
Advances in Experimental Medicine and Biology 1398

Baoxue Yang   Editor

Aquaporins
Second Edition



Advances in Experimental Medicine
and Biology

Volume 1398

Series Editors

Wim E. Crusio, Institut de Neurosciences Cognitives et Intégratives
d’Aquitaine, CNRS and University of Bordeaux, Pessac Cedex, France

Haidong Dong, Departments of Urology and Immunology, Mayo Clinic,
Rochester, MN, USA

Heinfried H. Radeke, Institute of Pharmacology & Toxicology, Clinic of the
Goethe University Frankfurt Main, Frankfurt am Main, Hessen, Germany

Nima Rezaei , Research Center for Immunodeficiencies, Children’s
Medical Center, Tehran University of Medical Sciences, Tehran, Iran

Ortrud Steinlein, Institute of Human Genetics, LMU University Hospital,
Munich, Germany

Junjie Xiao, Cardiac Regeneration and Ageing Lab, Institute of
Cardiovascular Sciences, School of Life Science, Shanghai University,
Shanghai, China



Advances in Experimental Medicine and Biology provides a platform for
scientific contributions in the main disciplines of the biomedicine and the
life sciences. This series publishes thematic volumes on contemporary
research in the areas of microbiology, immunology, neurosciences, biochem-
istry, biomedical engineering, genetics, physiology, and cancer research.
Covering emerging topics and techniques in basic and clinical science, it
brings together clinicians and researchers from various fields.

Advances in Experimental Medicine and Biology has been publishing
exceptional works in the field for over 40 years, and is indexed in SCOPUS,
Medline (PubMed), EMBASE, BIOSIS, Reaxys, EMBiology, the Chemical
Abstracts Service (CAS), and Pathway Studio.

2021 Impact Factor: 3.650 (no longer indexed in SCIE as of 2022)



Baoxue Yang
Editor

Aquaporins

Second Edition



Editor
Baoxue Yang
School of Basic Medical Sciences
Peking University
Beijing, China

ISSN 0065-2598 ISSN 2214-8019 (electronic)
Advances in Experimental Medicine and Biology
ISBN 978-981-19-7414-4 ISBN 978-981-19-7415-1 (eBook)
https://doi.org/10.1007/978-981-19-7415-1

# The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Singapore Pte Ltd. 2017, 2023
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher,
whether the whole or part of the material is concerned, specifically the rights of translation,
reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any
other physical way, and transmission or information storage and retrieval, electronic adaptation,
computer software, or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are
exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in
this book are believed to be true and accurate at the date of publication. Neither the publisher nor
the authors or the editors give a warranty, expressed or implied, with respect to the material
contained herein or for any errors or omissions that may have been made. The publisher remains
neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore
189721, Singapore

https://doi.org/10.1007/978-981-19-7415-1


Preface

As described in its preface, the first edition of Aquaporins, published in 2017,
focused on the gene organization, protein crystal structure, expression locali-
zation, physiological functions, and pathophysiological roles in disease devel-
opment of aquaporins (AQPs). Since the publication of the first edition, this
book has been welcomed by readers and downloaded more than 52,000 times
and cited 260 times. The second edition of Aquaporins represents an extensive
revision and a considerable expansion of the first edition. For this second
edition, as in the first edition, our approach has been not just to describe what
aquaporins (AQPs) are and where they are expressed, but to emphasize their
physiological functions and pathophysiological roles in diseases. The contents
were redesigned with 15 updated chapters and 9 new chapters. I hope readers
like it more than the first edition.

Here I am grateful to the readers who have taken the trouble to write to me
with constructive comments and suggestions. I thank all authors and
colleagues for their contribution to this book.

Beijing, China Baoxue Yang
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Classification and Gene Structure
of Aquaporins 1
Long Xu, Xiangdong Guo, Weidong Wang, and Chunling Li

Abstract

Aquaporins (AQPs) are a family of membrane
water channels that basically function as
regulators of intracellular and intercellular
water flow. To date, 13 AQPs, distributed
widely in specific cell types in various organs
and tissues, have been characterized in
humans. A pair of NPA boxes forming a pore
is highly conserved among all aquaporins and
is also key residues for the classification of
AQP superfamily into four groups according
to primary sequences. AQPs may also be clas-
sified based on their transport properties. So
far, chromosome localization and gene struc-
ture of 13 human AQPs have been identified,
which is definitely helpful for studying
phenotypes and potential targets in naturally
occurring and synthetic mutations in human or
cells.
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1.1 Classification of Aquaporins

A large number of evidences have shown an
unexpected diversity of aquaporins (AQPs) in
both prokaryotic and eukaryotic organisms [1, 2]
since the discovery of AQP1. More than 300 dif-
ferent aquaporins have been discovered so far in
which 13 isoforms have been identified (AQP0–
AQP12) in human. AQPs are integral, hydropho-
bic, transmembrane proteins that primarily facili-
tate the passive transport of water depending on
the osmotic pressure on both sides of membrane.
Subsequent studies show that AQPs can transport
not only water molecules but also other small,
uncharged molecules, i.e., glycerol, urea, down
their concentration gradients.

Structural analysis of several AQPs has
established that these protein channels share a
common structural feature. The functional
aquaporin unit is a homotetramer, which
comprises six α-helix transmembrane domains
with two conserved asparagine–proline–alanine
(NPA) motifs embedding into the plasma mem-
brane, a signature sequence of water channels
(see Chap. 3). Conformational changes of AQP
protein permit other molecules passing through
plasma membrane, i.e., urea, glycerol, H2O2,
NH3, CO2, etc.

According to their structural and functional
similarities, AQPs are initially subdivided into
two subfamilies, classical AQPs (water-selective)
and aquaglyceroporins (glycerol channel, Glps)
aquaporins. However, further studies revealed

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-7415-1_1&domain=pdf
mailto:lichl3@mail.sysu.edu.cn
mailto:wangwd6@mail.sysu.edu.cn
https://doi.org/10.1007/978-981-19-7415-1_1#DOI
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that both the subfamilies overlap functionally, for
examples, some classical AQPs transport water
and other small solutes, e.g., glycerol. In addition,
a new group of AQPs discovered showed that
their structure is highly deviated from the previ-
ous AQPs especially around the AQP NPA box
[3–5]. This subfamily was later named
superaquaporin (also called unorthodox
aquaporin) as it has very low homology with the
previous two subfamilies [4]. This classification
was usually accepted in physiology.

Later, it was found out that several members,
e.g., AQP8 and AQP6 in classical AQP family
have unique characteristics. Aquaporins are there-
fore organized into four categories, classical
aquaporins, unorthodoxaquaporins, Aqp8-type
aquaammoniaporins, and aquaglyceroporns,
according to the phylogenetic tree or phyloge-
netic topology inferred from Bayesian inference
(Fig. 1.1) [2, 4, 6]. This classification is identified
based on the transport functions and properties of
aquaporins.

The first subfamily is that of aquaporins, the
water selective or specific water channels, also
named as “orthodox,” “classical” aquaporins,
including AQP0, AQP1, AQP2, AQP4, AQP5,
and AQP6. This subfamily of AQPs has been
extensively studied, which help us define regula-
tion of AQP expression in the body and their
potential roles in physiological and pathophysio-
logical states. Evidence, however, appears to sug-
gest that AQP6 be classified as unorthodox
aquaporins, due to low water permeability of
AQP6 [7, 8].

The second subfamily of related proteins has
low conserved amino acid sequences around the
NPA boxes unclassifiable to the first two
subfamilies [4]. Mammalian AQP11 and AQP12
are the only two members in this subfamily,
which have been called “superaquaporins” or
“unorthodox aquaporins.” The NPA boxes of
these two AQPs are highly deviated from those
of other classical AQPs with homology less than
20%, indicating that they belong to a supergene
family of AQPs. The signature sequence for these
AQPs is the cysteine residue at the nine residues
downstream of the C-terminal of the second NPA,

which is exposed on the surface of the protein at
the periplasmic side of the membrane [9, 10]. The
structure and function of AQP11 and AQP12 are
currently poorly understood. As this subfamily
focuses on deviated NPA itself and unconven-
tional functions, AQP6 and AQP8 are also
included previously [11].

The third subfamily is AQP8-type aquaammo-
niaporins. The structure and function of AQP8
indicate that AQP8 should not be regarded as
either a conventional water channel or an
aquaglyceroporin. In AQP8, both NPA motifs
are conserved (although the first motif is followed
by VS, instead of VT). AQP8 has the highest
homology to the plant AQP, γTIP, than any mam-
malian AQPs [11]. AQP8 is characterized as a
Hg2+-inhibitable water channel when expressed
in Xenopus oocytes [12–14]. AQP8 is unique due
to its permeability of NH3/NH4

+ [15, 16] i
Xenopus oocytes and in AQP8-containing
proteoliposomes [17]. While more evidence
suggests that AQP8 is not the only aquaporin
transporting ammonia, some other classical
aquaporins (AQP1, -6) and aquaglyceroporins
are also capable of facilitating ammonia transport.

The fourth subfamily is represented by
aquaglyceroporins that are permeable to water
and other small uncharged molecules (ammonia,
urea, in particular glycerol). They also facilitate
the diffusion of arsenite and antimonite and play a
crucial role in metalloid homeostasis [18]. The
aquaglyceroporins, including AQP3, AQP7,
AQP9, and AQP10, can be distinguished from
aquaporins based on amino acid sequence
alignments [19]. The aspartic acid residue in the
second NPA box is the signature key for AQP
members of this subfamily. This residue is
located just the downstream of the arginine
forming the aromatic residues/arginine (Ar/R)
narrowest filter for the selective water permeation
[20]. The aspartic acid residue enlarges this pore
constriction and makes more hydrophobic,
permeating small molecules larger than water
[10]. AQP3 is the first mammalian
aquaglyceroporin to be cloned, and it is perme-
able to glycerol and water [21, 22]. AQP7, AQP9,
and AQP10 transport water, glycerol, and urea
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Fig. 1.1 The phylogenetic
tree of 13 human AQPs.
The tree shows the classical
AQPs (AQP0, AQP1,
AQP2, AQP4, AQP5, and
AQP6) (light pink oval); the
aquaammoniaporin AQP8
(light blue oval); the
aquaglyceroporins (AQP3,
AQP7, AQP9, AQP10,
light green oval); and the
superaquaporins (AQP11,
AQP12, light yellow oval).
(Modified from [4])

when expressed in Xenopus oocytes [23–
25]. AQP9 is also permeable to a wide range of
other solutes in oocytes [25]. Most
aquaglyceroporins that transport glycerol and
urea are less understood yet.

