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Abstract. Paraconsistent Pawlakian rough sets and paraconsistent cov-
ering based rough sets are introduced for modeling and reasoning about
inconsistent information. Topological quasi-Boolean algebras are shown
to be algebras for paraconsistent rough sets. We also give two sequent
calculi as the modal systems for these paraconsistent rough sets.
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1 Introduction

Rough sets by Pawlak [14,15] was proposed as an approach to imprecise knowl-
edge about objects in the field of knowledge representation. Knowledge and data
differ in the way that the former is organized while the latter is loosely scattered.
Pawlakian knowledge is based on the notion of classification. A knowledge base
is understood as a relational structure (U,R) where U �= ∅ is a set of objects
and R is a family of equivalence relations over U . Hence the logic for approxi-
mate reasoning in Pawlakian rough sets is indeed a multimodal logic S5. Later
works focus on the generalization of Pawlak’s rough set theory by extending the
equivalence relation to similarity relation [18], altering the equivalence relation
to arbitrary binary relations [21,22] or by replacing the partitions by coverings
[6,23]. Interactions between rough set theory and modal logic are presented in
[9,16].

In many practical scenarios, classifications of objects are given by a set of
attributes. A usual assumption is that each attribute determines a set of objects.
Given an object x in the universe and an attribute φ, either φ(x) holds or not.
This is usually called the consistency assumption. Thus in standard rough set
systems we make the lower and upper approximations of a given set X of objects.
However, in practice, there exist datebases which are inconsistent in the sense
that there are contradictions or conflict. For example, a toy is classified into both
round objects and square objects. In such a case, we need a paraconsistent rough
set theory which can be used to deal with inconsistent information.
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Previous work bridging paraconsistent logic and rough set theory can be
found in [12,20] where basic notions such as set, approximations and similarity
relation are allowed to have four values. Later, paraconsistency was treated as
membership function, set containment and set operations in [13,19]. Four-valued
logic was employed as the semantics to express approximate reasoning. However,
bilattice in Belnap’s logic was discarded since Belnapian truth ordering was
considered counterintuitive. Therefore, only knowledge ordering was retained in
their framework and truth ordering was changed into a linear order in their
approach.

Here, we consider an attribute φ as a pair of sets of objects 〈φ+, φ−〉 where
φ+ is the set of all objects having the attribute φ and φ− is the set of all objects
lacking the attribute φ. Then φ+ ∩φ− consists of those objects with inconsistent
information, and the objects outside φ+∪φ− have no information with respect to
the attribute φ. Similar idea can be found in the Belnap-Dunn four-valued logic
[3,4]. We will introduce the notion of polarity in knowledge base and approx-
imations of polarity. In such a way we obtain new paraconsistent rough sets.
A polarity is simply a pair of sets of objects 〈X,Y 〉 which are candidates for
approximations. The following figure shows four cases of a polarity 〈X,Y 〉 in
a universe U of objects: Objects in X ∩ Y have inconsistent information, and
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U

Fig. 1. Polarity in a universe

those outside of X ∪Y have no information. If X ∩Y �= ∅, we say that 〈X,Y 〉 is
inconsistent; and if X∪Y �= U , we say that 〈X,Y 〉 is incomplete. In the standard
rough set theory, a set of objects X can be viewed as a polarity 〈X,Xc〉 where
Xc is the complement of X in U . It is clearly both consistent and complete.

Quasi-Boolean algebras and topological quasi-Boolean algebras are algebras
for rough sets. Algebras for Pawlakian rough sets and covering based rough sets
can be found in previous work such as [1,2,7,11]. Recent development on the
interrelations betwenn rough sets and logic is presented in [9,17]. We construct
the algebras for paraconsistent Pawlakian rough set and paraconsistent covering
based rough sets respectively. Jonsson-Tarskian style [5] duality results are also
provided.

In the present work, we shall introduce two types of paraconsistent rough sets.
One is the Pawlakian, and the other is covering based. Lower and upper approx-
imations in each type will be defined. Then paraconsistent rough set algebras for
each type of paraconsistent rough sets will be proposed and representation the-
orems for these algebras will be proved. Finally we establish two sequent calculi
for reasoning in these paraconsistent rough sets.
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2 Paraconsistent Rough Sets

In this section, we introduce paraconsistent rough sets which are variants of the
standard rough sets. We shall define the upper and lower approximations, and
prove some basic properties of them.

Definition 1. A (Pawlakian) approximation space is a structure K = (U,R)
where U �= ∅ is the set of objects and R is an equivalence relation on U . For
every x ∈ U , let R(x) = {y ∈ U : xRy}, i.e., the equivalence class of x.

