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Abstract

Aquaporins (AQPs) are a family of membrane
water channels that basically function as
regulators of intracellular and intercellular
water flow. To date, 13 AQPs, distributed
widely in specific cell types in various organs
and tissues, have been characterized in
humans. A pair of NPA boxes forming a pore
is highly conserved among all aquaporins and
is also key residues for the classification of
AQP superfamily into four groups according
to primary sequences. AQPs may also be clas-
sified based on their transport properties. So
far, chromosome localization and gene struc-
ture of 13 human AQPs have been identified,
which is definitely helpful for studying
phenotypes and potential targets in naturally
occurring and synthetic mutations in human or
cells.
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1.1 Classification of Aquaporins

A large number of evidences have shown an
unexpected diversity of aquaporins (AQPs) in
both prokaryotic and eukaryotic organisms [1, 2]
since the discovery of AQP1. More than 300 dif-
ferent aquaporins have been discovered so far in
which 13 isoforms have been identified (AQP0–
AQP12) in human. AQPs are integral, hydropho-
bic, transmembrane proteins that primarily facili-
tate the passive transport of water depending on
the osmotic pressure on both sides of membrane.
Subsequent studies show that AQPs can transport
not only water molecules but also other small,
uncharged molecules, i.e., glycerol, urea, down
their concentration gradients.

Structural analysis of several AQPs has
established that these protein channels share a
common structural feature. The functional
aquaporin unit is a homotetramer, which
comprises six α-helix transmembrane domains
with two conserved asparagine–proline–alanine
(NPA) motifs embedding into the plasma mem-
brane, a signature sequence of water channels
(see Chap. 3). Conformational changes of AQP
protein permit other molecules passing through
plasma membrane, i.e., urea, glycerol, H2O2,
NH3, CO2, etc.

According to their structural and functional
similarities, AQPs are initially subdivided into
two subfamilies, classical AQPs (water-selective)
and aquaglyceroporins (glycerol channel, Glps)
aquaporins. However, further studies revealed
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that both the subfamilies overlap functionally, for
examples, some classical AQPs transport water
and other small solutes, e.g., glycerol. In addition,
a new group of AQPs discovered showed that
their structure is highly deviated from the previ-
ous AQPs especially around the AQP NPA box
[3–5]. This subfamily was later named
superaquaporin (also called unorthodox
aquaporin) as it has very low homology with the
previous two subfamilies [4]. This classification
was usually accepted in physiology.

Later, it was found out that several members,
e.g., AQP8 and AQP6 in classical AQP family
have unique characteristics. Aquaporins are there-
fore organized into four categories, classical
aquaporins, unorthodoxaquaporins, Aqp8-type
aquaammoniaporins, and aquaglyceroporns,
according to the phylogenetic tree or phyloge-
netic topology inferred from Bayesian inference
(Fig. 1.1) [2, 4, 6]. This classification is identified
based on the transport functions and properties of
aquaporins.

The first subfamily is that of aquaporins, the
water selective or specific water channels, also
named as “orthodox,” “classical” aquaporins,
including AQP0, AQP1, AQP2, AQP4, AQP5,
and AQP6. This subfamily of AQPs has been
extensively studied, which help us define regula-
tion of AQP expression in the body and their
potential roles in physiological and pathophysio-
logical states. Evidence, however, appears to sug-
gest that AQP6 be classified as unorthodox
aquaporins, due to low water permeability of
AQP6 [7, 8].

The second subfamily of related proteins has
low conserved amino acid sequences around the
NPA boxes unclassifiable to the first two
subfamilies [4]. Mammalian AQP11 and AQP12
are the only two members in this subfamily,
which have been called “superaquaporins” or
“unorthodox aquaporins.” The NPA boxes of
these two AQPs are highly deviated from those
of other classical AQPs with homology less than
20%, indicating that they belong to a supergene
family of AQPs. The signature sequence for these
AQPs is the cysteine residue at the nine residues
downstream of the C-terminal of the second NPA,

which is exposed on the surface of the protein at
the periplasmic side of the membrane [9, 10]. The
structure and function of AQP11 and AQP12 are
currently poorly understood. As this subfamily
focuses on deviated NPA itself and unconven-
tional functions, AQP6 and AQP8 are also
included previously [11].

