
Chapter 7
Cuticular Waxes and Its Application
in Crop Improvement

Radha Sivarajan Sajeevan

Abstract Cuticle and cuticular waxes form the first level of barrier between the land
plants and their external environment. This hydrophobic layer protects the plant
tissues from excessive non-stomatal water loss, controls exchange of gases and
solutes, conferring tolerance to enormous abiotic and biotic challenges. The cuticular
waxes synthesized in epidermal cells is a complex mixture of very long-chain fatty
acids, their esters, and derivatives. Its biosynthesis, transport, and deposition involve
multiple genes and are tightly coordinated by complex molecular networks, which in
turn is regulated in response to various environmental factors. Past few decades of
research evidences from model as well as from non-model systems greatly expanded
our understanding and knowledge of the genes involved in cuticular wax biosyn-
thesis and its regulation in plants. This chapter briefly summarizes on the signifi-
cance of cuticular waxes, its biosynthesis, transport, and deposition. Further, focus
has been given toward the transcription factors identified in wax biosynthesis, its
positive and negative regulators, and the targeted manipulation of cuticular wax
biosynthesis in Arabidopsis and different crop plants resulted in tolerance toward
adverse conditions.

Keywords Cuticle · Waxes · Wax biosynthesis · Transcription factors · Abiotic and
biotic stress tolerance

7.1 Introduction

Plant cuticle forms the first layer of resistance between all land plants and their
surroundings. It performs multiple functions of which the most important is to
restrict the non-stomatal water loss (Kerstiens 1996; Goodwin and Jenks 2005;
Mamrutha et al. 2010; McFarlane et al. 2014). The cuticle mainly consists of
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cutin, lipid, intra-, and epi-cuticular waxes accumulated on the plant surface. The
C16 and C18 oxygenated aliphatic monomers derived from fatty acids (FAs) and
glycerol form the insoluble polymer cutin that can resist mechanical damage and act
as structural support for cuticular waxes (Kolattukudy 1980; Pollard et al. 2008). The
cuticular waxes are subdivided into intra- and epi-cuticular. These are generally
complex mixtures of very long-chain (VLC) saturated FA derivatives (Borisjuk et al.
2014). The intra-cuticular waxes are mixture of amorphous lipids implanted in the
cutin that links the cuticle with the cell wall matrix, and epi-cuticular waxes are the
surface lipids forming various crystal like or smooth film structures (Jetter and
Schaffer 2001; Kunst and Samuels 2003). Waxes are chemically complex mixtures
of lipids consisting of very long-chain fatty acids (VLCFA), hydrocarbons, alkanes,
alkenes, ketones, aldehydes, esters, primary alcohols, secondary alcohols,
triterpenes, flavonoids, and sterols (Rashotte et al. 1997; Nawrath et al. 2013; Lee
and Suh 2015a; Xue et al. 2017). The wax concentration and chemical composition
highly vary among plant species, tissues, and developmental stages and contribute to
wax crystal morphology, structure, and surface hydrophobicity (Mamrutha et al.
2010, 2017).

Cuticular waxes can play various roles in plant protection against stresses such as
cold, salinity, drought, high temperature, ultraviolet (UV) radiations, and mechanical
damage (Jenks et al. 1994; Long et al. 2003; Mamrutha et al. 2010; Sajeevan et al.
2017b), bacterial and fungal pathogens, and insects (Eigenbrode and Espelie 1995;
Eigenbrode and Jetter 2002; Ziv et al. 2018; Zhang et al. 2019a, b, c; Wang et al.
2019; Kong et al. 2020). In addition to its protective roles, the cuticle is also involved
in regulating the plant developmental processes (Ingram and Nawrath 2017). Both
biotic and abiotic stresses can act as environmental clues and alter the concentration
and composition of waxes. The Arabidopsis thaliana (At) plants under drought/
dehydration stress showed altered cuticular wax biosynthesis and increased
epi-cuticular wax deposition (Kosma et al. 2009; Yang et al. 2011). Similarly,
drought stress-induced epi-cuticular wax deposition was reported in plants such as
cotton, rose, peanut, and tree tobacco (Bondada et al. 1996; Jenks et al. 2001;
Samdur et al. 2003; Cameron et al. 2006). A high correlation between improved
drought tolerance and higher cuticular waxes was reported in oats (Bengtson et al.
1978), sorghum (Jordan et al. 1984), rice (Islam et al. 2009), alfalfa, and crested
wheat grass (Jefferson et al. 1989). In biotic stress, cuticular waxes act as the plant’s
first physical barrier restricting pathogen entry. On the other hand, pathogens can
exploit the cuticular waxes to initiate their pre-penetration and infection processes in
regulating the plant–pathogen interactions (Skamnioti and Gurr 2007; Ju et al. 2017;
Cui et al. 2019). With its diverse role in multiple abiotic and biotic stresses, cuticular
waxes have gained increasing attention and considered to be an indispensable trait
for crop improvement.
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7.2 Cuticular Wax Biosynthesis in Plants

Through various forward and reverse genetics approaches in model plants like
A. thaliana and tomato and crop plants such as rice and barley, a number of genes
engaged in cuticular wax biosynthesis, transport, and deposition was identified and
characterized. From the current knowledge, cuticular wax biosynthesis can be
divided into three steps—a de novo synthesis of the C16 or C18 FAs followed by
the extension to form VLCFAs. In the third step, the synthesis of various derivatives
of VLCFAs such as aldehydes, alcohols, alkanes, ketones, esters, etc. via either the
alcohol- or alkane-forming pathways. These VLCFA derivatives are further
transported across plasma membrane and deposited as intra- and epi-cuticular waxes.

In short, the cuticular wax biosynthesis begins in endoplasmic reticulum (ER) by
the addition of two carbons donated by malonyl CoA for the extension of C16 and
C18 fatty acid (FA) precursors formed in plastid. This extension process is a
sequential cycle that is facilitated by fatty acid elongase (FAE) complex results in
the formation of VLCFAs consists of 20–36 carbons. The FA extension carries
through a series of four consecutive reactions of condensation (β-ketoacyl-CoA
synthase, KCS), reduction (β-ketoacyl-CoA reductase, KCR), dehydration (-
β-hydroxyacyl-CoA dehydratase, HCD), and a second reduction (enoyl-CoA reduc-
tase, ECR), for each of two carbon atom extension, that are collectively called
elongase (Ohlrogge et al. 1978). Mutation in one of the four extension enzymes
(elongase) will result in pleiotropic effects and severe reduction in overall cuticular
waxes, indicating the importance of FA extension is an important rate limiting step
in cuticular wax synthesis (Beaudoin et al. 2009; Seo and Park 2011). These
VLCFAs are further modified/processed to form a variety of cuticular wax compo-
nents through two distinct pathways—decarbonylation pathway (alkane forming)
and acyl reduction pathway (alcohol forming) (Li et al. 2008; Rowland et al. 2006;
Rowland and Domergue 2012). In Arabidopsis, decarbonylation pathway is pre-
dominantly responsible for the production of major derivatives of cuticular waxes
with chain length between 21 and 35C atoms such as aldehydes, alkanes, ketones,
and secondary alcohols. On the other hand, acyl reduction pathway leads to the
production of primary alcohols and wax esters (Bernard and Joubes 2013; Lee and
Suh 2015a). A simplified schematic representation of plant cuticular wax biosyn-
thesis pathways in ER is shown in Fig. 7.1.