A polarity in U is a paraconsistent pair of sets 〈X,Y 〉 with X,Y ⊆ U and
X ∩ Y �= ∅. The set of all polarities in U is denoted by P(U) which is exactly
the product P(U)×P(U) of power sets of U . We use capital letters G,H etc. for
polarities. For each G ∈ P(U), if G = 〈X,Y 〉, we write G+ = X and G− = Y .

Let K = (U,R) be an approximation space. A polarity G is consistent in K if
G+∩G− = ∅; and G is complete in K if G+∪G− = U . In the standard Pawlakian
rough set theory, a set of objects X to be approximated can be viewed as a
consistent and complete polarity 〈X,Xc〉 where Xc = U \ X is the complement
of X in U . Each polarity G can be viewed as an attribute or property of objects.
The set G+ stands for the set of all objects having the attribute G, and G−

for the set of all objects lacking G. Then objects in G+ ∩ G− both have G and
do not have G. This part is the source of inconsistent information. Objects in
the complement (G+ ∪ G−)c neither have nor lack the attribute G, namely no
information is given for these objects.

Definition 2. Let K = (U,R) be an approximation space and G,H ∈ P(U) be
polarities. The operations ∼, 
 and � are defined as follows:

∼G = 〈G−, G+〉
G 
 H = 〈G+ ∩ H+, G− ∪ H−〉
G � H = 〈G+ ∪ H+, G− ∩ H−〉.

The binary relation � on P(U) is defined by setting G � H if and only if
G+ ⊆ H+ and H− ⊆ G−. We define the following sets:

G+ = {x ∈ U : R(x) ⊆ G+}, G− = {x ∈ U : R(x) ∩ G− �= ∅},

G
+

= {x ∈ U : R(x) ∩ G+ �= ∅}, G
−

= {x ∈ U : R(x) ⊆ G−}.

The lower approximation of G is defined as the polarity G = 〈G+, G−〉, and the
upper approximation of G is defined as the polarity G = 〈G+

, G
−〉.

For every approximation space K = (U,R), it is clear that � is a partial
order on the set P(U) of all polarities. Moreover, for all G,H ∈ P(U), G = H
if and only if G � H and H � G.
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Example 1. Let K = (U,R) be the approximation space where U =
{x1, x2, x3, x4, x5} and R is an equivalence relation with classification
{{x1}, {x2, x4}, {x3, x5}}. Let G+ = {x1, x2} and G− = {x2, x3, x5}. Note
that the polarity G = 〈G+, G−〉 is inconsistent and incomplete. Note that
R(x1) = {x1}, R(x2) = R(x4) = {x2, x4} and R(x3) = R(x5) = {x3, x5}.
Then G and G are calculated as follows:

G+ = {x1}; G− = {x2, x3, x4, x5}; G
+

= {x1, x2, x4}; G
−

= {x3, x5}

Note that G and G are consistent and complete.

Proposition 1. Let K = (U,R) be an approximation space and G,H ∈ P(U)
be polarities. Then the following conditions hold:

(1) ∼(G 
 H) = ∼G � ∼H.
(2) ∼(G 
 H) = ∼Q � ∼H.
(3) ∼∼G = G.
(4) 〈∅, U〉 � G and G � 〈U, ∅〉.
(5) 〈U, ∅〉 = 〈U, ∅〉 and 〈∅, U〉 = 〈∅, U〉.
(6) if G � H, then G � H and G � H.
(7) G 
 H = G 
 H and G � H = G � H.
(8) ∼G = ∼ G and ∼G = ∼ G.
(9) G 
 H � G 
 H.

Proof. For (6), assume G � H. Suppose x ∈ G+. Then R(x) ⊆ G+. By the
assumption, G+ ⊆ H+. Hence x ∈ H+. Suppose x ∈ H−. Then R(x)∩H− �= ∅.
By the assumption, H− ⊆ G−. Then R(x) ∩ G− �= ∅ and so x ∈ G−. Hence
G � H. Similarly G � H. For (7), clearly G 
 H � G and G 
 H � H.
By (6), G 
 H � G and G 
 H � H. Hence G 
 H � G 
 H. Conversely,
G 
 H = 〈G+ ∩ H+, G− ∪ H−〉 and G 
 H = 〈G+ ∩ H+, G− ∪ H−〉. Clearly
G+ ∩ H+ ⊆ G+ ∩ H+ and G− ∪ H− ⊆ G− ∪ H−. Hence G 
 H � G 
 H. Then
G 
 H = G 
 H. Similarly Q � H = G � H. Other items are shown directly. 
�
Proposition 2. Let K = (U,R) be an approximation space and G ∈ P(U).
Then (1) G � G � G; (2) G � G and G � G; and (3) G � (G) and G � (G).