Additionally, a few isoforms, for example,
AQP1, AQP3, AQP8, also facilitate hydrogen
peroxide membrane permeation and are called
peroxiporins.

As AQPs are present in three domains of life
including bacteria, eukaryotes, and archaea, a
generally accepted classification will be useful
to obtain an overview of widely distributed AQP
family in every kingdom of lives. AQP superfam-
ily may therefore be classified based on the pri-
mary sequence around highly conserved a pair of
NPA boxes, which is critical for the function of
AQPs. Four AQP subfamilies are identified:
AQP1-like, AQP3-like, AQP8-like, and
AQP11-like. Compared to the above, consistency
of primary sequence is emphasized in this classi-
fication. For example, the presence of Asp (D) in
the second NPA box is the key for AQP3-like,
while Cys (C) at nine residues downstream of the
second NPA box is the key for AQP11-like.

1.2 Isoforms of AQPs

To date, at least 13 isoforms of AQPs have been
discovered in humans (Table 1.1). The biological
roles of these proteins have been thoroughly
investigated in the past 30 years after the discov-
ery of the first water channel AQP1. We have
learned substantial base of knowledge on the
structure, cellular localization, biological func-
tion, and potential pathophysiological signifi-
cance of these mammalian AQPs, although there
are some questions still need to answer.

1.2.1 Classical Aquaporins

1.2.1.1 AQP0
AQP0 is the protein in the fiber cells of the eye
lens where it is required for homeostasis and
transparency of the lens [26]. AQP0 showed
lower water permeability than AQP1, about to
1/40 that of AQP1 [27]. AQP0 in lens also
functions as peroxiporins to facilitate membrane
transport of hydrogen peroxide [28]. The water
transport via AQP0 is regulated by C-terminal
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Table 1.1 Genes of human AQPs

Aquaporins Exon numbers Location OMIM

AQP0 8 12q13.3 154,050
AQP1 7 7p14.3 107,776
AQP2 4 12q13.12 107,777
AQP3 6 9p13.3 600,170
AQP4 6 18q11.2-q12.1 600,308
AQP5 5 12q13.12 600,442
AQP6 4 12q13.12 601,383
AQP7 10 9p13.3 602,974
AQP8 6 16q12 603,750
AQP9 6 15q21.3 602,914
AQP10 6 1q21.3 606,578
AQP11 3 11q14.1 609,914
AQP12 4 2q37.3 609,789

References from www.ncbi.nlm.nih.gov/gene/, and omim.org/entry/

cleavage [29]. Deletion of amino acids at the
C-terminal end of AQP0 impairs lens fiber orga-
nization, integrity, mechanical properties, and lens
development [30–32]. AQP0 is also regulated by
pH and Ca2+/calmodulin (CaM) [33]. Lowering
internal Ca2+ concentration or inhibiting calmodu-
lin increased AQP0 water permeability. The
molecular dynamics and functional mutation stud-
ies reveal that binding to calmodulin inhibits
AQP0 water permeability by allosterically closing
the cytoplasmic gate of AQP0 [34]. Emerging evi-
dence showed that AQP0 could be a marker of
erythroid differentiation and play a critical role of
AQP0 in erythropoiesis [35].

1.2.1.2 AQP1
AQP1 is the first water channel discovered [36–
38] and the first AQP that was found to function
as a gas channel [39, 40]. AQP1 is a widely
distributed water channel in the body [41],
where it plays a central role in the regulation of
water transport through those tissues. Aside of
facilitating water movement, studies have
revealed that AQP1 could enhance CO2 and
NH3 permeability [7, 42] and function as a non-
selective monovalent cation channel when
activated by intracellular cGMP [43]. Phosphory-
lation of tyrosine Y253 in the C-terminus is
involved in the regulation of AQP1 as a cGMP-
gated cation channel [44]. Early evidence showed
that threonine and serine protein kinase also

regulate AQP1 ion channel activity [45]. Recent
studies revealed a role of human AQP1 in the
facilitated transport of H2O2 in smooth muscle
[46] and cardio myocytes cell [47] hypertrophy.

1.2.1.3 AQP2
AQP2 is an arginine vasopressin (AVP)-regulated
aquaporin which is probably the most thoroughly
studied to date. AQP2 displays permeability only
to H2O but not any other small molecules. AQP2
is expressed in principal cells of the collecting
ducts and is abundant both in the apical plasma
membrane and subapical vesicles [48–50] in the
kidney where it deeply involved in urine concen-
tration. Translocation of AQP2 from intracellular
compartment to the apical membrane is depen-
dent on the binding of vasopressin to its V2
receptor [49, 50] located in the basolateral plasma
membrane, by which vasopressin increases the
water permeability.

1.2.1.4 AQP4
AQP4 is a predominant AQP located in central
nervous system and is permeable to water [51, 52]
and CO2 [7]. Phosphorylation of AQP4 at cyto-
solic serine residues (Ser111 and Ser180) is
indicated mediating water permeability by gating
[53]. AQP4 possesses Ca2+-dependent
calmodulin-binding domains at both its cytosolic
N- and C-termini. The S276 residue of AQP4 was
able to be phosphorylated in vivo and was linked

http://www.ncbi.nlm.nih.gov/gene/
http://omim.org/entry
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to Ca2+-CaM-dependent, reversible translocation
of AQP4 to the cell surface during extracellular
hypotonic challenge of astrocytes [54, 55]. Phos-
phorylation at AQP4 C-terminus by protein
kinase C (PKC) is required for Golgi
transition [56].

1.2.1.5 AQP5
AQP5 expression was described in the digestive,
renal, respiratory, integumentary, and reproduc-
tive systems as well as in sense organs
[57]. AQP5 is permeable to water and CO2

[7, 58]. AQP5 can be directly phosphorylated at
Ser156 and Thr259 by protein kinase A (PKA) in
the cytoplasmic loop and the C-terminus
[59, 60]. However, it increases intracellular
Ca2+, but not PKA-induced phosphorylation,
that induces AQP5 trafficking to plasma mem-
brane [61, 62].

1.2.1.6 AQP6
AQP6 colocalizes with the H+-ATPase in intra-
cellular vesicles in the renal collecting duct type-
A intercalated cells [8], indicating that AQP6 may
functionally interact with H+-ATPase in the
vesicles to regulate intravesicle pH. In response
to acid–base changes H+-ATPase in the
intercalated cells is observed translocating from
the cytoplasmic vesicles to the apical plasma
membrane [63], where no AQP6 is found,
indicating that AQP6 lacks intracellular traffick-
ing and functions exclusively at the intracellular
sites. The lack in intracellular trafficking of AQP6
is likely due to its intracellular retention [64]. A
region within loop C of AQP6 that is responsible
for severely hampering plasma membrane expres-
sion was recently identified. Serine substitution
corroborated that amino acids present within
AQP6 194–213 of AQP6 loop C contribute to
its intracellular endoplasmic reticulum
(ER) retention [64]. This signal may preclude
proper plasma membrane trafficking and severely
curtail expression of AQP6 in heterologous
expression systems [64]. AQP6 appears imper-
meable to H2O [7, 65], but in the presence of
HgCl2 or at acidic pH (<5.5), the water and
anion permeability of AQP6 in oocytes was rap-
idly increased [8]. Moreover, AQP6 also enables

transport of urea, glycerol, and nitrate
[66, 67]. The N-terminus of AQP6 seems critical
for the trafficking of the protein to the intracellu-
lar sites and intracellular vesicles localization
[68]. Calcium signals may be involved in inter-
nalization of AQP6 as calmodulin can bind AQP6
in a calcium-dependent manner at the
N-terminus [69].

1.2.2 Superaquaporins

1.2.2.1 AQP11
AQP11 has a conventional N-terminal Asn-Pro-
Ala (NPA) signature motif and an unique amino
acid sequence pattern that includes an Asn-Pro-
Cys (NPC) motif, which appears essential for full
expression of molecular function [3]. Recent evi-
dence strongly suggests that Cys227 of AQP11
plays an important role in the formation of its
quaternary structure and molecular function
[70]. One reconstruction vesicle study has clearly
shown that AQP11 is indeed a water channel that
transports water as efficient as AQP1
[71, 72]. Although detailed subcellular localiza-
tion of AQP11 remains clarified, it has been
observed that AQP11 colocalizes with markers
of the endoplasmic reticulum [73] and
HA-tagged AQP11-transgenic mice [74]. Recent
studies showed that AQP11 colocalized to the
mitochondrial-associated membrane (MAM)
which regulates essential signal transduction
[75]. AQP11 facilitates specifically H2O2 trans-
port to ER [75] and thus AQP11 constitutes an
important regulator of renal and hepatic ER redox
homeostasis and signaling. Deficiency or
downregulation of AQP11 is associated with
endoplasmic reticulum stress and apoptosis in
the kidney proximal tubules [73] and in
adipocytes [76].

1.2.2.2 AQP12
AQP12 is more closely related to AQP11 than to
other aquaporins. With regard to the signature
motifs, the first NPA motif of AQP12 is
substituted by an Asn-Pro-Thr (NPT) motif and
the C-terminal NPA motif is conserved
[5, 9]. AQP12 seems to be expressed specifically
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in pancreatic acinar cells and retained in intracel-
lular structures [5]. The osmotic water permeabil-
ity measured by using vesicles from the AQP12
knockout and wild-type mouse pancreas showed
only a small nonsignificant difference [77]. One
study suggests that AQP12 may function as
controlling the proper secretion of pancreatic
fluid following rapid and intense stimulation [77].

1.2.3 AQP8-Type
Aquaammoniaporins

1.2.3.1 AQP8
So far, AQP8 is the only member in this family. It
is a water channel first found in intracellular
domains of the proximal tubule and the collecting
duct cells [78]. Several studies showed that AQP8
transports water [7, 79] and ammonia
[7, 17]. Although AQP8 was shown ultrastructur-
ally localized at inner mitochondrial membrane
(IMM) in the liver and functionally permeable to
water [79], this was not supported by water per-
meability study in AQP8-deleted mouse liver cell
IMM [80]. In the kidney, AQP8 facilitates trans-
port of NH3 released from glutamine and gluta-
mate out of the IMM [81] for secretion into the
tubule lumen, where the NH3 buffers acid
excreted by epithelial cells, particularly during
metabolic acidosis [82]. AQP8 may also facilitate
the diffusion of hydrogen peroxide across
membranes of mitochondrial in situations when
reactive oxygen species is generated, e.g., elec-
tron transport chain is highly reduced [75, 83, 84].

