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Preface

This volume contains papers from the 2nd International Conference on Artificial Intel-
ligence Logic and Applications (AILA 2022), establishing what will hopefully be a
long-running series of conferences dedicated to logical formalisms and approaches to
artificial intelligence (AI). Hosted by the Chinese Association for Artificial Intelligence
(CAAI), AILA 2022 was organized by both the Technical Committee for Artificial Intel-
ligence Logic under CAAI and the East China Normal University. The conference was
held as a virtual online event during August 26–28, 2022.

Logic has been a foundation stone for symbolic knowledge representation and rea-
soning ever since the beginning of AI research in the 1950s. Besides, AI applications
oftenmake use of logical approaches, including decisionmaking, fraud detection, cyber-
netics, precision medicine, and many more. With the prevalence of machine learning
and deep learning, combining logic-related structures is becoming a common view so
as to take advantage of the diverse paradigms. The AILA conference series aims to
provide an opportunity and forum for researchers to share and discuss their novel ideas,
original research achievements, and practical experiences in a broad range of artificial
intelligence logic and applications. The first AILA was held in 2019 as a special session
within the IEEE 14th International Conference on Intelligent Systems and Knowledge
Engineering (ISKE2019). AILA2022was therefore organized as a full-fledged event for
the first time. We received a total of 27 submissions, and each paper was peer reviewed
by three to four reviewers from our Program Committee with the help of subreviewers
designated by the proceedings editors. Based on the scores received and confidence lev-
els of the reviewers, 20 submissions with a final score higher than 0 were accepted as a
full-length papers for publication in this proceedings. They are classified into three cate-
gories: program logic, fuzzy logic, and applications. Moreover, we were honored to have
three prestigious scholars giving keynote speeches at the conference: Guo-Qiang Zhang
(University of Texas Houston, USA), Sanjiang Li (University of Technology Sydney,
Australia), and Meng Sun (Peking University, China). The abstracts of their talks are
included in this proceedings.

AILA 2022 would not have been possible without the contribution and efforts of a
dedicated scientific community. We sincerely appreciate members of our Program Com-
mittee and all the external reviewers for providing comprehensive and timely reviews.
Moreover, we would like to express gratitude to the conference chair, Ruqian Lu (Chi-
nese Academy of Sciences, China). The organization committee from the East China
Normal University provided extensive support for the conference, and we especially
thank Qin Li and Xuecheng Hou. The conference management system EasyChair was
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used to handle the submissions and conduct the reviewing and decision-making pro-
cesses. We thank Springer for their trust and for publishing the proceedings of AILA
2022.

August 2022 Yixiang Chen
Songmao Zhang
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Temporal Cohort Logic

Guo-Qiang Zhang

Texas Institute for Restorative Neurotechnologies,
University of Texas, Houston, Texas, USA
Guo-Qiang.Zhang@uth.tmc.edu

Abstract. We introduce a new logic, called Temporal Cohort Logic
(TCL), for cohort specification and discovery in clinical and population
health research. TCL is created to fill a conceptual gap in formalizing
temporal reasoning in biomedicine, in a similar role that temporal logics
play for computer science and its applications. We provide formal syn-
tax and semantics for TCL and illustrate the various logical constructs
using examples related to human health. We then demonstrate possible
further developments along the standard lines of logical enquiry about
logical implication and equivalence, proof systems, soundness, complete-
ness, expressiveness, decidability and computational complexity. Rela-
tionships and distinctions with existing temporal logic frameworks are
discussed. Applications in electronic health record (EHR) and in neu-
rophysiological data resource are provided. Our approach differs from
existing temporal logics, in that we explicitly capture Allen’s interval
algebra as modal operators in a language of temporal logic (rather than
addressing it purely in the semantic space). This has two major implica-
tions. First, it provides a formal logical framework for reasoning about
time in biomedicine, allowing general (i.e., higher levels of abstraction)
investigation into the properties of this framework independent of a spe-
cific query language or a database system. Second, it puts our approach
in the context of logical developments in computer science (from the
70’s to date), allowing the translation of existing results into the setting
of TCL and its variants or subsystems so as to illuminate the opportu-
nities and computational challenges involved in temporal reasoning for
biomedicine.



Qualitative Spatial and Temporal Reasoning

Sanjiang Li

Centre for Quantum Computation and Intelligent Systems (QCIS),
Faculty of Engineering and Information Technology,

University of Technology Sydney, Australia
Sanjiang.Li@uts.edu.au

Abstract. Spatial and temporal information is pervasive and increasingly
involved in our everyday life. Many tasks in the real or virtual world
require sophisticated spatial and temporal reasoning abilities. Qualitative
Spatial and Temporal Reasoning (QSTR) has the potential to resolve the
conflict between the abundance of spatial/temporal data and the scarcity
of useful, human-comprehensible knowledge. The QSTR research aims
to design (i) human-comprehensible and cognitively plausible spatial and
temporal predicates (or query languages); and (ii) efficient algorithms for
consistency checking (or query preprocessing). For intelligent systems,
the ability to understand the qualitative, even vague, (textual or speech)
information collected from either human beings or the Web is critical.
This talkwill introduce core notions and techniques developed inQSTR in
the past three decades. I will focus on introducing Allen’s famous interval
algebra and two well-known spatial relation models - the topological
RCC8 algebra and the Cardinal Direction Calculus (CDC).



A Unifying Logic for Neural Networks

Meng Sun

School of Mathematical Sciences, Peking University, China
sunm@pku.edu.cn

Abstract. Neural networks are increasingly used in safety-critical appli-
cations such as medical diagnosis and autonomous driving, which calls
for the need for formal specification of their behaviors to guarantee their
trustworthiness. In this work, we use matching logic - a unifying logic to
specify and reason about programs and computing systems - to axiomat-
ically define dynamic propagation and temporal operations in neural net-
works and to formally specify common properties about neural networks.
As instances, we use matching logic to formalize a variety of neural net-
works, including generic feed-forward neural networks with different
activation functions, convolutional neural networks and recurrent neural
networks. We define their formal semantics and several common proper-
ties in matching logic. This way, we obtain a unifying logical framework
for specifying neural networks and their properties.
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Finite Quantified Linear Temporal Logic
and Its Satisfiability Checking

Yu Chen, Xiaoyu Zhang, and Jianwen Li(B)

East China Normal University, Shanghai, China
{51205902034,52215902001}@stu.ecnu.edu.cn,

jwli@sei.ecnu.edu.cn

Abstract. In this paper, we present Finite Quantified Linear Temporal
Logic (FQLTL), a new formal specification language which extends Lin-
ear Temporal Logic (LTL) with quantifiers over finite domains. Explicitly,
FQLTL leverages quantifiers and predicates to constrain the domains in
the system and utilizes temporal operators from LTL to specify prop-
erties with time sequences. Compared to LTL, FQLTL is more suitable
and accessible to describe the specification with both restricted domains
and temporal properties, which can be applied to the scenarios such as
railway transition systems. In addition, this paper proposes a method-
ology to check FQLTL satisfiability, releasing the corresponding checker
for potential users to further use. Towards experiments, we show that
by applying the logic to the railway transit system, most of the safety
specifications can be formalized and several inconsistent specifications
are reported through our implemented satisfiability checker.

1 Introduction

In recent years, with the development of formal verification techniques and tools,
formal methods [2] have been introduced in a variety of large-scale verification
scenarios such as railway transit, autonomous driving, and aerospace [4,8].

Model checking [3] is an efficient approach to formal verification. Given an
abstract model M from a system and a specification φ described in a formal
language for the properties to be verified, model checking automatically deter-
mines whether the model M can satisfy φ, i.e., whether M � φ holds. Linear
Temporal Logic is a frequently-used property specification language for model
checking [18,24,25]. In this paper, we focus on languages for formal-verification
applications based on realistic scenarios and define a new specification language
FQLTL (Finite Quantified Linear Temporal Logic), to specify properties with
both domain restrictions and time constraints.

FQLTL is an extended logic of LTL [19], which introduces quantifiers and
predicates to represent domains and relations on the basis of LTL temporal
operators. LTL is a very popular logic language today and can be used in various
fields in computer science. Due to different purposes, some variants of LTL have
been proposed successively, such as LTL on finite traces (LTLf ) [6,7,27], which

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
Y. Chen and S. Zhang (Eds.): AILA 2022, CCIS 1657, pp. 3–18, 2022.
https://doi.org/10.1007/978-981-19-7510-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-7510-3_1&domain=pdf
https://doi.org/10.1007/978-981-19-7510-3_1
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is widely used in the fields of AI, as well as Mission-time linear temporal logic
(MLTL) [15] and signal temporal logic (STL) [1], which are applicable to the
real-time systems such as aerospace.

In previous works, researchers have paid a lot of effort to combine Linear
Temporal Logic with quantifiers. For example, [17] proposed a combination of
the two, which is named QLTL, for the verification of probabilistic model systems,
while [5] proposed Variable Quantifier LTL (VLTL) for the field of data science.
The focus of both works is to consider the domains to be infinite. However, the
new logic proposed in this paper is an extended LTL based on finite domains.
Although [11] also proposed a quantifier LTL over finite domains (FO-LTL), the
atoms are formulas in first-order predicate expressions rather than the traditional
Boolean variables. However, we argue that the proposal of our new logic FQLTL
is still necessary, as FO-LTL is too complicated to provide the practical reasoning
technique, e.g., satisfiability checking, for industry usage. Meanwhile, FQLTL is
simpler but still robust enough to be applied to a wide spectrum of scenarios,
and what’s more, it is much easier to present a reasoning framework for FQLTL,
which is considered as one of the main contributions of this paper.

Table 1. Requirements and the corresponding formal description of FQLTL.

Requirements FQLTL description

If a switch is placed reverse, the

switch is unlocked

ALL switch {
placed reverse(switch)

→ unlocked(switch) }

If a track, which contains switches,

is released, then it is logically clear

in the previous cycle

ALL track {
SOME switch {

in track(switch,track) &

released(track) →
PRE logically clear(track)}}

Table 1 shows two examples of security requirements in the railway transit
system. The first row of requirements can be represented by first-order logic,
but not by temporal logic. The second row of requirements contains the tem-
poral property previous cycle, which should be described LTL as released →
PRE logically clear while the relation contains switches cannot be formalized in
LTL. So neither LTL nor first-order logic can describe such requirements. How-
ever, the requirements are well-specified by using FQLTL in the right column of
the table.

The paper first presents the syntax and semantic definition of the FQLTL
language, then presents the theoretic foundations to check the satisfiability of
formulas written by this logic (FQLTL-SAT). The motivation is based on the
fact that FQLTL is an extension of LTL, as well as the domains in considering,
are finite, so eliminating the quantifiers can reduce an FQLTL formula to its
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equivalent LTL formula. As a result, FQLTL-SAT is reducible to LTL-SAT, which
can utilize the existing LTL solvers, e.g., Aalta [13], to check the satisfiability
of the reduced LTL. In the process of reducing FQLTL to LTL, we need to map
an entity class to specific entity instances, and a single FQLTL property of a
class of entities may yield multiple instances of LTL properties, among which
there may be some that have already been reduced to validity or unsatisfiability.
The process of mapping a class to specific instances is the process of eliminating
quantifiers and determining the domain, which performs vacuity checking and
completed the Boolean-level satisfiability check, only the undetermined results
will be instantiated and input to the LTL satisfiability checker [12,14,21] to check
the satisfiability at the temporal level.

Fig. 1. The framework to implement FQLTL satisfiability checking.

Figure 1 shows the whole procedure of FQLTL satisfiability checking: the
information about the domains in the system is abstracted into a data dictionary,
and the properties to be checked are described in the FQLTL language. In the
procedure, the vacuity checker gets the relevant domain information and the
input FQLTL formula to check its satisfiability at Boolean level, ignore the valid
and unsatisfiable results and keep the undetermined results as LTL instances.
Then these instances are sent to the LTL satisfiability checker for the temporal-
level checking and get the check results.

As far as we know, although there are many tools and algorithms for LTL
satisfiability checking [10,13,15,22,23], our work is the first to propose a truly
feasible solution for satisfiability checking for quantifier linear temporal logic.

The rest of the paper is organized as follows. Section 2 introduces the pre-
liminaries; Sect. 3 gives the definition of syntax and semantics of FQLTL, and
discuss the FQLTL satisfiablility problem. Then Sect. 4 gives the implementation
details of the instantiation algorithm; Sect. 5 gives the experimental data of the
work done in practical applications; Finally, Sect. 6 concludes the paper.
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2 Preliminaries

2.1 Linear Temporal Logic

Let AP be a set of atomic properties. The syntax of LTL formulas is defined by:

φ ::= tt | ff | p | ¬φ | φ ∧ φ | φ ∨ φ | φUφ | φRφ | Xφ

where tt, ff denote true and false respectively. p ∈ AP , φ is an LTL formula,
X (Next), U (Until), and R (Release) are temporal operators. A literal is an
atom p ∈ AP or its negation ¬p. U and R are dual operators, i.e. φ1Uφ2 ≡
¬(¬φ1R¬φ2). Boolean operators such as → and ↔ can be represented by the
combination (¬, ∨) or (¬, ∧). Furthermore, we use the usual abbreviations F a =
tt U a and G a = ff R a.

Let Σ = 2AP be the set of alphabet and a trace ξ = ω0ω1ω2... be an infinite
sequence in Σω. For ξ and k ≥ 0 we use ξ[k] to represent the element of ξ at
position k, ξk = ω0ω1...ωk−1 to denote the prefix of ξ ending at position k (not
including k), and ξk = ωkωk+1... to denote the suffix of ξ starting from position
k (including k). Therefore, ξ = ξkξk. The semantics of LTL formulas with respect
to an infinite trace ξ is given by:

– ξ |= tt and ξ 	|= ff ;
– ξ |= p iff p ∈ ξ[0] when p is an atom;
– ξ |= ¬φ iff ξ 	|= φ;
– ξ |= φ1 ∧ φ2 iff ξ |= φ1 and ξ |= φ2;
– ξ � X φ iff ξ1 � φ;
– ξ � φ1Uφ2 iff there exists i ≥ 0 such that ξi � φ2 and for all 0 ≤ j<i, ξj � φ1;
– ξ � φ1Rφ2 iff either ξ1 � φ2 for all i ≥ 0, or there exists i ≥ 0 with ξi � φ1∧φ2

and ξj � φ2 for all 0 ≤ j < i.

The above is the definition of standard LTL. Past-time LTL extends LTL
by introducing the past operators such as PRE and S(SINCE), which are the
temporal duals of the future operators and allow us to express statements on
the past time instants. The PRE operator refers to the previous time instant. At
any non-initial time, PRE φ is true if and only if φ holds at the previous time
instant. For S operator, φ Sψ is true iff ψ holds somewhere in the past and φ is
true from then up to now.

The satisfiability problem of LTL formulas are formalized as follows:

Definition 1 (LTL-SAT). An LTL formula φ is satisfiable iff there exists an
infinite trace ξ such that ξ |= φ.

Theorem 1 ([26]). The complexity to solve the LTL satisfiability problem is in
PSPACE-complete.

There are already extensive studies on LTL satisfiability (LTL-SAT), e.g.,
[12,14,21,23], and several LTL checkers such as Aalta [13] are released for public.
In this paper, we reduce the satisfiablity of our new logic FQLTL to that of LTL
and directly utilize the off-the-shelf LTL satisfiability-checking tools for FQLTL-
SAT.
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2.2 First-Order Logic

While propositional logic deals with simple declarative propositions, First-Order
Logic additionally covers predicates and quantification. The syntax of first-order
logic is defined relative to a signature σ, which consists of a set of constant
symbols, a set of function symbols and a set of predicate symbols. Each function
and predicate symbol has an arity k > 0. We will often refer to predicates
as relations. Typically we use letters c, d to denote constant symbols, f, g to
denote function symbols and P,Q,R to denote predicate symbols. Note that the
elements of a signature are symbols; only later will we interpret them as concrete
functions or relations. Independent of the signature σ we also have an infinite
set of variables x0, x1, x2, .... Given a signature σ, the set of σ-terms is defined
by the following inductive process:

– Each variable is a term;
– Each constant symbol is a term;
– If t1, ..., tk are terms and f is a k-ary function symbol then f(t1, ..., tk) is a

term.

Next the set of formulas is defined inductively as follows:

1. Given terms t1, ..., tk and a k-ary predicate symbol P then P (t1, ..., tk) is a
formula;

2. For each formula φ, ¬φ is a formula;
3. For each pair of formulas φ1, φ2, (φ1 ∧ φ2) and (φ1 ∨ φ2) are both formulas;
4. If φ is a formula and x is a variable then ∃x φ and ∀x φ are both formulas.

Atomic formulas are those constructed according to the first rule above. The
symbol ∃ is called the existential quantifier. The symbol ∀ is called the universal
quantifier. A general first-order formula is built up from atomic formulas using
the Boolean connectives and the two quantifiers.

We will consider one important variant of first-order logic as described above,
namely first-order logic with equality. This variant admits equality as built-in
binary relation symbol. Thus, regardless of the signature, we admit t1 = t2 as
an atomic formula for all terms t1 and t2.

Given a signature σ, a σ-structure A consists of:

– a non-empty set UA called the universe of the structure;
– for each k-ary predicate symbol P in σ, a k-ary relation PA ⊆ UA × · · · × UA

︸ ︷︷ ︸

k

;

– for each k-ary function symbol f in σ, a k-ary relation fA : UA × · · · × UA
︸ ︷︷ ︸

k

→

UA;
– for each constant symbol c, an element cA of UA;
– for each variable x an element xA of UA.

The difference between constant symbols and variables is that the interpre-
tation of variables can be overwritten. Given a structure A, variable x, and
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a ∈ UA, we define the structure A[x�→a] to be exactly the same as A except that
xA[x�→a] = a.

We define the value A�t� of each term t as an element of the universe UA
inductively as follows:

– For a constant symbol c we define A�c�
def= cA;

– For a variable x we define A�x�
def= xA;

– For a term f(t1, ..., tk), where f is a k-ary function symbol and t1, ..., tk are
terms, we define A�f(t1, ..., tk)� def= fA(A�t1�, ...,A�tk�).

We define the satisfaction relation A � φ between a σ-structure A and σ-
formula φ by induction over the structure of formulas.

– A � P (t1, ..., tk) iff (A�t1�, . . . ,A�tk�) ∈ PA;
– A � φ1 ∧ φ2 iff A � φ1 and A � φ2;
– A � φ1 ∨ φ2 iff A � φ1 or A � φ2;
– A � ¬φ1 iff A � φ1;
– A � ∃x φ1 iff there exists a ∈ UA such that A[x�→a] � φ1;
– A � ∀x φ1 iff A[x�→a] � φ1 for all a ∈ UA;
– A � (t1 = t2) iff A�t1� = A�t2�.

3 FQLTL Language

3.1 Syntax and Semantics

LTL was introduced into computer science in the 1970s and is now used in vari-
ous fields such as software verification [9], program synthesis [16], databases [28],
and artificial intelligence [6,7]. LTL uses temporal operators to express the behav-
ioral constraints and the temporal relationships between events that need to be
satisfied by a system at each moment in the past, present, and future.

However, in some specifications, we need to limit the domain of the entities
described by the properties. For example, in a multi-device system, device A
need to satisfy property P1, LTL can only determine whether P1 is satisfied, but
not in the restricted domain “device A”; or in a more complex scenario, all sub-
devices B of device A need to satisfy property P2, which cannot be described
by LTL. These situations need to determine both “domain” and “time”, which
requires us to introduce a domain-related logic based on temporal logic.

Based on this, we combine first-order logic and linear temporal logic to define
a new language, FQLTL, which can express relational and temporal properties,
to restrict the finite domain of devices described in LTL specification. FQLTL is
accessible to describe a system with multiple, interrelated devices, the syntax
and semantics of which are defined as follows.
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Definition 2 (Syntax of QLTL formulas). A legal FQLTL formula φ has the
following syntax:

φ ::= t | (φ)
¬φ | φ ∧ φ | φ ∨ φ | φ → φ |
P (t1, ..., tk) | t1 = t2 | ALL x · φ | SOME x · φ |
PRE φ | X φ | φ U φ | φ S φ;

In the above, t, t1, ..., tk are the terms and P is the predicate symbol as
defined in First-Order Logic. ALL is the universal quantifier, which is a syntax
sugar of ∀. Meanwhile, SOME is the existential quantifier, which is a syntax sugar
of ∃. PRE, X, U , and S are all temporal operators, where PRE is the previous
period operator and X means the next period; U is the Until operator, and S is
the Since (past) operator. In particular, we use φ1 R φ2 to denote ¬(¬φ1U¬φ2),
i.e., R is the dual operator of U ; and we use the usual abbreviations: G φ =
ff R φ, and F φ = tt U φ.

Definition 3 (Semantics of QLTL formulas). Let ξ be an infinite trace, σ be
a signature and A be the corresponding σ-structure such that the universe of A,
i.e., UA, is a finite set. Then the semantics of FQLTL formulas are interpreted
over the tuple 〈ξ,A, i〉 such that:

– 〈ξ,A, i〉 � t iff A�t� = true;
– 〈ξ,A, i〉 � P (t1, ..., tk) iff (A�t1�, . . . ,A�tk�) ∈ PA;
– 〈ξ,A, i〉 � (φ) iff 〈ξ,A, i〉 � φ;
– 〈ξ,A, i〉 � φ1 ∧ φ2 iff 〈ξ,A, i〉 � φ1 and 〈ξ,A, i〉 � φ2;
– 〈ξ,A, i〉 � φ1 ∨ φ2 iff 〈ξ,A, i〉 � φ1 or 〈ξ,A, i〉 � φ2;
– 〈ξ,A, i〉 � ¬φ iff 〈ξ,A, i〉 � φ;
– 〈ξ,A, i〉 � ALL x · φ iff ∀ a ∈ UA, 〈ξ,A[x�→a], i〉 � φ;
– 〈ξ,A, i〉 � SOME x · φ iff ∃a ∈ UA, 〈ξ,A[x�→a], i〉 � φ;
– A � (t1 = t2) iff A�t1� = A�t2�;
– 〈ξ,A, i〉 � PRE φ iff i > 0 and 〈ξ,A, i − 1〉 � φ;
– 〈ξ,A, i〉 � X φ iff i ≥ 0 and〈ξ,A, i + 1〉 � φ;
– 〈ξ,A, i〉 � φUψ iff there exists j ≥ i such that 〈ξ,A, j〉 � ψ and for all

i ≤ k<j, 〈ξ,A, k〉 � φ;
– 〈ξ,A, i〉 � φSψ iff there exists j ≤ i such that 〈ξ,A, j〉 � ψ and for all

j<k ≤ i, 〈ξ,A, k〉 � φ.

The tuple 〈ξ,A, i〉 |= φ means φ holds in 〈ξ,A〉 at step i. In particular, we
define 〈ξ,A〉 |= φ iff 〈ξ,A, 0〉 |= φ. Two examples of using FQLTL formulas to
specify the behaviours of railway transit systems are given as follows.

Example 1. If a switch device (sw) is in the normal position, it will not be
detected as being in the reverse position.

formula-001 :=
ALL sw · (

G(is normal(sw) → ¬is reverse(sw))
)
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In Example 1, ALL sw requires that the specification has to be satisfied for
all switch objects. The inner formula G(is normal(sw) → ¬is reverse(sw))
represents that, if the object is in the normal position, it will not be detected as
being in the reverse position.

Example 2. If a track device (tr) releases, the switch device (sw) in the same
area with tr must have already released in the previous period.

formula-002 :=
ALL tr · (

SOME sw · (
in area(tr, sw) ∧ released(tr) → PRE released(sw)
))

In Example 2, ALL tr means that this specification must be satisfied for
all objects of the track device, while SOME sw means that it can be satisfied
only for the objects of the switch devices which are in the same area with a
given track object. in area is a predicate that determines whether a switch
is in the same area with a track, i.e., it is used to constraint the domain of
switches. PRE is a temporal operator that refers to the last period. The sub-
formula “in area(tr, sw) ∧ released(tr) → PRE released(sw)” is the expression
of “if a switch device is in the same area with a track device and the track is
released, then the switch must have been released in the previous period”.

3.2 FQLTL Satisfiability

In this section, we discuss the satisfiability problem of FQLTL formulas. Formally,
the problem is defined as follows.

Definition 4 (QLTL -SAT). An FQLTL formula φ is satisfiable iff there exists
an infinite sequence ξ and a σ-structure A of φ such that 〈ξ,A〉 |= φ.

Since in FQLTL, the universe UA of A is restricted to be finite, the motiva-
tion comes up straightforward that the quantifiers can be eliminated for further
processing. Let’s re-consider Example 1 and assume that there are three switch
devices {sw1, sw2, sw3} in the domain. Then the formula can be transformed
into three sub-formulas (1), (2) and (3) below after eliminating the quantifier
ALL sw.

G(is normal(sw1) → ¬is reverse(sw1)) (1)
G(is normal(sw2) → ¬is reverse(sw2)) (2)
G(is normal(sw3) → ¬is reverse(sw3)) (3)

The above example has no relational predicates, so only quantifiers need to
be considered. If the formula is restricted by a relation that only sw1 and sw2

satisfy, the result of elimination will be only the subformulas (1) and (2) above.
The above elimination process is called instantiation, which is formally defined
as below.
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Definition 5 (QLTL Instantiation). For an FQLTL formula φ with the signa-
ture σ. Let A be its σ-structure and UA be the universe in A. The instantiation
of φ under A, denoted as I(φ), is an LTL formula such that

– I(P (t1, . . . , tk)) = tt iff (A�t1�, . . . ,A�tk�) ∈ PA; Otherwise,
I(P (t1, . . . , tk)) = ff ;

– I((φ)) = I(φ);
– I(φ1 ∧ φ2) = I(φ1) ∧ I(φ2);
– I(φ1 ∨ φ2) = I(φ1) ∨ I(φ2);
– I(¬φ) = ¬I(φ);
– I(PRE φ) = PRE I(φ);
– I(Xφ) = X I(φ);
– I(φ1 S φ2) = I(φ1) S I(φ2);
– I(φ1 U φ2) = I(φ1) U I(φ2);
– I(ALL x ·φ) =

∧

a∈UA I(φ[x�→a]), where φ[x�→a] is obtained from φ by replacing
x to a;

– I(SOME x · φ) =
∨

a∈UA I(φ[x�→a]), where φ[x�→a] is obtained the same as
above.

Lemma 1. For an FQLTL formula φ, the size of I(φ) is at most |UA|k · |φ|,
where k is the number of quantifier variables in φ. Moreover, I(φ) is semantically
equivalent to φ, i.e., φ ≡ I(φ).

Proof. The proof can be done by induction over the types of φ. Since the proofs
for the cases when φ is a non-quantifier formula are trivial, we focus on here the
case when φ is an ALL/SOME formula. Assume now φ = ALL x ·ψ. Based on the
inductive hypothesis, the size of I(ψ[x−>a]) for each a ∈ UA is at most |UA|k−1 ·
|ψ|. Then according to Definition 5, we have I(ALL x ·ψ) =

∧

a∈UA I(φ[x�→a]). So
the size of I(ALL x·ψ) is at most |UA|k ·|ψ|, which is at most |UA|k ·|φ|, providing
that |ψ| < |φ|. The proof of the case when φ = SOME x · ψ is analogous.

To prove that φ ≡ I(φ), it can be achieved also by induction over the types
of φ. Since this part of proof is very similar to that of above, we omit the details
here. ��

Since Definition 5 reduces an FQLTL formula to the corresponding LTL for-
mula, it inspires us to reduce FQLTL-SAT to LTL-SAT. The following theorem
shows the complexity to check FQLTL-SAT.

Theorem 2. For an FQLTL formula φ whose signature is σ and UA is the uni-
verse of the formula’s σ-structure A, the complexity to determine φ’s satisfiability
is at most |UA|k × 2O(n), where k is the number of quantifier variables in A and
n is the number of temporal operators in φ.

Proof. First of all, we know that the cost of checking the satisfiability of an
arbitrary LTL formula is at most 2O(n), where n is the number of temporal
operators in the formula [26]. Secondly, based on Lemma 1, the instantiation
procedure can generate the LTL formulas with the size of at most |UA|k. As a
result, the total checking cost is at most |UA|k × 2O(n). ��
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4 Implementation

4.1 Three-Valued Logic

This section present a simplification based on the three-valued logic, which aims
to remove the redundant tt or ff instances during instantiation.

When calculating the logical value of a FQLTL formula, the predicate has a
clear evaluation of true or false, while the function and temporal operations are
instantiated as part of the LTL formula, and their values can only be determined
during the LTL satisfiability checking process. Thus, when doing the Boolean-
level value calculation, the possible results are specified by false, true, and uncer-
tain. For simplicity, we directly write 0, 1 and −1 respectively in this section.

For a FQLTL formula with a signature σ. Let A be its σ-structure and UA be
the universe in A. There are four kinds of situations when calculating the logical
value of the FQLTL formula.

– No calculation. Predicates and functions just return the logical value with-
out any calculation. For a predicate P (t1, ...tk), if (A�t1�, . . . ,A�tk�) ∈ PA,
the Boolean value is 1; otherwise, the value is 0. For a function, the value is
always −1.

– Normal logical calculation. For all logical operations include NOT, AND,
OR, and implication, we calculate the logical value according to the truth
table in Table 2.

Table 2. Truth table of the three-valued logic.

p q ¬ p p ∧ q p ∨ q p → q

1 1 0 1 1 1

1 0 0 0 1 0

1 −1 0 −1 1 −1

0 1 1 0 1 1

0 0 1 0 0 1

0 −1 1 0 −1 1

−1 1 −1 −1 1 1

−1 0 −1 0 −1 −1

−1 −1 −1 −1 −1 −1

Implication can be denoted by NOT and OR operations, A → B is logically
equivalent to ¬A ∨ B.

– Reserved temporal calculation. For the temporal operators, the results
cannot be calculated directly at the Boolean level because of the temporal
property, so it is necessary to reserve the operators to get the logical value
during the LTL satisfiability checking. In this, the calculated result is not the
final result, but the Boolean-level result. For unary temporal operation Xφ
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and PRE φ, the reserved result is the logical value of φ ignoring the operator.
For binary temporal operation φSψ and φUψ, Table 3 shows the rules for the
reserved calculation.

– Quantifier calculation. For formula in the form of ALL x · φ, if all objects
a ∈ UA satisfy φ, the logical value of the formula is 1; if there exists an object
that does not satisfy, the value is 0; otherwise, the value is −1. For formula
in the form of SOME x · φ, if all objects a ∈ UA do not satisfy φ, the logical
value of the formula is 0; if there exists an object that satisfies, the value is
1; otherwise, the value is −1.

Table 3. Logical calculation rules for U and S operators.

φ ψ φUψ φSψ

1 1 1 1

1 0 0 0

1 −1 −1 −1

0 1 1 0

0 0 0 0

0 −1 −1 0

−1 1 1 −1

−1 0 0 0

−1 −1 −1 −1

Based on three-valued logic, we can check the vacuity for FQLTL formulas. In
Example 1, if a switch itself is not in the normal position, then the left side of the
implication is normal(sw) will be false(0), the whole formula will be valid(1)
and do not need to be checked later, so this switch object is removed during the
calculation and not to be instantiated.

4.2 Implementation Process

Example 3. Taking formula-002 of Example 2 as an example, the process of
instantiation is implemented as follows.

Suppose we have five tracks: tr1, tr2, tr3, tr4, tr5, and four switches: sw1, sw2,
sw3, sw4, and their relation are shown in the Table 4.

Assume that the variable that can be recognized by the satisfiability checker
of the function released is the variable RELEASED. By providing the table as
a data dictionary of domains, we instantiate the result as

tr1-RELEASED → PRE sw1-RELEASED
tr2-RELEASED → PRE sw2-RELEASED ∨ PRE sw3-RELEASED
tr3-RELEASED → PRE sw3-RELEASED ∨ PRE sw4-RELEASED
tr5-RELEASED → PRE sw4-RELEASED
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Table 4. Device relation table.

tr sw in the same area

tr1 sw1

tr2 sw2, sw3

tr3 sw3, sw4

tr4 –

tr5 sw4

The result will be ORed up because tr2 and tr3 are associated with more than
one switch; while tr4 has no associated switch object, the logical value obtained
from the calculation is 1, and the result is removed.

The above example finally gets all the results of the concrete object after
replacing the device type with the object whose return value is not true or
false and eliminating the quantifiers from the formula. That is, in the loop,
the vacuity checking of validity (return true) and unsatisfiability (return false)
has been completed, and the valid and unsatisfiable results are discarded, the
undetermined objects are retained, i.e., instances of LTL are generated from
FQLTL, to be checked in the next step.

5 Experiment and Case Study

5.1 Experiment

We apply the FQLTL language to a railway transit system to specify 50 safety
requirements, we first instantiate these specified properties in FQLTL formula as
described in this Sect. 4, afterwards we get 2031 LTL instances to be checked, and
the total instantiation time consumption is about 200 s. Here, 10 of the detailed
results are selected for demonstration in Table 5. The sets of devices involved are
switches (total 74, 45 are singled and 29 are doubled), tracks (50), signals (50),
routes (total 453, including 214 train routes).

The device number refers to the number of device types involved in the for-
mula. The total number refers to the number of loop levels when instantiating the
formula. It is written in the form of multiplication, each multiplier corresponds
to the number of objects whose type is quantified in the formula. This result is
also the number of pieces we send into the vacuity checker. The number of to
be checked refers to the undetermined results that returns to the top-level quan-
tifier, which is the number of LTL results we finally instantiated out. Validity
refers to the number of results that return true to the top-level quantifier. The
number of unsatisfiability is the result that is found to be false and discarded
during intermediate operations.

It is meaningless to observe the value of validity/unsatisfiability and the time
cost alone for that they are related to the structure of the formula. The ratio of
validity and unsatisfiability sum to the total will be more significant, which is
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Table 5. Instantiation datas of 10 formulas.

Formula Device
number

Total number Validity/
unsatisfiability

To be
checked

Pre-
determination
rate

Time cost

φ1 1 74 0/0 74 – 0.005 s

φ2 1 50 12/0 38 98.5% 0.05 s

φ3 1 74 71/0 3 95.6% 0.003 s

φ4 2 74*50 0/3650 50 98.6% 0.2 s

φ5 2 74*50 47/3650 3 99.9% 0.5 s

φ6 2 74*50 3626/0 74 98.0% 0.1 s

φ7 2 50*214 12/12000 38 99.7% 0.08 s

φ8 3 74*2*29 10/4218 64 98.5% 0.5 s

φ9 3 50*214*214*453 92693/1037186673 34 99.9% 90 s

φ10 3 74*50*74*29 16/7618242 58 95.9% 110 s

the pre-determination rate. This rate represents the performance of our vacuity
checker to remove redundant instances.

In Table 5, except for φ1, which does not contain a relation, other formulas
have predicates to restrict the domain. It is not difficult to conclude that for each
formula containing predicates, the vacuity checker can remove a large number of
valid and unsatisfiable results, which is far more than the number of instantiated
LTL results. The pre-determination rate of the formula is basically above 95%.

5.2 Case Study

We send the obtained LTL formulas to the satisfiability checker and get the check
results. The checker reported several unsatisfiable and valid instances. Here we
present some simplified cases to make them easier to study.

Case 1. The following is an instance containing two kinds of devices. The route
rt1 and the track tr3 satisfy the relation in the origin FQLTL formula, so they
can be instantiated out.

(G rt1-open) ∧ (tr3-locked U rt1-open)

It is obvious that this formula is valid at temporal level.

Case 2. The following is an instance of the signal si5.

((G((¬si5-lxj) ∨ (¬si5-zxj))) ∧ (((G F si5-lxj) ∧ (G F si5-zxj))∧
((G(si5-lxj → Xsi5-lxj)) ∧ (G(si5-zxj → Xsi5-zxj))))

The meaning of three subformulas that are ANDed up in the instance is:

– The si5 signal is either not commanded LXJ up or not commanded ZXJ up.
– The si5 will finally be commanded both LXJ up and ZXJ up.
– If the si5 is commanded LXJ or ZXJ up, it will continue to be commanded

it up in the next period.
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It’s also not hard to see that these requirements are in conflict with each other,
which proves that the instantiated result is unsatisfiable at the temporal level.

Both of the above examples illustrate that the satisfiability check at the
temporal level can be accomplished for instantiated LTL. Thus, at this step we
complete the FQLTL-SAT on the basis of LTL-SAT.

6 Conclusion

In this paper, we proposes a new formal specification language FQLTL which
extends LTL with quantifiers over finite domains. Based on FQLTL, the paper
proposes a methodology for FQLTL satisfiability, and gives a formal definition
of this elimination process, i.e., instantiation, then presents the implementation
details. In practical applications, the language can formalize the safety specifica-
tions of the railway transit system. After applying the proposed methodology to
these specifications and analyzing experimental data, it is found that the vacuity
checking greatly reduces the size of the result formulas. Sending the instantiated
formulas to the LTL satisfiability checker, we also completed the satisfiability
check of the FQLTL.
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Abstract. Authentication protocols are the basis for secure communi-
cation in many distributed systems but are highly prone to errors in their
design, preventing them from working properly. It is therefore necessary
to analyze an authentication protocol to determine whether the designed
protocol meets the requirements. Much attention has been paid to math-
ematical logic to analyze cryptographic protocols, particularly the logic
proposed by Burrows, Abadi, and Needham (BAN logic). This logic has
been successful in identifying weaknesses in various examples of authen-
tication protocols. In this paper, we give a concept of “belief” for BAN
logic based on the idea of possibility computation and further propose
a quantitative BAN logic. It is also applied to the formal analysis and
computation of a Radio Frequency Identification (RFID) authentication
protocol to show how it works. The quantitative results on belief show
that the proposed quantitative approach of BAN logic based on belief
can more objectively reflect the security property of the authentication
protocol.

Keywords: Belief logic ⋅ BAN logic ⋅ Quantitative logic ⋅ Possibility
computation ⋅ Authentication protocols ⋅ Security and privacy

1 Introduction

Radio Frequency Identification (RFID) technology is a technology that automat-
ically identifies objects in an open environment and is widely used in payment
systems, supply chain management, and product anti-counterfeiting due to its
low cost and ease of deployment [1]. As low-cost RFID becomes increasingly
popular, RFID technology is widely used to ensure the low cost of tags in the
system, but the low cost of tags limits their computing power and adds to the
problem of ensuring privacy and security when working [2]. The security issues
it brings have attracted widespread attention from academia and industry [3–7].
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A typical RFID system consists of three legal entities: the tag, the tag reader,
and the verifier (referred to as a back-end database or the server) [8–10]. The tag
is usually embedded into an object, and when the tag enters the reading range
of the tag reader, the tag and the tag reader verify each other’s identities, and
after verification, the tag transmits its content to the reader, which reads the
tag content and passes the content information to the back-end database, which
is shown in Fig. 1.

As is shown in Fig. 1, the connection channel between the tag reader and the
back-end database is usually perceived as a secure channel. The communication
between the tag and the tag reader is through the wireless channel, which is
thought insecure and vulnerable to various security attacks [11], mainly passive
attacks, active attacks, man-in-the-middle attacks, and asynchronous attacks.
Therefore, the research on secure communication between tags and tag readers
has received extensive attention. An authentication protocol is an interactive
protocol executed between a tag and a tag reader. The owner of the tag (e.g.
objects or owners) uses the tag to prove his identity to the reader, and the reader
provides feedback on the authentication result. The RFID authentication proto-
cols need to ensure the security and privacy of the communication. During the
rapid development of RFID technology, various RFID authentication protocols
that are based on different technologies and algorithms have been proposed to
protect the security and privacy of data from RFID systems [1–3,5–10,12]. How-
ever, these techniques or algorithms are not enough to resist malicious attacks.
Therefore, formal analysis and verification technologies are introduced to anal-
yse the security and privacy of RFID authentication protocols [13–19] for they
are built on a solid foundation of mathematics, e.g. first-order logic, set theory,
graph theory, and category theory. BAN logic is widely used for its ease of use
in the authentication of re-authentication protocols. Burrows, Abadi, and Need-
ham propose a logic for analysing and verifying authentication protocols [20] in
1990, which is named BAN logic for it is simple but powerful in the analysis of
authentication protocols. However, when using BAN logic to validate authen-
tication protocols, it is often necessary to make initial assumptions about the
protocol. This is dependent on the knowledge base and subjective experience of
the expert, which can vary from expert to expert; and the specific environmental
conditions in which the RFID authentication protocol is applied are unknown,
such as the number, type and attack capability of potential attack devices in the
surrounding area, the communication quality of the communication environment
in which it is used, etc. Therefore, the verification process is fraught with uncer-

RFID Tags RFID Reader RFID Database/Server

Unsecure channel Secure channel

Fig. 1. A typical RFID system.
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tainty. Furthermore, BAN logic is a belief logic. As far as beliefs are concerned,
this again depends on the subjective experience of different subjects. Therefore,
the mere use of binary logic in the original BAN logic is not precise enough
and needs to be further quantified. Possibility computation [21] is a concept in
possibility theory [22] that can be used to describe and measure the possibilities
under uncertainty scenarios. We consider some scenarios that can be handled by
possibility computation as follows.

The real-world environment in which RFID protocols are used may have
malicious attackers. In the process of communication between the Server (S)
and the Tag (T ), supposing S sends a message M1 to T , in the process of using
the original BAN logic, the initial assumption of the protocol is that S will
receive the message M1 from T . In fact, if a malicious attacker obtains the
key between S and T , he can tamper with M1 or further forge a new message
M2 to be sent to S. So this protocol assumption above would be too idealistic.
To describe this scenario more precisely, by introducing the idea of possibility
computation, by considering the strength of the key between S and T and the
attacker’s capabilities, S can be described as believing that the message M1 (is
secure) with a possibility of δ, in which the δ ∈ [0, 1].

This paper focuses on BAN Logic which is broadly used to describe and
analyze RFID authentication protocol, proposing a concept named “belief” from
possibility computation to precisely quantify the uncertainty in the verification
scenario. Then quantitative reasoning rules of BAN logic based on belief for the
security property are further proposed. And we test the soundness and viability
of our quantitative approach on an authentication protocol, the TSMCA PUF by
Liang et al. [23]. The experimental results show that the proposed quantitative
BAN logic can objectively reflect the security of TSMCA PUF.

In summary, our primary contributions are:

– We propose a novel quantitative approach for BAN logic based on possibility
computation, named belief degree, in which we also develop quantitative rea-
soning rules corresponding to the original framework in BAN logic to quantify
the belief.

– We present a case study to show how our quantitative approach works on an
RFID authentication protocol [23], by analysing and calculating the original
proof goals using quantitative BAN logic.

The remainder of this paper is organized as follows. Section 2 introduces
related works. Section 3 provides the formalism to BAN logic. Section 4 presents
our quantitative approach to BAN logic based on belief. Section 5 discusses the
case study on the RFID authentication protocol (the TSMCA PUF [23]) in which
we apply our novel approach to analyze its security property by the proposed
quantitative BAN logic, with the process of computation and results presented
afterwards. Section 6 concludes this paper and presents some future directions.
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2 Related Work

Although RFID technology is widely used in various aspects of life, such as
logistics management, intelligent healthcare [7,12], and product safety tracing,
due to its fast identification speed, low cost and long lifespan, the security and
privacy issues of RFID technology in applications are still a major concern.
Formal analysis in RFID authentication protocols is widely studied in academia
[13–15,17,18,23–25]. Burrows, Abadi, and Needham propose BAN logic which
is simple but powerful in the analysis of authentication protocols. And David
Basin et al. provide an overview of the main applications of model checking
in security protocol analysis and explain the central concepts involved in the
analysis of security protocols in [26], in which they take the Needham-Schroeder
protocol as an example o show the impact of model checking. Vaudenay [19]
proposes privacy models for RFID in 2007, in which he gives a strong definition
of security and privacy of RFID authentication protocols and adversaries with
different attacking abilities are portrayed. In 2019, Liang et al. [23] propose a
double-PUF based RFID protocol and analyse the security with BAN logic, and
the improved protocol on it presented by Li et al. [24] in 2021 adds the hash
operations when the messages are transmitted and introduce a time threshold
during the negotiation between the tag and the server’s pseudo-random number
generator seed. It is proved secure by analysing and verifying using BAN logic
and Vaudenay model.

Although BAN logic has been successful in finding the vulnerability and
weakness in authentication protocols for its simplicity and convenience, there
are some limitations on it [27,28]. Boyd et al. illustrate the limitation of BAN
logic on two authentication protocols [27] and give a formalisation of BAN logic
in the [28].

3 The Formalism of BAN Logic

Belief logic [29] reasons about beliefs of principals (people, computers, and so
on) on the security properties of the communication channels [28], e.g. [20,30].
BAN logic, a kind of belief logic, is proposed by Burrows, Abadi, and Needham
[20] in 1990. This logic operates on an abstract level and filters the redundant
information of security protocols like implementation errors or inappropriate
use. And BAN logic is widely used for the analysis of security protocols for
its simplicity. Therefore, BAN logic is widely used to analyze the security of
authentication protocols which focus on exchanging messages between principals
in the protocols.

To validate an authentication protocol using BAN logic, we must first estab-
lish models of the principals and their initial beliefs in the protocol. Each message
exchanged during the operation of the authentication protocol is then idealized
(referred to as the protocol idealization process). We must also be able to express
these beliefs and messages by using the logic formulae in BAN logic reasoning
system.
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Commonly, a logic reasoning system consists of basic notations (or basic
symbol representations), formulae, and reasoning rules. We will introduce the
basic notations, logic formulae, and reasoning rules as follows in this section.

3.1 Basic Notations and Logic Formulae in BAN Logic

The basic notation of BAN logic and some symbol descriptions in this paper
are shown in Table 1. P and Q in the table represent two principals in the
authentication protocol, X and Y for messages, and K for the encryption key.

Table 1. Formulae and instructions

Predicates or symbols Instructions

1. P ⫢ X P believes message X

2. P ⫢ #X P believes message X is fresh
3. P ◁ X P receives message X

4. Q ∣∼ X Q sent message X

5. Q ⇒ X Q can control X

6. {X}K X is encrypted by the key K

7. P
K
↔ Q P and Q share the key K

8. h(X) X is encrypted by the hash operator
9. X ⊕ Y X XOR Y

10. X;Y X cascades Y

The logic formulae composed of the basic notations in BAN logic is repre-
sented in the form of belief logic. BAN logic can be viewed as a predicate logic
constructed on several sorts of objects: principals, encryption keys, messages,
and formulae (also called statements) [28].

Predicates construction are used to interpret organised objects into logical
statements with truth values. The 1–5 in Table 1 are the predicates in BAN logic,
and the others are the symbols that would be used in this paper.

3.2 Reasoning Rules in BAN Logic

For a logical system, proof reasoning mechanisms are vital. There are four rea-
soning rules in BAN logic as follows.

The reasoning rules are expressed using the Gentzen-style Representation.
The rules are divided into two parts in which the upper part of the expression
represents the condition and the lower part for the conclusion.

For example,
A,B

C

where the symbol “,” is the boolean conjunctive operator with the following
operational semantics: statement A, B is true if and only if both A and B are true
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which can be represented in Backus Naur Form (BNF) [31] version if necessary,
as

A ∧ B → C

Specific rules are strictly followed when performing BAN logic analysis as
follows [20].

– Rule 1 (The message-meaning rule). It explains how to derive beliefs about
the origin of messages.

P ⫢ P
K
↔ Q, P ◁ {X}K

P ⫢ Q ∣∼ X

That is, if the principal P believes that the key K is shared between P and
Q, and P received a message X which is encrypted by the K, then P believes
that the message X is sent by the principal Q.

– Rule 2 (The nonce-verification rule). This rule expresses the check that a
message is recent and, hence, that the sender still believes in it.

P ⫢ #(X), P ⫢ Q ∣∼ X

P ⫢ Q ⫢ X

That is, if the principal P believes that the message X is fresh (which means
X could have been uttered only recently) and that Q once sent X, then the
principal P believes that Q believes the message X.

– Rule 3 (The jurisdiction rule). It states that if P believes that Q has jurisdic-
tion over X(i.e., P believes that Q controls X) then P trusts Q on the truth
of X:

P ⫢ Q ⇒ X, P ⫢ Q ⫢ X

P ⫢ X

– Rule 4 (The freshness rule). If one part of a formula is fresh, then the entire
formula must also be fresh:

P ⫢ #X

P ⫢ #(X,Y )

That is, if the principal P believes that the message X is fresh, then P believes
that the message (X,Y ), a combination of X and Y is fresh.

There are a few other reasoning rules, e.g.

P ◁ (X,Y )

P ◁ X

that is, if P received the combined message (X,Y ) of the message X and Y ,
then it is clear that P received the message X (the same as the message Y ).

We shall not list them one by one.
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4 Quantitative BAN Logic Based on Belief

In this section, we will introduce the proposed quantitative BAN logic to calcu-
late the belief when analyzing and verifying the security and privacy of authen-
tication protocols.

To be sure, since the real number interval [0, 1] has a richer mathematical
content than the binary set {0, 1}, it is possible to model qualitative methods
within different forms of quantitative intervals [32].

In BAN logic, we can only know whether a formula can be believed, that
is, the formula of BAN logic is mapped to binary logic i.e., {0.1}. However,
binary logic cannot describe well in practical scenarios, where uncertainty exists
everywhere. Moreover, when the logic finds a bug in a protocol, everyone believes
that it is a bug. However, when the logic finds proof of correctness, people seem
to have trouble believing that it is proof [27,28]. Therefore, according to the
basic notations and original reasoning rules in BAN logic, we further introduce
the belief degree δ to quantify the belief of the set of formulae Φ in BAN logic
by proposing a quantitative approach for BAN logic. In other words,

Δ ∶ Φ → [0, 1]

And the δ is denoted as the belief degree (in other words, the confidence) of
formula φ (φ ∈ Φ), then we define the relations among the formula φ, the belief
degree of φ and the formulae set Φ below:

δ = Δ(φ)

Since BAN logic belongs to the category of belief logic, we map the formula in
BAN logic to [0, 1] to express the belief degree with the above equation.

Before introducing the quantitative reasoning rules in the proposed quanti-
tative BAN logic, we need to explain the corresponding quantitative formulae
as follows.

Quantifying the belief degree of P ⫢ X in BAN logic is defined in the fol-
lowing notations

P ⫢δ X

that is, the principal P believes the message X is secure with a belief degree
of δ. The above representation in quantitative BAN logic can also be expressed
in terms of δ = Δ(P ⫢ X). For the sake of convenience, we will use the former
notation when expressing the quantitative reasoning rules.

Similarly, the quantitative formula following

P ⫢δ #X

states that P believes message X is fresh with a belief of δ, which can be repre-
sented as δ = Δ(P ⫢ #X), if necessary. And, because we take into account the
quantification of uncertainty during protocol verification, we further quantify the
scenarios of message combinations that will occur in the protocol, which were
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not originally available in the BAN logic. The combination of X and Y includes
these three types as follows.

Using Y as a key to encrypt message X:

{X}Y

Note that there exist some cases where the combination of messages is used
to encrypted, like performing a bitwise XOR operation on two messages, etc.
Therefore, we quantify the rules for this scenario. Considering this case where
the combination of X and Y actually enhances the security relative to the two
messages before they were combined. Therefore, the belief (of P in {X}Y ) should
also be no less than the belief in X and Y at this point. To compute the principal
P ’s belief in the combination {X}Y :

Δ(P ⫢ {X}Y ) = max(Δ(P ⫢ X),Δ(P ⫢ Y ))

For instance, in the TSMCA PUF protocol, if we know the principal P ’s belief
to M2 is, if we know that principal P has a belief in M2 of 0.6 and a belief in
GW of 0.8, then we can obtain P ’s belief in {GW}M2

is 0.8.
Message X and message Y in XOR operation:

X ⊕ Y

Similarly, in this case, X ⊕ Y is obtained by a binary operation by bit, so the
combination of the messages becomes more secure than before. Therefore, the
belief of P to X ⊕ Y is supposed to be no less than the both in X and Y . To
compute the principal P ’s belief in the combination X;Y :

Δ(P ⫢ (X ⊕ Y )) = max(Δ(P ⫢ X),Δ(P ⫢ Y ))

Message X and message Y in cascade operation, i.e., message X is followed
by message Y :

X;Y

Considering in this case, X;Y is obtained by a simple concatenation (similar to
a string operation), so the combination does not improve its security. Therefore,
the belief of P to X;Y is supposed to be no greater than the both in X and Y .
To compute the principal P ’s belief in the combination X;Y :

Δ(P ⫢ (X;Y )) = min(Δ(P ⫢ X),Δ(P ⫢ Y ))

For instance, if we know that P has a belief in M1 of 0.5 and a belief in M2 of
0.6, then we can obtain P ’s belief in (M1;M2) is 0.5.

Similarly, we can convert the basic symbols and representations of the original
BAN logic. The rest of the symbol representations remain unchanged, like P ◁X
still indicates that P receives a message X.

It also holds for
P ◁ (X,Y )

P ◁ X
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in quantitative BAN logic. That is, if principal P received a combination of
messages like (X,Y ), then we can conclude that P received each part.

According to the original reasoning rules of BAN logic in Sect. 3, we propose
quantitative reasoning rules of BAN logic based on belief as follows.

– Quantitative Rule 1 (Quantitative message-meaning rule). Similar to Rule 1
in Sect. 3, it explains how to derive belief about the origin of messages.

P ⫢δ P
K
↔ Q, P ◁ {X}K

P ⫢δ Q ∣∼ X
(1)

that is, according to Rule 1 of BAN logic, if the principal P believes that
the key K is shared between P and Q, and P received a message X which
is encrypted by the K, then P believes that the message X is sent by the
principal Q.

– Quantitative Rule 2 (Quantitative nonce-verification rule). Corresponding to
Rule 2 in Sect. 3, it is noted that this rule states that if P believes that the
fresh message X is secure with a belief as δ and that Q once sent X with a
belief as δ

′, then P believes that Q believes the message X with a belief as
min(δ, δ′).

P ⫢δ #(X), P ⫢δ′ Q ∣∼ X

P ⫢min(δ,δ′) Q ⫢ X
(2)

Considering the security property of authentication protocols, P ⫢ #(X) and
P ⫢ Q ∣∼ X are preconditions for P ⫢ Q ⫢ X, so the belief of P ⫢ Q ⫢ X
depends on and is no greater than the lower of δ and δ

′ according to the
Barrel Principle. Note that, this differs from the computation of the belief
in messages combination (X,Y ) mentioned earlier.

– Quantitative Rule 3 (Quantitative jurisdiction rule). It states that if P
believes that Q has jurisdiction over X with a degree δ (i.e., P believes that
Q controls X) and that Q sent the message X with a belief δ

′, then P trusts
Q on the truth of X with a belief min(δ, δ′):

P ⫢δ Q ⇒ X, P ⫢δ′ Q ⫢ X

P ⫢min(δ,δ′) X
(3)

Similarly, the belief of P ⫢ X is expected to be no greater than the lower of
δ and δ

′. That is,

Δ(P ⫢ X) = min(Δ(P ⫢ Q ⇒ X),Δ(P ⫢ Q ⫢ X))

– Quantitative Rule 4 (Quantitative freshness rule). Note that, it indicates that
if P believes the fresh message X with a belief as δ and that for Y as δ

′, then
P believes that the message (X,Y ) is fresh and P believes the fresh message
with a degree as max(δ, δ′).

P ⫢δ #X, P ⫢δ′ #Y

P ⫢max(δ,δ′) #(X,Y )
(4)
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that is, the belief of that P believes message (X,Y ) is fresh is

Δ(P ⫢ #(X,Y )) = max(Δ(P ⫢ #X),Δ(P ⫢ #Y ))

Specially, if the message X is fresh but the message Y is not, we have the
quantitative rule as follows.

P ⫢δ #X

P ⫢δ #(X,Y )

– Quantitative Rule 5 (Quantitative hash rule). If P believes the message X
with a belief δ, then P believes the message h(X) (hash operations has done
for the message X) with a belief δ because we consider Hash encryption to be
irreversible and therefore secure enough to maintain the security of X.

P ⫢δ X

P ⫢√
δ h(X)

(5)

That is, for the principal P , the belief to h(X) is greater than to X, because
the message is encrypted, and more secure than before. i.e.,

Δ(P ⫢ h(X)) =
√

Δ(P ⫢ X)

5 Protocol Analysis Using Quantitative BAN Logic

This section shows how our quantitative BAN logic operates on authentication
protocols. And we choose an RFID authentication protocol the TSMCA PUF
[23] which is analyzed and proved in BAN logic in their paper, to reflect the
soundness and validity of our quantitative reasoning rules.

To ensure a general result of the experiment, we randomly generated the
initial beliefs of the protocol assumptions using a normal distribution X ∼
N(0.8, 0.05) by MATLAB in which we exclude the data not less than 1.

The transmission channel between the reader and the back-end database is
secure and has a high performance. The channel between the reader and the tag
is wireless and hence insecure. The transmission between the reader and the tag
is initiated by the reader. Once the required information has been exchanged,
the reader and the tag declare the protocol finished [11]. When analyzing the
security of authentication protocols, it is common to perceive the reader and
the back-end as one principal Server, so that there are two principals after
abstracting from the RFID authentication protocols, and the same is true of the
two protocols we will use. We will use T for the tag and S for the server in the
following.

5.1 The TSMCA PUF Protocol

The protocol idealization and assumptions of the TSMCA PUF1 protocol are
shown in Table 2 and Table 3.
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Table 2. Protocol idealization of the TSMCA PUF

Messages Instructions

1. S → T ∶ h (TA)⊕ TA S sends message h(TA)⊕ TA to T

2. T → S ∶ h(TA)⊕ TA ⊕ TB ;TB T sends a message h(TA)⊕ TA ⊕ TB ;TB to S

3. T → S ∶ {GW }M2 T sends a message {GW }M2 to S

4. S → T ∶ {GW
′
2}PW

S sends a message {GW
′
2}PW to T

Table 3. Protocol initial assumptions, beliefs and instructions of the TSMCA PUF

Assumption Belief Instructions

A1 ∶ S ⫢ #(h(TA)⊕ TA) 0.76 S believes h (TA)⊕ TA is fresh with a belief 0.76
A2 ∶ S ⫢ T ⇒ h (TA)⊕ TA ⊕ TB 0.62 S believes that T can control this message with a belief 0.62

A3 ∶ S ⫢ S
h(TA)⊕TA

⟷ T 0.88 S believes that S and T share information h(TA)⊕ TA with a belief 0.88

A4 ∶ S ⫢ S
M2
⟷ T 0.71 S believes that S and T share M2 with a belief 0.71

A5 ∶ T ⫢ S
PW
⟷ T 0.81 T believes that S and T share PW with a belief 0.81

A6 ∶ S ⫢ T ⇒ {GW }M2 0.75 S believes that T can control {GW }M2 with a belief 0.75
A7 ∶ T ⫢ S ⇒ {GW

′
2}PW

0.83 T believes that S can control {GW
′
2}PW

with a belief 0.83
A8 ∶ S ⫢ #M2 0.74 S believes message M2 is fresh with a belief 0.74
A9 ∶ T ⫢ #PW 0.85 T believes message PW is fresh with a belief 0.85

Objectives to calculate by quantitative BAN logic in the TSMCA PUF pro-
tocol:

– Goal A: S ⫢ h(M2).
– Goal B: S ⫢ {GW}M2

.

– Goal C: T ⫢ {GW
′
2}PW .

The computation of Goal A is carried out in six steps by using our proposed
quantified BAN logic as follows.

Computation of Goal A.

(i) According to the assumption A1 and the reasoning rule (4), we can get

S ⫢0.76 #(h(TA)⊕ TA)

S ⫢0.76 #(h(TA)⊕ TA ⊕ TB)
(6)

(ii) According to the protocol idealisation 2 in Table 2 with the reasoning rule
in Sect. 3 which still holds in our quantitative BAN logic, we have

S ◁ (h(TA)⊕ TA ⊕ TB;TB)

S ◁ h(TA)⊕ TA ⊕ TB
(7)

(iii) Given the quantitative reasoning rule (1), With the assumption A3 and (7),
we have

S ⫢0.88 S
h(TA)⊕TA

⟷ T, S ◁ h(TA)⊕ TA ⊕ TB

S ⫢0.88 T ∣∼ h(TA)⊕ TA ⊕ TB
(8)

1 Since M2 = h(TA)⊕ TA ⊕ TB , for the sake of convenience for representation, we use
M2 to replace h(TA)⊕ TA ⊕ TB if needed as follows.



30 K. Li et al.

(iv) Taking the (6) and (8) by using the quantitative reasoning rule (3), we can
easily obtain

S ⫢0.76 #h(TA)⊕ TA ⊕ TB , S ⫢0.88 T ∣∼ h(TA)⊕ TA ⊕ TB

S ⫢ T ⫢ h(TA)⊕ TA ⊕ TB 0.76
(9)

(v) Given the quantitative reasoning rule (3), assumption A2 and (9), we have

S ⫢0.62 T ⇒ h (TA)⊕ TA ⊕ TB , S ⫢0.76 T ⫢ M2

S ⫢0.62 M2
(10)

(vi) By the quantitative rule (5), we can obtain

S ⫢0.62 M2

S ⫢0.79 h(M2)
(11)

By adopting the five steps above, we can get the belief of goal A by using
the proposed quantitative BAN logic, which is 0.79. In other words, the
principal S believes that the message h(M2) is secure with a belief as 0.79.
i.e., δ = Δ(S ⫢ h(TA)⊕ TA ⊕ TB) = 0.79.

The belief of Goal B is carried out in four steps by using the proposed quan-
tified BAN logic as follows.

Computation of Goal B.

(i) Given the quantitative reasoning rule (1), the assumption A4, and the pro-
tocol idealization 3 in Table 2, we have

S ⫢0.71 S
M2
⟷ T, S ◁ {GW}M2

S ⫢0.71 T ∣∼ {GW}M2

(12)

(ii) Given the rule (4) and the assumption A8, we can get

S ⫢0.74 #M2

S ⫢0.74 #{GW}M2

(13)

(iii) By the rule (2), (12) and (13), we can obtain

S ⫢0.74 #{GW}M2
, S ⫢0.71 T ∣∼ {GW}M2

S ⫢0.71 T ⫢ {GW}M2

(14)

(iv) According to the reasoning rule (3), the assumption A6 and (14), we can
obtain the belief of goal B

S ⫢0.75 T ⇒ {GW}M2
, S ⫢0.71 T ⫢ {GW}M2

S ⫢0.71 {GW}M2

(15)

We conclude the belief of goal B is 0.71. i.e., δ = Δ(S ⫢ {GW}M2
) = 0.71 It

indicates that the principal S believes that the message {GW}M2
is secure

with a belief 0.71.
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The computation of Goal C is carried out in three steps by using our proposed
quantified BAN logic as follows.

Computation of Goal C.
The proof and quantitative reasoning process of goal C (i.e., T ⫢ {GW

′
2}PW )

is in the following.

(i) By the quantitative reasoning rule (1), the assumption A5, and the protocol
idealization 4 in Table 2, we have

T ⫢0.81 S
PW
⟷ T, T ◁ {GW

′
2}PW

T ⫢0.81 S ∣∼ {GW ′
2}PW

(16)

(ii) Given the rule (2), the assumption A9 and (16), the (17) can be obtained
as

T ⫢0.85 #PW, T ⫢0.81 S ∣∼ {GW
′
2}PW

T ⫢ S ⫢0.81 {GW ′
2}PW

(17)

(iii) By the rule (3), the assumption A7 and (17), we can obtain

T ⫢0.83 S ⇒ {GW
′
2}PW

, T ⫢0.81 S ⫢ {GW
′
2}PW

T ⫢0.81 {GW ′
2}PW

(18)

In the three steps above, we get the belief of goal C by using the quantitative
approach we present in Sect. 4, which is 0.81. i.e., δ = Δ(T ⫢ {GW

′
2}PW ) =

0.81.

It reflects the fact that the principal T (referred to as the Tag of an RFID
system in the protocol) believes that the message {GW

′
2}PW is secure with a

belief up to 0.81.

Table 4. The results of protocol analysis in quantitative BAN logic

Protocol name Results of δ Mean value Min value

TSMCA PUF 0.79 0.77 0.71
0.71
0.81

As is shown in Table 4, the beliefs of the three goals in the TSMCA PUF
protocol are 0.79, 0.71 and 0.81 respectively. To reflect the overall level of the
protocol proof goal, we obtain a mean value of 0.77. Considering the security of
the protocol, we arrive at a minimum value of 0.71 for the protocol belief.

By quantifying the belief in this protocol proof goal, we can have a more
specific estimate of the security of this protocol than before. That is, we can
estimate the possibility of the protocol as secure to be 0.77 if considering the
overall situation of the protocol’s proof target, or the probability of the protocol
as secure to be 0.71 if based on the idea of the barrel principle.
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6 Conclusion

In this paper, We propose a quantitative approach of BAN logic based on belief
by the idea of possibility computation, and present some quantitative computing
rules on compositional operations of message flow. Then, we give a case study
to show how our approach works when analysing and verifying security on the
TSMCA PUF protocol. To the best of our knowledge, it is the first piece of work
on quantitative BAN logic based on belief to study the security and privacy of
RFID authentication protocols, by introducing the possibility computation.

We have done a comparison of the strength of security of two similar authen-
tication protocols using quantitative logic, but space does not allow us to present
it in this paper. Next, we will consider further giving a security grading of the
protocols by calculating the belief level of the protocol proof targets.
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Abstract. Although deep learning has shown good performance in many fields,
it still lacks the most basic human intelligence, which we often called the ability to
draw inferences about other cases from one instance. Therefore, how to empower
model with logical reasoning ability has received much attention. Thus, we pro-
pose neural predicate networks, a model that combines deep learning methods
with first-order logic. It converts visual tasks into first-order logic problems by
deconstructing them into objects, concepts and relations. Then, achieve first-order
logic differentiable by learning logical predicates as neural networks. Finally, the
differentiable model can be trained by back propagation to simulate the forma-
tion of concepts in the human brain and solve the problem. Experimental results
on two image concept classification datasets demonstrate the effectiveness and
advantages of our approach.

Keywords: Neural network · Neural-symbolic · Cognitive AI

1 Introduction

In recent years, deep learning methods have demonstrated excellent capabilities in many
fields as representatives of connectionism [1], especially when faced with tasks such
as image and text translation, where models can gain learned experience from a large
number of samples. However, a growing number of scholars have also identified the
shortcomings of deep learning, and the story of Clever Hans is quite instructive for the
field. In the early 20th century, a horse named Hans caused a great sensation, after a
period of training by its ownerOsten,Hans couldmaster simplemathematical operations.
However, itwas found thatHanswould be in confusion if no one present knew the answer,
or if Hans could not see the questioner. It turned out that Hans did not analyze and decide
the result based on the question, but by observing the body posture, facial expressions,
etc. of the questioner and the audience. TrainingHans to domath problems is like training
amodel in deep learning. Osten’s constant training is equivalent to providing the training
set, and he thinks he is teaching Hans math, but what Hans actually learns is how to stop
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knocking his hooves when he observes Osten’s subtle reactions. Similarly, deep learning
models are highly dependent on and constrained by the quality of the training data set.
In the training process of classical image classification models, scholars often need to
solve the problem of overfitting by enhancing and flipping the images, or optimizing the
model by using weight recession, dropout, and so on. Even so, we can still only consider
the model as a black box [2].

Symbolic systems with logic as their core are the opposite of Neural Networks.
Symbolism is more adept at dealing with conceptual knowledge at a higher level. It con-
structs the world through objects, properties, and relations to provide a formal reasoning
process. Therefore, it is extremely interpretable and well suited as a complementary
approach to deep learning. However, logical symbols are discrete and cannot handle the
high-dimensional continuous features of neural networks such as vectors and matrices,
so how to combine symbolic reasoning with neural networks to integrate the respective
advantages of both paradigms has become a popular research topic in academia [3–5].

A good medium for linking logical worlds and neural networks is object-centered
conceptual learning. Indeed, there are many concepts and memories that humans have
difficulty expressing in verbal symbols but can grasp well, which we often refer to as
“concepts”. By learning basic concepts, infants can generalize their conceptual knowl-
edge to objects that share the same concept but have not been seen before [6]. In the
human brain, more than 80% of knowledge is visual concepts, which can form visual
propositions, including scene structure and dynamic structure; visual propositions can
also constitute visual narratives, and in general, visual concepts are one of the basic units
of visual reasoning or causal inference.

As a result, we propose a new image classification architecture, the neural predicate
network, which treats pictures and categories as objects and concepts and represents the
relationship as a neural network module. The objects, concepts (attributes) and relations
are used to construct first-order logical expressions and accomplish the classification
task. To summarize, this work makes the following contributions:

a) We construct a neural predicate network, use the neural network to achieve first-order
logical differentiability, and use a simple triangular concept dataset to confirm that
the neural predicate network is capable of generalizing learned concepts to objects
that have not been seen but have the same properties, as infants do.

b) Subsequently, we generalize the neural predicate network to the Chinese calligraphy
dataset for multiple classification tasks and change the model architecture so that
it can learn multiple concepts simultaneously. These contributions are valuable for
embeddingfirst-order logic in visual inference and are one of the precursors for visual
inference on complex pictures with multiple objects or for building interpretable
image classifications.

In Sect. 2, we introduce the relevant prior work on neural predicate networks; in
Sect. 3, we detail the specific architecture of the model when facing binary and multi-
classification tasks; in Sect. 4, we document our two experiments conducted and some
interesting details; finally, we conclude in Sect. 5 and provide an outlook on future work.
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2 Related Work

2.1 Neural Symbolic Artificial Intelligence

Historically, AI has transitioned from symbolism to connectionism, but the current
advantages of symbolism are once again gaining attention from various research schol-
ars. Neuro-symbolic integration is a field that combines classical symbolic knowledge
with neural networks, with the expectation that models will provide both computational
power and logical reasoning.Deep learning, on the other hand, is seen as a promisingway
to overcome the gap between symbols and sub-symbols [7–9]. In recent years, a number
of scholars have attempted to use deep learning approaches to solve logic problems. For
example, Johnson et al. [10] and Yi et al. [11] designed a deep networkmodel to generate
programs and perform visual reasoning. Yang et al. [12] proposed a neural logic infer-
ence system for knowledge bases based on first-order logic. Dong et al. [13] constructed
a neural logic model for relational reasoning and decision making. However, all of these
works presuppose a single architecture to handle different logical inputs, which shows
good performance in the face of idiosyncratic problems but is slightly less flexible in the
face of complex datasets that require generalization capabilities. In order to retain better
generalization performance of the inference model, Shi et al. [14] proposed a logic inte-
gration network in which the three basic propositional logic symbols are considered as
neural networks for fitting learning to serve as a good medium between neural networks
and symbolism. Although this idea improves the flexibility of the model to some extent,
it is limited by the inherent limitations of propositional logic to represent more complex
statements. Therefore, there is a need to integrate this idea with first-order logic so that
it can be applied to complex visual tasks.

2.2 Object-Centered Visual Concept Reasoning

How to perform visual concept learning is one of the current hot topics, and unlike tradi-
tional neural networks that excel in processing continuous data, logical systems always
construct the world based on objects, attributes and relationships. Decomposing images
into sets consisting of objects is a promising step to convert from low-level percep-
tual features to efficient abstract reasoning [15]. Concepts are a form of abstraction of
attributes. Current main approaches for learning visual concepts are mainly by introduc-
ingmore representations with additional knowledge base [16, 17] or by using end-to-end
neural networks to jointly learn visual concepts and reasoning [18, 19]. Besides, there
are also attempts to decouple concept learning from inference as a way to obtain better
efficiency and generalizability [20, 21].

In this paper, we treat a concept as an atom in an inference system and consider an
image as an object to decouple the model, i.e., to construct logical expressions using
objects, concepts, and relations. Subsequently, a neural network is used to fit the predicate
logic and use vectors to represent objects and concepts to finally realize a neurosymbolic
image classification system where the model not only learns how to generate object
representations, but also corrects concepts based on the objects it has seen, which will
simulate the process of continuous formation of infant concepts.
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3 Neural Predicate Network

In this part, we introduce the Neural Predicate Network (NPN), a model that treats the
image classification task as a problem of solving first-order logical expressions. In order
to transform a discrete mathematical representation into a continuous tensor form, any
logical variable is represented as a vector and the logical relations are learned as a neural
network module. In short, the model generates vectors that can represent objects with
the help of a convolutional neural network, and stores the categories in the model as
concept vectors, while using a neural network to fit the functions of logical predicates.
Note that the generation of concept vectors is also trained in backpropagation, which is
similar to the formation of children’s ideas in constant change.

3.1 NPN Binary Classification Model

First, we introduce the model structure of NPN in a binary classification task, which is
shown in Fig. 1. Suppose faced with a cat and dog classification task, the model would
define the classification problem as: Does this picture belong to a cat? The problem
can be represented using first-order logic. Assuming that the picture is considered as an
object, the category as a concept, and the classification relation as a logical predicate
belong(), then when category 0 is cat, the model considers the picture as category 0 as
long as the picture object is subordinate to the concept cat, and vice versa for category
1. This can be expressed in the following first-order logical form:

∀obj. belong(obj, cat) → isclass(obj, 0) (1)

∀obj.¬belong(obj, cat) → isclass(obj, 1) (2)

The model will then solve the first half of the expression to arrive at the answer.
The solution process has two steps, perception and inference, respectively. First, a d-
dimensional vector wi is extracted as an object feature with the help of a convolutional
neural network (obviously the dimensionality is an arbitrary hyperparameter, in the
example the value is 64), and a d-dimensional vector wj is generated to represent the
concept (cat), thenwe feed both vectors to the logical predicate module belong(.,.) which
is implemented by a multi-layer perceptron(MLP) with one hidden layer:

belong(wi,wj) = Ha2f (Ha1(wi ⊕ wj) + ba) (3)

whereHa2 ∈ Rd×d ,Ha1 ∈ Rd×2d , ba ∈ Rd are the parameters of the module belong(.,.).
⊕ means vector concatenation. f(·) is the activation function, we use ReLU in our
networks.