The third subfamily is AQP8-type aquaammo-
niaporins. The structure and function of AQP8
indicate that AQP8 should not be regarded as
either a conventional water channel or an
aquaglyceroporin. In AQP8, both NPA motifs
are conserved (although the first motif is followed
by VS, instead of VT). AQP8 has the highest
homology to the plant AQP, γTIP, than any mam-
malian AQPs [11]. AQP8 is characterized as a
Hg2+-inhibitable water channel when expressed
in Xenopus oocytes [12–14]. AQP8 is unique due
to its permeability of NH3/NH4

+ [15, 16] i
Xenopus oocytes and in AQP8-containing
proteoliposomes [17]. While more evidence
suggests that AQP8 is not the only aquaporin
transporting ammonia, some other classical
aquaporins (AQP1, -6) and aquaglyceroporins
are also capable of facilitating ammonia transport.

The fourth subfamily is represented by
aquaglyceroporins that are permeable to water
and other small uncharged molecules (ammonia,
urea, in particular glycerol). They also facilitate
the diffusion of arsenite and antimonite and play a
crucial role in metalloid homeostasis [18]. The
aquaglyceroporins, including AQP3, AQP7,
AQP9, and AQP10, can be distinguished from
aquaporins based on amino acid sequence
alignments [19]. The aspartic acid residue in the
second NPA box is the signature key for AQP
members of this subfamily. This residue is
located just the downstream of the arginine
forming the aromatic residues/arginine (Ar/R)
narrowest filter for the selective water permeation
[20]. The aspartic acid residue enlarges this pore
constriction and makes more hydrophobic,
permeating small molecules larger than water
[10]. AQP3 is the first mammalian
aquaglyceroporin to be cloned, and it is perme-
able to glycerol and water [21, 22]. AQP7, AQP9,
and AQP10 transport water, glycerol, and urea
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Fig. 1.1 The phylogenetic
tree of 13 human AQPs.
The tree shows the classical
AQPs (AQP0, AQP1,
AQP2, AQP4, AQP5, and
AQP6) (light pink oval); the
aquaammoniaporin AQP8
(light blue oval); the
aquaglyceroporins (AQP3,
AQP7, AQP9, AQP10,
light green oval); and the
superaquaporins (AQP11,
AQP12, light yellow oval).
(Modified from [4])

when expressed in Xenopus oocytes [23–
25]. AQP9 is also permeable to a wide range of
other solutes in oocytes [25]. Most
aquaglyceroporins that transport glycerol and
urea are less understood yet.

Additionally, a few isoforms, for example,
AQP1, AQP3, AQP8, also facilitate hydrogen
peroxide membrane permeation and are called
peroxiporins.

As AQPs are present in three domains of life
including bacteria, eukaryotes, and archaea, a
generally accepted classification will be useful
to obtain an overview of widely distributed AQP
family in every kingdom of lives. AQP superfam-
ily may therefore be classified based on the pri-
mary sequence around highly conserved a pair of
NPA boxes, which is critical for the function of
AQPs. Four AQP subfamilies are identified:
AQP1-like, AQP3-like, AQP8-like, and
AQP11-like. Compared to the above, consistency
of primary sequence is emphasized in this classi-
fication. For example, the presence of Asp (D) in
the second NPA box is the key for AQP3-like,
while Cys (C) at nine residues downstream of the
second NPA box is the key for AQP11-like.

1.2 Isoforms of AQPs

To date, at least 13 isoforms of AQPs have been
discovered in humans (Table 1.1). The biological
roles of these proteins have been thoroughly
investigated in the past 30 years after the discov-
ery of the first water channel AQP1. We have
learned substantial base of knowledge on the
structure, cellular localization, biological func-
tion, and potential pathophysiological signifi-
cance of these mammalian AQPs, although there
are some questions still need to answer.

