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Remote Sensing Algorithms and Their
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Abstract Assessing phenotypic traits associated with physiology, biochemistry,
and plant health based on leaf spectral reflectance properties has become an impor-
tant high throughput tool in agriculture research. Precise quantification and moni-
toring of plant responses to stresses (abiotic or biotic) help researchers’ phenotype
different genetic resources, map genetic loci, and choose donors for trait develop-
ment. Studies have shown the potential use of leaf hyperspectral reflectance in
assessing the plant phenotype under biotic and abiotic stress conditions. We com-
piled wavebands or reflectance strongly related to the lab and field-based measure-
ments for pigments, leaf nitrogen, and leaf water content. This chapter also
highlights the recent applications of hyperspectral reflectance in plant phenotyping,
stress diagnosis, species classification, and robust statistical methods. Furthermore,
we discuss the need for advanced analytical tools and their potential applications in
plant phenotyping.
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15.1 Introduction

Based on evolutionary history, genetic background, and stress adaptation capacity,
plants readily express differences in physiology and biochemistry, which can be
detected using leaf or canopy spectral reflectance changes (Roitsch et al. 2019;
Grzybowski et al. 2021). Along with the differences in morphology or ideotype at
the plant level, plants have also evolved to synthesize different combinations of
leaf pigments and other compounds to support growth and development under
various environmental conditions. Improved detection and monitoring of plant
health have been vital areas of research under a rapidly changing climate. Needless
to say that high throughput non-invasive sensing-based phenotyping is faster,
cheaper, reliable, unbiased, extendable, and robust.

Remote sensing techniques have been utilizing leaf optical properties (reflec-
tance, absorbance, and transmittance) to understand leaf pigments (visible range),
cell structure (near-infrared), and biochemical properties (shortwaves) using the leaf
or canopy signatures. When a leaf or canopy is exposed to electromagnetic
(EM) radiation, the reflected radiation can be measured and recorded as reflectance
spectrum. Sensor modalities to study reflectance can be grouped into two categories
(based on the signal type): optical and EM. Other choices include acoustic (ultra-
sound), magnetic (MRI), X-ray, thermal, electronic (electron-microscope observa-
tions), and mechanical sensors. To measure object (e.g., leaf or canopy) properties,
most light/sound-based signal processing sensors/algorithms rely on the signal
frequency, and the transduction depends on the following:

• Amplitude of the input/reflected/refracted signal
• Directionality of the input/reflected/refracted signal
• Time-of-flight measurement of the received signal

Let us recap a (conveniently biased) sampling of definitions from image
processing. An image is the numerical representation of any real-world picture; it
is a multi-dimensional array (or matrix) of numbers, each representing the amount of
signal intensity sampled in a physical region, known as the pixel. There are a few
choices to both describe the relative intensities of the different colors at each pixel
(color space) and store images/parameters (Gonzalez and Woods 2018). Object-light
interaction is dependent on both the incident signal characteristics (power level,
frequency, bandwidth, etc.) and the structure and chemical constituents of the object.
The signal’s frequency is invariant as it travels through a medium. Thus, the velocity
(and wavelength) of light traveling from vacuum through a non-vacuum medium
will decrease. The ratio of light velocities between the medium and vacuum is the
medium’s refractive index (RI). Characterizing the object’s structure based on the
reflection/refraction signal can be found in more detail in text describing Snell’s law
or Fermat’s least time principle.

Recall the wavelength ranges of the EM spectrum (Fig. 15.1). The EM spectrum
is divided into four major wavelengths (λ) bands: visible (350–700 nm),
near-infrared (NIR, 700–2500 nm), mid-infrared (MIR, 2500–25,000 nm), and
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Fig. 15.1 Electromagnetic spectrum

far-infrared (FIR, 25,000–100,000 nm) (Lin et al. 2004; Manley 2014). The EM
wave (light/IR) penetrates the surface of the specimen, and its penetration depth is
defined as the depth at which the incident light intensity is reduced by 99%. It has
been observed (Lammertyn et al. 2000; Qi et al. 2010) that the penetration depth is
inversely proportional to the wavelength, which implies that the IR signal can
penetrate deeper into the cell structure.