This module outputs a d-dimensional vector as the solution vector of the expres-
sion and calculates the similarity with the T-vector which represents True to derive
the probability that the expression is true. The T-vector, also with dimension d, is ran-
domly generated when the model is declared and remains constant during training and
computation.
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Wecalculate the likelihoodof the expression being true based on the cosine similarity,
while we multiply by a value and use the activation function Sigmoid to ensure that the
value domain ∈ [0,1]. The specific formula is:

Sim(wi,wj) = sigmoid(α
wi · wj

‖wi‖
∥
∥wj

∥
∥
) (4)

The loss function for NPN is similar to the classification task, where we use a single
cross-entropy loss function computed for the binary classification task, where o is the
image of each represented as an object and p is the similarity of the expression vector
to the T vector:

LBinary = −
∑

oi∈O
yi log(pi) + (1 − yi) log(1 − pi) (5)
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P<0.5→isclass(obj,dog)

Fig. 1. NPN binary classification model architecture

3.2 NPN Multi-classification Model

This section presents the architecture of NPN when used for a multi-category task.
Suppose that the number of categories is 4, the model structure is shown in Fig. 2. The
perceptual part is the same as the binary classification task, i.e., a convolutional neural
network is needed to generate object feature vectors representing the pictures, but in
the inference part, the model needs to generate a concept vector for each category and
the object vector needs to construct a first-order logical expression with each concept
vector and solve it. Meanwhile, the concept with the largest p-value is calculated to be
the predicted category.
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In the multi-category task, each concept will have its loss value, and the overall loss
of the model is the sum of the losses of each concept:

LMulti =
n

∑

i=0

Li = −
n

∑

i=0

∑

oj∈O
yij log(pij) + (1 − yij) log(1 − pij) (6)

It is worth noting that during the backpropagation process, the concept vectors are
also updated, i.e., the concept vectors can be observed to know exactly what the model
has learned, which can also be helpful for interpretability.
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Fig. 2. NPN four classification model architecture

4 Experiments

In this part, the experimental results of the NPN model and the baseline model on the
binary and multiclassification tasks are described. All the models, including baselines,
are trained with Adam in weight_decay set to 0.02. The learning rate is 0.0001 and
early-stopping is conducted according to the performance on the validation set. Models
are trained at most 100 epochs. Vector sizes of the objects and the concepts are set to 64.
In the binary classification, We run the experiments with ten different random seeds and
report the average results. In the multiclassification task. We run the experiments with
three different random seeds and report the average results.

4.1 Triangle Concept Identification

We first created a triangle concept recognition binary dataset, as shown in Fig. 3: in the
training set, the positive examples are various triangles (but not right triangles), and the
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negative examples are other shapes. Unlike most publicly available datasets, the positive
examples in the test set only contain right triangles that do not appear in the training
set, i.e., the model needs to recognize objects which it has not seen before but have the
same concept based on the concepts it has already learned. Such a task is very easy for
children, and we expect to test whether the model has the ability to learn by example.

Train_T Test_T

Train_F Test_F

Fig. 3. Example of triangle concept dataset

In this dataset, the image size is 28X28, so LeNet5 and VGG5 were chosen as
Baseline. The dataset includes 360 training sets, 120 validation sets and 120 test sets
each, where the positive and negative ratio is 1:1. Table 1 shows the results of this
experiment. It can be seen that all three models (including our NPN) show apparent
overfitting, and the Precision metrics of all three models are higher than the Recall
metrics, which indicates that the above models do show higher judgment errors when
facing right triangles that have not been seen before. Of course, although NPN does not
achieve 100% accuracy in the training set as the other twomodels, its effect in the test set
is significantly better than the other two models, its results in the test set are significantly
better than the other two models, with 6% and 2.66% improvement in accuracy and
7.17% and 2.2% improvement in recall, respectively, which indicates that the method
of classification by learning concepts does play a certain effect.

Table 1. Experimental results of each model on the triangular concept dataset

Train data Test data

Acc Recall Precision Acc Recall Precision

LeNet5 1 1 1 0.7733 0.7340 0.8567

VGG5 1 1 1 0.8067 0.7837 0.8500

NPN 0.9978 0.9978 0.9978 0.8333 0.8057 0.8767

4.2 Chinese Calligraphy Style Concept Identification

After the successful validation of NPN in the binary classification task, we choose the
Chinese calligrapher style dataset to further test the model’s ability of multi-concept



42 B. Chen et al.

learning. This dataset consists of Chinese characters in various calligraphic styles, and
all the characters in the test set are not present in the training set, which will test the
model’s ability to solve new problems through existing knowledge1. We conducted
experiments with four and eight classifications. In the four categories, the calligraphers
were Xizhi Wang, Zhenqing Yan, Tingjian Huang, and Gongquan Liu. In the eight
categories, additional fonts of Xun Ouyang, Huizong Song, Guiting Sun, and Fu Mi
were added. The input image size is 224X224, and the baseline models are AlexNet8,
VGG10, VGG13, VGG16, ResNet18. Unlike the binary classification task, we modify
the convolution part of NPN to VGG10, so that we can compare them better. Example
calligraphic fonts are shown in Fig. 4 and the details of the dataset are shown in Table 2.

Fig. 4. Example of the calligraphy style dataset

Table 2. Statistics of the Chinese calligraphy style dataset

Calligrapher Train data Val data Test data

8 4 Xizhi Wang 5393 1348 1348

Zhenqing Yan 5405 1351 1351

Tingjian Huang 5371 1343 1343

Gongquan Liu 5410 1353 1353

Xun Ouyang 2808 702 702

Huizong Song 5410 1353 1353

Guiting Sun 5001 1250 1250

Fu Mi 5410 1353 1353

The overall performances on two dataset are shown on Table 3, The NPN model
showed optimal performance on both the four- and eight-classification datasets, with
correct rates 1.29% and 2.7% higher than the second place on the test set, respectively.
Neither VGG13 nor VGG16 could converge on the training set, which may be due
to the disappearance of gradients caused by the over-deepness of the neural network.
ResNet18 solved the problem of over-deepness of the network, but showed a very serious
overfitting problem. In contrast, the NPN model, although using VGG10 as a base to
further increase the computational complexity of the model as in VGG13 and VGG16, is
able to avoid overfitting while ensuring normal convergence of the model, which further
validates the superiority of the object, concept, and relationship learning approach for
image classification tasks.
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Table 3. Experimental results of each model on the Chinese calligraphy style dataset

Calligraphy style-4 Calligraphy style-8

TrainAcc TestAcc TrainAcc TestAcc

AlexNet8 0.9824 0.9685 0.9727 0.9520

VGG10 0.9932 0.9757 0.9899 0.9588

VGG13 0.2499 0.2487 0.1369 0.1338

VGG16 0.2499 0.2484 0.1369 0.1338

ResNet18 0.9936 0.3300 0.9947 0.1666

NPN 0.9966 0.9886 0.9977 0.9858

Table 4. Experimental detail of each model on the Chinese calligraphy style test set

Calligraphy style-4 Calligraphy style-8

Recall Precision F1 Recall Precision F1

1 AlexNet8 0.9807 0.9742 0.9774 0.9711 0.9513 0.9611

VGG10 0.9881 0.9737 0.9808 0.9102 0.9639 0.9363

ResNet18 0.2470 0.3310 0.2829 0.1573 0.1381 0.1471

NPN 0.9874 0.9852 0.9863 0.9814 0.9757 0.9785

2 AlexNet8 0.9955 0.9911 0.9933 0.9800 0.9881 0.9840

VGG10 0.9882 0.9874 0.9878 0.9845 0.9666 0.9755

ResNet18 0.2036 0.2712 0.2326 0.2036 0.1554 0.1763

NPN 0.9948 0.9956 0.9952 0.9948 0.9933 0.9940

3 AlexNet8 0.9702 0.9796 0.9749 0.9613 0.8984 0.9288

VGG10 0.9798 0.9879 0.9838 0.9889 0.9595 0.9740

ResNet18 0.6008 0.3648 0.4540 0.3246 0.2859 0.3040

NPN 0.9903 0.9911 0.9907 0.9948 0.9795 0.9871

4 AlexNet8 0.9955 0.997 0.9962 0.9889 0.9933 0.9911

VGG10 0.9852 0.9926 0.9889 0.9697 0.9791 0.9744

ResNet18 0.2520 0.2932 0.2710 0.1574 0.2171 0.1825

NPN 0.9963 0.9985 0.9974 0.9985 0.9978 0.9981

5 AlexNet8 0.9829 0.9857 0.9843

VGG10 0.9772 0.9581 0.9676

ResNet18 0.1211 0.1214 0.1212

(continued)
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Table 4. (continued)

Calligraphy style-4 Calligraphy style-8

Recall Precision F1 Recall Precision F1

NPN 0.9957 0.9887 0.9922

6 AlexNet8 0.9993 0.9992 0.9992

VGG10 0.9985 1 0.9992

ResNet18 0.1375 0.3483 0.1972

NPN 1 1 1

7 AlexNet8 0.9600 0.9554 0.9577

VGG10 0.9736 0.9419 0.9575

ResNet18 0.1472 0.1679 0.1569

NPN 0.9760 0.9839 0.9799

8 AlexNet8 0.8825 0.9692 0.9238

VGG10 0.9217 0.9439 0.9327

ResNet18 0.2195 0.1553 0.1819

NPN 0.9579 0.9774 0.9676

Table 4 shows the details of each model on the test set, including the results for the
classifications of each category.

Subsequently, we conducted a more interesting experiment in which the training
set of the Chinese calligraphy dataset was used as the test set, and the test set was
used as the training set, expecting to test the ability of the model to infer universal
knowledge from a small amount of data. In that experiment, we kept only the four
models that could converge for comparison. The results are shown in Table 4. On the
training set, there is not much difference in the results of each model compared with
the previous experiment. However, in terms of test accuracy, all three models showed
a decline except for ResNet18, which had poor results. However, the NPN model still
demonstrates optimal performance and is the least affected, with accuracy rates on the
test set higher than the second-ranked VGG model by 2.92% and 3.9%, respectively.
The performance gap widens further compared to the previous experiment, which may
be due to the better generalizability of the approach of using objects and concepts to
store knowledge when learning from a small amount of data (Table 5).

In terms of parameter sensitivity, we tested the effect of different vector dimensions
on the model performance, and we selected 32, 64, 96, 128, 160, and 192 for valida-
tion. The results are shown in Fig. 5, and it can be seen that the dimensionality has a
small impact on the model performance on this dataset, which indicates that the NPN
model is robust. The possible reason is that the dependence of the model on the vector
dimensionality is not significant due to the low number of categories in the dataset.

Finally, as illustrated in Figs. 6 and 7, we also use the visualization technique of
projecting high-dimensional to low-dimensional data to examine the link betweenpicture
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Table 5. Experimental results of each model on the Chinese calligraphy style reversal dataset

Calligraphy style-4 Calligraphy style-8

TrainAcc TestAcc TrainAcc TestAcc

AlexNet8 0.9805 0.9529 0.9707 0.9269

VGG10 0.9859 0.9537 0.9901 0.9336

ResNet18 0.9873 0.3077 0.9914 0.1792

NPN 0.9912 0.9829 0.9927 0.9726

Fig. 5. Impact of vector dimensionality on model correctness

objects using vectors produced by the model during training. Figures 6 and 7 employ
the PCA and SNE algorithms, respectively. We selected the cases of the 0th, 100th,
1000th, and 2000th batch of the training process (this is because the model has largely
converged by the 2nd epoch, so we did not choose epoch as the observation unit) to be
projected to the low-dimensional space for observation. As we can see, at the beginning,
the object vector is chaotically present in the model, which means that the concept is
not yet formed. As training progresses and the model observes more and more different
data, concepts start to form gradually. Eventually, the concepts and the corresponding
objects are clearly separated, which indicates that the model is developing in the way
we expected.
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Batch 0 Batch 100

Batch 1000 Batch 2000

Fig. 6. PCA visualization of how the object vector change during model learning

Batch 0 Batch 100

Batch 1000 Batch 2000

Fig. 7. t-SNE visualization of how the object vector change during model learning.

5 Conclusion and Future Work

We propose the Neural Predicate Network (NPN), a neural symbolic concept inference
model. Specifically, NPN constructs first-order logical expressions by objects, concepts
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(attributes) and relations. Then, a neural network is used tofit logical predicates to achieve
the integration of discrete space with continuous features and logical differentiability.
Finally, NPN contributes to visual concept formation and completes the classification
task. Experiments on two special datasets demonstrate that the visual classification app-
roach through object, concept and relationship learning empowers the model to draw
inferences about other cases from one instance and effectively suppresses the appearance
of overfitting.

The approach is still in the preliminary stage of research, and the direction of future
expansion is clear: that is, visual inference tasks. Visual inference tasks are well suited
to object, concept (attribute) and relationship representation, especially when there are
multiple complex objects in the visual scene, traditional target detection algorithms can
easily fall into confusion or overfitting, while neural symbolic integration methods can
solve this problem well by integrating first-order logic. Another possible direction is
the interpretability of the visual task, we can understand what the model has learned by
observing how the concept vectors change during training, that is benefiting from the
fact that we learn concepts in the form of vectors. Beyond that, we can decompose a
visual proposition or a visual narrative into objects and concepts as a way to interpret
the mechanism of the model.
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Abstract. Simulation is a well-established technique for verifying
wheth-er the behaviors of one labeled transition system (LTS) can mimic
all behaviors of another LTS. Transition systems with regular expressions
(RE-TSs) are an extension of LTSs, which are used as semantic models in
modal or temporal logics to solve model checking problems. This paper
presents approximate simulation, an extension of simulation of an LTS
by a RE-TS, by combining general simulation and metrics, and discusses
its properties. First, the notion of approximate simulation is introduced.
Then, we investigate properties and an equivalent formalism of approxi-
mate simulation. On the other hand, we propose two approaches of fixed
point characterization for approximate simulation, and study the rela-
tionship between them.

Keywords: Approximate simulation · Regular expression · Metric ·
Graph pattern matching

1 Introduction

Analysis and verification of concurrent and reactive systems [1] is a well-
established research field. Labeled transition systems (LTSs) [1,2] are typically
used as models to describe the behaviors of concurrent and reactive systems.
In order to compare the behaviors of LTSs, researchers proposed a variety of
verification methods. Among them, simulations [1,3,4,30] have a wide range of
applications in the analysis of LTSs.

Classical simulation verification techniques return a boolean answer that indi-
cates whether one system can mimic all behaviors of another system. However,
as pointed out in [8,11–13], these techniques are restrictive and not robust: Two
systems either are simulated or are not simulated, regardless of how close the
behaviors of two systems are. To overcome this limitation, the majority of exist-
ing works can be roughly grouped into two directions. One of them is based
on the notion of metric, which assigns a non-negative real number to each pair
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of states of systems (e.g., [7,8,13,18,25–27]). The other direction is to propose
numerous approximate simulations (e.g., [10–12,14,28]), which characterize two
almost similar states by a parameter δ.

In fact, in order to model the systems which are required to satisfy the
requirements of different aspects, there are a large number of extensions of LTSs
in existing literatures (e.g., [5–9,16,21,24]), such as transition systems with reg-
ular expressions (RE-TSs) (e.g., [15,17,19,20,22,23]), fuzzy transition systems
(e.g., [31,33,34]) and probabilistic transition systems (e.g., [11,12]). RE-TSs have
been used in classical modal and temporal logics as semantic models to express
the properties of models of systems. For example, Bozzelli [17] investigated the
model checking problem for interval temporal logic extended with regular expres-
sions. Beer [20], Brazdil [23] and Mateescu [22] extended computation tree logic
(CTL) by applying regular expressions so as to enhance the expression of CTL.
From a different point of view, Fan [15] added regular expressions to pattern
graphs, and used simulation to solve graph pattern matching which is a classi-
cal graph challenge, and considered as one of the most studied problems in the
literature. It is regrettable that the simualtion of an LTS by a RE-TS has been
ignored in the setting of approximate. To alleviate the aforementioned problem,
we will use the notion of metrics to propose an approximate simulation, and
study some properties about the approximate simulation.

The paper is organized as follows. Some preliminaries are given in Sect. 2.
In Sect. 3, we give the notion of the approximate simualtion. We study some
related properties about the approximate simualtion, and provide two fixed point
characterizations in Sect. 4 and conclude the paper in Sect. 5.

2 Preliminaries

In this section, we recall some notations and definitions about regular expres-
sions, metric spaces and transition systems with regular expressions.

We denote the sets of real numbers, non-negative reals, natural numbers and
positive integers by R, R+, N, Z+, respectively. We use I to denote the set of
indexes. Let Σ be a finite set. We denote the set of finite strings over Σ by Σ∗. We
write P(Σ) for the power set of Σ. Let ρ = a1 . . . an, σ = b1 . . . bm ∈ Σ∗ be two
strings. Then, the concatenation of ρ and σ is the string ρσ = a1 . . . anb1 . . . bm.
We also denote the i-th symbol of ρ and the length of ρ by ρi and |ρ|, respectively.
Let P, Q ⊆ Σ∗. The concatenation of P and Q is PQ = {ρσ ∈ Σ∗ : ρ ∈ P, σ ∈
Q}.

Regular expressions [29] ω over Σ are defined by the following grammar,

ω:: = a|ak|a+|(ω1)|ω1ω2|ω1 + ω2,

where a ∈ Σ. The set of all regular expressions over Σ is written as �(Σ). The
language L(ω) ⊆ Σ∗ of a regular expression ω ∈ �(Σ) is defined indutively by

(1) L(a) = {a};
(2) L(ak) = {a · · · a

︸ ︷︷ ︸

k

};
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(3) L(a+) = L(a) ∪ L(a2) ∪ · · · ;
(4) L((ω1)) = L(ω1);
(5) L(ω1ω2) = L(ω1)L(ω2);
(6) L(ω1 + ω2) = L(ω1) ∪ L(ω2).

We recall the definition of metrics taken from [32]. A function d : Σ ×Σ → R

is a metric over Σ if for all x, y, z ∈ Σ

(1) d(x, y) ≥ 0, d(x, y) = 0 iff x = y;
(2) d(x, y) = d(y, x);
(3) d(x, z) ≤ d(x, y) + d(y, z).

And, the pair (Σ, d) is called a metric space. When d is clear from context,
we write Σ instead of (Σ, d).

Next, we review the definition of transition system with regular expressions
[15,17,20,22,23]. A transition system with regular expressions (for short, RE-
TS) is a tuple RT = (S, s0,�(Σ),→) where S is a finite set of states, s0 ∈ S
is a initial state, �(Σ) is the set of all regular expressions over Σ, and →⊆
S × �(Σ) × S is a set of transitions.

A labeled transition system (LTS) can be viewed as a special case of RE-
TS, where �(Σ) is replaced with Σ. Let RT = (S, s0,�(Σ),→) be a RE-TS.
We write s

ω−→ s′ for (s, ω, s′) ∈→, where s, s′ ∈ S. A trace σ is an infinite
sequence of elements in �(Σ). For j ≥ 1, let σj denote the jth element. A path
from s in RT is an infinite sequence π = s

ω1−→ s′ ω2−→ s′′ · · · , and we denote by
tr(π) = ω1ω2 · · · the trace induced by it. For s ∈ S, we denote by Path(s) the set
of paths from s and by Trace(s) = {tr(π) : π ∈ Path(s)} the set of traces from
s. We use L(RT ) to denote the languages of RT , where L(RT ) = Trace(s0). If
RT is an LTS, →⊆ S × Σ × S can be extended to →∗⊆ S × Σ∗ × S. We write
s

ρ−→∗s′ for (s, ρ, s′) ∈→∗.

3 Approximate Simulation

In this section, we define an approximate simulation. Before formally defining
approximate simulation, we will introduce the notion of exact simulation of an
LTS by a RE-TS [15].

Definition 1. Let RT 1 = (S1, s1,0, Σ,→1) be an LTS and RT 2 =
(S2, s2,0,�(Σ), →2) be a RE-TS. A relation R ⊆ S1 × S2 is called a simula-
tion if for any (s1, s2) ∈ R and for each s1

ρ−→ ∗s′
1, there exists s2

ω−→ s′
2 such

that ρ ∈ L(ω) and (s′
1, s

′
2) ∈ R. We say that RT 2 simulates RT 1, denoted by

RT 1 � RT 2, if there exists a simulation R such that (s1,0, s2,0) ∈ R.

Example 1. Consider an LTS RT 1 = (S1, s1,0, Σ,→1) and a RE-TS
RT 2 = (S2, s2,0,�(Σ),→2). The transition diagrams of RT 1 and RT 2

are depicted in Fig. 1. By Definition 2, we can find a relation R =
{(s1,0, s2,0), (s1,1, s2,1), (s1,2, s2,1), (s1,3, s2,2), (s1,4, s2,2)} which is a simulation,
and (s1,0, s2,0) ∈ R. Therefore, we can obtain RT 1 � RT 2.
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Fig. 1. An LTS and a RE-TS.

The following definitions and propositions will help us to define the approx-
imate simulation.

The definition of string distance sd will be developed in a discounted version
[7,8], in which distance of each step is decreased exponentially over time by a
discounting factor α ∈ (0, 1].

Let (Σ, d) be a metric space, and α ∈ (0, 1]. The string distance sd : Σ∗ ×
Σ∗ → R ∪ {+∞} is defined as

sd(ρ, σ) =

⎧

⎨

⎩

max
1≤i≤|ρ|

αi−1d(ρi, σi) if |ρ| = |σ|,

+ ∞ otherwise,

for all strings ρ, σ ∈ Σ∗.

Proposition 1. Let d be a metric over Σ. Then, sd is a metric on the set Σ∗.

Proof. By the definition of metric, we need to prove the follow properties:

(1) sd(ρ, σ) ≥ 0 and sd(ρ, σ) = 0 iff ρ = σ,
(2) sd(ρ, σ) = sd(σ, ρ),
(3) sd(ρ, ς) + sd(ς, σ) ≥ sd(ρ, σ)

where ρ, σ, ς ∈ Σ∗.
The properties (1) and (2) are obvious.
For property (3): We have to discuss the following four cases.
The cases of |ρ| 
= |σ| 
= |ς|, |ρ| = |σ| 
= |ς|, and |ρ| 
= |σ| = |ς| follow

immediately from the definition of sd. We only consider the case of |ρ| = |σ| =
|ς| = n.

From the definition of sd, we know that

sd(ρ, ς) + sd(ς, σ) = max
1≤i≤n

αi−1d(ρi, ςi) + max
1≤j≤n

αj−1d(ςj , σj)

and sd(ρ, σ) = max
1≤k≤n

αk−1d(ρk, σk). It is sufficient to show that there exists a 1 ≤
p ≤ n such that αp−1d(ρp, σp) = sd(ρ, σ). Then, d(ρp, σp) ≤ d(ρp, ςp)+ d(ςp, σp).
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Therefore,

sd(ρ, σ) = αp−1d(ρp, σp)

≤ αp−1d(ρp, ςp) + αp−1d(ςp, σp)

≤ max
1≤i≤n

αi−1d(ρi, ςi) + max
1≤j≤n

αj−1d(ςj , σj)

= sd(ρ, ς) + sd(ς, σ).

Let (Σ, d) be a metric space. The distance between a string ρ ∈ Σ∗ and the
language L(ω) ⊆ Σ∗ of a regular expression ω ∈ �(Σ) is defined as

d∗(ρ, L(ω)) = inf
σ∈L(ω)

sd(ρ, σ).

Proposition 2. Let (Σ, d) be a metric space. Then, the following properties
hold:

(1) d∗(ρ, L(ω)) ≥ 0, for all ρ ∈ Σ∗ and ω ∈ �(Σ).
(2) ρ ∈ L(ω) iff d∗(ρ, L(ω)) = 0, where ρ ∈ Σ∗, ω ∈ �(Σ).

Proof. For property (1): It follows immediately from Proposition 1.
For property (2): First, for the ‘if’ part, let d∗(ρ, L(ω)) = 0. Without loss

of generality, suppose |ρ|=n. Since Σ is a finite set, assume that there are m
elements in Σ. According to the definition of sd, there are at most nm + 1
values. Then, there exists σ ∈ L(ω) such that sd(ρ, σ) = 0. So by Proposition 1
and the definition of sd, ρ = σ holds. Hence ρ ∈ L(ω).

Second, for the ‘only if’ part, suppose that ρ ∈ L(ω). Then, there exists
σ ∈ L(ω) such that ρ = σ. By Proposition 1 and the definition of sd, sd(ρ, σ) = 0
holds. Therefore, inf

σ∈L(ω)
sd(ρ, σ) = 0, and d∗(ρ, L(ω)) = 0.

By the above definitions and propositions, we will introduce the definition of
approximate simulation.

Definition 2. Let RT 1 = (S1, s1,0, Σ,→1) be an LTS, RT 2 = (S2, s2,0,�(Σ),
→2) be a RE-TS, (Σ, d) be a metric space, and δ ∈ R

+. A relation Rδ ⊆ S1 ×S2

is called a δ-simulation if for any (s1, s2) ∈ R and for each s1
ρ−→ ∗s′

1, there
exists s2

ω−→ s′
2 such that d∗(ρ, L(ω)) ≤ δ and (s′

1, s
′
2) ∈ R. We say that RT 2

δ-simulates RT 1, denoted by RT 1 �δ RT 2, if there exists a δ-simulation Rδ

such that (s1,0, s2,0) ∈ Rδ.

We replace s1,0
a−→ s1,1 by s1,0

c−→ s1,1 in Fig. 1, where d(a, c) = 0.5. Then,
according to Definition 2, we can obtain that there exists a 0.5-simulation R0.5

such that (s1,0, s2,0) ∈ R0.5. Thus, RT 1 �0.5 RT 2.
In above definition, when δ = 0, we recover the established definition of exact

simualtion.
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4 Related Properties

In this section, we will introduce some properties related with the approximate
simulation.

Given a precision parameter δ, which used to measure the degree of simu-
lation, the following lemma ensures that the set of δ-simulation has a maximal
element, denoted by Rmax

δ . Moreover, by using Rmax
δ , we give an equivalent

expression for δ-simulation.

Lemma 1. Let RT 1 = (S1, s1,0, Σ,→1) be an LTS, RT 2 = (S2, s2,0,�(Σ),
→2) be a RE-TS, (Σ, d) be a metric space, and δ ∈ R

+. Suppose that {Ri
δ}i∈I

is a family of δ-simulation of RT 1 by RT 2, and Rmax
δ =

⋃

i∈I

Ri
δ. Then, the

following properties hold:

(1) Rmax
δ is a δ-simulation of RT 1 by RT 2.

(2) RT 1 �δ RT 2 iff (s1,0, s2,0) ∈ Rmax
δ .

Proof. For property (1): Consider any (s1, s2) ∈ Rmax
δ =

⋃

i∈I

Ri
δ. It is enough to

show that there exists a i ∈ I such that (s1, s2) ∈ Ri
δ. By Definition 2, we can

know that for each s1
ρ−→ ∗s′

1 in RT 1, there exists s2
ω−→ s′

2 in RT 2 such that
d∗(ρ, L(ω)) ≤ δ and

(s′
1, s

′
2) ∈ Ri

δ ⊆
⋃

i∈I

Ri
δ = Rmax

δ .

Hence, Rmax
δ is a δ-simulation of RT 1 by RT 2.

For property (2): It follows immediately from Definition 2 and property (1).

Proposition 3. Let RT i = (Si, si,0, Σ,→i), i = 1, 2, be two LTSs, RT 3 =
(S3, s3,0,�(Σ), →3) be a RE-TS, and (Σ, d) be a metric space. Then, the fol-
lowing properties hold:

(1) For all δ ≥ 0, RT 1 �δ RT 1.
(2) For all δ ≥ 0, if RT 1 �δ RT 3, then for all δ′ > δ, RT 1 �δ′ RT 3.
(3) For all δ, δ′ ≥ 0, if RT 1 �δ RT 2 and RT 2 �δ′ RT 3, then RT 1 �δ+δ′ RT 3.

Proof. For property (1): Let R = {(s, s) ∈ S1 × S1 : s ∈ S1}. Then, for each
(s, s) ∈ R and s

a−→ ∗s′, it is obvious that s
a−→ s′, d∗(a, L(a)) = 0 ≤ δ and

(s′, s′) ∈ R. Therefore, R is a δ-simulation by Definition 2. Thus RT 1 �δ RT 1

because (s1,0, s1,0) ∈ R.
For property (2): Suppose that RT 1 �δ RT 3 and δ′ > δ ≥ 0. From Lemma 1,

we can know that (s1,0, s3,0) ∈ Rmax
δ =

⋃

i∈I

Ri
δ. Therefore, there exists i ∈ I such

that (s1,0, s3,0) ∈ Ri
δ. By Definition 2, we have that for each (s1, s3) ∈ Ri

δ and
s1

ρ−→∗s′
1, there exists s3

ω−→ s′
3 such that d∗(ρ, L(ω)) ≤ δ < δ′ and (s′

1, s
′
3) ∈ Ri

δ.
Hence, Ri

δ is a δ′-simulation. Thus, RT 1 �δ′ RT 3.
For property (3): Let R = {(s1, s3) ∈ S1 × S3 : ∃s2 ∈ S2, (s1, s2) ∈ Rmax

δ and
(s2, s3) ∈ Rmax

δ′ }. For each (s1, s3) ∈ R, suppose that

s1
a1−→∗s′

1
a2−→∗ · · · an−−→∗s′′

1 .
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We know from Lemma 1 that there exists

s2
a′
1−→ s′

2

a′
2−→ · · · a′

n−−→ s′′
2

such that d∗(ai, L(a′
i)) ≤ δ and (s′′

1 , s′′
2) ∈ Rmax

δ , where ai, a
′
i ∈ Σ for every

i ∈ N. Let ρ = a1a2 · · · an and ρ′ = a′
1a

′
2 · · · a′

n. By the definition of sd, we have
sd(ρ, ρ′) ≤ δ. From Lemma 1, we know that there exists s3

ω−→ s′
3 such that

d∗(ρ′, L(ω)) ≤ δ′ and (s′′
2 , s′

3) ∈ Rmax
δ′ for each s2

ρ′
−→ ∗s′′

2 and (s2, s3) ∈ Rmax
δ′ .

Therefore, there exists σ ∈ L(ω) such that sd(ρ′, σ) ≤ δ′. By Proposition 1,

sd(ρ, σ) ≤ sd(ρ, ρ′) + sd(ρ′, σ) ≤ δ + δ′.

Thus, d∗(ρ, L(ω)) ≤ δ + δ′ and (s′′
1 , s′

3) ∈ R. Therefore, R is a δ + δ′-simulation,
and (s1,0, s3,0) ∈ R because (s1,0, s2,0) ∈ Rmax

δ and (s2,0, s3,0) ∈ Rmax
δ′ . Hence,

RT 1 �δ+δ′ RT 3.

Given an LTS RT 1 = (S1, s1,0, Σ,→1) and a RE-TS RT 2 = (S2, s2,0,�(Σ),
→2), we say that Trace(s1) ⊆ Trace(s2) if for each σ1 = ρ1ρ2 · · · ∈ Trace(s1),
there exists σ2 = ω1ω2 · · · ∈ Trace(s2) such that ρi ∈ L(ωi) for all i ∈ Z

+, where
(s1, s2) ∈ S1 × S2.

Let RT 1 = (S1, s1,0, Σ,→1) be an LTS, RT 2 = (S2, s2,0,�(Σ), →2) be
a RE-TS, (Σ, d) be a metric space, and (s1, s2) ∈ S1 × S2. Given two traces
σ1 = ρ1ρ2 · · · ∈ Trace(s1) and σ2 = ω1ω2 · · · ∈ Trace(s2), the trace distance
between σ1 and σ2 is defined as

td(σ1, σ2) = sup
i∈Z+

d∗(ρi, ωi).

The trace distance between s1 and s2 is defined as

T d(s1, s2) = sup
σ1∈Trace(s1)

inf
σ2∈Trace(s2)

td(σ1, σ2).

The language distance between RT 1 and RT 2 is defined as

Ld(RT 1,RT 2) = sup
σ1∈Trace(s1,0)

inf
σ2∈Trace(s2,0)

td(σ1, σ2).

Proposition 4. Let RT 1 = (S1, s1,0, Σ,→1) be an LTS, RT 2 =
(S2, s2,0,�(Σ), →2) be a RE-TS, and (Σ, d) be a metric space. Then, the fol-
lowing properties hold:

(1) Trace(s1) ⊆ Trace(s2) iff T d(s1, s2) = 0, where s1 ∈ S1 and s2 ∈ S2.
(2) L(RT 1) ⊆ L(RT 2) iff Ld(RT 1,RT 2) = 0.

Proof. For property (1): First, for the ‘if’ part, suppose that T d(s1, s2) = 0. It
is sufficient to know from the definition of T d that inf

σ2∈Trace(s2)
td(σ1, σ2) = 0 for

each σ1 = ρ1ρ2 · · · ∈ Trace(s1). Therefore, there exists σ2 = ω1ω2 · · · ∈ Trace(s2)
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such that td(σ1, σ2) = 0. From the definition of td, we have d∗(ρi, L(ωi)) = 0
for all i ∈ Z

+. From Proposition 2, there is ρi ∈ L(ωi) for all i ∈ Z
+. Hence,

Trace(s1) ⊆ Trace(s2).
Second, for the ‘only if’ part, let Trace(s1) ⊆ Trace(s2). In other words, for

each σ1 = ρ1ρ2 · · · ∈ Trace(s1), there exists σ2 = ω1ω2 · · · ∈ Trace(s2) such that
ρi ∈ L(ωi) for all i ∈ Z

+. And, there is d∗(ρi, L(ωi)) = 0 from Proposition 2 for
all i ∈ Z

+. Moreover, we have td(σ1, σ2) = 0 from the definition of td. Hence,
inf

σ2∈Trace(s2)
td(σ1, σ2) = 0 for each σ1 ∈ Trace(s1). Therefore, T d(s1, s2) = 0.

For property (2): For the ‘if’ part, suppose that Ld(RT 1,RT 2) = 0. It is
sufficient to show that inf

σ2∈L(RT 2)
td(σ1, σ2) = 0 for each σ1 = ρ1ρ2 · · · ∈ L(RT 1).

Therefore, there exists σ2 = ω1ω2 · · · ∈ L(RT 2) such that td(σ1, σ2) = 0. From
the definition of td, there is d∗(ρi, L(ωi)) = 0 for all i ∈ Z

+. Then, we have
ρi ∈ L(ωi) by Proposition 2. Hence, L(RT 1) ⊆ L(RT 2).

For the ‘only if’ part, consider that L(RT 1) ⊆ L(RT 2). In other words, for
each trace σ1 = ρ1ρ2 · · · in RT 1, there exists a trace σ2 = ω1ω2 · · · in RT 2 such
that ρi ∈ L(ωi) for all i ∈ Z

+. We know from Proposition 2 that d∗(ρi, L(ωi)) =
0. By the definition of td, we have td(σ1, σ2) = 0. Hence, inf

σ2∈L(RT 2)
td(σ1, σ2) = 0

for each σ1 = ρ1ρ2 . . . ∈ L(RT 1). Thus, we have Ld(RT 1,RT 2) = 0 from the
definition of Ld.

Let RT 1 = (S1, s1,0, Σ,→1) be an LTS, RT 2 = (S2, s2,0,�(Σ),→2) be a
RE-TS, and (Σ, d) be a metric space. The simulation distance between RT 1

and RT 2 is defined as

Sd(RT 1,RT 2) = inf{δ : RT 1 �δ RT 2}.

Lemma 2. Let RT 1 = (S1, s1,0, Σ,→1) be an LTS and RT 2 = (S2, s2,0,�(Σ),
→2) be a RE-TS, and (Σ, d) be a metric space. Then, the following properties
hold:

(1) Sd(RT 1,RT 2) ≥ 0.
(2) Sd(RT 1,RT 2) = 0 if RT 1 � RT 2.

Proof. For property (1): It follows immediately from Proposition 2.
For property (2): Consider that RT 1 � RT 2. By Definition 1, there exists a

simulation R ⊂ S1×S2 such that: For each (s1, s2) ∈ R and s1
ρ−→∗s′

1, there exists
s2

ω−→ s′
2 such that ρ ∈ L(ω) and (s′

1, s
′
2) ∈ R. And, we have d∗(ρ, L(ω)) = 0

by Proposition 2. Then, there exists a δ = 0 and R is a δ-simulation. By the
definition of Sd and property (1), Sd(RT 1,RT 2) = 0.

The relationship between the simulation distance and the language distance
is captured by the following theorem.

Theorem 1. Let RT 1 = (S1, s1,0, Σ,→1) be an LTS, RT 2 = (S2, s2,0,�(Σ),
→2) be a RE-TS, and (Σ, d) be a metric space. Then,

Ld(RT 1,RT 2) ≤ Sd(RT 1,RT 2).
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Proof. Consider a δ ≥ Sd(RT 1,RT 2). By Proposition 3, RT 1 �δ RT 2 holds.
Let σ1 = ρ1ρ2 · · · ∈ L(RT 1). Then, there exists a path

s1
ρ1−→∗s2

ρ2−→∗s3
ρ3−→∗ · · ·

in RT 1 where s1 = s0,1. By Lemma 1, we know (s0,1, s0,2) ∈ Rmax
δ . Therefore,

there exists a path
s′
1

ω1−→ s′
2

ω2−→ s′
3

ω3−→ · · ·
such that (si, s

′
i) ∈ Rmax

δ for all i ∈ Z
+, where s′

1 = s0,2. Let σ2 = ω1ω2 · · · .
By Proposition 2 and the definition of td, it is obvious that td(σ1, σ2) ≤ δ.
Hence, inf

σ2∈L(RT 2)
td(σ1, σ2) ≤ δ for each σ1 ∈ L(RT 1). Thus Ld(RT 1,RT 2) ≤

Sd(RT 1,RT 2).

We next propose two approaches of fixed point characterization of approxi-
mate simulation.

We first give a fixed point characterization of maximal δ-simulation for a
given δ.

Let RT 1 = (S1, s1,0, Σ,→1) be an LTS, RT 2 = (S2, s2,0,�(Σ), →2) be a
RE-TS, and (Σ, d) be a metric space. For a given δ ≥ 0, we define the following
sequence {Ri

δ}i∈N of subsets of S1 × S2:

R0
δ = S1 × S2;

Ri+1
δ = {(s1, s2) ∈ Ri

δ : for s1
ρ−→∗s′

1, there exists s2
ω−→ s′

2 such that d∗(ρ, L(ω)) ≤
δ and (s′

1, s
′
2) ∈ Ri

δ}.

Since S1 and S2 are finite, it is clear that {Ri
δ}i∈N reaches a fixed point in a

finite number steps by the definition of {Ri
δ}i∈N.

Lemma 3. Let {Ri
δ}i∈N be the sequence of sets defined by definition of {Ri

δ}i∈N.
Then, the following properties hold:

(1) Ri+1
δ ⊆ Ri

δ for every i ∈ N.
(2) For each i ∈ N, Rmax

δ ⊆ Ri
δ.

(3) There exists some n ∈ N such that Rmax
δ = Rn

δ .

Proof. For property (1): It follows immediately from the definition of {Ri
δ}i∈N.

For property (2): This will be proved by induction with regard to i.
The initial step is for i = 1. It follows from the definition of {Ri

δ}i∈N.
The induction hypothesis is that (2) holds for i = k. We now show that (2)

holds for i = k + 1, i.e., Rmax
δ ⊆ Rk+1

δ .
We have to discuss the following two cases.
The first case is that Rmax

δ = ∅. Then, Rmax
δ = ∅ ⊆ Rk+1

δ obviously.
The second case is that Rmax

δ 
= ∅. Then there exists some (s1, s2) ∈ Rmax
δ .

For each (s1, s2) ∈ Rmax
δ ⊆ Rk

δ , we know rom Lemma 1 that for each s1
ρ−→ ∗s′

1,
there exists s2

ω−→ s′
2 such that d∗(ρ, L(ω)) ≤ δ, and (s′

1, s
′
2) ∈ Rmax

δ . Then,



58 X. Cui et al.

by the induction hypothesis, (s′
1, s

′
2) ∈ Rmax

δ ⊆ Rk
δ . Hence, It follows from the

definition of {Ri
δ}i∈N that (s1, s2) ∈ Rk+1

δ .
Thus (2) holds for i = k + 1, which proves the property.
For property (3): By using propery (1) and the definition of {Ri

δ}i∈N, we can
obtain that there exists some k ∈ N such that Rj

δ = Rk
δ for every j ≥ k.

We have to discuss the following two cases.
The first case is that there exists a k such that Rk

δ = ∅. By property (1) and
(2), Rj

δ ⊆ Rk
δ for every j ≥ k, and Rmax

δ ⊆ Rk
δ . Hence, Rmax

δ ⊆ Rk
δ = ∅.

The second case is that Rj
δ 
= ∅ for all j ∈ N. Let (s1, s2) ∈ Rk+1

δ . Then, for
each s1

ρ−→∗s′
1, there exists s2

ω−→ s′
2 such that d∗(ρ, L(ω)) ≤ δ and (s′

1, s
′
2) ∈ Rk

δ .
Since Rk+1

δ = Rk
δ , it is sufficient to show that Rk+1

δ is a δ-simulation and Rk
δ =

Rk+1
δ ⊆ Rmax

δ . By property (2), Rmax
δ ⊆ Rk

δ . Hence, Rmax
δ = Rk

δ .

We will introduce another approach, which characterizes the maximal δ-
simualtion as the level sets of a function for a given δ.

Let RT 1 = (S1, s1,0, Σ,→1) be an LTS, RT 2 = (S2, s2,0,�(Σ), →2) be a
RE-TS, and (Σ, d) be a metric space. Define the following sequence {f i}i∈N of
functions from S1 × S2 to R

+ ∪ {+∞}:

f0(s1, s2) = 0;

f i+1(s1, s2) = sup
s1

ρ−→∗s′
1

inf
s2

ω−→s′
2

max(d∗(ρ, L(ω)), f i(s′
1, s

′
2)).

Lemma 4. Let {f i}i∈N be the sequence of functions defined by definition of
{f i}i∈N. Then, the sequence {f i(s1, s2)}i∈N is non-decreasing for all (s1, s2) ∈
S1 × S2.

Proof. To prove the lemma, it suffices to verify that

f i(s1, s2) ≤ f i+1(s1, s2)

for every i ≥ 0.
This will be proved by induction on i.
The initial step is for i = 0. It follows from the definition of {f i}i∈N and

Proposition 2.
The induction hypothesis is that the lemma holds for i = k. We now show

that the lemma holds for i = k + 1, i.e., fk+1(s1, s2) ≤ fk+2(s1, s2) for each
(s1, s2) ∈ S1 × S2. Then,

fk+2(s1, s2) = sup
s1

ρ−→∗s′
1

inf
s2

ω−→s′
2

max(d∗(ρ, L(ω)), fk+1(s′
1, s

′
2))

≥ sup
s1

ρ−→∗s′
1

inf
s2

ω−→s′
2

max(d∗(ρ, L(ω)), fk(s′
1, s

′
2))

=fk+1(s1, s2).

This completes the proof of the lemma.
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{f i}i∈N reaches a fixed point in a finite number of steps, which is shown in [8].
Then, for each (s1, s2) ∈ S1 × S2, there exists a k ∈ N such that; for each i ≤ k,
fk(s1, s2) ≥ f i(s1, s2), and for each j ≥ k, fk(s1, s2) = f j(s1, s2). Let fmin be
the branching distance between RT 1 and RT 2. Then, fmin(s1, s2) = fk(s1, s2)
for all (s1, s2) ∈ S1 × S2 [9].

The following theorem will give the relationship between the two approaches.

Theorem 2. Let δ ≥ 0, {Ri
δ}i∈N be the sequence defined by the definition of

{Ri
δ}i∈N, {f i}i∈N be the sequence defined by the definition of {f i}i∈N, Rmax

δ be
the maximal δ-simulation of RT 1 by RT 2, and fmin be the branching distance
between RT 1 and RT 2. Then, the following assertions hold:

(1) Ri
δ = {(s1, s2) ∈ S1 × S2 : f i(s1, s2) ≤ δ} for every i ∈ N and δ ≥ 0.

(2) Rmax
δ = {(s1, s2) ∈ S1 × S2 : fmin(s1, s2) ≤ δ} for every δ ≥ 0.

Proof. Assertions (1): This will be proved by induction with regard to i.
The initial step is for i = 0. Let δ ≥ 0, if i = 0, then the theorem states

that R0
δ = {(s1, s2) ∈ S1 × S2 : f0(s1, s2) ≤ δ}. By definitions of {Ri

δ}i∈N and
{f i}i∈N, R0

δ = {(s1, s2) ∈ S1 × S2 : f0(s1, s2) ≤ δ} = S1 × S2.
The induction hypothesis is that property (1) holds for i = k. We now show

that property (1) holds for i = k + 1, i.e.,

Rk+1
δ = {(s1, s2) ∈ S1 × S2 : fk+1(s1, s2) ≤ δ}.

First, assume (s1, s2) ∈ Rk+1
δ . Then, it is sufficient to show that there exists

s2
ω−→ s′

2 and (s′
1, s

′
2) ∈ R for each s1

ρ−→∗s′
1. In fact, by induction hypothesis we

obtain
sup

s1
ρ−→∗s′

1

inf
s2

ω−→s′
2

max(d∗(ρ, L(ω)), fk(s′
1, s

′
2)) ≤ δ.

Since (s1, s2) ∈ Rk+1
δ ⊆ Rk

δ ,

sup
s1

ρ−→∗s′
1

inf
s2

ω−→s′
2

d∗(ρ, L(ω)) ≤ fk(s1, s2) ≤ δ.

Therefore, fk+1(s1, s2) ≤ δ.
Second, let fk+1(s1, s2) ≤ δ. Then, for each s1

ρ−→ ∗s′
1, there exists s2

ω−→ s′
2

such that f i(s′
1, s

′
2) ≤ δ. It follows from the definition of {Ri

δ}i∈N, Lemma 4 and
induction hypothesis that

fk(s1, s2) ≤ fk+1 ≤ δ.

Hence, (s1, s2) ∈ Rk+1
δ . This completes the proof of the property (1).

Assertion (2): Consider (s1, s2) ∈ S1 × S2. Suppose fmin(s1, s2) ≤ δ.Then,
there exists f i(s1, s2) ≤ δ for each i ∈ N. We obtain by Lemma 3 and property
(1) that (s1, s2) ∈ Rmax

δ . On the contrary, let (s1, s2) ∈ Rmax
δ . Then, (s1, s2) ∈ Ri

δ

for each i ∈ N. We obtain by property (1) that f i(s1, s2) ≤ δ for each i ∈ N. By
using Lemma 4, we have fmin(s1, s2) ≤ δ.
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5 Conclusion

In this paper, we have proposed an approximate simulation by using the notion
of metrics to measure the behavioral closeness between a RE-TS and an LTS.
The approximate simuation has some properties: First, it satisfies reflexivity, and
satisfies transitivity with some limitations. Second, like exact simualtion, it has
a maximal element. Then we study the relationship between trance disdance and
trance inclusion, and the relationship between language distance and language
inclusion. Moreover, we give the relationship between language distance and
simualtion distance. Finally, we present two approaches to characterize approxi-
mate simualtion by using fixed point, and give the relationship between the two
approaches.

As a future work, we will use the results of this paper to graph partten
matching query, and consider logical characterizations of δ-simulation.

Acknowledgements. The authors would like to thank the anonymous referees for
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Abstract. Perturbation is an important property of fuzzy reasoning algorithms.
It is an important task to estimate the upper and lower bounds of the output
after a perturbation (such as an interval perturbation) is given to the input. In this
study, the interval perturbation problem of a fuzzy reasoning algorithm, i.e., the A-
symmetric implicational algorithm, is researched systematically. For FMP (Fuzzy
Modus Ponens) and FMT (Fuzzy Modus Tollens) problems of fuzzy reasoning,
aiming at the case of a single rule, the estimation for the upper and lower bounds
are obtained for the input interval disturbance, in which R-implications and (S,
N)-implications are mainly employed. Then the stability is verified on account
of the upper and lower bounds. Following that, for the multi-rule case, the upper
and lower bounds of the output are also given, and the corresponding stability is
validated. In conclusion, it is found that the A-symmetric implicational algorithm
has good stability.

Keywords: Fuzzy reasoning · Perturbation · Symmetric implicational
algorithm · Fuzzy implications

1 Introduction

Fuzzy set theory was born in 1965 and founded by Professor Zadeh. It is an effective
method to deal with problems such as information or data imprecision and uncertainty.
Since Zadeh put forward the concept of fuzzy set, the study of fuzzy set has aroused
the interest of scholars all over the world. Soon after that, the fuzzy inference theory
came into being with the related theory of fuzzy set as a tool to describe uncertain
information, and the mathematical logic based on general set theory was expanded. This
theory belongs to the category of uncertain inference, which has great significance for
the development of artificial intelligence technology.

At present, fuzzy reasoning [1–5] has become an inevitable part of the study of fuzzy
set theory, and also an important aspect of its research. It has to be mentioned that the
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inference process of fuzzy set is mainly divided into two kinds, Fuzzy Modus Ponens
(FMP) problem and Fuzzy Modus Tollens (FMT) problem:

FMP model: Give the rule A → B and input A∗, calculate the output B∗, (1)

FMT model: Give the rule A → B and input B∗, calculate the output A∗, (2)

where A,A∗ ∈ F(X ),B,B∗ ∈ F(Y ) (where F(X ),F(Y ) respectively denote the set of
all fuzzy subsets of universe X and Y ).

In dealing with fuzzy reasoning, Zadeh proposed the famous fuzzy reasoning algo-
rithm, i.e., the CRI (compositional rule of inference) algorithm [6] in 1973. The solution
of this algorithm was described as follows (y ∈ Y ):

B∗(y) = sup
x∈X

{
A∗(x) ∧ (A(x) → B(y))

}
(3)

Here → was a fuzzy implication. It is not difficult to find that the CRI algorithm simply
combines A∗(x) and A(x) → B(y) for getting the solution. In 1999, Wang [7] proposed
a new algorithm that could effectively improve the CRI algorithm, namely the triple I
algorithm.

The basic idea of the triple I algorithm is as follows. Suppose that X , Y are two non-
empty sets, and A ∈ F(X ),B ∈ F(Y ), and A∗ ∈ F(X ) (or B∗ ∈ F(Y )). The algorithm
seeks the smallest fuzzy set B∗ ∈ F(Y ) (or the largest fuzzy set A∗ ∈ F(X )) to make the
following formula

A(x) → B(y) → (
A∗(x) → B∗(y)

)
(4)

attain its maximum for any (x, y) ∈ X × Y . Such B∗ (A∗) is called the full implication
triple I solution for the FMP (FMT) problem.

Many scholars have carried out a series of studies on the triple I algorithm and have
achieved rich results, making important contributions to the improvement of the triple I
algorithm. Pei [8] systematically discussed the full implication triple I method based on
the left-continuous triangular norm.Wang and Fu [9] gave the general form of the triple I
algorithm on the basis of regular implication. Pei [10] discussed the same problem based
on first-order logic system, and presented a perfect unified logical reasoning system of
triple Imethod. Later, Zheng andLiu [11] proposed the residual intuitionistic implication
and intuitionistic triple I fuzzy inference algorithm under multiple rules, which provided
a theoretical basis for connecting intuitionistic fuzzy sets with fuzzy inference. Tang
et al. [12–14] proposed the differently implicational algorithm based on different fuzzy
implications from the perspective of combining CRI and triple I algorithm. In general,
triple I algorithm has strong logic foundation, continuity, reducibility, robustness and
many other advantages.

From the dual perspectives of logical system and inference model, Tang [15] pro-
posed and studied the symmetric implicational algorithm, which has better results in
dealing with (1) and (2). Its algorithm is described as follows:

(A(x) →1 B(y)) →2
(
A∗(x) →1 B

∗(y)
)

(5)
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where→1 and →2 are different fuzzy implications. It can be seen that triple I algorithm
is a special case of the symmetric implicational algorithm. Furthermore, (5) is extended
to

(A(x) →1 B(y)) →2 (A∗(x) →1 B
∗(y) ≥ α, (6)

and it is called the α-symmetric implicational algorithm. Reference [16] further dis-
cussed the symmetric implicational algorithm based on point-by-point support. In Ref.
[17], the granular symmetric implicational algorithm was proposed and studied from
the perspective of interval values. Dai [18] verified the logical basis of the symmetric
implicational algorithm from the perspective of predicate formal representation.

In fuzzy reasoning algorithms, an important property is perturbation research [19–
22]. It is an important task to estimate the upper and lower bounds of the output after a
perturbation (such as interval perturbation) is given to the input. In [23], for single-rule
CRImethod,Chen andFu analyzed the upper and lower bounds of the output error caused
by simple perturbation of the input fuzzy set, and determined the oscillation range of
the output result when the input interval perturbation occurred. In Ref. [24], we studied
the oscillation boundary estimation of BKS (Bandler-Kohout subproduct) perturbation.
First, the BKS output variation range for input interval perturbation was estimated.
Secondly, aiming at the complex problemof fuzzy inference chain, the oscillation bounds
ofBKSoutput caused by perturbation of input intervalwere given. Thirdly, for the simple
perturbation of the input fuzzy set, the upper and lower bounds of BKS output deviation
were constructed. Finally, the stability of all BKS strategies was verified.

Similarly, for the α-symmetric implicational algorithm, its perturbation is obviously
also a concern of us.

In this study, we discuss the upper and lower bounds estimation of the output of
the α-symmetric implicational algorithm for input interval perturbation, and analyze its
stability.

The structure of this study is arranged as follows. Section 2 provides the necessary
preliminaries. In Sect. 3, the corresponding upper and lower bounds estimates for R-
implication and (S,N)-implication are given for the case of input interval perturbation
with a single rule, and the corresponding stability is verified. Section 4 continues to
discuss the case of multiple rules. Section 5 gives a summary.

2 Preliminaries

Definition 2.1. ([25]) Let a, b, c ∈ L, where L = [0, 1]. If the binary operation ⊗
satisfies the following four properties,

a ⊗ b = b ⊗ a, (T1)

a ⊗ (b ⊗ c) = (a ⊗ b) ⊗ c, (T2)

a ⊗ b ≤ a ⊗ c if b ≤ c (T3)
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a ⊗ 1 = a. (T4)

then ⊗ is called a triangular norm (abbreviated by t-norm) on L.

Definition 2.2. ([25]) Let a, b, c ∈ L. If the binary operation⊕ satisfies (T1), (T2), (T3)
and

a ⊕ 0 = a, (S1)

Then ⊕ is called a triangular conorm (abbreviated by t-conorm) on L.
Let ⊗ be a t-norm on L. If the binary operation ⊕ satisfies

a ⊕ b = 1 − (1 − a) ⊗ (1 − b) (7)

for any a, b ∈ L, then ⊕ is called the dual t-conorm of ⊗.

Definition 2.3. ([25]) A t-norm ⊗ is said to be left continuous, if ⊗ satisfies (for any
ai, b ∈ L):

(∨i∈I ai) ⊗ b = ∨i∈I (ai ⊗ b). (8)

Proposition 2.1. ([25]) The t-norm is left continuous, if and only if its dual t-conorm is
right-continuous.

Definition 2.4. ([26]) Suppose a mapping →: [0, 1]2 → [0, 1] which satisfies

0 → 0 = 0 → 1 = 1 → 1 = 1, 1 → 0 = 0, (9)

then → is called fuzzy implication on [0, 1].

Definition 2.5. ([25]) Let ⊗ and → be two [0, 1]2 → [0, 1] mappings, then (⊗,→) is
called a residual pair, or⊗ and → are residual to each other, if the following residuation
condition holds (for any a, b, c ∈ [0, 1]),

a ⊗ b ≤ c if and only if a ≤ b → c (10)

For fuzzy set A, we denote A′(x) = (A(x))′ = 1 − A(x).

Lemma 2.1. ([27]) Suppose⊗ is a left continuous t-norm on [0, 1],→ is obtained from
(where p, q ∈ [0, 1])

p → q = sup{y ∈ [0, 1]|p ⊗ y ≤ q}, (11)

then (⊗,→) is a residual pair, and → satisfies (a, b, c ∈ [0, 1],P �= φ),

a → b is non - decreasing w.r.t. b; (C1)

a → b is right - continuous w.r.t. b; (C2)
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a → b is non - increasing w.r.t. a; (C3)

a ≤ b if and only if a → b = 1 (C4)

1 → a = 1 (C5)

a ≤ b → c if and only if b ≤ a → c (C6)

a → (b → c) = b → (a → c) (C7)

inf{a → xi|i ∈ P} = a → inf{xi|i ∈ P} (C8)

inf{xi → b|i ∈ P} = sup{xi|i ∈ P} → b (C9)

Definition 2.6. ([25]) A negation on [0, 1] is a decreasing mapping N: [0, 1] → [0, 1]
which satisfies N(0) = 1 and N(1) = 0. If

N(N(a)) = a

holds for any a ∈ [0, 1], then N is said to be involutive.

Definition 2.7. ([28]) A mapping → is a (S,N )-implication, when there is a fuzzy
negation N making

a → b = N (a) ⊕ b

hold (a ∈ [0, 1], b ∈ [0, 1]).

Definition 2.8. ([23]) (i) Suppose that β−, β+ ∈ F(Z) and that

β−(z) ≤ β+(z)(z ∈ Z)

then
[
β−, β+]

is known as a fuzzy interval on Z .
(ii) Suppose that C ∈ F(Z) and that

[
β−, β+]

be a fuzzy interval on Z . If

β−(z) ≤ C(z) ≤ β+(z),

then
[
β−, β+]

is referred to as an interval perturbation of C, where

C ∈ [
β−, β+]

.

Definition 2.9. ([23]) Suppose that A,B ∈ F(Z). If there is a mapping β : Z → [−1, 1]
making

B(z) = A(z) + β

hold, then B is called a simple perturbation, and β is said to be a perturbation factor of
A.
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Definition 2.10. ([23]) Suppose that C,E ∈ F(Z),D ∈ F(W ), and that

C ∈ [
α−, α+]

,D ∈ [
η−, η+]

,E ∈ [
γ −, γ +]

A fuzzy inference method f is said to be a stable function, if for any ε > 0, there is a
fuzzy interval

[
λ−, λ+]

on W and δ > 0 making

λ+ − λ− < ε

be effective for any w ∈ W and

f (C,D,E) ∈ [
λ−, λ+]

If

α+(z) − α−(z) < δ, η+(w) − η−(w) < δ, γ +(z) − γ −(z) < δ (z ∈ Z,w ∈ W )

Lemma 2.2. ([23]) Let a1 and a2 be real-valued, bounded mappings on Z , and C,
D ∈ F(Z). Thus, one has:

(i) a1 ∨ a2 = max{a1, a2} = (a1 + a2)/2 + |a1 − a2|/2,
(ii) a1 ∧ a2 = min{a1, a2} = (a1 + a2)/2 − |a1 − a2|/2,
(iii) −|a1 − a2|≤|a1|−|a2|≤|a1 − a2|,
(iv) infz∈ZC(z) + infz∈ZD(z) ≤ infz∈Z (C(z) + D(z)),
(v) supz∈Z (C(z) + D(z)) ≤ supz∈ZC(z) + supz∈ZD(z),
(vi) supz∈ZC(z) = −infz∈Z (−C(z)),
(vii) infz∈Z (C(z) ∧ D(z)) = infz∈ZC(z) ∧ infz∈ZD(z),
(viii) infz∈Z (C(z) ∨ D(z)) ≥ infz∈ZC(z) ∨ infz∈ZD(z),
(ix) infz∈Z (C(z) ∨ D(z)) ≥ infz∈ZC(z) ∨ infz∈ZD(z),
(x) supz∈Z (C(z) ∨ D(z)) = supz∈ZC(z) ∨ supz∈ZD(z).

Lemma 2.3. ([24]) Let a1 and a2 be real-valued, bounded mappings on Z , then:

(i) supz∈Za1(z) − supz∈Za2(z) ≤ supz∈Z (a1(z) − a2(z)),
(ii) infz∈Za1(z) − infz∈Za2(z) ≤ supz∈Z (a1(z) − a2(z)),
(iii) infz∈Za1(z) − infz∈Za2(z) ≥ infz∈Z (a1(z) − a2(z)),
(iv) supz∈Za1(z) − supz∈Za2(z) ≥ infz∈Z (a1(z) − a2(z)).

Proposition 2.2. ([15]) Suppose that A, A∗ ∈ F(X ) and that B ∈ F(Y ). If →1,→2 are
two fuzzy implications satisfying (C1), (C2), (C5), and⊗1,⊗2 are respectively the oper-
ations residual to →1,→2, then the optimal solution of the α-symmetric implicational
algorithm for FMP is as follows (y ∈ Y ).

SIP(y) = supx∈X {A∗(x) ⊗1 ((A(x) →1 B(y)) ⊗2 α)}. (12)

Proposition 2.3. ([15]) Suppose thatA ∈ F(X ) and thatB,B∗ ∈ F(Y ). If →1 is a fuzzy
implication satisfying (C6), and →2 is a fuzzy implication satisfying (C1), (C2), (C5),
and ⊗2 is the operation residual to →2, then the optimal solution of the α-symmetric
implicational algorithm for FMT is as follows (x ∈ X ).

SIT (x) = infy∈Y
{
(A(x) →1 B(y)) ⊗2 α) →2 B

∗(y)
}
. (13)
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3 Interval Perturbation for the α-Symmetric Implicational
Algorithms with One Rule

3.1 The Interval Perturbation with One Rule for the FMP Problem

Note

ĩx(f ) = infx∈X {f (x)}, s̃x(f ) = supx∈X {f (x)}. (14)

Theorem 3.1. Let A, A∗ ∈ F(X ) and B ∈ F(Y ). Suppose that

A ∈ [
β−, β+]

,A∗ ∈ [
γ −, γ +]

,B ∈ [
η−, η+]

If →1 is a R− implication, and →2 is a R− implication or an (S,N )− implication
satisfying (C2). ⊗1,⊗2 are respectively the operation residual to →1,→2. Then for the
α-symmetric implicational algorithm for FMP, we have

ĩx
(
γ −) ⊗1

((
s̃x

(
β+) →1 η−) ⊗2 α

) ≤ SIP(y) ≤ s̃x
(
γ +) ⊗1

((
ĩx

(
β−) →1 η+)

⊗2 α
)
.

(15)

Proof: In accordance to the characteristics of →1 and →2, obviously →1 and →2 are
decreasing with respect to the first variable and increasing with respect to the second
variable, then

sup
(
β+) →1 η− ≤ A(x) →1 B(y) ≤ inf

(
β−) →1 η+.

Based on the fact that ⊗1 and ⊗2 are increasing, it can be obtained:

inf
(
γ −) ⊗1

((
sup

(
β+) →1 η−) ⊗2 α

)

≤ A∗(x) ⊗1 ((A(x) →1 B(y)) ⊗2 α)

≤ sup
(
γ +) ⊗1

((
inf

(
β−) →1 η+) ⊗2 α

)
,

By combining these two formulas and considering Proposition 2.2, it can be obtained

ĩx
(
γ −) ⊗1

((
s̃x

(
β+) →1 η−) ⊗2 α

)

≤ supx∈X
{
A∗(x) ⊗1 ((A(x) →1 B(y)) ⊗2 α)

} = SIP(y)

≤ s̃x
(
γ +) ⊗1

((
ĩx

(
β−) →1 η+)

⊗2 α
)
.

The proof is done.
Similar to Theorem 3.1, Theorem 3.2 can be proved.
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Theorem 3.2. Let A,A∗ ∈ F(X ) and B ∈ F(Y ). Suppose that

A ∈ [
β−, β+]

,A∗ ∈ [
γ −, γ +]

,B ∈ [
η−, η+]

→1 is an (S,N )− implication satisfying (C2) (associated with Nand ⊕1), and →2 is a
R− implication or an (S,N )− implication satisfying (C2). ⊗1,⊗2 are respectively the
operation residual to →1,→2. Then for the α-symmetric implicational algorithm for
FMP, we have

ĩx
(
γ −) ⊗1

((
N

(
s̃x

(
β+)) ⊕1 η−) ⊗2 α

) ≤ SIP(y) ≤
s̃x

(
γ +) ⊗1

((
N

(
ix

(
β−)) ⊕1 η+) ⊗2 α

)
.

(16)

3.2 The Interval Perturbation with One Rule for the FMT Problem

Theorem 3.3. Let B,B∗ ∈ F(Y ) and A ∈ F(X ). Suppose that

B ∈ [
β−, β+]

,B∗ ∈ [
γ −, γ +]

,A ∈ [
η−, η+]

.

→1 is a R− implication, and →2 is a R− implication or an (S,N )− implication sat-
isfying (C2). ⊗1,⊗2 are respectively the operation residual to →1,→2. Then for the
α-symmetric implicational algorithm for FMT, one has

((
η− →1 s̃y

(
β+)) ⊗2 α

) →1 ĩy
(
γ −) ≤ SIT (x) ≤

((
η+ →1 ĩy

(
β−)) ⊗2 α

)
→1 s̃y

(
γ +)

.

(17)

Proof: In accordance to the characteristics of →1 and →2, obviously →1 and →2 are
decreasing with respect to the first variable and increasing with respect to the second
variable, and ⊗1 and ⊗2 are increasing, then

η+ →1 inf
(
β−) ≤ A(x) →1 B(y) ≤ η− →1 sup

(
β+)

.

Furthermore, we can get

((A(x) →1 B(y)) ⊗2 α) →1 inf
(
γ −)

≤ ((A(x) →1 B(y)) ⊗2 α) →1 B
∗(y)

≤ ((A(x) →1 B(y)) ⊗2 α) →1 sup
(
γ +)

,

Combining with Proposition 2.3, it can be obtained
((

η− →1 s̃y
(
β+)) ⊗2 α

) →1 ĩy
(
γ −)

≤ infy∈Y {((A(x) →1 B(y)) ⊗2 α) →1 B∗} = SIT (x)≤((
η+ →1 ĩy

(
β−)) ⊗2 α

)
→1 s̃y

(
γ +)

.

The proof is completed.
Similar to Theorem 3.3, Theorem 3.4 can be proved.
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Theorem 3.4. Let B,B∗ ∈ F(Y ), and A ∈ F(X ). Suppose that

B ∈ [
β−, β+]

,B∗ ∈ [
γ −, γ +]

,A ∈ [
η−, η+]

→1 is an (S,N )− implication satisfying (C2) and (C6) (associated with Nand⊕1),
and →2 is a R− implication or an (S,N )− implication satisfying (C2). ⊗1,⊗2 are
respectively the operation residual to →1,→2. Then for the α-symmetric implicational
algorithm for FMT, one has

N
((
N

(
η−) ⊕1 s̃y

(
β+)) ⊗2 α

) ⊕1 ĩy
(
γ −) ≤ SIT (x) ≤

N
((

N
(
η+) ⊕1 ĩy

(
β−)) ⊗2 α

)
⊕1 s̃y

(
γ +)

.
(18)

If the general operators are continuous (including t-norm, t-conorm and fuzzy nega-
tion), then the α-symmetric implicational algorithm in which →1 isan(S,N )− implica-
tion is stable. As for the situation of R− implication, if the R− implication and t-norm
are continuous, then the α-symmetric implicational algorithm in which →1 employs an
R− implication is also stable. Specifically, suppose that there is a perturbation sequence

([
β−
m , β+

m

]
,
[
η−
m , η+

m

]
,
[
γ −
m , γ +

m

])

of the input (A,B,A∗)with respect to the α-symmetric implicational algorithm for FMP,
which means that

limm→∞supx∈X
(
β+
m (x) − β−

m (x)
) = limm→∞supy∈Y

(
η+
m (y) − η−

m (y)
)

= limm→∞supx∈X
(
γ +
m (x) − γ −

m (x)
) = 0

(19)

is effective, where m = 1, 2, .... In Theorem 3.1 and 3.2, we adopt λ+
m , λ

−
m to indicate

the corresponding lower and upper bounds of the output of α-symmetric implicational
algorithm, viz.,

SIP
(
A,B,A∗) ∈ [

λ−
m, λ+

m

]

For (
[
β−
m , β+

m

]
,
[
η−
m , η+

m

]
,
[
γ −
m , γ +

m

]
), when the continuous condition is satisfied, one

has from Theorem 3.1 and 3.2 that

limm→∞supy∈Y
(
λ+
m(y) − λ−

m(y)
) = 0. (20)

That is, the output of the α-symmetric implicational algorithm converges steadily
to a value when the continuous conditions mentioned above is effective. Similarly, for
FMT input (A,B,B∗), Theorem 3.3 and Theorem 3.4 have similar results. In short, the α-
symmetric implicational algorithm for situation of one rule is stable from the perspective
of interval perturbation.

4 Interval Perturbation for the α-Symmetric Implicational
Algorithms with Multiple Rules

4.1 The Interval Perturbation with Multiple Rules for the FMP Problem

For the situation of multiple rules, the solutions of FMP and FMT are denoted as

SIPn
(
A1, ...,An,B1, ...,Bn,A

∗)(y)
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and

SITn
(
A1, ...,An,B1, ...,Bn,B

∗)(x),

respectively abbreviated by SIPn(y) and SITn(x). For n rules, in Proposition 2.2 and 2.3,
we replace (A(x) →1 B(y)) with

∨n
i=1(Ai(x) →1 Bi(y)).

Theorem 4.1. Let Ai, A∗ ∈ F(X ), Bi ∈ F(Y ). Suppose that

Ai ∈ [
β−
i , β+

i

]
,A∗ ∈ [

γ −, γ +]
,Bi ∈ [

η−
i , η+

i

]
(i = 1, 2, . . . , n).

If →1 is a R− implication, and →2 is a R− implication or an (S,N )− implication
satisfying (C2). ⊗1,⊗2 are respectively the operation residual to →1,→2. Then for the
α-symmetric implicational algorithm for FMP, we have

ĩx
(
γ −) ⊗1

(
Vn
i=1

(
s̃x

(
β+
i

) →1 η−
i

) ⊗2 α
) ≤ SIPn(y) ≤

s̃x
(
γ +) ⊗1

(
Vn
i=1

(
ĩx

(
β−
i

) →1 η+
i

)
⊗2 α

)
.

(21)

Proof: Obviously →1 and →2 are decreasing with respect to the first variable and
increasing with respect to the second variable, then

∨n
i=1

(
sup

(
β+
i

) →1 η−
i

) ≤ ∨n
i=1(Ai(x) →1 Bi(y)) ≤ ∨n

i=1(inf
(
β−
i

) →1 η+
i ).

Based on the fact that ⊗1 and ⊗2 are increasing, it can be obtained:

inf
(
γ −) ⊗1

((
sup

(
β+
i

) →1 η−
i

) ⊗2 α
)

≤ A∗(x) ⊗1 (∨n
i=1(Ai(x) →1 Bi(y)) ⊗2 α)

≤ sup
(
γ +) ⊗1

((
inf

(
β−
i

) →1 η+
i

) ⊗2 α
)
,

By combining these two formulas and considering Proposition 2.2, it can be obtained

ĩx
(
γ −) ⊗1

(∨n
i=1

(
s̃x

(
β+
i

) →1 η−
i

) ⊗2 α
)

≤ supx∈X
{
A∗(x) ⊗1

(∨n
i=1(Ai(x) →1 Bi(y)) ⊗2 α

)} = SIPn(y).

≤ s̃x
(
γ +) ⊗1

(
∨n
i=1

(
ĩx

(
β−
i

) →1 η+
i

)
⊗2 α

)
.

The proof is completed.
Similar to Theorem 4.1, Theorem 4.2 can be proved.
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Theorem 4.2. Let Ai, A∗ ∈ F(X ), Bi ∈ F(Y ). Suppose that

Ai ∈ [
β−
i , β+

i

]
,A∗ ∈ [

γ −, γ +]
,Bi ∈ [

η−
i , η+

i

]
(i = 1, 2, . . . , n).

→1 is an (S,N )− implication satisfying (C2) (associated with Nand ⊕1), and →2
is a R− implication or an (S,N )− implication satisfying (C2). ⊗1,⊗2 are respectively
the operation residual to →1,→2. Then for the α-symmetric implicational algorithm
for FMP, we obtain

ĩx
(
γ −) ⊗1

(∨n
i=1

(
N

(
s̃x

(
β+
i

)) ⊗1 η−
i

) ⊗2 α
) ≤ SIPn(y)

≤ s̃x
(
γ +) ⊗1

(
Vn
i=1

(
N

(
ĩx

(
β−
i

)) ⊗1 η+
i

)
⊗2 α

)
.

(22)

4.2 The Interval Perturbation with Multiple Rules for the FMT Problem

Theorem 4.3. Let Bi, B∗ ∈ F(Y ), Ai ∈ F(X ). Suppose that

Bi ∈ [
β−
i , β+

i

]
,B∗ ∈ [

γ −, γ +]
,Ai ∈ [

η−
i , η+

i

]
(i = 1, 2, . . . , n).

→1 is a R− implication, and →2 is a R− implication or an (S,N )− implication
satisfying (C2). ⊗1,⊗2 are respectively the operation residual to →1,→2. Then for the
α-symmetric implicational algorithm for FMT, we achieve

(∨n
i=1

(
η−
i →1 s̃y

(
β+
i

)) ⊗2 α
) →1 ĩy

(
γ −) ≤ SITn(x)

≤
(
Vn
i=1

(
η+
i →1 ĩy

(
β−
i

)) ⊗2 α
)

→1 s̃y
(
γ +)

. (23)

Proof: Evidently →1 and →2 are decreasing with respect to the first variable and
increasing with respect to the second variable. Meanwhile ⊗1 and ⊗2 are increasing,
then one has

∨n
i=1

(
η+
i →1 inf

(
β−
i

)) ≤ ∨n
i=1(Ai(x) →1 Bi(y)) ≤ ∨n

i=1

(
η−
i →1 sup

(
β+
i

))
.

Furthermore, we can get

(∨n
i=1(Ai(x) →1 Bi(y)) ⊗2 α) →1 inf

(
γ −)

≤ (∨n
i=1(Ai(x) →1 Bi(y)) ⊗2 α) →1 B

∗(y)

≤ (∨n
i=1(Ai(x) →1 Bi(y)) ⊗2 α

) →1 sup
(
γ +)

,

Combining with Proposition 2.3, it can be obtained
(∨n

i=1

(
η−
i →1 s̃y

(
β+
i

)) ⊗2 α
) →1 ĩy

(
γ −)

≤ infy∈Y {(∨n
i=1(Ai(x) →1 Bi(y)) ⊗2 α) →1 B

∗} = SITn(x)

≤
(
∨n
i=1

(
η+
i →1 ĩy

(
β−
i

)) ⊗2 α
)

→1 s̃y
(
γ +)

The proof is completed.
Similar to Theorem 4.3, Theorem 4.4 can be proved.
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Theorem 4.4. Let Bi,B∗ ∈ F(Y ), Ai ∈ F(X ). Suppose that

Bi ∈ [
α−
i , α+

i

]
,B∗ ∈ [

γ −, γ +]
,Ai ∈ [

η−
i , η+

i

]
(i = 1, 2, . . . , n)

→1 is an (S,N )− implication satisfying (C2) and (C6) (associated withN and ⊕1),
and →2 is a R− implication or an (S,N )− implication satisfying (C2). ⊗1,⊗2 are
respectively the operation residual to →1,→2. Then for the α-symmetric implicational
algorithm for FMT, we achieve

N
(
Vn
i=1

(
N

(
η−
i

) ⊕1 s̃y
(
β+
i

)) ⊗2 α
) ⊕1 ĩy

(
γ −) ≤ SITn(x) ≤

N
(
Vn
i=1

(
N

(
η+
i

) ⊕1 ĩy
(
β−
i

)) ⊗2 α
)

⊕1 s̃y
(
γ +) (24)

If the general operators are continuous (including t-norm, t-conorm and fuzzy nega-
tion), then α-symmetric implicational algorithm in which→1 is an (S,N )− implication
with multiple rules is stable. If the R− implication and t-norm are continuous, then the
α-symmetric implicational algorithm in which →1 is an R− implication with multiple
rules is also stable. Specifically, suppose that there is a perturbation sequence

([
β−
im, β+

im], [η
−
im, η+

im

]
,

[
γ −
m , γ +

m

])

of the input (Ai,Bi,A∗) with respect to the α-symmetric implicational algorithm for
FMP, which means that (m = 1, 2, ...)

limm→∞supx∈X
(
β+
im(x) − β−

im(x)
) = limm→∞supy∈Y

(
η+
im(y) − η−

im(y)
)

= limm→∞supx∈X
(
λ+
m(x) − γ −

m (γ )
) = 0

(25)

is effective. In Theorem 4.1 and 4.2, we adopt λ+
m , λ−

m to indicate the corresponding
lower and upper bounds of output of the α-symmetric implicational algorithm, viz.,
SIPn(y) ∈ [

λ−
m, λ+

m

]
. For

([
β−
im, β+

im

]
,
[
η−
im, η+

im

]
,
[
γ −
m , γ +

m

])
,

when the continuous condition is satisfied, one has from Theorem 4.1 and 4.2 that

limm→∞supy∈Y
(
λ+
m(y) − λ−

m(y)
) = 0. (26)

That is, the output of the α-symmetric implicational algorithm converges steadily to
a value when the continuous conditions mentioned above is effective. Similarly, for the
FMT input (Ai,Bi,B∗), Theorem 4.3 and Theorem 4.4 obtain similar results. In short,
the α-symmetric implicational algorithm for situation of multiple rules is stable from
the perspective of interval perturbation.