1.2.4 Aquaglyceroporins

1.2.4.1 AQP3
AQP3 has a wide tissue distribution. It is perme-
able to water, glycerol, and urea. Recent studies
revealed the pH gating of human AQP3 on both
water and glycerol permeabilities using a human
red blood cell model and in silico [85]. AQPs also
differ in their capacity to transport various
substances, such as urea, glycerol, H2O2, ions,
and gas. Emerging evidence showed that AQP3
is regulated on short-term basis likely via

cAMP-PKA pathway [86–88]. In the kidney, the
increased basolateral diffusion of AQP3 induced
by elevated intracellular cAMP likely altered
AQP3 interactions with other proteins or lipids
in the plasma membrane, which may be a physio-
logical adaptation to the increased water flow
mediated by apical AQP2 [86]. AQP3 was
shown to transport H2O2 through the plasma
membrane [84, 89, 90], which likely plays an
important role in initiating intracellular signaling
in cell migration [91], inflammation [92], and
cancer progression [93, 94].

1.2.4.2 AQP7
AQP7 facilitates transport of water, glycerol,
urea, ammonia, arsenite, and NH3 [7, 23,
95]. Hydropathy analysis predicts six putative
transmembrane domains with the N- and
C-terminal localized in the cytosol. Six prospec-
tive sites of AQP7 for PKA phosphorylation have
been identified based on database analysis [96],
but the direct regulation by PKA remains to be
elucidated, whereas a potential PKC phosphory-
lation site is found at residue Thr-174 [23]. AQP7
is abundantly expressed in adipose tissue [97] and
pancreatic β-cells [98, 99].

1.2.4.3 AQP9
AQP9 is expressed at the sinusoidal plasma mem-
brane of hepatocytes [100], where it serves as a
conduit for the uptake of NH3 and mediates the
efflux of newly synthesized urea. AQP9 may also
function as a glycerol channel to facilitate glyc-
erol uptake in the liver. AQP9 is also permeable
to water, carbamides, CO2, and NH3; moreover,
AQP9 is suggested playing a crucial role in met-
alloid homeostasis by transporting antimonite and
arsenite [2, 11]. Interestingly, it also transports
much larger substrates such as lactate, purine,
pyrimidine [2, 25], probably due to a larger pore
size disclosed by a 3D structure analysis
[101]. AQP9 facilitates the membrane transport
of H2O2 in mammalian cells and regulates redox-
regulated downstream cell signaling
[102]. Human AQP9 has a potential
N-glycosylation site at Asn142, a potential PKC
phosphorylation sites at Ser11 and Ser222, a
potential casein kinase II phosphorylation site at



1 Classification and Gene Structure of Aquaporins 7

Ser28 [25, 103]. However, little is known about
short-term regulation of AQP9.

1.2.4.4 AQP10
AQP10 is an aquaglyceroporin expressed only in
the human gastrointestinal tract, but not in the
mouse small intestine where it has been
demonstrated to be a pseudogene
[24, 104]. AQP10 is able to transport water, glyc-
erol, and urea when expressed in Xenopus
oocytes [24]. AQP10 is also a glycerol channel
expressed in the plasma membrane of human
adipocytes [105]. Silence of AQP10 in human
differentiated adipocytes resulted in a 50%
decrease of glycerol and osmotic water perme-
ability, suggesting that AQP10, together with
AQP7, is particularly important for the mainte-
nance of normal or low glycerol contents inside
the adipocyte, thus protecting humans from obe-
sity [105]. Three potential glycosylated sites for
AQP10 were predicted, at least one of them
Asn133 in the extracellular loop of AQP10 was
confirmed. Glycosylation at Asn133 may increase
thermostability of AQP10 when challenged with
low temperature, indicating a stabilizing effect of
the N-linked glycan [106]. AQP10 mediated
increased glycerol flux activated by acidification
in human adipocytes [107], likely by a unique
gating mechanism combining complex interac-
tion networks between water molecules and pro-
tein residues at the loop interface [108].

1.3 Gene Structures of AQPs

Table 1.1 shows chromosome localization and
numbers of exons of 13 human AQPs. The gene
of AQP0 spans 3.6 kb, contains four exons, and is
present in single copy in the haploid human
genome. Transcription is initiated from a single
site 26 nucleotides downstream from the TATA
box [109].

Genomic Southern analysis indicated the exis-
tence of a single AQP1 gene that was localized to
human 7p14 by in situ hybridization [110–
112]. AQP2 cDNA was cloned as the water chan-
nel of the apical membrane of the kidney
collecting tubule in the rat [48], which shows

42% identity in amino acid sequence to AQP1.
Human AQP2 encodes a deduced protein with
89.7–91% amino acid identity to the rat protein
[112–115]. By in situ hybridization, AQP2 gene
was mapped to chromosome 12q13 [113, 115],
very close to the site of major intrinsic protein
(MIP).

Using a rat AQP3 probe, Ishibashi [116]
screened a human kidney cDNA library and
isolated a cDNA coding for human AQP3 pro-
tein. AQP3 gene is located at 9p13 and appeared
to exist as a single copy with six exons. The
initiation site of transcription was identified to
be located 64-bp upstream of the first ATG
codon. The 5-prime flanking region contained a
TATA box, 2 Sp1 sequences, and some consen-
sus sequences including AP-2 sites [117].

Human AQP4 (initially called mercurial-
insensitive water channel, MIWC) cDNA cloned
from a fatal brain cDNA library showed that the
longest open reading frame encoded 301 amino
acids with 94% identity to rat AQP4. Analysis of
MIWC genomic indicated two distinct but
overlapping transcription units from which multi-
ple MIWC mRNAs are transcribed. Later reports
revealed that the AQP4 gene is composed of four
exons encoding 127, 55, 27, and 92 amino acids
separated by introns of 0.8, 0.3, and 5.2 kb. Geno-
mic Southern blot analysis indicated the presence
of a single MIWC gene, localized on chromo-
some 18q [51, 118].

Human AQP5 cDNA and gene was isolated
and characterized from a human submaxillary
gland library, which contained a 795-bp open
reading frame encoding a 265-amino acid poly-
peptide with a transcription initiation site 518 bp
upstream of the initiating methionine. AQP5 gene
was mapped to chromosome 12q13 [119].

Ma et al. isolated the cDNA by using degener-
ate PCR from a human kidney cDNA library that
was related to AQP2, having four exons and was
organized similarly to AQP0 and AQP2 and later
was referred to this gene as AQP6, assigned to
chromosome 12q13 [120, 121].

Human AQP7 gene contains 10 exons. An Alu
repetitive sequence and binding sites for several
different transcription factors within the AQP7
promoter was determined, including a putative
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peroxisome proliferator response element and a
putative insulin response element, indicating
potential involvement of AQP7 in energy metab-
olism [23, 122, 123].

Like the genes of non-water-selective
aquaporins, the AQP8 gene contains six exons;
however, its exon–intron boundaries are different
from the boundaries of those other aquaporin
genes. AQP8 gene was mapped to chromosome
16p12 [14, 124].

A partial AQP9 cDNA was isolated by using
RT-PCR of leukocyte RNA with primers based
on conserved regions of aquaporins [125]. AQP9
shares greater sequence identity with AQP3 and
AQP7 than with other members of the family,
suggesting that these three proteins belong to a
subfamily.

The cDNA encoding AQP10 was isolated
from jejunum cDNA library. Sequence analysis
predicted that AQP10 is approximately 53% iden-
tical to AQP3 and AQP9, Northern blot analysis
revealed expression of a 2.3-kb AQP10 transcript
in jejunum but not liver [126].

Human AQP11 gene contains three exons and
spans 8 kb and was mapped to chromosome
11q14. Human AQP12A gene contains four
exons and encodes a 1.5-kb transcript only in
pancreas [73, 127].

Genetic variants of AQPs may result in distur-
bance of molecule selection and transport by
AQPs; disruption of the formation of tetramers
or arrays; and misfolding, faulty sorting of AQPs,
or other dysfunction [81].
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Abstract

Aquaporins (AQPs) allow water molecules
and other small, neutral solutes to quickly
pass through membrane. The protein
structures of AQPs solved by crystallographic
methods or cryo-electron microscopy technol-
ogy show that AQP monomer consists of six
membrane-spanning alpha-helices that form
the central water-transporting pore. AQP
monomers assemble to form tetramers,
forming the functional units in the membrane,
to transport water or other small molecules.
The biological functions of AQPs are
regulated by posttranslational modifications,
e.g., phosphorylation, ubiquitination, glyco-
sylation, subcellular distribution, degradation
and protein interactions. Modifications of
AQP combined with structural properties con-
tribute to a better functional mechanism of
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AQPs. Insight into the molecular mechanisms
responsible for AQP modifications as well as
gating and transport properties proved to be
fundamental to the development of new thera-
peutic targets or reliable diagnostic and prog-
nostic biomarkers.

Keywords

Aquaporins · Protein structure · X-ray
crystallography · Posttranslational
modification

2.1 Introduction

Overall aquaporin (AQP) structure is largely
conserved among the various AQP classes and
species isoforms, despite significant differences
in sequence similarities (Table 2.1). Structural
studies have provided a relevant insight regarding
the determining requirements that enable
homotetramer formation and demonstrate the
structural basis for transporting water and other
small neutral solutes such as ammonia, glycerol,
urea, etc. The quaternary structure enables water
transport activity in animal AQPs [1], and the
“hourglass model” was used to explain the 3D
structure of AQPs [2, 3] previously. The second-
ary structure of AQPs consists of 40% α-helix,
42% – 43% β-sheet and corner structure. The
AQPs are tetrameric proteins composed of identi-
cal 30 kDa monomers, each of which functions as

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-7415-1_2&domain=pdf
mailto:wangwd6@mail.sysu.edu.cn
mailto:baoxue@bjmu.edu.cn
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an independent water channel. The monomer has
six transmembrane helices (H1–6, tilted at about
30° with respect to the membrane normally),
connected by five loops (A-E) in which A, C
and E are extracellular, and B and D are intracel-
lular. The hydrophilic terminal amino and car-
boxyl groups in the monomer are always located
in the cytoplasm [1] (Fig. 2.1).