Proof. (1) Assume x ∈ G+. Then R(x) ⊆ G+. Since R is an equivalence relation,
we have x ∈ R(x) and so x ∈ G+. Hence G+ ⊆ G+. Assume y ∈ G−. By the
reflexivity of R, we have y ∈ R(y). Then R(y) ∩ G− �= ∅. Hence y ∈ G−. Then
G− ⊆ G−. It follows that G � G. Similarly G � G.

(2) Assume x ∈ G+. Then R(x) ⊆ G+. Suppose y ∈ R(x). Let z ∈ R(y).
By the transitivity of R, we have z ∈ R(x). Then z ∈ G+. Hence R(y) ⊆ G+,
i.e., y ∈ G+. Then R(x) ⊆ G+, i.e., x ∈ G+. It follows that G+ ⊆ G+. Assume
x ∈ G−. Then R(x)∩G− �= ∅. Let y ∈ R(x) and y ∈ G−. Then R(y)∩G− �= ∅.
Let z ∈ R(y) and z ∈ G−. By the transitivity of R, we have z ∈ R(x). Then
R(x) ∩ G− �= ∅. Hence x ∈ G−. Then G− � G−. Similarly G � G.
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(3) Assume x ∈ G
+
. Then R(x) ∩ G+ �= ∅. Let y ∈ R(x) and y ∈ G+.

Suppose z ∈ R(x). Since R is an equivalence relation, we have y ∈ R(z). Then
R(z)∩G+ �= ∅, i.e., z ∈ G

+
. Hence R(x) ⊆ G

+
, i.e., x ∈ (G)

+
. Then G

+ ⊆ (G)
+
.

Assume x ∈ (G)
−

. Then R(x) ∩ G
− �= ∅. Let y ∈ R(x) and y ∈ G

−
. Then

R(y) ⊆ G−. Suppose z ∈ R(x). Since R is an equivalence relation, z ∈ R(y).
Then z ∈ G−. Hence R(x) ⊆ G−, i.e., x ∈ G

−
. It follows that (G)

− ⊆ G
−

.
Moreover, by (1), we have G � G � (G). 
�

Now we continue by introducing the paraconsistent covering based rough sets
which are defined based on covering frames by a neighborhood function N .

Definition 3. Given a nonempty set of objects U , a covering of U is a nonempty
collection C = {Ci ⊆ U | i ∈ I} such that

⋃
C = U .

A covering frame is a pair F = (U,C ) where U �= ∅ and C is a covering of
U . The neighborhood function N : U → P(U) is defined by setting

N(x) =
⋂

{C ∈ C | x ∈ C}.

For every polarity G ∈ P(U), we define the following sets:

�NG+ = {x ∈ U : N(x) ⊆ G+}, �NG− = {x ∈ U : N(x) ∩ G− �= ∅},

♦NG+ = {x ∈ U : N(x) ∩ G+ �= ∅}, ♦NG− = {x ∈ U : N(x) ⊆ G−}.

The lower N-approximation of G is defined as �NG = 〈�NG+,�NG−〉, and the
upper N-approximation of G is defined as ♦NG = 〈♦NG+,♦NG−〉.

An S4-frame is a pair F = (U,R) where U �= ∅ is a nonempty set of objects
and R ⊆ U × U is a preorder, i.e., a reflexive and transitive relation on U . For
every x ∈ U , let R(x) = {y ∈ U : xRy} be the set of all objects related with x
in F.

Example 2. Let U = {x1, x2, x3, x4, x5} and R = {〈xi, xj〉 ∈ U×U : i ≤ j}. Then
we have an S4 frame F = (U,R). Consider the polarity G = 〈G+, G−〉 where
G+ = {x1, x2} and G− = {x2, x3, x5}. Then we calculate �NG+ = ∅,�NG− =
U,♦NG+ = {x1, x2} and ♦NG− = {x5}. Note that �NG is consistent and
complete, and ♦NG is consistent and incomplete.

Proposition 3. Let F = (U,C ) be a covering frame and G,H ∈ P(U) be
polarities. Then the following conditions hold:

(1) if G � H, then �NG � �NH and ♦NG � ♦NH.
(2) �NG 
 H = �NG 
 �NH and ♦N (Q � H) = ♦NG � ♦NH.
(3) ∼�NG = ♦N∼G and ∼♦NG = �N∼ G.
(4) �NG 
 ♦NH � ♦N (G 
 H).
(5) �NG � G � ♦NG.
(6) �NG � �N�NG and ♦N♦NG � ♦NG.
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Proof. Items (1)–(4) are shown by the definition.
(5) Assume x ∈ �NG+. Then N(x) ⊆ G+. Clearly x ∈ N(x). Then x ∈ G+.