5 Summary and Prospect

In this study, the interval perturbation problem of the α-symmetric implicational algo-
rithm is studied. Aiming at the α-symmetric implicational algorithm, for the FMP and
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FMT problems with fuzzy reasoning, the corresponding upper and lower bound esti-
mators for R− implications and (S,N )− implications are given for the input interval
perturbation with one rule, and the corresponding stability is verified. Then, for the situa-
tion of multiple rules, the upper and lower bound estimators for the output are also given,
and the corresponding stability is validated. To sum up, it is found that the A-symmetric
implicational algorithm has good stability.

Furthermore, the interval perturbation problem will be studied for other kinds of
symmetric implicational algorithms in the future.

In future research, we try to combine fuzzy reasoning and fuzzy clustering [29–31].
In detail, we can integrate the idea of fuzzy reasoning into the design of the objective
function of the fuzzy clustering algorithm, so as to establish a new fuzzy clustering
strategy.
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Abstract. To improving the (α, β)-resolution efficiency for linguistic truth-
valued intuitionistic fuzzy propositional logic (LTV-IFPL), colored resolution is
applied to (α, β)-resolution. By setting a threshold (α, β), the set of clauses is
divided into two types, the (α, β)-unsatisfiable clauses are colored as clash elec-
trons, uncolored clauses as clash core, which requires resolution between the two
sets, and provides the ordering of the generalized literals. The (α, β)-colored res-
olution method is introduced into the linguistic truth-valued intuitionistic fuzzy
logic system, and its completeness and reliability are proved. Finally, we provide
the steps of the automatic reasoning algorithm based on (α, β)-colored resolution
of the linguistic truth-valued intuitionistic fuzzy logic system, and illustrate the
effectiveness of the algorithm by examples.

Keywords: Automatic reasoning · LTV-IFPL · (α, β)-Colored resolution

1 Introduction

Automatic reasoning based on resolution serves as a pivotal vehicle to achieve computa-
tional reasoning for intelligent or complex systems. Due to the large amount of fuzzy and
uncertain information in real life, it is a significant challenge to extend resolution prin-
ciples to effectively mimic human reasoning in imprecise and uncertain environments.
Fuzzy set theory proposed by Zadeh [1] is an alternative to traditional two-valued logic
for describing situations containing imprecise and vague data. However, people tend to
have positive and negative attitudes when evaluating. For example, the evaluation of a
student by his/her lecturer could be “good but not exceptional”, in which case fuzzy
set theory cannot capture the complete information well, resulting in information loss.
In order to overcome this drawback and preserve as much full information as possi-
ble, Atanassov [2] proposes intuitionistic fuzzy set theory, which can express people’s
thoughts more accurately. Liu et al. [3] propose intuitionistic fuzzy logic on the basis of
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the attribution principle of fuzzy logic, using two real numbers from 0 to 1 to represent
the “degree of truth” and “degree of falsity” of a proposition. On this basis, Zou et al.
[4] introduce the concepts of clause (α, β)-satisfiability and (α, β)-resolution formula,
argue the satisfiability of generalized clauses and their resolution formula, propose a
method for (α, β)-generalized lock resolution based on intuitionistic fuzzy logic and
give the proof of its soundness and completeness. Xu et al. conquer the challenge of
generalized literal α-resolution in LF(X) by transforming to LP(X), in order to support
α-resolution-based automated reasoning algorithms [5]. Recently, linguistic approaches
are widely studied and applied to address linguistic assessment issues, such as personnel
management [6], web information processing [7], multi-criteria decision making [8],
fuzzy risk analysis [9, 10] and so on. He et al. introduce a method of α-lock resolution
for lattice-valued propositional logic LP(X) and prove its weak completeness [11]. To
deal with linguistic truth-valued uncertainty reasoning, a linguistic truth-valued propo-
sitional logic framework is proposed by Zou et al. and a reasoning method for linguistic
truth-valued logic system is developed [12, 13].

If people want to makemachines more intelligent, computers must necessarily simu-
late the ability of people to process linguistic information, and people usually use natural
language to reason and make decisions, such as, “somewhat good”, “fair to poor”, “very
good”, etc. We usually consider “very good” to be better than “very good” and “very
good” to be better than “average”. In many cases, linguistic values are not comparable.
For example, “somewhat good” and “generally bad” are not comparable and cannot be
defined simply as good or bad. In the past, linguistic values have been usually converted
into numerical values for calculation, but linguistic values are fuzzy while numerical
values are precise, and there is information missing in the conversion process. There-
fore, we apply a linguistic truth-valued intuitionistic fuzzy lattice [14], which enables
computers to reason directly about linguistic values, effectively avoiding the missing
information caused when converting linguistic values into numerical values for calcu-
lation, and at the same time solving the problem of incomparable information about
linguistic values due to the characteristics of the lattice. The outputs of this paper would
provide a valuable flexibility for uncertainty reasoning in linguistic-valued intuitionistic
fuzzy logic, which benefits the development of artificial intelligence.

The approximate structure of this paper is as follows. Section 2 briefly reviews the
(α, β)-reduction principle of LTV-IFPL. Section 3 presents the (α, β)-colored resolu-
tion method for LTV-IFPL and proves the completeness and reliability of the proposed
method. Section 4 provides the steps of the automatic inference algorithm based on
(α, β)-colored resolution for linguistic truth-valued intuitionistic fuzzy logic systems
and illustrates the effectiveness of the algorithm with examples. Conclusions and future
work are described in Sect. 5.

2 Preliminaries

Definition 2.1. [15] Let L = (L,∧,∨,O, I) be a bounded lattice with inverse order
pairwise union “′” and I and O be the largest and smallest elements of L. If

(1) x → (y → z) = y → (x → z);
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(2) x → x = I ;
(3) x → y = y′ → x′;
(4) if x → y = y → x, then x = y;
(5) (x → y) → y = (y → x) → x;
(6) (x ∨ y) → z = (x → z) ∨ (y → z);
(7) (x ∧ y) → z = (x → z) ∧ (y → z);

Then L = (L,∧,∨,O, I) is the lattice implication algebra.

Definition 2.2. [15] ADn = {h1, h2, · · · , hn} is the set of n tone operators, h1 < h2 <

· · · < hn, MT = {t, f } the set representing the meta-linguistic truth values and c1 < c2,
defining Lv(n×2) = ADn × MT and defining the image g as follows:

g((hi,MT )) =
{
(d ′

i ,b1),MT=c1
(d ′

i ,b2),MT=c2

Then g is a bijection whose inverse map is denoted g−1, and for any x, y ∈ Lv(n×2),
define:

(x ∨ y) = g−1(g(x) ∨ g(y));

(x ∧ y) = g−1(g(x) ∧ g(y));

x′ = g−1(g(x))′;

(x → y) = g−1(g(x) → g(y));
Then Lv(n×2) = (

Lv(n×2),∧,∨,′ , (hn, f ), (hn, t)
)
is called the linguistic truth-valued

lattice implication algebra generated with ADn and MT . Its Hasse diagram is shown in
Fig. 1.

Fig. 1. Hasse Diagrams of Lv(n×2)
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Definition 2.3. [15] In 2n-element linguistic truth-valued implication alge-
bra Lv(n×2) = {

(hi, t),
(
hj, f

)|hi ∈ Ln, t, f ∈ L2
}
, for any (hi, t),

(
hj, f

) ∈
Lv(n×2), call

(
(hi, t),

(
hj, f

))
a linguistic truth-valued intuitionistic fuzzy pair and

S={
(hi, t),

(
hj, f

)|i, j ∈ {1, 2, . . . , n}} a set of 2n-element linguistic truth-valued intu-
itionistic fuzzy pairs. If

(
(hi, t),

(
hj, f

))
satisfies (hi, t)

′(hj, f
)
, where the “′” operation

is an inverse-order pair ensemble in Lv(n×2).

Let the set of tone words L5 = {hi|i = 1, 2, 3, 4, 5}, where the tone words h1 denote
“slightly”, h2 denote “somewhat”, h3 denote “generally”, h4 denote “very”, h5 denotes
“very”, h1 < h2 < h3 < h4 < h5, and the elementary linguistic truth value {t, f }, wo
can obtain a ten-element linguistic truth value intuitionistic fuzzy lattice LI10, its Hasse
diagram is shown in Fig. 2.

Fig. 2. Structure diagrams of 10-element linguistic truth-valued intuitionistic fuzzy lattice LI2n

We consider linguistic truth-valued intuitionistic fuzzy inference with intermediate
elements

((
h(n+1)/2, t

)
,
(
h(n+1)/2, f

))
(n of which are odd).

Definition 2.4. [15] Let G be a linguistic truth-valued intuitionistic fuzzy general-
ized clause. If there exists an assignment V , such that V (G) = (

(hi, t),
(
hj, f

))
satisfies (hi, t) ≥ α,

(
hj, f

) ≤ β, and can be denoted as V (G) ≥ (α, β), where
α ≥ (h(n+1)/2, · · · t) and β ≤ (

h(n+1)/2, f
)
, G is called (α, β)-satisfiable, otherwise

G is called (α, β)-unsatisfiable or (α, β)-false, denoted as V (G) < (α, β).

Definition 2.5. [15] Let P
(
(hi, t),

(
hj, f

))
and P((hk , t), (hl, f )) be two LTV-IFPL gen-

eralized literals. If (hi, t) ≥ α,
(
hj, f

) ≤ β,but (hk , t) ≤ α,(hl, f ) ≥ β,then we call
P
(
(hi, t),

(
hj, f

))
and P((hk , t), (hl, f )) are (α, β)-complementary literals.

Definition 2.6. [15] Let P
(
(hi, t),

(
hj, f

))
and P((hk , t), (hl, f )) be two linguistic truth-

valued intuitionistic fuzzy generalized literals. If P
(
(hi, t),

(
hj, f

))
is (α, β)-satisfiable

and P((hk , t), (hl, f )) is (α, β)-satisfiable, or P
(
(hi, t),

(
hj, f

))
is (α, β)-unsatisfiable

and P((hk , t), (hl, f )) is (α, β)-unsatisfiable, then we say that P
(
(hi, t),

(
hj, f

))
and

P((hk , t), (hl, f )) are (α, β)-similar literals.
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Definition 2.7. [15] Let A and B be generalized clauses as follows:

A = A1 ∨ · · · ∨ Ai ∨ · · · ∨ An

B = B1 ∨ · · · ∨ Bj ∨ · · · ∨ Bn

where Ai and Bj are generalized clauses. If Ai and Bj are (α, β)-complementary literals,
then R = A1 ∨ · · · ∨ Ai−1 ∨ Ai+1 · · · ∨ An ∨ B1 ∨ · · · ∨ Bj−1 ∨ Bj+1 ∨ · · · ∨ Bn is called
the (α, β)- resolution form of A and B, denoted as R = R(A,B).

Theorem 2.1. Let a, b be linguistic truth-valued intuitionistic fuzzy logic propositions,
then the following definitions and operations are commonly used in linguistic truth-
valued intuitionistic fuzzy logic.

(1) Negative operation

V (∼ P) = ((
hn−j−1, t

)
, (hn−i−1, f )

)

(2) Combining operation

V (P ∧ Q) = ((
hmin(i,k), t

)
,
(
hmin(j,l), f

))

(3) Analytic operation

V (P ∨ Q) = ((
hmax(i,k), t

)
,
(
hmax(j,l), f

))

(4) Implication operation

V (P → Q) = ((
hmin(n,n−i+k,n−j+l), t

)
,
(
hmin(n,n−i+l), f

))

For the three LTV-IFPL formulas, F
(
(hi, t),

(
hj, f

))
,G((hk , t), (hl, f )),

H ((hm, t), (hn, f ))), the following equivalence properties hold:

(1) Idempotent law

F
(
(hi, t),

(
hj, f

)) ∨ F
(
(hi, t),

(
hj, f

))=F
(
(hi, t),

(
hj, f

))

(2) Commutative law

F
(
(hi, t),

(
hj, f

)) ∨ G((hk , t), (hl, f ))=G((hk , t), (hl, f )) ∨ F
(
(hi, t),

(
hj, f

))

F
(
(hi, t),

(
hj, f

)) ∧ G((hk , t), (hl, f ))=G((hk , t), (hl, f )) ∧ F
(
(hi, t),

(
hj, f

))

(3) Associative law

F
(
(hi, t),

(
hj, f

)) ∨ (G((hk , t), (hl, f )) ∨ H ((hm, t), (hn, f )))

=(
F

(
(hi, t),

(
hj, f

)) ∨ G((hk , t), (hl, f ))
) ∨ H ((hm, t), (hn, f ))

F
(
(hi, t),

(
hj, f

)) ∧ (G((hk , t), (hl, f )) ∧ H ((hm, t), (hn, f )))

=(
F

(
(hi, t),

(
hj, f

)) ∧ G((hk , t), (hl, f ))
) ∧ H ((hm, t), (hn, f ))
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(4) Absorption law

F
(
(hi, t),

(
hj, f

)) ∨ (
F

(
(hi, t),

(
hj, f

)) ∧ G((hk , t), (hl, f ))
)=F

(
(hi, t),

(
hj, f

))

F
(
(hi, t),

(
hj, f

)) ∧ (
F

(
(hi, t),

(
hj, f

)) ∨ G((hk , t), (hl, f ))
)=F

(
(hi, t),

(
hj, f

))

(5) Distribution law

F
(
(hi, t),

(
hj, f

)) ∨ (G((hk , t), (hl, f )) ∧ H ((hm, t), (hn, f )))

=(
F

(
(hi, t),

(
hj, f

)) ∨ G((hk , t), (hl, f ))
) ∧ (

F
(
(hi, t),

(
hj, f

)) ∨ H ((hm, t), (hn, f ))
)

F
(
(hi, t),

(
hj, f

)) ∧ (G((hk , t), (hl, f )) ∨ H ((hm, t), (hn, f )))

=(
F

(
(hi, t),

(
hj, f

)) ∧ G((hk , t), (hl, f ))
) ∨ (

F
(
(hi, t),

(
hj, f

)) ∧ H ((hm, t), (hn, f ))
)

(6) De Morgan’s law

∼ (
F

(
(hi, t),

(
hj, f

)) ∧ G((hk , t), (hl, f ))
)

= ∼ F
(
(hi, t),

(
hj, f

))∨ ∼ G((hk , t), (hl, f ))

∼ (
F

(
(hi, t),

(
hj, f

)) ∨ G((hk , t), (hl, f ))
)

= ∼ F
(
(hi, t),

(
hj, f

))∨ ∼ G((hk , t), (hl, f ))

3 (α, β) -Colored Resolution of Linguistic Truth-Valued
Intuitionistic Fuzzy Propositional Logic

Definition3.1. Weadd a special symbol (put a horizontal bar on the literals) to the literals
in the LTV-IFPL generalization clause, and these literals are called colored literals, and
the LTV-IFPL generalized clause with colored literals is called a LTV-IFPL colored
clause, and the set of colored text is denoted as col(C), and the set of uncolored text is
denoted as uncol(C).

Definition 3.2. If C is a LTV-IFPL colored clause in which at least two literals have
mguσ , and it is satisfied iff L((hm, t), (hn, f )) ∈ col(C), Lσ ((hm, t), (hn, f )) ∈ col(Cσ )

established, thenCσ is called the colored genetic factor of the LTV-IFPL colored clause.

Definition 3.3. If C is a l LTV-IFPL colored clause in which at least two literals
have mguσ , and it is satisfied iff L((hm, t), (hn, f )) ∈ uncol(C), Lσ ((hm, t), (hn, f )) ∈
uncol(Cσ ) established, then Cσ is called the uncolored genetic factor of the LTV-IFPL
colored clause.

Definition 3.4. Let C1 and C2 be LTV-IFPL colored clauses without common vari-
ables, which L1

(
(hi, t),

(
hj, f

))
and L2((hk , t), (hl, f )) are the literals in C1 and C2,

respectively, they
are (α, β)-complementary literals. If there exists a mguσ between L1

(
(hi, t),

(
hj, f

))
and ∼ L2((hk , t), (hl, f )), the formula of (α, β)-resolution ResJ (C1,C2) is called the
formula of (α, β)-colored resolution. The literals colored in the formula of (α, β)-
colored resolution is: if there is L((hm, t), (hn, f ))

(
uncol

(
Cσ
1

) − L1
(
(hi, t),

(
hj, f

)))
or L((hm, t), (hn, f )) ∈ (

uncol
(
Cσ
2

)− L2((hk , t), (hl, f )) ∈ (
uncol

(
Cσ
2

)−L2((hk , t) ,
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(hl, f )) ∧ L((hm, t), (hn, f )) /∈ (
col

(
Cσ
1

)−Lσ
1 ((hi, t) ,

(
hj, f

)) ∧ L((hm, t), (hn, f )) /∈
∧L((hm, t), (hn, f )) /∈ Lσ

2 ((hk , t), (hl, f )), thenL((hm, t), (hn, f )) is aLTV-IFPLcolored
literal and the other literals are called l LTV-IFPL uncolored literals.

Definition 3.5. LTV-IFPL colored clauseC1 forC2 the formula of (α, β)-colored resolu-
tion areC1 orC1 genetic factor forC2 orC2 genetic factor’s the formula of (α, β)-colored
resolution.

Specifies that the designation of a coloring literal is (α, β)-unsatisfiable.

Definition 3.6. Let V be an assignment of the set of clauses S in LTV-IFPL, a finite
sequence of clauses

(
E1, · · ·Eq,N

)
, q ≥ 1 andP is an ordering of all generalized literals,

called (α, β)-colored clash of V iff E1, · · ·Eq,N satisfied the following requirements:

(1) V (Ei) < (α, β), where α ≥ (
h(n+1)/2, t

)
and β ≤ ((

h(n+1)/2, f
)
, i = 1, · · · q, that

is, all the characters in Ei are colored literals.
(2) Let R1 = N , for every i = 1, · · · q, there exists the formula of (α, β)-colored

resolution Ri+1 of Ri for Ei.
(3) The (α, β)- resolution literal of Ei is the largest generalized literal in Ei.
(4) V

(
Rq+1

)
< (α, β), then Rq+1 is (α, β)-unsatisfiable.

Rq+1 is called the formula of (α, β)-colored resolution of (α, β)-colored clash,
E1, · · ·Eq is called electrons of (α, β)-colored clash and N is called cores of (α, β)-
colored clash.

Definition 3.7. Let C be a colored clause of LTV-IFPL and C ′ a colored example of C.
If C ′ = Cθ , and the colored literal in is specified as L′((hi, t),

(
hj, t

)) ∈ uncol
(
C ′), iff

there exists L
(
(hi, t),

(
hj, t

)) ∈ uncol(C) and L′((hi, t),
(
hj, t

))=Lθ
(
(hi, t),

(
hj, t

))
.

Definition 3.8. Let V be an assignment of the clause set of LTV-IFPL, a finite sequence
of clauses

(
E1, · · ·Eq,N

)
, q ≥ 1, and P be an ordering of all generalized literals. The

resolution deduction from S is called (α, β)-colored resolution deduction iff any clauses
in the deduction is the formula of (α, β)-colored resolution or a clause in S.

Theorem 3.1. (Reliability). Let V be an assignment of the clause set S of LTV-IFPL, a
finite sequence of clauses

(
E1, · · ·Eq,N

)
, q ≥ 1, and P be an ordering of all generalized

literals, the clause set S of LTV-IFPL is (α, β)-unsatisfiable if there exists an (α, β)-
colored resolution deduction from S to (α, β)−�.

Proof. We use the converse method and assume that there exists an (α, β)-
colored resolution deduction from S to (α, β)−�, and the clause set S of
LTV-IFPL is (α, β)-satisfiable. Then, we can obtain that there exist two res-
olution unit clauses Lm

((
him , t

)
,
(
hjm , f

))
and Ln

((
hin , t

)
,
((
hjn , f

))
, such that

V (Lm ∧ Ln)=
((
hmin(im,in), t

)
,
(
hmin(jm,jn), f

))
< (α, β), and that Lm

((
him , t

)
,
(
hjm , f

))
and Ln

((
hin , t

)
,
(
hjn , f

))
are (α, β)-satisfiable, and we know that the formula of (α, β)-

resolution is also (α, β)-satisfiable, contradicting the assumption, and the theorem is
proved.
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Theorem 3.2. (Completeness). Let the clause set S of LTV-IFPL be the set of (α, β)-
unsatisfiable clauses, V be an assignment of the clause set S of LTV-IFPL, a finite
sequence of clauses

(
E1, · · ·Eq,N

)
,q ≥ 1, and P be an ordering of all generalized

literals, then there exists an (α, β)-colored resolution deduction from S to (α, β)−�.

Proof. We use induction method and set the number of distinct literals appearing in the
LTV-IFPL clause set to |O|.

When |O|=1, since the LTV-IFPL clause set S is an unsatisfiable clauses set, there
is P ∈ S,∼ P ∈ S, then there exists an (α, β)-colored resolution deduction from S to
(α, β)−�.

When |O| ≤ n, the theorem holds.
When |O|=n+1, discussed in two cases:
(1) There is a unit clause K

(
(hi, t),

(
hj, t

))
in S, assign the K

(
(hi, t),

(
hj, t

))
value to

(α, β)-unsatisfiable, then removing all clauses containing K
(
(hi, t),

(
hj, t

))
from S, and

removing ∼ K
(
(hi, t),

(
hj, t

))
from the remaining clauses, we obtain the set of clauses

S ′. It is obvious that S ′ is (α, β)-unsatisfiable and the number of atoms is less than n in
S ′, by the induction hypothesis there exists an (α, β)-colored resolution deduction D′
that introduces (α, β)−� from S ′. Transform D′ a bit: for every (α, β)-colored clash{
E′
1, · · ·E′

q,N
′
}
inD′, and E′

1, · · ·E′
q,N

′ is the initial clause. IfN ′ is obtained by remov-

ing ∼ K
(
(hi, t),

(
hj, t

))
from N , then we can replace

{
E′
1, · · ·E′

q,N
}
by constituting a

new (α, β)-colored clash; If E′
i is obtained by removing ∼ K

(
(hi, t),

(
hj, t

))
from Ei,

then we can replace E′
i by a (α, β)-colored clash {K,Ei}. Others remain the same, and

the modified deduction D can also introduce (α, β)−�.
(2) There is no unit clause that be assigned to (α, β)-unsatisfiable in S. Taking the

smallest literal J
(
(hi, t),

(
hj, t

))
, set L((hm, t), (hn, t)) to an (α, β)-unsatisfiable clause

in both J
(
(hi, t),

(
hj, t

))
and ∼ J

(
(hi, t),

(
hj, t

))
. By removing ∼ L((hm, t), (hn, t))

from S and removing L((hm, t), (hn, t)) from the remaining literals, we can obtain the
set of clauses S ′. It is obvious that S ′ is (α, β)-unsatisfiable and the number of all atoms in
S ′ is less than n. By induction it is assumed that there exists an (α, β)- colored resolution
deduction from S ′ to D′. By restoring the clauses of S in D′ to the clause of S, we
can get an (α, β)-colored resolution deduction S from D1 and can launch (α, β)−�
or launch L((hm, t), (hn, t)). If we can launch (α, β)−�, the theorem is proved; if we
launchL((hm, t), (hn, f )), the set of clauses is updated to S∪{L((hm, t), (hn, t))}, because
L((hm, t), (hn, t)) is an (α, β)-unsatisfiable unit clause, so there exists an (α, β)-colored
resolution deduction D2 from S ∪ {L((hm, t), (hn, t))}. Connecting D1 and D2, we can
get an (α, β)-colored resolution deduction from S to (α, β)−�.

The induction method is completed and the theorem is proved. There exists an
(α, β)-colored resolution deduction from S to (α, β)−�.

4 (α, β) -ColoredResolutionAlgorithms of Linguistic Truth-Valued
Intuitionistic Fuzzy Propositional Logic

We present the (α, β)-colored resolution algorithm for LTV-IFPL as follows:
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(1) Input known conditions;
(2) We convert the known conditions into generalized clauses of the LTV-IFPL to obtain

the set of generalized clauses S of the LTV-IFPL;
(3) We sort all generalized literals in the set of generalized clauses S of LTV-IFPL;
(4) If there exists (α, β)−�, then the theorem is proved, end. Otherwise go to (5);
(5) We determine whether the generalized clause of LTV-IFPL is (α, β)-unsatisfiable,

and if so, store the clause in S1, add a horizontal bar to the literals in the clauses,
i.e., colored, and treat the clause as (α, β)-colored clash electrons; otherwise store
the clause in S2, as (α, β)-colored clash core;

(6) We perform (α, β)- colored resolution using Definition 3.6 to obtain the formula
Rq of (α, β)-colored resolution of LTV-IFPL, go to (5).

The flow chart is shown in Fig. 3.

Fig. 3 (α, β)-Colored Resolution Method in Linguistic Truth Value Intuitive Fuzzy Propositional
Logic

Example 4.1. Set C1 = P ∨ Q, C2 = Q ∨ R, C3 = R ∨ W , C4 =∼ R∨ ∼ P,
C5 =∼ W∨ ∼ Q, C6 =∼ Q∨ ∼ R to generalized clauses of LTV-IFPL, and S =
C1 ∧C2 ∧C3 ∧C4 ∧C5 ∧C6, V to an assignment of the clause set S of LTV-IFPL such
that:

V (P) = ((h1, t), (h2, f )),

V (Q) = ((h2, t), (h2, f )),
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V (R) = ((h1, t), (h3, f )),

V (W ) = ((h2, t), (h3, f ))

Taking (α, β)=((h3, t), (h4, t)), then we have,

V (C1) = ((h2, t), (h2, f ))

V (C2) = ((h2, t), (h3, f ))

V (C3) = ((h2, t), (h3, f ))

V (C4) = ((h4, t), (h5, f ))

V (C5) = ((h4, t), (h4, f ))

V (C6) = ((h4, t), (h5, f ))

The clause
set of LTV-IFPL S = {P((h1, t), (h2, f )) ∨ Q((h2, t), (h2, f )),Q((h2, t), (h2, f )) ∨
R((h1, t), (h3, f )),R((h1, t), (h3, f )) ∨ W ((h2, t), (h3, f )),∼ R((h1, t), (h3, f ))∨ ∼
P((h1, t), (h2, f )),∼ W ((h2, t), (h3, f ))∨ ∼
Q((h2, t), (h2, f )) ,∼ Q((h2, t), (h2, f ))∨ ∼ R((h1, t), (h3, f ))}.

We specify an ordering of the generalized words in the set of clauses as P > Q >

W > R.
Where C1,C2,C3 are (α, β)-unsatisfiable, C4,C5,C6 are (α, β)-satisfiable, then

S1 = C1 ∧ C2 ∧ C3

S2 = C4 ∧ C5 ∧ C6

We finish coloring S1 and its (α, β)-colored resolution as follow:

(1) P((h1, t), (h2, f )) ∨ Q((h2, t), (h2, f ))
(2) Q((h2, t), (h2, f )) ∨ R((h1, t), (h3, f ))
(3) R((h1, t), (h3, f )) ∨ W ((h2, t), (h3, f ))
(4) ∼ R((h1, t), (h3, f ))∨ ∼ P((h1, t), (h2, f ))
(5) ∼ W ((h2, t), (h3, f ))∨ ∼ Q((h2, t), (h2, f ))
(6) ∼ Q((h2, t), (h2, f ))∨ ∼ R((h1, t), (h3, f ))
(7) P((h1, t), (h2, f )) ∨ Q((h2, t), (h2, f )) (1) (2) (6) resolution
(8) Q((h2, t), (h2, f )) (2)(7)(4) resolution
(9) R((h1, t), (h3, f )) (3)(8)(5) resolution
(10) (α, β)−� (8)(9)(6) resolution

There exists an (α, β)-colored resolution deduction from S to (α, β)−� with
assignment V , and the conclusion holds.
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5 Conclusion

We have proposed the (α, β)-colored resolution method of LTV-IFPL system, which
divides the LTV-IFPL generalized literals into two types, namely, colored literals and
uncolored literals, and provided the ordering between the literals, requiring the resolution
literals to be the maximum literal symbol. The more restrictions on the resolution, the
higher the efficiency of the resolution. Our proposed (α, β)-colored resolution method
restricts not only the clauses, but also the resolution literals, which avoids the genera-
tion of some redundant resolution clauses, thus significantly improving the resolution
efficiency. As future work we intend to introduce this resolution method to linguistic
truth-valued intuitionistic fuzzy first-order logic.
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Abstract. Most of the current fuzzy clustering algorithms are sensitive to clus-
ter initialization and do not cope well with high dimensionality. To alleviate these
problems, we come upwith a viewpoint-driven subspace fuzzy c-means (VSFCM)
algorithm. First of all, based on the DPC (clustering by fast search and find of den-
sity peaks) algorithm, a new cut-off distance is proposed, and the cut-off distance-
induced cluster initialization (CDCI) method is established as a new strategy for
initialization of cluster centers and viewpoint selection. Moreover, by taking the
viewpoint obtained by CDCI as the entry point of knowledge, a new fuzzy cluster-
ing strategy driven by knowledge and data is formed. We introduce the subspace
clustering mode, fuzzy feature weight processing mechanism, and derive the sep-
aration formula between the clusters of viewpoint optimization. Based upon these
points, we put forward the VSFCM algorithm. Finally, by comparing experiments
and using multiple advanced clustering algorithms and experimenting with artifi-
cial and UCI data sets, it is demonstrated that the VSFCM algorithm has the best
performance expressed in terms of five indexes.

Keywords: Fuzzy clustering · Fuzzy c-means · Separation between clusters ·
Viewpoint · Cluster center initialization

1 Introduction

Clustering algorithms have been widely studied in various fields such as pattern recog-
nition, biology, engineering system and so forth [1–3]. In the early stage, hard clustering
was mainly studied where every object strictly belonged to a single cluster. For example,
the DPC algorithm [4] is a recent excellent representative.

In fuzzy clustering, the fuzzy c-means (FCM) algorithm was one of the most com-
monly used method [5, 6]. Then, the use of weighted processing had become an impor-
tant direction, which included the weighted FCM (WFCM) algorithm [7], the feature
weighted fuzzy k-means (FWFKM) algorithm [8], the attribute weight algorithm (AWA)
[9], the fuzzy weighted k-means (FWKM) algorithm [10], and the fuzzy subspace
clustering (FSC) algorithm [11, 12]

However,when clusteringwas completed in a high-dimensional space, the traditional
clustering algorithms had shortcomings [13]. A key challenge was that in many real-
world problems, data points in different clusters were often related to different feature
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subsets, that was, clusters could exist in different subspaces. These subspaces were com-
posed of different feature subsets [14]. The typical algorithms incorporated the simulta-
neous clustering and attribute discrimination (SCAD) algorithm [15], the enhanced soft
subspace clustering (ESSC) [16], and the feature-reduction FCM (FRFCM) [17].

Clusteringwasmainly a data-driven optimization process. In fact, domain knowledge
could be used to assist the development of clustering, e.g., the viewpoint-based FCM (V-
FCM) algorithm [18] and the density viewpoint induced possibilistic FCM (DVPFCM)
algorithm.

The current problems of fuzzy clustering algorithms are mainly as follows:

• Issues sensitive to cluster initialization

Most fuzzy clustering algorithms are sensitive to the initial results of clustering. For
example, FCM, V-FCM, SCAD, ESSC, FRFCM are all sensitive to the initialization
of the method. The better processing mechanism for this is the HDCCI initialization
method given by the DVPFCM algorithm, and its idea is based on the DPC algorithm.
We know that it is extremely important for the selection of the cut-off distance in the
DPCalgorithm, because it directly affects the accuracy of clustering. The cut-off distance
calculationmethod in theDVPFCMalgorithmuses a fixed and rigid formula,which lacks
solid basis and cannot adapt to various data sets.

• Problems with weak adaptability to high dimensionality

Nowadays the amount of data information is getting larger and the dimensions are
getting higher and higher, which require clustering algorithms to have certain require-
ments for the ability to process high-dimensional data. Most algorithms are still weak
for it. FCM, V-FCM, and DVPFCM do not have any special measures to deal with high-
dimensional data, and they appear to be unable to do so. SCAD, ESSC, and FRFCM all
use subspace processing methods with different weights, which are relatively better, but
these are purely data-driven, and the efficiency and accuracy of high-dimensional data
clustering cannot reach the ideal level.

So far, in this study we have put forward the VSFCM algorithm. On the one hand,
using the dual-driven pattern of data and knowledge, the cut-off distance of DPC is
improved in terms of viewpoint selection, and the point with the highest density is
selected as the viewpoint more accurately, and a cut-off distance-induced clustering
initialization method CDCI is proposed. This provides a new initialization strategy
and viewpoint. On the other hand, we introduce viewpoints into subspace clustering
to improve the convergence speed of each subspace. And adding the separation part
between clusters can minimize the compactness of the subspace clusters and maximize
the projection subspace where each cluster is located. The fuzzy feature weight process-
ing mode is introduced, and the VSFCM algorithm is established on the basis of CDCI
and viewpoint.
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2 Related Works

Assuming that the data set X = {xj}nj=1 is a set of n samples, we cluster the data into c
(2 ≤ c ≤ n) classes, and produce a cluster center set V = {vi}ci=1. Each sample xj and
the cluster center vi are l dimensional data.

Frigui and Nasraoui [15] proposed the SCAD algorithm that simultaneously per-
formed clustering and feature weighting. It used continuous feature weighting, so it pro-
vided a richer feature correlation representation than feature selection. Moreover, SCAD
independently learned the feature association representation of each cluster in an unsu-
pervised way. Later, Deng [16] studied the use of intra-class information and inter-class
information, and proposed the ESSC algorithm, in which the intra-class compactness in
the subspace was combined with separation between clusters. Yang and Nataliani [17]
proposed the FRFCM algorithm, which automatically calculated the weight of a single
feature while it reduced these unrelated feature components.

Pedrycz et al. [18] introduced knowledge into a data-driven process, where knowl-
edge was embodied through viewpoints, thus giving the V-FCM algorithm. Tang et al.
[19] proposed a new knowledge and data-driven fuzzy clustering algorithm, which is
called the DVPFCM algorithm. Thereinto, a new calculation method of density radius is
proposed, and a hypersphere density-based cluster center initialization (HDCCI) algo-
rithm was established. This method could obtain the initial cluster centers in densely
sampled areas. Then, the high-density points obtained by the HDCCI method were used
as new viewpoints, and it was proposed to integrate them into the DVPFCM algorithm.

The comparison of related algorithms is summarized in Table 1. In a word, the
existing algorithms still have big deficiencies in the initialization of cluster centers and
the processing of spatial dimensions. For this reason, we focus on solving these two
types of problems.

Table 1. Comparison of advantages and disadvantages of each algorithm

Algorithms Advantages Disadvantages

FCM As the classic algorithm, it can
automatically find cluster centers

Sensitive to cluster center initialization,
poor noise immunity

V-FCM Simplify the clustering process, fast
convergence

Poor noise immunity, sensitive to
cluster center initialization

DPC Can quickly determine cluster centers The density radius is difficult to
determine, and there are often human
errors

SCAD Fuzzy weighted index is introduced to
obtain better weight value

Sensitive to cluster center initialization

(continued)
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Table 1. (continued)

Algorithms Advantages Disadvantages

ESSC Taking into account the distance
between classes and classes, using
entropy information

Sensitive to cluster center initialization,
more parameters need to be set
manually

FRFCM Select important features by weighting,
and reduce feature dimension by
discarding unimportant features

Sensitive to cluster center initialization,
without considering the spatial
characteristics of the data

DVPFCM By new viewpoints and typical values,
there is relatively stronger robustness;
there is a better initialization strategy

Processing high-dimensional data
appears weak, and the cut-off distance
is not perfect

3 The Proposed VSFCM Algorithm

3.1 Cluster Initialization Method Induced by Cut-off Distance

Here is a new cluster center initialization method. The DPC algorithm is still used as the
starting point, where the local density ρj of the sample and its minimum distance δj to
other points with higher local density still use the previous calculation formulas, namely
the following (1) and (3).

ρj =
∑

f (djk − r), (1)

f (x) =
{
1, x = djk − r < 0
0, other

, (2)

δj = min{djk |ρk > ρj, k ∈ {1, 2, · · · , n}}. (3)

Here djk is the distance between two data points and r is the density radius. The local
density ρ reflects the number of data points within the radius r. It has been found that
the cut-off distance is critical to this algorithm.

In this study, we put forward a new cut-off distance as follows:

cd = min((cd1 + cd2)/2, cd1). (4)

Among them,

cd1 = Dposition, cd2 = dmax

2c
. (5)
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The cut-off distance recommended by the DPC algorithm should let that the average
number of neighbors of each data point is about 1%−2% of the total number of data.
n is the number of data points and c is the number of clusters. dkj is the distance from
the data point xk to xj. There are M = 1

2n(n − 1) distances. We sort dkj from small to
large, and we might as well write the resulting ordered sequence as D (d1 ≤ d2 ≤ ... ≤
dmax). Then we cut off according to the upper limit ratio of 2%, which can be taken as
position = round(2% × M ). Hence we get Dposition, namely cd1.

Furthermore, we use the maximum distance dmax to divide the c categories, and take
their radius, then the reference number is dmax

2c , which is recorded as cd2. Then the two
are combined and (cd1 + cd2)/2 is used as another factor.

Taking into account the limited range of 1%−2% of the total number of data, taking
the smaller of the two factors, (4) is obtained. Then, naturally we use.

ρj =
∑

f (dkj − cd). (6)

Next, we introduce parameters τj (j = 1, · · · , n) to calculate the initial cluster
centers directly. The formula is as below:

τj = ρj × δj (7)

The proposed initialization method can automatically select a more appropriate cut-
off radius, so that the selected initial cluster center is closer to the true value. The
traditional DPC algorithm uses the ρ − δ distribution map to subjectively select the
cluster centers, which is easy to cause human error. We calculate the parameters τj (j =
1, · · · , n) and sort them, and then select the largest number of data points τj (that are
not within the same cut-off radius) as the initial cluster centers. This ensures that we can
select the initial cluster centers and viewpoints conveniently, efficiently and relatively
accurately.

The obtained method is called the cut-off distance-induced clustering initialization
(CDCI) method.

3.2 The Mechanism of VSFCM Algorithm

Here we show the main idea of the viewpoint-driven subspace fuzzy C-means (VSFCM)
algorithm.

The first cluster center selected from the CDCI method is recorded as xe (i.e., the
largest point τj), which is taken as the viewpoint. The position of our viewpoint is
constantly changingwith iteration. The row number of the viewpoint in the cluster center
matrix is q = arc(min(dqd )). We replace the cluster center closest to the viewpoint as
the viewpoint.
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We use 3 parts to complete the construction of the objective function. The first part is
to introduce fuzzy feature weights based on the conventional objective function of FCM,
and integrate the original cluster centers into the viewpoint. The second part is an adaptive
fuzzy weight penalty term, which uses a pilot parameter δi that can be automatically
calculated. The third part is the separation itembetween clusters. Thereinto, fuzzy feature
weights are used, and the cluster centers of the viewpoints are merged, and the centroid
of the initialized cluster centers is used as the reference point for separation between
clusters. The objective function is as follows:

JVSFCM =
c∑

i=1

n∑

j=1

umij

l∑

k=1

wt
ik ||xjk − hik ||2+

c∑

i=1

δi

l∑

k=1

wt
ik − η

c∑

i=1

(

n∑

j=1

umij )
l∑

k=1

wτ
ik ||v0k − hik ||2.

(8)

Among them (i = 1, ..., c).

hi =
{
vi, i �= q
xe, i = q

, v0 =
c∑

i=1

vi/c. (9)

The following constraints are imposed (i = 1, ..., c, j = 1, ..., n).

c∑

i=1

uij = 1,
l∑

k=1

wik = 1. (10)

Here hi is the cluster center related to the viewpoint. When i = q, hi is replaced with the
point of maximum density or viewpoint. The reference point of our separation between
clusters is the above (9). The fuzzy weightwτ

ik is the weight for the k-th feature of the i-th
category, in which the fuzzy coefficient τ is used, general settings τ > 1. δi is the leading
parameter used to implement fuzzy weight penalty. Parameter η is used to adaptively
adjust the separation terms between clusters.

Note that (8) can be transformed into:

J =
c∑

i=1

n∑

j=1

umij

l∑

k=1

wτ
ik [(xjk − hik)

2 − η(v0k − hik)
2] +

c∑

i=1

δi

l∑

k=1

wτ
ik . (11)

The solution process is given below. Using the Lagrangian multiplier method for
(11), we get

uij = D
− 1

m−1
ij

∑c
l=1 D

− 1
m−1

lj

. (12)

This results in the iterative formula of membership degree, which involves the value
of η. Note that when η is very large, Dij may become negative, which is obviously
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not what we want. For this reason, we can naturally give the following qualifications
(i = 1, ..., c, j = 1, ..., n, k = 1, ..., l):

(xjk − hik)
2 − η(v0k − hik)

2 ≥ 0. (13)

Therefore, it is natural to make.

η = α0 min
i,j,k

(xjk − hik)2

(v0k − hik)
2 . (14)

Here α0 is a constant, and α0 ∈ [0, 1] [0, 1].
Secondly, we show the solution process of hik . Starting from ∂J ′

∂hik
= 0, one has

(i = 1, ..., c, k = 1, ..., l)

hik =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xek , i = q,
n∑

j=1
(xjk−ηv0k)umij

n∑
j=1

(1−η)umij

, i �= q
. (15)

Finally, we supply the solution process of wik . Starting from ∂J ′
∂wik

=0 (i = 1, ..., c,
k = 1, ..., l), we get:

wik = T
− 1

τ−1
ik

l∑
p=1

T
− 1

τ−1
ip

. (16)

Among them, τ ∈ (1,+∞), and δi is a penalty item. If δi is too large, then in (16),
each feature in the cluster is assigned a weight close to 1

l . If δi is too small, when uij is
0, the weight of one feature in the cluster will be assigned as 1, and the weight of other
features will be assigned as 0. δi reflects the contribution of each attribute to the cluster
center. In actual processing, we can define δi as the ratio of the sum of the previous part
of (11) and the fuzzy feature weight:

δi = K

n∑
j=1

umij Dij

l∑
k=1

wτ
ik

. (17)

Here K is a positive constant.
So far, the derivation process of cluster centers, membership degree matrix and

weight matrix of the VSFCM algorithm has been explained.

3.3 Framework of the VSFCM Algorithm

The execution process of the CDCI method and the VSFCM algorithm is shown in Table
2 and Table 3.
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Table 2. The execution process of the CDCI method

Algorithm 1 Cut-off Distance-induced Clustering Initialization (CDCI)

Input: Data set 1{ }Nk kX x , number of clusters C .

Output: cluster center matrix
1

C
i iH h .

CDCI (Data X, Number C){
According to (4), the cut-off radius cd is obtained;

According to (6), the local density j of each point is achieved;

Compute the distance j of each point according to (3);

Obtain j according to (7);

Rearrange
1

n

j j
from largest to smallest, and get the corresponding

'X after the

original data set X is re-sorted by ;

Select 1 corresponding to
'
1x as the first cluster center ex , and let = eH H x ;

Let tt=1, k=2;
repeat

while kx H dc 1;k k
= kH H x ;

tt = tt+1;
until tt c
return H ;}

4 Experimental Studies

In terms of comparison algorithms, it is compared with V-FCM, SCAD, ESSC, FRFCM,
DVPFCM algorithms. Among the two algorithms of SCAD, the structure of the first one
is more complex and closer to the one in this study, so we compare it with the first one. In
terms of initialization methods, we compare our method with the DPC algorithm alone.
In the experiment, the default parameter settings are adopted.

The testing data sets include 2 artificial data sets and 8 UCI machine learning data
sets. The artificial data sets DATA1 and DATA2 are composed of Gaussian distribution
points obtained by our own generation tools. The tested UCI data set [20] includes
Iris, Wireless Indoor, Wine, Breast Cancer Wisconsin, Seeds, Letter(A, B), Ionosphere,
SPECT heart data. These UCI data sets are relatively common and representative data
sets in the field of machine learning.

Table 4 counts the basic information of two artificial data sets and 8 UCI machine
learning data sets. For all experiments, the parameters are selected by default, and the
specific settings are as follows: m = 2, τ = 2, ε = 10−5. For convenience, the
selection of cd in the DPC algorithm is calculated based on (6).
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Table 3. The VSFCM algorithm

Algorithm 2 The VSFCM algorithm

Input: 1={ }nj jX x , number of clusters c.

Output: Membership
,
, 1={ }c n

ij i jU u , cluster center
1

= c
i i

H h , weight
,
, 1={ }c n

ik i kW w .

VSFCM (Data X, Number C) {
Set threshold and maximum number of iterations iM ;

Run Algorithm 1, and get (0)H and the point ex with the highest density;

do
1iter iter ;

Calculate iku by (12) to obtain the updated [ ]iter
ijU u ;

Compute ih by (15) to obtain the updated [ ]iter
iH h ;

Calculate ikw by (16) to obtain the updated [ ]iter
ikW w ;

while
1iter iterH H and iter iM ;

return
iterU ,

iterH ,
iterW ;}

Table 4. Testing data sets

ID data set # of instances # of features # of clusters

D1 Iris 150 4 3

D2 Wireless Indoor 2000 7 4

D3 Wine 178 13 3

D4 Breast cancer 569 30 2

D5 Seeds 210 7 3

D6 Letter(A, B) 1155 16 2

D7 Ionosphere 351 33 2

D8 SPECT heart data 267 22 2

D9 DATA1 300 2 3

D10 DATA2 180 3 3

We use hard and soft clustering validity indexes. Next, we use the superscript (+) to
indicate that the larger the index value, the better. The reverse superscript (−) indicates
that the smaller the index value, the better. The hard clustering validity index adopts the
following three kinds. Classification rate (ACC) reflects the proportion of samples that
are correctly classified.Normalizedmutual information (NMI) [21] reflects the statistical
information shared between two categories. The Calinski-Harabasz (CH) index [22] is a
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measure from the perspective of distance within a class and dispersion between classes.
The validity index of soft clustering adopts the following two kinds. The EARI index is
a fuzzy extension of the Adjusted Rand index (ARI) [23], and its idea is to describe the
similarity of two clustering results. The Xie-Beni (XB) index [24] is a highly recognized
index of the validity of fuzzy clustering.

Figure 1 is a data distribution diagram of DATA1 and DATA2.

Fig. 1. (a) DATA1 data distribution map. (b) DATA2 data distribution map

As shown in Fig. 1(a), “�” represents the clustering center of each cluster, and
“�” represents the separation reference point between clusters. The cluster cen-
ters of the three clusters are V1 = [−6.1545,−3.8668], V2 = [5.3800, 1.4988],
V3 = [−3.0078,−10.0121]. By computing, we get X0 = [−1.2809,−4.1416],
V0 = [−1.2607,−4.1267]. We express the weight of the full space as w′

1 = w′
2 =

w′
3 = [0.5, 0.5]. Three subspace weights are expressed as w1 = [0.9, 0.1],w2 =

[0.4, 0.6],w3 = [0.6, 0.4]. The corresponding separation between clusters can be
expressed by Jfull_space = ∑3

i=1 ((w′
i1)

2(Vi1 − V01)
2+(w′

i2)
2(Vi2−V02)

2) = 34.36, and
then JESSC_subspace = 44.38, JVSFCM _subspace = 44.49. Among them, v0 = ∑c

i=1 vi/c,
x0 = ∑n

j=1 xj/n, v0 = ∑c
i=1 v

hddci
i /c. Here vi is obtained using our CDCI.

In this example, the separation between clusters in the subspace is significantly
greater than the separation between clusters in the full space, which means that the
subspace is easier to cluster than the full space. In particular, the separation between
full-space clusters and the separation between subspace clusters can also be used as
separations under different distance metrics. Our algorithm replaces x0 in the ESSC
algorithm with v0. The effect of subspace separation is slightly better than the previous
one, but it is more stable. When faced with some complex, more scattered data sets, and
irregular data sets, we can still maintain a good effect. Compared with ESSC, it can get
better separation between clusters, which can get better results.

Table 5 is the ACC values of several algorithms for DATA2. Obviously, the perfor-
mance of our algorithm is better than other algorithms.Moreover, the clustering accuracy
of the subspace clustering algorithm is obviously higher than that of other algorithms,
and the weight distribution may be an important influencing factor.
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Breast Cancer is a common medical data set in machine learning. This data set can
be divided into two categories. Figure 2 shows the ρ − δ distribution diagram of Breast
Cancer for two cluster center initialization methods. In Fig. 2, we can see that the first
cluster center is well determined, that is, the data point in the upper right corner. In the
second cluster center, the boundaries between the selectable points of theCDCI algorithm
and other data points are very clear, while the HDCCI algorithm is more scattered. Then
when we use the HDCCI algorithm to select the initial cluster center, it is easy to choose
the wrong one. The initial cluster centers selected by our cluster center initialization
method CDCI are more in line with the characteristics of ideal cluster centers.

Table 5. ACC values of clustering results for DATA2

V-FCM SCAD1 ESSC DVPFCM FRFCM VSFCM

0.7000 0.9833 0.9833 0.8333 0.9899 0.9986

Fig. 2. (a) CDCI ρ − δ distribution map. (b) HDCCI ρ − δ distribution map

Table 6 shows the running results of each clustering algorithm (including V-FCM,
SCAD, ESSC, FRFCM, DVPFCM and our algorithm) on the UCI data sets. The
adopted evaluation indexes are the above-mentioned five indexes. The performance of
the VSFCM algorithm is evaluated and compared with the existing three subspace clus-
tering algorithms and two viewpoint fuzzy clustering algorithms. Each algorithm was
run 20 times, and the EARI, ACC, XB, CH, and NMI values of the clustering results
are saved in Table 6. In Table 6, we bold the best result and underlined the second best
result.

It can be seen from Table 6 that in the six algorithms, the overall can be divided into
3 grades. The worst is V-FCM and DVPFCM, and then FRFCM, SCAD1, ESSC are
relatively better. The best is the VSFCM algorithm.

VSFCM has the best clustering performance on 7 UCI data sets. The performance
of FRFCM and SCAD1 is equal to or better than ESSC. However, although DVPFCM
and V-FCM are generally inferior to the other three algorithms, they can achieve bet-
ter clustering performance on the Iris and Letter(A, B) measured by NMI and ACC,
respectively.
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Table 6. Clustering results of UCI data sets

Algorithms CH(+) NMI(+) EARI(+) ACC(+) XB(−)

Iris V-FCM 11.8364 0.8498 0.9312 0.9533 0.2786

DVPFCM 11.8423 0.8705 0.9400 0.9600 0.2731

SCAD1 11.5894 0.7277 0.8712 0.8800 0.3205

ESSC 11.6442 0.7578 0.8861 0.9000 0.3117

FRFCM 11.6853 0.7665 0.8895 0.9067 0.2880

VSFCM 12.1360 0.8801 0.9568 0.9667 0.2628

Wireless Indoor V-FCM 66.8676 0.8113 0.8730 0.9325 0.4845

DVPFCM 67.0487 0.8117 0.8733 0.9330 0.4764

SCAD1 79.9004 0.8508 0.9478 0.9445 0.4262

ESSC 80.1303 0.8549 0.9494 0.9460 0.4240

FRFCM 80.3587 0.8620 0.9529 0.9465 0.4113

VSFCM 81.6420 0.8981 0.9658 0.9605 0.3988

Wine V-FCM 8.8531 0.6500 0.8598 0.8596 1.7169

DVPFCM 12.3937 0.6748 0.8712 0.8708 1.5531

SCAD1 12.5666 0.7710 0.8728 0.9270 1.4794

ESSC 12.8969 0.7710 0.8773 0.9270 1.2942

FRFCM 13.3068 0.7955 0.9031 0.9382 1.2786

VSFCM 14.4425 0.8212 0.9520 0.9494 1.2302

Breast Cancer V-FCM 73.4053 0.6555 0.8850 0.9385 0.3178

DVPFCM 74.0104 0.6555 0.8850 0.9385 0.3146

SCAD1 108.1275 0.6320 0.9250 0.9297 0.2913

ESSC 108.7064 0.6507 0.9400 0.9332 0.2903

FRFCM 107.3007 0.6106 0.9244 0.9262 0.2940

VSFCM 110.5897 0.7084 0.9825 0.9420 0.2779

Seeds V-FCM 16.0498 0.6423 0.8450 0.8762 0.6296

DVPFCM 16.0668 0.6545 0.8478 0.8810 0.5999

SCAD1 16.1163 0.6654 0.8487 0.8857 0.2508

ESSC 16.1378 0.6795 0.8580 0.8905 0.2493

FRFCM 16.2337 0.7026 0.8601 0.8952 0.2280

VSFCM 16.7541 0.7173 0.8745 0.9095 0.2269

Ionosphere V-FCM 19.9278 0.1036 0.4159 0.6809 0.7634

DVPFCM 21.5964 0.1036 0.4180 0.6809 0.6566

(continued)
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Table 6. (continued)

Algorithms CH(+) NMI(+) EARI(+) ACC(+) XB(−)

SCAD1 32.2422 0.1320 0.4762 0.7094 0.4649

ESSC 31.6597 0.1271 0.4732 0.7066 0.5057

FRFCM 32.1711 0.1292 0.4738 0.7066 0.4804

VSFCM 32.3488 0.1320 0.4764 0.7094 0.4635

Letter(A,B) V-FCM 155.3391 0.7197 0.8948 0.9408 0.6633

DVPFCM 156.9256 0.7249 0.8965 0.9415 0.6561

SCAD1 195.6678 0.6655 0.9181 0.9293 0.6486

ESSC 198.4907 0.7189 0.9353 0.9395 0.6352

FRFCM 196.1744 0.6917 0.9288 0.9344 0.6390

VSFCM 199.5879 0.7249 0.9385 0.9415 0.6333

From Table 6, V-FCM and DVPFCM (belonging to viewpoint-oriented fuzzy clus-
tering algorithms) have better results on some relatively small data sets. It may because
these data sets have low dimensions and weights have little effect on the results. More-
over, the NMI and ACC indexes of V-FCM and DVPFCM on some data sets perform
better. This is because the existence of viewpoints can guide the clustering algorithm to
run in a more correct direction.

Moreover, the weighted fuzzy clustering algorithms of SCAD, ESSC, and FRFCM
are more complex and have great advantages in data sets with more dimensions. Weight
distribution enhances the efficiency and effect of clustering.

Finally, our proposed algorithm is obviously superior over the other algorithmsmen-
tioned above. Our algorithm integrates the advantages of the two types of algorithms
well and improves the clustering effect.

In general, the performance of the VSFCM algorithm is more ideal in terms of
obtaining the initial cluster centers and various evaluation indexes.

5 Conclusions

In this study,wedevelop theVSFCMalgorithm, and has achieved good clustering results.
First of all, we propose a new cut-off distance under the systemof theDPCalgorithm, and
further provide a cut-off distance-induced cluster initialization method CDCI. Secondly,
by taking the viewpoint obtained by CDCI as being reflective of domain knowledge, the
fuzzy clustering idea driven by knowledge and data is presented. We comprehensively
establish the VSFCM algorithm. Finally, by comparing experimental results produced
by V-FCM, SCAD, ESSC, FRFCM, DVPFCM on artificial and UCI data sets, it is
concluded that the VSFCM algorithm performs best in terms of the five indexes.

In our future work, we can develop our fuzzy clustering algorithm to the field of
fuzzy reasoning [25–29] and carry on clustering for the fuzzy rules.
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Abstract. MADM always been the focus of academic research. In order to solve
MADM problem, it is very important to introduce intuitionistic fuzzy theory. This
paper integrates linguistic concepts into traditional intuitionistic fuzzy theory and
proposes intuitionistic fuzzy decision matrix with linguistic concepts. Based on
the positive and negative forms of attributes, we propose the definition of upper
and lower bounds of linguistic terms, and take linguistic value as the classification
criteria. Specifically, we define the interval-valued linguistic terms by combining
upper and lower bounds of linguistic terms, and obtain the solving models of
membership degree and non-membership degree of IFN. Then, considering the
steps of TOPSIS method, we propose (a) the weighting method of multi-attribute
decisionmatrix of intuitionistic fuzzy linguistic concepts; (b) positive and negative
ideal solution; (c) pseudo distance; and (d) relative progress. Finally, the reliability
and effectiveness of the method are verified by analyzing the possibility of flight
delay at 11 airports in China.

Keywords: Intuitionistic fuzzy linguistic concept · Positive and negative
attributes · TOPSIS

1 Introduction

In the real world, people often havemore than one factor to consider whenmaking a deci-
sion. For example, when people decide to travel, they need to take into account “weather,
distance, cost performance” and other factors. Therefore, the problem of multi-attribute
decisionmaking (MADM) has been widely studied bymany experts and scholars. Fuzzy
sets introduced by Zadeh [1] in 1965 are used to describe uncertain environments. In
recent years, many experts and scholars put forward a series of extensions of fuzzy sets,
such as IFSs [2–4] and HFSs [5, 6], to deal with decision problems because there are
many uncertain factors in decision problems. Xu et al. [7] proposed a new method to
solve the MADM problem, using the maximum deviation method, in which HFS is used
to describe the evaluation of decision makers. Li [8] provided an effective approach to
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using the IFS expressed with membership and non-membership functions, and applied
it to game theory, operations research, industrial engineering and other fields. Ashraf
et al. [9] developed a MADM method based on weighted averaging and weighted geo-
metric aggregation operators of spherical fuzzy numbers. Siregar et al. [10] uses VIKOR
method to get the optimal solution computationally and helps parties develop amodel any
solutions. In order to use the data of membership degree and non-membership degree,
this paper uses IFN to describe the relationship between objects and linguistic concepts,
which greatly avoids the loss of information.

The MADM problem in this paper is realized by TOPSIS method. In fact, TOPSIS
method, also known as ideal solutionmethod [11], is often used to solve decision-making
problems. If the result is close to the positive ideal solution and far from the negative
ideal solution, then it is said to be optimal. Vafaei et al. [12] proposed a new evaluation
method, which provided a new idea for the evaluation technology in TOPSIS and made
the results more reliable. Zulqarnain et al. [13] proposed a new method to solve the
order preference problem by using the TOPSIS method, and applied the method to a
concrete example to verify its effectiveness. Afsordegan et al. [14] solved the problem
that the TOPSIS method could not deal with decisions with qualitative linguistic labels,
and provided a new solution for decision making in fuzzy environment.

In the real world, MADM problem can be seen everywhere, so it has great research
significance. This paper focuses on improving multi-attribute decision matrix. Tradi-
tionally, multi-attribute decision matrix [15–17] only describes the relationship between
the attribute and the object, but the linguistic concept [25] is proposed to realize the use
of linguistic values to describe attributes, which is more consistent with human thinking.
Therefore, this paper proposes the multi-attribute decision matrix of intuitionistic fuzzy
linguistic concepts, which is used to describe the relationship between the object and the
linguistic concept, so as to realize the unification and datalization of people’s language
thinking. In previous decision-making problems [18–21], data comparison was gener-
ally used to select the optimal scheme, which was not consistent with human language
thinkingmode. Therefore, this paper uses linguistic terms as classification criteria, which
makes the classification results more real and effective. The properties of positive and
negative attributes are embodied in the upper and lower bounds of linguistic terms, and
the optimal solution is obtained by using TOPSIS method.

The rest of the paper is as follows. Section 2 reviews the definition and operational
properties of IFSs and the basic knowledge of linguistic term set and linguistic concept
set. Section 3 introduces the definition of upper and lower bounds of linguistic terms.
Taking the interval-valued linguistic terms as the classification criteria, the evaluation
formulas of membership degree, non-membership degree and hesitancy degree are pro-
posed, and the steps of TOPSIS method are given based on the multi-attribute decision
matrix of intuitionistic fuzzy linguistic concepts.

2 Preliminaries

Definition 2.1. [22] Let a finite set X be fixed, the IFS A in X is defined as:

A = {< x, μA(x), νA(x) > |x ∈ X },
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where the functions μA(x) : X → [0, 1], x ∈ X → μA(x) ∈ [0, 1], νA(x) : X → [0, 1],
x ∈ X → νA(x) ∈ [0, 1] [0, 1] satisfy the condition: 0 ≤ μA(x) + νA(x) ≤ 1. x denotes
the principal component, and μA(x), νA(x) denote the degree of membership and the
degree of non-membership of the element x ∈ X to the set A, respectively. In addition,
for each IFS A ⊆ X , πA(x) = 1 − μA(x) − νA(x) is called the degree of indeterminacy
of x to A, or is called the degree of hesitancy of x to A.

For convenience, the intuitionistic fuzzy number is called IFN, the intuitionistic
fuzzy set is called IFS, and the set of all IFSs on X is denoted as IFSs(X). Then for
∀A,B ∈ IFSs(X ), its operational properties [23] are as follows:

(1) A ≤ B if and only if μA(x) ≤ μB(x) and νA(x) ≥ νB(x) for all x in X;
(2) A = B if and only if A ≤ B and B ≤ A;
(3) A ∩ B = {< x,min(μA(x), μB(x)),max(νA(x), νB(x)) > |x ∈ X };
(4) A ∪ B = {< x,max(μA(x), μB(x)),min(νA(x), νB(x)) > |x ∈ X };
(5) The complementary of an IFS A is Ac = {< x, νA(x), μA(x) > |x ∈ X }.

In fact, the MADM problem is the decision makers on the basis of n attributes from
m alternatives to choose or sorting. If the decision maker’s evaluation of alternatives
based on attributes is represented by f =< μij, νij >, where μij and νij represent
the membership degree and non-membership degree of decision makers’ evaluation of
alternatives based on attributes respectively. Then the intuitionistic fuzzy multi-attribute
decision making matrix can be defined as F = [fij]m×n.

Definition 2.2. [24] Let S = {si|i = 0, 1, 2, · · · , g } be a linguistic term set with odd
cardinality. Any label, si represents a possible value for a linguistic variable, and it should
satisfy the following characteristics:

(1) Order relation. si > sj, if i > j;
(2) Negation operator. Neg(si) = sj, where j = g − i;
(3) Maximization operator. max{si, sj} = si, if i ≥ j;
(4) Minimization operator. min{si, sj} = sj, if i ≥ j.

Definition 2.3. [25] Let S = {si|i = 0, 1, 2, · · · , g } be a linguistic term set, L =
{l1, l2, · · · , ln} be a set of attributes, then Lsα is called a linguistic concept.

3 Multi-attribute Decision Making Problem of Intuitionistic Fuzzy
Linguistic Concepts

3.1 Classification Criteria Based on Interval-Valued Linguistic Terms

In general, the decision-making problem is to choose an optimal one from some given
alternatives, or to obtain the order of all alternatives. The attributes considered based on
decision-making are often not all positive. For example, in order to select the appropriate
factory to purchase, the purchasing group needs to consider three attributes: C1: product
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quality, C2: delivery performance, and C3: product price. Then factories with better
quality, higher performance and lower price will be preferentially selected. Therefore,
C1 and C2 are positive attributes, while C3 is negative attributes.

In daily decision-making, linguistic terms are often used as evaluation information
for alternatives. However, because of experts’ experience, ability, resources and social
status are different, their subjective understanding of linguistic terms also be biased.
For example, expert A considers a student with a score of 100 to be a good student,
while expert B considers a student with a score of 95 or more to be a good student. In
order to coordinate the opinions of all experts and consider the positive and negative
attributes, this paper proposes to divide classification levels by using the interval value
of linguistic terms. And by defining the upper and lower bounds of linguistic terms, the
computational complexity caused by positive and negative attributes is cleverly solved,
so it is defined as follows:

Definition 3.1.1. Let S = {sα|α = 1, 2, · · · , l } be a linguistic term set, C =
{c1, c2, · · · , cn} is an attribute set. If for ∀cj ∈ C, the linguistic term si ∈ S has upper
and lower bounds, si(cj) = [s−i (cj), s

+
i (cj)] is called interval-valued linguistic terms

based attribute, where s+i (cj) and s−i (cj) are the upper and lower bounds of si based on
cj, respectively.

Different from the traditional upper and lower bounds in mathematics, the upper
and lower bounds of linguistic terms are only related to the positive and negative of
attributes, and have nothing to do with the value they represent.

Theorem 3.1.1. Let C = {c1, c2, · · · , cn} be a set of attributes containing positive
and negative attributes, then the interval-valued linguistic terms satisfy the following
properties:

(1) s−i (cj) ≤ s+i (cj) if and only if cj is a positive attribute;
(2) s−i (cj) ≥ s+i (cj) if and only if cj is a negative attribute.

Proof. Clearly, it can be proved by Definition 3.1.1

Obviously, the interval-valued linguistic terms is not regular.

Example 3.1.1. Take choosing the appropriate factory for example. The linguistic term
set S = {s1(very bad), s2(bad), s3(average), s4(good), s5(very good)} is the evalua-
tion value of the purchasing group on the alternative factories based on the attribute set
C = {c1, c2, c3}. Where c1: product quality, c2: delivery performance, and c3: product
price. The classification criteria of linguistic value obtained based on the opinions of
all experts is shown in Table 1, in which attributes c1 and c2 are evaluated by experts’
scores. For s4 ∈ S, its interval-valued linguistic terms based on three attributes are
s4(c1) = [80, 90], s4(c2) = [85, 95], s4(c3) = [3, 1.5]. According to Theorem 3.1.1, c1
and c2 are positive attributes, while c3 is a negative attribute.

Displayed equations are centered and set on a separate line.
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Table 1. Classification criteria of linguistic value.

Classification level c1(score) c2(score) c3(million)

s1 [0,60] [0,65] [4.5,4]

s2 [60,70] [65,75] [4,3.5]

s3 [70,80] [75,85] [3.5,3]

s4 [80,90] [85,95] [3,1.5]

s5 [90,100] [95,100] [1.5,1]

3.2 Multi-attribute Decision Matrix of Intuitionistic Fuzzy Linguistic Concepts

In the intuitionistic fuzzy multi-attribute decision matrix, the DM evaluates the object
according to each attribute, but not for each classification level. Therefore, it may cause
a certain degree of information loss in the application process. In this section, linguistic
terms are used as the classification levels and the decision matrix is redefined for each
linguistic concept.

Definition 3.2.1. For the object set X = {x1, x2, · · · , xm}, attribute set C =
{c1, c2, · · · , cn}, linguistic term set S = {sα|α = 1, 2, · · · , l } and linguistic concept
set Csα = {c1s1 , · · · , c1sl , c

2
s1 , · · · , c2sl , · · · , cns1 , · · · , cnsl }, f̃ =< μ

j
iα, ν

j
iα > is an IFN,

representing the evaluation value of DMs on the relationship between object and linguis-
tic concept, where μ

j
iα and ν

j
iα represent the membership degree and non-membership

degree of the ith object to the jth attribute based on linguistic term sα respectively.
Then the multi-attribute decision matrix of intuitionistic fuzzy linguistic concepts is
F̃ = [f̃st]m×nl .

Intuitionistic fuzzy numbers don’t just have two parameters. When solving decision
problems, the DM can often increase his evaluation by increasing the degree of hesi-
tation. Therefore, we should not only consider the corresponding relationship between
membership and non-membership degrees and classification criteria, but also consider
the influence of DMs’ hesitation on membership and non-membership degrees, when
calculating IFNs based on the given classification criteria of linguistic value. The formula
is as follows:

μn
mi = (

1 − β

2
)
(
xm−Ri
s+i −Ri

)2

(1)

νnmi = 1 − (1 − 1 − β

2
)
(
xm−Ri
s+i −Ri

)2

(2)

πn
mi = (

1 + β

2
)
(
xm−Ri
s+i −Ri

)2 − (
1 − β

2
)
(
xm−Ri
s+i −Ri

)2

(3)

Ri = s−i + s+i
2

(4)



TOPSIS Method Based on Intuitionistic Fuzzy Linguistic Concept 111

where, Ri represents the median of the interval-valued linguistic terms, β ∈ [0, 1] rep-
resents the decision maker’s hesitancy degree. The greater β is, the more hesitant the
decision maker is. Then, the smaller the membership degree of the object xm belonging
to the classification criteria si is, and the smaller the non-membership degree is, the
greater the hesitancy degree is.

3.3 TOPSIS Method for Multi-attribute Decision Matrix of Intuitionistic Fuzzy
Linguistic Concepts

For MADM problems, if the importance of each attribute is different, the flexibility will
be greater. In this paper, intuitionistic fuzzy number is used to represent the weight, i.e.

W = {w1,w2, · · · ,wn} = {< s1, t1 >,< s2, t2 >, · · · ,< sn, tn >}
For wk =< sk , tk >, k = 1, 2, · · · , n, satisfying

∑n
k=1 sk ≤ 1. Let τk = 1 − sk − tk be

the hesitancy degree over the importance of the attribute, where sk and tk are respectively
the membership degree and non-membership degree of the importance of attribute to
fuzzy problems. In practical problems, the choice of the appropriate objects may not
need to consider all the attributes, so the important degree of each attribute change with
the changes in the environment with the problem.

The main steps of TOPSIS decision-making are as follows:

Step 1. Construct a weighted multi-attribute decision matrix of intuitionistic fuzzy
linguistic concepts:

F∗ =< sjμ
j
iα, tj + ν

j
iα − tjν

j
iα >=< μ

j∗
iα, ν

j∗
iα > (5)

Step 2. Define positive ideal solutions of intuitionistic fuzzy linguistic concepts:

a1s1 a1s2 · · · a1sl
a2s1 a2s2 · · · a2sl

· · · ans1 ans2 · · · ansl

R+ = {< s1, t1 >, < 0, 1 >, · · ·, < 0, 1 > < s2, t2 >,< 0, 1 >, · · ·, < 0, 1 > · · · < sn, tn >, < 0, 1 >, · · ·, < 0, 1 >}
R− = {< 0, 1 >, < 0, 1 >, · · ·, < s1, t1 > < 0, 1 >, < 0, 1 >, · · ·, < s2, t2 > · · · < 0, 1 >, < 0, 1 >, · · ·, < sn, tn >}

(6)

Step 3.Calculate the pseudo-distances of each alternative xi(i = 1, 2, · · · , n) to positive
ideal solution R+ and negative ideal solution R−, respectively:

d(xi,R
+) =

√
√
√
√
√

1

2

n∑

j=1

[(μj∗
i1 − sj)2 + (ν

j∗
i1 − tj)2 + (π

j∗
i1 − τj)

2] + 1

2

n∑

j=1

l∑

α=2

[(μj∗
iα)2 + (ν

j∗
iα − 1)2 + (π

j∗
iα )2] (7)

d(xi,R
−) =

√
√
√
√
√

1

2

n∑

j=1

[(μj∗
il − sj)2 + (ν

j∗
il − tj)2 + (π

j∗
il − τj)

2] + 1

2

n∑

j=1

l−1∑

α=1

[(μj∗
iα)2 + (ν

j∗
iα − 1)2 + (π

j∗
iα )2] (8)

Step 4.Calculate the relative progress of each alternative xi(i = 1, 2, · · · , n) and positive
ideal solution R+:

ρi = d(xi,R−)

d(xi,R+) + d(xi,R−)
(9)

where, the larger d(xi,R−) is, the closer it is to the positive ideal solution, and the
alternative xi is optimal.
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4 A Case Study

Based on the above steps, this section takes 11 domestic airports as the main research
samples and selects three attributes as the evaluation basis to conduct TOPSIS decision
analysis.

4.1 Data Gathering

This article uses data from Flightstats.com. Taking Chongqing Jiangbei International
Airport, Xi’an Xianyang International Airport, Beijing Capital International Airport and
other 11 domestic airports as alternatives, this paper classifies the flight delay probability
of each major airport by linguistic value with annual punctuality rate, annual average
departure delay and annual average delay time as attributes. The data of 11 airports are
shown in Table 2.

Table 2. Flight delay data of 11 airports in China in 2021.

Domestic airport Annual punctuality
rate (%)

Annual average
departure delay

Annual average delay
time (min)

Chongqing Jiangbei
International Airport

88.49 52 27.43

Xi’an Xianyang
International Airport

88.73 64 20.57

Beijing Capital
International Airport

89.15 49 22.44

Shenzhen Bao’an
International Airport

88.94 53 33.02

Shanghai Pudong
International Airport

91.04 52 34.23

Shanghai Hongqiao
International Airport

92.78 55 36.86

Hangzhou International
Airport

88.24 56 38.45

Guangzhou Baiyun
International Airport

92.52 47 29.65

Chengdu Shuangliu
International Airport

87.27 69 22.61

Zhengzhou Xinzheng
International Airport

93.81 51 36.86

Hong Kong
International Airport

82.90 58 39.32

Let X = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11} be the object set and A =
{a1, a2, a3} the attribute set, corresponding to the 11 airports and 3 attributes in Table 2
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respectively. According to the data survey, the expert group gives the linguistic term
set S = {s1(verylow), s2(low), s3(fair), s4(high), s5(veryhigh)}, and the classification
criteria of linguistic value of flight delay possibility is shown in Table 3.

Table 3. Classification criteria of linguistic value.

Classification level a1(%) a2 a3(min)

s1 [96,100] [40,46] [20,24]

s2 [92,96] [46,52] [24,28]

s3 [88,92] [52, 58] [28,32]

s4 [84,88] [58,64] [32,36]

s5 [80,84] [64,70] [36,40]

Obviously, c1 is a negative attribute, c2 and c3 are positive attributes.

