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Abstract. Simulation is a well-established technique for verifying
wheth-er the behaviors of one labeled transition system (LTS) can mimic
all behaviors of another LTS. Transition systems with regular expressions
(RE-TSs) are an extension of LTSs, which are used as semantic models in
modal or temporal logics to solve model checking problems. This paper
presents approximate simulation, an extension of simulation of an LTS
by a RE-TS, by combining general simulation and metrics, and discusses
its properties. First, the notion of approximate simulation is introduced.
Then, we investigate properties and an equivalent formalism of approxi-
mate simulation. On the other hand, we propose two approaches of fixed
point characterization for approximate simulation, and study the rela-
tionship between them.
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1 Introduction

Analysis and verification of concurrent and reactive systems [1] is a well-
established research field. Labeled transition systems (LTSs) [1,2] are typically
used as models to describe the behaviors of concurrent and reactive systems.
In order to compare the behaviors of LTSs, researchers proposed a variety of
verification methods. Among them, simulations [1,3,4,30] have a wide range of
applications in the analysis of LTSs.

Classical simulation verification techniques return a boolean answer that indi-
cates whether one system can mimic all behaviors of another system. However,
as pointed out in [8,11–13], these techniques are restrictive and not robust: Two
systems either are simulated or are not simulated, regardless of how close the
behaviors of two systems are. To overcome this limitation, the majority of exist-
ing works can be roughly grouped into two directions. One of them is based
on the notion of metric, which assigns a non-negative real number to each pair
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of states of systems (e.g., [7,8,13,18,25–27]). The other direction is to propose
numerous approximate simulations (e.g., [10–12,14,28]), which characterize two
almost similar states by a parameter δ.

In fact, in order to model the systems which are required to satisfy the
requirements of different aspects, there are a large number of extensions of LTSs
in existing literatures (e.g., [5–9,16,21,24]), such as transition systems with reg-
ular expressions (RE-TSs) (e.g., [15,17,19,20,22,23]), fuzzy transition systems
(e.g., [31,33,34]) and probabilistic transition systems (e.g., [11,12]). RE-TSs have
been used in classical modal and temporal logics as semantic models to express
the properties of models of systems. For example, Bozzelli [17] investigated the
model checking problem for interval temporal logic extended with regular expres-
sions. Beer [20], Brazdil [23] and Mateescu [22] extended computation tree logic
(CTL) by applying regular expressions so as to enhance the expression of CTL.
From a different point of view, Fan [15] added regular expressions to pattern
graphs, and used simulation to solve graph pattern matching which is a classi-
cal graph challenge, and considered as one of the most studied problems in the
literature. It is regrettable that the simualtion of an LTS by a RE-TS has been
ignored in the setting of approximate. To alleviate the aforementioned problem,
we will use the notion of metrics to propose an approximate simulation, and
study some properties about the approximate simulation.

The paper is organized as follows. Some preliminaries are given in Sect. 2.
In Sect. 3, we give the notion of the approximate simualtion. We study some
related properties about the approximate simualtion, and provide two fixed point
characterizations in Sect. 4 and conclude the paper in Sect. 5.

2 Preliminaries

In this section, we recall some notations and definitions about regular expres-
sions, metric spaces and transition systems with regular expressions.

We denote the sets of real numbers, non-negative reals, natural numbers and
positive integers by R, R+, N, Z+, respectively. We use I to denote the set of
indexes. Let Σ be a finite set. We denote the set of finite strings over Σ by Σ∗. We
write P(Σ) for the power set of Σ. Let ρ = a1 . . . an, σ = b1 . . . bm ∈ Σ∗ be two
strings. Then, the concatenation of ρ and σ is the string ρσ = a1 . . . anb1 . . . bm.
We also denote the i-th symbol of ρ and the length of ρ by ρi and |ρ|, respectively.
Let P, Q ⊆ Σ∗. The concatenation of P and Q is PQ = {ρσ ∈ Σ∗ : ρ ∈ P, σ ∈
Q}.

Regular expressions [29] ω over Σ are defined by the following grammar,

ω:: = a|ak|a+|(ω1)|ω1ω2|ω1 + ω2,

where a ∈ Σ. The set of all regular expressions over Σ is written as �(Σ). The
language L(ω) ⊆ Σ∗ of a regular expression ω ∈ �(Σ) is defined indutively by

(1) L(a) = {a};
(2) L(ak) = {a · · · a

︸ ︷︷ ︸

k

};
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(3) L(a+) = L(a) ∪ L(a2) ∪ · · · ;
(4) L((ω1)) = L(ω1);
(5) L(ω1ω2) = L(ω1)L(ω2);
(6) L(ω1 + ω2) = L(ω1) ∪ L(ω2).