7.3 Transporters of Cuticle Precursors

The cutin and wax precursors synthesized in ER are transported across the plasma
membrane, cell wall, and the emerging cuticular membrane. To date, most of the
steps involved in wax biosynthesis are well understood, but the mechanism of
transport is poorly known. A close group of half transporters ABCG, an ATP
binding cassette, are shown to be involved in the transport of both wax and cutin
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Fig. 7.1 A simplified representation of biosynthesis of cuticular waxes in endoplasmic reticulum
(ER). In the biosynthesis of cuticular waxes, fatty acid elongation (FAE) complex catalyzed four
sequential consecutive reactions—condensation by KCS6, reduction by KCR1, dehydration by
HCD, and a second reduction by ECR for the formation of VLCFAs. These elongated VLCFAs are
then modify into different wax derivatives via alkane- and alcohol-forming pathways. Further, wax
derivatives were transported to the plasma membrane (PM) by a fully unknown mechanism then to
the extracellular matrix by ABC transporters and delivered to the cuticle by yet to be discovered
machinery possibly implicating LTPG1 (CER—ECERIFERUM; LACS1—Long-Chain Acyl CoA
Synthase1; MAH1—Mid chain Alkane Hydroxylase1; WSD1—Wax Synthase/Diacylglycerol
acyltransferase1). The cuticular wax biosynthesis model is adapted from Bernard and Joubes
(2013), Yeats and Rose (2008), and Lewandowska et al. (2020)

derivatives across the plasma membrane (Do et al. 2018). The Arabidopsis genome
consists of four ABCG transporters—ABCG11, ABCG12, ABCG13, and an
uncharacterized ABCG15 (Pighin et al. 2004; Bird et al. 2007; Panikashvili et al.
2011). The ABCG11 is a homodimer likely to export cutin precursors (Bird et al.
2007; Elejalde-Palmett et al. 2021) and ABCG11 and ABCG12/CER5 need to form
heterodimer for wax secretion (Bird et al. 2007; McFarlane et al. 2010). The
ABCG13, third half transporter, was reported to be involved in the cutin deposition
in Arabidopsis flowers (Panikashvili et al. 2011).

A full transporter ABCG32 identified from A. thaliana, Hordeum spontaneum,
and Oryza sativa is involved in cutin deposition (Bessire et al. 2011; Chen et al.
2011). More recently, another ABC transporter from rice (OsABCG9), an ortholog
of AtABCG11, has been reported that specifically transport wax but not cutin
(Nguyen et al. 2018). Despite having well-documented evidences to show the
involvement of different ABC transporters in trafficking cuticular lipids, there is
lack of evidences to demonstrate the substrate specificity in vitro. Till date, all the
ABC transporters identified from different systems are members of the ABCG
subfamily that are involved in the transport of lipids and hydrophobic compounds
(Moitra et al. 2011). Studies have shown that ABC transporter mutants resulted in
lipid embodiments intracellularly. This further supports the direct involvement of
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ABC transporters in cuticular lipid transport (Pighin et al. 2004; Bird et al. 2007;
Bessire et al. 2011).

Glycosyl phosphatidyl inositol (GPI)-anchored lipid transfer proteins (LTPs),
LTPG1 and LTPG2, are plasma membrane bound that are involved in the transport
of wax derivatives (Debono et al. 2009; Lee et al. 2009a; Kim et al. 2012). These
LTPs are a unique class of soluble proteins that can bind to a variety of lipid
substrates (Yeats and Rose 2008). It is proposed that the apoplastic LTPs are
involved in the trafficking of wax derivatives, although genetic or biochemical
evidences are clearly lacking (Yeats and Rose 2008). Recently, Arabidopsis mutant
analysis demonstrated the involvement of gnom like1-1 (GNL1) and echidna
(ECH)-dependent endo-membrane vesicle transport of waxes to plasma
membrane-localized ATP-binding cassette transporters (McFarlane et al. 2014).

7.4 Transcriptional Regulation in Biosynthesis of Cuticular
Waxes

Efforts to elucidate the biosynthesis of cuticular wax pathway and its players were
mainly identified through mutants and concentrated with the model plant,
Arabidopsis. A large number of genes involved in the biosynthesis of cuticular
waxes has been identified, isolated, and characterized (Jetter et al. 2006; Jetter and
Kunst 2008; Samuels et al. 2008). In Arabidopsis, more than 190 genes have been
identified to be involved in the biosynthesis of cuticular waxes, its transport, or
deposition (Li-Beisson et al. 2013). Among these, CER1, CER2, CER6/CUT1,
KCS1, IDDLEHEAD (FDH), and WAX2 from Arabidopsis, GL1 and GL8 from
maize encode wax synthesis and transport related enzymes (Aarts et al. 1995;
Hansen et al. 1997; Todd et al. 1999; Fiebig et al. 2000; Chen et al. 2003; Zhang
et al. 2005). A summary of genes identified from the model plant Arabidopsis that
are involved in cuticular wax biosynthesis, transport, or deposition is detailed in
Table 7.1.

The key regulators involved in the biosynthesis of waxes and cuticular compo-
nents deposition are transcription factors (TFs). Different families of TFs belong to
ethylene-responsive factors (ERFs), myeloblastosis family (MYB), and
homeodomain-leucine zipper class IV (HD-Zip IV) factors identified as regulators
of wax biosynthesis, of which ERFs gained more importance (Aharoni et al. 2004;
Seo et al. 2011). Overexpression of these TFs lead to changes in wax biosynthesis,
its accumulation, and changes in the chemical composition (Broun et al. 2004). It has
also been demonstrated that overexpression of these TFs often resulted in increased
stress tolerance (Broun et al. 2004; Javelle et al. 2010; Seo and Park 2011). However,
despite their obvious positive effects on plant protection, it was also demonstrated
that the ectopic expression could negatively affect plant growth, yield, and decreased
stress tolerance (Aharoni et al. 2004; Zhang et al. 2005). A summary of TFs
identified that play a role in the biosynthesis of cuticular waxes, targeted genes,
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Table 7.1 Genes identified in the biosynthesis of cuticular waxes and its transport from the model
plant Arabidopsis thaliana

Sl.
No.