4.2 TOPSIS Decision Analysis

Taking x1 as an example, the first row of multi-attribute decision matrix of intuitionistic
fuzzy linguistic concepts can be obtained according to Eq. (1)–(4) and Table 2 and
Table 3:

{< 0.001, 0.996 >,< 0.001, 0.979 >,< 0.593, 0.253 >,< 0.242, 0.547 >,

< 0.001, 0.995 >,< 0.001, 0.99 >,< 0.4, 0.4 >,< 0.4, 0.4 >,< 0.001, 0.99 >,

< 0.001, 0.998 >,< 0.001, 0.977 >,< 0.626, 0.23 >,< 0.22, 0.57 >,

< 0.001, 0.996 >,< 0.001, 0.998 >}
(10)

Given the weight set W = {< 0.35, 0.6 >,< 0.4, 0.5 >,< 0.15, 0.75 >} of three
attributes, the first row of the weighting matrix F∗ as follows:

{< 0.0004, 0.9984 >,< 0.0004, 0.9916 >,< 0.2076, 0.7012 >,< 0.0847, 0.8188 >,

< 0.0004, 0.998 >,< 0.0004, 0.995 >,< 0.16, 0.7 >,< 0.16, 0.7 >,< 0.0004, 0.995 >,

< 0.0004, 0.999 >,< 0.0002, 0.9943 >,< 0.0939, 0.8075 >,< 0.033, 0.8925 >,

< 0.0002, 0.999 >,< 0.0002, 0.9995 >}
(11)

According to Steps 2–4, the pseudo distance and relative progress of 11 domestic
airports and positive and negative ideal solutions were calculated, the linguistic value
classification of alternatives were carried out according to the classification criteria of
linguistic value range. The results are shown in Table 4.

Where, the interval-valued linguistic terms classification of airport flight delay
possibility is shown in Table 5.
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Table 4. Classification results of 11 airports.

Domestic airport Positive distance Negative distance Relative progress Linguistic value
classification

x1 0.8132 0.8157 0.5008 s2

x2 0.7699 0.6621 0.4624 s4

x3 0.8062 0.8869 0.5238 s2

x4 0.8399 0.8396 0.4999 s3

x5 0.8317 0.8262 0.4983 s4

x6 0.8699 0.8261 0.4871 s4

x7 0.8537 0.7973 0.4829 s4

x8 0.7417 0.8356 0.5297 s2

x9 0.7632 0.5909 0.4364 s4

x10 0.8426 0.8129 0.4910 s4

x11 0.8277 0.5984 0.4196 s4

Table 5. The interval-valued linguistic terms.

Linguistic terms Interval value

s1 [0.6317,1]

s2 [0.5001,0.6317]

s3 [0.4989,0.5001]

s4 [0.3683,0.4989]

s5 [0,0.3683]

Therefore, according to Table 5, we can classify the delay possibility of 11 airports
by linguistic values, as shown in Table 4. For example, the relative progress of x1 is
0.5008,which belongs to [0.5001,0.6317], so the delay possibility ofChongqing Jiangbei
International Airport is s2(low).

5 Conclusions

In this paper, based on the MADM problem, the linguistic concept is integrated into
the intuitionistic fuzzy multi-attribute decision matrix, which makes the matrix not only
reflect the relationship between the object and the attribute, but also reflect the rela-
tionship between the object and the classification level, and the decision result is more
accurate. In order to distinguish the definition of upper bound and maximum value, this
paper proposes the upper and lower bound of linguistic terms to define the interval-
valued linguistic terms, and gives the formulas of membership degree, non-membership
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degree and hesitancy degree based on this. Finally, the linguistic value classification of
flight delay possibility of 11 domestic airports is realized by using TOPSIS method.

References

1. Zadeh, L.A.: A fuzzy-set-theoretic interpretation of linguistic hedges. J. Cybernet. 2(3), 4–34
(1972)

2. Atanassov, K.T.: Intuitionistic fuzzy sets. Int. J. Bioautom. 1(20), 1–6 (2016)
3. Xu, Z.S., Zhao, N.: Information fusion for intuitionistic fuzzy decision making: an overview.

Inf. Fusion 28, 10–23 (2016)
4. Sahoo, S., Pal, M.: Intuitionistic fuzzy competition graphs. J. Appl. Math. Comput. 52(1–2),

37–57 (2015). https://doi.org/10.1007/s12190-015-0928-0
5. Torra, V.: Hesitant fuzzy sets. Int. J. Intell. Syst. 25(6), 529–539 (2010)
6. Xu,Z.S.,Xia,M.M.:Distance and similaritymeasures for hesitant fuzzy sets. Inf. Sci.181(11),

2128–2138 (2011)
7. Xu, Z.S., Zhang, X.L.: Hesitant fuzzy multi-attribute decision making based on TOPSIS with

incomplete weight information. Knowl.-Based Syst. 52, 53–64 (2013)
8. Li, D.-F.:Matrix gameswith goals of intuitionistic fuzzy sets and linear programmingmethod.

In: Decision andGame Theory inManagement with Intuitionistic Fuzzy Sets. SFSC, vol. 308,
pp. 399–420. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-40712-3_10

9. Ashraf, S., Abdullah, S., Mahmood, T., Ghani, F., Mahmood, T.: Spherical fuzzy sets and
their applications in multi-attribute decision making problems. J. Intell. Fuzzy Syst. 36(3),
2829–2844 (2019)

10. Siregar, D., et al.: Multi-attribute decision making with VIKOR method for any purpose
decision. J. Phys. Conf. Ser. 1019(1), 012034 (2018)

11. Li, M.J., Pan, Y.X., Xu, L.M., Lu, J.H.: Improved dynamic TOPSIS evaluation method of
interval numbers. J. Syst. Sci. Math. Sci. 41(7), 1891–1904 (2021)

12. Vafaei, N., Ribeiro, R.A., Camarinha-Matos, L.M.: Data normalisation techniques in decision
making: case study with TOPSIS method. Int. J. Inf. Decision Sci. 10(1), 19–38 (2018)

13. Zulqarnain, R.M., Saeed, M., Ahmad, N., Dayan, F., Ahmad, B.: Application of TOPSIS
method for decision making. Int. J. Scientific Math. Stat. Sci. 7(2), 76–81 (2020)

14. Afsordegan, A., Sánchez, M., Agell, N., Zahedi, S., Cremades, L.V.: Decision making under
uncertainty using a qualitative TOPSIS method for selecting sustainable energy alternatives.
Int. J. Environ. Sci. Technol. 13(6), 1419–1432 (2016). https://doi.org/10.1007/s13762-016-
0982-7

15. Zhao, H., Xu, Z.S.: Intuitionistic fuzzymulti-attribute decisionmakingwith ideal-point-based
method and correlation measure. J. Intell. Fuzzy Syst. 30(2), 747–757 (2016)

16. Ouyang, Y., Pedrycz, W.: A new model for intuitionistic fuzzy multi-attributes decision
making. Eur. J. Oper. Res. 249(2), 677–682 (2016)

17. Xu, Z.: Multi-person multi-attribute decision making models under intuitionistic fuzzy
environment. Fuzzy Optim. Decis. Making 6(3), 221–236 (2007)

18. Garg, H., Kumar, K.: Improved possibility degree method for ranking intuitionistic fuzzy
numbers and their application in multiattribute decision-making. Granular Comput. 4(2),
237–247 (2019)

19. Gupta, P., et al.: A new method for intuitionistic fuzzy multiattribute decision making. IEEE
Trans. Syst. Man Cybernet. Syst. 46(9), 1167–1179 (2015)

20. Wei, G.: Some induced geometric aggregation operators with intuitionistic fuzzy information
and their application to group decision making. Appl. Soft Comput. 10(2), 423–431 (2010)

https://doi.org/10.1007/s12190-015-0928-0
https://doi.org/10.1007/978-3-642-40712-3_10
https://doi.org/10.1007/s13762-016-0982-7


116 Y. Zhou and L. Zou

21. Li, D.F.: TOPSIS-based nonlinear-programming methodology for multiattribute decision
makingwith interval-valued intuitionistic fuzzy sets. IEEE Trans. Fuzzy Syst. 18(2), 299–311
(2010)

22. Xian, S., et al.: A novel approach for linguistic group decision making based on generalized
interval-valued intuitionistic fuzzy linguistic induced hybrid operator and TOPSIS. Int. J.
Intell. Syst. 33(2), 288–314 (2018)

23. Mishra, A.R., Rani, P.: Informationmeasures based TOPSISmethod formulticriteria decision
making problem in intuitionistic fuzzy environment. Iranian J. Fuzzy Syst. 14(6), 41–63
(2017)

24. Liu, P., Cui, H., Cao, Y., Hou, X., Zou, L.: A method of multimedia teaching evaluation based
on fuzzy linguistic concept lattice. Multimedia Tools Appl. 78(21), 30975–31001 (2019).
https://doi.org/10.1007/s11042-019-7669-2

25. Zou, L., et al.: A knowledge reduction approach for linguistic concept formal context. Inf.
Sci. 524, 165–183 (2020)

https://doi.org/10.1007/s11042-019-7669-2


Properties of Fuzzy λ-Approximate
Context-Free Languages

Ping Li, Huanhuan Sun(B), Yongxia He, and Yanping Yang

School of Mathematics and Statistics, Shaanxi Normal University,
Xi’an 710119, China

{liping,he-yx1203}@snnu.edu.cn
2506978810@qq.com

Abstract. The approximation of fuzzy languages is one of the impor-
tant problems, it is more practical to consider its approximate imple-
mentation if the fuzzy languages cannot be realized by a automaton.
In this paper, for a real number λ ∈ [0, 1], we give the definition of
fuzzy λ-approximate context-free languages and their Pumping lemma.
Then we study the algebraic properties of fuzzy λ-approximate context-
free languages. Firstly, we give a hierarchical characterization of fuzzy
λ-approximate context-free languages different from the previous fuzzy
languages. Furthermore, we show that fuzzy λ-approximate context-
free languages are closed under the operations union, concatenation and
Kleene closure, but not closed under the operations intersection, comple-
ment, �Lukasiewicz addition, �Lukasiewicz product and �Lukasiewicz impli-
cation. Finally, we discuss the relationships between fuzzy λ-approximate
context-free languages and fuzzy λ-approximate regular languages, and
prove that the intersection of a fuzzy λ-approximate context-free lan-
guages and a fuzzy λ-approximate regular languages is a fuzzy λ-approxi-
mate context-free languages.

Keywords: Fuzzy λ-approximate regular languages · Fuzzy
λ-approximate context-free languages · Pumping lemma · Closure of
operations

1 Introduction

Automata and formal languages give a model of abstract and formal represen-
tation of problems, which play important roles in the applications of computer
science. In 1965, Professor L.A. Zadeh [26] creatively put forward fuzzy sets
theory, which provides a powerful mathematical tool for the development of
artificial intelligence field. With the introduction of fuzzy sets, the ability of
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automata to recognize languages and the ability of grammars to generate lan-
guages have been studied by employing fuzzy sets theory, then fuzzy automata
have been produced. Since then, fuzzy languages and fuzzy automata have been
widely studied as methods to bridge the gap between the accuracy and fuzziness
of computer languages [8–10,14,15]. In the 1970s, Gaines and Kohout discussed
the logical basis of fuzzy automata [6]. Santos further studied the fuzzy lan-
guages of fuzzy automata recognition and its closure under various operations,
proposed the context-free fuzzy grammars, and discussed the properties of the
language generated by it [18,19]. Bucurescu, Pascu [5] and Xing [23] generalized
pushdown automata to fuzzy pushdown automata. Asveld studied basic proper-
ties of fuzzy pushdown automata [2,3]. Since then, many scholars have done a
lot of work and achieved fruitful results [1,4,12,16,17,20,21,24].

The approximation of fuzzy languages is one of the important problems. In
the case that fuzzy languages cannot be realized by a automaton, it is more prac-
tical to consider its approximate implementation. Some achievements have been
made in the approximation of fuzzy languages. For example, Li Yongming [11]
shows that a nondeterministic fuzzy automaton under max-∗ compositional
inference for some t-norm ∗ can be approximated by some deterministic fuzzy
automata with arbitrary given accuracy if the t-norm ∗ satisfies the weakly finite
generated condition. That is, for a t-norm ∗ which satisfies the weakly finite gen-
erated condition, nondeterministic fuzzy automata under max-∗ compositional
inference are equivalent to nondeterministic fuzzy automata under max-min
compositional inference in the approximate sense. Finally, a sufficient condition
for fuzzy languages to be approximated by deterministic fuzzy automata is given.
In [22], the approximation of fuzzy languages is considered by fuzzy context-
free grammars (shortly, FCFG). Firstly, this paper discusses the FCFG under
different kind of t-norms, and gives the necessary and sufficient conditions for
the equivalence of fuzzy context-free max-min grammars and fuzzy context-
free max-∗ grammars. Secondly, the condition that fuzzy context-free max-∗
grammars can be approximated by fuzzy context-free max-min grammars with
arbitrary accuracy is given. Finally, a sufficient condition for fuzzy languages
to be approximated by fuzzy context-free max-min grammars is given. In [25],
the definition of fuzzy λ-approximate regular languages (shortly, Fλ-ARL) and
their Pumping lemma are given. Then the sufficient and necessary conditions for
fuzzy languages to be ε-approximated by deterministic fuzzy automata are given.
Finally, according to an ε-approximate equivalence relation, a polynomial-time
algorithm to construct a minimal deterministic fuzzy automaton ε-accepting a
fuzzy regular language is given. The study about the approximation of fuzzy
regular languages is well established, but the study about the approximation of
fuzzy context-free languages is relatively rare. In this paper, for a real number
λ ∈ [0, 1], we define the concept of fuzzy λ-approximate context-free languages
(shortly, Fλ-ACFL) and discuss their algebraic properties.

The main work of this paper is arranged as follows. In Sect. 2, we review some
relevant concepts of fuzzy languages and fuzzy grammars and give the Pumping
lemma in fuzzy context-free languages (shortly, FCFL). In Sect. 3, for a real
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number λ ∈ [0, 1], we give the notion of Fλ-ACFL and give their Pumping
lemma. In Sect. 4, the algebraic properties and a hierarchical characterization of
Fλ-ACFL are also given. In Sect. 5, we discuss the closure of various operations
of Fλ-ACFL and obtain the operations about union, concatenation and Kleene
closure are closed of Fλ-ACFL, but not closed under the operations intersec-
tion, complement, �Lukasiewicz addition, �Lukasiewicz product and �Lukasiewicz
implication. Furthermore, we discuss the relationships between Fλ-ACFL and
Fλ-ARL and prove that the intersection of a Fλ-ACFL and a Fλ-ARL is also
a Fλ-ACFL.

2 Preliminaries

Now we introduce some related concepts about fuzzy languages. And we use ∨
and ∧ to represent the supremum operation and infimum operation on [0, 1],
respectively.

Definition 1 ([13]). Let Σ be a nonempty finite set of symbols, Σ∗ denote the
set of all words of finite length over Σ and ε denote the empty word. For any
θ ∈ Σ∗, |θ| denotes the length of θ. A fuzzy language A over Σ∗ is a function
from Σ∗ to [0, 1].

Generally, we denote the set of all fuzzy languages over Σ∗ as FL(Σ∗).
For a A ∈ FL(Σ∗), we define the set R(A) = {A(θ)|A(θ) > 0, θ ∈ Σ∗} and

call R(A) is the image set of A. ∀a ∈ R(A), Aa = {θ ∈ Σ∗|A(θ) ≥ a} is called
the a-cut of A.

For fuzzy languages A and B over Σ∗ are called to be equal if A(θ) = B(θ)
for all θ ∈ Σ∗.

We introduce some operations on FL(Σ∗), which are union, intersection,
complement, concatenation and Kleene closure of language-theoretic.

Definition 2 ([13]). Let A,B ∈ FL(Σ∗).

(1) The union of A and B is denoted as A ∪ B ∈ FL(Σ∗), ∀θ ∈ Σ∗,

(A ∪ B)(θ) = A(θ) ∨ B(θ).

(2) The intersection of A and B is denoted as A ∩ B ∈ FL(Σ∗), ∀θ ∈ Σ∗,

(A ∩ B)(θ) = A(θ) ∧ B(θ).

(3) The complement of A is denoted as Ac ∈ FL(Σ∗),∀θ ∈ Σ∗,

Ac(θ) = 1 − A(θ).

(4) The concatenation of A and B is denoted as AB ∈ FL(Σ∗), ∀θ ∈ Σ∗,

(AB)(θ) =
∨

θ=θ1θ2

(A(θ1) ∧ B(θ2)).
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(5) The Kleene closure of A is denoted as A∗ ∈ FL(Σ∗),∀θ ∈ Σ∗,

A∗(θ) =
∞∨

k=0

Ak(θ),

where A0(θ) =

{
1, θ = ε

0, θ 
= ε
, A1 = A, Ak+1 = AkA, k ∈ N .

Now we introduce three �Lukasiewicz operations on FL(Σ∗) .

Definition 3 ([13]). Let A,B ∈ FL(Σ∗).

(1) The �Lukasiewicz addition of A and B is denoted as A ⊕ B ∈ FL(Σ∗),
∀θ ∈ Σ∗,

(A ⊕ B)(θ) = (A(θ) + B(θ)) ∧ 1.

(2) The �Lukasiewicz product of A and B is denoted as A ⊗ B ∈ FL(Σ∗), ∀θ ∈
Σ∗,

(A ⊗ B)(θ) = (A(θ) + B(θ) − 1) ∨ 0.

(3) The �Lukasiewicz implication of A and B is denoted as A → B ∈ FL(Σ∗),
∀θ ∈ Σ∗,

(A → B)(θ) = (1 − A(θ) + B(θ)) ∧ 1.

Clearly, we obtain A ⊗ B = (Ac ⊕ Bc)c and A → B = Ac ⊕ B.
Fuzzy grammars can generate fuzzy languages. Now we give the definition of

fuzzy grammars.

Definition 4 ([13]). A fuzzy grammar is a system G = (N,T, P, S), where N
and T are non-empty finite sets and N ∩ T = φ, the elements of N and T
are called nonterminals and terminals, respectively. S ∈ N is called an initial
symbol, P is called a finite set of fuzzy productions. And for a fuzzy production
u

ρ→ v ∈ P , ρ ∈ (0, 1] represents the degree of membership of the generation rule
u → v, ∀u ∈ (N ∪ T )∗N(N ∪ T )∗, v ∈ (N ∪ T )∗. We specify that S appears only
on the left of fuzzy productions.

We say that αvβ can be directly derived from αuβ if u
ρ→ v ∈ P , then

αuβ
ρ→ αvβ ∈ P for any α, β ∈ (N ∪ T )∗, and we write it as αuβ ⇒ρ αvβ. For

u1, u2, . . . , up ∈ (N ∪T )∗, if u1 ⇒ρ1 u2 ⇒ρ2 . . . ⇒ρp−1 up, then we say u1 derives
up and write it as u1 ⇒ρ

p−1 up, where ρ = ρ1 ∧ ρ2 ∧ . . . ∧ ρp−1. We use u ⇒ρ
∗ v

to express that there exists a positive integer n such that u ⇒ρ
n v.

The fuzzy language L(G) : T ∗ → [0, 1] generated by the fuzzy grammar
G = (N,T, P, S) is defined as,

L(G)(θ) = ∨ {ρ | S ⇒ρ
∗ θ}

for all θ ∈ T ∗.
Two fuzzy grammars G1 and G2 are said to be equivalent if L(G1) = L(G2).
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Definition 5 ([13]). Let G = (N,T, P, S) be a fuzzy grammar. If |u| ≤ |v| and
u ∈N , for any u

ρ→ v ∈ P , then G is called a fuzzy context-free grammar, and
L(G) is called a fuzzy context-free language.

Generally, we denote the set of all fuzzy context-free languages over Σ∗ as
FCFL(Σ∗).

Definition 6 ([13]). Let G = (N,T, P, S) be a FCFG. If the fuzzy productions
in G have the following form

A
ρ→ BC or A

ρ→ a or S
ρ→ ε

∀A,B,C ∈ N , a ∈ T , ρ ∈ [0, 1], then G is called a fuzzy Chomsky normal form
grammar (shortly, FCNFG).

Theorem 1 ([13]). For any FCFG, there exists an equivalent FCNFG.

We give the Pumping lemma in FCFL(Σ∗). The content of the syntax tree
in the proof of Theorem 2 can be found in [7], so it will not be repeated.

Theorem 2. Let A ∈ FCFL(Σ∗), there is a positive integer p, ∀θ ∈ Σ∗, if
|θ| ≥ p, then there exist u, v, w, x, y ∈ Σ∗ such that θ = uvwxy and

(1) |vwx| ≤ p,
(2) |vx| > 0,
(3) for any positive integer k, A(uvkwxky) = A(uvwxy).

Proof. It follows from Theorem 1 that there exist a FCNFG G = (N,T, P, S)
such that L(G) = A. For any θ ∈ Σ∗, when t is the longest path in θ’s syntax
tree, the inequality |θ| ≤ 2t−1 holds. In fact, the equal sign holds only if the
syntax tree of θ is a full binary tree as shown in Fig. 1, where h = 2t−2, g=2t−1

in Fig. 1. At this point, the length of each path is t, and there are t non-lead
nodes marked as syntax variables and a lead node marked as terminal on each
path.

Now take p = 2|N | . For θ ∈ Σ∗, |θ| ≥ p, we know that there is at least one
path in the syntax tree of θ whose length is greater than or equal to |N |+1 and
the number of non-leaf nodes in the path is greater than or equal to |N |+1. Take
the longest path s in the tree, the number of non-leaf nodes in s is greater than
or equal to |N |+1, and their markers are grammar variables. Since |N |+1 > |N |,
there must be different nodes among these non-leaf nodes labeled with the same
grammar variable. Now take the two nodes in path s that are closest to the leaf,
v1 and v2, and they are marked with the same grammar variable A. For the sake
of certainty, let’s say that v1 is the ancestor node of v2. Obviously, the length of
the path from v1 to the leaf node is less than or equal to |N | + 1. As shown in
Fig. 2, assume that

(1) All leaf nodes on the left of node v1 are marked with a string u from left to
right and the degree of membership is ρ1.
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Fig. 1. A full binary tree

Fig. 2. The derived tree of θ

(2) In the subtree with node v1 as the root, all leaf nodes on the left of node v2
are marked with a string v from left to right and the degree of membership
is ρ2.

(3) The result of the subtree with node v2 as the root is w and the degree of
membership is ρ3.

(4) In the subtree with node v1 as the root, all the leaf nodes on the right of
node v2 are marked with a string x from left to right and the degree of
membership is ρ4.

(5) All the leaf nodes on the right of node v1 are marked with a string y from
left to right and the degree of membership is ρ5.

Then θ = uvwxy. Noticed with v1 as the root of the subtree of the maxi-
mum path length less than or equal to |N | + 1, so vwx as a result of v1 meet
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|vwx| ≤ 2(|N |+1)−1 = 2|N | = p. And because G is a FCFG, v2 is the off-
spring of v1 and v2 is marked as A variable, so |vx| > 0. Hence S ⇒ρ1∧ρ5∗
uAy ⇒ρ1∧ρ2∧ρ4∧ρ5∗ uvAxy ⇒ρ1∧ρ2∧ρ3∧ρ4∧ρ5∗ uvwxy. Clearly, for any positive
integer k, A ⇒ρk

2∧ρk
4∗ vkAxk ⇒ρ2∧ρ3∧ρ4∗ vkwxk, where ρk

2 = ρ2 ∧ ρ2 ∧ · · · ∧ ρ2.
So, S ⇒ρ1∧ρ5∗ uAy ⇒ρ1∧ρ2∧ρ4∧ρ5∗ uvkAxky ⇒ρ1∧ρ2∧ρ3∧ρ4∧ρ5∗ uvkwxky. That is,
S ⇒ρ

∗ uvwxy and S ⇒ρ
∗ uvkwxky, where ρ = ρ1∧ρ2∧ρ3∧ρ4∧ρ5. Hence, for any

positive integer k, A(uvkwxky) = ∨{ρ|S ⇒ρ
∗ uvkwxky} = ∨{ρ|S ⇒ρ

∗ uvwxy} =
A(uvwxy).

Lemma 1 ([13]). Let A ∈ FL(Σ∗), A is a fuzzy context-free language over Σ∗

if and only if the image set R(A) of A is a finite set and Aa ∈ FCFL(Σ∗),
∀a ∈ R(A).

Lemma 2 ([13]). The operations union, concatenation and Kleene closure are
closed in FCFL(Σ∗).

Lemma 3 ([13]). The operations intersection and complement are not closed in
FCFL(Σ∗).

3 Fuzzy λ-Approximate Context-Free Languages
and Their Pumping Lemma

Now we gives the definition of Fλ-ACFL and the Pumping lemma of Fλ-ACFL.

Definition 7. Let A ∈ FL(Σ∗) and λ ∈ [0, 1]. If there exists a A′ ∈ FCFL(Σ∗)
such that |A(θ) − A′(θ)| ≤ λ for any θ ∈ Σ∗, then we say that the A′ λ-
approximates A (or A is λ-approximated by A′) and call A a fuzzy λ-approximate
context-free language (shortly, Fλ-ACFL) over Σ.

We denote the set of all fuzzy λ-approximate context-free languages over Σ∗

as Fλ-ACFL(Σ∗).
To better discuss the algebraic properties in Fλ-ACFL(Σ∗), we first give

the Pumping lemma in Fλ-ACFL(Σ∗).

Theorem 3. Let A ∈ Fλ-ACFL(Σ∗), there is a positive integer p, ∀θ ∈ Σ∗, if
|θ| ≥ p, then there exist u, v, w, x, y ∈ Σ∗ such that θ = uvwxy and

(1) |vwx| ≤ p,
(2) |vx| > 0,
(3) for any positive integer k, |A(uvkwxky) − A(uvwxy)| ≤ (2λ) ∧ 1.

Proof. Since A ∈ Fλ-ACFL(Σ∗), from the definition of Fλ-ACFL(Σ∗), there
exists a A′ ∈ FCFL(Σ∗) such that |A(θ) − A′(θ)| ≤ λ for any θ ∈ Σ∗.
Hence, it is known from Pumping Lemma in FCFL(Σ∗) that there is a pos-
itive integer p, ∀θ ∈ Σ∗, if |θ| ≥ p, then there exist u, v, w, x, y ∈ Σ∗

such that θ = uvwxy, |vwx| ≤ p, |vx| > 0 and for any positive integer k,
A′(uvkwxky) = A′(uvwxy). So |A(uvkwxky) − A(uvwxy)| ≤ |A(uvkwxky) −
A′(uvkwxky)| + |A(uvwxy) − A′(uvwxy)| ≤ 2λ. Obviously, for any positive
integer k, |A(uvkwxky) − A(uvwxy)| ≤ 1. Hence, for any positive integer k,
|A(uvkwxky) − A(uvwxy)| ≤ (2λ) ∧ 1.
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Now we give Example 1 and Example 2 to show that there exist Fλ-ACFL
such that the equal sign and the less-than sign in (3) of Theorem 3 hold.

Example 1. LetA ∈ FL(Σ∗) be defined as: ∀θ ∈ Σ∗, Σ = {a}.

A(θ) =

⎧
⎨

⎩

1
4 , θ = amand m is prime,

3
4 , otherwise.

Let λ = 1
4 . Take A′(θ) = 1

2 , ∀θ ∈ Σ∗, then A′ is a FCFL(Σ∗), ∀θ ∈ Σ∗,
we have |A(θ) − A′(θ)| ≤ λ. So A ∈ Fλ-ACFL(Σ∗). We take θ = ap+d, where
p + d is prime, then A(θ) = 1

4 . Let u = as, v = at, w = aj , x = ai−t−j ,
y = ap+d−s−i, where 0 ≤ t + j < i ≤ p. It is easy to prove that θ = uvwxy,
|vwx| = t + j + i − t − j = i ≤ p, |vx| = t + i − t − j = i − j > 0. And
for any positive integer k, uvkwxky = a(k−1)(i−j)+(p+d). If k = p + d + 1, then
uvkwxky = a(p+d)(i−j+1) and A(uvkwxky) = 3

4 . Therefore, there exists a positive
integer k such that |A(uvkwxky) − A(uvwxy)| = |34 − 1

4 | = 2
4 = (2λ) ∧ 1.

The Example 1 shows that there exists a Fλ-ACFL such that the equal sign
in (3) of Theorem 3 holds.

Example 2. Let A ∈ FL(Σ∗) be defined as: ∀θ ∈ Σ∗, Σ = {a}.

A(θ) =

⎧
⎨

⎩

1
3 , θ = amand m is prime,

2
3 , otherwise.

Let λ = 1
3 . Take A′(θ) = 1

2 , ∀θ ∈ Σ∗, then A′ is a FCFL(Σ∗), ∀θ ∈ Σ∗,
we have |A(θ) − A′(θ)| ≤ λ. So A ∈ Fλ-ACFL(Σ∗). We take θ = ap+d, where
p + d is prime, then A(θ) = 1

3 . Let u = as, v = at, w = aj , x = ai−t−j ,
y = ap+d−s−i, where 0 ≤ t + j < i ≤ p. It is easy to prove that θ = uvwxy,
|vwx| = t + j + i − t − j = i ≤ p, |vx| = t + i − t − j = i − j > 0. And
for any positive integer k, uvkwxky = a(k−1)(i−j)+(p+d). If k = p + d + 1, then
uvkwxky = a(p+d)(i−j+1) and A(uvkwxky) = 2

3 . Therefore, there exists a positive
integer k such that |A(uvkwxky) − A(uvwxy)| = |23 − 1

2 | = 1
3 < (2λ) ∧ 1.

The Example 2 shows that there exists a Fλ-ACFL such that the less-than
sign in (3) of Theorem 3 holds.

4 Hierarchical Characterization in Fλ-ACFL(Σ∗)

Now we study the relationships between Fλ1-ACFL and Fλ2-ACFL for two
real numbers λ1, λ2 ∈ [0, 1], and a hierarchical characterization of Fλ-ACFL is
given.

Theorem 4 and Theorem 6 can be derived directly from Definition 7.

Theorem 4. If λ = 0, then FCFL(Σ∗) = Fλ-ACFL(Σ∗).

Theorem 5. If λ ∈ [12 , 1], then Fλ-ACFL(Σ∗) = FL(Σ∗).
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The proof is similar to that given in [25]. Therefore, in the following discus-
sion, λ ∈ (0, 1

2 ) is always set.

Theorem 6. For any λ, λ
′ ∈ [0, 1], if λ ≤ λ

′
, then Fλ-ACFL(Σ∗) ⊆ Fλ

′
-

ACFL(Σ∗).

Corollary 1. For any λ ∈ [0, 1], FCFL(Σ∗) ⊆ Fλ-ACFL(Σ∗) ⊆ FL(Σ∗).

Now we give Example 3 to show that Fλ-ACFL are different from FCFL .

Example 3. Let fuzzy language A over Σ∗ be defined as: for any θ ∈ Σ∗, Σ =
{a, b, c}.

A(θ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
n , θ = anbncn, 0 ≤ n ≤ 5,

0.1, θ = anbncn, n ≥ 6,

0, otherwise.

Let λ = 0.1. ∀θ ∈ Σ∗,

A′(θ) =

⎧
⎨

⎩

1
n , θ = anbncn, 0 ≤ n ≤ 5,

0, otherwise.

Obviously, A′ ∈ FCFL(Σ∗), ∀θ ∈ Σ∗, we have |A(θ) − A′(θ)| ≤ λ, so f is a
Fλ-ACFL(Σ∗). However, A0.1 = {anbncn|n ≥ 0} is not a context-free language,
it can be obtained from Lemma 1 that A is not a FCFL(Σ∗). That is, there is
a A ∈ FL(Σ∗) which is a Fλ-ACFL(Σ∗) but not a FCFL(Σ∗).

Theorem 7. For any λ, λ
′ ∈ (0, 1

2 ), if λ < λ
′
, then Fλ-ACFL(Σ∗) ⊂ Fλ

′
-

ACFL(Σ∗).

Proof. Obviously, Fλ-ACFL(Σ∗) ⊆ Fλ
′
-ACFL(Σ∗). If there exists a A ∈

FL(Σ∗) such that A ∈ Fλ
′
-ACFL(Σ∗) but A /∈ Fλ-ACFL(Σ∗), then the

theorem holds.
Let A ∈ FL(Σ∗) be defined as, ∀θ ∈ Σ∗, Σ = {a}.

A(θ) =

⎧
⎨

⎩

1
2 − λ

′
, θ = am and m is prime,

1
2 + λ

′
, otherwise.

There exists a A′ ∈ FCFL(Σ∗) which is defined by A′(θ) = 1
2 such that A′

λ
′
-approximate A, ∀θ ∈ Σ∗. Hence, A ∈ Fλ

′
-ACFL(Σ∗). Assume that A ∈ Fλ-

ACFL(Σ∗). We take θ = ap+d, where p + d is prime, then A(θ) = 1
2 − λ

′
.

Let u = as, v = at, w = aj , x = ai−t−j , y = ap+d−s−i, where 0 ≤ t + j <
i ≤ p. It is obvious that θ = uvwxy, |vwx| = i ≤ p, |vx| = i − j > 0. And
for any positive integer k, uvkwxky = a(k−1)(i−j)+(p+d). If k = p + d + 1,
then uvkwxky = a(p+d)(i−j+1) and A(uvkwxky) = 1

2 + λ
′
. Therefore, there
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exists a positive integer k such that |A(uvkwxky) − A(uvwxy)| = 2λ
′

> 2λ.
Hence our assumption is invalid. We have A /∈ Fλ-ACFL(Σ∗). Therefore, Fλ-
ACFL(Σ∗) ⊂ Fλ

′
-ACFL(Σ∗).

Compared with the previous hierarchy in fuzzy languages, fuzzy languages
can be divided into fuzzy regular languages, FCFL(Σ∗), fuzzy context-related
languages and fuzzy recursive enumerable languages. A detail hierarchical char-
acterization in FCFL(Σ∗) can be obtained from Theorem 4, Theorem 5 and
Theorem 7.

Theorem 8. If 0 < λ1 < λ2 < 1
2 < λ3 < 1, then FCFL(Σ∗) = F0-ACFL(Σ∗)

⊂ Fλ1-ACFL(Σ∗) ⊂ Fλ2-ACFL(Σ∗) ⊂ F 1
2 -ACFL(Σ∗) = Fλ3-ACFL(Σ∗) =

F1-ACFL(Σ∗) = FL(Σ∗).

5 Closure of Operations in Fλ-ACFL(Σ∗)

The closure of the operations mentioned above in Fλ-ACFL(Σ∗) is discussed
below.

First we give the Lemma 4 which is an important result in mathematical
analysis.

Lemma 4 ([11]). Let A,B : X → [0, 1] be two functions, then

(1) |∨σ∈X A(σ) − ∨
σ∈X B(σ)| ≤ ∨

σ∈X |A(σ) − B(σ)|;
(2) |∧σ∈X A(σ) − ∧

σ∈X B(σ)| ≤ ∨
σ∈X |A(σ) − B(σ)|.

Theorem 9. For any λ ∈ (0, 1
2 ), the operations union, concatenation and

Kleene closure are closed in Fλ-ACFL(Σ∗).

Proof. Let λ ∈ (0, 1
2 ). If A,B ∈ Fλ-ACFL(Σ∗), then there exist A′, B′ ∈

FCFL(Σ∗) such that |A(θ)−A′(θ)| ≤ λ and |B(θ)−B′(θ)| ≤ λ for any θ ∈ Σ∗.
Since A′, B′ ∈ FCFL(Σ∗), thus A′ ∪ B′, A′B′, A′∗ ∈ FCFL(Σ∗) by Lemma 2.

For the union operation, we have |(A∪B)(θ)− (A′ ∪B′)(θ)| = |A(θ)∨B(θ)−
A′(θ) ∨ B′(θ)| ≤ |A(θ) − A′(θ)| ∨ |B(θ) − B′(θ)| ≤ λ, ∀θ ∈ Σ∗. So, A ∪ B ∈ Fλ-
ACFL(Σ∗).

For the concatenation operation, then we have |(AB)(θ) − (A′B′)(θ)| =
|∨θ=θ1θ2

(A(θ1)∧B(θ2))−∨
θ=θ1θ2

(A′(θ1)∧B′(θ2))| ≤ ∨
θ=θ1θ2

|A(θ1)∧B(θ2)−
A′(θ1) ∧ B′(θ2)| ≤ ∨

θ=θ1θ2
(|A(θ) − A′(θ)| ∨ |B(θ) − B′(θ)|) ≤ λ, for any θ ∈ Σ∗.

Therefore, AB ∈ Fλ-ACFL(Σ∗).
And we have that for any positive integer k, Ak ∈ Fλ-ACFL(Σ∗).
For the Kleene closure operation, we have |A∗(θ) − A′∗(θ)| = |∨∞

k=0 Ak(θ) −∨∞
k=0 A′k(θ)| ≤ ∨∞

k=0 |Ak(θ) − A′k(θ)| ≤ λ for any θ ∈ Σ∗. Therefore, A∗ ∈ Fλ-
ACFL(Σ∗).

Theorem 10. For any λ ∈ (0, 1
2 ), the operations intersection and complement

are not closed in Fλ-ACFL(Σ∗).
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Proof. For the intersection operation, if there exist A,B ∈ Fλ-ACFL(Σ∗) such
that A ∩ B /∈ Fλ-ACFL(Σ∗), then the theorem holds.

Let Σ = {0, 1, 2}, λ ∈ (0, 1
2 ), we take a ∈ (0, 1 − 2λ], and A,B ∈ Fλ-

ACFL(Σ∗) are defined as follows, ∀θ ∈ Σ∗,

A(θ) =
{

a + 2λ, θ = 0n1n2m,m, n ≥ 0,
0, otherwise.

B(θ) =
{

a + 2λ, θ = 0n1m2m,m, n ≥ 0,
0, otherwise.

Since A and B are FCFL(Σ∗), then A,B ∈ Fλ-ACFL(Σ∗), we can obtain
that, ∀θ ∈ Σ∗,

(A ∩ B)(θ) =
{

a + 2λ, θ = 0n1n2n, n ≥ 0,
0, otherwise.

We show that A ∩ B /∈ Fλ-ACFL(Σ∗).
Assume that A ∩ B ∈ Fλ-ACFL(Σ∗). We take θ = 0p1p2p, then (A∩B)(θ) =

a + 2λ. We need to prove that there don’t exist u, v, w, x, y ∈ Σ∗ such that
θ = uvwxy and |(A ∩ B)(uvkwxky) − (A ∩ B)(uvwxy)| ≤ 2λ for any positive
integer k. That is, for any u, v, w, x, y ∈ Σ∗, we can find a special k such that
|(A∩B)(uvkwxky)−(A∩B)(uvwxy)| > 2λ. Since |vwx| ≤ p, v,w and x together
cannot have three letters. Therefore, we now discuss it in two cases below.

(1) When vwx takes only one letter, let vwx = 0s(0 < s ≤ p). we suppose
v = 0i, w = 0j , x = 0s−i−j , where s − j > 0. Then for any positive integer
k, uvkwxky = 0p+(k−1)(s−j)1p2p.
If k = 2, because s − j > 0, p + (k − 1)(s − j) = p + s − j 
= p. So
(A ∩ B)(uv2wx2y) = 0. Hence, there exists a positive integer k such that
|(A ∩ B)(uvkwxky) − (A ∩ B)(uvwxy)| = a + 2λ > 2λ.
In a similar way, when vwx = 1s or vwx = 2s, there exists a positive integer
k such that |(A ∩ B)(uvkwxky) − (A ∩ B)(uvwxy)| = a + 2λ > 2λ.

(2) When vwx takes two letters, let vwx = 0h1f (h+f ≥ 1), and then u = 0p−h,
y = 1p−f2p.
(i) If v = 0i, w = 0j , x = 0h−i−j1f , where h − j + f > 0, then

uvkwxky = 0p−h+ki+j(0h−i−j1f )k1p−f2p.
If k = 2, uv2wx2y = 0p−h+2i+j(0h−i−j1f )21p−f2p, then (A ∩
B)(uv2wx2y) = 0. Hence, there exists a positive integer k such that
|(A ∩ B)(uvkwxky) − (A ∩ B)(uvwxy)| = a + 2λ > 2λ.

(ii) If v = 0i, w = 0h−i1j , x = 1f−j , where j > 0 and h − j + f > 0, then
uvkwxky = 0p+(k−1)i1p+(k−1)(f−j)2p.
If k = 2, because i+f −j > 0, p+ i 
= p and p+f −j 
= p, at least one of
them is true, then (A ∩ B)(uv2wx2y) = 0. Hence, there exists a positive
integer k such that |(A∩B)(uvkwxky)−(A∩B)(uvwxy)| = a+2λ > 2λ.

(iii) If v = 0h1i, w = 1j , x = 1f−i−j , where j > 0 and h + f − j > 0, then
uvkwxky = 0p−h(0h1i)k1p+(k−1)(f−j)+i2p.
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If k = 2, uv2wx2y = 0p−h(0h1i)21p+f−j+i2p, then (A ∩ B)(uv2wx2y) =
0. Hence, there exists a positive integer k such that |(A∩B)(uvkwxky)−
(A ∩ B)(uvwxy)| = a + 2λ > 2λ.
In a similar way, when vwx = 1h2f (h + f ≥ 1), there exists a positive
integer k such that |(A∩B)(uvkwxky)−(A∩B)(uvwxy)| = a+2λ > 2λ.

So the assumption is invalid. Therefore, A∩B is not a Fλ-ACFL(Σ∗). That
is to say, the operation intersection is not closed in Fλ-ACFL(Σ∗).

According to Theorem 9, union operation is closed in Fλ-ACFL(Σ∗). If
complement operation is closed in Fλ-ACFL(Σ∗), A ∩ B = ((A ∩ B)c)c =
(Ac ∪Bc)c ∈ Fλ-ACFL(Σ∗) for any A, B ∈ Fλ-ACFL(Σ∗), it is contradictory.
Therefore, the operation complement is not closed in Fλ-ACFL(Σ∗).

Theorem 11. For any λ ∈ (0, 1
2 ), the operations �Lukasiewicz addition,

�Lukasiewicz product and �Lukasiewicz implication are not closed in Fλ-
ACFL(Σ∗).

Proof. Let λ ∈ (0, 1
2 ). For the �Lukasiewicz addition operation, if we find a A ∈

Fλ-ACFL(Σ∗), but A ⊕ A /∈ λ-ACFL(Σ∗), then the theorem holds.
Let fuzzy language A be defined as, ∀θ ∈ Σ∗, Σ = {a}.

A(θ) =
{

2λ, θ = am and m is prime,
0, otherwise.

For any θ ∈ Σ∗, we take A′(θ) = λ, then A′ ∈ FCFL(Σ∗) and A′ λ-
approximate A. So A ∈ Fλ-ACFL(Σ∗). Then we have

(A ⊕ A)(θ) =
{

(4λ) ∧ 1, θ = am and m is prime,
0, otherwise.

We assume that A ⊕ A ∈ Fλ-ACFL(Σ∗), then it satisfies Theorem 3. We
take θ = ap+d, where p + d is prime, then (A ⊕ A)(θ) = (4λ) ∧ 1. Let u = as,
v = at, w = aj , x = ai−t−j , y = ap+d−s−i, where 0 ≤ t + j < i ≤ p. It is clear
that θ = uvwxy, |vwx| = i ≤ p, |vx| = i − j > 0 and for any positive integer
k, uvkwxky = a(k−1)(i−j)+(p+d). If k = p + d + 1, then uvkwxky = a(d+p)(i−j+1)

and (A ⊕ A)(uvkwxky) = 0. Hence, there exists a positive integer k, such that
|(A ⊕ A)(uvkwxky) − (A ⊕ A)(uvwxy)| = (4λ) ∧ 1 > 2λ. So the assumption is
invalid. That is, A ⊕ A /∈ Fλ-ACFL(Σ∗).

Since ∀A,B ∈ FL(Σ∗), we have A ⊗ B = (Ac ⊕ Bc)c and A → B = Ac ⊕ B,
Thus, the operations �Lukasiewicz addition, �Lukasiewicz product and �Lukasiewicz
implication are not closed in Fλ-ACFL(Σ∗).

Now we discuss the relationships between Fλ-ACFL(Σ∗) and Fλ-ARL(Σ∗).

Definition 8 ([25]). Let f ∈ FL(Σ∗). If there exists a fuzzy regular language
f ′ such that |f(θ)−f ′(θ)| ≤ λ, ∀θ ∈ Σ∗, then we say that f ′ λ-approximate f(or
f λ-approximated by f ′) and call f is a fuzzy λ-approximate regular language
over Σ∗.
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We usually denote the set of all fuzzy λ-approximate regular languages over
Σ∗ as Fλ-ARL(Σ∗).

Theorem 12. For any λ ∈ (0, 1
2 ), Fλ-ARL(Σ∗) ⊆ Fλ-ACFL(Σ∗).

Proof. If A ∈ Fλ-ARL(Σ∗), then there exists a fuzzy regular language A′ such
that |A(θ) − A′(θ)| ≤ λ, ∀θ ∈ Σ∗. Because a fuzzy regular language must be a
FCFL(Σ∗) , then A′ ∈ FCFL(Σ∗) and |A(θ) − A′(θ)| ≤ λ for any θ ∈ Σ∗. So
A ∈ Fλ-ACFL(Σ∗). Therefore, Fλ-ARL(Σ∗) ⊆ Fλ-ACFL(Σ∗).

Theorem 10 shows that the intersection operation in Fλ-ACFL(Σ∗) is not
closed, but the intersection of a Fλ-ACFL(Σ∗) and a Fλ-ARL(Σ∗) is still a
Fλ-ACFL(Σ∗), that is, Theorem 13 holds.

Theorem 13. For any λ ∈ (0, 1
2 ), the intersection of a Fλ-ACFL(Σ∗) and a

Fλ-ARL(Σ∗) is a Fλ-ACFL(Σ∗).

Proof. Let A ∈ Fλ-ACFL(Σ∗), B ∈ Fλ-ARL(Σ∗). From Definitions 7 and
Theorem 4, we know that there exists a A′ ∈ FCFL(Σ∗) and a fuzzy regular
language B′ such that |A(θ) − A′(θ)| ≤ λ and |B(θ) − B′(θ)| ≤ λ, ∀θ ∈ Σ∗.
And because the intersection of a fuzzy regular language and a FCFL(Σ∗) is a
FCFL(Σ∗) [13], A′ ∩ B′ is still a FCFL(Σ∗). So |(A ∩ B)(θ) − (A′ ∩ B′)(θ)| =
|A(θ) ∧ B(θ) − A′(θ) ∧ B′(θ)| ≤ |A(θ) − A′(θ)| ∨ |B(θ) − B′(θ)| ≤ λ, ∀θ ∈ Σ∗.
Hence, A ∩ B ∈ Fλ-ACFL(Σ∗). That is, the intersection of a Fλ-ACFL(Σ∗)
and a Fλ-ARL(Σ∗) is a Fλ-ACFL(Σ∗).

6 Conclusion

In this paper, the properties in Fλ-ACFL are studied. Firstly, we give the con-
cept of Fλ-ACFL and their Pumping lemma. Secondly, we study the relation-
ships between Fλ1-ACFL and Fλ2-ACFL for different real numbers λ1, λ2 ∈
[0, 1], and a hierarchical characterization in Fλ-ACFL is given. Finally, we dis-
cuss the closure of various operations in Fλ-ACFL and study the relationships
between Fλ-ACFL and Fλ-ARL. We know if a A ∈ FL(Σ∗) is a Fλ-ACFL,
there exists a fuzzy pushdown automaton M such that |A(θ)−L(M)(θ)| ≤ λ, for
any θ ∈ Σ∗, and we call that M λ-accepts A (or A is λ-accepted by M). How-
ever, for a Fλ-ACFL, the construction method of fuzzy pushdown automata
λ-accepting has not been given for the time being, and will be further studied
in the future.
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Abstract. There is a large amount of fuzzy linguistic-valued data in real
life. For the complexity of fuzzy linguistic concept acquisition, in this
paper, we propose a Fuzzy-classical Linguistic Concept Lattice Acqui-
sition (FLCLC) approach based on attribute topology. Specifically, the
fuzzy-classical linguistic concept induced operator is proposed accord-
ing to the fuzzy linguistic formal context. On this basis, the fuzzy lin-
guistic attribute topology is generated by the fuzzy linguistic coupling
relationship between attributes. Furthermore, in order to improve the
interpretability of the fuzzy-classical linguistic concept acquisition pro-
cess, we traverse the weight paths of the coarse fuzzy linguistic attribute
topology, and the set of attributes obtained by traversing the paths is
the intents of the fuzzy-classical linguistic concept, and the weights on
the paths are the extents of the fuzzy-classical linguistic concept, result-
ing in the fuzzy-classical linguistic concept. Finally, examples are used to
demonstrate the effectiveness and practicality of our proposed approach.

Keywords: Fuzzy-classical linguistic concepts · Attribute topology ·
Concept lattice · Fuzzy linguistic attribute topology

1 Introduction

Formal concept analysis (FCA), introduced by Wille [1] in 1982, is mainly used
to describe the relationships between objects and attributes in a formal con-
text. For a given formal context, the concept we obtain consists of two parts:
intent and extent, which are used to portray the hierarchical relationships of for-
mal concepts and to analyze the generalization and specialization relationships
between concepts [2,3]. The concept lattice has been widely used in knowledge
discovery [4,5], machine learning [6–8], data mining [9,10], etc.

The concept lattice is a beneficial tool for data analysis, and with the devel-
opment of computer technology, the amount of data is increasing. The num-
ber and complexity of concepts generated from formal contexts has increased.
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Many scholars have conducted in-depth research on the concept lattice construc-
tion algorithm [9,22]. For example, Zhang et al. [11] constructed three concept
lattices and discussed their properties and relations. Mao et al. [12] defined a
weighted graph in the formal context, and the complexity of the algorithm was
greatly reduced by constructing a classical-fuzzy concept lattice through the
weighted graph. The intent of classical-fuzzy concept is expressed by fuzzy set.
Unlike classical-fuzzy concept, the extent of fuzzy-classical concept is expressed
by fuzzy set. Zhang et al. [13] use the idea of Attribute Topology (AT) to repre-
sent formal contexts and search all concepts using visual paths by decomposing
the AT with the top-level attributes as the core. This approach reduces both the
complexity of the concept lattice construction algorithm and the redundancy
of concept acquisition, while making concept lattice construction more intuitive
and visualizable. However, such methods do not take into account fuzzy linguis-
tic information. Inspired by the attribute topology, it is necessary to consider a
new method of fuzzy linguistic concept lattice construction.

In daily life, using linguistic values to express information is more in line
with human thinking patterns. Since Zadeh proposed fuzzy sets (FSs) [14] and
linguistic variables [15], they have been applied by many scholars in evalua-
tion, decision making, and reasoning. Zou et al. [16,17] designed a personalized
teaching resource recommendation approach for the linguistic concept lattice
with fuzzy object. In order to deal with the incomparable information in fuzzy
linguistic values, Yang et al. [18,19] proposed a fuzzy linguistic-valued concept
lattice construction and rule extraction method based on the linguistic truth-
valued lattice implication algebra. However, due to the inherent uncertainty of
fuzzy linguistic values, it is inefficient in constructing linguistic concept lattices.

Through the above analysis, in this paper, we propose a fuzzy-classical lin-
guistic concept lattice construction approach based on attribute topology. The
approach not only reduces the complexity of concept acquisition, but also pre-
serves the relatively important concepts in fuzzy-classical linguistic concepts.

The rest of this paper is organized as follows. In Sect. 2, we review some basic
notions relevant to FCA, linguistic term set and attribute topology. In Sect. 3, we
propose the fuzzy-classical linguistic concept based on the fuzzy linguistic formal
context. In Sect. 4, we generate a coarse object-oriented attribute topology based
on fuzzy linguistic attribute topology, on this basis, we get the fuzzy-classical
linguistic concepts according to the reachable paths. Finally, we conclude the
paper with a summary and outlook for further research in Sect. 5.

2 Preliminaries

This section briefly recalls the concepts of linguistic term set [20], attribute
topology [13] and FCA [1,2].

Definition 1. [1] A formal context is a triple (U,A, I), where U =
{x1, x2, · · · , xn} is a set of objects, A = {a1, a2, · · · , an} is a set of attributes,
and I is a binary relation between U and I. For xi ∈ U and ai ∈ A, we write
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(xi, ai) ∈ I as xiIai, and say that the object xi has the attribute ai. Alternatively,
the attribute ai is possessed by the object xi.

Definition 2. [1] Let (U,A, I) be a formal context, a formal concept is a pair
(X,B) where X ⊆ U and B ⊆ A such that X↑ = B and X = B↓. X and B are
respectively the extent and intent of (X,B), two operators “↑” and “↓” can be
defined as follows:

(•)↑ : 2U → 2A,

X↑ = {ai|ai ∈ A, ∀xi ∈ X, (xi, ai) ∈ I} , (1)

(•)↓ : 2A → 2U ,

B↓ = {xi|xi ∈ U, ∀ai ∈ B, (xi, ai) ∈ I} . (2)

X↑ denotes the set of attributes common to all objects in X. B↓ denotes the
set consisting of objects that share all the attributes in B.

We denote the set consisting of all concepts of the formal context (U,A, I)
as L (U,A, I), for (X1, B1), (X2, B2) ∈ L (U,A, I), the partial order relation “≤”
can be defined as follows:

(X1, B1) ≤ (X2, B2) ⇔ X1 ⊆ X2 (B2 ⊆ B1) , (3)

(L (U,A, I) ,≤) forms a complete concept lattice in the partial order relation
“≤”, which is called a concept lattice.

Definition 3. [13] Let (U,A, I) be a formal context, the adjacency matrix of
an attribute topology can be expressed as T = (V,E), where V = A is the vertex
set of the T , E is the weight of edges in T , T can be defined as follows:

E (vi, vj) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

v∗
i , i = j

∅, v∗
i ∩ v∗

j = ∅(i �= j)
∅, v∗

i ∩ v∗
j = v∗

i (i �= j)
v∗

j , v∗
i ∩ v∗

j = v∗
j (i �= j)

v∗
i ∩ v∗

j , Others

. (4)

According to Definition 3, in the construction process of AT , the following
coupling relationships exist between attributes:

1. When i = j, E (vi, vj) is the set of objects of the attributes belong.
2. When v∗

i ∩ v∗
j = ∅(i �= j), vi and vj are attributes mutually exclusive from

each other.
3. When v∗

i ∩v∗
j = v∗

i (i �= j), vj contains vi, which is represented in the topology
as vj that cannot be reached by vi, but can be reached by vj .

4. When v∗
i ∩v∗

j = v∗
j (i �= j), vi contains vj , which is represented in the topology

as vi that is not reachable from vi.
5. When E (vi, vj) = v∗

i ∩ v∗
j , vi and vj are compatible.
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Definition 4. [13] Let (U,A, I) be a formal context, T = (V,E) be an attribute
topology generated by (U,A, I), for any vi, vj ∈ V , the set of attributes V can be
divided into three categories as follows:

1. If E (vi, vj) �= ∅ and E (vj , vi) �= ∅, then vi is called the top-level attribute.
2. If E (vi, vj) = ∅ and E (vj , vi) �= ∅, then vi is called the bottom-level attribute.
3. An attribute that is neither a top-level attribute nor a bottom-level attribute

is called a transition attribute.

Definition 5. [20] Let S = {s0, s1, · · · , sg} be a linguistic term set consisting of
an odd number of linguistic terms, where g +1 is the granularity of the linguistic
term set, then S satisfies the following properties:

1. Order: si > sj ⇔ i > j.
2. Negative operator: Neg(si) = sj, where j = g − i.
3. Maximal operator: If i ≥ j, then Max(si, sj) = si.
4. Minimal operator: If i ≥ j, then Min(si, sj) = sj.

3 Attribute Topology Representation of Fuzzy Linguistic
Formal Context

Definition 6. [21] A fuzzy linguistic formal context is a triple (U,A, S), where
U = {ui | i ∈ 1, 2, · · · , n} is a set of objects, A = {aj | j ∈ 1, 2, · · · ,m} is a set
of attributes, S = {s0, s1, · · · , sg} is the fuzzy linguistic relationship between U
and A, i.e., S ⊆ U × A. For any (x, a) ∈ U × A, such that

S(x, a) = {sl | l ∈ 0, 1, · · · , g} , (5)

where s0 ≤ s(x, a) ≤ sg.

In the fuzzy linguistic formal context (U,A, S), if ϕ(x) = {s (x, a1) , s (x, a2) ,
· · · , s (x, am)}, then ϕ(x) is called the fuzzy linguistic-valued set of object x
on A. If ϕ(a) = {s (x1, a) , s (x2, a) , · · · , s (xn, a)}, then ϕ(a) is called the fuzzy
linguistic-valued set of attribute a on U .

Definition 7. Let (U,A, S) be a fuzzy linguistic formal context, sφ be a fuzzy
linguistic threshold and ϕ(A) be the fuzzy linguistic-valued set of attribute set A
on U , then two operators “�” and “�” can be defined as follows:

X� = ∩{a ∈ A | ∀x ∈ X, s(x, a) ≥ sφ} , (6)

B� = ∩{(x, ϕ(a)) | x ∈ U,∀a ∈ A, s(x, a) ≥ sφ} , (7)

X� represents the attribute set of all objects in X that satisfy the fuzzy lin-
guistic threshold sφ. B� represents the set of minimum fuzzy linguistic values
corresponding to the attributes that satisfy the fuzzy linguistic threshold sφ.
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Definition 8. Let (U,A, S) be a fuzzy linguistic formal context, a fuzzy-classical
linguistic concept is a pair (Y,C) (Y ⊆ U,C ⊆ A) such that X� = B and
X = B�. Y and C are respectively the extent and intent of (Y,C).

It should be noted that the fuzzy linguistic threshold sφ can be selected
according to the linguistic preference of users or decision makers. The larger the
fuzzy linguistic threshold, the less fuzzy-classical linguistic concepts we get.

In the fuzzy linguistic formal context (U,A, S), for any X1,X2 ⊆ U
and B1, B2 ⊆ A, we denote FV LL(U,A, S) as the set of all fuzzy-classical
linguistic concepts in the fuzzy linguistic formal context (U,A, S). For any
(X1, B1) , (X2, B2) ∈ FV LL(U,A, S), the corresponding partial order relation
“�” is as follows:

(X1, B1) � (X2, B2) ⇔ X1 ⊆ X2 (B2 ⊆ B1) , (8)

where (X1, B1) is the fuzzy-classical linguistic subconcept of (X2, B2), (X2, B2)
is the fuzzy-classical linguistic parent concept of (X1, B1).

Proposition 1. Let (U,A, S) be a fuzzy linguistic formal context, sφ(s0 ≤ sφ ≤
sg) be a fuzzy linguistic threshold, for any B,B1, B2 ⊆ A and X,X1,X2 ⊆ U ,
then:

1. X1 ⊆ X2 ⇒ X�
2 ⊆ X�

1 , B1 ⊆ B2 ⇒ B�
2 ⊆ B�

1 .
2. X ⊆ X��, B ⊆ B��.
3. X� = X���, B� = B���.
4. (X1 ∪ X2)

� = X�
1 ∩ X�

2 , (B1 ∪ B2)
� = B�

1 ∩ B�
2 .

5. (X1 ∩ X2)
� ⊇ X�

1 ∪ X�
2 , (B1 ∩ B2)

� ⊇ B�
1 ∪ B�

2 .

Proof. According to Definition 7 and the partial order relation between fuzzy-
classical linguistic concepts, we can easily prove that properties 1, 2 hold. Accord-
ing to properties 1, 2, we have X��� ⊆ X�. Suppose X� = X, according to
property 2, we get X� ⊆ X���. Therefore, property 3 is proved. Similarly, we
have B� = B���. Similarly, properties 4, 5 hold.

Example 1. We give a fuzzy linguistic formal context (U,A, S) as shown in
Table 1, where U = {u1, u2, u3, u4, u5} represents the set of objects, A = {a1, a2,
a3, a4, a5} represents the set of attributes, S = {s0 = strongly disagree, s1 =
very disagree, s2 = disagree, s3 = somewhat disagree, s4 = neutral, s5 =
somewhat agree, s6 = agree, s7 = very agree, s8 = strongly agree} represents
the fuzzy linguistic relationship between U and A.

We take the fuzzy linguistic threshold sφ = s4. According to Definition 7, we
can obtain all fuzzy-classical linguistic concepts FV LL(U,A, S) on the fuzzy lin-
guistic formal context (U,A, S) and construct the corresponding fuzzy-classical
linguistic concept lattice as shown in Table 2 and Fig. 1.

For example, fuzzy-classical linguistic concept c4 : ({(u1, s5), (u5, s7)}, {a1,
a5}) indicates that objects u1 and u5 evaluate attributes a1 and a5 to a higher
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Table 1. Fuzzy linguistic formal context (U,A, S)

U a1 a2 a3 a4 a5

u1 s5 s1 s6 s5 s6

u2 s6 s3 s7 s2 s3

u3 s3 s5 s0 s3 s4

u4 s4 s2 s1 s2 s0

u5 s7 s6 s2 s1 s8

C4 C6

C2 C3

C1

C7

C5

C8

C9

Fig. 1. Fuzzy-classical linguistic concept lattice FV LL(U,A, S)

Table 2. All fuzzy-classical linguistic concepts

Index Extent Intent

c1 U ∅
c2 {(u1, s5), (u2, s6), (u4, s4), (u5, s7)} {a1}
c3 {(u1, s6), (u3, s4), (u5, s8)} {a5}
c4 {(u1, s5), (u5, s7)} {a1, a5}
c5 {(u1, s5), (u2, s6)} {a1, a3}
c6 {(u3, s4), (u5, s6)} {a2, a5}
c7 {(u5, s6)} {a1, a2, a5}
c8 {(u1, s5)} {a1, a3, a4, a5}
c9 ∅ A
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degree. Furthermore, the common fuzzy linguistic evaluation index of object u1

for attribute a1 and a2 is s5, and the common fuzzy linguistic evaluation index
of object u5 for attribute a1 and a2 is s7.

4 Fuzzy-Classical Linguistic Concept Computation Based
on Attribute Topology

4.1 Coarse Fuzzy Linguistic Attribute Topology

Definition 9. Let (U,A, S) be a fuzzy linguistic formal context, K = (V,G) be
the fuzzy linguistic attribute topology of (U,A, S), where V = A is the set of
nodes in the fuzzy linguistic attribute topology., and G represents the set of edges
in the fuzzy linguistic attribute topology. For ai, aj ∈ V , G (ai, aj) is expressed
as follows:

G (ai, aj) =
{ ∅, a�

i ∩ a�
j = ∅ or a�

i ∩ a�
j = a�

i

ϕT (ai) ∧ ϕT (aj), Others . (9)

where

ϕT (a) =
|U |∑

i

ST (xi, a)
xi

represents the fuzzy linguistic-valued set for which attribute a satisfies the fuzzy
linguistic threshold T on U .

In Eq. 9, the weight between any two attributes in the fuzzy linguistic
attribute topology is K(ai, aj) = ϕT (ai)∧ϕT (aj), which represents the linguistic
membership degree of attributes ai and aj to objects that they have in common.

Definition 10. Let (U,A, S) be a fuzzy linguistic formal context, K = (V,G)
be the fuzzy linguistic attribute topology of (U,A, S), for ai ∈ V , � ∃aj ∈ V ,if
G (aj , ai) �= ∅, both have G (ai, aj) = ∅, then ai is called the top-level attribute.

Definition 11. Let (U,A, S) be a fuzzy linguistic formal context, K = (V,G)
be the fuzzy linguistic attribute topology of (U,A, S), for ai ∈ V , if ai is a top-
level attribute, a self-loop oi is added to that node and the weight is noted as
K(oi) = ϕT (ai). The fuzzy linguistic attribute topology K ′(V,G) considering
the self-loop of top-level attribute nodes is called coarse fuzzy linguistic attribute
topology.

Definition 12. Let (U,A, S) be a fuzzy linguistic formal context, K ′(V,G) be
the coarse fuzzy linguistic attribute topology of (U,A, S), for a ∈ A, if a is
considered to be self-loop, then a is called the initial attribute, and the set of
initial attributes is denoted as H.

Theorem 1. Suppose (U,A, S) is the fuzzy linguistic formal context, K ′(V,G) is
the coarse fuzzy linguistic attribute topology of (U,A, S), if the top-level attribute
ai contains a self-loop, then (ϕT (ai), ai) is a fuzzy-classical linguistic concept.
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Proof. According to Definition 10, since the top-level attribute ai contains a self-
loop, there is no arbitrary attribute aj , satisfying ϕT (ai) ⊆ ϕT (aj). Therefore,
(ϕT (ai), ai) is a fuzzy-classical linguistic concept.

Definition 13. Let (U,A, S) be a fuzzy linguistic formal context, K ′(V,G) be
the coarse fuzzy linguistic attribute topology of (U,A, S), T = {a, a1, · · · , al}
is the path starting with attribute a, where ai ∈ T and ai ∈ H. If K(T ) =
K(a, a1) ∩ K(a1, a2) ∩ · · · ∩ K(al−1, al) �= ∅, then T is called the reachable path.

Theorem 2. Suppose (U,A, S) is the fuzzy linguistic formal context, K ′(V,G)
is the coarse fuzzy linguistic attribute topology of (U,A, S), if T is a reachable
path, then (K(T ), T ) is a fuzzy-classical linguistic concept.

Proof. According to Definition 13, we have K(T ) = K(a, a1) ∩ K(a1, a2) ∩ · · · ∩
K(al−1, al) �= ∅. According to the inclusion relation of fuzzy linguistic attribute
topology, we get K(al−1, al) ⊂ · · · ⊂ K(a1, a2) ⊂ K(a, a1). Therefore, the intent
of the top-level attribute contains the intent of all node attributes, so all fuzzy-
classical linguistic concepts can be obtained from the top-level attribute, i.e.,
(K(T ), T ) is a fuzzy-classical linguistic concept.

4.2 Algorithm and Illustrations

According to the above analysis, in order to generate fuzzy-classical linguistic
concepts, we first need to determine whether the node attributes corresponding
to the fuzzy linguistic attribute topology are equal to the weights on the path.
Then we traverse each node attribute in the coarse fuzzy linguistic attribute
topology and determine whether it is a reachable path to obtain fuzzy-classical
linguistic concepts. We give the Fuzzy-Classical Linguistic Concepts Acquisition
(FCLCA) approach based on the attribute topology as follows:

Input: the fuzzy linguistic formal context (U,A, S).
Output: all fuzzy-classical linguistic concepts FV LL(U,A, S).
Step 1: Construct the adjacency matrix of fuzzy linguistic attribute topology

(V,G) by Eq. 9.
Step 2: Generate a fuzzy linguistic attribute topology according to Defini-

tion 9.
Step 3: For ai ∈ V , if ai is the top-level attribute, a self-loop oi is added to

this node to generate a coarse fuzzy linguistic attribute topology K ′(V,G).
Step 4: If the nodes consider the self-loop, the fuzzy-classical linguistic con-

cept (ϕT (ai), ai) is obtained.
Step 5: Using ai as the path starting point, find the maximal path T . If

K �= ∅, then use K(T ) as an extent of T to generate the fuzzy-classical linguistic
concept (K(T ), T ).

Step 6: Output all fuzzy-classical linguistic concepts FV LL(U,A, S).

Example 2. (Continued Example 1) We take the fuzzy linguistic formal context
(U,A, S) shown in Table 1 as an example. According to Step 1, we can derive the
adjacency matrix of the fuzzy linguistic attribute topology G(ai, aj) as follows:



Fuzzy-Classical Linguistic Concept Acquisition Approach 139

G(ai, aj) =

⎡

⎢
⎢
⎢
⎢
⎣

s5
u1

+ s6
u2

+ s4
u4

+ s7
u5

s6
u5

s5
u1

+ s6
u2

s5
u1

s5
u1

+ s7
u5

s6
u5

s5
u3

+ s6
u5

∅ ∅ ∅

∅ ∅
s6
u1

+ s7
u2

s5
u1

s5
u4

∅ ∅ ∅
s5
u1

∅

s5
u1

+ s7
u5

s4
u3

+ s6
u5

s5
u4

s5
u1

s6
u1

+ s4
u3

+ s8
u5

⎤

⎥
⎥
⎥
⎥
⎦

,

similar to the Zadeh representation for fuzzy sets, we use the Zadeh represen-
tation for fuzzy linguistic values.

We can generate a fuzzy linguistic attribute topology (V,G) based on the
fuzzy linguistic adjacency matrix G(ai, aj) as shown in Fig. 2. It represents the
relationship between attributes.

Fig. 2. Fuzzy linguistic attribute topology (V,G)

According to the fuzzy linguistic attribute topology (V,G), there is a one-way
edge connected between attributes a1 and a3, indicating that there are common
objects between attributes a1 and a3 and the set of objects owned by attribute
a1 contains the set of objects owned by attribute a3, corresponding to a fuzzy
linguistic weight s5

u1
+ s6

u2
. There is no edge connection between attributes a2 and

a3, indicating that the attributes are mutually exclusive and the weight between
them is ∅, so attributes a2 and a3 cannot constitute a fuzzy-classical linguistic
concept.

According to step 3, we can obtain the coarse fuzzy linguistic attribute topol-
ogy K ′(V,G) as shown in Fig. 3.

According to Fig. 3, attributes a1 and a5 are considered self-loop. Therefore,
according to Theorem 1, the fuzzy linguistic weights corresponding to attributes
a1 and a5 are the extents of fuzzy-classical linguistic concepts, and attributes a1

and a5 are the intents of fuzzy-classical linguistic concepts, as shown in Table 3.
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Fig. 3. Coarse fuzzy linguistic attribute topology K′(V,G)

Table 3. a1 and a5 are the intents of fuzzy-classical linguistic concepts

Extent Intent

{(u1, s5), (u2, s6), (u4, s4), (u5, s7)} {a1}
{(u1, s6), (u3, s4), (u5, s8)} {a5}

We sequentially select the nodes in the coarse attribute topology graph as
path starting points to find the maximum path, as shown in Table 4.

Table 4. The path corresponding to attribute a1

K(T ) T

{(u1, s5), (u5, s7)} {a1, a5}
{(u1, s5), (u2, s6)} {a1, a3}
{(u5, s6)} {a1, a2, a5}
{(u1, s5)} {a1, a3, a4, a5}

According to Tables 4 and 5, when using attribute a1 as the starting point
of the path, we can obtain the fuzzy-classical linguistic concept intent set as
follows:

{{(u1, s5), (u5, s7)}, {(u1, s5), (u2, s6)}, {(u5, s6)}, {(u1, s5)}}.

Similarly, when taking attribute a5 as the starting point of the path, we can
get the intent set of fuzzy-classical linguistic concepts as follows:

{{(u3, s4), (u5, s6)}}.
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Table 5. The path corresponding to attribute a5

K(T ) T

{(u3, s4), (u5, s6)} {a2, a5}

In the above paths, the redundant fuzzy-classical linguistic concepts gener-
ated on different paths have been removed, so they are the same as the fuzzy-
classical linguistic obtained in Example 1.

5 Conclusions

In this paper, we propose a fuzzy-classical linguistic concept acquisition approach
based on attribute topology, combining fuzzy linguistic formal context and con-
cept lattice. Our proposed FCLCA approach reduces redundant fuzzy-classical
linguistic concepts while retaining relatively important fuzzy linguistic concept
information. In the process of fuzzy-classical linguistic concept acquisition, the
reachable paths of coarse fuzzy linguistic attribute topology is visualized, which
improves the interpretability of the FCLCA approach and is more beneficial for
people to select different fuzzy linguistic concepts according to different down-
stream tasks. We verify the correctness and effectiveness of our proposed app-
roach by examples.

In the future, due to the complexity and uncertainty of the fuzzy linguistic
formal context, it is necessary for us to consider a new approach to deal with
fuzzy linguistic values. In addition, the fuzzy-classical linguistic concept acqui-
sition approach we proposed is still in the theoretical stage. In the big data
environment, we can try to apply it to different downstream tasks.
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Abstract. In this work, we first extend the concept of (α, T0)-migrative
property of binary operations, study some analytical properties of them
and then obtain new t-norms on bounded lattices in terms of generalized
convex combinations of TW and t-norms. Conditions for the generalized
convex combinations to be t-norms again are investigated.
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1 Introduction

T-norms, investigated in the study of probabilistic metric spaces [27,33], are
widely used in fuzzy preference modelling, fuzzy sets, fuzzy decision making
and statistics [1,22]. Nowadays, researchers pay more attention to t-norms on
bounded lattices instead of those on the real unit interval [7,8,10,11,16,18,24,
32,36], which have more practical applications [23].

The so-called migrativity was introduced by Durante and Sarkoci [9] when
they studied the convex combinations of two t-norms and this property was
considered first in [26] as a problem to find examples of such t-norms that differ
from the t-norms Ta provided, for all a ∈]0, 1[ and u, v ∈ [0, 1],

Ta(u, v) =

{
min(u, v) max(u, v) = 1
auv otherwise,

which has been solved in [5]. This property has received more and more attention
in the cases of t-norms [12–15,30], aggregation functions [6], semicopulas, quasi-
copulas and copulas [25], uninorms and nullnorms [31], overlap functions [37]
and so on.

As an interesting method to obtain new logic operators from given logic
operators, the convex combination of t-norms on the real unit interval was
widely studied and it turned out that there are many cases that the non-trivial
convex combinations of two different discontinuous t-norms are still t-norms
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[9,19,29]. Jenei [19] clarified that several examples can be given when taking into
account convex combinations of discontinuous t-norms. What’s more, Ouyang
[29] claimed that the convex combination of a continuous t-norm T and the
drastic product TD is a t-norm if and only if the continuous t-norm T is strict
and the additive generator f of T satisfies an additional condition.

Recently, based on the idea given in [28], Karaçal et al. [21] extended the defi-
nition of the convex combination for t-norms on the real unit interval to bounded
lattices, which is called the generalized convex combination. Since there are no
definitions of addition, subtraction and multiplication on lattices, they replaced
the addition, subtraction and multiplication in the equation by t-conorms, nega-
tions and t-norms, respectively. Inspired by the idea given in [21] and the work in
[9,35], we can extend the α-migrative property on [0, 1] to the bounded lattices
and investigate the generalized convex combination of several kinds of t-norms
on bounded lattices.

The rest of this paper is formed as follows. First, we recall some basic notions
of lattices, several operators on bounded lattices, the generalized convex com-
bination and some of their properties In Sect. 2. In Sect. 3, we first extend the
definition of (α, T0)-migrativity and study several properties of it. Then we
investigate the case when the generalized convex combinations of such migrative
t-norms are still t-norms, which can be divided into two parts: the generalized
convex combination of TW and (α, T∧)-migrative t-norms, and the generalized
convex combination of TW and (α, T0)-migrative t-norms, where T0 is a ∨-
distributive t-norm.

2 Preliminaries

For some basic notions about t-norms on [0, 1]2, the reader can refer to [22]. In
this section, we will give some useful concepts about lattices as well as t-norms
on bounded lattices. For more detailed information about partially ordered sets
and lattices we recommend [3,4].

Definition 1. [4] Let (M,≤) be a partially ordered set and N be a subset of M .
An element x ∈ M is said to be an upper bound of N if x ≥ y for all y ∈ N .
An upper bound p of N is said to be the least upper bound if p ≤ x for all upper
bounds x of N and we write p =

∨
N . The definitions of the lower bound and

the greatest lower bound can be obtained dually.

Definition 2. [3] Let (L,≤) be a partially ordered set, if any two elements x, y ∈
L have a greatest lower bound, which is denoted by x∧y, and a least upper bound,
which is denoted by x ∨ y, then L is a lattice. If a lattice (L,≤) has a bottom
element ⊥ and a top element �, then (L,≤) is called a bounded lattice.