We recall the definition of metrics taken from [32]. A function d : Σ ×Σ → R

is a metric over Σ if for all x, y, z ∈ Σ

(1) d(x, y) ≥ 0, d(x, y) = 0 iff x = y;
(2) d(x, y) = d(y, x);
(3) d(x, z) ≤ d(x, y) + d(y, z).

And, the pair (Σ, d) is called a metric space. When d is clear from context,
we write Σ instead of (Σ, d).

Next, we review the definition of transition system with regular expressions
[15,17,20,22,23]. A transition system with regular expressions (for short, RE-
TS) is a tuple RT = (S, s0,�(Σ),→) where S is a finite set of states, s0 ∈ S
is a initial state, �(Σ) is the set of all regular expressions over Σ, and →⊆
S × �(Σ) × S is a set of transitions.

A labeled transition system (LTS) can be viewed as a special case of RE-
TS, where �(Σ) is replaced with Σ. Let RT = (S, s0,�(Σ),→) be a RE-TS.
We write s

ω−→ s′ for (s, ω, s′) ∈→, where s, s′ ∈ S. A trace σ is an infinite
sequence of elements in �(Σ). For j ≥ 1, let σj denote the jth element. A path
from s in RT is an infinite sequence π = s

ω1−→ s′ ω2−→ s′′ · · · , and we denote by
tr(π) = ω1ω2 · · · the trace induced by it. For s ∈ S, we denote by Path(s) the set
of paths from s and by Trace(s) = {tr(π) : π ∈ Path(s)} the set of traces from
s. We use L(RT ) to denote the languages of RT , where L(RT ) = Trace(s0). If
RT is an LTS, →⊆ S × Σ × S can be extended to →∗⊆ S × Σ∗ × S. We write
s

ρ−→∗s′ for (s, ρ, s′) ∈→∗.

3 Approximate Simulation

In this section, we define an approximate simulation. Before formally defining
approximate simulation, we will introduce the notion of exact simulation of an
LTS by a RE-TS [15].

Definition 1. Let RT 1 = (S1, s1,0, Σ,→1) be an LTS and RT 2 =
(S2, s2,0,�(Σ), →2) be a RE-TS. A relation R ⊆ S1 × S2 is called a simula-
tion if for any (s1, s2) ∈ R and for each s1

ρ−→ ∗s′
1, there exists s2

ω−→ s′
2 such

that ρ ∈ L(ω) and (s′
1, s

′
2) ∈ R. We say that RT 2 simulates RT 1, denoted by

RT 1 � RT 2, if there exists a simulation R such that (s1,0, s2,0) ∈ R.

Example 1. Consider an LTS RT 1 = (S1, s1,0, Σ,→1) and a RE-TS
RT 2 = (S2, s2,0,�(Σ),→2). The transition diagrams of RT 1 and RT 2

are depicted in Fig. 1. By Definition 2, we can find a relation R =
{(s1,0, s2,0), (s1,1, s2,1), (s1,2, s2,1), (s1,3, s2,2), (s1,4, s2,2)} which is a simulation,
and (s1,0, s2,0) ∈ R. Therefore, we can obtain RT 1 � RT 2.
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Fig. 1. An LTS and a RE-TS.

The following definitions and propositions will help us to define the approx-
imate simulation.

The definition of string distance sd will be developed in a discounted version
[7,8], in which distance of each step is decreased exponentially over time by a
discounting factor α ∈ (0, 1].

Let (Σ, d) be a metric space, and α ∈ (0, 1]. The string distance sd : Σ∗ ×
Σ∗ → R ∪ {+∞} is defined as

sd(ρ, σ) =

⎧

⎨

⎩

max
1≤i≤|ρ|

αi−1d(ρi, σi) if |ρ| = |σ|,

+ ∞ otherwise,

for all strings ρ, σ ∈ Σ∗.

Proposition 1. Let d be a metric over Σ. Then, sd is a metric on the set Σ∗.