Protein family
name

1. KCS1 β-Ketoacyl-
coenzyme A
synthase

Extension of
24C FA

Biosynthesis Todd et al.
(1999)

2. CUT1/CER6/
KCS6

β-Ketoacyl-
coenzyme A
synthase

Regulation of
VLCFA bio-
synthesis/24C
FA extension

Biosynthesis Fiebig et al.
(2000),
Hooker et al.
(2002)

3. FATB Fatty acyl-
ACP
thioesterase B

Providing satu-
rated FAs for
wax
biosynthesis

Biosynthesis Bonaventure
et al. (2003)

4. CER10/ECR/
ECR10

Trans-2,3-
Enoyl-coen-
zyme A
reductase

VLCFA
biosynthesis

Biosynthesis Zheng et al.
(2005)

5. PASTICCINO2
(PAS2)/HCD

β-Hydroxy-
acyl-coen-
zyme A
dehydratase

VLCFA syn-
thesis in asso-
ciation with
CER10, an
enoyl-CoA
reductase

Biosynthesis Bach et al.
(2008)

6. KCR1 β-Ketoacyl-
coenzyme A
reductase

VLCFA
extension

Biosynthesis Beaudoin
et al. (2009)

7. KCS20; KCS2/
DAISY

β-Ketoacyl-
coenzyme A
synthase

VLCFA exten-
sion to C22

Biosynthesis Franke et al.
(2009), Lee
et al. (2009b)

8. LACS1/CER8;
LCAS2; LCAS4

Long-chain
acyl CoA
synthetase

Synthetase
activity for
VLCFAs
C20-C30

Biosynthesis Lü et al.
(2009), Jessen
et al. (2011),
Weng et al.
(2010)

9. ACC1 Acetyl-coen-
zyme A
carboxylase

Malonyl CoA
substrate
synthesis

Biosynthesis Lü et al.
(2011)

10. CER2; CER2-
Like1/2

BAHD
acyltransferase

FA extension
beyond C28

Biosynthesis Haslam et al.
(2012, 2015),
Pascal et al.
(2013)

11. KCS9 β-Ketoacyl-
coenzyme A
synthase

Extension of
C22-C24 FAs

Biosynthesis Kim et al.
(2013)

12. CER17
(ECERIFERUM1)

Acyl-CoA
desaturase like
4

n-6
desaturation of
VLC acyl-
CoAs

Biosynthesis Yang et al.
(2017)
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Table 7.1 (continued)

Sl.
No.

Protein family
name

13. WAX2/YRE/FLP1/
CER3

Aldehyde-gen-
erating acyl-
CoA enzyme

Synthesis of
aldehydes,
alkanes,
2o-alcohols,
and ketones;
cuticular mem-
brane
biosynthesis

Biosynthesis—
Alkane-
forming
pathway

Chen et al.
(2003),
Rowland
et al. (2007),
Bernard et al.
(2012)

14. CER1/CER22 Aldehyde
decarbonylase

Biosynthesis of
VLC alkane

Biosynthesis—
Alkane-
forming
pathway

Bourdenx
et al. (2011),
Bernard et al.
(2012),
Sakuradani
et al. (2013)

15. RST1—
RESURRECTION1

Aldo/keto
reductase/
cytochrome
C/G-protein-
coupled recep-
tor family 1

May act in
reduction of
acyl-CoAs to
aldehydes

Biosynthesis—
Alkane-
forming
pathway

Chen et al.
(2005)

16. CYTB5-B/C/D/E Cytochrome
B5

Redox-depen-
dent synthesis
of VLC alkanes

Biosynthesis—
Alkane-
forming
pathway

Bernard et al.
(2012)

17. CYP96A15 (cyto-
chrome P450
enzyme)/MAH1

Midchain
alkane hydro-
lase 1

Formation of
2o-alcohols
and ketones

Biosynthesis—
Alkane-
forming
pathway

Greer et al.
(2007)

18. CER4/FAR3 FA CoA
reductase

Formation of
C24:0 and
C26:
0 1o-alcohols

Biosynthesis—
Alcohol-
forming
pathway

Rowland
et al. (2006)

19. WSD1 Wax ester
synthase/
diacylglycerol
acyltransferase

Wax ester
biosynthesis

Biosynthesis—
Alcohol-
forming
pathway

Li et al.
(2008)

20. ABCG12/CER5 ATP-binding
cassette
(ABC)
transporter

Cuticular
waxes transport

Transport Pighin et al.
(2004)

21. ABCG11/WBC11/
DESPERADO

ATP-binding
cassette
(ABC)
transporter

Secretion of
surface waxes
in interaction
with CER5

Transport Bird et al.
(2007), Luo
et al. (2007),
Panikashvili
et al. (2011)
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Table 7.1 (continued)

Sl.
No.

Protein family
name

22. GLN1; ECH Vesicle
trafficking

Vesicle
trafficking

Transport McFarlane
et al. (2014)

23. LTPG1; LTPG2 GPI-anchored
lipid transfer
protein
(LTPG)

Export or accu-
mulation of
cuticular waxes

Transport/
deposition

DeBono et al.
(2009), Lee
et al. (2009a).
Kim et al.
(2012)

and cuticular composition affected identified through overexpression or down-
regulation is detailed in Table 7.2.

7.4.1 APETALA2/Ethylene Responsive Factor

The APETALA2/Ethylene Responsive Factor (AP2/ERF) superfamily is known to
be one of the largest plant-specific families of TF involved in diverse plant physi-
ological processes (Licausi et al. 2013). These TFs can regulate the gene expression
transcriptionally and posttranslationally at different stages of plant growth and
development, hormone signaling, and in response to various abiotic and biotic
stresses (Elliott et al. 1996; Xu et al. 2011; Licausi et al. 2013). The AP2/ERF
proteins were first identified from Arabidopsis, typically consists of a highly con-
served AP2 domain of 40–70 amino acids in length (Jofuku et al. 1994). Based on
the number of AP2 and other DNA binding domains, they are categorized into four
different subfamilies—AP2, ERF, DREB (Dehydration Responsive Element Bind-
ing), and RAV (related to ABI3/VP1) (Mizoi et al. 2012). Members of AP2
subfamily consist of two AP2/ERF domains (Sakuma et al. 2002). The ERFs and
DREB subfamilies contain single AP2 domain that usually binds to an ethylene
responsive (AGCCGCC) cis-element designated as GCC-box (Ecker 1995; Eini
et al. 2013). However, the RAV subfamily proteins are characterized by the presence
of two different DNA binding domains, AP2/ERF and B3 (Kagaya et al. 1999).