In general, we write the top element and bottom element as 1L and 0L. We
denote the bounded lattice (L,≤) with a top element 1L and a bottom element
0L by (L,≤, 0L, 1L). For m,n in a lattice, we use m‖n to denote that m and n
are incomparable and we use the notation m ∦ n to denote that m and n are
comparable.
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Definition 3. [3] Given a bounded lattice (L,≤, 0L, 1L), and m,n ∈ L with
m ≤ n, a subinterval [m,n] of L is a sublattice of L defined as

[m,n] = {x ∈ L | m ≤ x ≤ n}.

Similarly, ]m,n] = {x ∈ L | m < x ≤ n}, [m,n[= {x ∈ L | m ≤ x < n} and
]m,n[= {x ∈ L | m < x < n}.
Definition 4. [2] Let (L,≤, 0L, 1L) be a bounded lattice. A binary function
T (resp. S): L2 → L is said to be a t-norm (resp. t-conorm) if it is associative,
commutative, has a neutral element 1L (resp. 0L) and increasing with respect to
both variables.

If we replace the condition that T has a neutral element 1L by the inequality
T (u, v) ≤ u ∧ v for all u, v ∈ L, which can be called boundary condition, then
we call T a t-subnorm.

Example 1. [20] Given a bounded lattice (L,≤, 0L, 1L). TW and T∧ given below
are two common t-norms on the bounded lattice L: for all u, v ∈ L,

TW (u, v) =

⎧⎪⎨
⎪⎩

v u = 1L

u v = 1L

0L otherwise,

T∧(u, v) = u ∧ v.

Dually, S∨ given below is a t-conorm on bounded lattice L: for all u, v ∈ L,

S∨(u, v) = u ∨ v.

Recently, Sun and Liu [34] gave the theorem of t-norms with additive gener-
ators on bounded lattices, which took a step forward in our study about lattice-
valued aggregation functions. As a helpful tool to figure out more properties of
t-norms on bounded lattices, here we post the theorem as follows:

Theorem 1. [34] Let (L,≤) be a bounded lattice with a bottom element 0L and
a top element 1L, and t : L → [0,∞] be an injective decreasing function with
t(1L) = 0. If the conditions below stand:

(i) for all u, v ∈ L function t fulfills

t(u) + t(v) ∈ Ran(t) ∪ [t(0L),∞],

(ii) if t(v) and t(u) have at least one same summand in Ran(t), then u ∦ v,

then the following function T : L2 → L is a t-norm. And we call t as an additive
generator of T :

T (u, v) = t(−1)(t(u) + t(v)).
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Besides, from the Proposition 3.11 in [34] we know that for an arbitrary t-
norm T on a bounded lattice (L,≤, 0L, 1L) with its additive generator t, T is
strict increasing if and only if t(0L) = ∞.

Finally, we recommend the concept of the generalized convex combination of
t-norms on bounded lattices.

Definition 5. [17] Let (L,≤, 0L, 1L) be a bounded lattice. A operation n : L → L
is said to be a negation if it is decreasing, n(0L) = 1L and n(1L) = 0L.

If L = [0, 1], the classical (standard) negation nC on L is defined as nC(u) =
1 − u, for all u ∈ [0, 1].

Definition 6. [21] Let (L,≤, 0L, 1L) be a bounded lattice, T, T1, T2 be t-norms, n
be a negation on L, S be a t-conorm, r ∈ L and S(r, n(r)) = 1L. The generalized
convex combination of the t-norms T1 and T2 is given as follows:

KT,S
r,n (u, v) = S(T (r, T1(u, v)), T (n(r), T2(u, v)))

for all u, v ∈ L.

If we take L = [0, 1], S = SL, T = TP and n = nC , then the function KT,S
r,n

defined in Definition 6 is equivalent to the definition of the convex combination
of two t-norms T1 and T2 on [0, 1].

Besides, it is clear that KT,S
r,n satisfies the monotonicity and the

commutativity.

3 The Generalized Convex Combinations of T-Norms
and TW on Bounded Lattices

In the following, we mainly focus on the generalized convex combinations of
α-migrative t-norms and TW on bounded lattices. Recall that in [9], a binary
function T : [0, 1]2 → [0, 1] is called α-migrative if T (αu, v) = T (u, αv) holds
for every u, v in [0, 1]. Meanwhile, they proved that the convex combination of
a α-migrative t-norm and TD is still a t-norm.

Since the equation above can also be written as T (TP (α, u), v) =
T (u, TP (α, v)), Fodor and Rudas [13] replaced TP by a t-norm T0 on the left-hand
side, and on the right-hand side by a possibly different t-norm T1 as follows:

T (T0(α, u), v) = T (u, T1(α, v)). (1)

And they proved that the α-partial functions of T0, T and T1 must coincide on
(α, u), i.e. T (α, u) = T0(α, u) = T1(α, u). Consequently, it is sufficient to consider
T0(α, u) on both sides in Eq. (1), which leads to the notion of α-migrativity with
respect to T0. To be more specific, we show the definition below.

Definition 7. [13] Let T0 be a fixed t-norm and α ∈]0, 1[. A binary function
T : [0, 1]2 → [0, 1] is called α-migrative with respect to T0 (shortly: (α, T0)-
migrative) if, for all u, v ∈ [0, 1],

T (T0(α, u), v) = T (u, T0(α, v)).
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Returning to our study and considering the generalization of the convex
combination of such t-norms and TW on bounded lattices, the first thing we
need to do is giving the definition of (α, T0)-migrativity on bounded lattices.

Definition 8. Let (L,≤, 0L, 1L) be a bounded lattice, T0 be a fixed t-norm on L
and α ∈ L \ {0L, 1L}. A binary operation T : L2 → L is called (α, T0)-migrative
if, for all u, v ∈ L, T (T0(α, u), v) = T (u, T0(α, v)) holds.

In the next theorem, we show that (α, T0)-migrative t-norms on bounded
lattices still have the same characterizations in [13], which is simple but very
helpful.

Theorem 2. Let (L,≤, 0L, 1L) be a bounded lattice, T0 be a fixed t-norm on L
and α ∈ L \ {0L, 1L}. Then for a t-norm T : L2 → L, the following statements
coincide.

(i) T is (α, T0)-migrative;
(ii) T0 is (α, T )-migrative, i.e., for all u, v ∈ L: T0(T (α, u), v) = T0(u, T (α, v));
(iii) T (α, u) = T0(α, u), for all u ∈ L.

Proof. It is clear that statements (i) and (iii) are equivalent. Thus, we only need
to prove that (ii) and (iii) are equivalent.

(ii) ⇒ (iii): take v = 1, then (ii) implies (iii).
(iii) ⇒ (ii): from the associativity of T0, we have

T0(T0(α, u), v) = T0(u, T0(α, v))
⇔ T0(T (α, u), v) = T0(u, T (α, v)),

then (iii) implies (ii).

Thanks to the representation of t-norms by additive generators on bounded
lattices, we can step into the following property of (α, T0)-migrative t-norms on
bounded lattices.

Proposition 1. Let (L,≤, 0L, 1L) be a bounded lattice, T0 be a fixed t-norm on
L, α ∈ L \ {0L, 1L} and T be a strict increasing t-norm with additive generator
t : L → [0,∞]. Then T is (α, T0)-migrative if and only if for all u, v ∈ L,

t(T0(α, u)) − t(u) = t(T0(α, v)) − t(v). (2)

Proof. Since t is the additive generator of T , we have T (u, v) = t(−1)(t(u)+ t(v))
for all u, v ∈ L. Besides, the (α, T0)-migrativity of T means that

T (T0(α, u), v) = T (u, T0(α, v))

⇔ t(−1)(t(T0(α, u)) + t(v)) = t(−1)(t(u) + t(T0(α, v)))

holds for all u, v ∈ L. Since T is a strict monotone t-norm on bounded lattice L,
from Proposition 3.11 in [34] we know that t(0L) = ∞, i.e. for all u, v ∈ L, t(u)+
t(v) ∈ Ran(t). Clearly, t is injective and t(T0(α, u)) + t(v), t(u) + t(T0(α, v)) ∈
Ran(t), we have

t(T0(α, u)) + t(v) = t(u) + t(T0(α, v)),

the equation above is equivalent to Eq. (2).
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3.1 The Generalized Convex Combinations of (α, T∧)-migrative
T-Norms and TW

Now we investigate the case when the generalized convex combinations of (α,
T∧)-migrative t-subnorms and TW are still t-norms. First we need to introduce
the following essential lemma.

Lemma 1. Let (L,≤, 0L, 1L) be a bounded lattice, T be an (α, T∧)-migrative
t-subnorm and α ∈ L \ {0L, 1L}. Then the function Tα : L2 → L defined by
Tα(u, v) = α ∧ T (u, v) for all u, v ∈ L is a t-subnorm.

Proof. It is immediate to gain that Tα satisfies the commutativity, monotonicity
and clearly, it satisfies Tα(u, v) ≤ α ∧ u ∧ v ≤ u ∧ v. Therefore, the only thing
we need to check is the associativity of Tα. For any u, v, w ∈ L, we have the
following equation:

Tα(Tα(u, v), w) = Tα(α ∧ T (u, v), w) = α ∧ T (α ∧ T (u, v), w)
= α ∧ T (T (u, v), α ∧ w) = α ∧ T (u, T (v, α ∧ w))
= α ∧ T (u, T (α ∧ v, w)) = α ∧ T (T (u, α ∧ v), w)
= α ∧ T (T (α ∧ u, v), w) = α ∧ T (α ∧ u, T (v, w))
= α ∧ T (u, α ∧ T (v, w))
= Tα(u, Tα(v, w)).

In conclusion, Tα is a t-subnorm.

After obtaining this useful result, we tend to study the convex combination
of two different t-norms on bounded lattices based on this lemma.

Theorem 3. Let (L,≤, 0L, 1L) be a distributive bounded lattice, α ∈ L, n be a
negation on L, KT,S

α,n be the generalized convex combination of t-norms T1 and
T2 such that T is a t-norm and S is a t-conorm. If T = T∧, S = S∨, T1 be a (α,
T∧)-migrative t-norm and T2 = TW , then KT∧,S∨

α,n is a t-norm.

Proof. From the conditions given, KT,S
α,n can be written as follows:

KT∧,S∨
α,n (u, v) = (α ∧ T1(u, v)) ∨ (n(α) ∧ TW (u, v))

for any u, v ∈ L. It is immediate to gain that KT∧,S∨
α,n satisfies commutativity and

monotonicity. Noticing that when u = 1L, KT∧,S∨
α,n (u, v) = (α ∧ v) ∨ (n(α) ∧ v)

= (α ∨ n(α)) ∧ v = v since L is a distributive lattice and α ∨ n(α) = 1L, which
means that the boundary condition also holds. Thus, we just need to check
whether KT∧,S∨

α,n is associate. By simple computations, we know that

KT∧,S∨
α,n (u, v) =

⎧⎪⎨
⎪⎩

v u = 1L,

u v = 1L,

α ∧ T1(u, v) otherwise.

Lemma 1 ensures that a ∧ T1(u, v) is associative. Hence, KT∧,S∨
α,n is a t-norm.
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Remark 1. Theorem 2.30 in [21] has an equivalent form expressed by (α, T∧)-
migrativity, which is more concise and given as follows:

Let (L,≤, 0L, 1L) be a distributive bounded lattice, α ∈ L, n be a negation
on L, KT,S

α,n be the generalized linear combination of t-norms T1 and T2 such that
T is a t-norm and S is a t-conorm. If T = T∧, S = S∨, T1 = T2 are (α ∨ n(α),
T∧)-migrative t-subnorms, then KT∧,S∨

α,n is a t-subnorm.

3.2 The Generalized Convex Combinations of (α, T0)-migrative
T-Norms and TW

Since (α, T∧)-migrativity is quite particular, now we tend to replace T∧ by T0,
which is a fixed t-norm, to find out whether we can reach the same conclusion.
First, Lemma 1 can be generalized naturally.

Lemma 2. Let (L,≤, 0L, 1L) be a bounded lattice, α be in L \ {0L, 1L}, T be
an (α, T0)-migrative t-subnorm and T0 be a fixed t-subnorm on L. Then the
mapping Tα : L2 → L defined by Tα(u, v) = T0(α, T (u, v)) is a t-subnorm.

Proof. It is obvious that Tα satisfies the commutativity and the monotonicity
and clearly, it satisfies Tα(u, v) ≤ α∧u∧ v ≤ u∧ v. Therefore, the only thing we
need to check is the associativity of Tα. For all u, v, w ∈ L, we can obtain the
following equation:

Tα(Tα(u, v), w) = Tα(T0(α, T (u, v)), w) = T0(α, T (T0(α, T (u, v)), w))
= T0(α, T (T (u, v), T0(α,w))) = T0(α, T (u, T (v, T0(α,w))))
= T0(α, T (u, T (T0(α, v), w))) = T0(α, T (T (u, T0(α, v)), w))
= T0(α, T (T (T0(α, u), v), w)) = T0(α, T (T0(α, u), T (v, w)))
= T0(α, T (u, T0(α, T (v, w))))
= Tα(u, Tα(v, w)).

In conclusion, Tα is a t-subnorm.

Based on this lemma, we investigate the conditions when T∧ is translated
into T0 and find that most of the conditions still remain while T0 need to be
∨-distributive.

Theorem 4. Let (L,≤, 0L, 1L) be a bounded lattice, α ∈ L, n be a negation on
L, T0 be a ∨-distributive t-norm on L, KT,S

α,n be the generalized convex combi-
nation of t-norms T1 and T2 such that T is a t-norm and S is a t-conorm,. If
T = T0, S = S∨, T1 be a (α, T0)-migrative t-norm and T2 = TW , then KT0,S∨

α,n

is a t-norm.

Proof. From the conditions given, KT,S
α,n can be written as follows:

KT0,S∨
α,n (u, v) = T0(α, T1(u, v)) ∨ T0(n(α), TW (u, v))
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for any u, v ∈ L. It is immediate to gain that KT0,S∨
α,n satisfies commutativ-

ity and monotonicity. Noticing that when u = 1L, KT0,S∨
α,n (u, v) = (T0(α, v)) ∨

(T0(n(α), v)) = T0(α ∨ n(α), v) = T0(1, v) = v. This is because the t-norm T0

is ∨-distributive and α ∨ n(α) = 1L. From this, the boundary condition still
holds. Thus, we just need to check whether KT0,S∨

α,n is associative. By simple
computations we can obtain that

KT0,S∨
α,n (u, v) =

⎧⎪⎨
⎪⎩

v u = 1L,

u v = 1L,

T0(α, T1(u, v)) otherwise.

Lemma 2 ensures that T0(α, T1(u, v)) is associative. Hence, KT0,S∨
a,n is also a

t-norm.

In addition, the above theorem can be generalized into n-ary situation. Let
α
(n)
T0

= T0(α, α . . . α︸ ︷︷ ︸
n

) for any n ∈ N, then by induction, T0(α
(n)
T0

, T (u, v)) in

Lemma 2 is still a t-subnorm. To show this, we give the proof when n = 2. In
order to prove that T0(α

(2)
T0

, T (u, v)) is still a t-subnorm, the difficulty lies in the
associativity. Since we have

T (T0(T0(α, α), T (u, v)), w) = T (T0(α, T0(α, T (u, v))), w) = T (T0(α, T (u, v)), T0(α, w))

= T (T (u, v), T0(α, T0(α, w))) = T (u, T (v, T0(α, T0(α, w))))

= T (u, T (T0(α, v), T0(α, w))) = T (T (u, T0(α, v)), T0(α, w))

= T (T (T0(α, u), v), T0(α, w)) = T (T (T0(α, T0(α, u)), v), w)

= T (T (T0(T0(α, α), u), v), w) = T (T0(T0(α, α), u), T (v, w))

= T (T0(α, T0(α, u)), T (v, w)) = T (T0(α, u), T0(α, T (v, w)))

= T (u, T0(α, T0(α, T (v, w))))

= T (u, T0(T0(α, α), T (v, w))).

Therefore, we have T0(T0(α, α), T (T0(T0(α, α), T (u, v)), w)) = T0(T0(α, α), T (u,
T0(T0(α, α), T (v, w)))), i.e., Tα(Tα(u, v), w) = Tα(u, Tα(y, w)), where Tα(u, v) =
T0(T0(α, α), T (u, v)). The cases when n ≥ 3 can be obtained by induction.

Consequently, we can provide the following corollary.

Corollary 1. Let (L,≤, 0L, 1L) be a bounded lattice, n be a negation on L, T0

be a ∨-distributive t-norm on L, α ∈ L, m ∈ N and KT,S

α
(m)
T0

,n
be the generalized

convex combination of t-norms T1 and T2 such that T is a t-norm and S is a
t-conorm. If T = T0, S = S∨, T1 be a (α, T0)-migrative t-subnorm and T2 = TW ,
then KT0,S∨

α
(m)
T0

,n
is a t-norm.

Proof. By simple computations we have that

KT0,S∨
α

(n)
T0

,n
(u, v) =

⎧⎪⎨
⎪⎩

v u = 1L,

u v = 1L,

T0(α
(m)
T0

, T1(u, v)) otherwise.
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It is easy to see that KT0,S∨
α

(m)
T0

,n
is a t-norm.

4 Conclusion

In this work, we mainly investigated the conditions for the generalized convex
combination of (α, T∧)-migrative or (α, T0)-migrative t-norms and TW to be
t-norms again. Besides, the notion of (α, T0)-migrativity was given and some of
its properties were researched. There is still a lot of work to do in the future.
For example, we will investigate the (α, T0)-migrativity, the generalized linear
combination of t-norms as well as the generalized convex combination of other
aggregation operators on bounded lattices.
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Abstract. Due to certain differences in people’s knowledge level and personal
preferences, for the description of the same thing phenomenon, different people
usually choose different granularity of linguistic term sets to make judgments, so
it is necessary to propose a transformation method for linguistic concept formal
context with different granularity. In this paper, we firstly define the normalized
distance between multi-granularity linguistic formal contexts and linguistic terms
for different granularity linguistic concept formal context. Then, the normalized
distance from linguistic terms to intermediate linguistic terms is kept constant
to realize the transformation for different granularity linguistic concept formal
context. Finally, under different threshold constraints, we achieve dynamic trans-
formation of formal contexts of linguistic values by adjusting the thresholds. The
transformation method process is reversible and it can avoid information loss.

Keywords: Multi-granularity fuzzy linguistic formal context · Granularity
transformation · Concept lattice

1 Introduction

As an important knowledge discovery tool, Formal Concept Analysis (FCA) was pro-
posed by Wille in 1982 [1]. In FCA, the formal context accurately describes the only
defined binary relationship between objects and attributes, and concepts are composed of
intent and extent, and all concepts form a concept lattice through partial order relations.
The concept lattice has beenwidely used in various fields such as knowledge engineering
[2], data mining [3], and pattern recognition [4].

In the classical formal context, we can know with certainty that the relationship
between the object and the attribute. However, in real life, in some uncertain environ-
ments, decision makers are accustomed to using linguistic values to represent uncertain
information. In order to describe the fuzzy relationships between objects and attributes,
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the model of Bêlohlávek [5] expressed uncertainty information directly in terms of
Fuzzy Sets (FSs), and established fuzzy concept lattice on the basis of fuzzy formal
context, which provides a theoretical basis for Fuzzy Formal Concept Analysis (FFCA).
In the uncertain environment, people always use linguistic values to describe objects.
Inspired by Computing with Words (CW) [6], scholars have integrated linguistic value
information into FCA and made great progress. Pang et al. [7] proposed a personalized
recommendation algorithm based on linguistic concept lattice for the problem of fuzzy
interpretation of recommendations in recommender systems. Zou et al. [8, 9] proposed
linguistic-valued formal context based on linguistic truth-valued lattice implication alge-
bra, and constructed the corresponding linguistic concept lattice with the trust degree,
on this basis, giving decision rule extraction and linguistic concept reduction approaches
for linguistic concept lattice.

Inspired by Granular Computing (GrC) and Rough Set (RS) [10], more and more
scholars have conducted research onmulti-granularity [11, 12]. As an important research
content in FCA, multi-granularity FCA has attracted many experts and scholars. For
example, Chu et al. [13] quantitatively described the uncertainty decision problem
using RS and FCA approaches in a multi-granularity rough set framework. Hu et al.
[14] studied the generation of concept lattice under Multi-Granularity Formal Context
(MGFC) and gave a series of related algorithms, on this basis, proposed the approach of
interconversion of formal concepts under different granularity.

Through the above analysis of fuzzy linguistic value and FCA, we are inspired
to introduce the idea of multi-granularity into the fuzzy linguistic concept lattice, and
propose the transformation models for different granularity linguistic concept formal
context. The model achieves transformation of different granularity linguistic concept
formal context.

The organizational structure of the paper is as follows. Section 2 reviews some
notions relevant to FCA, Linguistic TermSet (LTS) and linguistic-valued formal context.
Section 3 proposes the transformation model for different granularity linguistic concept
formal context. Section 4 gives an example of linguistic granularity transformation.
Finally in Sect. 5, we give the conclusions and future prospects of this paper.

2 Preliminaries

This section briefly reviews some notions related to LTS and linguistic-valued formal
context.

Definition 1. [15] Let S = {sα|α = −τ, . . . ,−1, 0, 1, . . . , τ } be a linguistic term set,
where τ is a positive integer, then S satisfies the following properties:

(1) Order: sk ≤ sl if and only if k ≤ l,
(2) Reversibility: Neg(s−k) = sk . In particular, Neg(s0) = s0,
(3) Boundedness: For si ∈ S, s−τ ≤ si ≤ sτ .

Then S is the set of linguistic terms with symmetric subscripts.
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Definition 2. [8]A fuzzy linguistic-valued information system is defined as (P,Q, I , f ),
where P = {x1, x2, ..., xm} is an object set, Q = {q1, q2, ..., qn} is an attribute set,
I = ∪{sk |k ∈ −τ, ...,−1, 0, 1, ..., τ } is a fuzzy linguistic values set f : P × Q → I is
an information function to represent the fuzzy linguistic-valued relationship.

It is worth mentioning that all fuzzy linguistic values in I are contained in the preset
LTS.

Definition 3. ([8]) A linguistic concept formal context is a triplet (U ,Lsα , I), where
U = {x1, x2, ..., xn} is an object set, Lsα = {lxisα |i = 1, 2, ..., n, α = −τ, ..., 0, ..., τ }
is a set of linguistic concepts, I is used to characterize whether a certain object can be
described in terms of attribute-linguistic relations, i.e., I ⊆ U × Lsα . (x, l

xi
sα ) ∈ I means

the object can be described by lxisα , (x, l
xi
sα ) /∈ I means the object cannot be described by

lxisα .
In the (U ,Lsα , I), for X ⊆ U and Bsα ⊆ Lsα , a pair of operators “⇒” and “⇐” are

defined as follows:

X⇒ = {lsα ∈ Lsα |∀x ∈ X , (x, li
sα

) ∈ I},
B⇐
sα = {x ∈ U |∀lisα ∈ Bsα , (x, lisα ) ∈ I}.

Definition 4. [8] Let (U ,Lsα , I) be a linguistic concept formal context, for X ⊆ U and
Bsα ⊆ Lsα , if there exist X

⇒ = Bsα and B⇒
sα = X , a pair (X ,Bsα ) is called linguistic

concept knowledge, X and Bsα are called the extent and intent of the linguistic concept
knowledge.

Let (X1,B1
sα ) and (X2,B2

sα ) be two linguistic concept knowledge, the partial order
relation “≤” between (X1,B1

sα ) and (X2,B2
sα ) can be defined as follows:

(X1,B
1
sα ) ≤ (X2,B

2
sα ) ⇔ X1 ⊆ X2(⇔ B2

sα ⊆ B1
sα ),

then the complete lattice LCKL(U ,Lsα , I) is a linguistic concept lattice.

3 Transformation Models for Different Granularity Linguistic
Concept Formal Context

3.1 Multi-granularity Linguistic-Valued Formal Context

Definition 5. Let (U ,Lsa , I) be a linguistic concept formal context, Ilisα denotes the
object described by the linguistic concept lisα . For B ⊆ Lsα , ifU = ∪

lisα ∈B
Ilisα (∩Ilisα = ∅),

then B is a single granularity class linguistic concept block of (U ,Lsa , I).
We can find that each attribute in a Fuzzy Linguistic-valued Information System

(FLIS) can constitute a single granularity class linguistic concept block. According
to the properties of the Linguistic Concept Formal Context (LCFC) that all linguistic
terms describing each attribute necessarily constitute a single granularity class linguistic
concept block.



A Transformation Model for Different Granularity 157

Definition 6. Let (U ,L1sα , I1) and (U ,L2sα , I2) be two single granularity linguistic for-
mal context, the sets of single granularity class linguistic concept blocks are B1 =
{B11,B12, · · · ,B1n} and B2 = {B21,B22, · · · ,B1m} , respectively. If the merging of
linguistic concepts in a single granularity class linguistic concept block B1k ∈ B1 can
generate B2k ∈ B2, then B1k is a specialized linguistic concept of B2k and B2k is a gen-
eralized linguistic concept of B1k , i.e., the granularity of B1k is finer than that of B2k ,
which is recorded as B1k l B2k .

Definition 7. Let (U ,Lisα , Ii)(i ∈ {1, 2, · · · , n}) be n single-granularity linguistic con-
cept formal contexts,Bi = {Bi1,Bi2, · · · ,Bin}be the set of class linguistic concept blocks
of Lisα , where Bik = {B1k ,B2k , · · · ,Bpk}(k ∈ {1, 2, · · · , n}) is a class linguistic concept
block at different granularities. If (U ,L1sα , I1) ≺l (U ,L2sα , I2) ≺l · · · ≺l(U ,Lnsα , In),

then ρ = n∪
i=1

(U ,Lisα , Ii) is a multi-granularity linguistic concept formal context.

Specially, supposing that S = {sα|α = −τ, . . . ,−1, 0, 1, . . . , τ } is a LTS, we use
S to describe different attributes, and the resulting (U ,Lsα , I) is called the (2τ + 1)-
granularity linguistic concept formal context.

Example 1. We take aFLIS (P,Q, I , f ) as shown inTable 1,whereP = {x1, x2, . . . , x8}
denotes eight students in a high school, the attribute set Q = {a, b, c} denotes stu-
dents’ examination subject scores, a represents language scores, b represents math-
ematics scores, and c is English scores, The linguistic terms set S = {sα|α =
−τ, . . . ,−1, 0, 1, . . . , τ } is a binary relation between P and Q, i.e., I ⊆ P × Q. When
τ = 3, the linguistic terms set represents S = {s−3 = very low, s−2 = low, s−1 = a little
low, s0 = medium, s1 = a little high, s2 = high, s3 = very high}.

In order to construct the seven-granularity linguistic concept lattice, the FLIS
(P,Q, I , f ) in Table 1 is scaled to the LCFC in Table 2. Fuzzy linguistic relations
for attributes that none of the objects have are omitted in Table 2, such as as−2 , etc. In
Table 2, 1 means that the object has the linguistic concept and 0 means that the object
does not have the linguistic concept.

Table 1. Linguistic-valued information system (P,Q, I , f )

P a b c

x1 s−3 s0 s0

x2 s−1 s−1 s−2

x3 s0 s2 s3

x4 s1 s2 s−1

x5 s−1 s0 s−1

x6 s2 s1 s1

x7 s−1 s1 s1

x8 s0 s−1 s−2



158 N. Kang et al.

According to Table 2, we obtain the following Linguistic Concept Knowledge (LCK)
by calculation in Table 3.

The number of LCK generated in the seven-granularity linguistic formal con-
text is seventeen, and the LCK with the largest number of objects in the extents is
(x2, x5, x7} , {as−1}), and the number of objects in the extents is three. The seven-
granularity conceptual hierarchy is constructed based on the partial order relationship
between LCK, and the resulting linguistic concept lattice LCKL(U ,Lsα , I) is shown in
Fig. 1.

Table 2. Seven-granularity linguistic concept formal context (P,Q, I , f )

as−3 as−1 as0 as1 as2 bs−1 bs0 bs1 bs2 cs−2 cs−1 cs0 cs1 cs3

x1 1 0 0 0 0 0 1 0 0 0 0 1 0 0

x2 0 1 0 0 0 1 0 0 0 1 0 0 0 0

x3 0 0 1 0 0 0 0 0 1 0 0 0 0 1

x4 0 0 0 1 0 0 0 0 1 0 1 0 0 0

x5 0 1 0 0 0 0 1 0 0 0 1 0 0 0

x6 0 0 0 0 1 0 0 1 0 0 0 0 1 0

x7 0 1 0 0 0 0 0 1 0 0 0 0 1 0

x8 0 0 1 0 0 1 0 0 0 1 0 0 0 0

Table 3. Seven-granularity linguistic concept

#1 (P,∅)

#2 ({x2, x5, x7},
{
as−1

}
)

#3 ({x6, x7},
{
bs1 , cs1

}
)

#4 ({x4, x5},
{
cs−1

}
)

#5 ({x3, x8},
{
as0

}
)

#6 ({ x1, x5}, {bs0 })
#7 ({x2, x8}, {bs−1 , cs−2 })
#8 ({x3, x4}, {bs2 })
#9 ({x1}, {as−3 , bs0 , cs0 })
#10 ({x2}, {as−1 , bs−1 , cs−1 })
#11 ({x3}, { as0 , bs2 , cs3 })
#12 ({x4}, {as1 , bs2 , cs−1 })

(continued)
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Table 3. (continued)

#1 (P,∅)

#13 ({x5}, {as−1 , bs0 , cs−1})
#14 ({x6}, {as2 , bs1 , cs1 })
#15 ({x7}, {as−1 , bs1 , cs1 })
#16 ({x8}, {as0 , bs−1 , cs−2 })
#17 (∅, Lsα )

Fig. 1. Seven-granularity linguistic concept lattice

3.2 Transformation Models for Different Granularity Linguistic Concept formal
Context

Definition 8. Let S = {sa|a = −τ, ...,−1, 0, 1, ..., τ } be a finite set of fully ordered
linguistic terms consisting of an odd number of linguistic terms, the directed distance
from a linguistic term sa to s0 is defined as a, the directed normalized distance is defined
as a

τ
(−1 ≤ a

τ
≤ 1).

Theroem 1. The directed normalized distance a
τ

from a linguistic term sa to an
intermediate linguistic term s0 satisfies the following properties:

(1) a
τ

= 0 if and only if a = 0;
(2) a

τ
= 1 if and only if a = τ ; a

τ
= −1 if and only if a = −τ ;

(3) Boundedness: −1 ≤ a
τ

≤ 1.

When −1 ≤ a
τ

≤ 0, it means that sa is said to be symmetrically distributed on the
left side of s0. When 0 ≤ a

τ
≤ 1, it means that s0 is symmetrically distributed on the

right side of sa.



160 N. Kang et al.

Definition 9. In the linguistic-valued information system (P,Q, I , f ), for xi ∈ U , aj ∈
M , sk ∈ S, the corresponding directed distance matrix of <U ,M , I , f > as follows:

T = (aij)m×n,

where aj denotes the directed distance between the binary fuzzy linguistic relations xi
to aj between sk and s0.

The method for transforming a (2τ1 + 1)-granularity linguistic concept formal
context into a (2τ2 + 1)-granularity linguistic concept formal context are as follows.

Step 1: We calculate the directed distance matrix T1 corresponding to (P,Q, I , f ) from
the (2τ1 + 1)-granularity linguistic-valued information system (P,Q, I , f ) according to
Definition 6.
Step 2: Then, we calculate the directed normalized distance according toDefinition 5 and
converting the directed distance matrix T1 at the (2τ1 + 1)-granularity into the directed
distance matrix T2 at the (2τ2 + 1)-granularity;
Step 3: The directed distance matrix T2 at the (2τ2 + 1)-granularity is converted to
the corresponding directed distance matrix T3 of the linguistic information system at
the (2τ2 + 1)-granularity. Setting the parameter thresholds ε, 0 ≤ ε ≤ 1. If tij ∈ T2,
uij ∈ T3,tij − [

tij
] ≥ ε, then uij = [

tij
] + 1; if tij − [

tij
]

< ε, then uij = [
tij

]
. Here

[
tij

]

denotes the largest integer not larger than tij;
Step 4: The conversion step is completed by transforming the (2τ2 + 1)-granularity
linguistic concept formal context corresponding to the directed distance matrix T3
into the (2τ2 + 1)-granularity linguistic concept formal context. The conversion step
is completed.

In the above process, T1,T2 satisfy the relation T2 = τ2
τ1
T1, i.e., the directed distance

matrices T1,T2 can be converted to each other, which ensures that there is no data loss
in the process of converting different granularity fuzzy linguistic-valued information
systems to each other.

4 Example Analysis and Illustration

We take the seven-granularity LCFC in Table 1 as an example, and the seven-granularity
LCFC is converted into a 3-granularity LCFC, and the steps are as follows.

Step 1: We calculate the corresponding directed distance matrix T1 from the seven-
granularity FLIS (P,Q, I , f ).

T1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

−3 0 0
−1 −1 −2
0 2 3
1 2 −1

−1 0 −1
2 1 1

−1 1 1
0 −1 −2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦
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Step 2: Then, we calculate the directed normalized distance by transforming the directed
distance matrix T1 at seven-granularity into the directed normalized distance matrix T2.

T2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

−1 0 0
− 1

3 − 1
3 − 2

3
0 2

3 1
1
3

2
3 − 1

3
− 1

3 0 − 1
3

2
3

1
3

1
3

− 1
3

1
3

1
3

0 − 1
3 − 2

3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

Step 3: Next, we set the threshold ε = 0.5 and transform the directed normalized dis-
tance matrix T2 at seven-granularity to the corresponding matrix T2 at three-granularity
(P,Q, I , f ).

T3 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

−1 0 0
0 0 −1
0 1 1
0 1 0
0 0 0
1 0 0
0 0 0
0 0 −1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

Step 4: Transforming the matrix T3 corresponding to the seven-granularity LCFC into a
three-granularity LCFC.

When we set the threshold value ε = 0.5, the seven-granularity linguistic context in
Table 1 is transformed to the three-granularity linguistic context as shown in Table 4.

Table 4. Three-granular linguistic formal context

U a b c

x1 s−1 s0 s0

x2 s0 s0 s−1

x3 s0 s1 s1

x4 s0 s1 s0

x5 s0 s0 s0

x6 s1 s0 s0
(continued)
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Table 4. (continued)

U a b c

x7 s0 s0 s0

x8 s0 s0 s−1

In order to reduce the scale of the linguistic concept lattice LCKL(U ,Lsα , I), Table 4
was scaled into the corresponding LCFC as shown in Table 5.

We calculate the linguistic concept knowledge of Table 5 as shown in Table 6.

Table 5. Three-granular linguistic concept formal context

U as−1 as0 as1 bs0 bs1 cs−1 cs0 cs1

x1 1 0 0 1 0 0 1 0

x2 0 1 0 1 0 1 0 0

x3 0 1 0 0 1 0 0 1

x4 0 1 0 0 1 0 1 0

x5 0 1 0 1 0 0 1 0

x6 0 0 1 1 0 0 1 0

x7 0 1 0 1 0 0 1 0

x8 0 1 0 1 0 1 0 0

Table 6. Three-granularity linguistic concept

#1 (U ,∅)

#2 ({x1, x2, x5, x6, x7, x8},
{
bs0

}
)

#3 ({x2, x3, x4, x5, x7, x8},
{
as0

}
)

#4 ({x1, x4, x5, x6, x7},
{
cs0

}
)

#5 ({x4, x5, x7},
{
as0 , cs0

}
)

#6 ({x1, x5, x6, x7},
{
bs0 , cs0

}
)

#7 ({x2, x5, x7, x8},
{
as0 , bs0

}
)

#8 ({x3, x4},
{
as0 , bs1

}
)

#9 ({x5, x7},
{
as0 , bs0 , cs0

}
)

#10 ({x2, x8},
{
as0 , bs0 , cs−1

}
)

#11 ({x1},
{
as−1 , bs0 , cs0

}
)

(continued)
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Table 6. (continued)

#1 (U ,∅)

#12 ({x3},
{
as0 , bs1 , cs1

}
)

#13 ({x4},
{
as0 , bs1 , cs0

}
)

#14 ({x6},
{
as1 , bs0 , cs0

}
)

#15 (∅,Lsa )

Based on the partial order relationship between linguistic concepts, we construct a
three-granularity lattice of linguistic concepts as shown in Fig. 2.

Fig. 2. Three-granular linguistic concept lattice

Since linguistic term sa is distributed symmetrically around the intermediate linguis-
tic term s0, the same linguistic formal context is in the description of different granu-
lar linguistic terms, the meaning of the intermediate linguistic term s0 is unchanged.
Therefore, we can compare the linguistic concepts generated by different granular lin-
guistic formal context. ({ x1, x5}, {bs0}) and ({x3, x8},

{
as0

}
) are the concepts gener-

ated in the seven-granularity linguistic formal context.({x1, x2, x5, x6, x7, x8},
{
bs0

}
) and

({x2, x3, x4, x5, x7, x8},
{
as0

}
) are the concepts generated in the three-granularity lin-

guistic formal context. Compared with the seven-granularity linguistic formal context
is thinner than the granularity size of the three-granularity linguistic formal context.

When the intent is the same, the number of extents in the concept of the three-
granularity linguistic formal context is more extended than the number of extents gener-
ated in the background of the seven-granularity linguistic formal context. The extent x1
of the generated concept in the three-granularity linguistic formal context and the extent
x2 of the generated concept in the seven-granularity linguistic formal context satisfy
the inclusion relationship x2 ⊆ x1. For example, {x1, x5} ⊆ {x1, x2, x5, x6, x7, x8} and
{x3, x8} ⊆ {x2, x3, x4, x5, x7, x8}. The transformation to the attribute from fine granu-
larity to coarse granularity, and judging the fact that the attributes are divided into the
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basis of the object to increase the fact that the same object is increased. For example,
the number of non-empty linguistic concepts in this example is fifteen in the seven-
granularity linguistic formal context, and the number of non-empty linguistic concepts
in the three-granularity linguistic formal context is thirteen. The maximum number of
objects in the extent is three in the LCK corresponding to the seven-granularity linguis-
tic formal context, and the maximum number of objects in the extent is six in the LCK
corresponding to the three-granularity linguistic formal context.

Generally speaking, the finer the linguistic granularity of the linguistic formal con-
text, the more the amount of language concept knowledge calculated, and the less the
number of linguistic concept extents.

5 Conclusions

This paper proposes a transformation model for different granularity LCFC. Firstly,
we keep the normalized distance from linguistic terms to intermediate linguistic terms
unchanged, by adjusting the value of parameter ε to achieve dynamic transformation of
different granularity linguistic-valued formal contexts. The concepts and concept lattice
generated before and after the transformation granularity are compared to illustrate the
connection and difference between the different granularity linguistic-valued formal
contexts before and after the transformation.

In real life, there is a large amount of dynamic data in uncertain environments,
therefore,we intend to study dynamic linguistic-valued formal contexts, fuse information
from different time periods, and describe dynamic linguistic-valued formal contexts in
stages for dynamic data analysis and knowledge discovery. It is worth studying and has
significance.
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Abstract. Paraconsistent Pawlakian rough sets and paraconsistent cov-
ering based rough sets are introduced for modeling and reasoning about
inconsistent information. Topological quasi-Boolean algebras are shown
to be algebras for paraconsistent rough sets. We also give two sequent
calculi as the modal systems for these paraconsistent rough sets.

Keywords: Rough set · Paraconsistency · Quasi-boolean algebra ·
Sequent calculus

1 Introduction

Rough sets by Pawlak [14,15] was proposed as an approach to imprecise knowl-
edge about objects in the field of knowledge representation. Knowledge and data
differ in the way that the former is organized while the latter is loosely scattered.
Pawlakian knowledge is based on the notion of classification. A knowledge base
is understood as a relational structure (U,R) where U �= ∅ is a set of objects
and R is a family of equivalence relations over U . Hence the logic for approxi-
mate reasoning in Pawlakian rough sets is indeed a multimodal logic S5. Later
works focus on the generalization of Pawlak’s rough set theory by extending the
equivalence relation to similarity relation [18], altering the equivalence relation
to arbitrary binary relations [21,22] or by replacing the partitions by coverings
[6,23]. Interactions between rough set theory and modal logic are presented in
[9,16].

In many practical scenarios, classifications of objects are given by a set of
attributes. A usual assumption is that each attribute determines a set of objects.
Given an object x in the universe and an attribute φ, either φ(x) holds or not.
This is usually called the consistency assumption. Thus in standard rough set
systems we make the lower and upper approximations of a given set X of objects.
However, in practice, there exist datebases which are inconsistent in the sense
that there are contradictions or conflict. For example, a toy is classified into both
round objects and square objects. In such a case, we need a paraconsistent rough
set theory which can be used to deal with inconsistent information.

This work was supported by Chinese National Funding of Social Sciences (Grant no.
18ZDA033).
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Previous work bridging paraconsistent logic and rough set theory can be
found in [12,20] where basic notions such as set, approximations and similarity
relation are allowed to have four values. Later, paraconsistency was treated as
membership function, set containment and set operations in [13,19]. Four-valued
logic was employed as the semantics to express approximate reasoning. However,
bilattice in Belnap’s logic was discarded since Belnapian truth ordering was
considered counterintuitive. Therefore, only knowledge ordering was retained in
their framework and truth ordering was changed into a linear order in their
approach.

Here, we consider an attribute φ as a pair of sets of objects 〈φ+, φ−〉 where
φ+ is the set of all objects having the attribute φ and φ− is the set of all objects
lacking the attribute φ. Then φ+ ∩φ− consists of those objects with inconsistent
information, and the objects outside φ+∪φ− have no information with respect to
the attribute φ. Similar idea can be found in the Belnap-Dunn four-valued logic
[3,4]. We will introduce the notion of polarity in knowledge base and approx-
imations of polarity. In such a way we obtain new paraconsistent rough sets.
A polarity is simply a pair of sets of objects 〈X,Y 〉 which are candidates for
approximations. The following figure shows four cases of a polarity 〈X,Y 〉 in
a universe U of objects: Objects in X ∩ Y have inconsistent information, and

X Y

U

Fig. 1. Polarity in a universe

those outside of X ∪Y have no information. If X ∩Y �= ∅, we say that 〈X,Y 〉 is
inconsistent; and if X∪Y �= U , we say that 〈X,Y 〉 is incomplete. In the standard
rough set theory, a set of objects X can be viewed as a polarity 〈X,Xc〉 where
Xc is the complement of X in U . It is clearly both consistent and complete.

Quasi-Boolean algebras and topological quasi-Boolean algebras are algebras
for rough sets. Algebras for Pawlakian rough sets and covering based rough sets
can be found in previous work such as [1,2,7,11]. Recent development on the
interrelations betwenn rough sets and logic is presented in [9,17]. We construct
the algebras for paraconsistent Pawlakian rough set and paraconsistent covering
based rough sets respectively. Jonsson-Tarskian style [5] duality results are also
provided.

In the present work, we shall introduce two types of paraconsistent rough sets.
One is the Pawlakian, and the other is covering based. Lower and upper approx-
imations in each type will be defined. Then paraconsistent rough set algebras for
each type of paraconsistent rough sets will be proposed and representation the-
orems for these algebras will be proved. Finally we establish two sequent calculi
for reasoning in these paraconsistent rough sets.
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2 Paraconsistent Rough Sets

In this section, we introduce paraconsistent rough sets which are variants of the
standard rough sets. We shall define the upper and lower approximations, and
prove some basic properties of them.

Definition 1. A (Pawlakian) approximation space is a structure K = (U,R)
where U �= ∅ is the set of objects and R is an equivalence relation on U . For
every x ∈ U , let R(x) = {y ∈ U : xRy}, i.e., the equivalence class of x.

A polarity in U is a paraconsistent pair of sets 〈X,Y 〉 with X,Y ⊆ U and
X ∩ Y �= ∅. The set of all polarities in U is denoted by P(U) which is exactly
the product P(U)×P(U) of power sets of U . We use capital letters G,H etc. for
polarities. For each G ∈ P(U), if G = 〈X,Y 〉, we write G+ = X and G− = Y .

Let K = (U,R) be an approximation space. A polarity G is consistent in K if
G+∩G− = ∅; and G is complete in K if G+∪G− = U . In the standard Pawlakian
rough set theory, a set of objects X to be approximated can be viewed as a
consistent and complete polarity 〈X,Xc〉 where Xc = U \ X is the complement
of X in U . Each polarity G can be viewed as an attribute or property of objects.
The set G+ stands for the set of all objects having the attribute G, and G−

for the set of all objects lacking G. Then objects in G+ ∩ G− both have G and
do not have G. This part is the source of inconsistent information. Objects in
the complement (G+ ∪ G−)c neither have nor lack the attribute G, namely no
information is given for these objects.

Definition 2. Let K = (U,R) be an approximation space and G,H ∈ P(U) be
polarities. The operations ∼, 
 and � are defined as follows:

∼G = 〈G−, G+〉
G 
 H = 〈G+ ∩ H+, G− ∪ H−〉
G � H = 〈G+ ∪ H+, G− ∩ H−〉.

The binary relation � on P(U) is defined by setting G � H if and only if
G+ ⊆ H+ and H− ⊆ G−. We define the following sets:

G+ = {x ∈ U : R(x) ⊆ G+}, G− = {x ∈ U : R(x) ∩ G− �= ∅},

G
+

= {x ∈ U : R(x) ∩ G+ �= ∅}, G
−

= {x ∈ U : R(x) ⊆ G−}.

The lower approximation of G is defined as the polarity G = 〈G+, G−〉, and the
upper approximation of G is defined as the polarity G = 〈G+

, G
−〉.

For every approximation space K = (U,R), it is clear that � is a partial
order on the set P(U) of all polarities. Moreover, for all G,H ∈ P(U), G = H
if and only if G � H and H � G.
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Example 1. Let K = (U,R) be the approximation space where U =
{x1, x2, x3, x4, x5} and R is an equivalence relation with classification
{{x1}, {x2, x4}, {x3, x5}}. Let G+ = {x1, x2} and G− = {x2, x3, x5}. Note
that the polarity G = 〈G+, G−〉 is inconsistent and incomplete. Note that
R(x1) = {x1}, R(x2) = R(x4) = {x2, x4} and R(x3) = R(x5) = {x3, x5}.
Then G and G are calculated as follows:

G+ = {x1}; G− = {x2, x3, x4, x5}; G
+

= {x1, x2, x4}; G
−

= {x3, x5}

Note that G and G are consistent and complete.

Proposition 1. Let K = (U,R) be an approximation space and G,H ∈ P(U)
be polarities. Then the following conditions hold:

(1) ∼(G 
 H) = ∼G � ∼H.
(2) ∼(G 
 H) = ∼Q � ∼H.
(3) ∼∼G = G.
(4) 〈∅, U〉 � G and G � 〈U, ∅〉.
(5) 〈U, ∅〉 = 〈U, ∅〉 and 〈∅, U〉 = 〈∅, U〉.
(6) if G � H, then G � H and G � H.
(7) G 
 H = G 
 H and G � H = G � H.
(8) ∼G = ∼ G and ∼G = ∼ G.
(9) G 
 H � G 
 H.

Proof. For (6), assume G � H. Suppose x ∈ G+. Then R(x) ⊆ G+. By the
assumption, G+ ⊆ H+. Hence x ∈ H+. Suppose x ∈ H−. Then R(x)∩H− �= ∅.
By the assumption, H− ⊆ G−. Then R(x) ∩ G− �= ∅ and so x ∈ G−. Hence
G � H. Similarly G � H. For (7), clearly G 
 H � G and G 
 H � H.
By (6), G 
 H � G and G 
 H � H. Hence G 
 H � G 
 H. Conversely,
G 
 H = 〈G+ ∩ H+, G− ∪ H−〉 and G 
 H = 〈G+ ∩ H+, G− ∪ H−〉. Clearly
G+ ∩ H+ ⊆ G+ ∩ H+ and G− ∪ H− ⊆ G− ∪ H−. Hence G 
 H � G 
 H. Then
G 
 H = G 
 H. Similarly Q � H = G � H. Other items are shown directly. 
�
Proposition 2. Let K = (U,R) be an approximation space and G ∈ P(U).
Then (1) G � G � G; (2) G � G and G � G; and (3) G � (G) and G � (G).

Proof. (1) Assume x ∈ G+. Then R(x) ⊆ G+. Since R is an equivalence relation,
we have x ∈ R(x) and so x ∈ G+. Hence G+ ⊆ G+. Assume y ∈ G−. By the
reflexivity of R, we have y ∈ R(y). Then R(y) ∩ G− �= ∅. Hence y ∈ G−. Then
G− ⊆ G−. It follows that G � G. Similarly G � G.

(2) Assume x ∈ G+. Then R(x) ⊆ G+. Suppose y ∈ R(x). Let z ∈ R(y).
By the transitivity of R, we have z ∈ R(x). Then z ∈ G+. Hence R(y) ⊆ G+,
i.e., y ∈ G+. Then R(x) ⊆ G+, i.e., x ∈ G+. It follows that G+ ⊆ G+. Assume
x ∈ G−. Then R(x)∩G− �= ∅. Let y ∈ R(x) and y ∈ G−. Then R(y)∩G− �= ∅.
Let z ∈ R(y) and z ∈ G−. By the transitivity of R, we have z ∈ R(x). Then
R(x) ∩ G− �= ∅. Hence x ∈ G−. Then G− � G−. Similarly G � G.
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(3) Assume x ∈ G
+
. Then R(x) ∩ G+ �= ∅. Let y ∈ R(x) and y ∈ G+.

Suppose z ∈ R(x). Since R is an equivalence relation, we have y ∈ R(z). Then
R(z)∩G+ �= ∅, i.e., z ∈ G

+
. Hence R(x) ⊆ G

+
, i.e., x ∈ (G)

+
. Then G

+ ⊆ (G)
+
.

Assume x ∈ (G)
−

. Then R(x) ∩ G
− �= ∅. Let y ∈ R(x) and y ∈ G

−
. Then

R(y) ⊆ G−. Suppose z ∈ R(x). Since R is an equivalence relation, z ∈ R(y).
Then z ∈ G−. Hence R(x) ⊆ G−, i.e., x ∈ G

−
. It follows that (G)

− ⊆ G
−

.
Moreover, by (1), we have G � G � (G). 
�

Now we continue by introducing the paraconsistent covering based rough sets
which are defined based on covering frames by a neighborhood function N .

Definition 3. Given a nonempty set of objects U , a covering of U is a nonempty
collection C = {Ci ⊆ U | i ∈ I} such that

⋃
C = U .

A covering frame is a pair F = (U,C ) where U �= ∅ and C is a covering of
U . The neighborhood function N : U → P(U) is defined by setting

N(x) =
⋂

{C ∈ C | x ∈ C}.

For every polarity G ∈ P(U), we define the following sets:

�NG+ = {x ∈ U : N(x) ⊆ G+}, �NG− = {x ∈ U : N(x) ∩ G− �= ∅},

♦NG+ = {x ∈ U : N(x) ∩ G+ �= ∅}, ♦NG− = {x ∈ U : N(x) ⊆ G−}.

The lower N-approximation of G is defined as �NG = 〈�NG+,�NG−〉, and the
upper N-approximation of G is defined as ♦NG = 〈♦NG+,♦NG−〉.

An S4-frame is a pair F = (U,R) where U �= ∅ is a nonempty set of objects
and R ⊆ U × U is a preorder, i.e., a reflexive and transitive relation on U . For
every x ∈ U , let R(x) = {y ∈ U : xRy} be the set of all objects related with x
in F.

Example 2. Let U = {x1, x2, x3, x4, x5} and R = {〈xi, xj〉 ∈ U×U : i ≤ j}. Then
we have an S4 frame F = (U,R). Consider the polarity G = 〈G+, G−〉 where
G+ = {x1, x2} and G− = {x2, x3, x5}. Then we calculate �NG+ = ∅,�NG− =
U,♦NG+ = {x1, x2} and ♦NG− = {x5}. Note that �NG is consistent and
complete, and ♦NG is consistent and incomplete.

Proposition 3. Let F = (U,C ) be a covering frame and G,H ∈ P(U) be
polarities. Then the following conditions hold:

(1) if G � H, then �NG � �NH and ♦NG � ♦NH.
(2) �NG 
 H = �NG 
 �NH and ♦N (Q � H) = ♦NG � ♦NH.
(3) ∼�NG = ♦N∼G and ∼♦NG = �N∼ G.
(4) �NG 
 ♦NH � ♦N (G 
 H).
(5) �NG � G � ♦NG.
(6) �NG � �N�NG and ♦N♦NG � ♦NG.
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Proof. Items (1)–(4) are shown by the definition.
(5) Assume x ∈ �NG+. Then N(x) ⊆ G+. Clearly x ∈ N(x). Then x ∈ G+.

Hence �NG+ ⊆ G+. Assume y ∈ G−. Then y ∈ N(y) and so N(y) ∩ G− �= ∅.
Hence y ∈ �NG−. Then G− ⊆ �NG−. Hence �NG � G. Similarly G � ♦NG.

(6) We show �NG � �N�NG. Assume x ∈ �NG+. Then N(x) ⊆ G+.
Suppose y ∈ N(x). Let z ∈ N(y). Then z ∈ N(x) and so z ∈ G+. Hence y ∈
�NG+. Then N(x) ⊆ �NG+, i.e., x ∈ �N�NG+. Hence �NG+ ⊆ �N�NG+.
Now assume x ∈ �N�NG−. Then N(x) ∩ �NG− �= ∅. Let y ∈ N(x) and
y ∈ �NG−. Then N(y) ∩ G− �= ∅. Let z ∈ N(y) and z ∈ G−. Then z ∈ N(x).
Hence N(x) ∩ G− �= ∅, i.e., x ∈ �NG−. Then �N�NG− ⊆ �NG−. Similarly
♦N♦NG � ♦NG. 
�

3 Paraconsistent Rough Set Algebras

In this section, we show that algebras for paraconsistent Pawlakian rough sets
are partition topological quasi-Boolean algebras, and algebras for paraconsistent
covering based rough sets are topological quasi-Boolean algebras.

An algebra A = (A, ·,+, ′, 0, 1) is a quasi-Boolean algebra (qBa) if
(A, ·,+, 0, 1) is a bounded distributive lattice(cf. [8, Definition 2.12]) and for
all a, b ∈ A:

(1) (a · b)′ = a′ + b′.
(2) (a + b)′ = a′ · b′.
(3) a′′ = a
(4) 0′ = 1 and 1′ = 0.

Note that for simplicity, we will abbreviate ab for a · b hereafter. Quasi-Boolean
algebras are often used as the fundamental part of rough algebras. If we add
modal operators to a qBa satisfying additional conditions, we obtain various
rough algebras [2].

Definition 4. An algebra A = (A, ·,+, ′, 0, 1,�) is a topological quasi-Boolean
algebra (tqBa) if (A, ·,+, ′, 0, 1) is a quasi-Boolean algebra, � is a unary opera-
tions on A such that for all a, b ∈ A:

(K�) �(ab) = �a�b
(N�) �1 = 1
(T�) �a ≤ a
(4�) �a ≤ ��a

where the lattice order ≤ on A is defined by setting a ≤ b if and only if ab = b.
Let tqBa be the variety of all topological quasi-Boolean algebras.

A partition topological quasi-Boolean algebra (tqBa5) is a topological quasi-
Boolean algebra A = (A, ·,+, ′,�, 0, 1) such that for all a ∈ A:

(5�) ♦a ≤ �♦a

where ♦ is the unary operation on A defined by ♦a := (�a′)′. Let tqBa5 be the
variety of all partition topological quasi-Boolean algebras.
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Fact 1. Let A = (A, ·,+, ′, 0, 1,�) be a tqBa. For all a ∈ A, (1) ♦(a + b) =
♦a + ♦b; (2) ♦0 = 0; (3) a ≤ ♦a and (4) ♦♦a ≤ ♦a.

Now we define the dual algebras of approximation space and covering frame
respectively.

Definition 5. The dual algebra of an approximation space K = (U,R) is defined
as K∗ = (P(U),
,�,∼, (.), 〈∅, U〉, 〈U, ∅〉) where P(U) is the above defined
polarities on U . The operation (.) stands for taking the lower approximation
of quasicomplement. The dual algebra of a covering frame F = (U,C ) is defined
as F � = (P(U),
,�,∼,�N , 〈∅, U〉, 〈U, ∅〉) where P(U) is the above defined
polarities on U .

By Proposition 1 (8), in the dual algebra K∗ of an approximation space,
we can define G := ∼(∼ G). By Proposition 3 (3), in the dual algebra F � of a
covering frame F , we can define ♦NG := ∼�N∼G.

Proposition 4. Let K = (U,R) be an approximation space and F = (U,C ) be
a covering frame. Then (1) K∗ is a tqBa5; and (2) F � is a tqBa.

Proof. It suffices to show that both algebras defined satisfy the properties of
tqBa5 and tqBa respectively. For (1), by Proposition 1 and Proposition 2, K∗ is
a tqBa5. For (2), by Proposition 3, F � is a tqBa. 
�

Let A = (A, ·,+, ′,�, 0, 1) be a tqBa. A filter in A is a subset u ⊆ A such
that the following conditions hold for all a, b ∈ A:

(1) ab ∈ u for all a, b ∈ u.
(2) a ∈ u and a ≤ b ∈ A imply b ∈ u.

A filter u in A is proper if 0 �∈ u. A proper filter u in A is prime if a + b ∈ u
implies a ∈ u or b ∈ u. Let U(A) be the set of all prime filters in A. Let
A = (A, ·,+, ′,�, 0, 1) be a tqBa. A subset ∅ �= X ⊆ A has the finite meet
property, if a1 . . . an �= 0 for all a1, . . . , an ∈ X. It is well-known that, by Zorn’s
lemma, every subset ∅ �= X ⊆ A with the finite meet property can be extended
to a proper filter, and every proper filter can be extended to a prime filter.

Fact 2. Let A = (A, ·,+, ′,�, 0, 1) be a tqBa. For all u ∈ U(A) and a, b ∈ u,

(1) ab ∈ u if and only a, b ∈ u; and
(2) a + b ∈ u if and only if a ∈ u or b ∈ u.

Moreover, if A is a tqBa5, then a ≤ �♦a and ♦�a ≤ �a.

Definition 6. The dual space of a tqBa5 A = (A, ·,+, ′,�, 0, 1) is defined as
the structure A∗ = (U(A), RA) where RA is defined as follows:

uRAv if and only if {a : �a ∈ u} ⊆ v.

Note that uRAv if and only if {♦b : b ∈ v} ⊆ u.
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Lemma 1. For every tqBa5 A, the dual space A∗ is an approximation space.

Proof. Let A = (A, ·,+, ′,�, 0, 1) be a tqBa5 and A∗ = (U(A), RA). It suffices
to show that RA is an equivalence relation. By (T�), RA is reflexive. By (4�),
RA is transitive. Suppose uRAv and a ∈ v. Then ♦a ∈ u. By (5�), ♦a ≤ �♦a
and so �♦a ∈ u. Then ♦a ∈ u. Hence vRAu. 
�
Lemma 2. Let A = (A, ·,+, ′,�, 0, 1) be a tqBa5 and u ∈ U(A). If �a �∈ u,
then there exists v ∈ RA(u) with a �∈ v.

Proof. Assume �a �∈ u. Consider the set X = {b : �b ∈ u} which is clearly closed
under meet. Then a �∈ X. Now we show that X has the finite meet property.
Suppose not. Then �0 ∈ u. Clearly �0 ≤ 0 and so 0 ∈ u which contradicts
u ∈ U(A). Then there exists a prime filter v ∈ U(A) with uRAv and a �∈ v.

Let A and B be tqBas. A function f : A → B is an embedding from A

to B if f is an injective homomorphism, i.e., for all a, b ∈ A, f(ab) = f(a)f(b);
f(a+b) = f(a)+f(b); f(a′) = f(a)′; f(0) = 0 and f(1) = 1; and f(�a) = �f(a).
We say that A is embedded into B if there is an embedding from A to B.

Theorem 1. Every tqBa5 A is embedded into (A∗)∗.

Proof. Let A = (A, ·,+, ′,�, 0, 1) be a tqBa5 and P(U(A)) = P(U(A)) ×
P(U(A)). Clearly (A∗)∗ = (P(U(A)),
,�, (.), 〈∅, U(A)〉, 〈U(A), ∅〉). We define
the function f : A → P(U(A)) by f(a) = 〈π+(a), π−(a)〉 where

π+(a) = {u ∈ U(A) : a ∈ u}; π−(a) = {v ∈ U(A) : a′ ∈ v}.

Now we show that f is injective. Suppose a �= b. Without loss of generality,
suppose a �≤ b. By Zorn’s lemma, there exists a prime filter u ∈ U(A) such that
a ∈ u and b �∈ u. This implies that u ∈ π+(a) and v �∈ π+(b). Hence f(a) �= f(b).

Next we show the function f preserves operations:

(1) We have π+(ab) = {u ∈ U(A) : ab ∈ u} = {u ∈ U(A) : a ∈ u} ∩ {u ∈
U(A) : b ∈ u} = π+(a) ∩ π+(b). Moreover, π−(ab) = {u ∈ U(A) : (ab)′ ∈ u} =
{u ∈ U(A) : a′ + b′ ∈ u} = {u ∈ U(A) : a′ ∈ u} ∪ {u ∈ U(A) : b′ ∈ u} =
π−(a) ∪ π−(b). Hence f(ab) = f(a) 
 f(b).

(2) We have π+(a+ b) = {u ∈ U(A) : a+ b ∈ u} = {u ∈ U(A) : a ∈ u}∪{u ∈
U(A) : b ∈ u} = π+(a) ∪ π+(b). Moreover, π−(a + b) = {u ∈ U(A) : (a + b)′ ∈
u} = {u ∈ U(A) : a′b′ ∈ u} = {u ∈ U(A) : a′ ∈ u} ∩ {u ∈ U(A) : b′ ∈ u} =
π−(a) ∩ π−(b). Hence f(a + b) = f(a) � f(b).

(3) We have π+(a′) = {u ∈ U(A) : a′ ∈ u} = π−(a). Moreover, π−(a′) =
{u ∈ U(A) : a′′ ∈ u} = {u ∈ U(A) : a ∈ u} = π+(a). Hence f(a′) = ∼f(a).

(4) We have π+(�a) = {u ∈ U(A) : �a ∈ u}. Now we show π+(�a) =
π+(a) = {u ∈ U(A) : RA(u) ⊆ π+(a)}. Suppose u ∈ π+(�a). Then �a ∈ u.
If v ∈ RA(u), then a ∈ v and so v ∈ π+(a). Hence RA(u) ⊆ π+(a). Suppose
R(u) ⊆ π+(a). For a contradiction, assume �a �∈ u. By Lemma 2, there exists
v ∈ RA(u) with a �∈ v. Then v ∈ π+(a), i.e., a ∈ v which contradicts a �∈ v. Hence
π+(�a) = π+(a). Similarly we have π+(�a) = π−(a). Hence f(�a) = f(a). 
�
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Definition 7. Let A = (A, ·,+, ′,�, 0, 1) be a tqBa. The binary relation QA ⊆
U(A) × U(A) is defined as follows:

uQAv if and only if {a : �a ∈ u} ⊆ v.

Note that uQAv if and only if {♦b : b ∈ v} ⊆ u. The function NA : U(A) →
P(U(A)) is defined by NA(u) =

⋃{C ∈ CA : u ∈ C}. Note that NA(u) = QA(u).
The dual frame of a tqBa A is defined as the structure A� = (U(A),CA) where
CA = {QA(u) : u ∈ U(A)}.

Lemma 3. For every tqBa A, the dual frame A� is a covering frame.

Proof. Let A = (A, ·,+, ′,�, 0, 1) be a tqBa. It suffices to show
⋃
CA = U(A).

Clearly
⋃
CA ⊆ U(A). Let u ∈ U(A). By (T�), u ∈ Q(u). Hence u ∈ ⋃

CA. 
�
Lemma 4. Let A = (A, ·,+, ′,�, 0, 1) be a tqBa and u ∈ U(A). If �a �∈ u, then
there exists v ∈ QA(u) with a �∈ v.

Proof. The proof is similar to Lemma 2 and details are omitted.

Theorem 2. Every tqBa A is embeddable into (A�)�.

Proof. Let A = (A, ·,+, ′,�, 0, 1) be a tqBa and P(U(A)) = P(U(A)) ×
P(U(A)). Clearly (A�)� = (P(U(A)),
,�,�NA

, 〈∅, U(A)〉, 〈U(A), ∅〉). We
define the function f : A → P(U(A)) by f(a) = 〈π+(a), π−(a)〉 where
π+(a) = {u ∈ U(A) : a ∈ u} and π−(a) = {v ∈ U(A) : a′ ∈ v}. Like the
proof of Theorem 1, the function f is an embedding. 
�

4 Logics for Paraconsistent Rough Sets

In this section, we introduce two sequent calculi for Pawlakian paraconsistent
rough sets and covering based rough sets respectively.

Definition 8. Let V = {pi : i ∈ ω} be a denumerable set of variables. The set
of all formulas Fm is defined inductively as follows:

Fm � φ ::= p | ⊥ | ¬φ | (φ1 ∧ φ2) | (φ1 ∨ φ2) | �φ

where p ∈ V. We define � := ¬⊥ and ♦φ := ¬�¬φ. A sequent is an expression
Γ ⇒ φ where Γ is a finite multiset of formulas and φ is a formula. For every
finite multiset of formulas Γ , let �Γ = {�φ : φ ∈ Γ}. If Γ = ∅, then �∅ = ∅.

Definition 9. The sequent calculus G4 consists of the following axiom
schemata and inference rules:

(1) Axiom schemata:

(Id) φ, Γ ⇒ φ (⊥) ⊥, Γ ⇒ φ (�) Γ ⇒ �
(T�) �φ ⇒ φ (4�) �φ ⇒ ��φ
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(2) Logical rules:

φ, ψ, Γ ⇒ χ
(∧L)

φ ∧ ψ, Γ ⇒ χ

Γ ⇒ ψ Γ ⇒ χ
(∧R)

Γ ⇒ ψ ∧ χ

φ, Γ ⇒ χ ψ, Γ ⇒ χ
(∧L)

φ ∨ ψ, Γ ⇒ χ

Γ ⇒ ψi
(∨R)(i = 1, 2)

Γ ⇒ ψ1 ∧ ψ2

¬φ, Γ ⇒ χ ¬ψ, Γ ⇒ χ
(¬∧L)¬(φ ∧ ψ), Γ ⇒ χ

Γ ⇒ ¬ψi
(¬∧R)(i = 1, 2)

Γ ⇒ ¬(ψ1 ∧ ψ2)

¬φ,¬ψ, Γ ⇒ χ
(¬∨L)¬(φ ∨ ψ), Γ ⇒ χ

Γ ⇒ ¬ψ1 Γ ⇒ ¬ψ2
(¬∨R)

Γ ⇒ ¬(ψ1 ∧ ψ2)

φ, Γ ⇒ χ
(¬¬L)¬¬φ, Γ ⇒ χ

Γ ⇒ ψ
(¬¬R)

Γ ⇒ ¬∼ψ

(3) Contraposition:

ϕ ⇒ ψ
(CP)¬ψ ⇒ ¬ϕ

(4) Modal Rules:

Γ ⇒ ψ
(K)�Γ ⇒ �ψ

(5) Cut rule:

Γ ⇒ ψ ψ,Δ ⇒ χ
(Cut)

Γ,Δ ⇒ χ

The sequent calculus G5 is obtained from G4 by adding the following axiom:

(5) ♦φ ⇒ �♦φ.

A derivation in a sequent calculus is a finite tree of sequents in which each
node is either an axiom or derived from child node(s) by a rule. The height of a
derivation is defined as the maximal length of branches in it. For G ∈ {G4,G5},
let G � Γ ⇒ ψ denote that the sequent Γ ⇒ ψ is derivable in G. A formula φ
is G-equivalent to ψ (notation: G � φ ⇔ ψ) if G � φ ⇒ ψ and G � ψ ⇒ φ.

Proposition 5. The following hold:

(1) G4 � ¬� ⇔ ⊥ and G4 � φ ⇔ ¬¬φ.
(2) G4 � ¬(φ ∧ ψ) ⇔ ¬φ ∨ ¬ψ and G4 � ¬(φ ∨ ψ) ⇔ ¬φ ∧ ¬ψ.
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(3) G4 � ¬�φ ⇔ ♦¬ψ and G4 � ¬♦φ ⇔ �¬φ.
(4) if G4 � φ ⇒ ψ, then G4 � �φ ⇒ �ψ and G4 � ♦φ ⇒ ♦ψ.
(5) G4 � �(φ ∧ ψ) ⇔ �φ ∧ �ψ and G4 � ♦(φ ∨ ψ) ⇔ ♦φ ∨ ♦ψ.
(6) G4 � �φ ∧ ♦ψ ⇒ ♦(φ ∧ ψ).
(7) G4 � φ ⇒ ♦φ.
(8) G4 � �φ ⇔ ��φ and G4 � ♦φ ⇔ ♦♦φ.
(9) G5 � φ ⇒ �♦φ and G5 � ♦�φ ⇔ �φ.

Proof. We show G4 � ¬(φ∧ψ) ⇔ ¬φ∨¬ψ. We have the following derivations:

φ, ψ ⇒ φ
(∧L)

φ ∧ ψ ⇒ φ
(CP)¬φ ⇒ ¬(φ ∧ ψ)

φ, ψ ⇒ ψ
(∧L)

φ ∧ ψ ⇒ ψ
(CP)¬ψ ⇒ ¬(φ ∧ ψ)
(∨L)¬φ ∨ ¬ψ ⇒ ¬(φ ∧ ψ)

¬φ ⇒ ¬φ
(∨R)¬φ ⇒ ¬φ ∨ ¬ψ

¬ψ ⇒ ¬ψ
(∨R)¬ψ ⇒ ¬φ ∨ ¬ψ
(¬∧R)¬(φ ∧ ψ) ⇒ ¬φ ∨ ¬ψ

We show G4 � �(φ ∧ ψ) ⇔ �φ ∧ �ψ. We have the following derivations:

φ, ψ ⇒ φ
(∧L)

φ ∧ ψ ⇒ φ
(K)�(φ ∧ ψ) ⇒ �φ

φ, ψ ⇒ φ
(∧L)

φ ∧ ψ ⇒ φ
(K)�(φ ∧ ψ) ⇒ �φ
(∧R)�(φ ∧ ψ) ⇒ �φ ∧ �ψ

φ, ψ ⇒ φ φ, ψ ⇒ ψ
(∧R)

φ, ψ ⇒ φ ∧ ψ
(K)�φ,�ψ ⇒ �(φ ∧ ψ)
(∧L)�φ ∧ �ψ ⇒ �(φ ∧ ψ)

The remaining items are shown regularly. 
�
An assignment in a tqBa A is a function θ : V → A. A sequent Γ ⇒ φ is

valid in a tqBa A (notation: A |= Γ ⇒ φ), if
∧

ψ∈Γ θ(ψ) ≤ θ(φ). The notation
tqBa |= Γ ⇒ φ denote that Γ ⇒ φ is valid in all tqBas, and the notation
tqBa5 |= Γ ⇒ φ denote that Γ ⇒ φ is valid in all tqBa5s.

Theorem 3. For every sequent Γ ⇒ φ, (1) G4 � Γ ⇒ φ if and only if tqBa |=
Γ ⇒ φ; and (2) G5 � Γ ⇒ φ if and only if tqBa |= Γ ⇒ φ.

Proof. This is shown by the standard Lindenbaum-Tarski method. The sound-
ness part is shown directly by induction on the height of a derivation of Γ ⇒ φ
in a sequent calculus. For G ∈ {G4,G5}, the binary relation ≡G on the set of
all formulas Fm is defined by setting

φ ≡G ψ if and only if G � φ ⇒ ψ and G � ψ ⇒ φ.

One can easily show that ≡G is a congruence relation on Fm. Let Fm/G = {[φ] :
φ ∈ Fm} where [φ] = {ψ ∈ Fm : φ ≡G ψ} is the equivalence class of φ. The
Lindenbaum-Tarski algebra for G is defined as LG = (Fm/G, ·,+, ′, [⊥], [�])
where we have
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[φ][ψ] = [φ ∧ ψ], [φ] + [ψ] = [φ ∨ ψ] and [φ]′ = [∼φ].

Obviously LG4 is a tqBa and LG5 is a tqBa5. Suppose G �� Γ ⇒ φ. Let θ be
the assignment in LG such that θ(p) = [p] for each p ∈ V. By induction on the
complexity of a formula χ, we have θ(χ) = [χ]. Hence LG �|= Γ ⇒ φ. 
�

Let K = (U,R) be an approximation space and F = (U,C ) be a covering
frame. A sequent Γ ⇒ φ is valid in K (notation: K |= Γ ⇒ φ), if K∗ |= Γ ⇒ φ.
Let AS |= Γ ⇒ φ denote that Γ ⇒ φ is valid in all approximation spaces. A
sequent Γ ⇒ φ is valid in F (notation: F |= Γ ⇒ φ), if F � |= Γ ⇒ φ. Let
CF |= Γ ⇒ φ denote that Γ ⇒ φ is valid in all covering frames.

Corollary 1. For every sequent Γ ⇒ φ, (1) G4 � Γ ⇒ φ if and only if AS |=
Γ ⇒ φ; and (2) G5 � Γ ⇒ φ if and only if CF |= Γ ⇒ φ.

Proof. It follows immediately from Theorem 3, Theorem 1 and Theorem 2. 
�

5 Concluding Remarks

The present work contributes new paraconsistent Pawlakian rough sets and para-
consistent covering based rough sets by introducing approximations of polarities
in a universe of objects. Moreover, topological quasi-Boolean algebras are shown
to be algebras for paraconsistent covering based rough sets, and partition topo-
logical quasi-Boolean algebras are shown to be algebras for paraconsistent Pal-
wakian rough sets. Finally, we present sequent calculi as modal systems for these
paraconsistent rough sets. There are some problems which need to be explored
further. One problem is about the applications of these paraconsistent rough
sets in practical scenarios. The other problem is extendeding the approach taken
in the present paper to other types of rough sets. For example, as in [9,10], we
can consider the connections between Kripke structures, covering frames and
algebras for various paraconsistent rough sets.
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comments and suggestions.
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Abstract. In this paper, bounded commutative residuated quasi-
ordered quasi-monoids (bounded commutative Rq�-monoids, for short)
as a generalization of bounded commutative residuated lattice ordered
monoids (bounded commutative R�-monoids, for short) are introduced.
First, the properties of bounded commutative Rq�-monoids are inves-
tigated and the relations among quasi-MV algebras, quasi-BL algebras
and bounded commutative Rq�-monoids are discussed. Second, the filters
and weak filters of bounded commutative Rq�-monoids are defined. The
one-to-one correspondence between the set of filters and the set of filter
congruences on a bounded commutative Rq�-monoid is given. Moreover,
the relation between the set of weak filters and the set of congruences
on a bounded commutative Rq�-monoid is showed. As an application of
the study, the properties of the quotient algebra with respect to a weak
filter are investigated. Finally, the properties of some special sets in a
bounded commutative Rq�-monoid are showed.