AQP has two conserved asparagine-proline-
alanine (Asn-Pro-Ala, NPA) sequences
distributed in loop B and loop E, which are
embedded in the plasma membrane and correlate
with substrate selectivity [1, 4–6]. The position of
the NPA motif is stabilized by ion pairs and
hydrogen bonds with neighbouring transmem-
brane helices, which constitute narrow water-
permeable pores. This water-permeable pore has
electrostatic interactions, where the water mole-
cule in Brownian motion (random movement) in
the extracellular environment renders the AQP
outer cone walls in a hydrophobic state, causing
repulsion [7]. The other conserved structural fea-
ture of AQP family is the aromatic/arginine (ar/R)
constriction site located at the extracellular side of
the channel. The ar/R constriction site contains
highly conserved aromatic and arginine residues
[6], acting as a selectivity filter (Fig. 2.2). The
diameter of AQPs is approximately 3 Å, which is
only slightly larger than the 2.8 Å diameter of the
water molecule, the pore constriction prevents
permeation of all molecules bigger than water
[8]. In comparison with aquaporins,
aquaglyceroporins present much bigger selectiv-
ity size (pore size), which can reach ~3.4 Å in
diameter [9].

The latest review reports that, as of December
2020, a total of 31 AQP structures have been
revealed in both eukaryotes and prokaryotes, by
X-ray crystallography, cryo-electron microscopy
(cryo-EM) and NMR [10] (Table 2.2). Under-
standing of high-resolution structures of
aquaporins is helpful to clarify the permeation
mechanism of water and other permeable small
molecules, it provides novel insights into the reg-
ulation of water flow by pH, phosphorylation and
mechano-sensitivity [11–15]. The structure of the
resolved AQPs will be described in detail below.

Posttranslational modifications (PTMs) are
usually highly dynamic processes, which alter
the properties and biological function of target
protein and increase protein diversity. Proteins
can be regulated after translation by the reversible
or irreversible addition of functional groups (e.g.,
phosphorylation, acetylation and methylation),
peptides (e.g., ubiquitination, SUMOylation), or
other complex molecules (e.g., glycosylation).
Through changes in protein conformation, these
PTMs have been shown to modulate the localiza-
tion, stability, activity and interacting partners of
their substrate proteins, thus playing pivotal roles
in intracellular signalling, protein maturation and
folding. The precise effect of PTMs depends on the
nature of the covalent modification, the identity of
the substrate and the residue that is specifically
targeted by the chemical reaction [16]. This section
of the review mainly focuses on PTMs of the
arginine vasopressin (AVP)-regulated AQP2 that
is the best understood and discusses modification
of other AQPs at the end of the section.

2.2 Protein Structure of AQPs

2.2.1 Protein Structure
the Classical AQPs

2.2.1.1 AQP0
In 2004, successively published the structures of
bovine AQP0 (bAQP0) and sheep AQP0
(sAQP0) with resolutions of 2.2 Å and 3.0 Å
[17, 18]. The structures obtained by the method
of X-ray and cryo-EM are very similar, the only
four residues C14F, S20T, M90V and S240T
(bAQP0 numbering) are different between
bAQP0 and sAQP0 sequences. AQP0 remains a
tetramer, and monomer interactions are insepara-
ble from the Proline-Proline motif. Starting from
the extracellular side, between residues Asn-115,
Thr-120 and His-34, the vestibule narrows to a
diameter of ≈10 Å; at residues Phe-48, His-172,
Met-176, Ala-181 and Arg-187, the channel
narrows a diameter of 1.99 Å, which is the
narrowest region of the channel. Gly-180,
Ala-181, Gly-182 and Met-183, four backbone
carbonyls of successive residues, provide the
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Table 2.1 Sequence alignments of human AQPs at the first and second NPA boxes

NCBI reference
sequence

Regions of NPA
boxes

AQP0 NP_036196 68–70; 184–186 NISGAHVNPAVTFAFLV YYTGAGMNPASFAPAI
AQP1 NP_001316801.1 76–78; 192–194 HISGAHLNPAVTLGLLL DYTGCGINPARSFGSAV
AQP2 NP_000477.1 68–70; 184–186 HISGAHINPAVTVACLV HYTGCSMNPARSLAPAV
AQP3 NP_004916 83–85; 215–217 QVSGAHLNPAVTFAMCF FNSGYAVNPARDFGPRL
AQP4 NP_001304313 97–99; 213–215 HISGGHINPAVTVAMVC NYTGASMNPARSGPAV
AQP5 NP_001642 69–71; 185–187 PVSGGHINPAITLALLV YFTGCSMNPARSFGPAV
AQP6 NP_001643 82–84; 196–198 KASGAHANPAVTLAFLV HFTGCSMNPASFGPAI
AQP7 NP_001161 94–96; 226–228 RISGAHMNAAVTFANCA MNTGYAINPSRDLPPRI
AQP8 NP_001160.2 92–94; 210–212 NISGGHFNPAVSLAAML PVSGGCMNPARAFGPAV
AQP9 NP_066190 84–86; 216–218 GVSGGHINPAVSLAMCL LNSGCAMNPARDLSPRL
AQP10 NP_536354 82–84; 214–216 NVSGAHLNPAFSLAMCI ANCGIPLNPARDLGPRL
AQP11 NP_766627 99–101; 216–218 TLVGTSSNPCGVMMQMM SLTGVFNPALALSLHF
AQP12 NP_945349 81–83; 200–202 TLDGASANPTVSLQEFL PFTSAFFNPALAASVTF

Highly conserved NPAs (asparagine–proline–alanine) are highlighted and underlined. Sequence was based on NCBI
protein database (http://www.ncbi.nlm.nih.gov/protein/)

Fig. 2.1 A secondary structure and topology of AQP
molecule. (a) AQP1 monomer has six membrane-
spanning regions (1–6), five loops (A-E) with intracellular
amino and carboxy termini as well as internal tandem
repeats. (b) In the monomer, the hydrophilic loops B and

E are bent back into the cavity and meet in the middle to
form the putative water-selective gate that contains two
consensus NPA motifs. ar/R region is shown close to the
entrance of the pore. (Modified from [159])

http://www.ncbi.nlm.nih.gov/protein/
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Fig. 2.2 Schematic architecture of AQP1. A ribbon
model of AQP1 using a rainbow colour scheme from
blue (N-terminal) to red (C-terminal). The narrowest
region in the AQP1 pores, previously termed ar/R, is
located close to the extracellular entrance of the pore.
The Arg195 and NPA motifs are shown in magenta and
light blue, respectively. (Reproduced with permission
from [44])

canonical AQP hydrogen bond acceptors that
align waters through the channel. Farther into
the channel, the side chain of Tyr-23 is oriented
directly towards the central axis of the channel,
with Phe-141, Leu-52 and Leu-168, constricts the
channel diameter to 2.5 Å. Asn-68 and Asn-184
in the two NPAmotifs orient the key central water
molecule, which is responsible for preventing the
reorientation necessary for any proton conduc-
tion. On the cytoplasmic side of the NPAs, the
line of backbone carbonyl oxygens resumes along
one wall of the channel from Gly-64, Ala-65,
His-66 and Gly-67 and ends at Tyr-149. Together
with Val-56, Gly-64, His-66 and Phe-75, Tyr-149
pointing directly into the channel forms another
constriction that is the narrowest region of the
channel. It accepts a sphere with a maximum
diameter of 1.5 Å (Fig. 2.3).

Two mutations with single amino acid substi-
tution in the AQP0 molecule: E134G or T138R
will lead to the occurrence of human congenital
cataracts [19], and structural analysis of the
AQP0 mutation suggests that E134G or T138R
would alter the conductance for water, due to
removal of orienting factor and distortion in the
line of carbonyls [17].

His-40, His-66 and His-172 are hydrogen
bond donors, among which His-40 can inhibit
the effect of pH or Ca2+ on water transport rates.
Oocytes expressing mutate AQP0 by changing
His-40 to alanine, aspartate, or lysine, no longer
displayed the pH-dependent closing as pH was
raised to 6.5. The closed-state AQP0 structure
was formed at pH 6.0, while the open structure
of AQP0 was formed at pH 10.0, which may
explain why the AQP0 is regulated by pH
[17, 18].

Regulation of water permeability by calmodu-
lin (CaM) is achieved through a Ca2+-dependent
interaction between Ca2+–CaM and the cytoplas-
mic C-terminal domain of AQP0 [20–22]. AQP0
tetramer is in complex with two CaM molecules.
Molecular dynamics (MD) simulations showed
that CaM binding to the C terminus of AQP0
allosterically modulates the dynamics at the
CSII pore constriction site, thus resulting in chan-
nel closure [23].

2.2.1.2 AQP1
Models of AQP1 by X-ray crystallography and
cryo-EM structural studies at about 4 Å resolution
have been successively reported [8, 24], indepen-
dently confirming the presence of two membrane-
inserted non-membrane-spanning helices. The
AQP1 monomer contains six tilted membrane-
spanning helices forming a right-handed bundle.
Beginning at the fourfold axis of the tetramer, the
helices are arranged: 2-1-3 (first repeat), 5-4-6
(second repeat) [24]. Each monomer interacts
with two neighbouring monomers, likely
stabilized by a network of hydrogen bonds
between residues Ser-59, Thr-62 and Gln-65
with residues Gln-148, Cys-152 and Thr-156.