When EM strikes on the matter or canopy, three interactions can occur: absorb,
reflect, and transmit. In plants, the EM absorbed can be used for photosynthesis,
converted to heat, and re-emitted as fluorescence (van Bezouw et al. 2019). The leaf
surface can reflect part of the incident EM radiation, which can ultimately reach an
observer to perceive as color. The remaining portion of the incident radiation can
transmit through the leaf and leave from the other side. All these interactions are
related to each other and can be denoted as in Eq. (15.1)

Iλ =Aλ þ Rλ þ Tλ, ð15:1Þ

where Iλ is the incident radiation energy, Aλ is the absorbed energy, Rλ is the reflected
energy, and Tλ is the transmitted energy at wavelength λ.

As Eq. (15.1) indicates, all these phenomena are wavelength-dependent since the
absorbance depends on the properties of the leaf, more specifically, different chem-
ical compounds or bonds present in the leaf. Chemical bonds absorb EM photons at
specific wavelengths causing vibrational and rotational changes in the molecules
(Türker-Kaya and Huck 2017). These absorbances at different wavelengths, called
spectral signatures or fingerprints, can effectively estimate the leaf’s other com-
pounds or related properties. For example, the leaf nitrogen (N) and chlorophyll
molecules have spectral signatures at 650 and 940 nm, which are used to estimate
leaf nitrogen and chlorophyll contents (Wood 1993; Blackmer et al. 1994; Daughtry
et al. 2000). Most fundamental spectral signatures occur in the mid-infrared region
(MIR). The overtones and combinational bands can extend to near-infrared or visible
spectrum regions. A compilation of these spectral signatures and relevant properties
can be found in Türker-Kaya and Huck (2017).
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15.2 Common Types of Remote-Sensing Tools Used
in Plant Phenotyping

Cameras/sensors with different illumination ranges and capture capabilities
(red-green-blue, multispectral, hyperspectral) have been routinely used in diverse
studies.

15.2.1 Visible Light Sensor

This is a cheap and ubiquitously available sensor. The output (in its simplest form) is
an 8 bits per pixel grayscale image. An RGB color image has 24 bits per pixel (one
byte for each primary color, red, blue, and green). The range of human eye color
perception is quite large, and unsurprisingly, the RGB space does not span the
human color gamut. A filter attenuates (or entirely blocks) a subset of wavelengths
and allows the complementary subset without attenuation. Many pre-processing
options at the sensor and post-processing procedures on the image are available
(Pereira et al. 2017; Ngugi et al. 2021).

15.2.2 Infrared Sensor

The leaf typically reflects 40–60% of incident near-IR energy from its spongy
mesophyll. In terms of data capture/storing data, the IR is identical to a standard
camera (visible light). The difference is in the light–object interaction. For example,
an IR spectrum can replace commonly used laboratory methods for moisture content
measurements like using a gravimetric oven or performing Karl Fischer titration.

15.2.3 Hyperspectral Sensor

While visible/infra-red imaging uses a wide range of frequencies (broadband) in the
illuminating light source, the hyperspectral imaging sensor generates a series of
images, each one representing the intensity distribution within a specific narrow-
spectral band. For example, let us consider an object observed through the visible-IR
wavelength range between 550 and 850 nm in steps of 5 nm. This set of 61 images,
one for each frequency band, is arranged to form a three-dimensional
(3D) hypercube used for further processing. This grouping of the frequency data
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in each pixel region using narrow bands (hyperspectral imaging) generates a number
of independent measurements, thus strengthening any classification/detection pro-
cedures (Huang et al. 2014; Schmilovitch et al. 2014).

The most common types of remote-sensing cameras (RGB, multispectral,
hyperspectral, light detection and ranging, LiDAR, and thermal) used in agricultural
research are unmanned aerial vehicles (UAVs) based or handled spectroradiometers.

• RGB (red, green, and blue) cameras are cheap, most widely used across the
platform, and have a high spatial resolution.