Proof. By the definition of metric, we need to prove the follow properties:

(1) sd(ρ, σ) ≥ 0 and sd(ρ, σ) = 0 iff ρ = σ,
(2) sd(ρ, σ) = sd(σ, ρ),
(3) sd(ρ, ς) + sd(ς, σ) ≥ sd(ρ, σ)

where ρ, σ, ς ∈ Σ∗.
The properties (1) and (2) are obvious.
For property (3): We have to discuss the following four cases.
The cases of |ρ| 
= |σ| 
= |ς|, |ρ| = |σ| 
= |ς|, and |ρ| 
= |σ| = |ς| follow

immediately from the definition of sd. We only consider the case of |ρ| = |σ| =
|ς| = n.

From the definition of sd, we know that

sd(ρ, ς) + sd(ς, σ) = max
1≤i≤n

αi−1d(ρi, ςi) + max
1≤j≤n

αj−1d(ςj , σj)

and sd(ρ, σ) = max
1≤k≤n

αk−1d(ρk, σk). It is sufficient to show that there exists a 1 ≤
p ≤ n such that αp−1d(ρp, σp) = sd(ρ, σ). Then, d(ρp, σp) ≤ d(ρp, ςp)+ d(ςp, σp).
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Therefore,

sd(ρ, σ) = αp−1d(ρp, σp)

≤ αp−1d(ρp, ςp) + αp−1d(ςp, σp)

≤ max
1≤i≤n

αi−1d(ρi, ςi) + max
1≤j≤n

αj−1d(ςj , σj)

= sd(ρ, ς) + sd(ς, σ).

Let (Σ, d) be a metric space. The distance between a string ρ ∈ Σ∗ and the
language L(ω) ⊆ Σ∗ of a regular expression ω ∈ �(Σ) is defined as

d∗(ρ, L(ω)) = inf
σ∈L(ω)

sd(ρ, σ).

Proposition 2. Let (Σ, d) be a metric space. Then, the following properties
hold:

(1) d∗(ρ, L(ω)) ≥ 0, for all ρ ∈ Σ∗ and ω ∈ �(Σ).
(2) ρ ∈ L(ω) iff d∗(ρ, L(ω)) = 0, where ρ ∈ Σ∗, ω ∈ �(Σ).

Proof. For property (1): It follows immediately from Proposition 1.
For property (2): First, for the ‘if’ part, let d∗(ρ, L(ω)) = 0. Without loss

of generality, suppose |ρ|=n. Since Σ is a finite set, assume that there are m
elements in Σ. According to the definition of sd, there are at most nm + 1
values. Then, there exists σ ∈ L(ω) such that sd(ρ, σ) = 0. So by Proposition 1
and the definition of sd, ρ = σ holds. Hence ρ ∈ L(ω).

Second, for the ‘only if’ part, suppose that ρ ∈ L(ω). Then, there exists
σ ∈ L(ω) such that ρ = σ. By Proposition 1 and the definition of sd, sd(ρ, σ) = 0
holds. Therefore, inf

σ∈L(ω)
sd(ρ, σ) = 0, and d∗(ρ, L(ω)) = 0.

By the above definitions and propositions, we will introduce the definition of
approximate simulation.

Definition 2. Let RT 1 = (S1, s1,0, Σ,→1) be an LTS, RT 2 = (S2, s2,0,�(Σ),
→2) be a RE-TS, (Σ, d) be a metric space, and δ ∈ R

+. A relation Rδ ⊆ S1 ×S2

is called a δ-simulation if for any (s1, s2) ∈ R and for each s1
ρ−→ ∗s′

1, there
exists s2

ω−→ s′
2 such that d∗(ρ, L(ω)) ≤ δ and (s′

1, s
′
2) ∈ R. We say that RT 2

δ-simulates RT 1, denoted by RT 1 �δ RT 2, if there exists a δ-simulation Rδ

such that (s1,0, s2,0) ∈ Rδ.

We replace s1,0
a−→ s1,1 by s1,0

c−→ s1,1 in Fig. 1, where d(a, c) = 0.5. Then,
according to Definition 2, we can obtain that there exists a 0.5-simulation R0.5

such that (s1,0, s2,0) ∈ R0.5. Thus, RT 1 �0.5 RT 2.
In above definition, when δ = 0, we recover the established definition of exact

simualtion.
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4 Related Properties

In this section, we will introduce some properties related with the approximate
simulation.

Given a precision parameter δ, which used to measure the degree of simu-
lation, the following lemma ensures that the set of δ-simulation has a maximal
element, denoted by Rmax

δ . Moreover, by using Rmax
δ , we give an equivalent

expression for δ-simulation.