1.2.1 Classical Aquaporins

1.2.1.1 AQP0
AQP0 is the protein in the fiber cells of the eye
lens where it is required for homeostasis and
transparency of the lens [26]. AQP0 showed
lower water permeability than AQP1, about to
1/40 that of AQP1 [27]. AQP0 in lens also
functions as peroxiporins to facilitate membrane
transport of hydrogen peroxide [28]. The water
transport via AQP0 is regulated by C-terminal
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Table 1.1 Genes of human AQPs

Aquaporins Exon numbers Location OMIM

AQP0 8 12q13.3 154,050
AQP1 7 7p14.3 107,776
AQP2 4 12q13.12 107,777
AQP3 6 9p13.3 600,170
AQP4 6 18q11.2-q12.1 600,308
AQP5 5 12q13.12 600,442
AQP6 4 12q13.12 601,383
AQP7 10 9p13.3 602,974
AQP8 6 16q12 603,750
AQP9 6 15q21.3 602,914
AQP10 6 1q21.3 606,578
AQP11 3 11q14.1 609,914
AQP12 4 2q37.3 609,789

References from www.ncbi.nlm.nih.gov/gene/, and omim.org/entry/

cleavage [29]. Deletion of amino acids at the
C-terminal end of AQP0 impairs lens fiber orga-
nization, integrity, mechanical properties, and lens
development [30–32]. AQP0 is also regulated by
pH and Ca2+/calmodulin (CaM) [33]. Lowering
internal Ca2+ concentration or inhibiting calmodu-
lin increased AQP0 water permeability. The
molecular dynamics and functional mutation stud-
ies reveal that binding to calmodulin inhibits
AQP0 water permeability by allosterically closing
the cytoplasmic gate of AQP0 [34]. Emerging evi-
dence showed that AQP0 could be a marker of
erythroid differentiation and play a critical role of
AQP0 in erythropoiesis [35].

1.2.1.2 AQP1
AQP1 is the first water channel discovered [36–
38] and the first AQP that was found to function
as a gas channel [39, 40]. AQP1 is a widely
distributed water channel in the body [41],
where it plays a central role in the regulation of
water transport through those tissues. Aside of
facilitating water movement, studies have
revealed that AQP1 could enhance CO2 and
NH3 permeability [7, 42] and function as a non-
selective monovalent cation channel when
activated by intracellular cGMP [43]. Phosphory-
lation of tyrosine Y253 in the C-terminus is
involved in the regulation of AQP1 as a cGMP-
gated cation channel [44]. Early evidence showed
that threonine and serine protein kinase also

regulate AQP1 ion channel activity [45]. Recent
studies revealed a role of human AQP1 in the
facilitated transport of H2O2 in smooth muscle
[46] and cardio myocytes cell [47] hypertrophy.

1.2.1.3 AQP2
AQP2 is an arginine vasopressin (AVP)-regulated
aquaporin which is probably the most thoroughly
studied to date. AQP2 displays permeability only
to H2O but not any other small molecules. AQP2
is expressed in principal cells of the collecting
ducts and is abundant both in the apical plasma
membrane and subapical vesicles [48–50] in the
kidney where it deeply involved in urine concen-
tration. Translocation of AQP2 from intracellular
compartment to the apical membrane is depen-
dent on the binding of vasopressin to its V2
receptor [49, 50] located in the basolateral plasma
membrane, by which vasopressin increases the
water permeability.

1.2.1.4 AQP4
AQP4 is a predominant AQP located in central
nervous system and is permeable to water [51, 52]
and CO2 [7]. Phosphorylation of AQP4 at cyto-
solic serine residues (Ser111 and Ser180) is
indicated mediating water permeability by gating
[53]. AQP4 possesses Ca2+-dependent
calmodulin-binding domains at both its cytosolic
N- and C-termini. The S276 residue of AQP4 was
able to be phosphorylated in vivo and was linked

http://www.ncbi.nlm.nih.gov/gene/
http://omim.org/entry
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to Ca2+-CaM-dependent, reversible translocation
of AQP4 to the cell surface during extracellular
hypotonic challenge of astrocytes [54, 55]. Phos-
phorylation at AQP4 C-terminus by protein
kinase C (PKC) is required for Golgi
transition [56].

1.2.1.5 AQP5
AQP5 expression was described in the digestive,
renal, respiratory, integumentary, and reproduc-
tive systems as well as in sense organs
[57]. AQP5 is permeable to water and CO2

[7, 58]. AQP5 can be directly phosphorylated at
Ser156 and Thr259 by protein kinase A (PKA) in
the cytoplasmic loop and the C-terminus
[59, 60]. However, it increases intracellular
Ca2+, but not PKA-induced phosphorylation,
that induces AQP5 trafficking to plasma mem-
brane [61, 62].