The first TF identified and reported to be involved in cuticular wax biosynthesis
was WAX INDUCER1/SHINE1 (WIN1/SHN1) from Arabidopsis simultaneously
by two independent research groups designated as WAX INDUCER1 (WIN1) and
SHINE1 (SHN1) (Aharoni et al. 2004; Broun et al. 2004). WIN1/SHN1 belonging to
the subfamily of AP2/ERF TFs is a member of a clade of three close homolog
proteins (SHN2 and SHN3) in Arabidopsis genome belonging to group V or B6
(Sakuma et al. 2002; Nakano et al. 2006). All three SHN clade genes exist with a
single intron in nature, and no splice variants are reported. The AtWIN1/SHN1 share
55% and 71% protein sequence homology with AtSHN2 and AtSHN3, respectively
(Aharoni et al. 2004). All three SHN proteins contain three conserved domains/
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Table 7.2 A list of TFs identified in biosynthesis of cuticular waxes, their target genes, and the
chemical components

Sl.
No.

Affected
chemical
components

1. Arabidopsis
thaliana

WIN1/
SHN1

AP2-
EREBP

CYP86A7,
CYP86A4,
Lipase-like,
HTH-like
GPDHc1 NLM2,
GPAT4, CER1,
KCS1, CER2,
FAE1

C30/34 FA,
C28/30 alde-
hyde,
C27/C29/C33
alkane, C16:
0 and C18:1
ω-HFAs, C31
and C29
alkanes

Aharoni
et al. (2004),
Broun et al.
(2004),
Kannangara
et al. (2007)

2. Medicago
truncatula

WXP1 ERF FSE-like:
MtTC79579,
MtTC80406,
MtTC87247,
LCR-like:
TC81689,
TC84740,
WAX2-like:
TC82822, KAR
(GL8-like)

C30/C28 pri-
mary alco-
hols,
C29-C33
alkanes, C18:
1 DSA,
C22/C24 FAs,
C22/C23/C30
aldehydes,
cholesterol,
sitosterol

Zhang et al.
(2005)

3. Medicago
truncatula

WXP2 ERF – C28/C32/
C18/C22 FAs,
C32/C28
aldehyde
C30/C34/C32
primary alco-
hols,
C31/C23/
C25/C27
alkane, cho-
lesterol,
sitosterol

Zhang et al.
(2007)

4. Arabidopsis
thaliana

MYB41 R2R3-
type
MYB

WIN1/SHN1
LACS2, ATT1,
LTPs, GDSL-
lipases, hydrolase
α/β-fold family,
AtEXP5

– Cominelli
et al. (2008)

5. Hordeum
vulgare

Nud ERF Taketa et al.
(2008)

6. Solanum
lycopersicum

MYB12 R2R3-
type
MYB

21
Phenylpropanoid/
flavonoidrelated
transcripts,
8 genes related to
FA metabolism

Mostly
metabolites
associated
with a phenyl-
propanoid
pathway

Adato et al.
(2009)
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Table 7.2 (continued)

Sl.
No.

Affected
chemical
components

7. Zea mays OCL1 HD-
Zip IV

nsLTP,
CYP78A6-like,
ABC transporter,
SEC14

C25 alkane,
C24, C26, and
C28 alcohols,
C48 ester,
C28 and C30
aldehydes

Javelle et al.
(2010)

8. Arabidopsis
thaliana

SHN2/3 AP2-
EREBP

Aharoni
et al. (2004),
Shi et al.
(2011)

9. Arabidopsis
thaliana

MYB96 R2R3-
type
MYB

RD22, some
GH3 genes,
KCR1, SER1,
KCS1, KCS2,
KCS6, PAS2,
CER3, ESR,
WBC11 and
other ABC trans-
porters, LTP

– Seo et al.
(2009,
2011)

10. Oryza sativa CFL1 WW
domain

WIN1/SHN1,
BDG, FDH

– Wu et al.
(2011)

11. Arabidopsis
thaliana

HDG1 HD-
Zip IV

Wu et al.
(2011)

12. Eucalyptus
gunnii

CBF1a/b DREB/
CBF

Navarro
et al. (2011)

13. Arabidopsis
thaliana

WRI1/3/4 AP2/
EREBP

PKp2, MAT,
KASI, KASIII,
ENR, FATA,
G3PDH, ROD1,
BCCP2

C16:0/C18:0/
C18:1/C18:2
Data for triple
wri1wri3 wri4
mutants:
DSAs, C16:0/
C18:1/C18:2
ω-OH and
C16 10,16OH
DCAs

Cernac and
Benning
(2004),
Masaki et al.
(2005), To
et al. (2012)

14. Arabidopsis
thaliana

NFXL2 NFXL BDG1, SHN1,
SHN2, SHN3

– Lisso et al.
(2012)

15. Arabidopsis
thaliana

ANL2 HD-
Zip IV

– C16:0, C18:0,
C18:1, C18:2,
and ω-OH
DCAs, C27,
C31, and C33
alkanes

Nadakuduti
et al. (2012)

16. Oryza sativa WR1 ERF OsKCS2,
OsLACS1,

C16/C20/
C24/C26/

Wang et al.
(2012)

(continued)
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OsCER3,
OsCUT1,
OsFDH1/2,
OsKCS1,
OsLACS1–2,
OsCER1/2,
OsFAE1-L

C30/C32 FAs,
C32/C22
alcohols,
C25/C27/
C29/C31
alkanes, C48
ester

– –

– –
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Table 7.2 (continued)

Sl.
No.