• Multispectral cameras: this platform consists of sensors with different lenses.
Typically, there will be five sensors (red, green, blue, red-edge, and near-
infrared), with each sensor sensitive in one spectral region.

• Hyperspectral cameras cover the 400–1000 nm spectral region with relatively
narrow bands (<20 nm).

• Spectrometers cover the 350–2500 nm spectral region with high spectral resolu-
tion (1 nm).

The difference between hyperspectral and multispectral imaging is in their
spectral resolution. A multispectral image is a collection of independent data from
non-overlapping spectral bands. Usually, the number of bands is few (up to ten). A
list of different sensors and their application has been complied in the Index
Database (https://www.indexdatabase.de/; Roitsch et al. 2019). A spectrometer
(or spectroradiometer) is used to measure both the wavelength and amplitude of
the light reflected from the leaf’s surface. Wavelength is detected by the position on
the sensor that the signal hits. The detected light intensity for each frequency band is
obtained using refraction (prism) or diffraction (grating). On the other hand, hand-
held spectrometers (Fig. 15.2a) are relatively low cost, easy to collect data and
process compared to UAVs.

The key advantage of using hand-held spectrometers is (a) free from confounding
effects of illumination, water band, and leaf or camera angle, (b) data processing and
analysis require less time than data collected using the UAVs, and (c) data can easily
be collected from controlled and field experiments. With the growing interest in
sensors application in agriculture, several studies demonstrated the use of
hyperspectral data collected from the spectrometer. The spectral bands are often
used to establish an empirical relationship between given leaf properties and spectral
data. Genomic techniques have been significantly advanced; however, throughput
phenotyping remains the major bottleneck to molecular breeding. To take advantage
of genomic resources to dissect complex stress tolerance, hyperspectral spectrome-
ters could be used for high throughput phenotyping (Grzybowski et al. 2021). The
following sections will provide information on how we can use spectrometers to take
advantage of hyperspectral reflectance in plant stress physiology or phenotyping.

https://www.indexdatabase.de/
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Fig. 15.2 Handheld spectroradiometer (a) and hyperspectral reflectance data (b) of different crop
species

15.3 Leaf Reflectance Relationship with Plant Phenotypes
in Different Crops

A typical leaf hyperspectral reflectance (350–2500 nm) spectrum is shown in
Fig. 15.2b. It has low reflectance in the visible region (350–700 nm). Most of the
energy is absorbed by the pigments such as chlorophyll and carotenoids for photo-
synthesis (Zur et al. 2000). There is a peak in the green region (~550 nm, Fig. 15.2b),
which has comparatively less absorbance than other colors in the spectrum, causing
the leaf to be perceived as the color “green” to the human eye. With changes in leaf
pigments due to senescence or species differences, these spectra can show different
peaks in the visible region (Sims and Gamon 2002; Morley et al. 2020), showing
different colors to the human eye. A comparison of RGB and visible light reflectance
implies the possibility of using both to classify plant species (Fig. 15.2b). The first
part of the NIR region (700–1200 nm) is dominated by the light scattering at air-cell
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wall interfaces and characterized by high reflectance and transmittance. An increase
in leaf reflectance at the transition from red to NIR, producing a spectral feature
called red edge (Gitelson et al. 1996). Researchers have observed correlations
between the red-edge position and chlorophyll content, plant stress, plant phenolog-
ical stages (Yendrek et al. 2017; Silva-Perez et al. 2018; Mir et al. 2019; Reynolds
et al. 2020). The second part of the NIR region (1200–2500 nm) is predominantly the
light absorption by water. Two leading water absorption bands are at 1450 and
1950 nm (Hoffer and Johannsen 1969), shown in Fig. 15.2b. Leaf absorbance
(reflectance) of green light is far less (more) than red light when the plants are
stressed.