Lemma 1. Let RT 1 = (S1, s1,0, Σ,→1) be an LTS, RT 2 = (S2, s2,0,�(Σ),
→2) be a RE-TS, (Σ, d) be a metric space, and δ ∈ R

+. Suppose that {Ri
δ}i∈I

is a family of δ-simulation of RT 1 by RT 2, and Rmax
δ =

⋃

i∈I

Ri
δ. Then, the

following properties hold:

(1) Rmax
δ is a δ-simulation of RT 1 by RT 2.

(2) RT 1 �δ RT 2 iff (s1,0, s2,0) ∈ Rmax
δ .

Proof. For property (1): Consider any (s1, s2) ∈ Rmax
δ =

⋃

i∈I

Ri
δ. It is enough to

show that there exists a i ∈ I such that (s1, s2) ∈ Ri
δ. By Definition 2, we can

know that for each s1
ρ−→ ∗s′

1 in RT 1, there exists s2
ω−→ s′

2 in RT 2 such that
d∗(ρ, L(ω)) ≤ δ and

(s′
1, s

′
2) ∈ Ri

δ ⊆
⋃

i∈I

Ri
δ = Rmax

δ .

Hence, Rmax
δ is a δ-simulation of RT 1 by RT 2.

For property (2): It follows immediately from Definition 2 and property (1).

Proposition 3. Let RT i = (Si, si,0, Σ,→i), i = 1, 2, be two LTSs, RT 3 =
(S3, s3,0,�(Σ), →3) be a RE-TS, and (Σ, d) be a metric space. Then, the fol-
lowing properties hold:

(1) For all δ ≥ 0, RT 1 �δ RT 1.
(2) For all δ ≥ 0, if RT 1 �δ RT 3, then for all δ′ > δ, RT 1 �δ′ RT 3.
(3) For all δ, δ′ ≥ 0, if RT 1 �δ RT 2 and RT 2 �δ′ RT 3, then RT 1 �δ+δ′ RT 3.

Proof. For property (1): Let R = {(s, s) ∈ S1 × S1 : s ∈ S1}. Then, for each
(s, s) ∈ R and s

a−→ ∗s′, it is obvious that s
a−→ s′, d∗(a, L(a)) = 0 ≤ δ and

(s′, s′) ∈ R. Therefore, R is a δ-simulation by Definition 2. Thus RT 1 �δ RT 1

because (s1,0, s1,0) ∈ R.
For property (2): Suppose that RT 1 �δ RT 3 and δ′ > δ ≥ 0. From Lemma 1,

we can know that (s1,0, s3,0) ∈ Rmax
δ =

⋃

i∈I

Ri
δ. Therefore, there exists i ∈ I such

that (s1,0, s3,0) ∈ Ri
δ. By Definition 2, we have that for each (s1, s3) ∈ Ri

δ and
s1

ρ−→∗s′
1, there exists s3

ω−→ s′
3 such that d∗(ρ, L(ω)) ≤ δ < δ′ and (s′

1, s
′
3) ∈ Ri

δ.
Hence, Ri

δ is a δ′-simulation. Thus, RT 1 �δ′ RT 3.
For property (3): Let R = {(s1, s3) ∈ S1 × S3 : ∃s2 ∈ S2, (s1, s2) ∈ Rmax

δ and
(s2, s3) ∈ Rmax

δ′ }. For each (s1, s3) ∈ R, suppose that

s1
a1−→∗s′

1
a2−→∗ · · · an−−→∗s′′

1 .
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We know from Lemma 1 that there exists

s2
a′
1−→ s′

2

a′
2−→ · · · a′

n−−→ s′′
2

such that d∗(ai, L(a′
i)) ≤ δ and (s′′

1 , s′′
2) ∈ Rmax

δ , where ai, a
′
i ∈ Σ for every

i ∈ N. Let ρ = a1a2 · · · an and ρ′ = a′
1a

′
2 · · · a′

n. By the definition of sd, we have
sd(ρ, ρ′) ≤ δ. From Lemma 1, we know that there exists s3

ω−→ s′
3 such that

d∗(ρ′, L(ω)) ≤ δ′ and (s′′
2 , s′

3) ∈ Rmax
δ′ for each s2

ρ′
−→ ∗s′′

2 and (s2, s3) ∈ Rmax
δ′ .

Therefore, there exists σ ∈ L(ω) such that sd(ρ′, σ) ≤ δ′. By Proposition 1,

sd(ρ, σ) ≤ sd(ρ, ρ′) + sd(ρ′, σ) ≤ δ + δ′.