Keywords: Bounded commutative Rq�-monoids · Quasi-BL algebras ·
Quasi-MV algebras · Weak filters

1 Introduction

Bounded commutative residuated lattice ordered monoids (bounded commuta-
tive R�-monoids, for short) are the dual notion of bounded commutative dually
residuated lattice ordered monoids (bounded commutative DR�-monoids, for
short) which were given by Swamy in [17] as a generalization of abelian lattice
ordered groups and Brouwerian algebras. Moreover, it is well known that both
MV-algebras [2] which are the algebraic semantics of Lukasiewicz infinite valued
logic and BL-algebras [7] which are the algebraic semantics of Hajek’s basic fuzzy
logic can be regarded as the special cases of bounded commutative R�-monoids.
Namely, a bounded commutative R�-monoid G is an MV-algebra iff G satisfies
the identity ι−− = ι, where ι− = ι ��� 0 (see [13,14]), a bounded commutative
R�-monoid G is a BL-algebra iff G satisfies the identity (ι ��� �)� (� ��� ι) = 1
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(see [15]). Since bounded commutative R�-monoids form larger class of alge-
bras including some well-known logical algebras, lots of authors generalized and
extended the previous investigation to bounded commutative R�-monoids for
studying the common properties and providing a more general algebraic foun-
dations [5,11,12,16].

In the recent years, quantum computational logics arising from quantum
computation have been received more and more attentions. In order to study
the algebraic characterization of quantum computational logics, Ledda et al.
introduced and investigated quasi-MV algebras in [6]. In 2020, Chen and Wang
defined quasi-BL algebras [3] as a generalization of quasi-MV algebras similarly
as BL-algebras generalized MV-algebras. Many more properties of quasi-MV
algebras and quasi-BL algebras can be seen in [1,8–10]. The works on quasi-
MV algebras and quasi-BL algebras were indicated that the study of quasi-∗
algebras may play an important role in quantum computational logics. More-
over, introducing more quasi-∗ algebras is benefit to improve and develop the
study. Now, considering the relations among bounded commutative R�-monoids,
MV-algebras and BL-algebras, we want to introduce new structures which are
generalization of bounded commutative R�-monoids. The structure of the paper
is as follows. In Sect. 2, some definitions and conclusions which will be used in
what follows are recalled. In Sect. 3, bounded commutative Rq�-monoids as a
generalization of bounded commutative R�-monoids are defined and the basic
properties of bounded commutative Rq�-monoids are investigated. Furthermore,
the relation between bounded commutative Rq�-monoids and quasi-MV alge-
bras is discussed. In Sect. 4, filters and weak filters of bounded commutative
Rq�-monoids are defined and the one-to-one correspondence between the set of
filters and the set of filter congruences on a bounded commutative Rq�-monoid
is showed. Moreover, the relation between the set of weak filters and the set of
congruences on a bounded commutative Rq�-monoid is discussed. As an appli-
cation of the study, the properties of the quotient algebra with respect to a weak
filter are investigated. Finally, the properties of some special sets in a bounded
commutative Rq�-monoid are showed.

2 Preliminary

In this section, some definitions and conclusions of bounded commutative R�-
monoids, quasi-MV algebras and quasi-BL algebras which will be used in what
follows are recalled.

Definition 1. [12] Let G = (G;⊗,�,�, ���, 0, 1) be an algebra of type
(2,2,2,2,0,0). If it satisfies the following conditions for each ι, �, ζ ∈ G,

(RLM1) (G;⊗, 1) is a commutative monoid,
(RLM2) (G;�,�, 0, 1) is a bounded lattice,
(RLM3) ι ⊗ � ≤ ζ ⇔ ι ≤ � ��� ζ,
(RLM4) ι ⊗ (ι ��� �) = ι � �,
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then G = (G;⊗,�,�, ���, 0, 1) is called a bounded commutative residuated lattice
ordered monoid (bounded commutative R�-monoid, for short).

In [12], authors showed that a bounded commutative R�-monoid G is an
MV-algebra iff for each ι ∈ G, ι � 0 = ι where ι � 0 = (ι′ ⊗ 0′)′. In [15],
Rachunek showed that a bounded commutative R�-monoid G is a BL-algebra
iff (ι ��� �) � (� ��� ι) = 1 for each ι, � ∈ G.

In 2006, Ledda et al. introduced quasi-MV algebras as a generalization of
MV-algebras.

Definition 2. [6] Let (V ;�,′ , 0) be an algebra of type (2,1,0). If it satisfies the
following identities for each ι, �, ζ ∈ V ,

(QM1) ι � (� � ζ) = (ι � �) � ζ,
(QM2) 0′ = 1,
(QM3) ι � 1 = 1,
(QM4) ι′′ = ι,
(QM5) (ι′ � �)′ � � = (ι � �′)′ � ι,
(QM6) (ι � 0)′ = ι′ � 0,
(QM7) ι � � � 0 = ι � �,
then (V ;�,′ , 0) is called a quasi-MV algebra.

On each quasi-MV algebra (V ;�,′ , 0), some operations were defined as fol-
lows: ι � � = ι � (�′ � ι)′, ι � � = (ι′ � �′)′, ι ⊗ � = (ι′ � �′)′ and ι ��� � = ι′ � �.
Also, a relation ι ≤ � was defined by ι � � = � � 0, or equivalently, ι � � = ι � 0.

Definition 3. [4] Let (V ;�,�) be an algebra of type (2,2). If it satisfies the
following identities for each ι, �, ζ ∈ V ,

(QL1) ι � � = � � ι and ι � � = � � ι,
(QL2) ι � (� � ζ) = (ι � �) � ζ and ι � (� � ζ) = (ι � �) � ζ,
(QL3) ι � (� � ι) = ι � ι and ι � (� � ι) = ι � ι,
(QL4) ι � � = ι � (� � �) and ι � � = ι � (� � �),
(QL5) ι � ι = ι � ι,
then (V ;�,�) is called a quasi-lattice.

On each quasi-lattice (V ;�,�), one can define a relation ι ≤ � by ι�� = ���
and the relation ≤ is quasi-ordering.

Given a quasi-MV algebra (V ;�,′ , 0), authors showed that (V ;≤) is a quasi-
ordered set and (V ;�,�, 0, 1) is a bounded quasi-lattice, i.e., (V ;�,�) is a quasi-
lattice and it has the largest element 1 and the least element 0 (with respect to
the quasi-ordering ≤) in [6].

Definition 4. [3] Let (V ;⊗, 1) be an algebra of type (2,0). If it satisfies the
following identities for each ι, �, ζ ∈ V ,

(QM1) ι ⊗ (� ⊗ ζ) = (ι ⊗ �) ⊗ ζ,
(QM2) ι ⊗ 1 = 1 ⊗ ι,
(QM3) ι ⊗ � ⊗ 1 = ι ⊗ �,
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(QM4) 1 ⊗ 1 = 1,
then (V ;⊗, 1) is called a quasi-monoid.

Obviously, each quasi-monoid with ι⊗1 = ι is a monoid. If ι⊗� = �⊗ι for each
ι, � ∈ V , then (V ;⊗, 1) is a commutative quasi-monoid. Based on quasi-lattices
and quasi-monoids, Chen and Wang gave the definition of quasi-BL algebras in
[3].

Definition 5. [3] Let (V ;⊗,�,�, ���, 0, 1) be an algebra of type (2,2,2,2,0,0).
If it satisfies the following conditions for each ι, �, ζ ∈ V ,

(QB1) (V ;⊗, 1) is a commutative quasi-monoid,
(QB2) (V ;�,�, 0, 1) is a bounded quasi-lattice,
(QB3) ι � ι = ι ⊗ 1 and 0 � 0 = 0,
(QB4) ι ≤ � ��� ζ iff ι ⊗ � ≤ ζ,
(QB5) (ι ��� �) ⊗ 1 = ι ��� �,
(QB6) ι � � = ι ⊗ (ι ��� �),
(QB7) (ι ��� �) � (� ��� ι) = 1,
then (V ;⊗,�,�, ���, 0, 1) is called a quasi-BL algebra.

On a quasi-BL algebra one can define the unary operation ′ : V → V by
ι′ ∈ V for each ι ∈ V and ι′ ⊗ 1 = (ι ⊗ 1)′ = ι ��� 0. In [3], authors showed that
a quasi-BL algebra (V ;⊗,�,�, ���, 0, 1) is a quasi-MV algebra iff ι′′ = ι for each
ι ∈ V .

3 Bounded Commutative Rq�-Monoids

In this section, we introduce bounded commutative Rq�-monoids as a general-
ization of bounded commutative R�-monoids. The basic properties of a bounded
commutative Rq�-monoid are discussed mainly.

Definition 6. Let D = (D;⊗,�,�, ���,′ , 0, 1) be an algebra of type
(2,2,2,2,1,0,0). If it satisfies the following conditions for each ι, �, ζ ∈ D,

(RQLM1) (D;⊗, 1) is a commutative quasi-monoid,
(RQLM2) (D;�,�, 0, 1) is a bounded quasi-lattice,
(RQLM3) ι ⊗ � ≤ ζ ⇔ ι ≤ � ��� ζ,
(RQLM4) ι ⊗ (ι ��� �) = ι � �,
(RQLM5) ι ��� � = (ι ��� �) ⊗ 1,
(RQLM6) ι � ι = ι ⊗ 1 and 0 � 0 = 0,
(RQLM7) ι′ ⊗ 1 = (ι ⊗ 1)′ = ι ��� 0,
then D = (D;⊗,�,�, ���,′ , 0, 1) is called a bounded commutative residuated
quasi-ordered quasi-monoid (bounded commutative Rq�-monoid, for short).
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In the following, a Rq�-monoid always means a bounded commutative Rq�-
monoid. It is not difficult to see that each R�-monoid is a Rq�-monoid. Con-
versely, let D be a Rq�-monoid. If (D;�,�, 0, 1) is a bounded lattice, then ι�ι = ι
and then we have ι⊗1 = ι by (RQLM6), it follows that (D;⊗, 1) is a commutative
monoid, so D is a R�-monoid. On the other hand, if (D;⊗, 1) is a commutative
monoid, then ι ⊗ 1 = ι and then we have ι � ι = ι by (RQLM6), it follows that
(D;�,�, 0, 1) is a bounded lattice, so D is also a R�-monoid.

Proposition 1. A Rq�-monoid D is a quasi-BL algebra iff (ι ��� �) � (� ���
ι) = 1 for each ι, � ∈ D.

Proof. Follows from Definition 5 and Definition 6.

Example 1. Let D = {0, ρ, σ, 1} and define the operations �,�,⊗, ��� and ′ as
follows:

� 0 ρ σ 1
0 0 σ σ 1
ρ σ σ σ 1
σ σ σ σ 1
1 1 1 1 1

� 0 ρ σ 1
0 0 0 0 0
ρ 0 σ σ σ
σ 0 σ σ σ
1 0 σ σ 1

⊗ 0 ρ σ 1
0 0 0 0 0
ρ 0 0 0 σ
σ 0 0 0 σ
1 0 σ σ 1

��� 0 ρ σ 1
0 1 1 1 1
ρ σ 1 1 1
σ σ 1 1 1
1 0 σ σ 1

′

0 1
ρ σ
σ σ
1 0

Then D = (D;⊗,�,�, ���,′ , 0, 1) is a Rq�-monoid. Since ρ � ρ = σ 
= ρ and
ρ ⊗ 1 = σ 
= ρ, we have that D is not a R�-monoid.

Example 2. Let D = {0, ρ, σ, υ, 1} and define the operations �,�,⊗, ��� and ′

as follows:

� 0 ρ σ υ 1
0 0 σ σ σ 1
ρ σ σ σ σ 1
σ σ σ σ σ 1
υ σ σ σ σ 1
1 1 1 1 1 1

� 0 ρ σ υ 1
0 0 0 0 0 0
ρ 0 σ σ σ σ
σ 0 σ σ σ σ
υ 0 σ σ σ σ
1 0 σ σ σ 1

⊗ 0 ρ σ υ 1
0 0 0 0 0 0
ρ 0 0 0 0 σ
σ 0 0 0 0 σ
υ 0 0 0 0 σ
1 0 σ σ σ 1

��� 0 ρ σ υ 1
0 1 1 1 1 1
ρ σ 1 1 1 1
σ σ 1 1 1 1
υ σ 1 1 1 1
1 0 σ σ σ 1

′

0 1
ρ σ
σ σ
υ σ
1 0

Then D = (D;⊗,�,�, ���,′ , 0, 1) is a Rq�-monoid.

Below we show some basic properties of a Rq�-monoid.

Proposition 2. Let D be a Rq�-monoid. Then the following properties hold for
each ι, �, ζ ∈ D,

(P1) ι ⊗ 1 ≤ ι and ι ≤ ι ⊗ 1;
(P2) ι � � ≤ ι ≤ ι � � and ι � � ≤ � ≤ ι � �;
(P3) ι ≤ � ��� (ι ⊗ �);
(P4) ι ≤ � ⇒ ι ⊗ ζ ≤ � ⊗ ζ;
(P5) ι ≤ � ⇒ � ��� ζ ≤ ι ��� ζ and ζ ��� ι ≤ ζ ��� �;
(P6) ι ≤ � ⇒ ι � ζ ≤ � � ζ and ι � ζ ≤ � � ζ;
(P7) ι ≤ �, ς ≤ τ ⇒ ι ⊗ ς ≤ � ⊗ τ ;
(P8) ι ≤ �, ς ≤ τ ⇒ ι � ς ≤ � � τ and ι � ς ≤ � � τ ;
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(P9) (ι ⊗ �) � (ι ⊗ �) = ι ⊗ � and (ι ��� �) � (ι ��� �) = ι ��� �;
(P10) ι ⊗ � ≤ ι, � and ι ⊗ � ≤ ι � �;
(P11) � ≤ ι ��� �;
(P12) ι ⊗ (� ��� ζ) ≤ � ��� (ι ⊗ ζ);
(P13) ι ��� � ≤ (� ��� ζ) ��� (ι ��� ζ);
(P14) (� ��� ζ) ⊗ (ι ��� �) ≤ ι ��� ζ and (ζ ��� ι) ⊗ (ι ��� �) ≤ ζ ��� �;
(P15) ι ≤ � ⇔ ι ��� � = 1;
(P16) ι ≤ � ⇒ ι � � = ((ι ��� �) ��� �) � ((� ��� ι) ��� ι);
(P17) ι ��� ι = 1;
(P18) ι ⊗ 1 = 1 ��� ι;
(P19) ι ��� (� ��� ζ) = (ι ⊗ �) ��� ζ;
(P20) ι � � = (ι � �) ⊗ 1 = (ι ⊗ 1) � � = ι � (� ⊗ 1);
(P21) ι � � = (ι � �) ⊗ 1 = (ι ⊗ 1) � � = ι � (� ⊗ 1);
(P22) ι ��� � = (ι ��� �) ⊗ 1 = (ι ⊗ 1) ��� � = ι ��� (� ⊗ 1);
(P23) ι ��� � = ι ��� (ι � �);
(P24) ι ⊗ (� � ζ) = (ι ⊗ �) � (ι ⊗ ζ);
(P25) (ι � �) ��� ζ = (ι ��� ζ) � (� ��� ζ);
(P26) 1′ = 0 and 0′ = 1;
(P27) ι′ ⊗ ι = 0;
(P28) ι ≤ ι′ ��� �;
(P29) ι ≤ ι′′;
(P30) ι ≤ � ⇒ �′ ≤ ι′;
(P31) ι′′′ ⊗ 1 = ι′ ⊗ 1;
(P32) (ι ⊗ �)′ = ι ��� �′ = � ��� ι′;
(P33) ι ��� � ≤ �′ ��� ι′;
(P34) ι = ι′′ ⇒ ι ��� � = �′ ��� ι′;
(P35) ι′ � �′ ≤ (ι � �)′;
(P36) (ι � �)′ = ι′ � �′;
(P37) (ι ��� �′′)′′ = ι ��� �′′;
(P38) ι ⊗ �′ ≤ (ι ��� �)′;
(P39) (ι′′ ��� ι)′ = 0;
(P40) (ι ��� �)′′ = ι′′ ��� �′′;
(P41) ι′′ ⊗ �′′ ≤ (ι ⊗ �)′′;
(P42) (ι � �)′′ = ι′′ � �′′;
(P43) ι � � ≤ ι′′ � �′′ ≤ (ι � �)′′.

Proof.(1) By (QL4) and (RQLM6), we have (ι⊗1)� ι = (ι⊗1)� (ι� ι) = (ι⊗1)
�(ι ⊗ 1), so ι ⊗ 1 ≤ ι. Meanwhile, since ι ⊗ 1 = ι � ι, we have ι � (ι ⊗ 1) =
ι � (ι � ι) = ι � ι by (RQLM6) and (QL4), so ι ≤ ι ⊗ 1.

(2) Since (ι � �) � ι = (ι � ι) � � = (ι � ι) � (� � �) = (ι � �) � (ι � �), we have
ι � � ≤ ι. Meanwhile, since (ι � �) � ι = ι � � = (ι � �) � (ι � �), we have
ι ≤ ι � �. Similarly, we have ι � � ≤ � and � ≤ ι � �.

(3) Since ι ⊗ � ≤ ι ⊗ �, we have ι ≤ � ��� (ι ⊗ �) by (RQLM3).
(4) If ι ≤ �, then we have ι ≤ � ≤ ζ ��� (� ⊗ ζ) by (P3), so ι ⊗ ζ ≤ � ⊗ ζ by

(RQLM3).
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(5) If ι ≤ �, then we have (� ��� ζ) ⊗ ι ≤ (� ��� ζ) ⊗ � = � � ζ ≤ ζ and
(ζ ��� ι) ⊗ ζ = ζ � ι ≤ ι ≤ � by (P4) and (P2), so � ��� ζ ≤ ι ��� ζ and
ζ ��� ι ≤ ζ ��� � by (RQLM3).

(6) If ι ≤ �, then we have ι � � = ι � ι and ι � � = � � �, hence (ι � ζ) � (� �
ζ) = (ι � �) � (ζ � ζ) = (ι � �) � ζ = (ι � ι) � ζ = (ι � ζ) � (ι � ζ) and
(ι�ζ)� (��ζ) = (ι��)� (ζ �ζ) = (ι��)�ζ = (���)�ζ = (��ζ)� (��ζ),
it turns out that ι � ζ ≤ � � ζ and ι � ζ ≤ � � ζ.

(7) If ι ≤ � and ς ≤ τ , then we have ι ⊗ ς ≤ � ⊗ ς and � ⊗ ς ≤ � ⊗ τ by (P4),
so ι ⊗ ς ≤ � ⊗ τ .

(8) If ι ≤ � and ς ≤ τ , then we have ι � ς ≤ � � ς and � � ς ≤ � � τ by (P6), so
ι � ς ≤ � � τ . Similarly, we have ι � ς ≤ � � τ .

(9) By (RQLM6) and (QM3), we have (ι ⊗ �) � (ι ⊗ �) = (ι ⊗ �) ⊗ 1 = ι ⊗ �.
Similarly, we have (ι ��� �) � (ι ��� �) = ι ��� �.

(10) Since � ≤ 1, we have ι⊗ � ≤ ι⊗ 1 ≤ ι by (P4) and (P1). Similarly, we have
ι ⊗ � ≤ �. Hence, ι ⊗ � = (ι ⊗ �) � (ι ⊗ �) ≤ ι � � by (P9).

(11) By (P10), we have � ⊗ ι ≤ �, so � ≤ ι ��� �.
(12) By (P2) and (P4), we have ι ⊗ (� ��� ζ) ⊗ � = ι ⊗ (� � ζ) ≤ ι ⊗ ζ, so

ι ⊗ (� ��� ζ) ≤ � ��� (ι ⊗ ζ) by (RQLM3).
(13) Since (� ��� ζ)⊗(ι ��� �)⊗ι = (� ��� ζ)⊗(ι��) ≤ (� ��� ζ)⊗� = ��ζ ≤ ζ

by (RQLM4), (P4), and (P2), we have (� ��� ζ) ⊗ (ι ��� �) ≤ ι ��� ζ by
(RQLM3), so ι ��� � ≤ (� ��� ζ) ��� (ι ��� ζ).

(14) Since (� ��� ζ) ⊗ (ι ��� �) ⊗ ι = (� ��� ζ) ⊗ (ι � �) ≤ (� ��� ζ) ⊗ � =
� � ζ ≤ ζ, we have (� ��� ζ) ⊗ (ι ��� �) ≤ ι ��� ζ by (RQLM3). Since
(ζ � ι)⊗ (ι ��� �) ≤ ι⊗ (ι ��� �) = ι�� ≤ �, we have (ζ � ι)⊗ (ι ��� �) ≤ �
iff ζ ⊗ (ζ ��� ι) ⊗ (ι ��� �) ≤ � iff (ζ ��� ι) ⊗ (ι ��� �) ≤ (ζ ��� �).

(15) If ι ≤ �, then we have 1 ⊗ ι ≤ ι ≤ � by (P1), it follows that 1 ≤ ι ��� �
by (RQLM3). Since ι ��� � ≤ 1, we have ι ��� � = 1. Conversely, if
ι ��� � = 1, then we have ι � � = ι ⊗ (ι ��� �) = ι ⊗ 1 = ι � ι by (RQLM4)
and (RQLM6), so ι ≤ �.

(16) Since ι � � = ι ⊗ (ι ��� �) = � ⊗ (� ��� ι) ≤ �, we have ι ≤ (ι ��� �) ��� �.
Meanwhile, we have � ≤ (ι ��� �) ��� � by (P11), so ι�� ≤ (ι ��� �) ��� �.
Similarly, we have ι � � ≤ (� ��� ι) ��� ι. Hence ι � � ≤ ((ι ��� �) ���
�) � ((� ��� ι) ��� ι). Denote ς = ((ι ��� �) ��� �) � ((� ��� ι) ��� ι). We
have ς = ς ⊗1 = ς ⊗ (1� (� ��� ι)) = ς ⊗ ((ι ��� �)� (� ��� ι)) = (ς ⊗ (ι ���
�)) � (ς ⊗ (� ��� ι)). Because ς ⊗ (ι ��� �) ≤ ((ι ��� �) ��� �) ⊗ (ι ��� �) =
(ι ��� �) � � ≤ � and ς ⊗ (� ��� ι) ≤ ι, we have ς ≤ ι � � by (P6). Hence
ι � � = ς = ((ι ��� �) ��� �) � ((� ��� ι) ��� ι).

(17) By (P1), we have 1 ⊗ ι ≤ ι, so 1 ≤ ι ��� ι by (RQLM3). Meanwhile, we
have ι ��� ι ≤ 1. So ι ��� ι = (ι ��� ι)⊗1 = (ι ��� ι)�(ι ��� ι) = 1�1 = 1.

(18) We have 1 ��� ι = (1 ��� ι) ⊗ 1 = ι � 1 = ι � ι = ι ⊗ 1.
(19) We have ς ≤ ι ��� (� ��� ζ) iff ς ⊗ ι ≤ � ��� ζ iff (ς ⊗ ι) ⊗ � ≤ ζ iff

ς ⊗ (ι ⊗ �) ≤ ζ iff ς ≤ (ι ⊗ �) ��� ζ. Hence ι ��� (� ��� ζ) = (ι ⊗ �) ��� ζ.
(20) We have ι � � = (ι ��� �) ⊗ ι = (ι ��� �) ⊗ ι ⊗ 1 = (ι � �) ⊗ 1, ι � � =

ι � (� � �) = ι � (� ⊗ 1), and ι � � = (ι � ι) � � = (ι ⊗ 1) � � by (RQLM4),
(RQLM5), (QL4), and (RQLM6).
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(21) We have (ι � �) ⊗ 1 = (ι � �) � (ι � �) = (ι � �) � (ι � �) = ((ι � ι) � �) � � =
(ι � �) � � = ι � (� � �) = ι � � by (RQLM6), (QL5), and (QL4). Moreover,
we have ι � � = ι � (� � �) = ι � (� � �) = ι � (� ⊗ 1) by (QL4), (QL5), and
(RQLM6), and ι�� = ��ι = ��(ι�ι) = (ι�ι)�� = (ι�ι)�� = (ι⊗1)��.

(22) Since ζ ≤ ι ��� (� ⊗ 1) iff ζ ⊗ ι ≤ � ⊗ 1 ≤ � iff ζ ≤ ι ��� �, we have
ι ��� (�⊗1) = ι ��� �. Meanwhile, because ζ ≤ (ι⊗1) ��� � iff ζ⊗(ι⊗1) ≤ �
iff ζ ⊗ ι ≤ � iff ζ ≤ ι ��� �, we have (ι ⊗ 1) ��� � = ι ��� �.

(23) Since (ι ��� �) ⊗ ι = ι � �, we have ι ��� � ≤ ι ��� (ι � �) by (RQLM3).
Meanwhile, since ι � � ≤ �, we have ι ��� (ι � �) ≤ ι ��� � by (P5). Hence
ι ��� � = ι ��� (ι � �).

(24) By (P2), we have � ≤ � � ζ and ζ ≤ � � ζ, it follows that ι ⊗ � ≤ ι ⊗ (� � ζ)
and ι ⊗ ζ ≤ ι ⊗ (� � ζ) by (P4). So (ι ⊗ �) � (ι ⊗ ζ) ≤ (ι ⊗ (� � ζ)) � (ι ⊗
(� � ζ)) = ι ⊗ (� � ζ). On the other hand, since ι ⊗ � ≤ (ι ⊗ �) � (ι ⊗ ζ)
and ι ⊗ ζ ≤ (ι ⊗ �) � (ι ⊗ ζ), we have � ≤ ι ��� ((ι ⊗ �) � (ι ⊗ ζ)) and
ζ ≤ ι ��� ((ι ⊗ �) � (ι ⊗ ζ)) by (RQLM3), it follows that � � ζ ≤ ι ���
((ι ⊗ �) � (ι ⊗ ζ)), so ι ⊗ (� � ζ) ≤ (ι ⊗ �) � (ι ⊗ ζ) by (RQLM3). Hence
ι ⊗ (� � ζ) = (ι ⊗ �) � (ι ⊗ ζ).

(25) By (RQLM3) and (P24), we have ς ≤ (ι � �) ��� ζ iff (ι � �) ⊗ ς ≤ ζ iff
(ι⊗ ς)� (�⊗ ς) ≤ ζ iff ι⊗ ς ≤ ζ and �⊗ ς ≤ ζ iff ς ≤ ι ��� ζ and ς ≤ � ��� ζ
iff ς ≤ (ι ��� ζ) � (� ��� ζ). Hence (ι � �) ��� ζ = (ι ��� ζ) � (� ��� ζ).

(26) We have 1′ = (1 ⊗ 1)′ = 1 ��� 0 = 0 ⊗ 1 = 0 � 0 = 0 by (RQLM7), (P18),
and (RQLM6), and 0′ = 0 ��� 0 = 1 by (P17).

(27) We have ι′ ⊗ ι = 1 ⊗ ι′ ⊗ ι = (ι′ ⊗ 1) ⊗ ι = (ι ��� 0) ⊗ ι = ι � 0 = 0 � 0 = 0.
(28) By (P27), we have ι′ ⊗ ι = 0 ≤ �, so ι ≤ ι′ ��� �.
(29) By (P28), we have ι ≤ ι′ ��� 0 = (ι′)′ ⊗ 1 ≤ ι′′.
(30) Since ι ≤ �, we have � ��� 0 ≤ ι ��� 0 by (P6), it follows that �′⊗1 ≤ ι′⊗1.

Meanwhile, since �′ ≤ �′ ⊗ 1 and ι′ ⊗ 1 ≤ ι′, we have �′ ≤ ι′.
(31) By (P29), we have ι′ ≤ ι′′′. Meanwhile, since ι ≤ ι′′, we have ι′′′ ≤ ι′ by

(P30), so ι′ � ι′ = ι′′′ � ι′′′ and then ι′ ⊗ 1 = ι′′′ ⊗ 1.
(32) By (P22) and (P19), we have ι ��� �′ = ι ��� (�′ ⊗ 1) = ι ��� (� ��� 0) =

(ι ⊗ �) ��� 0 = (ι ⊗ �)′ and (ι ⊗ �)′ = (� ⊗ ι)′ = � ��� ι′.
(33) By (P13) and (P22), we have ι ��� � ≤ (� ��� 0) ��� (ι ��� 0) = (�′⊗1) ���

(ι′ ⊗ 1) = �′ ��� ι′.
(34) If ι′′ = ι, then we have ι ��� � ≤ �′ ��� ι′ ≤ ι′′ ��� �′′ = ι ��� � by (P33),

so ι ��� � = �′ ��� ι′.
(35) Since ι�� ≤ ι and ι�� ≤ �, we have ι′ ≤ (ι��)′ and �′ ≤ (ι��)′ by (P30), so

ι′��′ ≤ (ι��)′�(ι��)′ = (ι��)′�(ι��)′ = (ι��)′⊗1 = ((ι��)⊗1)′ = (ι��)′.
(36) We have (ι � �) ��� 0 = (ι ��� 0) � (� ��� 0) by (P25), so (ι � �)′ =

(ι′ ⊗ 1) � (�′ ⊗ 1) = ι′ � �′ by (P20).
(37) By (P32), we have (ι ��� �′′)′′ = (ι ⊗ �′)′′′ = (ι ⊗ �′)′′′ ⊗ 1 = (ι ⊗ �′)′ ⊗ 1 =

(ι ⊗ �′)′ = ι ��� �′′.
(38) By (RQLM4), (P4), and (P27), we have (ι ��� �) ⊗ ι ⊗ �′ = (ι � �) ⊗ �′ ≤

� ⊗ �′ = 0, so ι ⊗ �′ ≤ (ι ��� �) ��� 0 = (ι ��� �)′ by (RQLM3).
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(39) Since 0 ≤ ι, we have ι′′ ��� 0 ≤ ι′′ ��� ι by (P5), it turns out that
ι′ ≤ ι′ ⊗ 1 = ι′′′ ⊗ 1 = ι′′ ��� 0 ≤ ι′′ ��� ι by (P1) and (P31), so (ι′′ ���
ι)′ ≤ ι′′ and then (ι′′ ��� ι)′ = (ι′′ ��� ι)′ ⊗ 1 = (ι′′ ��� ι)′ � (ι′′ ���
ι)′ = (ι′′ ��� ι)′ � ι′′. By (RQLM4), (P32), (P15), and (P27), we have
(ι′′ ��� ι)′ � ι′′ = ι′′ ⊗ (ι′′ ��� (ι′′ ��� ι)′) = ι′′ ⊗ ((ι′′ ��� ι) ⊗ ι′′)′ =
ι′′ ⊗ (ι′′ � ι)′ = ι′′ ⊗ (ι ⊗ 1)′ = ι′′ ⊗ ι′ ⊗ 1 = 0 ⊗ 1 = 0. Hence (ι′′ ��� ι)′ = 0.

(40) By (P38), (P19), and (P22), we have (ι ��� �)′′ = (ι ��� �)′ ��� 0 ≤
(ι ⊗ �′) ��� 0 = ι ��� (�′ ��� 0) = ι ��� (�′′ ⊗ 1) = ι ��� �′′. Meanwhile,
since 1 = 0′ = (�′′ ��� �)′′ ≤ ((ι � �′′) ��� �)′′ = (((ι ��� �′′) ⊗ ι) ��� �)′′ =
((ι ��� �′′) ��� (ι ��� �))′′ ≤ ((ι ��� �′′) ��� (ι ��� �)′′)′′ = (ι ��� �′′) ���
(ι ��� �)′′ by (P39), (P19), (P5), and (P37), and (ι ��� �′′) ��� (ι ���
�)′′ ≤ 1, we have (ι ��� �′′) ��� (ι ��� �)′′ = 1, so ι ��� �′′ ≤ (ι ��� �)′′ by
(P15). Hence ι ��� �′′ = (ι ��� �)′′. By (P32), (P22), and (P31), we have
ι′′ ��� �′′ = �′ ��� ι′′′ = �′ ��� (ι′′′ ⊗ 1) = �′ ��� (ι′ ⊗ 1) = �′ ��� ι′ = ι ���
�′′ = (ι ��� �)′′.

(41) Since ι ⊗ � ≤ ι, we have (ι ⊗ �)′′ ≤ ι′′ by (P30), it turns out that ι′′ ⊗ �′′ =
(ι′′⊗�′′)⊗1 = (ι′′⊗�′′)�(ι′′⊗�′′) ≤ ι′′�(ι′′⊗�′′) = ι′′⊗(ι′′ ��� (ι′′⊗�′′)) ≤
ι′′ ⊗ (ι′′ ��� (ι′′ ��� �′)′) = ι′′ ⊗ (ι′′ ��� (ι′′ ��� �′′′)′) = ι′′ ⊗ (ι′′ ��� (ι ���
�′)′′′) = ι′′ ⊗ (ι′′ ��� (ι ��� �′)′) = ι′′ ⊗ (ι′′ ��� (ι ⊗ �)′′) = (ι ⊗ �)′′ � ι′′ =
(ι ⊗ �)′′ � (ι ⊗ �)′′ = (ι ⊗ �)′′ ⊗ 1 = (ι ⊗ �)′′ by (P38), (P22), (P40), (P32),
(RQLM4) and (RQLM6).

(42) On the one hand, since ι � � ≤ ι and ι � � ≤ �, we have (ι � �)′′ ≤ ι′′ and
(ι � �)′′ ≤ �′′ by (P30), so (ι � �)′′ ≤ ι′′ � �′′. On the other hand, we have
ι′′ � �′′ = (ι′′ ��� �′′) ⊗ ι′′ = (ι ��� �)′′ ⊗ ι′′ ≤ (ι ⊗ (ι ��� �))′′ = (ι � �)′′ by
(P40), (P41), and (RQLM4). Hence (ι��)′′ = ((ι��)⊗1)′′ = (ι��)′′ ⊗1 =
(ι � �)′′ � (ι � �)′′ = (ι′′ � �′′) � (ι′′ � �′′) = ι′′ � �′′.

(43) Since ι ≤ ι′′ and � ≤ �′′, we have ι � � ≤ ι′′ � �′′. Meanwhile, we have
ι′′ � �′′ ≤ (ι′ � �′)′ = (ι � �)′′ by (P35) and (P36).

Given that D is a Rq�-monoid, the element ι ∈ D is called regular iff ι⊗1 = ι.
We denote R(D) the set of all regular elements of D, i.e., R(D) = {ι ∈ D|ι⊗1 =
ι}. It is easy to see that 0, 1 ∈ R(D) and then R(D) is a non-empty subset of D.
According to Definition 6 and Proposition 2, we know that if ι, � ∈ D, then ι⊗�,
ι ��� �, ι � � and ι � � are regular elements. Hence (R(D);⊗,�,�, ���,′ , 0, 1) is
a R�-monoid.

Let D be a Rq�-monoid. For ι, � ∈ D, we define ι � � = (ι′ ⊗ �′)′.

Lemma 1. Let D be a Rq�-monoid. Then we have for each ι, �, ζ ∈ D,

(1) 1 � 0 = 1; (2) ι � � = � � ι;
(3) ι � (� � ζ) = (ι � �) � ζ; (4) ι � 1 = 1;
(5) (ι � �) � 0 = (ι � �) ⊗ 1 = ι � �; (6) ι � � ≤ ι′′ � �′′ ≤ ι � �;
(7) ι � 0 = ι′′ � ι′′ = ι′′ ⊗ 1; (8) ι � ι′ = 1;
(9) (ι � 0)′ = ι′ � 0; (10) (ι � �)′′ = ι′′ � �′′ = ι � �.
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Proof.(1) We have 1 � 0 = (1′ ⊗ 0′)′ = (0 ⊗ 1)′ = (0 � 0)′ = 0′ = 1.
(2) We have ι � � = (ι′ ⊗ �′)′ = (�′ ⊗ ι′)′ = � � ι.
(3) We have ι� (�� ζ) = ι� (�′ ⊗ ζ ′)′ = (ι′ ⊗ (�′ ⊗ ζ ′)′′)′ = ι′ ��� (�′ ⊗ ζ ′)′′′ =

ι′ ��� ((�′ ⊗ ζ ′)′′′ ⊗ 1) = ι′ ��� ((�′ ⊗ ζ ′)′ ⊗ 1) = ι′ ��� (�′ ⊗ ζ ′)′ = ι′ ���
(ζ ′ ��� �′′) = (ι′ ⊗ ζ ′) ��� �′′ = (ζ ′ ⊗ ι′) ��� �′′ = ζ ′ ��� (ι′ ��� �′′) =
ζ ′ ��� (ι′ ⊗ �′)′ = ζ ′ ��� ((ι′ ⊗ �′)′ ⊗ 1) = ζ ′ ��� ((ι′ ⊗ �′)′′′ ⊗ 1) = ζ ′ ���
(ι′ ⊗ �′)′′′ = ((ι′ ⊗ �′)′′ ⊗ ζ ′)′ = (ι′ ⊗ �′)′ � ζ = (ι � �) � ζ.

(4) Since ι′ ≤ 1, we have 1 = 1 � 0 = (0 ⊗ 1)′ ≤ (0 ⊗ ι′)′ = 1 � ι = ι � 1 ≤ 1
by (1), (P4), (P30), and (2) so ι � 1 = 1.

(5) By (P31), we have (ι � �) � 0 = (ι′ ⊗ �′)′ � 0 = ((ι′ ⊗ �′)′′ ⊗ 0′)′ =
((ι′ ⊗ �′)′′ ⊗ 1)′ = (ι′ ⊗ �′)′′′ ⊗ 1 = (ι′ ⊗ �′)′ ⊗ 1 = (ι′ ⊗ �′)′ = ι � �.
Meanwhile, we have (ι��)⊗1 = (ι′ ⊗�′)′ ⊗1 = (ι′ ⊗�′)′ = ι�� by (P18).

(6) Since ι′ ⊗ �′ ≤ ι′ ⊗ 1 ≤ ι′ and ι′ ⊗ �′ ≤ 1 ⊗ �′ ≤ �′ by (P1) and (P4), we
have ι′′ ≤ (ι′ ⊗ �′)′ and �′′ ≤ (ι′ ⊗ �′)′ by (P30), so ι � � ≤ ι′′ � �′′ ≤ ι � �
by (P43).

(7) We have ι � 0 = (ι′ ⊗ 0′)′ = (ι′ ⊗ 1)′ = ι′′ ⊗ 1 ≤ ι′′. Meanwhile, since
ι′′ ≤ ι′′ � 0 = ι′′ � 0′′ ≤ ι � 0 by (5), we have (ι � 0) � (ι � 0) = ι′′ � ι′′.
Because (ι�0)� (ι�0) = (ι�0)⊗ ((ι�0) ��� (ι�0)) = (ι�0)⊗1 = ι�0
by (5). Hence ι � 0 = ι′′ � ι′′ = ι′′ ⊗ 1.

(8) By (P27), we have ι � ι′ = (ι′ ⊗ ι′′)′ = 0′ = 1.
(9) We have (ι � 0)′ = (ι′′ ⊗ 1)′ = (ι′′ ⊗ 0′)′ = ι′ � 0 by (7).

(10) We have (ι � �)′′ � (ι � �)′′ = ι � � � 0 = ι � � by (7) and (5). Meanwhile,
we have ι′′ ��′′ = (ι′′′ ⊗�′′′)′ = ((ι′′′ ⊗1)⊗ (�′′′ ⊗1))′ = (ι′ ⊗�′)′ = ι�� by
(P31). Since ι�� = (ι��)⊗1, we have (ι��)′ = ((ι��)⊗1)′ = (ι��)′ ⊗1
by (5) and (RQLM7), it follows that (ι��)′′ = ((ι��)′ ⊗1)′ = (ι��)′′ ⊗1,
so (ι��)′′�(ι��)′′ = (ι��)′′⊗1 = (ι��)′′. Hence (ι��)′′ = ι′′��′′ = ι��.

Proposition 3. A Rq�-monoid D is a quasi-MV algebra iff ι′′ = ι for each
ι ∈ D.

Proof. If a Rq�-monoid D is a quasi-MV algebra, then ι′′ = ι is obvious. Con-
versely, if D is a Rq�-monoid and ι′′ = ι for each ι ∈ D, then ι � (�′ � ι)′ =
ι′′�(�′�ι)′ = (ι′⊗(�′�ι))′ = (ι′⊗(�′�ι′′))′ = (ι′⊗(�⊗ι′)′)′ = (ι′⊗(� ��� ι))′ =
(ι′ ⊗ (ι′ ��� �′))′ = (ι′ � �′)′ and � � (ι′ � �)′ = �′′ � (ι′ � �)′ = (�′ ⊗ (ι′ � �))′ =
(�′ ⊗(ι′ ��′′))′ = (�′ ⊗(ι⊗�′)′)′ = (�′ ⊗(ι ��� �))′ = (�′ ⊗(�′ ��� ι′))′ = (�′ � ι′)′

by (P32) and (P34). Since ι′ � �′ = �′ � ι′, we have � � (ι′ � �)′ = ι � (�′ � ι)′.
The rest can be obtained by Lemma 1, so D is a quasi-MV algebra.

4 Filters and Filter Congruences

In this section, the notions of filters and weak filters in a Rq�-monoid are intro-
duced. We discuss the relation between the set of filters and the set of filter
congruences on a Rq�-monoid and then generalize the result to weak filters.

Definition 7. Let D be a Rq�-monoid. If a non-empty subset H of D satisfies
the following conditions,

(F1) ι, � ∈ H ⇒ ι ⊗ � ∈ H, (F2) ι ∈ H and � ∈ D with ι ≤ � ⇒ � ∈ H,
then H is called a filter of D.
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Definition 8. Let D be a Rq�-monoid. If a non-empty subset H of D satisfies
the following conditions,

(F1) ι, � ∈ H ⇒ ι⊗� ∈ H, (WF2) ι ∈ H and � ∈ D with ι ≤ � ⇒ �⊗1 ∈ H,
then H is called a weak filter of D.

Lemma 2. Let D be a Rq�-monoid and H be a filter of D. Then H is a weak
filter of D.

Proof. For each ι ∈ H and � ∈ D with ι ≤ �, then we have � ∈ H. Moreover,
since ι ≤ 1, we also have 1 ∈ H, so � ⊗ 1 ∈ H. Hence H is a weak filter of D.

Proposition 4. Let D be a Rq�-monoid and H be a weak filter of D. Then
ι � � ∈ H for each ι ∈ H and � ∈ D.

Proof. Let ι ∈ H and � ∈ D. Then ι ≤ ι � � ≤ ι � � by (P2) and Lemma 1(6).
Since H is a weak filter of D, we have ι � � = (ι � �) ⊗ 1 ∈ H by (WF2) and
Lemma 1(5).

Definition 9. Let D be a Rq�-monoid and θ be a congruence on D. If for each
ι, � ∈ D, 〈ι ⊗ 1, � ⊗ 1〉 ∈ θ implies 〈ι, �〉 ∈ θ, then θ is called a filter congruence
on D.

Given that D is a Rq�-monoid. If H is a filter of D and θ is a filter congruence
on D, then we define the relation ϕ(H) � D × D as follows: 〈ι, �〉 ∈ ϕ(H) iff
(ι ��� �) � (� ��� ι) ∈ H. The set ψ(θ) � D is defined by ψ(θ) = {ι ∈ D|〈ι, 1〉 ∈
θ}. It turns out that we have the following results.

Lemma 3. Let D be a Rq�-monoid and H be a filter of D. Then ϕ(H) is a
filter congruence on D.

Proof. Firstly, we show that ϕ(H) is an equivalence relation on D. For each
ι ∈ D, since ι ��� ι = 1 ∈ H, we have (ι ��� ι) � (ι ��� ι) = 1 � 1 = 1 ∈ H and
then 〈ι, ι〉 ∈ ϕ(H). If 〈ι, �〉 ∈ ϕ(H), since the operation � is commutative, we
have that 〈�, ι〉 ∈ ϕ(H) is obvious. Let 〈ι, �〉 ∈ ϕ(H) and 〈�, ζ〉 ∈ ϕ(H). Then
(ι ��� �) � (� ��� ι) ∈ H and (� ��� ζ) � (ζ ��� �) ∈ H, it follows that ι ���
�, � ��� ι ∈ H and � ��� ζ, ζ ��� � ∈ H. Since (� ��� ζ) ⊗ (ι ��� �) ≤ ι ��� ζ
and H is a filter, we have ι ��� ζ ∈ H. Similarly, we have ζ ��� ι ∈ H. Since
(ι ��� ζ) ⊗ (ζ ��� ι) ≤ (ι ��� ζ) � (ζ ��� ι) and (ι ��� ζ) ⊗ (ζ ��� ι) ∈ H, we
have (ι ��� ζ) � (ζ ��� ι) ∈ H. Hence 〈ι, ζ〉 ∈ ϕ(H).

Secondly, we show that ϕ(H) keeps the operations. Let 〈ι, �〉 ∈ ϕ(H) and
〈ς, τ〉 ∈ ϕ(H). Then (ι ��� �) � (� ��� ι) ∈ H and (ς ��� τ) � (τ ��� ς) ∈ H,
it follows that ι ��� �, � ��� ι ∈ H and ς ��� τ, τ ��� ς ∈ H. (1) Since
ι ⊗ (ι ��� �) ≤ ι and τ ⊗ (τ ��� ς) ≤ ς, we have (ι ��� �) ⊗ (τ ��� ς) ⊗ (ι ⊗ τ) =
ι ⊗ (ι ��� �) ⊗ τ ⊗ (τ ��� ς) ≤ ι ⊗ ς by (P7), it turns out that (ι ��� �) ⊗ (τ ���
ς) ≤ (ι ⊗ τ) ��� (ι ⊗ ς), so (ι ⊗ τ) ��� (ι ⊗ ς) ∈ H. Similarly, we have (ι ⊗ ς) ���
(ι⊗τ) ∈ H. So 〈ι⊗ς, ι⊗τ〉 ∈ ϕ(H). Analogously, we obtain 〈ι⊗τ, �⊗τ〉 ∈ ϕ(H).
Hence 〈ι ⊗ ς, � ⊗ τ〉 ∈ ϕ(H). (2) Since (ι ��� �) ⊗ (ς ��� ι) ≤ ς ��� � and
(� ��� ι)⊗(ς ��� �) ≤ ς ��� ι by (P14), we have ι ��� � ≤ (ς ��� ι) ��� (ς ��� �)
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and � ��� ι ≤ (ς ��� �) ��� (ς ��� ι), it follows that (ς ��� ι) ��� (ς ��� �) ∈ H
and (ς ��� �) ��� (ς ��� ι) ∈ H, so 〈ς ��� ι, ς ��� �〉 ∈ ϕ(H). Similarly, we
have 〈ς ��� �, τ ��� �〉 ∈ ϕ(H). Thus 〈ς ��� ι, τ ��� �〉 ∈ ϕ(H). (3) By (1)
and (2), we have 〈ι ⊗ (ι ��� ς), � ⊗ (� ��� τ)〉 ∈ ϕ(H), so 〈ι � ς, � � τ〉 ∈ ϕ(H).
(4) Since ι ⊗ (ι ��� �) ⊗ (ς ��� τ) ≤ ι ⊗ (ι ��� �) = ι � � ≤ � � τ and
ς ⊗ (ι ��� �) ⊗ (ς ��� τ) ≤ ς ⊗ (ς ��� τ) = ς � τ ≤ � � τ , we have (ι ���
�) ⊗ (ς ��� τ) ≤ ι ��� (� � τ) and (ι ��� �) ⊗ (ς ��� τ) ≤ ς ��� (� � τ), so
(ι ��� �) ⊗ (ς ��� τ) ≤ (ι ��� (� � τ)) � (ς ��� (� � τ)) = (ι � ς) ��� (� � τ)
by (P25). Since ι ��� �, ς ��� τ ∈ H, we have (ι ��� �) ⊗ (ς ��� τ) ∈ H, so
(ι � ς) ��� (� � τ) ∈ H. Similarly, we have (� � τ) ��� (ι � ς) ∈ H. Hence
〈ι� ς, ��τ〉 ∈ ϕ(H). (5) Since ι ��� � ≤ �′ ��� ι′ and � ��� ι ≤ ι′ ��� �′, we have
ι′ ��� �′ ∈ H and �′ ��� ι′ ∈ H, so 〈ι′, �′〉 ∈ ϕ(H). Hence ϕ(H) is a congruence
on D.

Finally, suppose that 〈ι ⊗ 1, � ⊗ 1〉 ∈ ϕ(H). Then ((ι ⊗ 1) ��� (� ⊗ 1)) � ((� ⊗
1) ��� (ι ⊗ 1) ∈ H), we have (ι ⊗ 1) ��� (� ⊗ 1) ∈ H and (� ⊗ 1) ��� (ι ⊗ 1) ∈ H,
it follows that ι ��� � ∈ H and � ��� ι ∈ H by (P22), so (ι ��� �)�(� ��� ι) ∈ H
and then 〈ι, �〉 ∈ ϕ(H). Hence ϕ(H) is a filter congruence on D.

Lemma 4. Let D be a Rq�-monoid and θ be a filter congruence on D. Then
ψ(θ) is a filter of D.

Proof. It is easy to see that 1 ∈ ψ(θ). Suppose that ι, � ∈ ψ(θ). Then 〈ι, 1〉 ∈ θ
and 〈�, 1〉 ∈ θ. Since θ is a congruence on D, we have 〈ι⊗�, 1〉 = 〈ι⊗�, 1⊗1〉 ∈ θ,
so ι ⊗ � ∈ ψ(θ). Let ι ∈ ψ(θ) and � ∈ D with ι ≤ �. Then we have 〈ι, 1〉 ∈ θ and
ι� � = �� � = �� � = �⊗ 1. Since θ is a congruence on D, we have 〈�, �〉 ∈ θ, it
follows that 〈ι ��� �, 1 ��� �〉 ∈ θ, so 〈(ι ��� �) ��� �, (1 ��� �) ��� �〉 ∈ θ. Since
(1 ��� �) ��� � = (� ⊗ 1) ��� � = � ��� � = 1, we get 〈(ι ��� �) ��� �, 1〉 ∈ θ.
Similarly, we have 〈(� ��� ι) ��� ι, (� ��� 1) ��� ι〉 ∈ θ. Because � ��� 1 = 1,
we have 〈(� ��� 1) ��� ι, 1 ��� ι〉 ∈ θ and then 〈(� ��� ι) ��� ι, 1 ��� ι〉 ∈ θ.
Since ι ⊗ 1 = 1 ��� ι = (1 ��� ι) ⊗ 1 = (1 ��� ι) � (1 ��� ι) = 1 � (1 ��� ι) and
ι � � = ((ι ��� �) ��� �) � ((� ��� ι) ��� ι) by (P16), we have 〈� ⊗ 1, ι ⊗ 1〉 =
〈ι � �, ι ⊗ 1〉 = 〈ι � �, 1 ��� ι〉 = 〈((ι ��� �) ��� �) � ((� ��� ι) ��� ι), 1 � (1 ���
ι)〉 ∈ θ. Note that 〈ι ⊗ 1, 1 ⊗ 1〉 ∈ θ, we have 〈� ⊗ 1, 1 ⊗ 1〉 ∈ θ. Because θ is a
filter congruence on D, we have 〈�, 1〉 ∈ θ, so � ∈ ψ(θ). Hence ψ(θ) is a filter of
D.

Then, we get the relation between the set of filters of D and the set of filter
congruences on D.

Theorem 1. Let D be a Rq�-monoid, H be a filter of D and θ be a filter congru-
ence on D. Then ψ(ϕ(H)) = H and ϕ(ψ(θ)) = θ, so there exists a one-to-one
correspondence between the set of filters of D and the set of filter congruences
on D.

Proof. By Lemma 3 and Lemma 4, we have ϕ(H) is a filter congruence on D,
ψ(θ) is a filter of D. We have ψ(ϕ(H)) = {ι ∈ D|〈ι, 1〉 ∈ ϕ(H)} = {ι ∈ D|1 ���
ι = ι ⊗ 1 ∈ H} = H for ι ⊗ 1 ∈ H ⇔ ι ∈ H. For each 〈ι, �〉 ∈ ϕ(ψ(θ)), we have
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ι ��� � ∈ ψ(θ) and � ��� ι ∈ ψ(θ), i.e., 〈ι ��� �, 1〉 ∈ θ and 〈� ��� ι, 1〉 ∈ θ. Since
〈ι, ι〉 ∈ θ, we have 〈ι � �, ι ⊗ 1〉 = 〈ι ⊗ (ι ��� �), ι ⊗ 1〉 ∈ θ and 〈ι � �, � ⊗ 1〉 =
〈� ⊗ (� ��� ι), � ⊗ 1〉 ∈ θ, so 〈ι ⊗ 1, � ⊗ 1〉 ∈ θ. Since θ is a filter congruence
on D, we have 〈ι, �〉 ∈ θ. Conversely, if 〈ι, �〉 ∈ θ, then 〈�, ι〉 ∈ θ, we have
〈ι ��� �, 1〉 = 〈ι ��� �, � ��� �〉 ∈ θ and 〈� ��� ι, 1〉 = 〈� ��� ι, ι ��� ι〉 ∈ θ, it
turns out that ι ��� �, � ��� ι ∈ ψ(θ), so 〈ι, �〉 ∈ ϕ(ψ(θ)). Hence ϕ(ψ(θ)) = θ.

Below suppose that H is a weak filter of a Rq�-monoid D and θ is a congru-
ence on D. We define the relation ξ(H) � D × D as follows: 〈ι, �〉 ∈ ξ(H) iff
(ι ��� �) � (� ��� ι) ∈ H. The set η(θ) � D is defined by η(θ) = {ι ∈ D|〈ι, 1〉 ∈
θ}. Similarly to the proofs of Lemma 3, Lemma 4 and Theorem 1, we have the
following results.

Proposition 5. Let D be a Rq�-monoid, H be a weak filter of D and θ be a
congruence on D. Then (1) ξ(H) is a congruence on D; (2) η(θ) is a weak filter
of D; (3) η(ξ(H)) � H and ξ(η(θ)) � θ.

Let D be a Rq�-monoid and H be a weak filter of D. Then D/H = {ι/H|ι ∈
D} where ι/H = {� ∈ D|ι ��� � ∈ H and � ��� ι ∈ H} is a quotient set with
respect to H. Some operations on D/H are defined as follows:

(1) (ι/H) � (�/H) = (ι � �)/H;
(2) (ι/H) � (�/H) = (ι � �)/H;
(3) (ι/H) ⊗ (�/H) = (ι ⊗ �)/H;
(4) (ι/H) ��� (�/H) = (ι ��� �)/H;
(5) (ι/H)′ = ι′/H.

Then, it is direct to see that the algebraic structure of D/H is inherited from
the algebra D. So D/H = {D/H;�,�,⊗, ���,′ , 0/H, 1/H} is a Rq�-monoid.

Proposition 6. Let D be a Rq�-monoid and H be a weak filter of D. Then
D/H = {D/H;�,�,⊗, ���,′ , 0/H, 1/H} is a R�-monoid.

Proof. We only need show that (ι/H) ⊗ (1/H) = ι/H for each ι/H ∈ D/H. For
each ζ ∈ (ι/H)⊗(1/H) = (ι⊗1)/H, we have ζ ��� (ι⊗1) ∈ H and (ι⊗1) ��� ζ ∈
H, it turns out that ζ ��� ι = ζ ��� (ι ⊗ 1) ∈ H and ι ��� ζ = (ι ⊗ 1) ��� ζ ∈ H
by (P22), so ζ ∈ ι/H and then (ι/H) ⊗ (1/H) � ι/H. Similarly, we can show
that ι/H � (ι ⊗ 1)/H. Hence (ι/H) ⊗ (1/H) = (ι ⊗ 1)/H = ι/H and then D/H
is a R�-monoid.

Definition 10. A Rq�-monoid D is normal, if D satisfies the identity (ι⊗�)′′ =
ι′′ ⊗ �′′ for each ι, � ∈ D.

Let D be a Rq�-monoid. We denote E(D) = {ι ∈ D|ι′′ = 1} and elements in
E(D) is called dense.

Proposition 7. Let D be a normal Rq�-monoid. Then E(D) is a weak filter of
D.
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Proof. Let ι, � ∈ E(D). Then we have ι′′ = 1 and �′′ = 1, it follows that
1 = 1 ⊗ 1 = ι′′ ⊗ �′′ ≤ (ι ⊗ �)′′. Since (ι ⊗ �)′′ ≤ 1, we have (ι ⊗ �)′′ = 1, so
ι ⊗ � ∈ E(D). Let ι ∈ E(D) and � ∈ D with ι ≤ �. Then we have ι′′ = 1 and
ι′′ ≤ �′′, so 1 ≤ �′′. Since �′′ ≤ 1, we have �′′ ⊗ 1 = 1, so (� ⊗ 1)′′ = �′′ ⊗ 1 = 1
and then � ⊗ 1 ∈ E(D). Hence E(D) is a weak filter of D.

Proposition 8. Let D be a normal Rq�-monoid. Then the quotient R�-monoid
D/E(D) is an MV-algebra.

Proof. According to Proposition 3, we only need show ι/E(D) = (ι/E(D))′′ for
each ι/E(D) ∈ D/E(D). For each ι ∈ D, since ι ≤ ι′′, we have ι ��� ι′′ = 1 by
(P15), so (ι ��� ι′′)′′ = 1′′ = 1. Meanwhile, we have (ι′′ ��� ι)′′ = 0′ = 1 by
(P39). So ι ��� ι′′ ∈ E(D) and ι′′ ��� ι ∈ E(D), it turns out that ι ∈ ι′′/E(D)
and ι′′ ∈ ι/E(D), we have ι/E(D) = ι′′/E(D) = (ι/E(D))′′. Hence D/E(D) is
an MV-algebra.

Let D be a Rq�-monoid and denote M(D) = {ι ∈ D|ι′′ = ι}. Then M(D) is a
non-empty subset of D. We define the algebra M(D) = (M(D);⊗,�M(D),�, ���
,′ , 0, 1), where ι �M(D) � = (ι � �)′′ for each ι, � ∈ M(D) and the remaining
operations are the restrictions of the original ones in Rq�-monoid D on M(D).

Theorem 2. Let D be a normal Rq�-monoid. Then M(D) is a quasi-MV sub-
algebra of D.

Proof. Since D is a normal Rq�-monoid, we have (ι ⊗ �)′′ = ι′′ ⊗ �′′ = ι ⊗ �.
Moreover, we have (ι �M(D) �)′′ = (ι � �)′′′′ = (ι � �)′′ = ι �M(D) �, (ι � �)′′ =
ι′′ � �′′ = ι � �, (ι ��� �)′′ = ι′′ ��� �′′ = ι ��� �, and (ι′)′′ = (ι′′)′ = ι′.
So M(D) = (M(D);⊗,�M(D),�, ���,′ , 0, 1) is a subalgebra of D. Furthermore,
ι′′ = ι for each ι ∈ M(D). Hence M(D) = (M(D);⊗,�M(D),�, ���,′ , 0, 1) is a
quasi-MV algebra by Proposition 3.

Let D be a Rq�-monoid. We denote I(D) = {ι ∈ D|ι ⊗ ι = ι} and I(D) is a
non-empty subset of D. Moreover, if ι ∈ I(D), then we have ι ∈ R(D).

Lemma 5. Let D be a Rq�-monoid and ι ∈ I(D). For each � ∈ D, then ι � � =
ι ⊗ �.

Proof. By (P10), we have ι ⊗ � ≤ ι � �. On the other hand, since ι � � ≤ �, we
have ι � � = ι ⊗ (ι ��� �) = ι ⊗ ι ⊗ (ι ��� �) = ι ⊗ (ι � �) ≤ ι ⊗ � by (P4). Hence
ι � � = ι ⊗ �.

Theorem 3. Let D be a Rq�-monoid. Then I(D) is a subalgebra of the reduct
(D;⊗,�,�, 0, 1) of D.

Proof. For each ι, � ∈ I(D), then we have (ι⊗�)⊗(ι⊗�) = (ι⊗ι)⊗(�⊗�) = ι⊗�,
(ι � �) ⊗ (ι � �) = (ι ⊗ ι) � (ι ⊗ �) � (� ⊗ �) = ι � � � (ι ⊗ �) = ι � �, and
(ι � �) ⊗ (ι � �) = (ι ⊗ �) ⊗ (ι ⊗ �) = ι ⊗ � = ι � � by Lemma 5. Hence I(D) is a
subalgebra of the reduct (D;⊗,�,�, 0, 1) of D.
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5 Conclusion

In this paper, we have introduced and investigated bounded commutative Rq�-
monoids. Bounded commutative Rq�-monoids not only generalize bounded com-
mutative R�-monoids but also generalize quasi-MV algebras and quasi-BL alge-
bras. Hence they may play an important role in many-valued logics and quantum
computational logics. In the future, we will continue to study the algebraic and
topological structures of bounded commutative Rq�-monoids.
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Abstract. The concept of weak dominance relation as a generalization
of the dominance relation between binary fuzzy connectives was intro-
duced in literature. In this paper we mainly discuss the weak dominance
relation on the class of conjunctors. First, we provide some properties of
the weak dominance relation and show that the weak dominance rela-
tion still holds under duality and isomorphism. Secondly, we deal with
the weak dominance relation between conjunctors. Finally, we present
some results about the summand-wise nature of the weak dominance
relations between ordinal sum conjunctors.
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1 Introduction

Fuzzy connectives play the important role in fuzzy logic [1]. Various classes of
fuzzy connectives have been studied, including t-norms and t-conorms, copulas,
quasi-copulas, conjunctors and disjunctors, fuzzy negations and fuzzy implica-
tions, etc. The properties and related functional equations were discussed for
different fuzzy connectives in literature. As a kind of binary relation between
binary fuzzy connectives, the dominant relation first appears in the probability
metric space [3,4] and is closely related to the construction of Cartesian product
of probability metric space. Later, the dominance relation was applied to the
construction of fuzzy equivalence relations [5,7,8], fuzzy orderings [6] and the
open problem about the transitivity [11–13], which involve t-norms, t-conorms.
With the expansion of application fields of the dominance relation, more general
classes of fuzzy connectives were studied [9,10,14–17]. Moreover, the dominance
relation between binary fuzzy connectives is related to Minkowski inequality,
convex function and bisymmetry equation.

Some generalization of dominance relation was proposed in literature. The
graded version of dominance relation was discussed in [2]. In [19] the authors
introduce the weak dominance relation between t-norms, which can also be
regarded as another generalization of the dominance relation. On the other hand,
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weak dominance can also be regarded as an inequality generalization of mod-
ularity equation [20] which is related to some associative equations and widely
used in fuzzy theory. It is noted that only some primary results about the weak
dominance between strict t-norms are given in [19]. Whether the weak domi-
nance relation of various classes of binary fuzzy connectives (Triangular norms,
Copulas, Weaker operators) has similar results needs further study. Therefore,
more attention should be paid to the weak dominance relation of more general
fuzzy connectives.

The aim of the present contribution is to provide results on the weak domi-
nance relation between conjunctors. We present some basic properties about the
weak dominance relation, and discuss the weak dominance relation between the
classes of conjunctors. Then, we mainly deal with the weak dominance relation
between two ordinal sum conjunctors. Some sufficient and necessary conditions
are provided.

The structure of the paper is as follows. Firstly, we recall some basic defi-
nitions of conjunctors which will be used in the sequel and the notion of weak
domination concerning two conjunctors. In Sect. 3, we show the weak domina-
tion between conjunctors of their dual or isomorphism. In Sect. 4, we present the
necessary conditions of conjunctors weakly dominating continuous Archimedean
t-norm. In Sect. 5, we provide some results about the weak dominance relations
between ordinal sum conjunctors. Finally, we will close the contribution with a
short summary.

2 Preliminaries

We recall here definitions of some conjunctors which will be used in the sequel.
Definition 1. A binary operation C : [0, 1]2 → [0, 1] is called a conjunctor if
it is increasing in each place and has a neutral element 1 satisfying C(x, 1) =
C(1, x) = x for any x ∈ [0, 1].
A conjunctor which is associative and commutative is called a t-norm.
Definition 2 [18]. A t-norm is a two place function T : [0, 1]2 → [0, 1], such
that for all x, y, z ∈ [0, 1] the following conditions are satisfied:

(T1) T (x, y) = T (y, x).
(T2) T (T (x, y) , z) = T (x, T (y, z)).
(T3) T (x, y) ≤ T (y, z) whenever y ≤ z.
(T4) T (x, 1) = x.

The four basic t-norms TM , TP , TL, and TD are usually discussed in literature.
They are defined by, respectively:

TM (x, y) = min(x, y),
TP (x, y) = x · y,

TL(x, y) = max(x + y − 1, 0),

TD(x, y) =
{

0 (x, y) ∈ [0, 1[2,
min(x, y) otherwise.
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Remark 1. If a conjunctor C : [0, 1]2 → [0, 1] satisfies commutativity and asso-
ciativity, then C is a t-norm. For any conjunctor C it holds that TD ≤ C ≤ TM .

Definition 3 [18].

1. A t-norm T is called Archimedean if for each (x, y) ∈]0, 1[2 there is an n ∈ N

with x
(n)
T < y.

2. A t-norm T is called strict if it is continuous and strictly monotonic.
3. A t-norm T is called nilpotent if it is continuous and if each a ∈]0, 1[ is a

nilpotent element of T .

TL and TP are Archimedean and each strict t-norm is isomorphic to TP , each
nilpotent t-norm is isomorphic to TL.

Definition 4. A unary operation n : [0, 1] → [0, 1] is called a negation if it is
decreasing and compatible with the classical logic, i.e., n(0) = 1 and n(1) = 0. A
negation is strict if it is strictly decreasing and continuous. A negation is strong
if it is involutive, i.e., n(n(x)) = x for all x ∈ [0, 1].

Definition 5. Let C be a conjunctor and n be a strong negation on [0, 1]. A
disjunctor C∗ defined by for all x, y ∈ [0, 1],

C∗(x, y) = n(C(n(x), n(y)))

is call the n-dual of C.

Definition 6. Let C be a conjunctor and ϕ : [0, 1] → [0, 1] be an increasing
bijection. A conjunctor Cϕ defined by for all x, y ∈ [0, 1],

Cϕ(x, y) = ϕ−1(C(ϕ(x), ϕ(y)))

is said to be ϕ− isomorphic to C.

The conjunctors C and Cϕ are isomorphic to each other.

Definition 7 [21]. A conjunctor C : [0, 1]2 → [0, 1] is called a quasi-copula if it
satisfies 1-Lipschitz property: for any x1, x2, y1, y2 ∈ [0, 1] it holds that

|C(x1, y1) − C(x2, y2)| ≤ |x1 − x2| + |y1 − y2|

Definition 8. If (Ci)i∈I is a family of conjunctors and (]ai, bi[)i∈I is a family
of non-empty, pairwise disjoint open subintervals of [0, 1]. Then the ordinal sum
C = (〈ai, bi, Ci〉)i∈I : [0, 1]2 → [0, 1] is a conjunctor defined by

C(x, y) =
{

ai + (bi − ai)Ci( x−ai

bi−ai
, y−ai

bi−ai
) (x, y) ∈ [ai, bi]

2
,

min(x, y) otherwise.
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We refer to the triplets 〈ai, bi, Ci〉 as the summands of the ordinal sum, to
the intervals [ai, bi] as its summand carriers and to the conjunctors Ci as its
summand operations.

Definition 9. A conjunctor C that has no ordinal sum representation different
from (〈0, 1, C〉) is called ordinally irreducible.

Now we recall the definition of (weak) dominance about two conjunctors.

Definition 10. Consider two conjunctors C1 and C2. We say that C1 dominates
C2, and denoted by C1 � C2, if for all x1, x2, y1, y2 ∈ [0, 1] it holds that

C2(C1(x1, y2), C1(x2, y1)) ≤ C1(C2(x1, x2), C2(y1, y2)). (1)

Definition 11. Consider two conjunctors C1 and C2. We say that C1 weakly
dominates C2, and denoted by C1 >> C2, if for all x1, x2, y1 ∈ [0, 1] it holds that

C2(x1, C1(x2, y1)) ≤ C1(C2(x1, x2), y1). (2)

On the one hand, the weak dominance relation can be viewed as a gener-
alization of the dominance relation. It was applied to the construction of fuzzy
equivalence relations, fuzzy orderings and the open problem about the transi-
tivity. On the other hand, weak dominance can also be treated as an inequality
generalization of modularity equation. It plays an important role in fuzzy sets
and fuzzy logic theory.

Remark 2. (i) Let C1 and C2 be two conjunctors. If C1 � C2, then C1 >> C2.
Indeed, due to the fact that 1 is the common neutral element of all conjunc-
tors, by setting y2 = 1 in (1), we have the conclusion. Therefore, the weak
dominance relation can be regarded as a generalization of the dominance
relation.

(ii) Since 1 is the common neutral element of all conjunctors, the weak domi-
nance relation between two conjunctors implies their comparability: C1 >>
C2 implies C1 ≥ C2 by setting x2 = 1 in (1). Obviously, the converse does
not hold.

(iii) According to the monotonicity of conjunctors, it is clear that TM weakly
dominates any conjunctor C. Conversely, since weak dominance implies
comparability, TM is the only conjunctor weakly dominating TM . Moreover,
it is easily verified that the weakest conjunctor TD is weakly dominated by
any conjunctor C.

3 Duality and Isomorphism on the Weak Dominance

In this section, we discuss the weak dominance relation in the sense of duality
and isomorphism.

Theorem 1. Let C1 and C2 be conjunctors on [0, 1], C∗
1 and C∗

2 be n-dual to
them respectively. If C1 and C2 are commutative, then C1 weakly dominates C2

if and only if C∗
2 weakly dominates C∗

1 .



On the Weak Dominance Relation Between Conjunctors 203

Proof. Suppose that conjunctor C1 weakly dominates C2, i.e., for all x1, x2, y1 ∈
[0, 1] it holds that

C2(x1, C1(x2, y1)) ≤ C1(C2(x1, x2), y1).

Let x1, x2, y1 ∈ [0, 1], then, by using the assumptions of C1, C2, C∗
1 and C∗

2 ,
we obtain

C∗
1 (x1, C

∗
2 (x2, y1)) = n(C1(n(x1), n(C∗

2 (x2, y1))))
= n(C1(n(x1), n(n(C2(n(x2), n(y1))))))
= n(C1(n(x1), C2(n(x2), n(y1))))
= n(C1(C2(n(x2), n(y1)), n(x1)))
≤ n(C2(n(y1), C1(n(x2), n(x1))))
= n(C2(n(y1), n(C∗

1 (x2, x1))))
= C∗

2 (y1, C
∗
1 (x2, x1))

= C∗
2 (C

∗
1 (x1, x2), y1).

Thus, C∗
2 weakly dominates C∗

1 . The converse implication is obvious since
(C∗

1 )
∗ = C1 and (C∗

2 )
∗ = C2.

Theorem 2. Let C1 and C2 be conjunctors on [0, 1]. ϕ is an increasing bijection
and (C1)ϕ, (C2)ϕ are their ϕ−isomorphism. Then C1 weakly dominates C2 if and
only if (C1)ϕ weakly dominates (C2)ϕ.

Proof. Suppose that conjunctor C1 weakly dominates C2, i.e., for all x1, x2, y1 ∈
[0, 1] it holds that

C2(x1, C1(x2, y1)) ≤ C1(C2(x1, x2), y1)

Let x1, x2, y1 ∈ [0, 1], ϕ be increasing. We obtain

(C2)ϕ(x1, (C1)ϕ(x2, y1)) = ϕ−1(C2(ϕ(x1), ϕ((C1)ϕ(x2, y1))))
= ϕ−1(C2(ϕ(x1), ϕ(ϕ−1(C1(ϕ(x2), ϕ(y1))))))
= ϕ−1(C2(ϕ(x1), C1(ϕ(x2), ϕ(y1))))
≤ ϕ−1(C1(C2(ϕ(x1), ϕ(x2)), ϕ(y1)))
= ϕ−1(C1(ϕ(ϕ−1(C2(ϕ(x1), ϕ(x2))))), ϕ(y1))
= ϕ−1(C1(ϕ((C2)ϕ(x1, x2)), ϕ(y1)))
= (C1)ϕ((C2)ϕ(x1, x2), y1).

Thus, (C1)ϕ weakly dominates (C2)ϕ.

4 Weak Dominance Between Conjunctor and T-Norm

In this section, we discuss the weak dominance between a conjunctor and some
t-norms.
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Proposition 1. Let C be a commutative conjunctor. If C weakly dominates TL,
then it is a quasi-copula.

Proof. Suppose that a conjunctor C weakly dominates TL, i.e. for all x1, x2, y1 ∈
[0, 1] it holds that

TL(x1, C(x2, y1)) ≤ C(TL(x1, x2), y1). (3)

Then we need to prove that C satisfies the 1-Lipschitz property, i.e.,

C(a, b) − C(a − ε, b − δ) ≤ ε + δ

whenever a, b ∈ [0, 1], 0 ≤ ε ≤ a, 0 ≤ δ ≤ b. Next, we set x1 = 1 − ε, x2 = a,
y1 = b in (3), we have

C(a − ε, b) = C(TL(1 − ε, a), b)
≥ TL(1 − ε, C(a, b))
= max(C(a, b) − ε, 0)
= C(a, b) − ε.

Analogously, by putting x1 = 1 − δ, x2 = b, y1 = a in (3) and according to
the commutativity of C, we obtain

C(a, b − δ) ≥ C(a, b) − δ.

Therefore,

C(a − ε, b − δ) ≥ C(a − ε, b) − δ ≥ C(a, b) − ε − δ.

As a consequence, C satisfies 1-Lipschitz property and C is a quasi-copula.

Example 1. Let conjunctor C = TM . It is obvious that C weakly dominates TL

and C satisfies 1-Lipschitz property.

The 1-Lipschitz property is a necessary condition for a conjunctor to weak
dominate TL. It is note that the same condition applies for a conjunctor to
weakly dominate TP .

Proposition 2. Let C be a commutative conjunctor. If C weakly dominates TP ,
then it is a quasi-copula.

Proof. Suppose that a conjunctor C weakly dominates TP , i.e. for all x1, x2, y1 ∈
[0, 1] it holds that

x1C(x2, y1)) ≤ C(x1x2, y1). (4)

Then we have to prove that C satisfies the 1-Lipschitz property, according to
the increasingness of C, we need to show that

C(a, b) − C(a − ε, b − δ) ≤ ε + δ

whenever a, b ∈ [0, 1], 0 ≤ ε ≤ a, 0 ≤ δ ≤ b. We divide the proof into two cases:
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1. If a = 0 (resp. b = 0), it holds that ε = 0 (resp. δ = 0), and the inequality is
trivially fulfilled.

2. If a > 0, b > 0, we set x1 = 1 − ε
a , x2 = a, y1 = b in (4),

C(a − ε, b) ≥ (1 − ε

a
)C(a, b).

Since C ≤ TM , for arbitrary 0 ≤ a ≤ 1, 0 ≤ b ≤ 1 and 0 ≤ ε ≤ a, it holds
that

C(a, b) − C(a − ε, b) ≤ C(a, b)(1 − (1 − ε

a
))

=
ε

a
C(a, b) ≤ ε.