Observed variations in spectral signatures among the species (Fig. 15.2b) depend
on the genetic, physiological, and biochemical properties of the leaf such as tem-
perature, ion-concentration, pigments, concentrations of organic acids, and so
on. Chlorophyll pigments reflect strongly around the green band with a green/
green-yellow color. Anthocyanin pigments, red in color, provide a high reflectance
around the red band. Sugars have a higher reflectance at the NIR. An obvious
indication of the temporal change in absorption/reflectance characteristics of visible
light on a leaf is color change in response to species or stress or age and nutrient
deficiency. Thus, biologists have been perfecting relationships between individual
ions and plant health.

15.3.1 Nitrogen and Pigments Associated Leaf Reflectance
Spectra

Plants accumulate specific pigments during the courses of growth and development
under different stresses. The pigments and their ratios determine the physiological
characteristics and plant health status. Chlorophylls are the dominant pigment of
green leaves and an expensive molecule because each ring contains four nitrogen
atoms. Chlorophyll molecules absorb sunlight at different wavelengths (chlorophyll-
a absorbs red-orange light and chlorophyll-b absorbs blue-purple light). As a result,
chlorophyll index has been used as a proxy indicator of leaf or canopy nitrogen
content and plant health. Traditional methods of determining pigments and tissue
nitrogen are costly and time consuming.

Current advances in remote sensing have allowed timely data collection to assess
plants’ crop growth and nutrient (nitrogen) status. Studies highlighted in Table 15.1
used traditional and sensor-based approaches and identified spectral bands associ-
ated with pigments and nitrogen content. Studies reported in Table 15.1 used leaf
spectral reflectance data collected using a portable ASD Field Spec FR
spectroradiometer (Analytical Spectral Devices Inc., Boulder, CO, USA) compared
with the wet lab measured observations (shoot or leaf nitrogen). These studies tested
the relationship between the measured values and spectral formulations or indices
(Table 15.1). Leaf nitrogen and chlorophyll concentrations of sorghum leaves were



344 R. Bheemanahalli et al.

Table 15.1 Summary of selected research papers used leaf reflectance-based vegetative indices or
bands in different crops. R represents reflectance at a specific wavelength. R2 indicates the associ-
ation between measured and vegetative indices or bands.

Crop Phenotype Formula R2 Reference

Bermuda
grass

Forage nitrogen R915/R515 0.44 Zhao et al. (2005b)

R915/R705 0.51

Castor
bean

Carotenoid R575/R675 0.80 Reddy and Matcha
(2010)R705/675 0.80

Leaf chlorophyll R545 0.72

R555/R675 0.91

R555/R455 0.93

R705/R655 0.92

Cotton Leaf area index 1.16*R800 - R670/
(R800 + R670) + 0.16

0.75 Zhao et al. (2007)

(R900 - R680)/(R900 + R680) 0.73

Leaf carotenoids R415/R685 0.79 Tarpley et al.
(2000)Leaf chlorophyll R415/R695 0.72

Leaf nitrogen R415/R710 0.70

R915/R515 0.65 Zhao et al. (2005b)

Leaf or shoot
nitrogen

R915/R705 0.78

R715/R405 0.65 Read et al. (2002)

R795/R755 0.70

Maize Carotenoids R712/R809 0.50 Zhao et al. (2003)

Chlorophyll a R712/R1088 0.55

Chlorophyll b R712/R1097 0.58

Total
chlorophyll

R712/R1088 0.59

Leaf nitrogen R712/R1040 0.55

R575/R526 0.69

Sorghum Leaf chlorophyll R555/R465 0.65 Zhao et al. (2005a)

R555/685 0.62

R715/R455 0.62

R1075/R735 0.66

Leaf nitrogen R405/R555 0.63

R405/R715 0.68

R555/425 0.62

R715/R415 0.65

R1075/R555 0.55

R1075/R725 0.65

significantly associated with the reflectance (R) ratios of R405/R715 (R2= 0.68) and
R1075/R735 (R2 = 0.66) (Zhao et al. 2005a).