Hence �NG+ ⊆ G+. Assume y ∈ G−. Then y ∈ N(y) and so N(y) ∩ G− �= ∅.
Hence y ∈ �NG−. Then G− ⊆ �NG−. Hence �NG � G. Similarly G � ♦NG.

(6) We show �NG � �N�NG. Assume x ∈ �NG+. Then N(x) ⊆ G+.
Suppose y ∈ N(x). Let z ∈ N(y). Then z ∈ N(x) and so z ∈ G+. Hence y ∈
�NG+. Then N(x) ⊆ �NG+, i.e., x ∈ �N�NG+. Hence �NG+ ⊆ �N�NG+.
Now assume x ∈ �N�NG−. Then N(x) ∩ �NG− �= ∅. Let y ∈ N(x) and
y ∈ �NG−. Then N(y) ∩ G− �= ∅. Let z ∈ N(y) and z ∈ G−. Then z ∈ N(x).
Hence N(x) ∩ G− �= ∅, i.e., x ∈ �NG−. Then �N�NG− ⊆ �NG−. Similarly
♦N♦NG � ♦NG. 
�

3 Paraconsistent Rough Set Algebras

In this section, we show that algebras for paraconsistent Pawlakian rough sets
are partition topological quasi-Boolean algebras, and algebras for paraconsistent
covering based rough sets are topological quasi-Boolean algebras.

An algebra A = (A, ·,+, ′, 0, 1) is a quasi-Boolean algebra (qBa) if
(A, ·,+, 0, 1) is a bounded distributive lattice(cf. [8, Definition 2.12]) and for
all a, b ∈ A:

(1) (a · b)′ = a′ + b′.
(2) (a + b)′ = a′ · b′.
(3) a′′ = a
(4) 0′ = 1 and 1′ = 0.

Note that for simplicity, we will abbreviate ab for a · b hereafter. Quasi-Boolean
algebras are often used as the fundamental part of rough algebras. If we add
modal operators to a qBa satisfying additional conditions, we obtain various
rough algebras [2].

Definition 4. An algebra A = (A, ·,+, ′, 0, 1,�) is a topological quasi-Boolean
algebra (tqBa) if (A, ·,+, ′, 0, 1) is a quasi-Boolean algebra, � is a unary opera-
tions on A such that for all a, b ∈ A:

(K�) �(ab) = �a�b
(N�) �1 = 1
(T�) �a ≤ a
(4�) �a ≤ ��a

where the lattice order ≤ on A is defined by setting a ≤ b if and only if ab = b.
Let tqBa be the variety of all topological quasi-Boolean algebras.

A partition topological quasi-Boolean algebra (tqBa5) is a topological quasi-
Boolean algebra A = (A, ·,+, ′,�, 0, 1) such that for all a ∈ A:

(5�) ♦a ≤ �♦a

where ♦ is the unary operation on A defined by ♦a := (�a′)′. Let tqBa5 be the
variety of all partition topological quasi-Boolean algebras.
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Fact 1. Let A = (A, ·,+, ′, 0, 1,�) be a tqBa. For all a ∈ A, (1) ♦(a + b) =
♦a + ♦b; (2) ♦0 = 0; (3) a ≤ ♦a and (4) ♦♦a ≤ ♦a.

Now we define the dual algebras of approximation space and covering frame
respectively.

Definition 5. The dual algebra of an approximation space K = (U,R) is defined
as K∗ = (P(U),
,�,∼, (.), 〈∅, U〉, 〈U, ∅〉) where P(U) is the above defined
polarities on U . The operation (.) stands for taking the lower approximation
of quasicomplement. The dual algebra of a covering frame F = (U,C ) is defined
as F � = (P(U),
,�,∼,�N , 〈∅, U〉, 〈U, ∅〉) where P(U) is the above defined
polarities on U .

By Proposition 1 (8), in the dual algebra K∗ of an approximation space,
we can define G := ∼(∼ G). By Proposition 3 (3), in the dual algebra F � of a
covering frame F , we can define ♦NG := ∼�N∼G.

Proposition 4. Let K = (U,R) be an approximation space and F = (U,C ) be
a covering frame. Then (1) K∗ is a tqBa5; and (2) F � is a tqBa.

Proof. It suffices to show that both algebras defined satisfy the properties of
tqBa5 and tqBa respectively. For (1), by Proposition 1 and Proposition 2, K∗ is
a tqBa5. For (2), by Proposition 3, F � is a tqBa. 
�

Let A = (A, ·,+, ′,�, 0, 1) be a tqBa. A filter in A is a subset u ⊆ A such
that the following conditions hold for all a, b ∈ A:

(1) ab ∈ u for all a, b ∈ u.
(2) a ∈ u and a ≤ b ∈ A imply b ∈ u.