Analogously, by putting x1 = 1 − δ
b , x2 = b, y1 = a in (4) and according to

the commutativity of C, we obtain

C(b − δ, a) ≥ (1 − δ

b
)C(a, b).

Since C ≤ TM , we conclude that

C(a, b) − C(a, b − δ) ≤ C(a, b)(1 − (1 − δ

b
))

=
δ

b
C(a, b) ≤ δ.

As a consequence,

C(a, b) − C(a − ε, b − δ) = C(a, b) − C(a, b − δ) + C(a, b − δ) − C(a − ε, b − δ)

≤ ε + δ

Hence, C satisfies 1-Lipschitz property and C is a quasi-copula.

5 Weak Dominance Between Ordinal Sum Conjunctors

In this section, we discuss the weak dominance relation between two ordinal sum
conjunctors.

Proposition 3. Consider two ordinal sum conjunctors C1 = (〈ai, bi, C1,i〉)i∈I

and C2 = (〈ai, bi, C2,i〉)i∈I . Then C1 weakly dominates C2 if and only if C1,i

weakly dominates C2,i, for all i ∈ I.

Proof. Suppose that conjunctor C1 weakly dominates C2, i.e., for all x1, x2, y1 ∈
[0, 1] it holds that

C2(x1, C1(x2, y1)) ≤ C1(C2(x1, x2), y1). (5)

Choose arbitrary x1, x2, y1 ∈ [0, 1] and some i ∈ I. Since ϕi : [ai, bi] → [0, 1],
x → x−ai

bi−ai
is an increasing bijection, there exist unique x′

1, x
′
2, y

′
1 ∈ [ai, bi] such



206 L. Zhang et al.

that ϕi(x′
1) = x1, ϕi(x′

2) = x2 and ϕi(y′
1) = y1. According to the ordinal sum

structure of C1 and C2, for x′
1, x

′
2, y

′
1 ∈ [ai, bi], Eq. (5) can be equivalently

expressed as

ϕ−1
i ◦ C2,i(ϕi(x′

1), C1,i(ϕi(x′
2), ϕi(y′

1))) ≤ ϕ−1
i ◦ C1,i(C2,i(ϕi(x′

1), ϕi(x′
2)), ϕi(y′

1)).

The above inequality is equivalent to

ϕ−1
i ◦ C2,i(x1, C1,i(x2, y1)) ≤ ϕ−1

i ◦ C1,i(C2,i(x1, x2), y1).

Applying ϕi to both sides of the above inequality yields C2,i << C1,i.
Conversely, suppose that for all i ∈ I it holds that C2,i << C1,i. Obviously,

Eq. (5) is satisfied for all x1, x2, y1 ∈ [ai, bi] due to the isomorphism property.
Next, for any x1, x2, y1 ∈ [0, 1], we can distinguish the following cases.

1. x2 = min(x1, x2, y1) and y1, x2 ∈ [ai, bi] for some i ∈ I. Let x∗
1 = min(x1, bi) ∈

[ai, bi]. Then

C2(x1, C1(x2, y1)) = C2(x∗
1, C1(x2, y1))

≤ C1(C2(x∗
1, x2), y1)

≤ C1(C2(x1, x2), y1).

2. x2 = min(x1, x2, y1) and x2 ∈ [ai, bi] for some i ∈ I and y1 /∈ [ai, bi] for any
i ∈ I. Then y1 > bi,

C1(x2, y1) = min(x2, y1) = x2,

and

C2(x1, C1(x2, y1)) = C2(x1, x2)
= min(C2(x1, x2), y1)
= C1(C2(x1, x2), y1).

3. x2 = min(x1, x2, y1) and x2 /∈ [ai, bi] for any i ∈ I. Then

C2(x1, x2) = min(x1, x2)
= x2C1(x2, y1)
= min(x2, y1)
= x2,

and

C2(x1, C1(x2, y1)) = C2(x1,min(x2, y1))
= C2(x1, x2)
= x2

= C1(x2, y1)
= C1(min(x1, x2), y1)
= C1(C2(x1, x2), y1).
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4. x1 = min(x1, x2, y1) and x1, x2 ∈ [ai, bi] for some i ∈ I. Let y∗
1 = min(x1, bi) ∈

[ai, bi]. Then

C2(x1, C1(x2, y1)) = C2(x1, C1(x2, y
∗
1))

≤ C1(C2(x1, x2), y∗
1)

≤ C1(C2(x1, x2), y1).

5. x1 = min(x1, x2, y1) and x1 ∈ [ai, bi] for some i ∈ I and x2 /∈ [ai, bi] for any
i ∈ I. Then C2(x1, x2) = min(x1, x2) = x1.
If y1 ∈ [ai, bi], then

C2(x1, C1(x2, y1)) = C2(x1, C1(bi, y1))
≤ C1(C2(x1, bi), y1))
= C1(C2(x1, x2), y1).

If y1 > bi, then

C2(x1, C1(x2, y1)) ≤ x1

= C1(x1, y1)
= C1(C2(x1, x2), y1).

6. x1 = min(x1, x2, y1) and x1 /∈ [ai, bi] for any i ∈ I. Then

C2(x1, C1(x2, y1)) = min(x1, C1(x2, y1))
≤ x1

= C1(x1, y1)
= C1(min(x1, x2), y1)
= C1(C2(x1, x2), y1).

7. y1 = min(x1, x2, y1). The proof is similar to that of cases 1, 2 and 3.

This completes the proof that C1 weakly dominates C2.

Example 2. Consider two ordinal sum conjunctors C1 =
(〈
0, 1

2 , T3

〉
,
〈
1
2 , 1, T2

〉)
and C2 =

(〈
0, 1

2 , T2

〉
,
〈
1
2 , 1, T1

〉)
where Tα is defined by

Tα(x, y) =
[
max(x−α + y−α − 1, 0)

]−1/α
, α = 1, 2, 3.

By the computation, we can demonstrate that C1 >> C2. Moreover, according
to Theorem 4.2.10 in [19] and Remark 2.(i), T3 >> T2, T2 >> T1.

Proposition 4. If a conjunctor C1 weakly dominates a conjunctor C2, then
C1 = TM whenever C2 = TM .

Proof. Suppose that conjunctor C1 weakly dominates C2, i.e., for all x1, x2, y1 ∈
[0, 1] it holds that

C2(x1, C1(x2, y1)) ≤ C1(C2(x1, x2), y1).
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By putting x1 = 1, we have

TM (x1, C1(1, y1)) ≤ C1(TM (x1, 1), y1),

i.e., TM (x1, y1) ≤ C1(x1, y1).
Since for any conjunctor C ≤ TM , we obtain C1(x1, y1) ≤ TM (x1, y1). So

C1 = TM .

Corollary 1. Let C1 and C2 be two conjunctors. If C1 weakly dominates C2,
then Im(C2) ⊆ Im(C1), where Im(Ci) is the set of idempotent elements of Ci, i =
1, 2.

Corollary 2. Let C1 = (〈ai, bi, C1,i〉)i∈I and C2 = (〈aj , bj , C2,j〉)j∈J be two
ordinal sum conjunctors with ordinally irreducible summand operations only. If
C1 weakly dominates C2 then for any i ∈ I, there exists j ∈ J , such that

[a1,i, b1,i] ⊆ [a2,j , b2,j ]. (6)

Hence, for each j ∈ J let us consider the following subset of I:

Ij = {i ∈ I|[a1,i, b1,i] ⊆ [a2,j , b2,j ]}. (7)

Based on Proposition 4, we have the following result about the weak dom-
inance relation between two ordinal sum conjunctors with different summand
carriers.

Proposition 5. Let C1 = (〈a1i, b1i, C1,i〉)i∈I and C2 = (〈a2j , b2j , C2,j〉)j∈J be
two ordinal sum conjunctors with ordinally irreducible summand operations only.
Then C1 weakly dominates C2 if and only if

(i) ∪j∈JIj = I,
(ii) Cj

1 >> C2,j for all j ∈ J with

Cj
1 = (〈ϕj(a1,i), ϕj(b1,i), C1,i〉)i∈Ij (8)

and ϕj : [a2,j , b2,j ] → [0, 1], ϕj(x) =
x−a2,j

b2,j−a2,j
.

Proof. Under condition (i) we can prove that C1 can be formulated as an ordinal
sum based on the summand carriers of C2 in the following way

C1 = (〈a2,j , b2,j , C
j
1〉)j∈J (9)

where Cj
1 is defined by Eq. (8). For any x, y ∈ [0, 1]2, we divide the proof into

two cases:

1. If x or y /∈ [a1i, b1i] for arbitrary i /∈ I, then due to the definition of ordinal
sum conjunctor, we have

C1(x, y) = TM (x, y).

According to Eq. (9), we have

C1(x, y) = TM (x, y).
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2. If x, y ∈ [a1i, b1i], for some i ∈ I, then by condition (i), there exists j ∈ J ,
such that i ∈ Ij , according to the definition of ordinal sum conjunctor, we
have

C1(x, y) = a1i + (b1i − a1i)C1,i(
x − a1i

b1i − a1i
,

y − a1i

b1i − a1i
).

According to Eq. (9), we have

C1(x, y) = a2j + (b2j − a2j)C
j
1(

x − a2j

b2j − a2j
,

y − a2j

b2j − a2j
)

and Cj
1(

x−a2j
b2j−a2j

,
y−a2j

b2j−a2j
)

=
a1i − a2j

b2j − a2j
+

(
b1i − a2j

b2j − a2j
− a1i − a2j

b2j − a2j

)
C1,i

⎛
⎜⎜⎝

x−a2j
b2j−a2j

− a1i−a2j
b2j−a2j

b1i−a2j
b2j−a2j

− a1i−a2j
b2j−a2j

,

y−a2j
b2j−a2j

− a1i−a2j
b2j−a2j

b1i−a2j
b2j−a2j

− a1i−a2j
b2j−a2j

⎞
⎟⎟⎠

=
a1i − a2j

b2j − a2j
+

(
b1i − a2j

b2j − a2j
− a1i − a2j

b2j − a2j

)
C1,i(

x − a1i

b1i − a1i
,

y − a1i

b1i − a1i
).

Hence,

C1(x, y) = a1i + (b1i − a1i)C1,i(
x − a1i

b1i − a1i
,

y − a1i

b1i − a1i
).

Based on Corollary 2 and Proposition 4, we can immediately conclude the propo-
sition.

Example 3. Consider two conjunctors C1 =
(〈
0, 1

4 , T3

〉
,
〈
1
4 , 1

2 , T2

〉
,
〈
1
2 , 1, T4

〉)
and C2 =

(〈
0, 1

2 , T2

〉
,
〈
1
2 , 1, T1

〉)
where Tα is defined by

Tα(x, y) =
[
max(x−α + y−α − 1, 0)

]−1/α
, α = 1, 2, 3, 4.

By the computation, we can demonstrate that C1 >> C2. By the notation in Eq.
(7) and Proposition 5, we have I1 = {1, 2}, I2 = {3} and I = {1, 2, 3}. Further-
more, C1

1 = (〈0, 1
2 , T3〉, 〈 12 , 1, T2〉), C2

1 = (〈 12 , 1, T4〉) and C1
1 >> T2, C

2
1 >> T1

according to Theorem 4.2.10 in [19] and Remark 2.(i).

6 Conclusion

In this paper, we deal with the weak dominance relation between the classes
of conjunctors: the class of triangular norms and the class of quasi-copulas.
Furthermore, we also provide the sufficient and necessary conditions of weak
dominance relation between two ordinal sum conjunctors.
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New Modification to Toulmin Model
as an Analytical Framework for Argumentative

Essays

Donghong Liu(B)

Southeast University, Nanjing 211189, China
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Abstract. The Toulmin model has provided a clear and flexible set of categories
for conducting research on both oral and written argumentation. All kinds of
modifications of themodel contributemuch to the application of Toulminmodel to
various genres. However, there is still a lack of an appropriate Toulmin framework
for argumentative essays because of the deficiencies in those modified models. In
this paper a synthesis of modifications to Toulminmodel is proposed for analyzing
argumentative essays not only to update the Toulminmodel, but also to broaden the
scope of its application. It reveals justification depth by displaying the hierarchical
relationship in arguments, merges Backing into Warrant considering the nature of
actual writing. The newmodel takes in themerits of the previousmodifiedmodels,
clarifies the vagueness ofWarrant and avoid the deficiencies of the previousmodels
so that it can explain argumentative essays more efficiently.

Keywords: Toulmin · Argumentation · Syllogism ·Warrant · Data

1 Introduction

Data science and artificial intelligence (AI) based on logic have made great progress.
In the meantime problems such as weak accountability and inadequate inference, arise
in the new generation of AI that is centered on big data and machine learning. To
solve the problems, interdisciplinary research is necessary. For example, AI can solve
the problems in inference by reference to logic theories. “The combination of formal
argumentation with existing big data andmachine learning technologies can be expected
to break through existing technical bottle necks to some extent” [1]. We contend that
the combination is not restricted to formal argumentation. Informal argumentation (e.g.
Toulmin theory) combined with AI and data science will also play a critical role in the
exploration of argumentative essays.

Toulmin [2] put forward his initial three-component model of argumentation in
1958 and revised it by adding another three triad. The famous six-component model,
Toulmin model, is quite influential and applied to many research areas such as court
debate, rhetoric, philosophy, medicine, science, first and second language argumentation
instruction. Various modifications of Toulmin model emerge in the process of the wide
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application, such as Crammond’s [3], Qin and Karabacak [4], Voss [5] and Jackson
and Schneider [6]. However, deficiencies of these modified versions and discrepancies
of views on certain Toulmin components, for example Warrant, are more and more
obvious and unavoidable. Solutions have to be found.

This paper attempts discussing several influential modified models, analyzing their
strong points as well as theweaknesses, and putting forward a newmodel as an analytical
framework especially for argumentative essays.

2 Toulmin Model of Argumentation

Toulmin [2] invented a variation of categorical syllogism to deal with the deficiencies
of syllogistic reasoning. He contended that the syllogism failed to represent the very
nature of argument because of its arbitrary restriction to a three-part structure. In fact,
most arguments have a more complex structure than the syllogism [2].

Toulmin used formal logical demonstration as his point of departure. His initial
model has only three basic components: data, claim and warrant. An argument begins
with an accepted data, moves through a warrant and finally reaches a claim. According
to Toulmin [2], Data (D) provides evidence for Claim (C). Warrant (W) certifies the
claim as true and bridges the gap between Data and Claim. Claim is a conclusion and the
final proposition in an argument. The two elements answer the following corresponding
questions:

Data (D)—“What have you got to go on?”.

Warrant (W)—“How do you get there?”.

The argumentation sequence can be “Data, therefore Claim” or “Claim because
Data”. The initial model is in fact a variation of categorical syllogism. Toulmin then
compensated the inadequacies of the three-component model with a second triad of
components: Backing, Rebuttal, and Qualifier (see Fig. 1). Backing (B) supports the
warrant and enables it convincing enough. Rebuttal (R) acknowledges certain condi-
tions under which the claim does not hold water. Qualifier (Q) expresses the degree of
certainty in the claim. Rebuttal and Qualifier in Toulmin model of argumentation antici-
pate the challenging questions raised by people of different opinions. Backing anticipates
a challenge to the legitimacy of the warrant.

For example, “LiMing is a Chinese and since a Chinese can be taken almost certainly
not to be a Christian, Li Ming is not a Christian” [7]. A three-component argument goes
in this way: “Li Ming is a Chinese” is the datum; “A Chinese can be taken almost
certainly not to be a Christian” is the warrant, and “Li Ming is not a Christian” is the
claim inferred via the warrant that licenses the inference. A six-component argument
goes like this: “Li Ming is a Chinese; and a Chinese can be taken almost certainly not
to be a Christian because Chinese children are educated to be atheists when they go
to school; therefore, Li Ming is almost certainly not a Christian unless he has chosen
by himself to believe in God” [7]. The six-component model illustrates the example in
Fig. 2.

The Toulmin model is a great advance in argumentation. It is developed from tra-
ditional logic but differs from it. First, the claim in the Toulmin model is open-ended
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Data Qualifier

Since 
Warrant

Claim 

Unless 
Reservation

Because 
Backing

Fig. 1. Toulmin model

Data Therefore  Qualifier

Since W

Li Ming is a Chinese Li Ming is not a Christian

A Chinese can be taken almost 
certainly not to be a Christian

Claim 

almost certainly

Unless R
Unless Li Ming has chosen by himself
to believe in God

Because B

Chinese children are educated to be 
atheists when they go to school 

Fig. 2. Example of Li Ming in Toulmin model

and can be challenged while traditional logic produces uncontroversial claims by means
of syllogism or enthymeme. Second, the Toulmin model conditions a claim by quali-
fiers and rebuttal instead of universal propositions that are preferred in traditional logic.
Third, while traditional logic is weak in material proof, the Toulmin model puts weight
on elements such as facts, evidence and statistics as the data.

The Toulmin model is considered as the most influential work of Toulmin, particu-
larly in the field of rhetoric, logic and computer science. Just like Rhetorical Structure
Theory (RST) that is fairly accepted and studied linguists, rhetoricians and computer
scientists, the Toulmin model makes the process of argumentation more reasonable and
transparent than the traditional syllogism.
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3 Various Modifications of the Toulmin Model

The original six-component ToulminModel seems inadequate in explaining and analyz-
ing modern discourses. One of the inadequacies is the difficulty in separating Data from
Warrant and distinguishing Warrant from Backing on some occasions. Another one is
the discrepancy of the components. Qualifiers can be such words or phrases: probably,
possible, impossible, certainly, presumably, as far as the evidence goes, and necessarily.
The other five components can be sentences, sentence clusters or paragraphs. To put it in
another way, Qualifier is at lexical level while all the other components are at discourse
level. The Toulmin model has been modified by many researchers so as to facilitate the
application for many purposes.

3.1 Modification for the Purpose of Teaching Argumentation

A vast majority of studies on argumentative essays are centered on teaching methods,
feedback types,writers’ agency or identity,writers’ individual factors influencingwriting
quality such as anxiety, motivation, aptitude, attitude, personality, style. Comparatively
fewer studies are related to the Toulmin model.

The Toulmin model is treated as a heuristic tool to teach argumentative writing.
The model can even be used as a framework to examine the structural features, goal
specification and depth of elaboration in students’ argumentative essays. Some problems
with Toulmin model come from the teachers’ unrealistic expectations. They describe the
model as too limiting or flat confusing. Ramage [8] recommends using it in combination
with other approaches such as the stasis approach since stases are effective at expanding
claims and the Toulmin model is efficient in sharpening and tightening claims.

Some of the Toulmin components have been modified by the textbooks for com-
position or resources for writing. In order to make these components more transparent
to students, some components have been given different names. For example, “Purdue
Owl” (Purdue University Online Writing Lab) uses different names for Claim (conclu-
sion, opinion), Data (ground, evidence, reasons), Warrant (link, assumption) and Reser-
vation (Rebuttal). The Warrant and Backing are hard to understand by the students. In
order to facilitate argumentation instruction, Qin and Karabacak [4] even change the
components by eliminating Warrant, Backing and Qualifier, but splitting Rebuttal into
Counterargument claim, Counterargument data, Rebuttal claim and Rebuttal data. Their
model consists of six components as is shown in Fig. 3. This model is adopted to teach
argumentation or analyze thewrittenwork of argumentation, for exampleAbdollahzadeh
et al. [9] employ this model to analyze Iran postgraduates’ argumentation, exploring the
relationship between the frequencies of the six components and the writing quality.
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Claim 

Argument

Counterargument 
data

Data Counterargument 
claim

Rebuttal 
data

Rebuttal 
claim

Fig. 3. Modified Toulmin model for teaching argumentative writing

3.2 Modification for the Purpose of Finer Analysis and In-Depth Study

New elements have been added and redefined. For one thing, to reveal the complicated
nature of themodern argumentative essays written by all kinds of writers, and for another
tomake it more convenient to conduct comprehensive analyses. For instance, Crammond
[3] expands the qualifier to include not only modality operators but also ‘constraints’,
divides the component of backing into ‘Warrant backing’ and ‘Data backing’ and also
recognizes possible ‘Alternative solution’ as well as “Countered rebuttal” and “Reserva-
tion”. He classifies the components as necessary and optional. According to Crammond
[3], “a Claim and the Data offered in support of this Claim are considered to be ele-
ments that are required or necessary for an argument structure. Warrants, along with
the remaining substructures … are classified as being optional or elaborative”. Figure 4
illustrates his idea. Even more and more recent empirical studies are being conducted
within Crammond’s [3] framework of the modified Toulmin model. The modified model
of Crammond [3] is used in many studies such as Liu and Wan [10], Cheng and Chen
[11].

Qualification

Data Backing

Claim 

Warrant Backing

Subclaim

Argument

Justification

Warrant

Opposition

Alternative 
Solution

Data 

ReservationCountered rebuttal

Rebuttal

Fig. 4. Crammond’s modification of Toulmin model
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3.3 Modification for Applying to New Genres

Some modifications of the Toulmin Model are conducted so as to fit for the genres of
non-typical argumentation. Whithaus [12] uses his revised Toulmin Model to analyze
multimodal science papers. Voss [5] target at oral discourses such as experts interviews,
and expand the Toulmin Model as can be seen in Fig. 5. They contend that a discourse
is made up of many Toulmin arguments. A Claim might be the Datum of another argu-
ment. Backing andQualifier can be an argument that includes a Claim,Data andWarrant.
Rebuttal can not only have Backing for it but also consist of a Claim, Data and War-
rant. However, this kind of modification of Toulmin Model is limited to certain type of
discourse. Thus, it has narrow scope of application.

D C --------

(W)

(Q)

C --------(D)C -------------D

W R

(B)
B

D C ------

W

(W) (R)

B D C --------

W

Further argument development possible

C ---(D) = claim used as datum

(B)—D——C = backing argument

(W)            = implied warrant

R—B = backing for a rebuttal

(R)—D—C = rebuttal argument

(Q)—D—C= qualifier argument

Fig. 5. Voss’s modification of Toulmin model [4]

The Toulmin model is also modified and applied to the medical world. Jackson and
Schneider [6] and Demicheli et al. [13] analyze Cochrane Reviews on the efficacy of
the combined measles-mumps-rubella vaccine (MMR) administered to young children
around the world. They claim that there is no evidence linking MMR to autism. They
proposemore than oneWarrant (different inference rules). The Backing for the Cochrane
rule contains assurances to guarantee the conclusion-drawing rule used by the reviewer
is dependable. They clarify the role of Backing in this way: “If two different possible
warrants produce different conclusions from the same data, the reasons for trusting one
rather than the other would need exploration, and the content of this exploration is the
backing for each of the alternatives’ warrants” [6].

Jackson and Schneider [6] stress the field-specificity of Warrant. They argue that the
purpose of a Warrant device is to offer a convincing conclusion to people who know the
workings of the device well and have confidence in it. Cochrane Reviews have a well-
defined context with a primary readership composed of medical experts. Warranting
devices demand consideration of context, including not only the composition of the
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community where they emerge but also the state of working within that community.
Therefore, in their model material, procedural and institutional assurances are included.
Figure 6 presents a proposed analysis of the argument.

Data Claim

Warrant rule

Dependable because
backed by

Material
assurances

Procedural
assurances

Institutional
assurances

Fig. 6. The revised Toulmin model by Jackson and Schneider [5]

4 The Problem of Warrant

According to Toulmin [2], Warrant can be different kinds of propositions such as rules,
principles, and licenses for inference. It is a bridge linking Data to Claim. The role
of Warrant is to make sure that the procedure from Data to Claim is sound and valid.
However, Toulmin’s description and expression of Warrant is still general and vague.
That causes many scholars to understand and presume in their own ways.

Some people consider Warrant as the major premise in syllogism, such as Warren
[14], Deng [15], Jin and Zhao [16]. From this perspective, the example of Li Ming can
be formulated in the following syllogism pattern:

Major premise: A Chinese can be taken almost certainly not to be a Christian.
Minor premise: Li Ming is a Chinese.
Conclusion: Li Ming is not a Christian.

However, Freeman [17] takes a different view. He contends that Warrant is deter-
mined by human intuition. He mentions four kinds of intuition: a priori intuition, empir-
ical intuition, institutional intuition and evaluative intuition. The four kinds of intuition
lead to four kinds of Warrants: a priori Warrant, empirical Warrant, institutional War-
rant and evaluative Warrant. Take the following statements as examples. (A) is a priori



218 D. Liu

Warrant since it involves common sense knowledge. (B) is empirical Warrant since it
depends on previous experience. (C) is institutionalWarrant on account of the legal rules
and (D) is evaluative Warrant because of its moral nature.

(A) A male is a boy but cannot be an old man at the same time.
(B) A horse that runs fastest will win the game.
(C) Drunken driving is illegal.
(D) Lying is a bad behavior.

Freeman’s discussion has logical significance and has great influence. However, his
examples for illustration are just at sentence level. He does not mention what Warrant
is like in an actual argumentative essay. That can also be attributed to Toulmin’s [2]
examples that display Warrants in the form of rules. People have misunderstanding that
Warrants can only be rules and expressed in short statements.

Toulmin objected to using formal logic to analyze argumentative discourses.
Although he used simple expressions or formulas, he just treated that as a starting
point and his purpose was to take the readers out of formal logical. The key question of
Toulmin Warrant is how you reach your conclusion. It is almost impossible to answer
this question by only one statement in actual writing.

Hitchcock [18] argues that Warrant is not the premise itself but an inference-
license that allows an inferring movement from the premise to the conclusion. To put it
another way, Warrant is the process of inference. Warrant corresponds semantically to a
generalized formula:

“If P1, P2, P3 … Pn, then C”

Hitchcock [18] sticks toToulmin’s [1] consideration ofwarrant, i.e. inference license.
Thus, his view is closest to Toulmin’s initial description of Warrant, which answers the
question—Howdoyou get there?This view is supported by Jin [19]who applies Toulmin
model to describe and display the inference process of Mo Zi, a great ancient Chinese
thinker and philosopher. Liu [20] investigates the modern Chinese argumentation and
supports the view as well.

5 Synthesized Model as a New Analytical Framework

In this section we put forward a new model for argumentative essays by synthesizing
the modified models of Voss [5], Jackson and Schneider [6], Crammond [3] and Qin and
Karabacak [4].We take Crammond’s [3] and Voss’s [5] view of complicated hierarchical
structure inside Toulmin model. The new model relies more heavily on Crammond [3],
Qin and Karabacak [4] but avoid their inadequacies so as to fit for argumentative essays.

Despite the contribution of Crammond [3], Qin and Karabacak [4], their analytical
frameworks have some inadequacies or infeasibilities. The first inadequacy is the exclu-
sion ofWarrant in Qin andKarabacak [4] which alters the Toulminmodel. The important
element Warrant makes up the defining features of an argument structure, together with
Claim and Data. And according to Connor [21] and Ferris [22], Warrant plays a critical
role in predicting the writing quality of an essay. Second, Qin and Karabacak [4] confuse
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Data with Warrant. They define Data as “facts, statistics, anecdotes, research studies,
expert opinions, definitions, analogies, and logical explanations” (pp. 449). However,
according to Toulmin [2], Warrant is a bridge linking Data and Claim. Analogies and
logical explanations can help the readers understand the inference process. Thus, they
are more like Warrant rather than Data.

An infeasibility is thatCrammond [3] dividesToulmin’s [2]Rebuttal into “Alternative
solution” and “Reservation.”We speculate this would be too subtle to be applied to some
of the argumentative essays. Qin and Karabacak [4] did not adopt this distinction in their
framework probably out of the same reason. Another infeasibility involves the qualifier.
In the original Toulmin model, Qualifier can be a word or a phrase. It differs greatly
from the other elements that can be a sentence or sentence clusters at sentence level or
at discourse level. It performs the function of moderating the tone in the conclusion.
Considering the discrepancy with the other elements, Qualifier would be excluded in
our present analytical framework.

As for Warrant in Toulmin model, we adopt Hitchcock’s [18] view of Warrant and
treat it as a process of inference. Only in this way can the Toulmin model, especially
the important component—Warrant be applied to actual argumentative essays that are
influenced greatly by context and culture. It is impossible to find a universal principle to
explain or describe all kinds of warrant. This kind of argumentation in written discourse
does not belong to formal logic but the argumentation in broad sense proposed by Ju
and He [23]. That is to say, this kind of argumentation involves the knowledge in certain
contexts and should conform to the pragmatic features in those contexts. In this sense,
Warrant in a piece of discourse may be several sentences and even paragraphs, which are
called “segmented discourse” by Asher [24]. A segmented discourse can be identified by
means of logic relations, semantic structures, subject matters and rhetorical structures.
It is the same case with the identification of Warrant in Toulmin model.

Moreover, we support Jackson and Schneider’s [6] view that Warrant can be of
different kinds and can be employed at the same time to connect Data with Claim.
Moreover, we roughly agree with Freeman [14] in terms of his classification of Warrant.
There are four kinds of Warrants: (A) a priori Warrant, (B) empirical Warrant, (C)
institutional Warrant and (D) evaluative Warrant. However, we disagree with Freeman
in the identification of Warrant. We hold the view that Warrant is a segmented discourse
consisting of a sentence, or sentence clusters, or even paragraphs. The role of Warrant in
an argumentative essay is to explain, assume, or comment and so on for the purpose of
guiding the readers to get the writer’s viewpoint correctly and accurately from the given
data.

With all of the above mentioned in mind, we propose a newmodel for argumentative
essays, which displays hierarchical relationship in logic and complexity in thought. The
main argument structure consists of the claim, justification and opposition. Justification
might include more than one argument that is basically made up of Subclaim, Data, and
Warrant. The component warrant is kept in our analytical framework so that the basic
Toulmin model is intact. The component Backing is merged into Warrant, considering
that Warrant has more significance than Backing [22] and that it is rather too difficult
to distinguish the two elements [6]. Merging the two components is also conducive to
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Fig. 7. Synthesized model for argumentative essays

coding in quantitative research. Warrant can be of various kinds. There can be more than
one kind of Warrant to connect Data and Claim.

The claim may be sufficiently justified; thus, justification has certain depth. As an
argument structure is usually the starting point for a further argument, the arguments
in an argumentative essay are hierarchically arranged in the form of argument chains
[3]. To put it in another way, an argument chain is composed of embedded argument
structures and therefore the argument depth means the longest argument chain identified
in an essay. In Fig. 7 Subclaim 1, Subclaim 2 and Subclaim 3 may be Data 1, Data 2
and Data 3 if there is no further argument structure. All of the three Data support Claim.
However, if there are further argument structures, the three Data just serve the function
of subclaim and are in turn supported by their own data and warrants. There can be still
further division. For example, Data 1.1 can be a subclaim of a still further argument
structure and it can be labeled as Subclaim 1.1.1 that may be further supported by Data
1.1.1 and Warrant 1.1.1.

Warrant has four kinds. The writer may choose (A) a priori warrant to link Data 1.2
to Subclaim 1, use (B) empirical warrant to connect Data 2.1 to Subclaim 2. He can
even use more than one warrant, for example, use both (C) institutional warrant and (D)
evaluative warrant to bridge the gap between Data 3.1 and Subclaim 3.

Counterargument-claims and counterargument-data usually go with rebuttals in
the sound and effective argumentation. The three oppositional elements are generally
viewed as obvious evidence of reader consideration and therefore the use of these com-
ponents can in a sense strengthen the persuasiveness of an argumentative essay [3].
Thus, our model includes opposition, which is composed of counterargument-claims
and counterargument-data and rebuttal.
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Our new analytical framework is applied to an argumentative essay written by a
volunteer student in our project to test its feasibility and effect. The labeled essay is in
Appendix.

Main Argument

Claim Justification Opposition

Subclaim 1 Subclaim 2

Warrant 
1.1B

Data 
2.2

Warrant 
2.1B

RebuttalCounter-
claim

Data 
1.1

Data 
2.3

Subclaim 
2.1

Data 
2.1.1

Counter-
data 1

Counter-
data 2

Counter-
data 3

Fig. 8. Toulmin structure of the example

This essay has Claim, Justification and Opposition. Justification consists of two
Subclaims at the same level. Subclaim 1 is supported by Data 1.1, and Warrant 1.1B
(empirical Warrant) links them. Subclaim 2 has two levels consisting of Subclaim 2.1,
Data 2.2 and Data 2.3. Subclaim 2.1 is further supported by Data 2.1.1. Warrant 2.3
B links Data 2.3 to Subclaim 2. Oppositions includes Counterargument-claim, three
Counterargument-data and one Rebuttal. Figure 8 illustrates the structure of the essay.

6 Conclusion

Toulmin model, whether original or modified by other people, has provided a clear and
flexible set of categories for conducting research on both oral and written argumentation.
It can be taken as a method for describing, analyzing and evaluating not only typical
argumentative discourse but also new genres. Like the other structural modifications,
the synthesized model is based on the original Toulmin model. It is supposed not only
to update Toulmin model, but also broaden the scope of its application. The merits of
the previous modified models are taken in and synthesized, for example the view of
complicated hierarchical structure of Crammond [3] and Voss [5], the counterarguments
components of Qin and Karabacak [4], the views of warrant put forward by Freeman
[17], Hitchcock’s [18], Jackson and Schneider [6]. However, this paper also points out
the demerits of the previous modifications. The synthesized model tries to avoid their
deficiencies so as to explain argumentative essays more efficiently.
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One of the limitations of this study is the lack of examination or empirical study to
test this model just because we are still working at presuming and perfecting the model
at present stage. Another limitation is the exclusion of Qualifier. In our future study
we may have a reconsideration of Qualifier and try to do more empirical studies to test
the model. Furthermore, technologies of AI and data science will be applied to the text
analysis and labeling so that the identification work will be more accurate and scientific.

Acknowledgements. This study is supported by the National Social Science Funds (Grant No.
21FYYB016) and the Fundamental Research Funds for the Central Universities (Grant No.
2242022R10038).

Appendix

The Dark Side of the InternetThe Internet has brought sweeping changes since the time
when it was used (Counterargument-claim): Information is more accessible; people
from different countries communicate with each other; e-commerce becomes the new
engine of the economy (Counterargument-data1). Frompolitics to economy, education
to entertainment, and eating to shopping, to some degree, the Internet has penetrated
every area of our life (Counterargument-data 2). There is no doubt that the influence
the Internet has exerted on us can be both advantageous and disastrous. However, the
bright side of the Internet is so frequently stressed that the dark side tend to be neglected.
From my perspective, it’s necessary to disclose its dark side so as to make better use of
it (Claim).

First and foremost, the Internet unites its users but at the same time alienates them
(Subclaim1). On one hand, the Internet facilitates the exchange of different ideas and
the communication on a global scale (Counterargument-data 3). On the other hand,
those who are burying themselves in a virtual world often ignore people around them
(Rebuttal). Nowadays, it is a commonphenomenon that someparticipants in a gathering,
nomatter what kind of gathering it is, always look down at their cellphones. The precious
time that is supposed to be spent in talkingwith loved ones iswasted in surfing the Internet
(Data1.1). Consequently, conflicts between lovers and even between family members
gradually arise, and it’s no longer easy for one to maintain a harmonious relationship.
Obviously, the Internet shortens the physical distance from one user to another, but it
lengthens the psychological distance from one heart to another. (Warrant 1.1B).

Secondly, the Internet, extolled as “information superhighway”, has caused a series of
problems due to its huge and patchy information (Subclaim2). From one side, too much
information canweaken our capability of thinking and solving problems (Subclaim 2.1).
When netizens look through the information online, they are inclined to get a general
idea without meditation (Data 2.1.1). Besides, when more and more people rely on
the Internet to find answers, their ability of solving problems declines (Data2.2). From
another, improper information will mislead teenagers and corrupt their mind (Data2.3).
Although the Internet is a powerful tool of spreading knowledge, it is also the hotbed
of inappropriate information and false ideas. As few teenagers possess the ability of
judging what is good and evil, they are very likely to become the victims of the wrong
information (Warrant 2.3B).
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Abstract. In this paper, a value-based preference graph G of a decision-
making problem is presented by using a method similar to Borda-
counting to quantify the preferences of agents holding different values for
the alternatives in the decision problem, and then a Value-based Pref-
erence Aggregation Argument Framework (V PAAF , an extended V AF
theory) generated fromelimiate G is introduced. In V PAAF , a defeat-
ing relation between arguments is redefined by an aggregate function,
which is used to aggregate individual preferences into group preferences.
The defeating relation helps us almost eliminate the odd-cycles (or even-
cycles) in the V PAAF , allowing obtain an extension containing only a
single set of arguments. The argument framework not only achieves the
goal of exploring some decision-making problems, which include resolv-
ing voting paradox to a certain extent and expanding the application
field of V AF , but also explicitly reveals the value factors implied in the
decision results, which makes it possible to do retrospective reasoning of
the results by virtue of arguments.

Keywords: Value · Preference aggregation · Value-based preference
aggregation argument framework

1 Introduction

Classical decision theory focuses on using the mathematical model of the prob-
lem in which each alternative is evaluated numerically according to some rele-
vant criteria, looking for principles for comparing different alternatives, and then
making clear what rational decision makers are. However, the principles defined
for comparing alternatives are usually expressed by analytical expressions that
summarize the entire decision-making process, which makes it difficult for ones
who are not familiar with abstract decision-making methods to understand why
one proposed alternative is better than another. One needs a method to help
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us better understand the basis of the evaluation and document the reasons for
and against each of the alternatives. As a result, researchers in the field of artifi-
cial intelligence tend to use preference statement to describe, explain and reason
preferences, and even to make decisions. Propositional logic, preference logic and
temporal logic are often used for preference representation and reasoning. This
is also known as a cognitively-oriented approach. However, in practical decision-
making problems, agents usually need to make choices under incomplete and
uncertain information, which results in the exposure of many disadvantages of
the above approach based on classical monotonous logic. The facts that argumen-
tation helps people identify one or more alternatives, or to explain and justify
the choices adopted are the main reason why abstract argumentation theory, one
of non-monotonic theories, has been a new research hotspot and attracted more
and more attention in the study of decision theory.

Specifically, with the help of the following example, we show the process
of resolving a decision-making problem in Value-based Preference Aggregation
Argument Frameworks V PAAF .

Example 1. ([6]). Trevor and Katie need to travel to Paris for a conference.

Trevor believes that it is better to take a plane than a train, while Katie’s
view is the opposite. It is obvious that Trevor and Katie cannot agree on the
choice of transportation, which requires a further in-depth analysis of the reasons
for their choice preference. It means that the two decision-makers’ ranking of
alternatives will correspond to an argument that is consistent with the value of
the decision maker and supports this ranking. In fact, according to the definition
of V PAAF , for Trevor, there exists an argument A“we should travel to Paris
by plane because it is fastest”; for Katie, there exists an argument B “we should
travel to Paris by train because it is the most comfortable”.

Thus, a decision-making problem is transformed into an argument evalua-
tion problem in Value-based Argumentation Frameworks V AF . Bench-Capon
focused on how to integrate value elements into the AF theory in [6], which
enables us to understand the reasons behind the decision makers’ choices while
does not provide a comparison method of the value strengths attached to the
argument. Therefore, we can not be sure of the defeat relation between the gen-
erated arguments when facing actual problems, and then are unable to eliminate
the possible attack cycles that may appear in the corresponding directed graph.
In Example 1, there is an attack even-cycle between A and B, which will cause
neither plane nor train to be skeptically acceptable, and at the same time, both
are credulously acceptable, which makes decision-makers still unable to make a
choice.

We first propose a value-based preference graph G for decision-making prob-
lems by using a method similar to Broda-counting [16] to quantify the preferences
of agents holding different values for alternatives in the decision-making prob-
lem. For example, Trevor(p1) holds a value of speed(s), so he can be assigned
to alternatives (plane, train) (fs(l), fs(t)) by a quantization function f and
we have fp1

s (l) > fp1
s (t) because the plane is faster than the train; Secondly,
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we provide a Value-based Preference Aggregation Argument Framework cor-
responding to value-based preference graph G, an extended preference graph
in [10]. In V PAAF , the defeat relation is redefined by a value aggregation
function F , which aims to aggregate individual preferences into group prefer-
ences. In this example, if A attacks B and F (Con(A)) > F (Con(B)), where
Con(A) = l, Con(B) = t and F (l) = fp1

s (l) + fp2
c (l), F (t) = fp1

s (t) + fp2
c (t),

then we can say that A defeats B. Finally, we prove that the newly defined
defeat relation helped us to almost eliminate attack cycles of the argumentation
framework. Furthermore, under the four classic semantics in [13] characterized
by this defeat relation, we can obtain an extension containing only a single set of
arguments, and make the extension both skeptically and credulously acceptable,
that is, we can obtain the only decision result. In fact, V PAAF is similar to
Claim-augmented argumentation frameworks CAFs in [19] and [20], which are
minimal structure on arguments, i.e. they have a conclusion.

The rest of the paper is organized as follows: In Sect. 2 we review the back-
ground on argumentation framework and the value-based argumentation frame-
work; Sect. 3 then shows the Value-based Preference Aggregation Argumenta-
tion Framework (V PAAF ) and discusses its related properties; The application
research of V PAAF in theory–the Voting paradox resolution is further explored
in Sect. 4. Finally, We conclude with some discussion and consider future work
in Sect. 5.

2 Background

2.1 Abstract Argumentation Theory

Many researchers have done lots of pioneering work based on argumentation
framework (AF ) [13], involving making and explaining decisions [1], argu-
mentation in legal reasoning [7], the reasoning of inconsistent knowledge [8],
argumentation-based negotiation [11], argumentation in multi-agent systems [14]
and so on. The role of arguments is only determined by their relation with other
arguments, without considering the internal structure of the argument.

Definition 1 ([13]). An argumentative framework is a pair

AF = (AR, attacks)

Where

– AR is a set of arguments;
– attacks is a binary relation on AR, i.e. attacks ⊆ AR × AR.

attacks(A,B) means argument A attacks argument B. An argument set S
attacks argument B if B is attacked by an element in S [13].

Definition 2 ([13]). A set S of arguments is said to be conflict-free if there are
no arguments A and B in S such that A attacks B.
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Definition 3 ([13]). An argument A ∈ AR is acceptable with respect to set of
argument S iff for each argument B ∈ AR: if B attacks A then B is attacked by
S.

Definition 4 ([13]). A conflict-free set of arguments S is admissible iff each
argument in S is acceptable with respect to S.

Definition 5 ([13]). A preferred extension of an Argumentation Framework AF
is a maximal (with respect to set inclusion) admissible set of AF .

Definition 6 ([13]). A conflict-free set of arguments S is called a stable exten-
sion iff S attacks each argument which does not belong to S.

In general, a standard AF always has a preferred extension and its preferred
extensions is usually not unique. [13] In a dispute, if two parties adopt different
positions, then this dispute can’t be solved by AF , such as Example 1.

2.2 Value-Based Argument Framework

When people make decisions in the face of conflicting arguments, the reliability
of arguments is often not the only consideration. Many researchers believe that
one should study imperfect decision-relevant information from the perspective
of different preferences of values advocated by conflicting arguments: arguments
can be defended not only by defeating the attacker, but also by ranking their
value higher than that of the attacker. [5] This is also the main insight in [15]
for resolving the problem of moral and legal differences. As [9] points out: in
politics, many policies are often justified on the basis of the values they promote;
in law, the reasons behind legal decisions can be reflected through the values
of the public; in morality, the individual and collective ethical views play an
important role in reasoning and action [3]. In Example 1, they still disagree on
the choice of transportation, but they can’t deny each other’s opinions that are
both acceptable. The concept of argument in AF is too abstract for us to model
this debate. We may need relate arguments to values, and to allow these values
to be ranked to reflect the preferences of agents. [5] Under this consideration the
Value-based Argumentation Framework is established and introduces an element
that can be used to make rational choices from multiple reasonable choices, that
is value.

Definition 7 ([5]). A Value-based Argumentation Framework (V AF ) is a 5-
tuple:

V AF = (AR, attacks, V, val, valpref)

Where

– AR and attacks are the same as defined in Definition 1;
– V is a non-empty set of values;
– val is a function which maps from elements of AR to elements of V ;



V PAAF and Its Application 229

– valpref is a preference relation (transitive, irreflexive, and asymmetric) on
V × V .

An argument A relates to value v if accepting A promotes or defends v: the
value in question is given by val(A). ∀A ∈ AR, val(A) ∈ V [5].

V AF allows one to distinguish the attack from the defeat relation between
arguments. In Example 1, Trevor and Katie both attacked each other’s argu-
ments, but did not defeat them.

Definition 8 ([5]). An argument A ∈ AR defeats an argument B ∈ AR iff both
attacks(A,B) and not valpref(val(B), val(A))

If both arguments relate to the same value, or if there is no preference between
values, then the attack is successful. An arguments set S defeats argument B if
B is defeated by an element in S. It is Obvious that if V contains a single value,
then the V AF is a standard AF [5].

Since the concept of value is introduced into V AF and a distinction is made
between attack and defeat, the concepts of Conflict-free and Acceptable need to
be redefined.

Definition 9 ([5]). An argument A ∈ AR is acceptable with respect to a set of
argument S(acceptable(A,S)) if (∀B)(B ∈ AR & defeats(B,A)) −→(∃C)(C ∈
AR) & defeats(C,B))).

Definition 10 ([5]). A set S of arguments is conflict-free if (∀A)(∀B)((A ∈ S
& B ∈ S) −→ (¬attacks(A,B) ∨ valpref(V al(B), V al(A)))).

Definition 11 ([13]). A conflict-free set of arguments S is admissible if ∀A(A ∈
S) −→ (acceptable(A,S)).

Definition 12 ([13]). A set of arguments S in an value-based argumentation
framework V AF is a preferred extension if it is a maximal (with respect to set
inclusion) admissible set of AR.

Definition 13 ([13]). A conflict-free set of arguments S is called a stable exten-
sion iff S attacks each argument which does not belong to S.

AF is often described as a directed graph where vertices represent argu-
ments and directed edges from the attacker to the attacked represent attack
relations. [13] In V AF , vertices of different colors are often used to represent
different values, and the cycles are called monochromatic if they contain argu-
ments related to a single value; they are called dichromatic cycles if they con-
tain arguments related to exactly two values, and they are called polychromatic
cycles if they contain two or more values. [5] We also use the same notion in the
following section.

The agent’s acceptance of the argument is reflected by the concepts of cred-
ulous acceptance and skeptical acceptance.
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Definition 14 ([4]). Given an argumentation framework AF , an extension E
based on the semantics S is denoted as ES(AF ): an argument A is skeptically
accepted if ∀E ∈ ES(AF ), A ∈ E; an argument A is credulously accepted if
∃E ∈ ES(AF ), A ∈ E.

If the preferred extension of a dispute is unique, then the ideal situation
is that every agent accepts the same arguments. In this case, the dispute can
be resolvable. If the preferred extension is not unique, then we wish to reach
a consensus among the parties, which are manifested as skeptically acceptable
arguments. However, if an argument does not fit this consensus, an agent may
wish to show that it is at least defensible. [5] To realize this situation, the argu-
ment must be credulously acceptable. Generally, it is not easy for a standard
AF to determine such things.

3 Value-Based Preference Aggregation Argumentation
Framework

In order to enable conflicting individuals to finally reach a consensus on an
issue, we need to aggregate individual preferences. Here, we use a location-based
method – Borda-counting [16] to aggregate individual preferences into group
preferences. The main idea of the Borda-counting is to assign a point value to
the alternatives according to their position in the individual preference order.
For example, we have x1 > x2 > x3, then we can assign 3 to x1, assign 2 to
x2, and assign 1 to x3. In this paper, a variant of Borda-counting, namely the
preference graph [10] method based on graph theory, is used for case the study.

Therefore, in order to quantify the preference of agents holding different
values for the alternatives in the decision problem, we define a value-based pref-
erence graph G as follows:

Definition 15. Value-based preference graph G = (X,R, V, P, fp
v , val)is a 6-

tuple, where finite set X = x1, x2, . . . , xn is a set of alternatives; the directed
edge R = (xi, xj)(i ∈ n, j ∈ n and i �= j) is the oppositional relation1 between xi

and xj; V is a set of values; P is a set of agents; fp
v : X −→ N+ is a quanti-

zation function that each agent assigns a positive integer to each xi ∈ X based
on value v; val : P −→ V is a function that assigns a value v ∈ V to each agent
p ∈ P .

In order to achieve the purpose of individual preference aggregation, we
require different agents to assign alternatives based on different value prefer-
ences under the same assignment standard, that is:

1 The oppositional relation here means that any two alternatives are in conflict with
each other, that is, any two alternatives can’t coexist, and an agent can only choose
one of the oppositional alternatives.
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Condition 1. For any x1, x2, . . . , xn ∈ X and for any p1, p2, p3 . . . pn ∈ P ,
fp1
v1

(x1) + fp1
v1

(x2) + . . . + fp1
v1

(xn) = fp2
v2

(x1) + fp2
v2

(x2) + . . . + fp2
v2

(xn) = . . . =
fpn
vn

(x1) + fpn
vn

(x2) + . . . + fpn
vn

(xn) = N , where we call N the total value2.

We will aggregate individual preferences into group preferences by following
Aggregation function F :

Definition 16. Aggregation function F :

F (x1) = fp1
v1

(x1) + fp2
v2

(x1) + . . . + fpn
vn

(x1)

Therefore, in Example 1, F (t) = fp1
c (t) + fp2

s (t), F (l) = fp1
c (l) + fp2

s (l) and
we have fp1

c (t) + fp2
c (l) = fp2

s (t) + fp2
s (l) = N .

The rationality of this aggregation method has been proved in [18]. In fact,
the aggregate function F form extends the concept of joint audience proposed
by Trevor Bench-Capon in [6], which requires comprehensive consideration of
the choices made by all agents based on different values. The joint audience
is to achieve the purpose of Trevor and Katie traveling together in Paris and
the aggregation function F is to consider the different choices made by different
agents holding different values. To a certain extent, it also follows the majority
principle.

Assuming fp2
c (t) + fp2

c (l) = fp1
s (t) + fp1

s (l) = N = 10, we can assign (9,1)
or (8, 2) or (7,3) or (6,4) to (fp2

c (t), fp2
c (l)), similarly, (fp1

s (l), fp1
s (t)) can also

be assign to (9,1) or (8, 2) or (7,3) or (6,4), from the Definition 15, we have
F (l) = fp1

s (l) + fp2
c (l), F (t) = fp1

s (t) + fp2
c (t) as follows:

Table 1. Trevor and Katie’s preference aggregation table

(fp1
s (l), fp1

s (t))

(F (t), F (l)) (fp2
c (t), fp2

c (l))
(9,1) (8,2) (7,3) (6,4)

(9,1) (10,10) (9,11) (8,12) (7,13)

(8,2) (11,9) (10,10) (9,11) (8,12)

(7,3) (12,8) (11,9) (10,10) (9,11)

(6,4) (13,7) (12,8) (11,9) (10,10)

Definition 17. Given a value-based preference graph G = (X,R, V, P, fp
v , val),

we can generate a value-based preference aggregation argument framework
(V PAAF ), which is a 7-tuple:

V PAAF = (AR, attacks, Con, V, P, fp
v , val

′)
2 If the total value is not equal, preference aggregation cannot be carried out under

the condition of fairness. In other words, if the total value based on which one
agent assigns the alternative is higher than that of other agents, it will have a full
advantage in the result of the operation of the aggregation function, so it is unfair
to other agents.
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– if ∃xi ∈ X, ∃p ∈ P such that ∀xj ∈ X(j �= i), fp
v (xi) > fp

v (xj), then exists
an argument A ∈ AR with conclusion xi for p, denoted as Con(A) = xi;

– if A,B ∈ AR and (A,B) ∈ attacks iff there exists Con(A) = x1 and
Con(B) = x2 such that (x1, x2) ∈ R;

– V , Pand fp
v are the same in G and V PAAF ;

– val′ : AR −→ V is a function that assigns a value v ∈ V to each argument
A ∈ AR. val(P ) = val′(AR).

Definition 18. Given a value-based preference aggregation argument framework
(V PAAF ) and an aggregate function F , we can define the notion of defeat as
follows:

Argument A ∈ AR defeats argument B ∈ AR iff attacks(A,B) and
F (Con(A)) > F (Con(B)).

The important concepts of Acceptable and Conflict-free are define in
V PAAF as follows.

Definition 19. An argument A ∈ AR is acceptable with respect to a set of
argument S(acceptable(A,S)) if (∀B)(B ∈ AR & defeats(B,A)) −→(∃C)(C ∈
AR) & defeats(C,B))).

Definition 20. A set S of arguments is conflict-free if (∀A)(∀B)((A ∈ S &
B ∈ S) −→ ¬defeats(A,B)).

In V PAAF , the definitions of admissible, preferred extension and stable
extension are the same as in AF .

Continuation to the Example 1:

Trevor: Choose plane instead of train based on value speed, that is, fp1
s (l) >

fp1
s (t).

Katie: Choose train instead of plane based on value comfort, that is, fp2
c (t) >

fp2
c (l);

According to the Definition 17, for Trevor, there exists an argument A with
conclusion t, i.e. Con(A) = t; For Katie, there exists an argument B with con-
clusion l, i.e. Con(B) = l; and (t, l) ∈ R, so (A,B) ∈ attacks.

As shown in Table 1, we can get 16 sets of (F (t), F (l)), so when F (t) > F (l),
according to the Definitions 18, 5 and Definition 6, we can get the preferred
extension and grounded extension of the arguments set {A,B} are both {A}, so
Trevor and Kaite will choose the train to travel; Similarly, when F (l) > F (t), the
preferred extension and grounded extension of the set {A,B} are both {B}, so
Trevor and Kaite will choose the plane to travel; but we still find that except for
F (t) > F (l) and F (l) > F (t), there is still a situation of F (l) = F (t) in Table 1.
Our solution to this is to increase N to re-assign the value. The rationality of
the scheme is obtained by the property of the following probability function P ′.

Proposition 1. Let P ′ be the probability of two alternatives aggregate function
having equal values, and N be the total value, then
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P ′ =

{
2

N−1 when N is odd number &N ≥ 3)
2

N−2 when N is even number &N > 3)
(1)

and limN→∞ P ′ = 0.

Proof. Let N be the total value, because agents needs to have a clear preference

for the alternatives, then when N is an even number,
N

2
− 1 different sum

formulas will be generated.

And there are
N

2
− 1 cases in which the value of the aggregate function is

equal in the
N

2
− 1 different sum formulas, therefore P ′ =

N
2 −1

(N
2 −1)2

= 2
N−2 ;

Therefore, limN→∞ P ′ = limN→∞ 2
N−2 = 0;

Similarly, when N is an odd number, P ′ =
N−1

2

(N−1
2 )2

= 2
N−1 ;

So, we have limN→∞ P ′ = limN→∞ 2
N−1 = 0.

So, as N increases, the probability of the two alternatives aggregate functions
having equal values will be closer and closer to 0.

Theorem 1. In V PAAF , a unique extension set will be generated based on four
basic semantics (preferred semantics, stable semantic, grounded semantics, and
complete semantics)

This is because, with the continuous increase of N , the probability of equal
aggregate function values will closer and closer to 0. Therefore, according to the
Definition 18, any two mutually attacking arguments can only choose one, and
the cycle will be destroyed. In this case, a unique extension set will be generated
based on these basic semantics.

Bench-Capon has done a thorough analysis and discussion on the dichromatic
cycle in [5]. However, in real life, conflicting cases between different decisions
made based on two or more values are also common. For example, the Voting
paradox to be discussed in the next section is a typical one.

4 Case Study: The Voting Paradox

In modern society, voting is a common method for collective decision-making or
collective selection, it is an important method to realize democracy. However,
in order to achieve democracy, “majority principle” will lead to a difficult prob-
lem, which is the voting paradox. [2] The research of voting paradox has been
attracting many scholars to explore it continuously. [12,17] We believe that an
important reason for this paradox is the different values based on which voters
make their choices. Through the work in the previous section, we can reasonably
solve the paradox to some extent.

Assuming that there are three voters p1, p2, and p3, each voter has three
candidates x, y, and z. The order of preference of each voter is shown in the
following table (Table 2):
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Table 2. List of voters’ preference order

Voter The order of preference for candidates

p1 x > y > z

p2 y > z > x

p3 z > x > y

> means better than, for example, p1 thinks
x > y means that in the two candidates of x
and y, p1 believes that x is better than y.

Obviously, there is a cycle x > y > z > x derived from majority principle,
and that is the voting paradox.

We believe that an important reason for voting paradox is the different in
values based on which voters make their choices and provide a solution to the
paradox based on V PAAF . For clarity, we put the voting paradox in a specific
case.

Example 2. Student Union President Election

Suppose that the Department of Philosophy of Sun Yat-Sen University wants
to elect the new president of the student union among three candidates x, y, and
z. Those who have the right to vote are p1, p2, and p3, and they will make a
choice based on values v1, v2, and v3 respectively. The preference orders for
candidates are shown in Table 3:

Table 3. List of voter values and their preference order

Voter The value of voters The order of preference for candidates

p1 Academic performance v1 x > y > z

p2 Working ability v2 y > z > x

p3 Social skills v3 z > x > y

What needs to be explained here is that p1, p2, and p3 votes based on v1, v2
and v3 does not mean that voters only vote based on a single value in Example 2.
In fact, this implies that each of the voters makes a preference order for candi-
dates after sorting the three values. For example, if p1 believes that x is better
than y, y is better than z based on v1, then p1’s preference order is x > y > z.
This shows that no matter how much better y or z is better than x based on
value v2 or v3, p1’s preference order will not change. Similarly, the preference
order of p2 and p3 is the same.

From the Definition 18, We can convert Example 2 to Fig. 1:
Argument A claims that x is better than y and z, that is, Con(A) = x.

similarly, Con(B) = y and Con(C) = z. It is obvious that arguments A, B,
and C show the different values v1 (blue), v2 (yellow), and v3 (green) for the
candidates x, y, and z respectively.

Suppose the total value N is 10, we can assume the assignment for the can-
didates as shown in Table 4:
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Fig. 1. The directed graph for Example 2

Table 4. List of voter values and their assignment for candidates

Voter The value of voters Assignment for candidates

p1 Academic performance v1 fp1
v1 (x) = 5 > fp1

v1 (y) = 3 > fp1
v1 (z) = 2

p2 Working ability v2 fp2
v2 (y) = 6 > fp2

v2 (z) = 3 > fp2
v2 (x) = 1

p3 Social skills v3 fp3
v3 (z) = 7 > fp3

v3 (x) = 2 > fp3
v3 (y) = 1

From the Definition 16 we know that F (x) = 8, F (y) = 10, F (z) = 12.
According to the Definition 18, we can retain the original successful attack rela-
tion and delete the unsuccessful attack relation. For example, because F (z) =
12 > F (y) = 10, B’s attack on C is unsuccessful, that is, C is not defeated by B,
and C’s attack on B is successful, that is, B is defeated by C. The same can be
obtained: A is defeated by C, and A is defeated by B. Therefore, the conversion
process of Fig. 1 is shown in Fig. 2:

Fig. 2. The conversion process of Fig. 1

According to the Definition 18, if there is a situation similar to F (x) > F (y)
and F (x) > F (z), then from the Definitions 18, 5 and Definition 6, we can get
that the preferred extension and stable extension in the V PAAF is {C}, that is,
the conclusion z of argument C should be elected as the president of the student
union.

However, it should be noted that, similar to Example 1, the above assignment
is only one of many assignments. It is very likely that F (x) = F (y) = F (z),
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F (x) = F (y) > F (z), F (z) = F (y) > F (x) or F (x) = F (z) > F (y), which
makes us still unable to make a choice. Our solution is to increase N to reduce
the probability of the above situations. For example, when N is increased to by

100, the probability of F (x) = F (y) = F (z) is
784
7843

=
1

7842
. The rationality of

this method can be obtained from the following propositions:

Proposition 2. Let P ′′ be the probability of the occurrence of the above four
situations, limit of P ′′ as N approaches infinity is 0, that is, limN→∞ P ′′ = 0

Proof. let S be the number of methods in which a positive integer N+ is split
into the sum of three different positive integers; then, based on three agents
and three candidates, the number of each agent’ alternatives is S, so, there will
be S3 situations in total. Let’s consider the upper bound of the cases where
F (x) = F (y) = F (z) and F (x) = F (y) > F (z) or F (z) = F (y) > F (x) or
F (x) = F (z) > F (y) in different S3 methods:

(1) the number of the case where F (x) = F (y) = F (z) is S;
(2) the upper bound of the cases where F (x) = F (y) > F (z) or F (z) = F (y) >

F (x) or F (x) = F (z) > F (y) is [C2
3 × S × S × N

6 ].

Therefore, the probability of the occurence of the above four cases must satisfy

the inequality: 0 ≤ P ′′ <
S + C2

3 × S × S × N
6

S3
=

5S2 + S

S3
=

(2 + S × N)
2S2

, S is

higher order infinity as N approach infinity, that is, limN→∞ N
S = 0;

Thus, limN→∞
(2 + S × N)

2S2
= 0, then 0 ≤ P ′′ ≤ limN→∞

(2 + S × N)
2S2

= 0;

So, we have limN→∞ P ′′ = 0 by The Sandwich Theorem.

In fact, even if the above situation occurs, the paradox will no longer be
regarded as a paradox, because we did not derive a contradiction. At this time,
the paradox has been transformed into a dilemma, it is always easier for us to
accept a dilemma than a paradox.

5 Conclusion

Argumentation plays two different roles when we are making decisions and dis-
cussing critical issues in our daily life. It helps people to choose one or several
alternatives or to explain and prove the choices adopted so that people can
make retrospective reasoning about the reasons for the decision results. This
paper focused on the hidden values behind the decision-making results and pro-
posed an extended argument framework V PAAF . It not only achieves the goal
of exploring some problems in decision theory, which include resolving the Vot-
ing paradox to a certain extent and expanding the application field of V AF , but
also explicitly reveals the value factors implied in the decision results, making it
possible to do retrospective reasoning of the results with the assistance of argu-
ments. At the same time, although considering that daily life is mostly related to
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decision-making problems involving 2 or 3 types of values, the number of agents,
values, and alternatives involved in the cases examined in this paper are equal,
and the corresponding values are relatively small. Extending the research results
of this paper to a larger number of values and alternatives, etc. is another focus
of interest in future work.
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Abstract. Software trustworthiness measurement becomes a focus in
software companies. In software trustworthiness measurement, tradi-
tional Analytic Hierarchy Process (shortly, AHP) is usually utilized
to estimate software attributes’ weights. However, the traditional AHP
method only supports using definite numerical values and cannot quan-
tify well decision makers’ opinions on software attributes. By using
interval-valued intuitionistic fuzzy set, a new method is proposed in
this study based on the traditional AHP for software trustworthiness
measurement. In the proposed method, an equation for calculating cor-
relation coefficients between interval-valued intuitionistic fuzzy matrices
is designed in order to characterize similarities among decision makers’
opinions, and a parameter of threshold is introduced to select corre-
lation coefficients for decision makers’ weights calculation. Besides, an
equation for calculating attribute weights is designed based on harmonic
mean in order to stand out levels of attribute importance. The proposed
method is experimented in a task of evaluating the resilience of an oper-
ating system, and it is compared to the other two classical methods. Our
experimental results show that the proposed method produces attribute
weights with great differences, and its ability is stronger in the aspect of
describing decision makers’ opinions.

Keywords: Interval-valued intuitionistic fuzzy set · Analytic hierarchy
process · Attribute weight · Decision maker’s weight · Software
trustworthiness measurement

1 Introduction

Software plays an important role in a lot of industries and is ubiquitous in our
daily lives. In wide applications, software errors are cared for by users. Software
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failures not only lead to the losses of money and time but also endanger the lives
of people [1]. It becomes a crucial problem whether the software is trustworthy
or not. And software trustworthiness measurement has been attracting attention
from researchers [2,3].

In software trustworthiness measurement, usually experts or decision mak-
ers (shortly, DMs) are called together to collect opinions on software attributes,
and then the collected opinions are used to calculate decision makers’ weights
and software attributes’ weights. Such a process is adopted in Multi-Criteria
Decision-Making (shortly, MCDM). Since the early 1970s, many MCDM meth-
ods have been developed. As a famous MCDM method, the Analytic Hierarchy
Process (shortly, AHP), which is proposed by Saaty [4], has been widely applied
[5,6]. Currently, the AHP is utilized to measure software trustworthiness [7,8]. A
main advantage of the AHP is that it is easy to be understood by users. The AHP
provides linguistic terms for DMs and requires few mathematical calculations.
On the other side, a disadvantage of the traditional AHP method is that it only
supports using definite numerical values to describe DMs’ opinions [9,10]. Such
a way of using definite value is unable to handle well inherent uncertainty and
imprecision in a pair-wise comparison process [11]. To address such shortcom-
ings, fuzzy AHP was developed. Instead of definite values, numerical intervals
are used to describe DMs’ opinions in fuzzy AHP.

Fuzzy AHP methods were developed [12,13] and applied widely [14,15]. Van
Laarhoven and Pedrycz in [12] developed the first fuzzy AHP method, which
utilized fuzzy rations by means of triangular fuzzy numbers. Chang in [13] lever-
aged triangular fuzzy numbers for pair-wise comparison scale in a fuzzy AHP
method.

Atanassov extended the concept of fuzzy sets to intuitionistic fuzzy set (short-
ly, IFS) in [16]. The concept of IFS introduces the degree of membership and
degree of non-membership to describe uncertainty in a decision-making proce-
dure. In [17], Atanassov and Gargov extended IFS to interval-valued intuitionistic
fuzzy set (shortly, IVIFS). In the concept of IVIFS, intervals are used to represent
membership degree, non-membership degree, and hesitation in a decision-making
process. Theories related to IVIFS have been developed by many researchers.
Atanassov established relations and operations for IVIFS in [18]. Hong in [19] pre-
sented concepts of correlation coefficient. Xu and Chen in [20] developed distance
measurement and similarity measurement in IVIFS. Xu presented aggregation
operators for IVIFS in [21]. Such complete theories provide sufficient precondi-
tions for combinations of IVIFS and AHP. Abdullah presented a preference scale
by using IVIFS in [22]. Büyüközkan in [23] proposed an approach by integrating
IVIFS, AHP and a method of Additive Ratio Assessment. However, the methods
in [22] and [23] need judgements on DMs. It is not easy to collect judgements on
DMs in the case of large number of decision makers.

To address the above limitations, judgements on DMs are quantified in a
way of similarity among DMs’ opinions on software attributes. Inspired by [24],
DMs’ opinions on attributes are described by interval-valued intuitionistic fuzzy
matrices, which are transformed from linguistic-term matrices, and the similar-
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ities among DMs’ opinions are quantified with correlation coefficients between
interval-valued intuitionistic fuzzy matrices. An equation for calculating correla-
tion coefficients among interval-valued intuitionistic fuzzy matrices in [24] sums
correlation coefficients of each pair of corresponding entries in the two matri-
ces. Because of that, all the diagonal entries in a linguistic-term matrix are
the linguistic term of Equally Important, correlation coefficients of correspond-
ing diagonal entries could not reflect true similarities among DMs’ opinions on
software attributes. Furthermore, such an equation in [24] could not reveal accu-
rately similarities among DMs’ opinions. One of the equations for calculating
DM’s weight in [12] sums all the correlation coefficients of interval-valued intu-
itionistic fuzzy matrices between a DM and each of the remaindering DMs. Such
a calculating-DM-weight way could not show clearly differences among DMs’
weights. Additionally, equations for calculating attributes’ weights in [23] could
not manifest clearly levels of attribute importance. In terms of the above three
considerations, a new fuzzy AHP method is designed for software trustworthi-
ness measurement by integrating interval-valued intuitionistic fuzzy set and tra-
ditional AHP method at the bases of methods in [24] and [23]. In the proposed
method, an equation is designed for calculating correlation coefficients between
DM’s interval-valued intuitionistic fuzzy matrices by only taking into account
correlation coefficients among non-diagonal elements. A parameter of threshold is
introduced to select IVIFS matrices correlation coefficients for calculating DMs’
weights. The threshold could help manifest differences among DMs’ weights.
Besides, equations for calculating attribute’s weights are designed by leveraging
harmonic mean in order to show clearly levels of attribute weights.

The rest of this paper is organized as follows. Section 2 gives basic concepts
which are needed in our proposed method. In Sect. 3, the proposed method is pre-
sented in detail. An example is given in Sect. 4 to show the advantages of the pro-
posed method with respect to resilience trustworthiness measurement. Section 5
discusses the proposed method. Conclusions and future work are described in
Sect. 6.

2 Basic Concepts and Operations

This section introduces basic concepts related to fuzzy sets and interval-valued
intuitionistic fuzzy sets, and also gives related operations in our method.

Definition 1. (Fuzzy Set [25]) A fuzzy set A defined on the universe of discourse
X = {x1, x2, . . . , xn} is given by

A = {〈x, μA(x)〉 | x ∈ X}, (1)

where μA denotes the membership function of the fuzzy set A, μA:X �→ [0, 1],
for every x ∈ X, μA(x) denotes the membership degree of x in A.

Anatassov extended the fuzzy set and define an intuitionistic fuzzy set in 1986
[16].
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Definition 2. (Intuitionistic Fuzzy Set, IFS for abbreviation [16]) An intuition-
istic fuzzy set A defined on the universe of discourse X = {x1, x2, . . . , xn} is
given by

A = {〈x, μA(x), νA(x)〉 | x ∈ X}, (2)

where μA, νA:X �→ [0, 1], for every x ∈ X, μA(x) denotes the membership degree
and νA(x) denotes the non-membership degree of x in A, respectively. This inter-
pretation entails a natural restriction, i.e.,

0 ≤ νA(x) + μA(x) ≤ 1.

πA(x):X �→ [0, 1] is defined as follows:

πA(x) = 1 − νA(x) − μA(x). (3)

πA(x) denotes hesitate degree or intuitionistic index of x in A.

An interval-valued fuzzy set is a generalization of the notion of fuzzy set [26].

Definition 3. (Interval-Valued Fuzzy Set, IVFS for abbreviation [26]) An
interval-valued fuzzy set A defined on the universe of discourse X =
{x1, x2, . . . , xn} is given by

A = {〈x, μ̄A(x)〉 | x ∈ X}, (4)

where μ̄A:X �→ D[0, 1], D[0, 1] is the set of all subintervals of the unit interval
[0, 1], i.e. for every x ∈ X, μ̄A(x) = [μL

A(x), μU
A(x)] is an interval within [0, 1],

where μL
A(x) is the lower bound of membership degree of x in A, and μU

A(x) is
the upper bound of the membership degree of x in A.

Definition 4. (Mappings between interval-valued fuzzy set and intuitionistic
fuzzy set [17])

(1) Let A = {〈x, [μL
A(x), μU

A(x)]〉 | x ∈ X} be an interval-valued fuzzy set, where
μL

A(x) and μU
A(x) separately represent the lower bound and the upper bound

of the membership degree of x in A. A map f assigns an intuitionistic fuzzy
set B to the IVFS A, i.e.,

B = f(A) = {〈x, μL
A(x), 1 − μU

A(x)〉 | x ∈ X},

(2) Let B = {〈x, μB(x), νB(x)〉 | x ∈ X} be an intuitionistic fuzzy set, where
μB(x) and νB(x) separately represent the membership degree and the non-
membership degree of x in A. A map g assigns an interval-valued fuzzy set
A to the IFS B, i.e.,

A = g(B) = {〈x, [μB(x), 1 − νB(x)]〉 | x ∈ X}.

Combining the IFS and the IVFS, Anatassov defined the interval-valued intu-
itionistic fuzzy set [17].
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Definition 5. (Interval-Valued Intuitionistic Fuzzy Set, IVIFS for abbreviation
[17]) An interval-valued intuitionistic fuzzy set Ã defined on the universe of dis-
course X = {x1, x2, . . . , xn} is given by

Ã = {〈x, μ̃Ã(x), ν̃Ã(x)〉 | x ∈ X}, (5)

where μ̃Ã, ν̃Ã:X �→ D[0, 1]. For every x ∈ X,

0 ≤ μL
Ã
(x) + νL

Ã
(x) ≤ μU

Ã
(x) + νU

Ã
(x) ≤ 1,

π̃Ã(x) = [πL
Ã
(x), πU

Ã
(x)], where πL

Ã
(x) = 1−μU

Ã
(x)−νU

Ã
(x), πU

Ã
(x) = 1−μL

Ã
(x)−

νL
Ã
(x). μ̃Ã(x), ν̃Ã(x), π̃Ã(x) denote the membership degree, non-membership

degree and the intuitionistic index of x in Ã, respectively.

Remark 1. For convenience, let μ̃Ã(xi) = [ai, bi], ν̃Ã(xi) = [ci, di], then α̃i =
([ai, bi], [ci, di]) is called an interval-valued intuitionistic fuzzy number (shortly,
IVIFN).

Park defined correlation coefficient between two interval-valued intuitionistic
fuzzy sets Ã and B̃ in [27].

Definition 6. (Correlation coefficients between interval-valued intuitionistic
fuzzy sets [27]) Let X = {x1, x2, . . . , xn} be a finite set and Ã =
{〈xi, μ̃Ã(xi), ν̃Ã(xi)〉 | xi ∈ X}, B̃ = {〈xi, μ̃B̃(xi), ν̃B̃(xi)〉 | xi ∈ X} be two
interval-valued intuitionistic fuzzy sets over the set of X. A correlation coeffi-
cient between Ã and B̃ is defined to be

c(Ã, B̃) =
γ(Ã, B̃)

(γ(Ã, Ã) · γ(B̃, B̃))
1
2
, (6)

where

γ(Ã, B̃) =
1
2

n∑

i=1

[μL
Ã
(xi) · μL

B̃
(xi) + μU

Ã
(xi) · μU

B̃
(xi) + νL

Ã
(xi) · νL

B̃
(xi)

+ νU
Ã

(xi) · νU
B̃

(xi) + πL
Ã
(xi) · πL

B̃
(xi) + πU

Ã
(xi) · πU

B̃
(xi)],

(7)

γ(Ã, Ã) =
1
2

n∑

i=1

[(μL
Ã
(xi))2 + (μU

Ã
(xi))2 + (νL

Ã
(xi))2

+ (νU
Ã

(xi))2 + (πL
Ã
(xi))2 + (πU

Ã
(xi))2].

(8)

The calculation of γ(B̃, B̃) is in the same manner as γ(Ã, Ã).

Following Definition 6, Jia and Zhang extended the definition of correlation
coefficient between IVIFSs to a correlation coefficient between interval-valued
intuitionistic fuzzy matrices [24].
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Definition 7. (Correlation coefficients between interval-valued intuitionistic
fuzzy matrices [24]) Let D1 = [αjk]J×K and D2 = [βjk]J×K be two interval-
valued intuitionistic fuzzy matrices, in which each element is an interval-valued
intuitionistic fuzzy number. A correlation coefficient between D1 and D2 is
defined by

C(D1,D2) =
1

JK

J∑

j=1

K∑

k=1

c(αjk, βjk), (9)

Equation 9 in Definition 7 sums correlation coefficients of each pair of correspond-
ing entries in two interval-valued intuitionistic fuzzy matrices. As we know, diag-
onal entries in each pair-wise comparison matrix obtained by the AHP method
represent comparison results between identical attributes, and they are all the
element of Equally Important. The diagonal entries in the comparison matrices
are independent of decision makers, and they are not DMs’ key opinions. Such
a calculation way in Eq. 9 sums the correlation coefficients between each pair
of corresponding entry in two pair-wise comparison matrices, and its calculated
results include measurement of similarity among DMs’ non-key opinions.