Likewise, measured leaf chlorophyll or carotenoids showed a stronger relation-
ship with the reflectance ratios of R575/R526 (R2 = 0.69) or R712/R809 (R2 = 0.50)
in maize (Zea mays), respectively (Zhao et al. 2003). In cotton (Gossypium
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hirsutum), R715/R405, R795/R755, R415/R710, R915/R515, and R915/R705
showed a stronger association with measured leaf or shoot nitrogen in cotton
(Table 15.1). In general, spectral bands R405, R415, R515, R705, R710, R755, and
R915 are associated with leaf nitrogen content or concentration across cotton studies
(Tarpley et al. 2000; Read et al. 2002; Zhao et al. 2005b). Further, reflectance ratios
of R555/R455 and R705/R675 showed strong correlations with total chlorophyll (R2

= 0.93) and carotenoids (R2 = 0.80) in castor bean (Ricinus communis L.), respec-
tively (Reddy and Matcha 2010). The weakest relation was noted in Bermuda grass
between forage nitrogen and R915/R515 (R2 = 0.44). The nitrogen and pigment-
specific bands (Table 15.1) could be used for non-destructive phenotyping. This
information can be utilized to make appropriate nitrogen application decisions in the
field.

15.3.2 Correlations of Mid-Day Leaf Water Potential
with Spectral Indices

Drought is one of the most significant abiotic stress factors limiting the production of
crops. Most field crops are sensitive to drought stress or soil moisture deficit during
growth and development (Galieni et al. 2021). High throughput detection or quan-
tification of plant responses to drought stress is one of the most critical crop
improvement programs. Here we discuss a study that utilized reflectance indices
such as normalized difference vegetation index (NDVI), normalized water index
(NWI) in response to evapotranspiration-based irrigation treatments (100, 80, 60,
40, and 20% ET) in soybean. Mid-day leaf water potential was measured 42–57 days
after sowing (DAS) using a pressure chamber method (Wijewardana et al. 2019). On
the same plants, leaf reflectance measurements were taken between 1100 and 1200 h
using a portable ASD spectroradiometer. Soil moisture stress increased soybean
canopy reflectance in the visible spectrum range (400–700 nm), especially for
60, 40, and 20% ET compared to the control and 80% ET (Fig. 15.3a). The lower
reflectance in the NIR region further confirmed the soil moisture stress-induced
reduction in transpiration and stomatal conductance. Beyond the NIR region
(1300–2500 nm), which is a function of leaf-water content and leaf thickness,
reported to increase spectral reflectance in soil moisture stressed plants. The midday
leaf water potential was strongly correlated (Fig. 15.3a) with NDVI (R2 = 0.82) and
NWI16 (R2 = 0.72). Soil moisture stress-induced reduction in chlorophyll and
canopies size resulted in lower NDVI values. These findings suggest that the NIR
region could be used as a proxy to describe the canopy mass under water-deficit
conditions (Lobos et al. 2014; Elsayed et al. 2015).
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Fig. 15.3 Soybean leaf hyperspectral reflectance of the five soil moisture stress treatments (a). The
relationships between leaf water potential and leaf spectral indices (Normalized Difference Vege-
tation Index-NDVI, b; Normalized Water Index-NWI, c) for soybean subjected to five
evapotranspiration-based irrigation treatments. For experimental details refer Wijewardana et al.
(2019)

15.4 Advancement in the Analysis of Hyperspectral
Reflectance Data

Conventionally, the spectral signatures are used to calculate simple indices, which
are then used for testing the correlations among indices and plant phenotype
(Table 15.1 and Fig. 15.3). However, this does not necessarily work for all the
properties of interest or yield (Grzybowski et al. 2021). Estimating such leaf
properties is not a simple regression task since overtones and combinational bands
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often contaminate these signatures, especially in the near-infrared (NIR) region.
Hence, the leaf spectrum is a complex graph consisting of many overlapping
peaks requiring complex multivariate modeling techniques for property estimations
(Manley 2014).