Thus, d∗(ρ, L(ω)) ≤ δ + δ′ and (s′′
1 , s′

3) ∈ R. Therefore, R is a δ + δ′-simulation,
and (s1,0, s3,0) ∈ R because (s1,0, s2,0) ∈ Rmax

δ and (s2,0, s3,0) ∈ Rmax
δ′ . Hence,

RT 1 �δ+δ′ RT 3.

Given an LTS RT 1 = (S1, s1,0, Σ,→1) and a RE-TS RT 2 = (S2, s2,0,�(Σ),
→2), we say that Trace(s1) ⊆ Trace(s2) if for each σ1 = ρ1ρ2 · · · ∈ Trace(s1),
there exists σ2 = ω1ω2 · · · ∈ Trace(s2) such that ρi ∈ L(ωi) for all i ∈ Z

+, where
(s1, s2) ∈ S1 × S2.

Let RT 1 = (S1, s1,0, Σ,→1) be an LTS, RT 2 = (S2, s2,0,�(Σ), →2) be
a RE-TS, (Σ, d) be a metric space, and (s1, s2) ∈ S1 × S2. Given two traces
σ1 = ρ1ρ2 · · · ∈ Trace(s1) and σ2 = ω1ω2 · · · ∈ Trace(s2), the trace distance
between σ1 and σ2 is defined as

td(σ1, σ2) = sup
i∈Z+

d∗(ρi, ωi).

The trace distance between s1 and s2 is defined as

T d(s1, s2) = sup
σ1∈Trace(s1)

inf
σ2∈Trace(s2)

td(σ1, σ2).

The language distance between RT 1 and RT 2 is defined as

Ld(RT 1,RT 2) = sup
σ1∈Trace(s1,0)

inf
σ2∈Trace(s2,0)

td(σ1, σ2).

Proposition 4. Let RT 1 = (S1, s1,0, Σ,→1) be an LTS, RT 2 =
(S2, s2,0,�(Σ), →2) be a RE-TS, and (Σ, d) be a metric space. Then, the fol-
lowing properties hold:

(1) Trace(s1) ⊆ Trace(s2) iff T d(s1, s2) = 0, where s1 ∈ S1 and s2 ∈ S2.
(2) L(RT 1) ⊆ L(RT 2) iff Ld(RT 1,RT 2) = 0.

Proof. For property (1): First, for the ‘if’ part, suppose that T d(s1, s2) = 0. It
is sufficient to know from the definition of T d that inf

σ2∈Trace(s2)
td(σ1, σ2) = 0 for

each σ1 = ρ1ρ2 · · · ∈ Trace(s1). Therefore, there exists σ2 = ω1ω2 · · · ∈ Trace(s2)
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such that td(σ1, σ2) = 0. From the definition of td, we have d∗(ρi, L(ωi)) = 0
for all i ∈ Z

+. From Proposition 2, there is ρi ∈ L(ωi) for all i ∈ Z
+. Hence,

Trace(s1) ⊆ Trace(s2).
Second, for the ‘only if’ part, let Trace(s1) ⊆ Trace(s2). In other words, for

each σ1 = ρ1ρ2 · · · ∈ Trace(s1), there exists σ2 = ω1ω2 · · · ∈ Trace(s2) such that
ρi ∈ L(ωi) for all i ∈ Z

+. And, there is d∗(ρi, L(ωi)) = 0 from Proposition 2 for
all i ∈ Z

+. Moreover, we have td(σ1, σ2) = 0 from the definition of td. Hence,
inf

σ2∈Trace(s2)
td(σ1, σ2) = 0 for each σ1 ∈ Trace(s1). Therefore, T d(s1, s2) = 0.

For property (2): For the ‘if’ part, suppose that Ld(RT 1,RT 2) = 0. It is
sufficient to show that inf

σ2∈L(RT 2)
td(σ1, σ2) = 0 for each σ1 = ρ1ρ2 · · · ∈ L(RT 1).

Therefore, there exists σ2 = ω1ω2 · · · ∈ L(RT 2) such that td(σ1, σ2) = 0. From
the definition of td, there is d∗(ρi, L(ωi)) = 0 for all i ∈ Z

+. Then, we have
ρi ∈ L(ωi) by Proposition 2. Hence, L(RT 1) ⊆ L(RT 2).