A filter u in A is proper if 0 �∈ u. A proper filter u in A is prime if a + b ∈ u
implies a ∈ u or b ∈ u. Let U(A) be the set of all prime filters in A. Let
A = (A, ·,+, ′,�, 0, 1) be a tqBa. A subset ∅ �= X ⊆ A has the finite meet
property, if a1 . . . an �= 0 for all a1, . . . , an ∈ X. It is well-known that, by Zorn’s
lemma, every subset ∅ �= X ⊆ A with the finite meet property can be extended
to a proper filter, and every proper filter can be extended to a prime filter.

Fact 2. Let A = (A, ·,+, ′,�, 0, 1) be a tqBa. For all u ∈ U(A) and a, b ∈ u,

(1) ab ∈ u if and only a, b ∈ u; and
(2) a + b ∈ u if and only if a ∈ u or b ∈ u.

Moreover, if A is a tqBa5, then a ≤ �♦a and ♦�a ≤ �a.

Definition 6. The dual space of a tqBa5 A = (A, ·,+, ′,�, 0, 1) is defined as
the structure A∗ = (U(A), RA) where RA is defined as follows:

uRAv if and only if {a : �a ∈ u} ⊆ v.

Note that uRAv if and only if {♦b : b ∈ v} ⊆ u.
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Lemma 1. For every tqBa5 A, the dual space A∗ is an approximation space.

Proof. Let A = (A, ·,+, ′,�, 0, 1) be a tqBa5 and A∗ = (U(A), RA). It suffices
to show that RA is an equivalence relation. By (T�), RA is reflexive. By (4�),
RA is transitive. Suppose uRAv and a ∈ v. Then ♦a ∈ u. By (5�), ♦a ≤ �♦a
and so �♦a ∈ u. Then ♦a ∈ u. Hence vRAu. 
�
Lemma 2. Let A = (A, ·,+, ′,�, 0, 1) be a tqBa5 and u ∈ U(A). If �a �∈ u,
then there exists v ∈ RA(u) with a �∈ v.

Proof. Assume �a �∈ u. Consider the set X = {b : �b ∈ u} which is clearly closed
under meet. Then a �∈ X. Now we show that X has the finite meet property.
Suppose not. Then �0 ∈ u. Clearly �0 ≤ 0 and so 0 ∈ u which contradicts
u ∈ U(A). Then there exists a prime filter v ∈ U(A) with uRAv and a �∈ v.

Let A and B be tqBas. A function f : A → B is an embedding from A

to B if f is an injective homomorphism, i.e., for all a, b ∈ A, f(ab) = f(a)f(b);
f(a+b) = f(a)+f(b); f(a′) = f(a)′; f(0) = 0 and f(1) = 1; and f(�a) = �f(a).
We say that A is embedded into B if there is an embedding from A to B.

Theorem 1. Every tqBa5 A is embedded into (A∗)∗.

Proof. Let A = (A, ·,+, ′,�, 0, 1) be a tqBa5 and P(U(A)) = P(U(A)) ×
P(U(A)). Clearly (A∗)∗ = (P(U(A)),
,�, (.), 〈∅, U(A)〉, 〈U(A), ∅〉). We define
the function f : A → P(U(A)) by f(a) = 〈π+(a), π−(a)〉 where

π+(a) = {u ∈ U(A) : a ∈ u}; π−(a) = {v ∈ U(A) : a′ ∈ v}.

Now we show that f is injective. Suppose a �= b. Without loss of generality,
suppose a �≤ b. By Zorn’s lemma, there exists a prime filter u ∈ U(A) such that
a ∈ u and b �∈ u. This implies that u ∈ π+(a) and v �∈ π+(b). Hence f(a) �= f(b).

Next we show the function f preserves operations:

(1) We have π+(ab) = {u ∈ U(A) : ab ∈ u} = {u ∈ U(A) : a ∈ u} ∩ {u ∈
U(A) : b ∈ u} = π+(a) ∩ π+(b). Moreover, π−(ab) = {u ∈ U(A) : (ab)′ ∈ u} =
{u ∈ U(A) : a′ + b′ ∈ u} = {u ∈ U(A) : a′ ∈ u} ∪ {u ∈ U(A) : b′ ∈ u} =
π−(a) ∪ π−(b). Hence f(ab) = f(a) 
 f(b).