The independent information from each band of the hyperspectral image
increases the data dimension. While using the full spectral information in a classifier,
we can only use a finite number of training samples to estimate many parameters
necessary to describe the large data dimension. When the cardinality of the training
samples is less than the number of parameters, the estimator performance naturally
declines (Dalponte et al. 2009); this effect is called the Hughes phenomenon. An
optimal pair of training samples, data dimensions exist in most practical circum-
stances. A dimensionality reduction step (Principal Component Analysis, PCA;
Fisher’s Linear Discriminant Analysis, LDA; and Stepwise LDA, SLDA) would
help bring down redundant features to reduce the dimensions of the hyperspectral
observations (Duda et al. 2021). In brief, PCA obtains the best projections of the
data. Only a few of the projected components have significant variance (informa-
tion), and only these fewer “principal” components are used. While PCA is
unsupervised and not classification-centered, the LDA (can also be run in supervised
mode) maximizes the class separability between the two classes. In SLDA, the
discrimination model is refined at each step where a decision on whether to retain
or discard a subset of features is taken.

The efficacy of the maximum likelihood (ML) statistical classifier in combination
with PCA/LDA/SLDA has been used to classify hyperspectral signatures
(Samiappan et al. 2021). These analyses have the capabilities to investigate temporal
misalignments between training and testing conditions. These modeling techniques
can range from classical partial least squares regression (PLSR) to more modern
machine learning techniques such as artificial neural networks, convolutional neural
networks, and deep learning (Grzybowski et al. 2021).

15.4.1 Leaf Reflectance for Early Season Disease Diagnosis

Disease diagnosis and accurate estimation of disease incidence are fundamental in
agriculture production. For example, the root-knot nematode (RKN) (Meloidogyne
incognita) is a significant threat to cotton production. The RKN, a soilborne round-
worm, threatens cotton and other crops. The formation of RKN affects a series of
physiological traits, root system architecture, and final yield. Early diagnosis of
RKN is meaningful in reducing disease spread, financial loss and facilitating real-
time management practice. Leaf hyperspectral reflectance (350–2500 nm) has been
used to understand early-season RKN damages on cotton (Fig. 15.4). Cotton geno-
types (Rk-Rn-1, nematode-resistant and M8, nematode susceptible) with contrasting
responses to nematode infection at the early vegetative stage were inoculated with
nematodes. Temporal hyperspectral reflectance scans were taken 10, 30, and 60 days
after the dose of nematode infestation (DAI) using PSR+ 3500 Spectroradiometer
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Fig. 15.4 Cotton plant with and without root nematode infestation (a). The right graph (b) shows
the reflectance of control and root-knot nematode-infested leaf of cotton

(Spectral Evolution, MD, USA) to discriminate the cotton plants with invisible RKN
disease symptoms. We applied statistical supervised learning algorithms to classify
RKN infested cotton from the control group using the spectral range is 350–2500 nm
(2150 bands) with a spectral resolution of 2.8 nm at 700 nm, 8 nm at 1500 nm, and
6 nm at 2100 nm full width at half maximum (Fig. 15.4b). A maximum likelihood
classifier with a dimensionality reducer revealed temporal hyperspectral changes in
response to RKN before the plant’s visual symptoms appear. The classifier
performed with >90% accuracy using hyperspectral data while classifying healthy
cotton plants from RKN infected plants (Fig. 15.4). These results show the possi-
bility of using leaf reflectance data to diagnose RKN infestation in cotton, and the
same techniques could be used for other diseases in other crops. The effect caused by
the diseases can be non-invasively analyzed using hyperspectral data at the early
growth stage.

15.4.2 Crop Species Discrimination Using
Hyperspectral Data

Leaf reflectance has been used for monitoring plant health, nutrient status, and stress
tolerance in a range of crops (Yendrek et al. 2017; Silva-Perez et al. 2018; Mir et al.
2019; Reynolds et al. 2020; Grzybowski et al. 2021). Differences in leaf morph-
physiological properties among different species lead to varying spectral signatures,
which can be used for the classification of species (Fig. 15.2), abiotic (i.e., soil
moisture stress treatments, Fig. 15.3) and biotic stresses (root-knot nematode,
Fig. 15.4). For example, leaf spectral reflectance of showing a clear discrimination
between corn and soybean in spectral-domain (Fig. 15.5a) and principal component
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Fig. 15.5 Average corn and soybean leave spectra (a) and their separation in principal components
(PCs) space (b). Corn and soybean leaf hyperspectral signatures were collected from plants grown
under controlled environment conditions during the reproductive stage (Bheemanahalli et al., Plant
Stress Physiology Lab, Mississippi State University, unpublished). Leaf reflectance observations
were collected using the PSR+ 3500 Spectroradiometer (Spectral Evolution, MD, USA)