Affected
chemical
components Reference

17. Oryza sativa WR2/3/4 ERF Wang et al.
(2012)

18. Solanum
lycopersicum

CD2 HD-
Zip IV

– Trans-CA, di
OH C16:0 and
ω-OH C18:1
Ph. C16:0,
C20:0, and
C22:0 DCAs,
C27, C29,
C30, and C31
alkanes
CC18:0 FA

Nadakuduti
et al. (2012)

19. Solanum
lycopersicum

SHN3 AP2-
EREBP

SlGL2,
SlMIXTA,
SlCYP77A1,
SlCYP86A8,
SlCYP86A69

BA, trans-CA,
C16:0 and
C16–9/10-H
DFAs,
C16–9/10,
16Di, C16-ω,
C18:1–2
HFAs

Mintz-Oron
et al. (2008),
Shi et al.
(2013)

20. Arabidopsis
thaliana

MYB106/
NOK

R2R3-
type
MYB

WIN1/SHN1,
FDH, LACS2,
CYP84A4,
CYP77A6,
Atg04570,
KCS1, CER1,
CER2, LCR,
LACS2

– Gilding and
Marks
(2010),
Oshima
et al. (2013)

21. Arabidopsis
thaliana

MYB16 R2R3-
type
MYB

WIN1/SHN1,
FDH, LACS2,
CYP84A4,
CYP77A6,
Atg04570,
KCS1, CER1,
CER2, LCR,
LACS2

– Oshima
et al. (2013)

22. Eucalyptus
grandis

SHN1/2 ERF Marques
et al. (2013)

23. Solanum
lycopersicum

SHN1 AP2-
EREBP

GDSL, Enoyl-
CoA reductase,

– Al-Abdallat
et al. (2014)



Plant TF name TF type Target genes

acyl-CoA
synthase, Fiddle-
head, HOT-
HEAD-like
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Table 7.2 (continued)

Sl.
No.

Affected
chemical
components Reference

24. Eutrema
salsugineum

WAX1 R2R3-
type
MYB

CER1, KCS2,
KCR1, VTC1,
GLDH, MIOX4

– Zhu et al.
(2014)

25. Arabidopsis
thaliana

MYB94,
MYB96

R2R3-
type
MYB

KCR1, KCS1,
KCS2/DAISY,
KCS6, CER2,
CER1, CER3,
WSD1

– Lee and Suh
(2015b),
Lee et al.
(2016)

26. Arabidopsis
thaliana

WRI4 AP2/
EREBP

LACS1, KCR1,
PAS2, ECR,
WSD1, PKP1,
PKP2, BCCP2,
ENR1, PDH- E1a

C24 and C28
FAs, C27
alkanes, and
C24, C26,
C28 primary
alcohols, C29
ketones

Park et al.
(2016)

27. Hordeum
vulgare

WIN1 AP2/
EREBP

KAS2,
CYP86A2,
CYP89A2,
LACS2

– Kumar et al.
(2016)

28. Arabidopsis
thaliana

DEWAX2 AP2/
ERF

CER1, ACLA2,
LACS1, LACS2,
KCS12

C29 and C31
alkanes, C28
primary alco-
hols, C29
ketone

Kim et al.
(2018)

29. Brassica
napus

WIN1/
SHN1

AP2/
EREBP

BCCP1, GPAT9,
LPAT5, DGAT2
LACS2, KCS1,
KCR1, CER1

C29-alkanes,
C31-alkanes,
C28-alcohol,
C29-alcohol

Liu et al.
(2019)

30. Jatropha
curcas

WRKY WRKY Cab40, Lhcb5,
Rca1, WIN1

FA, fatty
alcohols, car-
boxylic acid,
alkene, ter-
pene,
triterpenoid,
aldehyde

More et al.
(2019)

31. Cucurbita
moschata

WIN1 AP2/
ERF

CER1, CER1-1,
CER4, KCS1,
ABC

Ester (C20:
C22, C20:
C24, C20:
C26, C20:
C28, C20:
C24), alkanes

Zhang et al.
(2019a)
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Table 7.2 (continued)

Sl.
No.

Affected
chemical
components Reference

32. Malus
domestica

SHINE2 AP2/
EREBP

MYB30,
MYB96, LACS2,
CER1, CER3,
CER6, KCS1,
WIN1, DEWAX,
SHINE3

Alkanes, alco-
hols, alde-
hydes, FAs

Zhang et al.
(2019b)

33. Malus
domestica

MYB30 R2R3-
type
MYB

WRI1, WIN1,
ACBP1, LACS2,
SHINE2,
SHINE3, KCS1

C29 alkanes,
C31 alcohols,
C29 alde-
hydes, C16
FAs, C29
ketones, and
C29 and C30
esters

Zhang et al.
(2019c)

34. Eustoma
grandiflorum

MIXTA-
like 1

R2R3-
type
MYB

CER3, CER6,
CER10, KCS1,
KCR1,
CYP77A6, WIN1

– Wang et al.
(2020)

35. Arabidopsis
thaliana

RAP2.4 AP2/
DREB

KCS2, CER1 VLC-alkane,
C27, C29,
C31, C33

Yang et al.
(2020)

motifs, AP2 domain at N-terminal, a middle, and C-terminal conserved motifs
(Nakano et al. 2006).

The overexpression of WIN1/SHN1 showed increased accumulation of cutin/leaf
epi-cuticular waxes and resulted in improved dehydration tolerance of transgenic
Arabidopsis and downregulation leads to decreased cutin content in the outer parts of
the plant (Aharoni et al. 2004; Broun et al. 2004; Kannangara et al. 2007). The
WIN1/SHN1 overexpression also reflected in altering the structure of leaf epidermis
and stomatal index, trichrome number, and branching (Aharoni et al. 2004). There-
fore, it is possible that WIN1/SHN1 and other AP2 domain superfamily members
not only involved in cuticle formation but also function in other metabolic pathways.
Shi et al. (2011) showed that WIN1/SHN1 TF plays an important role in the
metabolism of cell wall. The constitutive overexpression of WIN1/SHN1 TF leads
to an upregulation of three downstream genes (CER1, CER2, and KCS1) that were
initially identified and known to be involved in the biosynthesis of epidermal waxes
(Broun et al. 2004). Transgenic Arabidopsis plants expressing WIN1/SHN1 resulted
in altering the expression of 12 genes, of which 11 were upregulated and one with an
unknown function strongly downregulated (Kannangara et al. 2007). Even though
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WIN1/SHN1 overexpression altered cuticular wax load and resulted in improved
stress tolerance, evidences for the direct activation of downstream genes by WIN1/
SHN1 are still lacking. In the last few years, WIN/SHN-related members were
identified and characterized from different crops like soybean, cotton, barley,
wheat, etc. Overexpression resulted in altered cuticle properties and imparts toler-
ance to multiple abiotic stresses (Xu et al. 2016; Bi et al. 2018; Djemal et al. 2018;
Djemal and Khoudi 2015, 2021).