The presence of NPA motifs (Asn192-Pro193-
Ala194, Asn76-Pro77-Ala78) forms part of the
surface of the aqueous pore with the narrowest
area of about 3 Å in diameter. Ile-60, Phe-24,
Leu-149 and Val-176 form a hydrophobic surface
lining the inside of the pore adjacent to Asn-76
and Asn-192 of the NPA motifs. Highly
conserved His-74 forms an ion pair with Glu-17.
Among the glycerol-permeable homologues,
His-80 is usually replaced by glycine [8].
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Table 2.2 Determining information related to AQP structure at high resolution

Target Source PDB code Ref

Mammalian

AQP0 Bos taurus 1YMG Harries et al. [17]
AQP0 Ovis aries 1SOR Gonen et al. [18]
AQP1 Homo sapiens 1FQY Murata et al. [8]
AQP1 Homo sapiens 1IH5 Ren et al. [24]
AQP1 Homo sapiens 6P0J Dingwell et al. [27]
AQP1 Bos taurus 1J4N Sui et al. [25]
AQP2 Homo sapiens 4NEF Frick et al. [34]
AQP2 Homo sapiens 6QF5 Lieske et al.
AQP4 Rattus norvegicus 2D57 Hiroaki et al. [48]
AQP4 Rattus norvegicus 2ZZ9 Tani et al. [44]
AQP4 Homo sapiens 3GD8 Ho et al. [43]
AQP5 Homo sapiens 3D9S Horsefield et al. [46]
AQP7 Homo sapiens 6QZI de Maré et al. [62]
AQP10 Homo sapiens 6F7H Gotfryd et al. [11]
Plant

PIP2;1 Spinacia oleracea 1Z98 Törnroth-Horsefield et al. [12]
PIP2;4 Arabidopsis thaliana 6QIM Wang et al. [64]
TIP2;1 Arabidopsis thaliana 5I32 Kirscht et al. [63]
Eukaryotic microorganism

AQPy1 P. pastoris 2W2E Fischer et al. [13]
AQPy1 P. pastoris 3ZOJ Kosinska Eriksson et al. [67]
Unicellular protozoan AQP

PfAQP Plasmodium falciparum 3C02 Newby et al. [45]
Prokaryotic

AqpM M. marburgensis 2F2B Lee et al. [68]
AqpZ E. coli 1RC2 Savage et al. [69]
AqpZ E. coli 2ABM Jiang et al. [47]
AqpZ E. coli 3NK5 Savage et al. [73]
GlpF E. coli 1FX8 Fu et al. [71]
GlpF E. coli 1LD5 Tajkhorshid et al. [35]

Data are based on the PDB protein database. https://www.rcsb.org/

The narrow pore of AQP1 is composed of four
amino acid residues His-182, Arg-197, Phe-58
and Cys-191, and a steric limit of ≈2.8 Å is
established at the constriction region, which is
highly unfavourable for the transport of larger
molecules like glycerol. Water molecules can
permeate the pore with a minimal energy barrier,
whereas the hydrogen-bond isolation generated
from bulk water will prevent the transfer of
protons (H-bond isolation mechanism). This is
probably due to the positive electrostatic field
generated by the dipole moments of the pore
helices in AQP1 and the availability of
water-binding sites which reduce the energy bar-
rier to water. His-182 appears to be critical in

determining whether an AQP is specific for
water or has additional selectivity for other
solutes such as glycerol [25].

Subsequently, the resolution of the AQP1 is
further improved to 2.2 Å, some of these molecu-
lar details better explain the mechanism by which
AQP1 regulates water and solutes [25]. Within
the AQP1 selectivity filter, waters are identified at
four locations where they form the coordinating
hydrogen bonds with residues around, and only
the middle two are close enough to each other to
form a water-water hydrogen bond [26].

By using solid-state nuclear magnetic reso-
nance to determine multiple interatomic
distances, it is found that a conformation of loop

https://www.rcsb.org/
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Fig. 2.3 Monomer channel views of bAQP0. (a) The
overall comparison of bAQP0 and sAQP0 monomer chan-
nel structures, with bAQP0 structure in green and sAQP0
structure in magenta. (b) Key residues surrounding the

water molecules in the channel. (c) Stereo view from the
extracellular side of the channel. Tyr-23 and Tyr-149 point
directly into the channel. (Modified from [17])

C is stabilized both by interactions within the loop
and with other regions on the extracellular surface
of hAQP1. Such as Ala130-Val133, Asn134-
Gln137, as well as Ala130-Tyr186, Asn49-
Asp185 and possible interactions between
Asn-127 and Asn-205 [27, 28]. Cys-189 and
Ala-73 reside at comparable locations on the
extracellular/cytoplasmic side of the narrowing,
the structure can explain the inhibition of the
double mutant C189S, A73C by mercury [29–
31].

2.2.1.3 AQP2
Mutation or defective trafficking of AQP2 leads
to nephrogenic diabetes insipidus (NDI), a water
balance disorder characterized by large amounts
of hypoosmotic urine output, hypoosmotic urine
volumes, leading to dehydration. The structure of
human AQP2 provides insight into the mecha-
nism of how AQP2 mutations induce NDI
[32]. AQP2 displays the conserved AQP fold
like other water channels [33–35]. In the X-ray
structure, the striking difference between AQP2
and all other mammalian AQPs is the highly
variable position of the short C-terminal helix.
Specifically, four hydrophobic leucine residues
(Leu-230, Leu-234, Leu-247 and Leu-240) that
align on the same side of the C-terminal helix of

protomer C and insert into the protomer D of
another AQP2 tetramer. Also, the unusual flexi-
bility of the C-terminus of AQP2 may arise from
two consecutive prolines (Pro-225 and Pro-226)
that form a hinge region. The N terminus adopts a
conformation that allows to form hydrogen bond
interactions between Glu-3, Ser-82 and Arg-85,
which is important in the gating mechanism
(Fig. 2.4).

It is worth noting that there are two Cd2+ ions
(Cd1 and Cd2) built per tetramer of AQP2 at the
cytoplasmic side of the membrane during crystal-
lization, Cd1 binds at the membrane interface
between protomers a and d and is ligated by
Glu-155(a) of loop D and Gln-57(d) of TM
helix 2, as well as two water molecules. Cd2 is
located between loop B and the C-terminal tail in
protomer c and is ligated by His-80(c), Glu-232
(c) and one water molecule. Mutations near Cd1
can cause ER retention of AQP2 [34, 36]. Besides,
a radioactive calcium-binding assay strongly
suggests that the observed Cd2+-binding sites rep-
resent Ca2+-binding sites in vivo. The transient
changes in the intracellular Ca2+ levels trigger
alteration in the structure of AQP2 [37]. Thirty-
one NDI-causing mutations are identified in the
AQP2 crystal structure, most of which are located
within the transmembrane region [32, 38].
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Fig. 2.4 Structure of the C and N termini of AQP2. (a)
Overview of the AQP2 tetramer from the intracellular side.
There is an interaction between the C-terminal helix of
monomer c (pink) and the symmetry-related protomer d,
with the four leucines on the helix highlighted. (b) Overlay

of the N termini of protomer a and d with HsAQP5 (light
pink) and BtAQP1 (grey). For protomer a (green), Glu-3
interacts with Ser-82 and Arg-85, similar to the structural
arrangement seen in AQP5. In contrast, the TM1 of
BtAQP1 extends into the cytoplasm. (Modified from [34])

Ubiquitination of Lys-270 at the C-terminus
causes AQP2 internalization, which enhances
endocytosis and targets AQP2 to multivesicular
bodies (MVBs) for subsequent lysosomal degra-
dation [39]. Lysosomal trafficking regulator-
interacting protein 5 (LIP5) has been shown to
facilitate AQP2 lysosomal degradation by
interacting with AQP2 [40], which involved in
MVB formation. LIP5-binding sites to AQP2 are
Leu-230, Leu-234, Leu-247 and Leu-240, all of
which locate within the AQP2 C-terminal helix
[40]. This proves that the observed interaction
arises from the propensity of the C-terminal
helix to participate in protein–protein
interactions. It has been reported that alanine
mutations in the sixth transmembrane domain of
AQP2 (Leu-217, Leu-218 and Leu-222, Leu-223)
inhibit vasopressin-induced translocation [41]
(Fig. 2.5).

2.2.1.4 AQP4
AQP4 is the predominant water channel in the
mammalian brain, its role in cerebral water bal-
ance has been implicated in neuropathological
disorders [42]. Two studies on crystal structures
with resolutions up to 1.8 Å and 2.8 Å reveal the
molecular basis for the water selectivity of the

human AQP4 channel [43, 44]. The X-ray struc-
ture of hAQP4 at 1.8 Å resolution shows that each
monomer is surrounded by 6 and 2 half-length
alpha-helices (M1–M8) and tetramerizes along
the central axis. In the mid-membrane section of
AQP4, Phe-195, Leu-191 and Leu-75 create a
hydrophobic block, which can be blocked by
four aliphatic chains of phospholipids or fatty
acids in plasmodium falciparum
aquaglyceroporin (PfAQP) [45], and in the
human AQP5 where a single lipid molecule is
found [46]. Unlike the structures of water-
selective AQPs such as AQPZ and AQP1, the
asparagines of the two NPA motifs bond to two
different water molecules in the centre of the
channel, which is supported by molecular dynam-
ics simulation studies [25, 47]. Similar to the
water-selective bAQP1, the arginine (Arg-216)
environment in hAQP4 provides NεH and NηH
as donors to the waters in transit, whereas in the
glycerol conducting GlpF, the selectivity filter
arginine (Arg-206) has only one of the NηH,
which determines its low water conductivity
[35] (Fig. 2.6).

Based on the cryo-EM structure of AQP4, it is
proposed that a short helix in the loop C (residues
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Fig. 2.5 Illustration of the topology of AQP2 and time
course studies of AQP2 C-terminal phosphorylation. (a)
Schematic illustration of the topology of AQP2 and the
C-terminal phosphorylation (S256, S261, S264, S269) and
ubiquitination sites (K270) of AQP2. (b) Time course of
changes in AQP2 phosphorylation at S256, S261, S264
and S269 in response to 1 nm dDAVP (a V2R agonist) in
rat inner medullary collecting duct (IMCD) tubule

suspensions. Note that maximal phosphorylation at S256
occurs quickly, whereas it takes longer for maximal phos-
phorylation to occur at the other S264 and S269. Phos-
phorylation at the S256, S264 and S269 sites remains high
as long as the agonist is present. In contrast, dDAVP
stimulation results in decreased phosphorylation at S261.
(Reproduced with permission from [85])

139–142) is the main site providing for AQP4-
mediated cell-cell adhesion [48].