For the ‘only if’ part, consider that L(RT 1) ⊆ L(RT 2). In other words, for
each trace σ1 = ρ1ρ2 · · · in RT 1, there exists a trace σ2 = ω1ω2 · · · in RT 2 such
that ρi ∈ L(ωi) for all i ∈ Z

+. We know from Proposition 2 that d∗(ρi, L(ωi)) =
0. By the definition of td, we have td(σ1, σ2) = 0. Hence, inf

σ2∈L(RT 2)
td(σ1, σ2) = 0

for each σ1 = ρ1ρ2 . . . ∈ L(RT 1). Thus, we have Ld(RT 1,RT 2) = 0 from the
definition of Ld.

Let RT 1 = (S1, s1,0, Σ,→1) be an LTS, RT 2 = (S2, s2,0,�(Σ),→2) be a
RE-TS, and (Σ, d) be a metric space. The simulation distance between RT 1

and RT 2 is defined as

Sd(RT 1,RT 2) = inf{δ : RT 1 �δ RT 2}.

Lemma 2. Let RT 1 = (S1, s1,0, Σ,→1) be an LTS and RT 2 = (S2, s2,0,�(Σ),
→2) be a RE-TS, and (Σ, d) be a metric space. Then, the following properties
hold:

(1) Sd(RT 1,RT 2) ≥ 0.
(2) Sd(RT 1,RT 2) = 0 if RT 1 � RT 2.

Proof. For property (1): It follows immediately from Proposition 2.
For property (2): Consider that RT 1 � RT 2. By Definition 1, there exists a

simulation R ⊂ S1×S2 such that: For each (s1, s2) ∈ R and s1
ρ−→∗s′

1, there exists
s2

ω−→ s′
2 such that ρ ∈ L(ω) and (s′

1, s
′
2) ∈ R. And, we have d∗(ρ, L(ω)) = 0

by Proposition 2. Then, there exists a δ = 0 and R is a δ-simulation. By the
definition of Sd and property (1), Sd(RT 1,RT 2) = 0.

The relationship between the simulation distance and the language distance
is captured by the following theorem.

Theorem 1. Let RT 1 = (S1, s1,0, Σ,→1) be an LTS, RT 2 = (S2, s2,0,�(Σ),
→2) be a RE-TS, and (Σ, d) be a metric space. Then,

Ld(RT 1,RT 2) ≤ Sd(RT 1,RT 2).
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Proof. Consider a δ ≥ Sd(RT 1,RT 2). By Proposition 3, RT 1 �δ RT 2 holds.
Let σ1 = ρ1ρ2 · · · ∈ L(RT 1). Then, there exists a path

s1
ρ1−→∗s2

ρ2−→∗s3
ρ3−→∗ · · ·

in RT 1 where s1 = s0,1. By Lemma 1, we know (s0,1, s0,2) ∈ Rmax
δ . Therefore,

there exists a path
s′
1

ω1−→ s′
2

ω2−→ s′
3

ω3−→ · · ·
such that (si, s

′
i) ∈ Rmax

δ for all i ∈ Z
+, where s′

1 = s0,2. Let σ2 = ω1ω2 · · · .
By Proposition 2 and the definition of td, it is obvious that td(σ1, σ2) ≤ δ.
Hence, inf

σ2∈L(RT 2)
td(σ1, σ2) ≤ δ for each σ1 ∈ L(RT 1). Thus Ld(RT 1,RT 2) ≤

Sd(RT 1,RT 2).

We next propose two approaches of fixed point characterization of approxi-
mate simulation.

We first give a fixed point characterization of maximal δ-simulation for a
given δ.

Let RT 1 = (S1, s1,0, Σ,→1) be an LTS, RT 2 = (S2, s2,0,�(Σ), →2) be a
RE-TS, and (Σ, d) be a metric space. For a given δ ≥ 0, we define the following
sequence {Ri

δ}i∈N of subsets of S1 × S2:

R0
δ = S1 × S2;

Ri+1
δ = {(s1, s2) ∈ Ri

δ : for s1
ρ−→∗s′

1, there exists s2
ω−→ s′

2 such that d∗(ρ, L(ω)) ≤
δ and (s′

1, s
′
2) ∈ Ri

δ}.

Since S1 and S2 are finite, it is clear that {Ri
δ}i∈N reaches a fixed point in a

finite number steps by the definition of {Ri
δ}i∈N.

Lemma 3. Let {Ri
δ}i∈N be the sequence of sets defined by definition of {Ri

δ}i∈N.
Then, the following properties hold:

(1) Ri+1
δ ⊆ Ri

δ for every i ∈ N.
(2) For each i ∈ N, Rmax

δ ⊆ Ri
δ.