7.4.2 Homologous of WIN/SHN

In rice, four homologous of Arabidopsis WIN/SHN were identified and designated
as Wax Synthesis Regulatory genes 1–4 (OsWR1–4) (Wang et al. 2012). Sequence
homology studies showed the OsWR1 protein sequence is closely related to AtWIN1/
SHN1 protein. Transgenic rice plants overexpressing OsWR1 resulted in decreased
cuticle permeability, in contrast to the results exhibited in AtWIN1/SHN1
overexpression studies by Aharoni et al. (2004), but an enhancement in drought
tolerance has been reported in both the cases. The decreased cuticle permeability of
OsWR1 overexpression was due to alterations in long-chain FAs and alkanes. In
addition, it was demonstrated that OsWR1 could interact with wax-related genes,
OsLACS2 and OsFAE1-L, by direct binding to GCC and DRE elements present in
the promoter region. The OsWR1 overexpression in rice resulted in more than
two-fold upregulation of 12 wax biosynthesis-related genes and four cutin biosyn-
thesis genes. The overexpression also showed an increased expression of non-cuticle
biosynthesis genes involved in membrane stabilization and reactive oxygen species
(ROS) scavenging such as late embryogenesis abundant protein (LEA3), ascorbate
peroxidase (APX1), superoxide dismutase (SOD), and catalase (Cat A and Cat B)
that could independently contribute to improved drought tolerance. On the other
hand, silencing of OsWR1 by RNAi resulted in significant downregulation of many
of those genes (Table 7.2) and partial silencing resulted in decreased transcript levels
of Cat A and Cat B (Wang et al. 2012).

7.4.3 Negative Regulators of WIN/SHN

Two negative regulators, NUCLEAR FACTOR X LIKE2 (NFXL2) and SPINDLY
(SPY) of WIN/SHN genes, were reported. The Arabidopsis NFXL2 mutant analysis
showed difference in the composition of cutin, reduced stomatal aperture, and an
increase in drought tolerance by regulating the expression of all three SHN genes
(Lisso et al. 2012). Further analysis revealed that NFXL2 gene could act as a negative
regulator for WIN1/SHN1 and several others by directly interacting with the gene
promoter region. Thus, NFXL2 protein modulated the cuticle components biosyn-
thesis through a direct repression of WIN1/SHN gene (Lisso et al. 2012).
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7.4.4 WAX PRODUCTION1 (WXP1)

WXP1, an AP2 domain containing TF from Medicago truncatula (Mt), is evidently
distinct from other AP2/ERF TF family genes. The MtWXP1 identified to be a
homolog to ERFs has 53% amino acid sequence identity with RAP2.4. The
WXP1 transcript was highly upregulated by abscisic acid (ABA) treatment in both
shoot and root of seedlings, and upregulation was observed only in shoot under cold
and drought stress. Under cold stress conditions, the upregulation was very rapid and
could be detected within 30 minutes (Zhang et al. 2005). The constitutive
overexpression of WXP1 in alfalfa resulted an increase in total leaf wax load to
nearly 40% and enhanced drought stress tolerance (Zhang et al. 2005). The gas
chromatography-mass spectrometry (GCMS) analysis of transgenic plants leaves
showed a significant difference in multiple wax derivatives such as higher content of
C30 alcohol moieties (25–35%) and elevated levels of other wax components
(Table 7.2). The increase in wax content resulted in reduced water loss by decreasing
water permeability, lower chlorophyll leaching, and showed better tolerance to
drought stress. The WXP1 overexpression resulted in the upregulation of three
FAE-like and two LACERATA (LCR, encoding cytochrome P450
monooxygenases) wax biosynthesis pathway genes (Zhang et al. 2005).

The constitutive overexpression of MtWXP1 and its paralog WXP2 significantly
enhanced the deposition of cuticular waxes due to the accumulation of specific wax
components and their chain length distributions on leaves of Arabidopsis (Zhang
et al. 2007). The WXP1 and WXP2 transgenic lines showed higher levels of
n-alkanes. The primary alcohol levels were increased in WXP1 plants but showed
an opposite trend in WXP2 as compared to their wild type plants (Table 7.2). The
WXP1 plants did not show any changes in the cuticle permeability while WXP2
resulted in decreased levels. Surprisingly, detached leaves of WXP1 and WXP2
transgenic plants retained better water content and showed significantly enhanced
survival under drought stress conditions. Under the low-temperature stress, WXP1
transgenic plants showed an improved tolerance while WXP2 was susceptible as
compared to control plants. The Arabidopsis plants constitutively expressing WXP1
did not exhibit any negative effects on plant growth and development; however,
slower plant growth was observed in WXP2 overexpression (Zhang et al. 2007).

7.4.5 WRINKLED and CBF TFs

The WRINKLED1 (WRI1) gene contain two AP2 domain was identified from
Arabidopsis through the mutant analysis. The mature seeds of wri1 mutants showed
a wrinkled appearance and decreased content of water-insoluble oils (Cernac and
Benning 2004). The overexpression of WRI1 resulted in 10–20% increased seed oil
content without reducing the seed number (Cernac and Benning 2004). The WRI3
and WRI4 homologs of WRI1 were identified to be involved in gene expression of
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the synthesis of acyl chain and glycerol backbones that are main precursors of
different lipid biosynthetic pathways (To et al. 2012). On the other hand, significant
downregulation of most glycolytic and late FA biosynthetic genes were observed in
wri triple mutants. The C-repeat binding factor genes (CBF1a and 1b) associated
with drought and cold tolerance were found to be involved in the regulation of
deposition of cuticular waxes in Eucalyptus gunii, an Australian drought- and cold-
tolerant tree species (Navarro et al. 2011). The eucalyptus transgenic plants
exhibited a high accumulation of anthocyanins, decrease in the stomatal density,
reduced growth, better water retention capacity with reduced leaf area, and increase
in leaf thickness and leaf cell size as compared to the control plants. Also, transgenic
plant leaves showed a higher density of oil glands, and amount of cuticular waxes
were significantly higher (Navarro et al. 2011). Overexpression of CBF4 TF gene in
grape vine resulted in enhanced freezing tolerance and decreased electrolyte leakage
due to freezing. The mRNA expression profiling of transgenic line showed the
expression of CBF4 targets the lipid metabolism, epi-cuticular wax formation, and
cell wall structure-related genes (Tillett et al. 2012). So far, these are the only reports
showing the involvement of CBF genes on cuticle wax deposition (Table 7.2).

7.4.6 Myeloblastosis Family (MYB)

To date, many MYB TFs have been shown to be involved in the complex network
that control cuticle biosynthesis, cell-wall modification, and cuticle deposition in the
model plant Arabidopsis. A R2R3-type MYB TF in Arabidopsis,MYB41 is reported
to be involved in the cuticle biosynthesis and wax transport regulation (Cominelli
et al. 2008). AtMYB41 interacts with mitogen-activated protein kinase 6 (MPK6), a
member of protein kinases family interacts with a number of signaling pathways
involved in plant development and responses to stress (Hoang et al. 2012). It was
demonstrated that AtMYB41 can physically interact with MPK6 and get phosphor-
ylated at residue Ser251, which can enhance MYB41 DNA binding capacity to the
LTP gene promoter. This was further proved by wild type AtMYB41 gene
overexpression that showed improved tolerance to high salinity while
overexpression of a mutated MYB41 (Serine 251 to alanine) resulted in decreased
tolerance to salt stress (Hoang et al. 2012).