1.2.1.6 AQP6
AQP6 colocalizes with the H+-ATPase in intra-
cellular vesicles in the renal collecting duct type-
A intercalated cells [8], indicating that AQP6 may
functionally interact with H+-ATPase in the
vesicles to regulate intravesicle pH. In response
to acid–base changes H+-ATPase in the
intercalated cells is observed translocating from
the cytoplasmic vesicles to the apical plasma
membrane [63], where no AQP6 is found,
indicating that AQP6 lacks intracellular traffick-
ing and functions exclusively at the intracellular
sites. The lack in intracellular trafficking of AQP6
is likely due to its intracellular retention [64]. A
region within loop C of AQP6 that is responsible
for severely hampering plasma membrane expres-
sion was recently identified. Serine substitution
corroborated that amino acids present within
AQP6 194–213 of AQP6 loop C contribute to
its intracellular endoplasmic reticulum
(ER) retention [64]. This signal may preclude
proper plasma membrane trafficking and severely
curtail expression of AQP6 in heterologous
expression systems [64]. AQP6 appears imper-
meable to H2O [7, 65], but in the presence of
HgCl2 or at acidic pH (<5.5), the water and
anion permeability of AQP6 in oocytes was rap-
idly increased [8]. Moreover, AQP6 also enables

transport of urea, glycerol, and nitrate
[66, 67]. The N-terminus of AQP6 seems critical
for the trafficking of the protein to the intracellu-
lar sites and intracellular vesicles localization
[68]. Calcium signals may be involved in inter-
nalization of AQP6 as calmodulin can bind AQP6
in a calcium-dependent manner at the
N-terminus [69].

1.2.2 Superaquaporins

1.2.2.1 AQP11
AQP11 has a conventional N-terminal Asn-Pro-
Ala (NPA) signature motif and an unique amino
acid sequence pattern that includes an Asn-Pro-
Cys (NPC) motif, which appears essential for full
expression of molecular function [3]. Recent evi-
dence strongly suggests that Cys227 of AQP11
plays an important role in the formation of its
quaternary structure and molecular function
[70]. One reconstruction vesicle study has clearly
shown that AQP11 is indeed a water channel that
transports water as efficient as AQP1
[71, 72]. Although detailed subcellular localiza-
tion of AQP11 remains clarified, it has been
observed that AQP11 colocalizes with markers
of the endoplasmic reticulum [73] and
HA-tagged AQP11-transgenic mice [74]. Recent
studies showed that AQP11 colocalized to the
mitochondrial-associated membrane (MAM)
which regulates essential signal transduction
[75]. AQP11 facilitates specifically H2O2 trans-
port to ER [75] and thus AQP11 constitutes an
important regulator of renal and hepatic ER redox
homeostasis and signaling. Deficiency or
downregulation of AQP11 is associated with
endoplasmic reticulum stress and apoptosis in
the kidney proximal tubules [73] and in
adipocytes [76].

1.2.2.2 AQP12
AQP12 is more closely related to AQP11 than to
other aquaporins. With regard to the signature
motifs, the first NPA motif of AQP12 is
substituted by an Asn-Pro-Thr (NPT) motif and
the C-terminal NPA motif is conserved
[5, 9]. AQP12 seems to be expressed specifically
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in pancreatic acinar cells and retained in intracel-
lular structures [5]. The osmotic water permeabil-
ity measured by using vesicles from the AQP12
knockout and wild-type mouse pancreas showed
only a small nonsignificant difference [77]. One
study suggests that AQP12 may function as
controlling the proper secretion of pancreatic
fluid following rapid and intense stimulation [77].

1.2.3 AQP8-Type
Aquaammoniaporins

1.2.3.1 AQP8
So far, AQP8 is the only member in this family. It
is a water channel first found in intracellular
domains of the proximal tubule and the collecting
duct cells [78]. Several studies showed that AQP8
transports water [7, 79] and ammonia
[7, 17]. Although AQP8 was shown ultrastructur-
ally localized at inner mitochondrial membrane
(IMM) in the liver and functionally permeable to
water [79], this was not supported by water per-
meability study in AQP8-deleted mouse liver cell
IMM [80]. In the kidney, AQP8 facilitates trans-
port of NH3 released from glutamine and gluta-
mate out of the IMM [81] for secretion into the
tubule lumen, where the NH3 buffers acid
excreted by epithelial cells, particularly during
metabolic acidosis [82]. AQP8 may also facilitate
the diffusion of hydrogen peroxide across
membranes of mitochondrial in situations when
reactive oxygen species is generated, e.g., elec-
tron transport chain is highly reduced [75, 83, 84].