(2) We have π+(a+ b) = {u ∈ U(A) : a+ b ∈ u} = {u ∈ U(A) : a ∈ u}∪{u ∈
U(A) : b ∈ u} = π+(a) ∪ π+(b). Moreover, π−(a + b) = {u ∈ U(A) : (a + b)′ ∈
u} = {u ∈ U(A) : a′b′ ∈ u} = {u ∈ U(A) : a′ ∈ u} ∩ {u ∈ U(A) : b′ ∈ u} =
π−(a) ∩ π−(b). Hence f(a + b) = f(a) � f(b).

(3) We have π+(a′) = {u ∈ U(A) : a′ ∈ u} = π−(a). Moreover, π−(a′) =
{u ∈ U(A) : a′′ ∈ u} = {u ∈ U(A) : a ∈ u} = π+(a). Hence f(a′) = ∼f(a).

(4) We have π+(�a) = {u ∈ U(A) : �a ∈ u}. Now we show π+(�a) =
π+(a) = {u ∈ U(A) : RA(u) ⊆ π+(a)}. Suppose u ∈ π+(�a). Then �a ∈ u.
If v ∈ RA(u), then a ∈ v and so v ∈ π+(a). Hence RA(u) ⊆ π+(a). Suppose
R(u) ⊆ π+(a). For a contradiction, assume �a �∈ u. By Lemma 2, there exists
v ∈ RA(u) with a �∈ v. Then v ∈ π+(a), i.e., a ∈ v which contradicts a �∈ v. Hence
π+(�a) = π+(a). Similarly we have π+(�a) = π−(a). Hence f(�a) = f(a). 
�
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Definition 7. Let A = (A, ·,+, ′,�, 0, 1) be a tqBa. The binary relation QA ⊆
U(A) × U(A) is defined as follows:

uQAv if and only if {a : �a ∈ u} ⊆ v.

Note that uQAv if and only if {♦b : b ∈ v} ⊆ u. The function NA : U(A) →
P(U(A)) is defined by NA(u) =

⋃{C ∈ CA : u ∈ C}. Note that NA(u) = QA(u).
The dual frame of a tqBa A is defined as the structure A� = (U(A),CA) where
CA = {QA(u) : u ∈ U(A)}.

Lemma 3. For every tqBa A, the dual frame A� is a covering frame.

Proof. Let A = (A, ·,+, ′,�, 0, 1) be a tqBa. It suffices to show
⋃
CA = U(A).

Clearly
⋃
CA ⊆ U(A). Let u ∈ U(A). By (T�), u ∈ Q(u). Hence u ∈ ⋃

CA. 
�
Lemma 4. Let A = (A, ·,+, ′,�, 0, 1) be a tqBa and u ∈ U(A). If �a �∈ u, then
there exists v ∈ QA(u) with a �∈ v.

Proof. The proof is similar to Lemma 2 and details are omitted.

Theorem 2. Every tqBa A is embeddable into (A�)�.

Proof. Let A = (A, ·,+, ′,�, 0, 1) be a tqBa and P(U(A)) = P(U(A)) ×
P(U(A)). Clearly (A�)� = (P(U(A)),
,�,�NA

, 〈∅, U(A)〉, 〈U(A), ∅〉). We
define the function f : A → P(U(A)) by f(a) = 〈π+(a), π−(a)〉 where
π+(a) = {u ∈ U(A) : a ∈ u} and π−(a) = {v ∈ U(A) : a′ ∈ v}. Like the
proof of Theorem 1, the function f is an embedding. 
�

4 Logics for Paraconsistent Rough Sets

In this section, we introduce two sequent calculi for Pawlakian paraconsistent
rough sets and covering based rough sets respectively.

Definition 8. Let V = {pi : i ∈ ω} be a denumerable set of variables. The set
of all formulas Fm is defined inductively as follows:

Fm � φ ::= p | ⊥ | ¬φ | (φ1 ∧ φ2) | (φ1 ∨ φ2) | �φ

where p ∈ V. We define � := ¬⊥ and ♦φ := ¬�¬φ. A sequent is an expression
Γ ⇒ φ where Γ is a finite multiset of formulas and φ is a formula. For every
finite multiset of formulas Γ , let �Γ = {�φ : φ ∈ Γ}. If Γ = ∅, then �∅ = ∅.