The reason why AQP4 is insensitive to mer-
cury inhibition is probably a lack of reactive
cysteine residues in the channel lumen
corresponding to Cys-191 in AQP1 [30]. AQP4
conductance is reduced ~50% when Ser-180 is
phosphorylated by protein kinase C [49]. How-
ever, the structure of the S180D mutant generated
to mimic phosphorylated Ser180 showed no

Fig. 2.6 Comparison of the hydrogen bond network of
the selectivity filter arginine of hAQP4, bAQP1 and GlpF.
Residues of the selectivity filter and glycerol molecules are
shown as sticks. Water molecules are shown as blue
spheres. Similar to Arg-197 in water-selective bAQP1,
the NεH, Nη1H, Nη2H of Arg-216 in the selectivity filter

of hAQP4 are all hydrogen bonded to other acceptor
oxygens of the protein, leaving NεH and NηH as donors
to the waters. While in the glycerol conducting GlpF,
Arg-206 has only one of the NηH satisfied. (Reproduced
with permission from [43])

significant differences from the structure of the
wild-type channel. The observed differences are
likely due to crystallization conditions that induce
non-physiological conformations [50]. AQP4
conductance is increased ~40% when
phosphorylated by protein kinase G at
Ser-111 [51].
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2.2.1.5 AQP5
HAQP5 has 63% amino acid sequence identity
with the paralog hAQP2, AQP5 is able to traffick
from intracellular membrane to the apical mem-
brane of epithelial cells after C-terminal
modifications [52], in response to cAMP [53] or
cevimeline [54]. In the structure of AQP5 at 2.0 Å
resolution [46], five and seven water molecules
are unambiguously observed along the water
transport channel in each of the protomers, six
of which sit at conserved positions, which has
water-mediated hydrogen bond interactions. The
water channel narrows to an average radius of
1.02 Å near the ar/R constriction region. A lipid
occludes the putative central pore, preventing the
passage of gas or ions through the centre of the
tetramer. In contrast, both AQP0 and AQP1 do
not contain lipids in the central pores, probably
because the large Phe residues at this site
preventing lipid insertion, whereas in this position
of AQP5 is a Leu [17, 25, 55]. AQP5 also
contains a mercury-sensitive cysteine residue at
position 182, locating just upstream of the NPA
sequence in loop E [56].

HAQP5 contains several consensus phosphor-
ylation sites including Ser-152, Ser-156, Ser-231
and Ser-233. Ser-152 and Ser-156 located in
intracellular loop D form a close association
with the C-terminus of AQP5, and it is therefore
hypothesized that phosphorylation at Ser-156
may lead to structural changes in loop D, which
would break its interaction with the C-terminus,
thereby flagging the protein for translocation to
the plasma membrane [46]. The phosphomimetic
mutation of Ser-156 to glutamate (S156E)
increased constitutive membrane expression of
AQP5, but studies on crystal structure of mutant
show that such a mutation does not cause any
significant structural changes to the protein [57].

2.2.2 Protein Structure
of Aquaglyceroporins

In addition to transporting water across cell
membranes, AQPs also transport other solutes
(such as urea or glycerol) and play an important

role in osmotic pressure regulation [58]; some
AQPs also facilitate the transport of volatile
substances (e.g., carbon dioxide (CO2) and
ammonia (NH3)) across membranes [59]. The
structural properties of the channel centre deter-
mine the selective permeation mechanism to the
substrate.

2.2.2.1 AQP7
AQP7 facilitates permeation of glycerol through
cell membranes and plays a crucial role in lipid
metabolism [60]. In particular, Xenopus oocytes
expressing human AQP7 exhibited higher
osmotic water permeability and 3H-glycerol
uptake than oocytes expressing GlpF [61]. In
2020, two high-resolution X-ray structures of
AQP7 were identified [62]; the structures show
that AQP7 is an open channel with well-ordered
glycerol and water molecule lining the pore. The
conserved ar/R selectivity filter, the NPA signa-
ture motifs and the glycerol molecules form a
hydrogen bond network characterized by partly
turning the hydroxyl groups towards the more
hydrophobic side of the pore. Interestingly, the
human AQP7 has unusual NPA motifs, where
both the asparagines are conserved, but rare
substitutions create NAA (Asn-94, Ala-95 and
Ala-96) and NPS (Asn-226, Pro-227 and
Ser-228) motifs. The selectivity filter is known
to be wider in the aquaglyceroporins compared
with the orthodox AQPs, for facilitating the trans-
port of the larger glycerol molecule, where the
glycerol molecule binds to Arg-229. MD
simulations, performed on glycerol passing
through the pores of AQP7, show a significantly
reduced osmotic permeability coefficient for
water in the presence of glycerol, which suggests
that glycerol prevent an unrestricted flux of water
through human AQP7. And studies have shown
that residue Phe-74 of AQP7 in selectivity filter
prevents the passage of small solutes [61].

2.2.2.2 AQP10
The crystal structure of human AQP10 deter-
mined at 2.3 Å resolution unveils the molecular
basis for pH modulation—an exceptionally wide
selectivity (ar/R) filter and a unique cytoplasmic
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Fig. 2.7 Human AQP10 pH-gated glycerol flux mecha-
nism. Proposed hAQP10 pH-gated glycerol flux mecha-
nism in adipocytes and likely other cell types. Glycerol,
but not water, permeation is decreased at pH 7.4. AQP10
glycerol-specific opening is stimulated by pH reduction,

triggering H80 protonation that renders the residue to
interact with E27. Concerted structural changes of the
nearby F85 and the cytoplasmic V76–S77 loop thereby
allow glycerol passage. (Reproduced with permission
from [11])

gate, both unique to AQP10. It is proposed that
the pH-dependent gating mechanism of hAQP10
was triggered by the protonation of His-80,
through the high-resolution crystal structure.
The permeation of glycerol is decreased at
pH 7.4. AQP10 glycerol-specific opening is
stimulated by decreased pH, triggering His-80
protonation that renders the residue to interact
with Glu-27. Concerted structural changes of the
nearby Phe-85 and the cytoplasmic Val-76–Ser-
77 loop thereby allow glycerol passage [11]
(Fig. 2.7).

AQP7 and AQP10 also have significant
differences when permeating glycerol. The
AQP10 has a narrowing on the intracellular side
of the pore that permits water flux but does not
allow the passage of glycerol, in contrast, the
narrowest part of the pore coincides with the
selectivity filter in AQP7. AQP7 is not regulated
in a pH-dependent manner like AQP10, even this
histidine (His-92) is sequentially conserved
among the human AQPs. Another difference is
that the Val-97 in AQP7 replaces the Phe-85 at
the same position in AQP10, leading to a wider
diameter of the pore in this part of the channel
[11, 62].

2.2.3 Structure of Other AQPs

2.2.3.1 Plant AQPs
Land plants have evolved an ability to cope with
rapid changes in the availability of water by
regulating all AQPs located on the plasma mem-
brane. The X-ray structure of spinach plasma
membrane aquaporin SoPIP2;1 was revealed in
a closed conformation at 2.1 Å resolution and an
open conformation at 3.9 Å resolution
[12]. SoPIP2;1 crystallized as a tetramer
displaying extended hydrophobic interactions
between monomers, as all other AQP crystals
do, and seven water molecules are observed
within the SoPIP2;1 channel. Molecular dynam-
ics simulations have identified that loop D caps
the channel from the cytoplasm and thereby
occludes the pore in the closed conformation,
while in the open conformation, loop D is
displaced up to 16 Å. This movement opens a
hydrophobic gate blocking the channel entrance
from the cytoplasm.

The structure of Arabidopsis thaliana
aquaporin AtTIP2;1 reveals the relatively wide
pore and the polar nature of the selectivity filter,
which may clarify the ammonia permeability
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[63]. An extended selectivity filter with the
conserved arginine (Arg-200) adopts a unique
unpredicted position. Mutational studies show
that the four allelic substitutions (F56H, N127H,
H180I, C189G) of AtTIP2;1 in HsAQP1 can
make it have the same ammonia permeability.

AtPIP2;4 can mediate H2O2 transport in addi-
tion to water, and its 3D structure is consistent
with the SoPIP2;1 [64], the difference is that Cd2+

cations do not need to maintain a closed confor-
mation. AtPIP2;4, SoPIP2;1 and hAQP1 are all
transporters of both H2O and H2O2, but with
different efficiencies, the former is more efficient.

2.2.3.2 Eukaryotic Microorganism AQPs
The presence of AQPs in yeast Saccharomyces
cerevisiae enhances the host’s tolerance to rapid
freezing [65] and osmotic shock as
aquaglyceroporins control the cellular osmolyte
content [66]. Pichia pastoris encodes a single
AQP, Aqy1, which has 34 additional N-terminal
residues compared with its closest hAQP1. The
X-ray structure of the Aqy1 shows a novel gate-
like function of Aqy1 amino terminus by folding
to form a cytoplasmic helical bundle with a tyro-
sine (Tyr31), which enters the water channel and
occludes the cytoplasmic entrance [13]. In con-
trast, the water channel in spinach is closed by a
unique conformation of loop D, folding over the
cytoplasmic entrance and blocking the channel
[12]. Molecular dynamics simulations and site-
directed mutagenesis in combination with func-
tional studies suggest that water flow is regulated
through a combination of mechano-sensitive gat-
ing and posttranslational modifications (such as
phosphorylation) of Aqy1.

A work published in Science further improved
the crystal structure resolution of Aqy1 to 0.88 Å
resolution [67], revealing the H-bond interactions
between asparagine residues in the dual NPA
motif and water molecules, and observing a
polarized water-water H-bond configuration
within the channel. Additionally, the tautomeric
states of histidine and arginine residues in the
selectivity filter (SF) were also assigned and
where the four water positions at SF were
observed to be too close together to occupy
simultaneously.

2.2.3.3 Unicellular Protozoan AQPs
The aquaglyceroporin in the malaria parasite
Plasmodium falciparum (PfAQP) conducts glyc-
erol and water at a very high rate, surpassing its
closest known structural homologue GlpF. Its
2.05 Å crystal structure indicates that the reason
may be that the generally conserved arginine in
the selective filter forms two hydrogen bonds in
GlpF, while there are three hydrogen bonds in all
water-selective AQPs and PfAQP. In addition,
the two NPA regions of PfAQP (NLA and NPS)
are involved in maintaining the orientation of
asparagine in the centre of the channel [45].

2.2.3.4 Prokaryotic AQPs
The crystal structure of the transmembrane chan-
nel protein AQPM from the archaea
Methanothermobacter marburgensis shows that
the isoleucine (Ile-187) replaces the key histidine
residue found in the lumen of the water channel.
This becomes a glycine residue in
aquaglyceroporins. The change in AQPM
generates a selectivity filter, which is wider and
more hydrophobic (2.54 Å) than that of AQP1
(1.86 Å) [68].

The Escherichia coli genome encodes two
AQPs, GlpF and AQPZ. AQPZ is a homotetramer
of four water-conducting channels, which can
regulate the selective passage of water molecules,
and does not allow other unfamiliar, small
molecules to pass [69]. A 3.2 Å crystal structure
of the tetrameric AQPZ reveals two distinct
Arg-189 confirmations associated with water per-
meation through the channel constrictions. In one
of the four monomers, the guanidino group of
Arg-189 points towards the periplasmic vestibule,
opening up the constriction to accommodate the
binding of a water molecule through a tridentate
H-bond. In the other three monomers, the
Arg-189 guanidino group bends over to form a
H-bond with carbonyl oxygen of the Thr-183,
thus occluding the channel [47, 70].