1.2.4 Aquaglyceroporins

1.2.4.1 AQP3
AQP3 has a wide tissue distribution. It is perme-
able to water, glycerol, and urea. Recent studies
revealed the pH gating of human AQP3 on both
water and glycerol permeabilities using a human
red blood cell model and in silico [85]. AQPs also
differ in their capacity to transport various
substances, such as urea, glycerol, H2O2, ions,
and gas. Emerging evidence showed that AQP3
is regulated on short-term basis likely via

cAMP-PKA pathway [86–88]. In the kidney, the
increased basolateral diffusion of AQP3 induced
by elevated intracellular cAMP likely altered
AQP3 interactions with other proteins or lipids
in the plasma membrane, which may be a physio-
logical adaptation to the increased water flow
mediated by apical AQP2 [86]. AQP3 was
shown to transport H2O2 through the plasma
membrane [84, 89, 90], which likely plays an
important role in initiating intracellular signaling
in cell migration [91], inflammation [92], and
cancer progression [93, 94].

1.2.4.2 AQP7
AQP7 facilitates transport of water, glycerol,
urea, ammonia, arsenite, and NH3 [7, 23,
95]. Hydropathy analysis predicts six putative
transmembrane domains with the N- and
C-terminal localized in the cytosol. Six prospec-
tive sites of AQP7 for PKA phosphorylation have
been identified based on database analysis [96],
but the direct regulation by PKA remains to be
elucidated, whereas a potential PKC phosphory-
lation site is found at residue Thr-174 [23]. AQP7
is abundantly expressed in adipose tissue [97] and
pancreatic β-cells [98, 99].

1.2.4.3 AQP9
AQP9 is expressed at the sinusoidal plasma mem-
brane of hepatocytes [100], where it serves as a
conduit for the uptake of NH3 and mediates the
efflux of newly synthesized urea. AQP9 may also
function as a glycerol channel to facilitate glyc-
erol uptake in the liver. AQP9 is also permeable
to water, carbamides, CO2, and NH3; moreover,
AQP9 is suggested playing a crucial role in met-
alloid homeostasis by transporting antimonite and
arsenite [2, 11]. Interestingly, it also transports
much larger substrates such as lactate, purine,
pyrimidine [2, 25], probably due to a larger pore
size disclosed by a 3D structure analysis
[101]. AQP9 facilitates the membrane transport
of H2O2 in mammalian cells and regulates redox-
regulated downstream cell signaling
[102]. Human AQP9 has a potential
N-glycosylation site at Asn142, a potential PKC
phosphorylation sites at Ser11 and Ser222, a
potential casein kinase II phosphorylation site at
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Ser28 [25, 103]. However, little is known about
short-term regulation of AQP9.

1.2.4.4 AQP10
AQP10 is an aquaglyceroporin expressed only in
the human gastrointestinal tract, but not in the
mouse small intestine where it has been
demonstrated to be a pseudogene
[24, 104]. AQP10 is able to transport water, glyc-
erol, and urea when expressed in Xenopus
oocytes [24]. AQP10 is also a glycerol channel
expressed in the plasma membrane of human
adipocytes [105]. Silence of AQP10 in human
differentiated adipocytes resulted in a 50%
decrease of glycerol and osmotic water perme-
ability, suggesting that AQP10, together with
AQP7, is particularly important for the mainte-
nance of normal or low glycerol contents inside
the adipocyte, thus protecting humans from obe-
sity [105]. Three potential glycosylated sites for
AQP10 were predicted, at least one of them
Asn133 in the extracellular loop of AQP10 was
confirmed. Glycosylation at Asn133 may increase
thermostability of AQP10 when challenged with
low temperature, indicating a stabilizing effect of
the N-linked glycan [106]. AQP10 mediated
increased glycerol flux activated by acidification
in human adipocytes [107], likely by a unique
gating mechanism combining complex interac-
tion networks between water molecules and pro-
tein residues at the loop interface [108].