Definition 9. The sequent calculus G4 consists of the following axiom
schemata and inference rules:

(1) Axiom schemata:

(Id) φ, Γ ⇒ φ (⊥) ⊥, Γ ⇒ φ (�) Γ ⇒ �
(T�) �φ ⇒ φ (4�) �φ ⇒ ��φ
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(2) Logical rules:

φ, ψ, Γ ⇒ χ
(∧L)

φ ∧ ψ, Γ ⇒ χ

Γ ⇒ ψ Γ ⇒ χ
(∧R)

Γ ⇒ ψ ∧ χ

φ, Γ ⇒ χ ψ, Γ ⇒ χ
(∧L)

φ ∨ ψ, Γ ⇒ χ

Γ ⇒ ψi
(∨R)(i = 1, 2)

Γ ⇒ ψ1 ∧ ψ2

¬φ, Γ ⇒ χ ¬ψ, Γ ⇒ χ
(¬∧L)¬(φ ∧ ψ), Γ ⇒ χ

Γ ⇒ ¬ψi
(¬∧R)(i = 1, 2)

Γ ⇒ ¬(ψ1 ∧ ψ2)

¬φ,¬ψ, Γ ⇒ χ
(¬∨L)¬(φ ∨ ψ), Γ ⇒ χ

Γ ⇒ ¬ψ1 Γ ⇒ ¬ψ2
(¬∨R)

Γ ⇒ ¬(ψ1 ∧ ψ2)

φ, Γ ⇒ χ
(¬¬L)¬¬φ, Γ ⇒ χ

Γ ⇒ ψ
(¬¬R)

Γ ⇒ ¬∼ψ

(3) Contraposition:

ϕ ⇒ ψ
(CP)¬ψ ⇒ ¬ϕ

(4) Modal Rules:

Γ ⇒ ψ
(K)�Γ ⇒ �ψ

(5) Cut rule:

Γ ⇒ ψ ψ,Δ ⇒ χ
(Cut)

Γ,Δ ⇒ χ

The sequent calculus G5 is obtained from G4 by adding the following axiom:

(5) ♦φ ⇒ �♦φ.

A derivation in a sequent calculus is a finite tree of sequents in which each
node is either an axiom or derived from child node(s) by a rule. The height of a
derivation is defined as the maximal length of branches in it. For G ∈ {G4,G5},
let G � Γ ⇒ ψ denote that the sequent Γ ⇒ ψ is derivable in G. A formula φ
is G-equivalent to ψ (notation: G � φ ⇔ ψ) if G � φ ⇒ ψ and G � ψ ⇒ φ.

Proposition 5. The following hold:

(1) G4 � ¬� ⇔ ⊥ and G4 � φ ⇔ ¬¬φ.
(2) G4 � ¬(φ ∧ ψ) ⇔ ¬φ ∨ ¬ψ and G4 � ¬(φ ∨ ψ) ⇔ ¬φ ∧ ¬ψ.
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(3) G4 � ¬�φ ⇔ ♦¬ψ and G4 � ¬♦φ ⇔ �¬φ.
(4) if G4 � φ ⇒ ψ, then G4 � �φ ⇒ �ψ and G4 � ♦φ ⇒ ♦ψ.
(5) G4 � �(φ ∧ ψ) ⇔ �φ ∧ �ψ and G4 � ♦(φ ∨ ψ) ⇔ ♦φ ∨ ♦ψ.
(6) G4 � �φ ∧ ♦ψ ⇒ ♦(φ ∧ ψ).
(7) G4 � φ ⇒ ♦φ.
(8) G4 � �φ ⇔ ��φ and G4 � ♦φ ⇔ ♦♦φ.
(9) G5 � φ ⇒ �♦φ and G5 � ♦�φ ⇔ �φ.

Proof. We show G4 � ¬(φ∧ψ) ⇔ ¬φ∨¬ψ. We have the following derivations:

φ, ψ ⇒ φ
(∧L)

φ ∧ ψ ⇒ φ
(CP)¬φ ⇒ ¬(φ ∧ ψ)

φ, ψ ⇒ ψ
(∧L)

φ ∧ ψ ⇒ ψ
(CP)¬ψ ⇒ ¬(φ ∧ ψ)
(∨L)¬φ ∨ ¬ψ ⇒ ¬(φ ∧ ψ)

¬φ ⇒ ¬φ
(∨R)¬φ ⇒ ¬φ ∨ ¬ψ

¬ψ ⇒ ¬ψ
(∨R)¬ψ ⇒ ¬φ ∨ ¬ψ
(¬∧R)¬(φ ∧ ψ) ⇒ ¬φ ∨ ¬ψ

We show G4 � �(φ ∧ ψ) ⇔ �φ ∧ �ψ. We have the following derivations:

φ, ψ ⇒ φ
(∧L)

φ ∧ ψ ⇒ φ
(K)�(φ ∧ ψ) ⇒ �φ

φ, ψ ⇒ φ
(∧L)

φ ∧ ψ ⇒ φ
(K)�(φ ∧ ψ) ⇒ �φ
(∧R)�(φ ∧ ψ) ⇒ �φ ∧ �ψ

φ, ψ ⇒ φ φ, ψ ⇒ ψ
(∧R)