(3) There exists some n ∈ N such that Rmax
δ = Rn

δ .

Proof. For property (1): It follows immediately from the definition of {Ri
δ}i∈N.

For property (2): This will be proved by induction with regard to i.
The initial step is for i = 1. It follows from the definition of {Ri

δ}i∈N.
The induction hypothesis is that (2) holds for i = k. We now show that (2)

holds for i = k + 1, i.e., Rmax
δ ⊆ Rk+1

δ .
We have to discuss the following two cases.
The first case is that Rmax

δ = ∅. Then, Rmax
δ = ∅ ⊆ Rk+1

δ obviously.
The second case is that Rmax

δ 
= ∅. Then there exists some (s1, s2) ∈ Rmax
δ .

For each (s1, s2) ∈ Rmax
δ ⊆ Rk

δ , we know rom Lemma 1 that for each s1
ρ−→ ∗s′

1,
there exists s2

ω−→ s′
2 such that d∗(ρ, L(ω)) ≤ δ, and (s′

1, s
′
2) ∈ Rmax

δ . Then,
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by the induction hypothesis, (s′
1, s

′
2) ∈ Rmax

δ ⊆ Rk
δ . Hence, It follows from the

definition of {Ri
δ}i∈N that (s1, s2) ∈ Rk+1

δ .
Thus (2) holds for i = k + 1, which proves the property.
For property (3): By using propery (1) and the definition of {Ri

δ}i∈N, we can
obtain that there exists some k ∈ N such that Rj

δ = Rk
δ for every j ≥ k.

We have to discuss the following two cases.
The first case is that there exists a k such that Rk

δ = ∅. By property (1) and
(2), Rj

δ ⊆ Rk
δ for every j ≥ k, and Rmax

δ ⊆ Rk
δ . Hence, Rmax

δ ⊆ Rk
δ = ∅.

The second case is that Rj
δ 
= ∅ for all j ∈ N. Let (s1, s2) ∈ Rk+1

δ . Then, for
each s1

ρ−→∗s′
1, there exists s2

ω−→ s′
2 such that d∗(ρ, L(ω)) ≤ δ and (s′

1, s
′
2) ∈ Rk

δ .
Since Rk+1

δ = Rk
δ , it is sufficient to show that Rk+1

δ is a δ-simulation and Rk
δ =

Rk+1
δ ⊆ Rmax

δ . By property (2), Rmax
δ ⊆ Rk

δ . Hence, Rmax
δ = Rk

δ .

We will introduce another approach, which characterizes the maximal δ-
simualtion as the level sets of a function for a given δ.

Let RT 1 = (S1, s1,0, Σ,→1) be an LTS, RT 2 = (S2, s2,0,�(Σ), →2) be a
RE-TS, and (Σ, d) be a metric space. Define the following sequence {f i}i∈N of
functions from S1 × S2 to R

+ ∪ {+∞}:

f0(s1, s2) = 0;

f i+1(s1, s2) = sup
s1

ρ−→∗s′
1

inf
s2

ω−→s′
2

max(d∗(ρ, L(ω)), f i(s′
1, s

′
2)).

Lemma 4. Let {f i}i∈N be the sequence of functions defined by definition of
{f i}i∈N. Then, the sequence {f i(s1, s2)}i∈N is non-decreasing for all (s1, s2) ∈
S1 × S2.

Proof. To prove the lemma, it suffices to verify that

f i(s1, s2) ≤ f i+1(s1, s2)

for every i ≥ 0.
This will be proved by induction on i.
The initial step is for i = 0. It follows from the definition of {f i}i∈N and

Proposition 2.
The induction hypothesis is that the lemma holds for i = k. We now show

that the lemma holds for i = k + 1, i.e., fk+1(s1, s2) ≤ fk+2(s1, s2) for each
(s1, s2) ∈ S1 × S2. Then,

fk+2(s1, s2) = sup
s1

ρ−→∗s′
1

inf
s2

ω−→s′
2

max(d∗(ρ, L(ω)), fk+1(s′
1, s

′
2))

≥ sup
s1

ρ−→∗s′
1

inf
s2

ω−→s′
2

max(d∗(ρ, L(ω)), fk(s′
1, s

′
2))

=fk+1(s1, s2).