domain (Fig. 15.5b). It is evident from the results that the two species: corn and
soybean can be discriminated utilizing the leaf hyperspectral information (Fig. 15.5).
However, this is not always guaranteed, especially when intraspecies spectral var-
iability exceeds interspecies. Natural processes such as leaf senescence, nutrients,
and stress can further complicate species separation (Reynolds et al. 2020).

15.4.3 Leaf Reflectance and Soil Nutrients

Spectroscopy has been used in soil analysis for a few decades to estimate soil
properties rapidly and cost-effectively. However, uncertainties are associated with
estimated soil nutrient content as plant-available nutrients (Singh et al. 2019). The
leaf level spectral measurements can bypass the soil nutrient analysis and show the
direct impact of available nutrients on plants. Nutrients and minerals in plants in
organic and inorganic fractions create spectral signatures used for estimations. For
example, leaf N, mainly present in organic form in chlorophyll, absorbs light in the
visible region due to the C–C and C=C bonds in the porphyrin rings and the
magnesium ion (Sims and Gamon 2002). In addition, the mid-infrared (MIR) region
has primary absorptions of many leaf properties such as cellulose, hemicellulose,
lignin, xylan, cutin, carbohydrates, and proteins (Türker-Kaya and Huck 2017).
Inorganic leaf nutrients such as Ca, K, and other micronutrients can also be derived
from spectra due to their association with the organic compound functional groups or
organic matrix (Yarce and Rojas 2012; Prananto et al. 2021). A compilation of past
studies using near-infrared (NIR) to derive plant nutrients can be found in Prananto
et al. (2020). In addition to NIR, the MIR region has also been utilized to derive
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numerous plant properties, including cell wall compounds (Jiang et al. 2009; Largo-
Gosens et al. 2014), protein structure (Kumar et al. 2016), tissue and taxa differen-
tiation (Huck-Pezzei et al. 2012), and water content (Ullah et al. 2012). Since the leaf
level spectral measurements can better indicate the available nutrients in the soil; it
can effectively be used in nutrient deficiency diagnosis or management. A study
showed that leaf spectra could identify corn’s N, P, K, and Ca deficiencies
(Al-Abbas et al. 1972). Similarly, other nutrients and physiological processes such
as leaf senescence (Ivanova and Singh 2003) can be detected using the leaf-level
spectra.

15.5 Future Perspectives

Plant physiologists, geneticists, and breeders are interested in leaf biochemical and
physiological properties, usually measured destructively. Destructive measurements
limit the speed of phenotyping, where hundreds of samples are needed to character-
ize variations in nutrients, metabolites, and photosynthetic traits (Grzybowski et al.
2021). Genomic techniques have been significantly advanced; however, throughput
phenotyping has remained the primary bottleneck. To take advantage of genomic
resources to dissect complex stress tolerance, leaf hyperspectral combined with
spectroscopy can serve as an effective and efficient tool for a comprehensive
assessment of complex plant performance to stresses. In recent years considerable
progress has been made in building spectral features for crop improvement and the
technologies to deliver from hand-held instrumentation to drones-assisted platforms.
Numerous studies have shown that leaf and canopy spectra can help derive proxies
associated with physiological and biochemical traits, which is tremendously helpful
in studying heritability, genetic loci discovery, and improving breeding efficiency.
Nevertheless, spectral-assisted breeding and selection will gradually evolve as data
analysis and tools become more accessible for breeders and physiologists. In the
future, spectral-assisted breeding could be seen as a revolutionary approach to
enhance genetic gain under various environments.
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