A R2R3-type MYB protein, MYB96, identified as a stress-responsive TF mod-
ulates the responses of drought stress by combining the auxin and ABA signals (Seo
et al. 2009). The Arabidopsis mutant plants overexpressing MYB96 suppressed the
lateral root growth but were resistant to drought stress, while the knockout mutants
were highly sensitive to drought stress (Seo et al. 2009). The microarray results
showed upregulation of a large group of genes encoding the wax biosynthetic
enzymes by MYB96, specifically those of VLCFA condensing enzymes (Seo et al.
2011; Table 7.2). Most of the target genes of MYB96 were also upregulated under
drought stress and ABA due to the presence of MYB-responsive cis-element
“TAACTA/G” in their promoter. The transgenic AtMYB96 plants showed increased
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epi-cuticular wax crystal deposition in leaves but reduced in stem and showed a
slight change in the color of leaves. Also, these plants were significantly shorter with
no characteristic “shiny” phenotype; however, no changes in epidermal development
was observed (Seo et al. 2011). The myb96 loss of function mutant was susceptible
to drought stress due to the alteration in cuticular wax biosynthesis (Guo et al. 2013).
A closely related MYB94 TF gene can effectively replace MYB96 in cuticular wax
biosynthesis (Lee et al. 2016). The MYB94 and MYB96 TFs are closely related and
can additively function in the biosynthesis of waxes under drought stress and well-
watered conditions via an ABA-dependent pathway (Lee et al. 2016).

The role of AtMYB96 in frost tolerance and response to biotic stresses were also
reported (Guo et al. 2013; Seo and Park 2011). The LTP3 gene overexpression
resulted in increased freezing tolerance without showing an effect on CBF expres-
sion or their target cold regulated (COR) genes. The MYB96 directly binds to the
LTP3 gene promoter results in positive regulation of LTP3 expression results in
enhanced freezing tolerance, consistent with MYB96 overexpressing transgenic
plants (Guo et al. 2013). An inhibitor of the rust germ tube differentation1 (irg1)
mutant showed complete loss of epi-cuticular wax crystals in the abaxial surface and
consequent reduction in the surface hydrophobicity that conferred non-host resis-
tance to biotrophic fungal pathogens. The abaxial leaf surface wax composition
analysis of irg1 mutant showed 90% reduction in primary alcohols (C30) and
alkanes (C29 and C31) were increased compared to control (Table 7.2). It is
proposed that IRG1 may be a direct or indirect regulator of MtMYB96 transcription;
however, there is no evidence to claim that IRG1 could regulate the cuticular wax
biosynthesis-related genes directly or is performed only through MYB96.

MIXTA, an MYB-related TF, has been identified with the role in cuticular wax
biosynthesis and epidermal cell shape formation. The Arabidopsis and Torenia
fournieri MYB106 and MYB16, MIXTA-like TF genes can regulate the develop-
ment of cuticle that coordinate with TF WIN1/SHN1 (Oshima et al. 2013;
Table 7.2). The downregulation ofMYB106 andMYB16 TF genes resulted in cuticle
deficiencies of flowering organs, organ adhesion, and decreased epi-cuticular wax
crystals. Microarray results showed MYB106 and WIN1/SHN1 TFs regulate similar
set of genes (Oshima et al. 2013; Table 7.2). Among these, the genes involved in the
accumulation of waxes such as FDH, KCS1, and CER2 and cutin biosynthesis genes
such as LACERATA and LONG-CHAIN ACYL COA SYNTHETASE2 were
identified. The overexpression of MYB16 in Arabidopsis resulted in the accumula-
tion of waxy substances on leaves, and both MYB106 and MYB16 downregulation
by RNAi leads to reduced expression of cuticular wax biosynthesis genes
LACERATA and ECERIFERUM1 with severe permeable cuticle phenotype (Oshima
and Mitsuda 2013; Oshima et al. 2013).
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7.4.7 Homeodomain-Leucine Zipper Class IV Factors

The homeodomain leucine zipper IV (HD-Zip IV) TFs are predominantly expressed
in epidermal cells with epidermis-related functions have been identified from num-
ber of plant systems (Javelle et al. 2011; Chew et al. 2013). Maize (Zea Mays) Outer
Cell Layer 1 (ZmOCL1) gene is a member of HD-ZIP IV comes under the subclass
of HD-ZIP homeodomain proteins, was detected in protoderm, floral organs, and
developing leaves (Ingram et al. 1999, 2000). The transgenic maize plants
overexpressing ZmOCL1 gene had less effect on phenotype as compared to its
control, but the transcriptome analysis revealed expression of many genes involved
in the metabolism of lipids and its transport (Javelle et al. 2010). Some of the genes
identified are carboxylesterase, type 2 LTP, phosphatidylinositol transport protein,
three ABC transporters, and FA reductase (Table 7.2). The FA reductases responsi-
ble for the long-chain primary alcohol synthesis from FA precursors were closely
related to CER4 protein in Arabidopsis (Rowland et al. 2006). The transgenic plants
of ZmOCL1 did not show significant changes in the wax layer structure or size as
compared to the wild-type plants. However, wax chemical component analysis
showed a significant increase in C32 alcohol content and decrease in C32 aldehydes
in the young leaves of ZmOCL1 transgenic. Few of the independent transgenic lines
showed significant two- to threefold increase in C44 to C48 wax esters as compared
to the control (Javelle et al. 2010).