This completes the proof of the lemma.
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{f i}i∈N reaches a fixed point in a finite number of steps, which is shown in [8].
Then, for each (s1, s2) ∈ S1 × S2, there exists a k ∈ N such that; for each i ≤ k,
fk(s1, s2) ≥ f i(s1, s2), and for each j ≥ k, fk(s1, s2) = f j(s1, s2). Let fmin be
the branching distance between RT 1 and RT 2. Then, fmin(s1, s2) = fk(s1, s2)
for all (s1, s2) ∈ S1 × S2 [9].

The following theorem will give the relationship between the two approaches.

Theorem 2. Let δ ≥ 0, {Ri
δ}i∈N be the sequence defined by the definition of

{Ri
δ}i∈N, {f i}i∈N be the sequence defined by the definition of {f i}i∈N, Rmax

δ be
the maximal δ-simulation of RT 1 by RT 2, and fmin be the branching distance
between RT 1 and RT 2. Then, the following assertions hold:

(1) Ri
δ = {(s1, s2) ∈ S1 × S2 : f i(s1, s2) ≤ δ} for every i ∈ N and δ ≥ 0.

(2) Rmax
δ = {(s1, s2) ∈ S1 × S2 : fmin(s1, s2) ≤ δ} for every δ ≥ 0.

Proof. Assertions (1): This will be proved by induction with regard to i.
The initial step is for i = 0. Let δ ≥ 0, if i = 0, then the theorem states

that R0
δ = {(s1, s2) ∈ S1 × S2 : f0(s1, s2) ≤ δ}. By definitions of {Ri

δ}i∈N and
{f i}i∈N, R0

δ = {(s1, s2) ∈ S1 × S2 : f0(s1, s2) ≤ δ} = S1 × S2.
The induction hypothesis is that property (1) holds for i = k. We now show

that property (1) holds for i = k + 1, i.e.,

Rk+1
δ = {(s1, s2) ∈ S1 × S2 : fk+1(s1, s2) ≤ δ}.

First, assume (s1, s2) ∈ Rk+1
δ . Then, it is sufficient to show that there exists

s2
ω−→ s′

2 and (s′
1, s

′
2) ∈ R for each s1

ρ−→∗s′
1. In fact, by induction hypothesis we

obtain
sup

s1
ρ−→∗s′

1

inf
s2

ω−→s′
2

max(d∗(ρ, L(ω)), fk(s′
1, s

′
2)) ≤ δ.

Since (s1, s2) ∈ Rk+1
δ ⊆ Rk

δ ,

sup
s1

ρ−→∗s′
1

inf
s2

ω−→s′
2

d∗(ρ, L(ω)) ≤ fk(s1, s2) ≤ δ.

Therefore, fk+1(s1, s2) ≤ δ.
Second, let fk+1(s1, s2) ≤ δ. Then, for each s1

ρ−→ ∗s′
1, there exists s2

ω−→ s′
2

such that f i(s′
1, s

′
2) ≤ δ. It follows from the definition of {Ri

δ}i∈N, Lemma 4 and
induction hypothesis that

fk(s1, s2) ≤ fk+1 ≤ δ.

Hence, (s1, s2) ∈ Rk+1
δ . This completes the proof of the property (1).

Assertion (2): Consider (s1, s2) ∈ S1 × S2. Suppose fmin(s1, s2) ≤ δ.Then,
there exists f i(s1, s2) ≤ δ for each i ∈ N. We obtain by Lemma 3 and property
(1) that (s1, s2) ∈ Rmax

δ . On the contrary, let (s1, s2) ∈ Rmax
δ . Then, (s1, s2) ∈ Ri

δ

for each i ∈ N. We obtain by property (1) that f i(s1, s2) ≤ δ for each i ∈ N. By
using Lemma 4, we have fmin(s1, s2) ≤ δ.
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5 Conclusion

In this paper, we have proposed an approximate simulation by using the notion
of metrics to measure the behavioral closeness between a RE-TS and an LTS.
The approximate simuation has some properties: First, it satisfies reflexivity, and
satisfies transitivity with some limitations. Second, like exact simualtion, it has
a maximal element. Then we study the relationship between trance disdance and
trance inclusion, and the relationship between language distance and language
inclusion. Moreover, we give the relationship between language distance and
simualtion distance. Finally, we present two approaches to characterize approxi-
mate simualtion by using fixed point, and give the relationship between the two
approaches.

As a future work, we will use the results of this paper to graph partten
matching query, and consider logical characterizations of δ-simulation.

Acknowledgements. The authors would like to thank the anonymous referees for
their very helpful suggestions.
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