the currently considered 
validation method, the ductility predictive model accuracy, found after numerous 
training, may be regarded as highly satisfactory from its application perspective and 
expected to predict accurately in most of the future scenarios. 

3.4 Validation of Trained Models 

Next, the authors export the most accurate trained models for the YS, UTS, and 
ductility as indicated in the last three sections. For validation of each of the models, 
all the models of each group having the highest accuracy are now successfully authen-
ticated with the validation dataset as already kept aside (for YS: 16, UTS: 14, and 
TE: 15). For a better presentation of the validation study, the results have been given 
in Table 2 with corresponding correctness during the trained model validation.
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Table 2 Prediction 
correctness of trained models 
during validation 

Variable group YS model (%) UTS model 
(%) 

TE model (%) 

GR_I 81.25 85.71 93.33 

GR_II 87.50 71.43 80 

GR_III 62.5 57.14 46.67 

3.5 Discussions 

From the whole model training outcomes, it can be inferred that it is hardly possible 
to achieve too much accurate predictive model through ML for such a specific model 
condition considered in the current work. There may exist plenty of reasons for this 
deviation of the trained model’s output from real-life experimentation. According to 
the trailing discussion, four variables have been considered, in individual or the form 
of already traditional relations. Evidently, the rest of the huge printing parameter-
family may act as a noise factor in different extents as per situations. Few of the 
relevant instances have been mentioned in the subsequent discussions, primarily 
focusing on the tensile properties considering specific material (Ti-6Al-4V) and 
printing process (SLM). 

It has been highlighted by Agius et al. in their review work that the properties 
are affected due to different laser scanning strategies [18]. Pal et al. observed the 
significant effect of different building orientations on the tensile properties through 
building samples in four different directions [19]. As a consequence of minimizing the 
aforementioned influence, all the data considered for the current study are typically 
for vertically built (along z-direction) samples. 

Furthermore, the influence of the variation of focal offset distance [3], inter-layer 
time [3, 20], and powder bed temperature [3, 21] has appeared as effective on the 
tensile properties of SLM as-built Ti-6Al-4V samples. From the broad observations, 
it may be said that different printing systems usually affect the mechanical properties 
to some extent. 

Despite all the concerns regarding deviation in predictions, accuracy in all the three 
subdivisions was found well satisfactory (>80%) from an implementation viewpoint. 
Most interestingly, as a most concerned property among the SLM as-built structures, 
the ductile behavior predictive model achieved the highest (>90%) accuracy. As 
indicated at the very beginning of the current section regarding obvious consideration 
of the mean values, a glimpse of observed deviations in the accuracy has been marked 
in the bar chart (Fig. 4) just for providing the impression cumulatively.

4 Conclusions and Future Perspectives 

Based on the behavior of trained models’ accuracy, the following brief remarks may 
be provided in terms of its operative and consistent solicitation:
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Fig. 4 Accuracy variations during model training

. Based on the tendency of the input dataset, the fruitful functionality of the classifier 
changes in terms of the model accuracy. For any particular classifier, a too abrupt 
shift in model accuracy has not been observed for all the instances, as desired. 
However, minor changes were found due to variations in the number of folds.

. The accuracy of the GR_III variable set is too low (~50%) on average in compar-
ison with the other two groups (GR_I and GR_II). Hence, the GR_III group may 
be discarded any further to train the ML module for the AMed parts.

. For model development involving 3D printing parameters, the fine Gaussian SVM 
classifier is found to be most useful as a whole from the present training–testing 
trend through the ML algorithm. For YS, UTS, and TE predictive models, the 
maximum accuracy of the models is obtained as 85.7%, 80.4%, and 91.7%, 
respectively, using the fine Gaussian SVM classifier. 

To gain further acceptance from the industry as well as in research and devel-
opment, separate model development using ML modules can be expedited in AM 
for other mechanical properties like fatigue strength, tribological behavior, micro-
hardness, impact strength, etc. ML algorithms also can be utilized to predict the prop-
erties of thermally and mechanically post-treated components at specified conditions. 
The authors expect that the present work would surely provide an adequate paradigm 
to future researchers in the advancement of time and cost-effective AM process. 
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