7.4.8 Curly Flag Leaf1, a Negative Regulator of HD-Zip IV

The Curly Flag Leaf1 (CFL1) gene, a WW domain encoding protein, was reported as
a negative regulator of cuticle development (Wu et al. 2011). The overexpression of
OsCFL1 and AtCFL1 in transgenic Arabidopsis plants resulted in an organ fusion
phenotype with decreased levels of epi-cuticular waxes and defective cuticles. Yeast
two hybrid assay provided evidences for direct interaction of AtCFL1 with HDG1, a
HD-Zip IV protein (Wu et al. 2011). The HDG1 gene suppression resulted in a
defective cuticle phenotype in transgenic Arabidopsis, similar to that of the CFL1
overexpressing plants. The AtCFL1 overexpression and HDG1 downregulation in
transgenic Arabidopsis resulted in the downregulation of FIDDLEHEAD (FDH) and
BODYGUARD (BDG), two cuticle biosynthesis-associated genes. The BDG
encodes a member of the α/β-hydrolase fold protein superfamily and FDH is also
known as KCS10 (Kurdyukov et al. 2006; Wellesen et al. 2001; Yephremov et al.
1999). It was demonstrated that HDG1 could function as a positive regulator by
directly binding to the L1 boxes in the promoters of BDG and FDH genes. The
HDG1 function is negatively regulated by CFL1, thereby affecting the cuticle
development (Wu et al. 2011; Table 7.2).
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7.5 Cuticular Wax, a Multifunctional Trait

Plant cuticle and cuticular waxes play multifunctional role in crop protection and
survival against various abiotic and biotic stresses like transpiration water loss,
drought, high light intensity, salinity, invading pathogens, and insect herbivores
(Lewandowska et al. 2020). It is well documented and demonstrated that drought
stress induces wax production (Aharoni et al. 2004; Zhang et al. 2005; Cameron
et al. 2006). Significant correlations were observed between the content of waxes,
yield, water use efficiency (WUE), and drought tolerance in crops like rice, wheat,
barley, and sorghum (Jordan et al. 1984; Richards et al. 1986; Febrero et al. 1998;
Zhu and Xiong 2013). These evidences point toward the fact that as the wax content
decreases, the crop plants will become more sensitive in general to desiccation and
drought stress compared to more waxy ones (Guo et al. 2016). The role of cuticular
waxes in imparting salinity stress tolerance is through controlling the residual
transpiration, which is negatively correlated with wax content (Hasanuzzaman
et al. 2017). Higher leaf surface wax containing genotypes generally have a cooler
canopy temperature that helps to resist high temperature or heat stress (Awika et al.
2017). Similarly, higher cuticular waxes can protect from high light conditions such
as excessive ultraviolet (UV) radiations, indicating these stresses can affect and alter
the plant cuticular waxes (Fukuda et al. 2008; Xue et al. 2017; Lewandowska et al.
2020).

Infection with plant pathogens can also result in increased epi-cuticular wax load
and change the cuticular properties. Infections with fungal pathogens Colletotrichum
gloeosporioides and C. acutatum in tomato and citrus plants resulted in increased
cuticular wax biosynthesis, deposition, and changes the cuticular structure (Alkan
and Fortes 2015; Marques et al. 2016). The increase in epi-cuticular wax load and
changes in chemical composition may not always necessarily result in plant resis-
tance against biotic stresses. The epi-cuticular waxes can play divergent roles in
different plants and for different pathogens. This was demonstrated through the
functional studies of the Arabidopsis DEWAX gene, a negative regulator of wax
biosynthesis. The Arabidopsis dewaxmutant lines showed an increased epi-cuticular
wax were susceptible to Botrytis cinerea and resistant to Pseudomonas syringae,
fungal and bacterial pathogens, respectively (Ju et al. 2017). Overexpression of
DEWAX in Arabidopsis and Camelina showed inverse defense regulation to Botry-
tis and Pseudomonas (Ju et al. 2017).

7.6 Attempts to Manipulate Cuticular Trait

Attempts have been made to improve crop plants by targeting the wax biosynthesis
pathway and altering the cuticular properties by conventional and modern breeding
as well as through transgenic approaches. The prerequisite for crop improvement
through breeding or transgenic approaches is to have the prior knowledge about the
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genomic region/s and gene/s contributing for wax traits. This has been achieved to an
extent through the loss- and gain-of-function mutants in either model or crop species.
Over the domestication process of major crops like wheat, rice, corn, barley,
soybean, and tomato, focus was on yield traits and the yield targeted breeding
over generations resulted in reduced genetic diversity for other biotic and abiotic
stressors in commercial varieties. A good source to regain the lost genetic diversity is
to incorporate the wild relatives and landraces of crops plants in the breeding
program. Multiple quantitative trait loci (QTL) regions involved in the biosynthesis
of epi-cuticular waxes and its transport have been reported from multiple crops like
rice, sorghum, cabbage, and pearl millet and can be used for marker-assisted
breeding (MAS) programs (Srinivasan et al. 2008; Burow et al. 2009; Liu et al.
2018).

Considerable amount of work has been carried out in Arabidopsis to identify and
characterize the functional and regulatory genes involved in cuticular wax biosyn-
thesis (Aharoni et al. 2004; Kannangara et al. 2007; Seo et al. 2009; Shi et al. 2011;
Yang et al. 2020). Many of these genes or its homologs identified from crop plants
have been used for targeted engineering of wax biosynthetic pathway in crop plants
that resulted in altered cuticle properties and showed multiple stress tolerance
(Zhang et al. 2005, 2019a, b, c; Adato et al. 2009; Shi et al. 2013; Kumar et al.
2016; Sajeevan et al. 2017a; Liu et al. 2019; More et al. 2019; Wang et al. 2020). It
has also been shown that ectopic expression of Arabidopsis or its homologs
overexpression in biofuel crop, Camelina sativa and tree species like Morus and
Malus resulted in altered total wax load, composition, structure, and contributed to
drought tolerance (Lee et al. 2014; Sajeevan et al. 2017a; Zhang et al. 2019b, c).
Alterations in the wax biosynthesis pathway is hampered due to the lack of clear
knowledge in cuticular wax load, its chemical composition, and structural charac-
teristics required to improve specific crops, and also to what extent these factors
needs to be species- or tissue-specific.

7.7 Conclusion

Cuticle is a natural film covering the outer parts of the plant that consists of lipid
polyesters covered and embedded with waxes that protect the tissues from multiple
abiotic and biotic stresses. During the land plants evolution from aquatic to a more
desiccating terrestrial environment, plants evolve to synthesize cuticular waxes as a
fundamental morphological and physiological adaptation. There is a high level of
compositional and structural differences exist in cuticular waxes among different
crop plants and organs. These cuticular waxes are largely produced by two complex
pathways controlled by the expression of different genes/enzymes in turn influenced
by multiple environmental stresses. Although past decade advancement in genome
sequencing technologies and through various forward and reverse genetics
approaches allowed us to elucidate and understand the complex gene regulatory
network involved in biosynthesis, transport, and deposition of cuticular waxes in
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model as well as different crop plants, to an extent. We still have long way to go
towards fully understanding the regulatory mechanisms controlling the cuticular
wax biosynthesis, compositional and structural differences, transport, and deposition
in response to various stressors. In addition, a limited understanding of the role of
plant cuticle components as signaling molecules that promote resistance or suscep-
tibility to biotic stresses needs to be further investigated. Unraveling these mecha-
nisms would aid in targeted manipulation of the trait using modern biotechnological
applications for the development of crop cultivars with improved health thereby
promoting sustainable agriculture.
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