The structure of GlpF was solved during
2000–2001 [35, 71]. The constriction region of
the channel is composed of Gly-191, Arg-206,
Trp-48 and Phe-200 corresponding to the
His-182, Arg-197, Phe-58 and Cys-191 in
AQP1. This change makes the pore size of GlpF
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slightly larger than that of AQP1 and reduces its
hydrophilicity, which determines its permeability
to glycerol.

AQPZ’s preference for water transport and
GlpF’s preference for glycerol were demonstrated
by in vitro and in vivo functional experiments
[72]. AQPs have a smaller pore size than
aquaglyceroporins, and the selectivity filter is
the narrowest point in GlpF, AQPZ and AQP1.
In AQPZ, this selectivity filter is formed by the
sidechains of Phe-43, His-174 and Arg-189 and
the carbonyl of Thr-183. The GlpF selectivity
filter, which is larger and more hydrophobic
than in AQPZ, contains the typical
aquaglyceroporin substitutions of F43W, H199G
and T200F, and the GlpF wild-type structure
contains both a water and a glycerol molecule
bound at the selectivity filter [69]. By replacing
the three AQP-specific SF residues of AQPZ into
their AQGP-specific counterparts in GlpF
(F43W/H174G/T183F), it is shown that the polar-
ity and size of the channel dominate water and
glycerol conduction energetics by functional
analysis and X-ray crystallography [73].

2.3 Protein Modification of AQPs

Through altering protein conformation, post-
translational modifications (PTMs) have been
shown to modulate the localization, stability,
activity and interacting partners of their substrate
proteins, thus playing critical roles in intracellular
signalling, protein maturation and folding. Some
AQPs are subject to post-translational modifications
by the reversible or irreversible addition of func-
tional groups (e.g., phosphorylation, acetylation and
methylation), peptides (e.g., ubiquitination,
SUMOylation) or other complex molecules (e.g.,
glycosylation). As PTMs of AQP2 are well studied,
the following will mainly focus on AQP2 modifica-
tion and its physiological significance.

2.3.1 Protein Modification of AQP2

2.3.1.1 Phosphorylation
The modulation of protein abundance in plasma
membrane requires a delicately regulated

translocation (trafficking) from intracellular com-
partment to the membrane, which is achieved
through multiple sorting signals and PTMs. Phos-
phorylation is one of the most well-studied PTMs,
which is often involved in regulation of protein
function and cellular distribution. AQP2 phos-
phorylation is one of the best characterized
examples.

AQP2 is expressed in the principal cells of the
kidney collecting ducts [74–76], its intracellular
distribution is finely regulated by AVP. Stimula-
tion with AVP results in a predominant transloca-
tion of AQP2 to apical membrane localization
from subapical compartments. This renders the
apical membrane highly permeable to water, and
it is a key event in formation of concentrated urine
and thus in regulation of body water balance. This
intracellular re-distribution of AQP2 induced by
AVP is closely associated with phosphorylation/
dephosphorylation (and/or ubiquitination) of
AQP2 [77, 78].

Phosphorylation of AQP2 at multiple sites in
the C-terminus governs its translocation to the
apical membrane from intracellular vesicles
[79, 80]. AQP2 contains numerous putative phos-
phorylation sites for various protein kinases, e.g.,
PKA, PKG, PKC and casein kinase II [81] based
upon bioinformatic analysis [82]. Phosphorylation
of the serine at position 256 (S256) of AQP2 in
the C-terminal tail of AQP2 was the first to be
identified and the best characterized phosphoryla-
tion site of AQP2 [80, 83, 84]. Large-scale
phospho-proteomic analysis later demonstrated
that beside S256 phosphorylation site, the
polyphosphorylated region of AQP2 contains
S261, S264 and S269 (Fig. 2.5a). S256-AQP2 is
a target for PKA-induced phosphorylation, which
was evidenced by in vitro phosphorylation assays
of AQP2 C-terminal peptides [85]. Kinases other
than PKA may also be involved in AQP2
C-terminal phosphorylation. PKG is proposed to
modulate AQP2 trafficking. The agonist of PKG,
cGMP, has been shown to mediate translocation
of AQP2 to the plasma membrane in AQP2-
transfected LLC-PK1 cells and in isolated kidney
slices [86]. Activators of the cGMP pathway,
such as atrial natriuretic peptide (ANP),
L-arginine, cGMP phosphodiesterase type
5 (PDE5) inhibitors sildenafil citrate, elevated
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intracellular cGMP levels, resulting accumulation
of AQP2 in plasma membrane [86–88]. These
data suggest a positive role of PKG on AQP2
trafficking. However, one study showed that
ANP and NO (nitric oxide) signalling deceased
S256-AQP2 phosphorylation, reduced AQP2 in
the plasma membrane, antagonizing vasopressin-
mediated water permeability in inner medullary
collecting duct cells [89]. This may be due to the
systemic counterregulatory effects acting on
AQP2 regulation. In addition, activation of PKC
pathway mediates endocytosis of AQP2 that was
independent of the phosphorylation state of
AQP2 at serine 256 [80]. AKT (also known as
PKB) was also shown to mediate vasopressin-
stimulated AQP2 membrane accumulation
[90]. The protein kinases responsible for S261,
S264 and S269 phosphorylation appear more
complex [79, 85, 91, 92].

Phosphorylated AQP2 at S256 (pS256) is
detected in both intracellular vesicles and the
apical plasma membrane in the collecting duct
principal cells, where its abundance is increased
in response to AVP treatment [93]. The expres-
sion of phosphorylated AQP2 at S264 was found
in plasma membrane-associated compartments
and early endocytic pathways. This phosphoform
of AQP2 was found to increase in abundance in
both the apical and basolateral plasma membrane
of principal cells after acute dDAVP (1-deamino-
8-D-arginine vasopressin, a vasopressin V2 recep-
tor agonist) treatment [94]. Similar to pS256 of
AQP2, pS269 was associated with membrane
accumulation of AQP2, indicating a role in
AQP2 plasma membrane targeting [85, 95,
96]. AQP2 in early endosomes is
dephosphorylated at S269 during Rab5-mediated
endocytosis, and in recycling endosomes, AQP2
can be phosphorylated at S269 in response to
vasopressin prior to apical trafficking
[97]. pS261-AQP2 is predominantly localized
within the cell in compartments different from
the endoplasmic reticulum, Golgi apparatus, and
lysosomes [91].

In IMCD tubule suspensions, the specific V2R
agonist dDAVP or exogenous cAMP increased
phosphorylation of AQP2 at S256, S264, and
S269, which remains high as long as the agonist

is present [85]. Phosphorylation of S256
increases initially and maximal phosphorylation
at S256 occurs rapidly, whereas maximal phos-
phorylation at the other sites (S264 and S269)
occur relatively slow. In contrast, dDAVP stimu-
lation results in decreased phosphorylation at
S261 [85] (Fig. 2.5b).

S256 phosphorylation appears required and
strongly facilitates phosphorylation of S264 and
S269 [85], as the S264 and S269 phosphoforms
of AQP2 are not observed in cells expressing the
S256 mutated form of AQP2 or in kidney sections
from a mouse model with a mutation of S256 to
leucine [85, 98]. Recent evidence demonstrated
that S256 phosphorylation alone is necessary and
sufficient for regulated membrane accumulation
of AQP2 induced by AVP (or cAMP), indepen-
dently of the phosphorylation state of any other
sites in the C terminus, e.g., S264 or S269
[99]. These observations strongly suggest that
S256 phosphorylation is a priming event for
phosphorylation of S264 and S269 and plays a
critical role in intracellular translocation of
AQP2. Both S256 and S269 phosphorylation are
involved in the insertion of AQP2 into the apical
plasma membrane [100], although the
phosphoform of AQP2-pS269 has a distinct cel-
lular localization in the apical plasma membrane
[98]. The role of AQP2 phosphorylation at S264
in subcellular distribution of AQP2 in the cell
remains unclear [94]. Earlier studies revealed
that the increased monophosphorylation of
AQP2 at S256 with vasopressin stimulation of
rat IMCD coincided with decreased phosphoryla-
tion of AQP2 at S261, which was associated with
intracellular vesicle distribution, suggesting that
phosphorylation of S256 and S261 may inversely
regulate AQP2 trafficking [79, 91, 94, 101].

2.3.1.2 Ubiquitination
It is known that two major protein degradative
pathways to function in mammalian cells, the
ubiquitin proteasome pathway and lysosomal
proteolysis pathway. Ubiquitin (Ub), a 76-amino
acid peptide, plays a key role in proteasome-
mediated protein degradation. Ubiquitin labels
protein through a conjugation system comprising
E1 activation, E2 conjugation, and E3 ligation
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enzymes. Following conjugation to proteins,
ubiquitin serves to target them for degradation
by cytosolic proteasome complex. Ubiquitination
of certain plasma membrane proteins can promote
their internalization via endocytotic pathway,
followed by their degradation in lysosomes
[102]. Protein ubiquitination is reversed by
deubiquitinating enzymes (DUBs), which is
essential for cellular homeostasis [103].

The first example of ubiquitination of an AQP
was reported more than 20 years ago. The studies
demonstrated that AQP1 was able to be
ubiquitinated and degraded by the proteasome.
Exposure to hypertonic medium induced decrease
of AQP1 ubiquitination and markedly increased
stability of AQP1 protein, thereby contributing to
overall protein induction [104].