φ, ψ ⇒ φ ∧ ψ
(K)�φ,�ψ ⇒ �(φ ∧ ψ)
(∧L)�φ ∧ �ψ ⇒ �(φ ∧ ψ)

The remaining items are shown regularly. 
�
An assignment in a tqBa A is a function θ : V → A. A sequent Γ ⇒ φ is

valid in a tqBa A (notation: A |= Γ ⇒ φ), if
∧

ψ∈Γ θ(ψ) ≤ θ(φ). The notation
tqBa |= Γ ⇒ φ denote that Γ ⇒ φ is valid in all tqBas, and the notation
tqBa5 |= Γ ⇒ φ denote that Γ ⇒ φ is valid in all tqBa5s.

Theorem 3. For every sequent Γ ⇒ φ, (1) G4 � Γ ⇒ φ if and only if tqBa |=
Γ ⇒ φ; and (2) G5 � Γ ⇒ φ if and only if tqBa |= Γ ⇒ φ.

Proof. This is shown by the standard Lindenbaum-Tarski method. The sound-
ness part is shown directly by induction on the height of a derivation of Γ ⇒ φ
in a sequent calculus. For G ∈ {G4,G5}, the binary relation ≡G on the set of
all formulas Fm is defined by setting

φ ≡G ψ if and only if G � φ ⇒ ψ and G � ψ ⇒ φ.

One can easily show that ≡G is a congruence relation on Fm. Let Fm/G = {[φ] :
φ ∈ Fm} where [φ] = {ψ ∈ Fm : φ ≡G ψ} is the equivalence class of φ. The
Lindenbaum-Tarski algebra for G is defined as LG = (Fm/G, ·,+, ′, [⊥], [�])
where we have
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[φ][ψ] = [φ ∧ ψ], [φ] + [ψ] = [φ ∨ ψ] and [φ]′ = [∼φ].

Obviously LG4 is a tqBa and LG5 is a tqBa5. Suppose G �� Γ ⇒ φ. Let θ be
the assignment in LG such that θ(p) = [p] for each p ∈ V. By induction on the
complexity of a formula χ, we have θ(χ) = [χ]. Hence LG �|= Γ ⇒ φ. 
�

Let K = (U,R) be an approximation space and F = (U,C ) be a covering
frame. A sequent Γ ⇒ φ is valid in K (notation: K |= Γ ⇒ φ), if K∗ |= Γ ⇒ φ.
Let AS |= Γ ⇒ φ denote that Γ ⇒ φ is valid in all approximation spaces. A
sequent Γ ⇒ φ is valid in F (notation: F |= Γ ⇒ φ), if F � |= Γ ⇒ φ. Let
CF |= Γ ⇒ φ denote that Γ ⇒ φ is valid in all covering frames.

Corollary 1. For every sequent Γ ⇒ φ, (1) G4 � Γ ⇒ φ if and only if AS |=
Γ ⇒ φ; and (2) G5 � Γ ⇒ φ if and only if CF |= Γ ⇒ φ.

Proof. It follows immediately from Theorem 3, Theorem 1 and Theorem 2. 
�

5 Concluding Remarks

The present work contributes new paraconsistent Pawlakian rough sets and para-
consistent covering based rough sets by introducing approximations of polarities
in a universe of objects. Moreover, topological quasi-Boolean algebras are shown
to be algebras for paraconsistent covering based rough sets, and partition topo-
logical quasi-Boolean algebras are shown to be algebras for paraconsistent Pal-
wakian rough sets. Finally, we present sequent calculi as modal systems for these
paraconsistent rough sets. There are some problems which need to be explored
further. One problem is about the applications of these paraconsistent rough
sets in practical scenarios. The other problem is extendeding the approach taken
in the present paper to other types of rough sets. For example, as in [9,10], we
can consider the connections between Kripke structures, covering frames and
algebras for various paraconsistent rough sets.

Ackonwledgements. The author thanks the anonymous reviewers for their helpful
comments and suggestions.
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(eds.) Transactions on Rough Sets XIX. LNCS, vol. 8988, pp. 114–137. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-47815-8 8

17. Sardar, M.R., Chakraborty, M.K.: Some implicative topological quasi-Boolean
algebras and rough set models. Int. J. Approximate Reasoning 148, 1–22 (2022).
https://doi.org/10.1016/j.ijar.2022.05.008

18. Slowinski, R., Vanderpooten, D.: A generalized definition of rough approximations
based on similarity. IEEE Trans. Knowl. Data Eng. 12(2), 331–336 (2000). https://
doi.org/10.1109/69.842271
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