In order to reveal similarities among DMs’ key opinions on software
attributes, a new equation is proposed in the following Definition 8 by delet-
ing computations of corresponding diagonal entries in Eq. 9.

Definition 8. Let D1 = [αjk]m×m and D2 = [βjk]m×m be two interval-valued
intuitionistic fuzzy matrices. A correlation coefficient between D1 and D2 is
defined by

C̄(D1,D2) =
1

m2 − m

m∑

j=1

m∑

k=1,k �=j

c(αjk, βjk) (10)

To aggregate IVIFNs, Xu introduced an operator of interval-valued intuitionistic
fuzzy weighted arithmetic in [21].

Definition 9. (Interval-Valued Intuitionistic Fuzzy Weighted Arithmetic,
IVIFWA for abbreviation [21]) Let α̃i = ([ai, bi], [ci, di]) be interval-valued intu-
itionistic fuzzy number, i = 1, 2, . . . , n. An operator of interval-valued intuition-
istic fuzzy weighted arithmetic is defined by

IV IFWAσ(α̃1, α̃2, . . . , α̃n) =

([
1 −

n∏

i=1

(1 − ai)σi , 1 −
n∏

i=1

(1 − bi)σi

]
,

[
n∏

i=1

cσi
i ,

n∏

i=1

dσi
i

]) (11)

where σ = (σ1, σ2, . . . , σn)� is a vector of weights, σi is a weight of α̃i, satisfying
σi ≥ 0 and

∑n
i=1 σi = 1, i = 1, 2, . . . , n.

3 Methods

Büyüközkan proposed a method based on methodologies of additive ratio assess-
ment and AHP to evaluate decision makers’ weights and attributes’ weights in
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[23]. However, the method requires decision makers to make judgements on each
other. Such a requirement is not easy to execute in the case of large number
of decision makers. Also, the judgement results are undesirable in the case that
decision makers have prejudices. Inspired by [24], a method in this study is
designed to address the above disadvantage.

Our proposed method consists of eight steps. The steps are listed as follows.

Step 1. Call together n Decision Makers (DMs) as a committee.
Step 2. Determine m software attributes to evaluate and design linguistic

scales which are used to describe DMs’ opinions on software attributes.
Step 3. Collect DMs’ opinions on software attributes.
Step 4. Construct a pair-wise comparison matrix by the way of establishing

comparison matrices in the AHP method [4], then transform linguistic terms in
the obtained matrix into IVIFNs according to Table 1 [22].

Table 1. Conversion preference scale of IVIFN

Preference on comparison Acronym IVIFN

[μL
Ã
(x), μU

Ã
(x)] [νL

Ã
(x), νU

Ã
(x)] [πL

Ã
(x), πU

Ã
(x)]

Equally Important EI [0.38, 0.42] [0.22, 0.58] [0.00, 0.40]

Equally Very Important EVI [0.29, 0.41] [0.12, 0.58] [0.01, 0.59]

Moderately Important MI [0.10, 0.43] [0.03, 0.57] [0.00, 0.87]

Moderately More Important MMI [0.03, 0.47] [0.03, 0.53] [0.00, 0.94]

Strongly Important SI [0.13, 0.53] [0.07, 0.47] [0.00, 0.80]

Strongly More Important SMI [0.32, 0.62] [0.08, 0.38] [0.00, 0.60]

Very Strongly More Important VSMI [0.52, 0.72] [0.08, 0.28] [0.00, 0.40]

Extremely Strong Important ESI [0.75, 0.85] [0.05, 0.15] [0.00, 0.20]

Extremely More Important EMI [1.00, 1.00] [0.00, 0.00] [0.00, 0.00]

For reciprocal preferences, related IVIFNs could be obtained by interchanging
[μL

Ã
(x), μU

Ã
(x)] and [νL

Ã
(x), νU

Ã
(x)]. For example, the IVIFN for EVI is ([0.29,

0.41], [0.12, 0.58]), then the IVIFN for 1/EVI is ([0.12, 0.58], [0.29, 0.41]).
Step 5. Calculate DMs’ weights using correlation coefficients. The weight of

DMi is calculated according to the following Eq. 12 [24] and Eq. 13.

λi =
θi∑n

j=1 θj
(12)

θi =
∑

i′∈Si

C̄(Di,Di′) (13)

where Si = {i′ | C̄(Di,Di′) ≥ T, i′ 	= i, i′ ∈ {1, 2, . . . , n}}, Di denotes interval-
valued intuitionistic fuzzy matrices of DMi, i = 1, 2, . . . , n.

The symbol T in Eq. 13 means a threshold, which is valued in the closed
interval of [0, 1]. Such a setting is to present clearly differences among DMs’
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weights. The value of T could be set according to research needs. Specially, the
obtained DMs’ weights in the setting of T = 0 are the same as the weight results
by the related calculation method in [24].

So, our method in Eq. 12 and Eq. 13 for calculating DMs’ weights extends
the related calculation method in [24].

Step 6. By using the IVIFWA operator [21] (i.e., Eq. 11), aggregate per-
attributes’ results of opinions on software attributes for each decision maker.
In each aggregation, the used vector of weights is σ = (σ1, σ2, . . . , σm)�, where
σi = 1

m , i = 1, 2, . . . ,m.
Step 7. Calculate consistent ratio about opinions of the decision maker DMi

according to Eq. 14 [22]

CRDMi
=

RI −
∑m

k=1 πU
ÃDMi

(xk)

m
m − 1

, (14)

where CRDMi
means consistent ratio for the decision maker DMi’s opinions on

software attributes, i = 1, 2, . . . , n. ÃDMi
= {〈xk, μ̃ÃDMi

(xk), ν̃ÃDMi
(xk)〉, k =

1, 2, . . . ,m} denotes an interval-valued intuitionistic fuzzy set of aggregation
results of the decision maker DMi’s opinions on software attributes, i =
1, 2, . . . , n. RI is a random index which is valued according to table Table 2 [28].
If the absolute value of CRDMi

is not more than 0.10, then the consistency of
the judgement matrix is acceptable in this study. Otherwise, it is not acceptable,
and go back to Step 1.

Table 2. Random Index (RI)

len 1 2 3 4 5 6 7 8 9 10

RI 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49

Step 8. Calculate attributes’ weights using Eq. 15 [23] and Eq. 16.

wk =
1 − w̌k

m − ∑m
j=1 w̌j

(15)

w̌k = 1 −

∑n
i=1 λi · 2

1
μL

ÃDMi

(xk)
+

1
μU

ÃDMi

(xk)

∑n
i=1 λi ·

⎛

⎝
2

1
μL

ÃDMi

(xk)
+

1
μU

ÃDMi

(xk)

+ N(i, k)
⎞

⎠

(16)

N(i, k) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2
1

νL
ÃDMi

(xk)
+

1
νU

ÃDMi

(xk)

, if νL
ÃDMi

(xk) · νU
ÃDMi

(xk) 	= 0

0, otherwise
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where xk denotes the attribute of attrk, k = 1, 2, . . . ,m. ÃDMi
=

{〈xk, [μL
ÃDMi

(xk), μU
ÃDMi

(xk)], [νL
ÃDMi

(xk), νU
ÃDMi

(xk)]〉, k = 1, 2, . . . , m} means
an interval-valued intuitionistic fuzzy set of aggregation results of the decision
maker DMi’s opinions on software attributes, i = 1, 2, . . . , n. wk denotes the
weight of the k-th attribute, w̌k denotes the pre-weight of the k-th attribute,
k = 1, 2, . . . ,m. λi means the weight of the decision maker DMi, i = 1, 2, . . . , n.

Based on the obtained attributes’ weights, a software trustworthiness mea-
surement value could be calculated by Eq. 17 [7,8].

R = ATTRw1
1 × ATTRw2

2 × . . . × ATTRwm
m (17)

In Eq. 17, the wk represents the weight of the k-th attribute and
∑m

k=1 wk = 1,
ATTRk represents the trustworthiness measurement value of the k-th attribute
attrk.

4 Examples

In this section, evaluating the resilience of an operating system is taken as an
example. The resilience of an operating system is described by three attributes,
including the attribute of survivability denoted by attr1, the attribute of recov-
erability denoted by attr2, and the attribute of adaptability denoted by attr3.
In the example, our proposed method is compared with methods in [23] and
[8]. Eight experts (i.e., DMs) are called together to provide their opinions on
the resilience attributes. Based on their opinions, DMs’ weights and attributes’
weights are calculated.

Step 1. Eight DMs are called together online to provide their opinions on
resilience attributes of operating system.

Step 2. Questionnaires with respect to the resilience of an operating sys-
tem are provided to DMs to ask for opinions on the three attributes, including
survivability, recoverability, and adaptability. Our used linguistic scales in the
questionnaires are the same as in Table 1.

Step 3. Opinions on the resilience attributes from eight DMs are collected.
Because of space limitation, opinions from only two DMs are shown in Table 31.

Table 3. Two DMs’ judgements on attributes

(a) DM1’s judgements

Attrs attr1 attr2 attr3

attr1 EI 1/MI VSMI

attr2 MI EI SI

attr3 1/VSMI 1/SI EI

(b) DM2’s judgements

Attrs attr1 attr2 attr3

attr1 EI 1/SMI EI

attr2 SMI EI SMI

attr3 EI 1/SMI EI

1 Please check out https://jihulab.com/lukedyue/aila2022 for all results.

https://jihulab.com/lukedyue/aila2022
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Step 4. Based on Table 1 and Table 3, pair-wise comparison matrices are
constructed, in which all the elements are IVIFNs. Because of space limitation,
only two matrices of our obtained comparison matrices are separately given in
the form of table in Table 4 and Table 5.

Table 4. IVIFNs corresponding to DM1’s judgements

Attrs attr1 attr2 attr3

attr1 ([0.38, 0.42], [0.22, 0.58]) ([0.03, 0.57], [0.10, 0.43]) ([0.52, 0.72], [0.08, 0.28])

attr2 ([0.10, 0.43], [0.03, 0.57]) ([0.38, 0.42], [0.22, 0.58]) ([0.13, 0.53], [0.07, 0.47])

attr3 ([0.08, 0.28], [0.52, 0.72]) ([0.07, 0.47], [0.13, 0.53]) ([0.38, 0.42], [0.22, 0.58])

Step 5. The threshold of T in Eq. 12 is set to be 0.90. DMs’ weights are
calculated by using Eq. 12 and Eq. 13. The obtained DMs’ weights are given in
Table 6.

Step 6. Aggregate DMs’ judgements with the IVIFWA operator by using
the obtained matrices in Step 4 and the weight vector of (13 , 1

3 , 1
3 )�. For better

understanding, a calculation process of aggregating DM1’s judgements on the
attribute of survivability (i.e., attr1) is given in Eq. 18. Because of the space
limitation, aggregation results for only two DMs are shown in Table 7.

IV IFWAattr1(DM1)

=
[(

(1 − (1 − 0.38)
1
3 × (1 − 0.03)

1
3 × (1 − 0.52)

1
3 ),

(1 − (1 − 0.42)
1
3 × (1 − 0.57)

1
3 × (1 − 0.72)

1
3 )

)
,

(
(0.22)

1
3 × (0.10)

1
3 × (0.08)

1
3 ,

(0.58)
1
3 × (0.43)

1
3 × (0.28)

1
3

)]

= [(0.339, 0.588), (0.121, 0.412)]

(18)

Table 5. IVIFNs corresponding to DM2’s judgements

Attrs attr1 attr2 attr3

attr1 ([0.38, 0.42], [0.22, 0.58]) ([0.08, 0.38], [0.32, 0.62]) ([0.38, 0.42], [0.22, 0.58])

attr2 ([0.32, 0.62], [0.08, 0.38]) ([0.38, 0.42], [0.22, 0.58]) ([0.32, 0.62], [0.08, 0.38])

attr3 ([0.22, 0.58], [0.38, 0.42]) ([0.08, 0.38], [0.32, 0.62]) ([0.38, 0.42], [0.22, 0.58])

Table 6. Results of DMs’ weight

DM DM1 DM2 DM3 DM4 DM5 DM6 DM7 DM8

Weight 0.1185 0.1418 0.1433 0.1073 0.1189 0.1088 0.1319 0.1295
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Table 7. Aggregation results for two DMs

Attrs DM1 DM2

attr1 ([0.339, 0.588], [0.121, 0.412]) ([0.293, 0.407], [0.249, 0.593])

attr2 ([0.214, 0.462], [0.077, 0.538]) ([0.341, 0.562], [0.112, 0.438])

attr3 ([0.190, 0.395], [0.246, 0.605]) ([0.237, 0.467], [0.299, 0.533])

Step 7. The consistency ratio of DM1’s judgement matrix is calculated using
Eq. 14.

CRDM1 =
0.58 − (

1−0.339−0.121+1−0.214−0.077+1−0.190−0.246
3

)

3 − 1
= −0.012

The absolute value of CRDM1 is no more than 0.10. So, consistency of DM1’s
judgement matrix is considered to be acceptable. Similarly, consistency ratios for
other DMs’ judgement matrices are calculated. All the achieved consistency ratio
results are listed in Table 8, and all the DMs’ judgement matrices are acceptable.

Table 8. Results of consistency ratios

DMs DM1 DM2 DM3 DM4 DM5 DM6 DM7 DM8

CR −0.012 0.045 0.020 0.013 0.013 0.004 −0.008 −0.023

Step 8. Calculate attributes’ weights using the Eq. 15 and Eq. 16 based on
the obtained DMs’ weights in Step 5 and the aggregated results in Step 6. Our
obtained results of attribute weights are shown in Table 9.

Table 9. Results of attribute weight

Survivability Recoverability Adaptability

w 0.322 0.410 0.268

Using methods in [7] and [8], attributes’ trustworthiness measurement values
in our example are calculated. For the three attributes of survivability, recover-
ability, and adaptability, our obtained trustworthiness measurement values are
9.240, 6.973, and 6.088, respectively. By Eq. 17, the resilience trustworthiness
measurement value R is calculated as follows. The obtained value of R is 7.362.

R = 9.2400.322 × 6.9730.410 × 6.0880.268 = 7.362
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For comparisons, an original method is applied to this example. In the original
method, an equation in [23] (i.e., Eq. 19) is used to calculate attributes’ pre-
weights instead of using Eq. 16. Beyond that, the original method uses the same
equations and steps as our proposed method.

w̌k = 1−
∑n

i=1 λi ·
μL
ÃDMi

(xk)+μU
ÃDMi

(xk)

2√
∑n

i=1 λi ·
(μL

ÃDMi

(xk))2+(μU
ÃDMi

(xk))2+(νL
ÃDMi

(xk))2+(νU
ÃDMi

(xk))2

2

(19)

Also, the traditional AHP method in [8] is applied to the task in this example.
For applying the traditional AHP method, the linguistic terms in our method are
kept, and they are quantified with definite numeric values. The achieved results
for the three methods are shown in Table 10.

Table 10. Evaluation results for three methods

Methods Results

attr1’s weight attr2’s weight attr3’s weight Resilience Measurement Value

Our method 0.322 0.410 0.268 7.362

Original method [23] 0.327 0.382 0.291 7.349

Traditional AHP [8] 0.250 0.621 0.129 7.352

Evaluation results in Table 10 show that the orders of attribute weights are
the same for the three methods, and differences between obtained attribute
weights by our proposed method are greater than the attribute weight differ-
ences by using the original method in [23]. The greater the differences of attribute
weights are, the more evident the levels of attribute importance are. The tra-
ditional AHP method only supports using definite numerical values to describe
DMs’ opinions, although its obtained attribute weight differences are the max-
imal. The way of the definite numerical values is not enough to quantify DMs’
opinions. Our proposed method not only supports using interval-valued fuzzy
set but also produces attribute weights with great differences.

5 Discussion

The traditional AHP method uses definite numerical values to describe DMs’
opinions. Such a way could not characterize sufficiently linguistic terms which
are DMs’ opinions on software attributes. On the other side, DMs’ opinions on
attributes usually are assigned weights, which are called DMs’ weights. DMs’
weights may be collected from a manager or in a way that decision makers pro-
vide judgements on each other. Such a way of achieving DMs’ weights is hard to
execute in the case of large number of decision makers. Considering the above two
disadvantages, we proposed a new method for software trustworthiness measure-
ment by leveraging interval-valued intuitionistic fuzzy set and calculating DMs’
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weights based on correlation coefficients between DMs’ opinions on software
attributes.

As we know, pair-wise comparison matrices need to be constructed by the
related means in the AHP method according to DMs’ opinions on software
attributes. In the obtained matrices, the diagonal entries are all the linguis-
tic terms of Equally Important. The diagonal elements in the matrices could
not show strong similarities among DMs’ opinions. Our designed equation (i.e.,
Eq. 10 in Definition 8) throws away computing correlation coefficients of cor-
responding diagonal entries. Such a calculation reveals true similarities among
DMs’ opinions.

It is observed that each decision maker’s weight obtained by a method in [24]
is close to an average weight. Considering such a disadvantage of the method
in [24], a parameter of threshold is introduced in our proposed method as we
see in Eq. 12 and Eq. 13. Such a parameter is established in order to manifest
differences among DMs’ weights. In the case of the threshold being zero, the
calculation of DMs’ weights in our method is the same as the method in [24].

In our method, attributes’ weights are calculated by using harmonic mean as
we see in Eq. 15 and Eq. 16, instead of using calculating-attribute-weights equa-
tions in [23]. Our equations manifest more evident levels of attribute importance
than the method in [23]. Also, the equations are more suitable for such a case
where the lower bounds of IVIFN’s membership degree and non-membership
degree vary more significantly than the upper bounds.

6 Conclusions

This paper focuses on the software trustworthiness measurement. A new method
is designed by combining the Analytic Hierarchy Process method with interval-
valued intuitionistic fuzzy set. In our method, there are three improvements. The
first one is that, an equation is improved for calculating correlation coefficients
between interval-valued intuitionistic fuzzy matrices in order to quantify simi-
larities among DMs’ opinions on software attributes. The second one is that, a
parameter of threshold is introduced in order to improve the calculation of DMs’
weights. The third one is that, equations for the attribute weights calculation are
improved by leveraging harmonic mean in order to manifest levels of attribute
importance. In a task of evaluating the resilience of an operating system, our
method is compared to the traditional AHP method and a method in [23]. Our
experimental results show that, the proposed method achieves the same order of
attribute weights as the above two methods. Furthermore, our method not only
obtains greater differences among attribute weights than the method in [23], but
also describes more sufficiently DMs’ opinions than the traditional AHP method.

As we know, there are no definite indexes for evaluating calculating-attribute-
weights methods in the research of software trustworthiness measurement. In the
future, indexes for the evaluation of measuring-software-trustworthiness methods
will be explored. Also, more applications will be practiced for the proposed
method.
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Abstract. The software has been a part of our daily life. However, soft-
ware systems are becoming more and more complex, with many uncer-
tainties, unavoidable software bugs, failures, and even disasters. The
measurement of software trustworthiness has already attracted attention
from both academia and industry. Today, component-based software sys-
tems (CBSS) have become mainstream due to their high reusability and
low development cost. How to accurately measure the trustworthiness of
CBSS has become an urgent problem to be solved. In this paper, to over-
come this problem, we calculate the importance of components according
to the fault propagation impact and function importance and propose
a fuzzy criticality model to distinguish critical components from non-
critical components. Finally, we propose a hierarchical trustworthiness
computing model to measure the trustworthiness of software systems.
Through the results of experiments, the necessity of determining crit-
ical components and the rationality of the hierarchical trustworthiness
measurement model are verified.

Keywords: Component-based software system · Fuzzy criticality
model · Hierarchical trustworthiness computing model

1 Introduction

Software systems are becoming a crucial part of today’s society and playing
an essential role in everything from military, cultural, economic, and political to
people’s daily lives. There will be many problems in the software system because
the software becomes bigger and more complex, such as uncertainty, abnormal
vulnerability, failure, bugs, failure, and other problems [11]. The trustworthiness
of software has become the focus of attention.

The component-based software systems (CBSS) can reduce the coupling
degree of the software system, improve the development efficiency of the software
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system, which have gradually become mainstream. In the CBSS, a component
is a unit that can be deployed independently, which has an interface is easily
assembled and used by third parties [5]. As a module runs independently, com-
ponents improve the reuse rate and shorten the development time. But, it also
increases the risk of system failure because once a component fails, the failure
will be propagated, causing the system not to run correctly. How to measure the
trustworthiness of the CBSS has become an urgent issue to be solved.

At present, there has been some research on the trustworthiness measure-
ment of the CBSS. Chinnaiyan et al. used the Markov process to evaluate the
reliability of component-based software system, which considered the impact of
failures within the system [9]. Mao et al. proposed a general reliability model
based on component-based software systems to measure the reliability of com-
mon software systems on the market [15]. Zhang et al. proposed a component
dynamic transfer graph, which considers the dependencies between the compo-
nents [24]. Krishnamurthy et al. combined failure rate with software architecture
to compute path reliability for dynamic operation [12]. Chen et al. proposed a
reliability assessment method based on the effects of components [7]. Zheng et al.
proposed autonomic trust management for a component-based software system
to measure the trustworthiness of system automatically [22].

In this paper, we propose a hierarchical trustworthiness measurement method
for CBSS to help developers improve systems’ trustworthiness during the soft-
ware life cycle. Compared to the other existing methods, our approach pays more
attention to the importance of components of software systems. We compute the
importance of the components according to the impact of fault propagation and
function importance and distinguish the critical components and the non-critical
components according to the fuzzy criticality model. Finally, we compute the
trustworthiness of CBSS according to the hierarchical trustworthiness measure-
ment method.

2 Background and Related Work

2.1 Trustworthiness

Software trustworthiness is a relatively new concept introduced to software engi-
neering in the 1980s. In recent years, various kinds of literature have given dif-
ferent definitions of trustworthiness. The U.S. Department of Defense proposed
in 1985 that a system is considered trustworthy if it uses sufficient hardware
and software integrity metrics to ensure that it can handle a range of sensitive
or classified information at the same time [16]. The ISO/IEC15408 standard
proposed that in a system if the behavior of the components, operations, or pro-
cesses involved in the calculation is predictable under any operating conditions
and can be well resistant to application software, bugs, and specific physical dis-
turbances if it is destroyed, the system is trustworthy [1]. Liu et al. proposed a
trustworthy software as a software system whose dynamic behavior and results
always meet people’s expectations and do not fail when disturbed [11].
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Many scholars and institutions also divided trustworthiness into sub-
attributes. National Institute of Standards and Technology (NIST) established a
trustworthiness attributes model including accuracy, usability, reliability, avail-
ability, resilience, testability, maintainability, performance, safety, security, pre-
cision, and conformance [4]. Chen and Tao et al. presented trustworthy attributes
based on the whole life cycle, including functionality, reliability, maintainabil-
ity, survivability, real-time, and safety [6,19,20]. Commonly, trustworthiness is
a comprehensive, multidimensional, multidisciplinary concept. It is a challenge
to measure the trustworthiness of a software system.

2.2 Software System Trustworthiness Measurement

The software quality mainly reflects the objective state of the software itself,
and the trustworthiness measurement of the software system is a quantitative
evaluation of the quality of the software system. At present, there has been
a lot of research related to software trustworthiness measurement, and Tao et
al. proposed an axiom-based measurement model to evaluate the improvement
properties [18,21]. Zheng et al. introduced a statistical analysis method of the
dynamics of software trustworthiness [25,27]. Ding et al. proposed a software
trustworthiness measurement method based on evidence theory [10]. Malaskas
et al. proposed a trustworthiness measurement method based on a questionnaire
and multivariate statistical analysis, which focused more on the behavior of the
software at runtime and compared these behaviors to normal behaviors [17].
The above-mentioned methods mainly regard the software system as a whole
by obtaining the attributes of the system and correctly measuring the trust-
worthiness of the system. Different from these methods, Wang et al. proposed
a hierarchical software trustworthiness rating model to calculate the level of a
software system [3]. Chen et al. proposed a trustworthiness measurement method
for CBSS based on the importance and the trustworthiness of components [7].

3 Methodology

In this section, we propose a trustworthiness computing method for component-
based software systems, including a fuzzy criticality model and hierarchical
trustworthiness computing mode, which can effectively compute the value of
the software system’s trustworthiness according to the value of the components’
trustworthiness.

3.1 Fuzzy Criticality Model

Different elements provide different effects on the software system and their
faults and errors will bring different impacts on the software system’s trustwor-
thiness [13]. A critical element’s fault may lead to the system’s error. In order
to calculate the importance of elements, we refer to the method proposed by
Chen et al. We comprehensively considered and calculated the importance of
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each element from the three aspects of self-influence, fault influence, and fault
propagation, and then selected some critical elements for system trustworthiness
evaluation [7].

There are two kinds of ways for an element to affect the software system’s
trustworthiness: self-influence and fault propagation influence. Self-influence
means that the element is responsible for important functions in the system.
Once a fault occurs, it will directly cause some functions to fail, and affect the
system’s trustworthiness. The impact of fault propagation means that after an
element fails, the element will propagate the error to other related elements,
resulting in a decrease in the trustworthiness of the system.

In order to get the fault propagation influence of elements, we build an ele-
ment trustworthiness dependency model, as shown in Fig. 1. The dependence of
element B on element A represents the extent to which element B’s dependabil-
ity is (or would be) affected by that of element A [2]. In actual scenarios, the
dependency between elements is a function call relationship. The value of depen-
dency between element A and element B represents the intensity of dependency,
which can be determined by the ratio of function calls wAB ∈ [0, 1] [26].

Fig. 1. Elements trustworthiness dependency model

If many other elements depend on the element ei at the same time, that is,
data can flow from element ei to other elements. And it means that errors of ele-
ment ei have more paths and a wider range to propagate, which will have a large
impact on the system’s trustworthiness. So we use the out-degree importance of
elements to represent the fault propagation influence of elements.

For the computing of the element’s out-degree importance, it is necessary
to comprehensively consider the number of elements’ out-degree and the weight
of dependencies. The out-degree of the element indicates the number of other
elements depending on it, and the weight of dependencies indicates the degree
of dependency between elements. Therefore, we use three aspects of the out-
degree of edge to describe the influence importance of the elements, as shown in
formula (1).

IMout(ei) = max
rij∈Ree

{wij} ×
∑

rij∈Ree

{wij} × outdegree (1)
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where ei indicates the element. Ree indicates an element set which contains all
elements with dependencies, and rij ∈ Ree indicates element rj depends on
element ri. The symbol max

rij∈Ree

{wij} means the maximum of the edge value

starting from this element ei, which is used to represent the greatest degree of
influence on other elements. The symbol

∑
rij∈Ree

wij means the sum of the edge

value starting from this element ei, which is used to represent the sum of influ-
ence degree on other elements. The symbol outdegree means the number of the
edge starting from element ei, which is used to represent the number of elements
can be affected by element ei. Then, the self-importance S(ei) of the element ei

represents the importance of its function. we used S(ei) ∈ [1, 10] to describe the
self-importance of the element ei, which can be obtained by a comprehensive
evaluation of multiple experts.

Herein, the importance of the element ei can be calculated using formula (2).

IM(ei) = p · IMout(ei) + q · S(ei) (2)

where p, q is the weight of the influence importance and the self-importance,
and p+ q = 1. The value of p, q can be obtained by a comprehensive evaluation
of multiple experts.

Definition 1. Critical elements are elements that are highly important in a
software system and have a greater impact on the trustworthiness of the software
system.

The criticality of elements is a fuzzy concept, and it is difficult to clearly
distinguish between critical and non-critical entities using the general method.
Therefore, in this paper, we adopted the fuzzy set method created by Zadeh to
describe the phenomenon of fuzzy and distinguish the critical elements [23]. This
method takes the object to be investigated, and the fuzzy concept reflecting it as
a certain fuzzy set establishes an appropriate membership function and analyzes
the fuzzy object through the relevant operations and transformations of the fuzzy
set.

In our fuzzy set method, we set domain U ∈ [1, 10] indicates the importance
of the elements, and the value of U indicates the criticality of the elements.

Before determining the degree of membership function, we need to find a
function that satisfies the following properties: 1. The value of the function
should be between (0, 1], because when the function value is 0, the weight of the
element is 0, and the trustworthiness value of the element to the power of 0 is
1, which makes no sense; 2. The function should conform to the characteristics
of sparse at both ends and dense at the middle, because in actual scenarios, the
importance of most elements should be about 7, and only a small amount of
elements appear to be very critical or non-critical; 3. The function is convenient
for derivation, which is convenient for subsequent sensitivity analysis.

Above all, we use the Gaussian probability distribution function as the degree
of membership function, which is shown as formula (3). μ indicates the position
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of the symmetry axis, and σ indicates the standard deviation. The Gaussian
function satisfies the value range f(x) ∈ (0, 1], it is a monotonically increasing
function, and the function meets the characteristic of sparse at both ends and
dense in the middle while x ≤ u.

f(x) =
1√
2πσ

exp

(
− (x − μ)2

)

2σ2

)
(3)

Fig. 2. Gaussian probability distribution function

Therefore, we make some modifications and simplifications to the Gaussian
function and set a partial large membership function represented as formula (4)
and shown in Fig. 2. It can be seen that its value is between (0, 1], and the fast
growth rate in the middle section is in line with most Elements’ importance is
between 7 and 8.

A(x) = e−( x−10
σ )2 (4)

where A(x) indicates the criticality of the element, x indicates the importance
of the elements, which can be calculated by the formula (2). σ indicates the
standard deviation of the element importance set.

Through the fuzzy criticality model, we can calculate the value of criticality
A(x) of each element. We set a threshold t and identify the elements with a
critical degree greater than threshold t as critical components. This enables the
identification of critical and non-critical elements.

3.2 Hierarchical Trustworthiness Computing Model

A component-based software system contains a large number of components,
which can be divided into different modules according to different functions. In
order to be able to calculate the trustworthiness of the software system effec-
tively, we establish a hierarchical model to calculate the trustworthiness of each
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function module and service so that the calculation of the trustworthiness of the
complex software system is more reliable. Therefore, we divide the software sys-
tem into three layers, including the services layer, function modules layer, and
components layer, respectively.

Definition 2. Functional module refers to collections of components required
to complete a specific function in a software system.

Therefore, the system can be divided into many function modules based on
functions, and which components are in the function module can be determined
by functions.

Definition 3. Service refers to collections of functional modules in a software
system, like an application program, can provide users with multiple functions.

Herein, each service and its corresponding functional module set can be deter-
mined according to the category and functions of the service.

A software system can be divided into multiple services according to func-
tions, and each service can run independently and provide different functions.
In other words, service is also a collection of function modules.

Function Modules’ Trustworthiness Computing Method
The computing of the function module’s trustworthiness needs to use the trust-
worthiness of each component, and there are already many methods for calcu-
lating the trustworthiness of the component. Herein, we assume that the trust-
worthiness of each component has been obtained.

We assume there is n components in this function module, and m critical com-
ponents have been selected through the fuzzy criticality model, which component
cpi(1 ≤ i ≤ m) is a critical component and component cpj(m + 1 ≤ j ≤ n) is
a non-critical component. The weight of each critical component in the critical
components set and the corresponding weight of each non-critical component
can be obtained by the normalization method which is given in formula (5),
where IM(cpi) indicates the importance of component cpi, which is given by
the component output degree and the importance of the component in formula
(2). A(IM(cpi)) indicates the criticality of the component cpi, which is given in
formula (4).

The weights αi of the critical component cpi are given as formula (5).
⎧
⎪⎨

⎪⎩

αi =
A(IM(cpi))∑

A(IM(cpk))≥t

A(IM(cpk))

m∑
i=1

αi = 1
(5)

The weights βj of the non-critical component cpj are given as formula (6).
⎧
⎪⎪⎨

⎪⎪⎩

βj =
A(IM(cpj))∑

A(IM(cpl))<t

A(IM(cpl))

n∑
j=m+1

βj = 1
(6)
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where t indicates the criticality threshold, which is used to distinguish critical
components from non-critical components. A(IM(cpk)) ≥ t indicates component
cpk is the critical component.

Definition 4. The trustworthiness of functional module is given by the trust-
worthiness of critical components and non-critical components, as shown in the
formula (7).

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

FM = Q ∗
m∏

i=1

CPαi
i + (1 − Q) ∗

n∏
j=m+1

CP
βj

j

m∑
i=1

αi = 1 ,
n∑

j=m+1

βj = 1

0 ≤ αi, βj ≤ 1

(7)

where CPi indicates the trustworthiness of the component cpi. And FM indi-
cates the trustworthiness of the function module fm. Q indicates the weight of
critical components, which can be obtained by a comprehensive evaluation of
multiple experts.

Services’ Trustworthiness Computing Method
The calculation of the services’ trustworthiness also need to use the trustworthi-
ness of each function module, and the trustworthiness of each function module
can be calculated by formula (7).

First of all, we also need to distinguish critical function modules from non-
critical function modules according to the fuzzy criticality model. We also assume
there are y function modules in the service, and x critical function modules have
been selected through the fuzzy criticality model, in which fmi(1 ≤ i ≤ x)
indicates a critical function module and fmj(x + 1 ≤ j ≤ y) indicates a non-
critical function module. The weight of each critical function module in the set of
critical function modules and the corresponding weight of each non-critical func-
tion module is obtained by the following normalization method, where IM(fmi)
indicates the importance of function module fmi, which is given by the function
module output degree and the importance of the function module in formula
(2).

The weights αi of the critical function module fmi are given as formula (8).
⎧
⎪⎨

⎪⎩

αi =
A(IM(fmi))∑

A(IM(fmk))≥t

A(IM(fmk))

x∑
i=1

αi = 1
(8)

The weights βj of the non-critical function module fmj are given as formula
(9). ⎧

⎪⎪⎨

⎪⎪⎩

βj =
A(IM(fmj))∑

A(IM(fml))<t

A(IM(fml))

y∑
j=x+1

βj = 1
(9)
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where A(IM(fmi)) indicates the criticality of the function module fmi, which
can be calculated by formula (4).

Definition 5. The trustworthiness of server is given by the trustworthiness of
critical function module and non-critical function module, as shown in the for-
mula (10).

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

SE = R ∗
x∏

i=1

FMαi
i + (1 − R) ∗

y∏
j=x+1

FM
βj

j

x∑
i=1

αi = 1 ,
y∑

j=x+1

βj = 1

0 ≤ αi, βj ≤ 1

(10)

where FMi indicates the value of the function module fmi’s trustworthiness.
SE indicates the value of the severs’ trustworthiness. R indicates the weight of
critical function module, which can be obtained by a comprehensive evaluation
of multiple experts.

Considering that each service is integral and essential to the system, so that
each services is critical. And we assume there is k services in the CBSS. We can
get the weight of each service by the formula (11).

The weights Ti of each service sei are given as formula (11).
⎧
⎪⎪⎨

⎪⎪⎩

Ti =
A(IM(sei))

k∑

l=1
A(IM(sel))

k∑
i=1

Ti = 1
(11)

Based on the trustworthiness of each service, we can compute the trustwor-
thiness of the CBSS as shown in formula (12).

⎧
⎨

⎩

SY S = T1 ∗ SE1 + T2 ∗ SE2 + · · · + Tk ∗ SEk
k∑

i=1

Ti = 1
(12)

where SY S indicates the trustworthiness of the software system. SEi indicates
the trustworthiness of the service sei. Ti indicates the weight of each service,
which can be calculated by normalization method.

4 Experiments and Analysis

4.1 Case Studies of Two Simple Systems

Without loss of generality, two general case studies adapted from litera-
ture [7,8,13,14] are used to demonstrate the effectiveness of the proposed
method, a simple multi-input/single-output (MISO) software system and a sim-
ple multiple-input/multi-output (MIMO) software system, as shown in Fig. 3,
which are consisting of 10 components. A directed graph is used to describe the



A Novel Trustworthiness Measurement Method 263

dependency relations of components in the MISO/MIMO system. Considering a
trustworthiness simulation case of a practice software system [7], a simple MISO
system is shown in Fig. 3(a). And C1, C2 are the input components, C10 is the
output component. But component C7 is changed to another output component
in the MIMO system, which is shown in Fig. 3(b).

(a) The MISO software system. (b) The MIMO software system.

Fig. 3. MISO/MIMO software systems

The initial trustworthiness and self-importance of each component in the
MISO/MIMO system are shown in Table 1. The dependency degree of compo-
nents of the MISO/MIMO system is demonstrated in Table 2 [14]. The weight
of edge Ei,j , which indicates that component Cj depends on component Ci, and
the degree of dependence is wi,j .

According to the data in Table 1 and Table 2, we computed the importance
and criticality of each component and selected the critical components according
to the fuzzy criticality model. Then according to the selected results of critical
components, the corresponding weights of each component were calculated, and
finally, the trustworthiness of the system is calculated. Computed the trust-
worthiness of the MISO system is 9.8209, and the trustworthiness of MIMO is
9.7711. Due to the limited space, all the computing results of the MIMO system
are shown in Table 3.

Results and Analysis. During the computing of the MIMO system, we set the
threshold of criticality t = 0.6, and got the critical components set as C1, C2, C5,
C7, C8, C10. Finally, we got the trustworthiness of MIMO is 9.7711. The results
of selected critical components set and trustworthiness of the MIMO system are
similar to the computing results 9.6845 by Lo et al. [14] proposed model, which
shows that our results are reasonable and thus our method is reasonable.

To measure the impact of components on the system trustworthiness, assume
a simulated attack experiment on the MIMO system. We suppose a component is
attacked and the trustworthiness was dropped by 2. And the attack is propagated
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Table 1. The trustworthiness and self importance of each component

Components C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Trustworthiness 9.9 9.8 9.9 9.6 9.8 9.5 9.8 9.6 9.7 9.9
Self Importance (MISO) 9 5 5.2 4.8 7.2 3.6 4.6 5.1 2 9
Self Importance (MIMO) 9 9 5.2 4.8 7.2 3.6 9 5.1 2 9

Table 2. The weight of dependency edges in MISO/MIMO

Edges E1,2 E1,3 E1,4 E2,3 E2,5 E3,5 E4,5 E4,6

Weight 0.6 0.2 0.2 0.7 0.3 1.0 0.6 0.4
Edges E5,7 E5,8 E6,3 E6,7 E6,9 E9,8 E8,4 E8,10

Weight 0.4 0.6 0.3 0.3 0.1 0.1 0.25 0.75

through the dependency edges. The weights of the edges determine the degree
of influence. And we conducted two sets of experiments, and in experiment 1,
we assume that the critical component C1 is attacked and the trustworthiness
is dropped by 2. At this time, the trustworthiness of other components and
the trustworthiness of the system are computed, and the variation δ1 of each
component is shown in Table 4. In experiment 2, we assume that the non-critical
component C6 was attacked and the trustworthiness is also dropped by 2. At this
time, the variation δ2 of each component is also shown in Table 4. In experiment
1, the trustworthiness of the MIMO system was decreased by 9.3562. But the
trustworthiness of the MIMO system in experiment 2 is reduced by 9.4433.

It is not difficult to see from the above experiments that the more essential
components have a more significant impact on the system, which also shows the
necessity of dividing the components into critical components and non-critical
components.

4.2 Case Study of a Simple Game Software System

To illustrate that the hierarchical trustworthiness computing model is effective,
we carry out a study case on a game system on Github (It can be available on
https://github.com/jzyong/game-server). First, we used Structure 101 Studio 5

Table 3. The computing results of MIMO

Components C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Importance 6.89 9.12 5.74 5.82 7.5 3.95 6.6 6.57 1.718 6.6
Criticality 0.66 0.97 0.45 0.47 0.76 0.21 0.61 0.6 0.05 0.61
Critical component T T F F T F T T F T
System Trustworthiness 9.7711

https://github.com/jzyong/game-server
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Table 4. The variation of components’ trustworthiness in MIMO

Components C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

δ1 2 0 0.4 0.4 0.56 0.24 0 0 0 0
δ2 0 0 0.6 0 0.6 2 0.6 0.02 0.2 0

for Java to analyze the project. We divided the system into three services: Server
Computing Service, Web Service, and Client Service, and the server computing
service is the core service. Each service can be divided into multiple functional
modules according to specific functions. The architecture of the game system is
shown in Fig. 4.

We further divide functional modules into 43 components, including the reg-
istered cluster, public, tool, configure, core-engine, message, etc. To simplify the
process of computing, we number the components from 1 to 43. And components
C1∼C8 belong to the playability function module, components C9∼C17 belong to
the management function module, components C18∼C24 belong to the network
function module, components C25∼C35 belong to the login function module and
components C36∼C43 belong to the register function module. And we use the
Structure 101 Studio 5 for Java to get the usage relationship (including returns,
calls, parameter, reference, is type, etc.) and usage times. We obtain the depen-
dency according to the usage relationships by reversing the usage relationships
firstly. A recalls B means A depends on B, and there is an edge from B to A in
the dependency model. There are 68 dependency relations between components,
which are shown in Table 5.

According to the weight of dependency edges and self-importance of compo-
nents in Table 5 and Table 6. We compute the importance and criticality of each
component through the fuzzy criticality model. The value of σ is obtained by
computing 2.8. We set t = 0.6 because about 1/4 of the components are iden-
tified as critical components at this time, which is in line with the proportion
of critical components in the actual scene. The criticality of critical components

Games system

Server computing 
service

Network 
service

Client 
service

Playability 
function module

Management 
function module

Network
fuction module

Login 
function module

Register 
function module

Fig. 4. Elements trustworthiness dependency model
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Table 5. The dependency edges’ weight of game system

Edges E1,2 E1,3 E2,3 E4,3 E4,5 E5,3 E6,3 E7,4 E7,5 E8,2 E8,3 E8,5 E9,16 E10,16

Weights 0.61 0.63 0.21 0.19 0.43 0.11 0.61 0.52 0.65 0.1 0.1 0.69 0.2 0.39
Edges E12,17 E13,10 E13,14 E14,16 E15,10 E15,14 E15,16 E15,17 E17,10 E18,21 E18,24 E18,25 E18,26 E19,21

Weights 0.23 0.31 0.57 0.3 0.38 0.43 0.45 0.03 0.4 0.28 0.6 0.6 0.54 0.37
Edges E21,24 E22,19 E22,24 E23,19 E23,20 E23,24 E25,35 E26,25 E26,27 E26,30 E27,29 E27,30 E27,32 E28,25

Weights 0.46 0.68 0.61 0.31 0.47 0.49 0.57 0.25 0.5 0.6 0.56 0.38 0.4 0.23
Edges E31,29 E33,27 E33,35 E34,27 E35,30 E37,36 E37,39 E37,41 E37,42 E38,37 E38,41 E39,36 E40,36 E40,39

Weights 0.19 0.22 0.44 0.28 0.2 0.15 0.27 0.41 0.33 0.27 0.51 0.49 0.23 0.24
Edges E8,3 E8,5 E9,16 E19,24 E20,24 E21,20 E28,32 E29,25 E29,30 E40,42 E43,36 E44,38

Weights 0.54 0.56 0.04 0.27 0.4 0.39 0.36 0.12 0.39 0.84 0.3 0.28

Table 6. The trustworthiness and self importance of components

Components C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

Trustworthiness 9.15 9.77 9.07 9.36 9.04 9.84 9.05 9.61 9.91 9.23 9.74
Self Importance 6 5 5 4 3 3 5 6 7 4 6
Components C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22

Trustworthiness 9.33 9.41 9.06 9.33 9.86 9.28 9.14 9.67 9.78 9.02 9.78
Self Importance 5 7 8 6 6 5 9 8 6 6 7
Components C23 C24 C25 C26 C27 C28 C29 C30 C31 C32 C33

Trustworthiness 9.86 9.14 9.9 9.53 9.25 9.56 9.74 9.07 9.94 9.51 9.79
Self Importance 8 9 6 4 3 4 3 5 5 6 7
Components C34 C35 C36 C37 C38 C39 C40 C41 C42 C43

Trustworthiness 9.46 9.9 9.07 9.44 9.8 9.67 9.34 9.47 9.84 9.9
Self Importance 4 6 5 3 5 5 6 7 4 6

and non-critical components is quite different, so the distinction is noticeable.
The results of computing are shown in Table 7. We determine the critical com-
ponents in each function module through the fuzzy criticality model. As shown
in Table 7, T indicates the component is a critical component, while F indicates
the component is a non-critical component.

Results and Analysis. According to the results of the critical components
set, the trustworthiness of each functional module is obtained and shown in
Table 8. Therefore, we calculated that the trustworthiness of the server comput-
ing service is 9.4107, the trustworthiness of the network service is 9.4510, and
the trustworthiness of the client service is 9.5993. And the trustworthiness of the
Game System is 9.4794.

As a comparison, we use the non-hierarchical trustworthiness computing
method and the model which Chen et al. [7] proposed to calculate the trustwor-
thiness of the system and get the results as below. In the non-hierarchical trust-
worthiness computing method, due to there is no distinguishing module, all com-
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Table 7. The importance and criticality of components

Components C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

Importance 5.37 3.82 3.8 3.39 2.41 2.61 4.65 5.53 5.22 3.19 5.19
Critical T F F F F F F T T F F
Components C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22

Importance 3.87 5.76 5.95 5.79 4.5 3.89 9.3 6.16 4.59 4.94 6.18
Critical F T T T F F T T F F T
Components C23 C24 C25 C26 C27 C28 C29 C30 C31 C32 C33

Importance 6.94 6.6 4.68 4.45 3.65 3.34 2.62 3.8 3.82 4.5 5.52
Critical T T F F F F F F F F T
Components C34 C35 C36 C37 C38 C39 C40 C41 C42 C43

Importance 3.14 4.52 3.8 3.46 4.24 3.93 6.34 5.2 3.1 4.69
Critical F F F F F F T T F F

ponents were regarded as a set, and the value of the variance σ of the Gaussian
function changed so that the selection results of critical components were also
different. Different from the results in Table 7, these components c1, c8, c9, c33, c41
changed to the non-critical components, this is because the importance of other
components in the system is higher, which makes the importance of these compo-
nents is no longer ranked in the forefront of the system. So they were no longer
divided into critical components. At this time, we computed the trustworthi-
ness of the system is 9.2128. And the result of the system’s trustworthiness
calculated by the model of Chen et al. [7] is 9.2627.

According to the results, the system’s trustworthiness obtained by the hier-
archical trustworthiness computing method is higher than the other two meth-
ods. It is because, different from the other two methods, our method considers
that most component-based software systems are developed using component-
based software development techniques nowadays, and developers modularise
the systems, with different components playing different roles in the module.
Our method focuses on the importance of each component in the module and
obtains the trustworthiness of critical components and non-critical components,
and obtains the trustworthiness of the module and the trustworthiness of the
system. In the other two methods, they do not consider the modularization of
the system, which will cause some components that play an essential role in the
module to be ignored, resulting in the wrong division of critical components. As
a result, the computer result of the system’s trustworthiness is low. So here, we
think the results of our experiments are reliable.
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Table 8. The trustworthiness of function modules

Function modules playability management network login register

Trustworthiness 9.3643 9.4417 9.4510 9.7319 9.4666

5 Conclusion and Future Work

As software systems become more complex, how correctly measuring the trust-
worthiness of a software system has become an urgent problem to be solved.
In this paper, we proposed a hierarchical trustworthiness measure method for
component-based software systems (CBSS) based on the fuzzy criticality model.
Experiments show that our approach can obtain reasonable measurements that
can guide designers to work effectively in the design phase of development, help-
ing maintainers maintain software more accessible.

In the future work, we will focus on using this trustworthiness measurement
method to calculate the trustworthiness of CBSS dynamically and develop a set
of components fault detective and components fault isolation methods accord-
ingly.
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Abstract. Software trustworthiness is an important indicator to assess
the quality of software and can be portrayed by the attributes of the
software. The different attribute produces different influence on the soft-
ware quality. Therefore, it is important to study the weight allocation
for different attributes to measure software trustworthiness reasonably.
Usually, the weight of trustworthy attributes is affected by two aspects,
one is the assessment of experts and the other is the hidden information
in attributes. The component-based software has become popular in the
field of software engineering due to its advantages. So a trustworthiness
measurement model of component-based software is proposed by combin-
ing the weights. Firstly, a new method of weight allocation for trustwor-
thy attributes is proposed based on Fuzzy Analytical Hierarchy Process
and the grey correlation method. Secondly, the trustworthiness measure-
ment model of component-based software will be established based on
the combination structures of components. Finally, the station ticketing
system is used to illustrate the rationality of the model.

Keywords: Trustworthiness · Component-based software ·
Measurement · Weight

1 Introduction

With the rapid development of computer technology, the software is widely used
in various industries such as aerospace, finance, medical, automotive, and shop-
ping. A large number of software products have penetrated people’s daily life [1].
However, as the scale of software continues to expand, failures and faults of soft-
ware systems are inevitable and cause many negative impacts on people, which
even threaten human lives and property safety [2]. Software is not always com-
pletely trustworthy and does not perform exactly as expected, which produces
the software trustworthiness problem [3].
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Trustworthiness, as the focus of international industry and academia, is a
key technology foundation for the development of software technology and the
information industry [4]. There exists a large number of excellent results. Prof.
J.F.He proposed that “trustworthy software” means that the operation behavior
and results of software systems always meet people’s expectations and can pro-
vide continuous services even when they are disturbed [5]. The team of Prof. Y.X.
Chen, from the perspective of attributes, has achieved many significant research
during the software trustworthiness [6–10]. The team of Prof. D.X.Wang, from
the perspective of evidence, has made great contributions to the trustworthiness
model [11,12].

Due to the increasing complexity of the software, more requirements for the
quality and productivity of software products have been put forward, and the
development method of component-based software has become one of the impor-
tant development methods in the field of software engineering due to its advan-
tages of reusability, saving development cost, effort, and time [13,14], and so on.
Considering that different combination structures of components will produce
different software systems, their trustworthiness will be influenced by the com-
bination structures [15,16]. A large number of researches have existed to study
component-based software from some perspectives, such as formal languages
[17], framework structures [18], etc. However, the quality of components plays
an important role in the quality of component-based software. The component
is usually developed by a third party and has some important attributes. These
attributes also play a critical role in the quality of the component.

Different trustworthy attributes have different influences on component trust-
worthiness, for example, security is an important attribute for the component
which is designed to ensure the security of the system, and the weight of secu-
rity needs to be increased to reflect its importance. Many methods already exist
for allocating weights to trustworthy attributes. For example, the article [19]
allocated weights according to the AHP method. The paper [20] obtained sta-
ble expert two-way weights by calculating the consistency of individual experts’
decisions and the experts’ knowledge. The authors in [21] gave an embedded
software trustworthiness measurement method based on the entropy weight
method. Prof. S.L.Yang et al. proposed a weight allocation method by combining
TOPSIS method [22]. The authors in [23] studied the sensitivity of attributes
and combined it with experts’ evaluation to establish a subjective and objec-
tive weight allocation model. The authors in [24] analyzed the relationships
between attributes and used directed graphs to describe the interactions between
attributes, and assigned weights for attributes according to the degree of the
directed graph and the weights on each edge.

From the aspect of the experts’ evaluation, experts have produced many
excellent research results on weight allocation. However, weight allocation meth-
ods based on experts’ evaluation often influence the results due to the ambiguity
and personal preference of expert evaluation. At the same time, some hidden
information in attributes can also reflect the quality of software. Therefore, it is
necessary to consider the experts’ assessment of the attributes and the hidden
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information of the trustworthy attributes together when allocating weights to
the attributes. In this paper, we will use the FAHP (Fuzzy Analytical Hierar-
chy Process) method and the grey correlation degree to combine the experts’
evaluation and the hidden information in attributes to establish a new weight
allocation method. Furthermore, the trustworthiness measurement model of the
component-based software is established based on the combined weight alloca-
tion method and different structures of components.

In Sect. 2, the combination weight allocation method is proposed based
on the FAHP method and grey correlation method. Section 3 investigates the
component-based software trustworthiness measurement model. Section 4 takes
the station ticketing system as an example to study the concrete implementation,
and Sect. 5 concludes the paper.

2 Combination Weight Allocation Method

2.1 Subjective Weight

FAHP theory is built based on AHP, incorporating fuzzy theory and taking
into account the fuzziness in the human judgment process [25]. In the software
system, the weight allocation of attributes is affected by many factors, such as
fuzziness and arbitrariness in the experts’ judgment. However, FAHP has the
advantage of defuzzification. Therefore, this paper adopts the FAHP method
to calculate the subjective weights of attributes. The FAHP method judges the
importance of the attributes by using triangular fuzzy numbers.

The general expression of the triangular fuzzy number is N = (l,m, u). In
the domain U , if uN (x) : U → [0, 1] exists, uN (x) is the degree of affiliation of
x ∈ N , l ≤ m ≤ u, where x = m is the median of the N affiliation degree of 1
and l, u are the lower and upper bound values of N . The values of l, u determine
the degree of fuzziness, and the larger u− l is, the greater the degree of fuzziness.

uN (x)

⎧
⎨

⎩

x − l/m − l, x ∈ [l,m]
u − x/u − x, x ∈ [m,u]

0, other
(1)

The triangular fuzzy numbers N1 (l1,m1, u1), N2 (l2,m2, u2) satisfy the fol-
lowing rules:

N1 + N2 = (l1 + l2,m1 + m2, u1 + u2)
1/N1 = (1/u1, 1/m1, 1/l1)

(2)

Let hij = (lij ,mij , uij) be the relative importance of attribute i to attribute
j, where hji = (hij)

−1, i �= j, i, j = 1, · · · q. Referring to the [1,9] evaluation
scale method proposed in the AHP method [19], the evaluation standards of
the triangular fuzzy numbers is given as Table 1 shown. Experts compare the
importance of trustworthy attributes two-by-two through their experience and
knowledge, and give the value of hij .
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Table 1. Triangular fuzzy number evaluation standards

Compare standards Triangular
fuzzy number

Countdown

Both attributes are equally important (1, 1, 1) (1, 1, 1)

Between equally important and slightly important (1, 2, 3) (1/3, 1/2, 1)

The former is slightly more important than the latter (2, 3, 4) (1/4, 1/3, 1/2)

Between slightly important and more important (3, 4, 5) (1/5, 1/4, 1/3)

The former is more important than the latter (4, 5, 6) (1/6, 1/5, 1/4)

Between more important and strongly important (5, 6, 7) (1/7, 1/6, 1/5)

The former is more strongly important than the latter (6, 7, 8) (1/8, 1/7, 1/6)

Between strongly important and extremely important (7, 8, 9) (1/9, 1/8, 1/7)

The former is extremely more important than the latter (8, 9, 9) (1/9, 1/9, 1/8)

The calculation process of the FAHP method is described as follows, the
detail can refer to [25].

1. Construct the fuzzy judgment matrix, compare the importance of trustworthy
attributes, and give triangular fuzzy numbers to construct the fuzzy judgment
matrix H = (hij)q×q.

2. According to the fuzzy judgment matrix, the fuzzy subjective weights are
calculated.

w̃j =
∑q

i=1 hij
∑q

i=1

∑q
j=1 hij

=
(
w̃l

j , w̃
m
j , w̃u

j

)
, (3)

where w̃j (j = 1 · · · q) is the fuzzy subjective weight of the jth attribute.
3. To defuzzify the fuzzy subjective weights, the affiliation limit element aver-

aging method is used, which cuts the data flat according to the value taken
by the affiliation degree, and averages all the elements that are greater than
or equal to this affiliation degree after the cut, the affiliation degree can be
selected in [0,1], and this paper determines the affiliation degree a = 0.5,
followed by the calculation and simplification to obtain the defuzzification
formula as follow:

ws
j =

w̃l
j + 4w̃m

j + w̃u
j

6
, (4)

where ws
j (j = 1 · · · q) is the subjective weight of the jth attribute.

2.2 Objective Weight

Various factors can lead to defects in the design and development process of com-
ponents, such as the development environment of components, the development
language used, and the compilation environment. There is a negative correla-
tion between defects and trustworthiness. If the correlation between defect data
and a trustworthy attribute is high, then the software is more prone to defects
when the value of that trustworthy attribute is low, and more weight is assigned
to that attribute. By inverting the defect data to obtain the reference sequence,
and comparing the sequence curve of the reference sequence and the trustworthy
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attribute, the correlation between the trustworthy attribute and the defect can
be obtained, and the weights are allocated according to the correlation.

Suppose that component has q trustworthy attributes, each component is
tested and the defect data is collected, and the number of defects of the com-
ponent is num. [26] gives the detailed method to collect the defect data and
the counting standards. The x0 is the reference data obtained from the defect
data. The evaluation object can be described as xj , which is the value of the jth
trustworthy attribute, and the correlation of each trustworthy attribute with the
defect data can be obtained by comparing the reference data and the evaluation
object, and the weights are allocated according to the correlation, and the detail
process is as follows:

1. From the defect perspective, the defect data are collected, and considering
the negative correlation between the defect data and trustworthy attributes,
the defect data are inverted and the defect data is calculated by referring to
the method of processing defect data in [26].

x0 = e−num/f , (5)

where f is the control parameter of the component, generally f is the number
of lines of the code of the component.

2. Calculation of correlation coefficient. Calculate the absolute difference
between comparison data of component evaluation objects and the defect
reference data.

Δj = |xj − x0|, j = 1, 2, · · · q. (6)
Furthermore, the two-level maximum difference Δ (max) and the two-level
minimum Δ (min) can then be obtained.

Δ (max) = max
1≤j≤q

(Δj) ,Δ (min) = min
1≤j≤q

(Δj) . (7)

And subsequently, the correlation between each trustworthy attribute and
the defect data is calculated as follows:

ξj = Δ (min) + ρΔ (max)/Δj + ρΔ (max) , j = 1, 2, · · · , q (8)

where ξj is the correlation coefficient between xj and x0, ξj represents the
correlation between the jth trustworthy attribute and the defect reference
data of the component, and ρ is the discrimination coefficient to weaken the
distortion of the two-level maximum difference Δ (max) by too large, and ρ
is generally taken as 0.5.

3. Calculating objective weights. The higher the correlation degree, the higher
the correlation between this trustworthy attribute and the component defect
data, then the weight assigned to this trustworthy attribute needs to be
increased. Let wo

j be the objective weight of the jth trustworthy attribute,
can be given by the following formula:

wo
j = ξj

/
q∑

j=1

ξj . (9)
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2.3 Combination Weight

The subjective weight method is simple, based on expert experience entirely,
while the objective weight is too dependent on the sample and the data. Both
methods suffer from information loss. Therefore, when allocating weights to
attributes, a combination of the subjective allocation method (FAHP) and the
objective allocation method (grey correlation) is used to make up for the defi-
ciencies brought by a single assignment. The combination of allocation minimizes
the loss of information and makes the result of allocation as close as possible to
the actual result. Game theory is the study of how decision makers make deci-
sions to maximize their utility and the equilibrium of decisions between different
decision-makers. By applying the idea of game theory, the subjective weights
and objective weights are regarded as the two sides of the game, and the opti-
mal combination of weights can be regarded as the two sides of the game reaching
the equilibrium state [27]. The steps are as follows:

1. Combining the subjective weight W s =
(
ws

1 · · · ws
q

)
and objective weight

W o =
(
wo

1 · · · wo
q

)
to form combination weight W ∗ =

(
w∗

1 · · · w∗
q

)
,

W ∗ = λ∗
1W

s + λ∗
2W

o, (10)

where, λ∗
1 and λ∗

2 are linear combination coefficients.
2. According to the idea of game theory, the objective function is established,

and the optimal linear combination coefficient λ1, λ2 are sought with the
objective of minimizing the sum of the deviation of indicator combination
weight W ∗ =

(
w∗

1 · · · w∗
q

)
from W o =

(
wo

1 · · · wo
q

)
and W s =

(
ws

1 · · · ws
q

)
.

At this time, the indicator combination weight is the optimal combination
weight. The objective function and constraints are as follows.

min (||W ∗ − W s||2 + ||W ∗ − W o||2) , (11)

s.t. λ∗
1 + λ∗

2 = 1, λ∗
1 ≥ 0, λ∗

2 ≥ 0.

3. According to the principle of differentiation, the following conditions need to
be satisfied when the above model takes the smallest value.

{
λ∗
1W

s(W s)T + λ∗
2W

s(W o)T = W s(W s)T ,

λ∗
1W

o(W s)T + λ∗
2W

o(W o)T = W o(W o)T .
(12)

4. The combination coefficients are normalized and the combination weights are
calculated,

λ1 =
|λ∗

1|
|λ∗

1| + |λ∗
2|

, λ2 =
|λ∗

2|
|λ∗

1| + |λ∗
2|

. (13)

The combination weights are a linear combination of subjective and objective
weights, and according to the above model, the linear combination coefficients
λ1 and λ2 are obtained. Thus the combination weights W can be obtained,

W = λ1W
s + λ2W

o. (14)
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3 The Trustworthiness Measurement Model
of Component-Based Software

3.1 Trustworthiness Measurement Model of Component

Measuring component trustworthiness is important for constructing highly trust-
worthy component-based software. Component trustworthiness can be portrayed
by the trustworthy attributes of the components, so we can build a trustwor-
thiness measurement model of a single component based on the model in [28].
Assuming that component Ci has q trustworthy attributes, the trustworthiness
measurement model of a single component is obtained as follows:

TCi
=

∏q

j=1
y

λi
1ws

ij+λi
2wo

ij

ij , (15)

where TCi
denotes the trustworthiness of component Ci, yij denotes the value of

the jth trustworthy attribute of component Ci. ws
ij and wo

ij denote the subjective
weight and objective weight of the jth trustworthy attribute of component Ci.
λi
1 and λi

2 are linear combination coefficients of component Ci.

3.2 The Trustworthiness Measurement Models of Component-Based
Software

The trustworthiness of component-based software is influenced by the trustwor-
thiness of the components and the combination structure of the components. The
component trustworthiness can be obtained through Subsect. 3.1. This section
delves into the inter-component relationships and proposes corresponding trust-
worthiness measurement models for four different combination structures.

Suppose that there are n components to constitute structure and each com-
ponent has q trustworthy attributes, where TCi

represents the trustworthiness
of component Ci, the weight of Ci is denoted as αi. Then the four combination
structures will be introduced in detail.

Sequence Structure. The structure requires that all of these components exe-
cute successfully, and only if the previous component executes successfully can
the subsequent components execute in sequence. Under the sequence structure,
the components conform to the cascade rule, and the trustworthiness of each
component directly affects the trustworthiness of the whole component-based
software. Figure 1 shows how the sequence structure is combined. Only when
component C1 executes successfully will component C2 and subsequent compo-
nent be executed sequentially.

Fig. 1. Combination structure of sequence structure.
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Let TS represent the trustworthiness of the sequence structure,
{

TS =
∏n

i=1 Tαi

Ci

TCi
=

∏q
j=1 y

λi
1wS

ij+λi
2wO

ij

ij

(16)

Branch Structure. In the branch structure, the program selects one branch
at a time to execute, and each branch has a corresponding probability of being
selected. In this structure, the selected components have a direct influence on
the whole structure, but each component has a different probability of being
selected. Figure 2 shows the branch structure. In this structure, the components
C1...Cn have the probability of being selected, and if the component is selected,
then execute it.

Fig. 2. Combination structure of branch structure.

Suppose that the probability of component Ci being selected to execute is
denoted as pi. TB is used to represent the trustworthiness of the branch structure.

⎧
⎪⎨

⎪⎩

TB =
n∑

i=1

piTCi
,

n∑

i=1

pi = 1,

TCi
=

∏q
j=1 y

λi
1ws

ij+λi
2wo

ij

ij .

(17)

Parallel Structure. Parallel structure is usually divided into “and parallel” and
“or parallel”. “And parallel” requires all components are successfully executed.
The calculation of the trustworthiness is similar to sequence structure. Next, we
only focus on “or parallel”, which is mostly used in software with high trustwor-
thiness requirements, where multiple components complete the same service. If
the execution of the master component is successful, the execution of the sub-
sequent component is executed, and if the execution of the master component
fails, the redundant component continues to complete the service. The parallel
structure runs successfully as long as one of the components in that structure
runs successfully. Figure 3 shows how the parallel structure is combined. The
structure requires one of the components C1...Cn to execute successfully, only
then can the subsequent components be executed. Thus the structure is more
trustworthy than any of the components.

Using TP to represent the trustworthiness of the parallel structure, so that
⎧
⎨

⎩

TP = 1 − min
1≤i≤n

(
1 − Tαi

Ci

)

TCi
=

∏q
j=1 y

λi
1wS

ij+λi
2wO

ij

ij

(18)
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Fig. 3. Combination structure of parallel structure.

Loop Structure. If a condition is satisfied, the loop is started, and if not, the
loop is jumped out, where the loop can be a single component or a composite
component made of components connected by one or more of the above. Figure 4
shows how the loop structure is combined. Suppose the trustworthiness of the
loop A denoted as TA, and the loop body A is executed t times, which is equiv-
alent to A loops t satisfies the sequence rule. The trustworthiness of the loop
structure is noted as TL.

Fig. 4. Combination structure of loop structure.

Propose the trustworthiness measurement model for loop structure:
{

TL = T t
A,

TCi
=

∏q
j=1 y

λi
1ws

ij+λi
2wo

ij

ij .
(19)

4 Case Study

Assuming a station ticketing system, the system consists of nine components, as
shown in Fig. 5. Component C1 completes the account login function, compo-
nent C2 realizes the third-party login function such as QQ, WeChat and Alipay,
component C3 completes the tour ticket inquiry function, component C4 realizes
the user refund function, C5 completes the tour ticket reservation function, com-
ponent C6 completes the bank card payment function, component C7 completes
the WeChat payment function, component C8 completes the Alipay payment
function, and component C9 completes the account withdrawal function.

Component C1 and component C2 are connected by or parallel structure to
form composite component CA, which completes the user login function, and the
users can enter the system for operation as long as one of component C1 and C2

is running successfully. Component C6, C7, and C8 are connected by or parallel
to form the composite component CB , and only one component needs to run
successfully for the users to complete the payment function. Component C3, C5,
and CB are connected sequentially, and each component needs to be successfully
executed to constitute the composite component CD. When the user chooses to
return the ticket, the software executes component C4 to achieve the task. After
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returning the ticket, the probability of choosing to rebook the ticket is p3 = 0.7,
and the probability of choosing to exit the system is p4 = 0.3. Component CD

and C4 are connected through the branch structure to form the composite com-
ponent CE , and according to the statistics of the ticketing system, the probability
of the user choosing to purchase the ticket is p1 = 0.9, and the probability of
the user choosing to return the ticket is p2 = 0.1, component CE and compo-
nent CD form the composite component CF through the branch structure. The
component C9 completes the refund and booking functions. Finally, component
CF completes the exit function. The whole system will loop t times.

Fig. 5. Structure of station ticketing system.

1. Calculate the combination weights of trustworthy attributes.
When the incremental model is used for component-based software develop-

ment, each functional module and component is retained and developers need
to review it independently before developing the components to ensure that it is
trustworthy in terms of single components before moving on to the next devel-
opment. Component evidence is collected during the testing phase to obtain the
values of trustworthy attributes. It is assumed that each component of this sta-
tion ticketing system possesses four attributes: reliability, correctness, security,
and availability. The values of trustworthy attributes are shown in Table 2.

Table 2. The values of trustworthy attributes

Component Reliability Correctness Security Availability

C1 0.87 0.84 0.88 0.89
C2 0.90 0.86 0.90 0.85
C3 0.80 0.87 0.82 0.92
C4 0.81 0.96 0.85 0.87
C5 0.82 0.84 0.86 0.88
C6 0.96 0.92 0.93 0.95
C7 0.98 0.92 0.90 0.88
C8 0.97 0.91 0.94 0.97
C9 0.86 0.88 0.90 0.84
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(1) Calculate the subjective weights of trustworthy attributes.
The experts use the FAHP method to calculate the subjective weights of the

nine components in turn.

Table 3. The subjective weights of trustworthy attributes

Component Reliability Correctness Security Availability

C1 0.06 0.33 0.50 0.11
C2 0.20 0.25 0.40 0.15
C3 0.17 0.37 0.35 0.11
C4 0.15 0.45 0.26 0.14
C5 0.18 0.20 0.41 0.21
C6 0.16 0.11 0.63 0.14
C7 0.18 0.10 0.62 0.10
C8 0.17 0.10 0.62 0.11
C9 0.17 0.16 0.51 0.16

The subjective weights presented in Table 3, which are calculated through
formula (3)–(4) based on the fuzzy judgment matrix, the detail can be viewed
in Subsect. 2.1.

(2) Calculate objective weights. Collect defect data, count the number of
defects for each component and then obtain the reference data x0, and x0 =
(0.83, 0.84, 0.85, 0.82, 0.80, 0.88, 0.86, 0.90, 0.82). According to the formula (5)–
(8) the objective weights of trustworthy attributes can be calculated in Table 4.

Table 4. The objective weights of trustworthy attributes

Component Reliability Correctness Security Availability

C1 0.22 0.39 0.22 0.17
C2 0.16 0.30 0.16 0.38
C3 0.22 0.33 0.28 0.17
C4 0.33 0.19 0.26 0.22
C5 0.35 0.26 0.21 0.17
C6 0.20 0.31 0.27 0.22
C7 0.15 0.23 0.27 0.34
C8 0.18 0.42 0.22 0.18
C9 0.27 0.27 0.18 0.27

(3) Calculation of combination weights. According to the game theory prob-
lem, the subjective and objective weights are linearly programmed to find the
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linear combination coefficients λi
1, λi

2 as Table 5 shows. According to the formula
(14), the combination weights are calculated in Table 6 shown by combining sub-
jective weights and objective weights in Table 3 and Table 4.

Table 5. Linear combination coefficients

Linear combination
coefficient

C1 C2 C3 C4 C5 C6 C7 C8 C9

λi
1 0.92 0.51 0.63 0.70 0.60 0.91 0.87 0.69 0.75

λi
2 0.08 0.49 0.37 0.30 0.40 0.09 0.13 0.31 0.25

Table 6. The combination weights of trustworthy attributes

Component Reliability Correctness Security Availability

C1 0.07 0.33 0.48 0.12
C2 0.18 0.27 0.29 0.26
C3 0.19 0.36 0.32 0.13
C4 0.21 0.37 0.26 0.16
C5 0.25 0.22 0.33 0.20
C6 0.16 0.12 0.59 0.13
C7 0.18 0.12 0.57 0.13
C8 0.17 0.20 0.50 0.13
C9 0.19 0.19 0.43 0.19

2. Calculating the trustworthiness of components.
The components trustworthiness can be portrayed by the trustworthy

attributes of the components. Through the values of trustworthy attributes in
Table 2 and the combination weights in Table 6, the trustworthiness of compo-
nents can be obtained as Table 7.

Table 7. Trustworthiness of components

Component C1 C2 C3 C4 C5 C6 C7 C8 C9

Trustworthiness 0.867 0.876 0.867 0.884 0.849 0.934 0.913 0.943 0.877

3. Calculation of component-based software trustworthiness.
The weights of the components are obtained through expert evaluation, as

shown in Table 8.
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Table 8. The weights of components

Component C1 C2 C3 C4 C5 C6 C7 C8 C9

Weight 0.08 0.07 0.15 0.13 0.18 0.10 0.10 0.10 0.09

In component CA, component C1, C2 are connected by or in parallel to
form a composite component, and the weights occupied by component C1, C2

in component CA are shown in Table 9.

Table 9. The ratio of component CA

Component Ci C1 C2

Weight αi
A 0.533 0.467

where αi
A denotes the weight ratio of component Ci in component CA, αi

A =

αi

/∑2
i=1 αi, TCA

denotes the trustworthiness of component CA, TCA
= 1 −

min
(
1 − T

α1
A

C1
, 1 − T

α2
A

C2

)
= 0.940, and αA denotes the weight of component CA

in the whole system, αA = α1 + α2 = 0.15.
In component CB , components C6, C7 and C8 are connected by or parallel

to form a composite component. It is easy to get TCB
= 0.980, and αB =

α6 + α7 + α8 = 0.30.
In component CD, components C3, C5 and CB are connected by sequence

structure to form a composite component, and the weights occupied by compo-
nents C3, C5 and CB in the component CD are shown in Table 10.

Table 10. The ratio of component CD

Component Ci C3 C5 CB

Weight αi
D 0.238 0.286 0.476

Where αi
D denotes the weight ratio of component Ci in component CD, TCD

denotes the trustworthiness of component CD, TCD
= T

α3
D

C3
×T

α5
D

C5
×T

αB
D

CB
= 0.937,

and αD = α3 + α5 + αB = 0.63.
In component CE , the weights that component C4 and CD occupy in the

component CE are shown in Table 11.

Table 11. The ratio of component CE

Component Ci C4 CD

Weight αi
E 0.171 0.829

Where αi
E denotes the weight ratio of component Ci in component CE , αi

E =
αi/α4 +αD, TCE

denotes the trustworthiness of component CE . Component C4
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has p3 = 0.7 probability of executing component CD and p4 = 0.3 probability of
exiting directly. When component C4 chooses to execute component CD, it can
be regarded as a sequence of components C4, CD, and when the component CD

does not choose to execute, then the trustworthiness of the branch is equal to the
trustworthiness of component C4. TCE

= 0.7
(
T

α4
E

C4
× T

αD
E

CD

)
+ 0.3TC4 = 0.915.

Component CE and component C4 are connected by a branch structure to
form a composite component CF , and TCF

denotes the trustworthiness of com-
ponent CF . TCF

= 0.1TCE
+ 0.9TCD

= 0.935, where αF = α4 + αD = 0.76.
The entire station ticketing system can be regarded as components CA, and

CF , C9 connected sequence, then the trustworthiness of the entire software sys-
tem T = TαA

CA
× TαF

CF
× Tα9

C9
= 0.933 (Fig. 6).

Fig. 6. Trustworthiness comparision.

Comparing the DS method [7] and the weight allocation base on AHP and
sensitivity (AAS) method [23], the data in this paper are centered, where the
DS method completely relies on the experience and knowledge of experts and
ignores the ambiguity of expert evaluation, and the AAS method have focused
on the sensitivity of the attributes in addition to the expert evaluation. This
method focuses on the effect of dynamic changes in attributes on trustworthiness,
ignoring the information contained inside the attributes under static. And the
weight assignment method based on FAHP and grey correlation integrate the
subjective characteristics of experts and the objective characteristics of data.

5 Conclusion

A reasonable weight allocation method needs to consider the amount of infor-
mation from both subjective and objective aspects. On the one hand, it needs to
consider the requirements and evaluation of experts, and on the other hand, it
needs to pay attention to the connection and mutual influence between objective
data. In this paper, the FAHP method is used to calculate the subjective weights,
while the grey correlation degree is used to calculate the degree of influence of
the attributes on the defect data, which reduces the information loss as much as
possible. On the other hand, the connection of components in the component-
based software is the connection between interfaces, and it is important to study
the rules of the connection between interfaces and then construct a reasonable
model to measure the trustworthiness of the component-based software.
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