1.3 Gene Structures of AQPs

Table 1.1 shows chromosome localization and
numbers of exons of 13 human AQPs. The gene
of AQP0 spans 3.6 kb, contains four exons, and is
present in single copy in the haploid human
genome. Transcription is initiated from a single
site 26 nucleotides downstream from the TATA
box [109].

Genomic Southern analysis indicated the exis-
tence of a single AQP1 gene that was localized to
human 7p14 by in situ hybridization [110–
112]. AQP2 cDNA was cloned as the water chan-
nel of the apical membrane of the kidney
collecting tubule in the rat [48], which shows

42% identity in amino acid sequence to AQP1.
Human AQP2 encodes a deduced protein with
89.7–91% amino acid identity to the rat protein
[112–115]. By in situ hybridization, AQP2 gene
was mapped to chromosome 12q13 [113, 115],
very close to the site of major intrinsic protein
(MIP).

Using a rat AQP3 probe, Ishibashi [116]
screened a human kidney cDNA library and
isolated a cDNA coding for human AQP3 pro-
tein. AQP3 gene is located at 9p13 and appeared
to exist as a single copy with six exons. The
initiation site of transcription was identified to
be located 64-bp upstream of the first ATG
codon. The 5-prime flanking region contained a
TATA box, 2 Sp1 sequences, and some consen-
sus sequences including AP-2 sites [117].

Human AQP4 (initially called mercurial-
insensitive water channel, MIWC) cDNA cloned
from a fatal brain cDNA library showed that the
longest open reading frame encoded 301 amino
acids with 94% identity to rat AQP4. Analysis of
MIWC genomic indicated two distinct but
overlapping transcription units from which multi-
ple MIWC mRNAs are transcribed. Later reports
revealed that the AQP4 gene is composed of four
exons encoding 127, 55, 27, and 92 amino acids
separated by introns of 0.8, 0.3, and 5.2 kb. Geno-
mic Southern blot analysis indicated the presence
of a single MIWC gene, localized on chromo-
some 18q [51, 118].

Human AQP5 cDNA and gene was isolated
and characterized from a human submaxillary
gland library, which contained a 795-bp open
reading frame encoding a 265-amino acid poly-
peptide with a transcription initiation site 518 bp
upstream of the initiating methionine. AQP5 gene
was mapped to chromosome 12q13 [119].

Ma et al. isolated the cDNA by using degener-
ate PCR from a human kidney cDNA library that
was related to AQP2, having four exons and was
organized similarly to AQP0 and AQP2 and later
was referred to this gene as AQP6, assigned to
chromosome 12q13 [120, 121].

Human AQP7 gene contains 10 exons. An Alu
repetitive sequence and binding sites for several
different transcription factors within the AQP7
promoter was determined, including a putative
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peroxisome proliferator response element and a
putative insulin response element, indicating
potential involvement of AQP7 in energy metab-
olism [23, 122, 123].

Like the genes of non-water-selective
aquaporins, the AQP8 gene contains six exons;
however, its exon–intron boundaries are different
from the boundaries of those other aquaporin
genes. AQP8 gene was mapped to chromosome
16p12 [14, 124].

A partial AQP9 cDNA was isolated by using
RT-PCR of leukocyte RNA with primers based
on conserved regions of aquaporins [125]. AQP9
shares greater sequence identity with AQP3 and
AQP7 than with other members of the family,
suggesting that these three proteins belong to a
subfamily.

The cDNA encoding AQP10 was isolated
from jejunum cDNA library. Sequence analysis
predicted that AQP10 is approximately 53% iden-
tical to AQP3 and AQP9, Northern blot analysis
revealed expression of a 2.3-kb AQP10 transcript
in jejunum but not liver [126].

Human AQP11 gene contains three exons and
spans 8 kb and was mapped to chromosome
11q14. Human AQP12A gene contains four
exons and encodes a 1.5-kb transcript only in
pancreas [73, 127].

Genetic variants of AQPs may result in distur-
bance of molecule selection and transport by
AQPs; disruption of the formation of tetramers
or arrays; and misfolding, faulty sorting of AQPs,
or other dysfunction [81].
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