There are three putative potential attachment
sites (cytosolic lysine residues) for AQP2
ubiquitination at positions 228, 238, and
270, but site mutation study revealed that K270
is the only substrate for ubiquitination, with one
to three ubiquitins added in a K63-linked chain
[39]. The ubiquitination of AQP2 at the plasma
membrane results in the internalization of AQP2,
transport to intracellular multivesicular bodies
and subsequent proteasomal degradation
[39]. Transcriptome analysis and liquid
chromatography-tandem mass spectrometry
proteomic analysis identified that five common
isoforms of E3 ligases (UBR4, UHRF1, NEDD
4, BRE1B and Cullin-5) are putatively associated
with dDAVP-induced AQP2 regulation
[105]. For example, a vasopressin-activated cal-
cium-mobilizing receptor Cullin-5, a member of
the cullin gene family of scaffold proteins of the
E3 complex [106], was observed to be
upregulated during dDAVP withdrawal, which
was associated with increased prevalence of
AQP2 among the ubiquitinated proteins in intra-
cellular vesicles fractions. This finding suggests
that CUL5 may play a role in the attachment
of Ub to AQP2, resulting in an ubiquitination of
AQP2, internalization of AQP2 and reduction of
AQP2 abundance after dDAVP withdrawal, pre-
sumably via lysosomal and/or proteosomal deg-
radation [105]. The E3 ubiquitin ligase CHIP,
which is highly expressed throughout the

collecting duct, can also interact with AQP2,
Hsp70 and Hsc70 and is modulated in abundance
by vasopressin. CHIP knockout mice or CRISPR/
Cas9 mice without CHIP E3 ligase activity
showed higher AQP2 abundance and altered
renal water-handling capacity, as seen in reduced
water intake and urine output, and increased urine
osmolality [107]. Integrated information from
multiple large-scale proteomic and transcriptomic
datasets showed that NEDD 4 and NEDD 4L
have the highest probability of interacting with
AQP2 [108], and the ubiquitination regulation of
AQP2 differs in different subcellular types [109].

Phosphorylation of AQP2 at S256 and dephos-
phorylation at S261 cause its translocation from
intracellular vesicles to the apical membrane,
whereas ubiquitination of AQP2 at K270 induces
its internalization and lysosomal degradation, or
released in exosomes into the urine via exocyto-
sis. Phosphorylation and ubiquitination are highly
dynamic and a cross-talk between two has been
proposed [110]. Phosphorylation and
ubiquitination likely act in concert and finely
regulate AQP2 protein function. Together with
the plasma membrane targeting signal of S256,
S264 and S269 phosphorylation and intracellular
S261 phosphorylation, K270 ubiquitination fine
tunes the subcellular distribution of AQP2
(Fig. 2.8).

Two studies examined the potential interplay
between polyubiquitylation and
polyphosphorylation of AQP2 [101, 111]. Stimu-
lation with dDAVP or forskolin induces pS256
on AQP2 monomers, followed by increased S269
and S264 phosphorylation and reduced S261
phosphorylation, resulting in steady-state redistri-
bution of AQP2 from vesicles to the apical mem-
brane, whereas increased AQP2 ubiquitination
induced endocytosis and steady-state redistribu-
tion of AQP2 to intracellular vesicles. Interest-
ingly, phosphorylation of S261 on AQP2 occurs
after ubiquitin-mediated endocytosis, suggesting
that phosphorylation of S261 does not induce
AQP2 ubiquitination itself, but likely stabilize
ubiquitinated AQP2 (Fig. 2.8).

Phosphorylation often occurs as a priming
event for ubiquitination, and ubiquitination can
regulate protein phosphorylation by regulation of
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Fig. 2.8 Phosphorylation and ubiquitination of AQP2
determines the intracellular localization. Arginine-
vasopressin (AVP)-induced phosphorylation at S256 on
AQP2 monomers, followed by increased S269 and S264
phosphorylation and reduced S261 phosphorylation,
resulting in steady redistribution of AQP2 from intracellu-
lar vesicles to the apical plasma membrane. AQP2 is

ubiquitinated with one or more ubiquitin proteins at
K270. Ubiquitination occurs in the membrane after
removal of AVP stimulation and mediates steady redistri-
bution of AQP2 to intracellular vesicles. Ubiquitination of
AQP2 may be sorted to the multivesicular body (MVB),
where AQP2 is either degraded in lysosomes or released in
exosomes into the urine via exocytosis

kinase activity [110]. AQP2 phosphorylation was
demonstrated to be able to override dominant
endocytic signal of K63-linked polyubiqui-
tylation. In polarized epithelial cells and kidney
tissue, distribution of AQP2 on the plasma mem-
brane is regulated by phosphorylation at S256 and
S269. The rate of AQP2 endocytosis was reduced
by prolonging phosphorylation specifically at
S269. AQP2 phosphorylation at S269 and
ubiquitylation at K270 can occur in parallel,
with increased S269 phosphorylation and
decreased AQP2 endocytosis occurring when
K270 polyubiquitylation levels are maximal
[111]. The study suggests that site-specific phos-
phorylation can counteract polyubiquitylation to
determine its final localization.

2.3.1.3 SUMOylation
Besides ubiquitin, the best-studied ubiquitin-like
protein is Small Ubiquitin-like MOdifier
(SUMO). SUMOylation is a reversible PTM
where SUMOs are covalently attached to lysine
residues in the target proteins, similar to
ubiquitination. SUMOylation has been found to
be involved in multiple nuclear processes, such as
chromatin organization, transcription and DNA
repair. SUMOylated proteins also play important
roles in the regulation of channel activity, recep-
tor function, G-protein signalling, cytoskeletal
organization, exocytosis, and autophagy
[112]. So far there is no evidence showing
involvement of SUMOylation in regulation of
AQP expression.
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2.3.1.4 Glutathionylation
As an important PTM, S-Glutathionylation is an
important regulatory reversible protein modifica-
tion, which exerts protection of cysteine residues
against irreversible oxidation during redox imbal-
ance [113]. The relationship between AQP2 and
S-glutathionylation is of potential interest
because reactive oxygen species (ROS) may
influence the expression and the activity of differ-
ent transporters and channels, including AQPs.
Evidence suggested that in mpkCCD cells, vaso-
pressin stimulated translation of seven glutathi-
one S-transferase (GST) proteins functioning to
conjugate the tripeptide glutathione to substrates,
e.g., cysteine, likely indicating the involvement of
redox into vasopressin-activated signal transduc-
tion pathway [114]. Glutathione is one of the
major cellular antioxidant molecules that are con-
tinuously converted into the reduced form of
GSH. Topological analysis of AQP2 suggests
that Cys75 and Cys79 on cytosolic B-loop
might be target of S-glutathionylation [115]. Sub-
sequently, the study later demonstrated that
AQP2 is subjected to S-glutathionylation both in
kidney tissue and in HEK cells stably expressing
AQP2 [115]. The S-glutathionylation of AQP2 is
tightly modulated by changes in cellular ROS
content both in renal tissue and in HEK cells
stably expressing AQP2, specifically an oxidant
inducer caused a significant increase in AQP2
S-glutathionylation secondary to increases in
ROS content, indicating that this redox-sensitive
PTM is linked to the redox condition of the tissue;
however, whether S-glutathionylation affects the
localization and the activity of AQP2 is not
reported [115].

2.3.1.5 Glycosylation
In their extracellular loops, AQPs contain
N-linked glycosylation consensus sites, some of
which are not efficiently recognized during pro-
tein synthesis by oligosaccharyltransferase,
generating a mixture of glycosylated and
nonglycosylated species. N-glycosylation is not
believed to be important in the transport function
of AQPs. In AQP1, the site of N-glycosylation is
Asn42, which lies in a potential N-glycosylation

consensus sequence. The early study using site-
directed mutant of Asn42 showed that the
non-glycosylation of AQP1 failed to affect water
permeability in oocytes [116]. In AQP2, the
glycosylated form has a shorter half-life than the
non-glycosylated form [114], indicating that
N-linked glycosylation is not necessary for the
stability of AQP2. The glycosylation seems
important for cell surface expression of AQP2
[117] but is not essential for routing, evidenced
by that inhibition of glycosylation does not pre-
vent delivery of AQP2 to the plasma membrane in
response to increased cAMP [118]. In addition,
glycosylation appears not essential for
tetramerization of AQP2 in the endoplasmic retic-
ulum, as part of tetrameric complexes with one or
more nonglycosylated AQP2 molecules
[117]. However, early data indeed suggested
that addition of a single N-linked oligosaccharide
moiety can partially compensate for ER folding
defects induced by disease-related mutations
[119]. The functionality of glycosylated
hAQP10 is unaffected compared to the
non-glycosylated protein, but its thermal stability
is increased by 3–6 °C, suggesting a stabilizing
effect of the N-linked glycan [120].

2.3.1.6 Other PTMs
N-terminal acetylation has been proposed to be a
determinant of protein stability [121]. AQP2 was
one of the proteins identified with N-terminal
acetylation [114]. N-linked acetylation,
carbamylation, and oleoylation have been discov-
ered on AQP0 at the N-terminal amino acid
residues by using direct tissue profiling method
designed for membrane protein analysis
[122, 123]. Although biological and physiologi-
cal significance of these PTMs is still undeter-
mined, it might play potential roles in protein–
protein interactions and thus regulation of water
permeability in the eye. Another study revealed
that the N-terminal cysteines of AQP4 are post-
translationally modified with palmitic acid, and
this palmitoylation likely inhibited the formation
of AQP4 square arrays in Chinese hamster ovary
cells transfected with AQP4 [124].
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2.3.2 PTM of Other AQPs

In addition to the typical AQP2 undergoing phos-
phorylation regulation, other AQPs also undergo
extensive phosphorylation modification as to
controls cellular water balance. Here are a few
examples about phosphorylation regulation of
several AQPs, in particular, AQP0, AQP1,
AQP4, AQP5 and AQP8, which have been
implicated to trigger membrane-specific
trafficking.

2.3.2.1 AQP0
Phosphorylation of the C-terminus of AQP0 is
up-regulated in the cortex in a normal lens, and
the phosphorylation prediction data base flags the
serines at positions 229, 235 and 231 as consen-
sus PKA and PKC phosphorylation sites
[125]. Pathological conditions of inappropriate
phosphorylation or calcium/CaM regulation of
AQP0 contributes to the development of a
cataract [126].

2.3.2.2 AQP1
AQP1 water permeability has been shown to be
dynamically regulated by several hormones. In
Xenopus oocyte expression system, water perme-
ability of AQP1 was increased by vasopressin
(AVP) and decreased by ANP [127, 128]. Early
data from in vitro and in vivo studies suggest that
phosphorylation by PKA results in trafficking of
AQP1 from an intracellular compartment to the
apical membrane [129–132]. In addition, PKC
positively regulates both water permeability and
ionic conductance of AQP1 channels by
phosphorylating Thr157 and Thr239 [133]. A
study demonstrated that the signalling molecules
cAMP and cGMP promote trafficking of AQP1
into the brush border membrane of proximal
tubular cells from intact endosomal compartment
[134]. In the same study, cAMP and cGMP have
both reduced the ubiquitination of AQP1 and
increased AQP1 protein stability, as two potential
ubiquitination sites (Lys-243 and Lys-267) were
indicated in the AQP1 amino acid sequence
[102, 104]. Previous data have shown that a
hypotonicity-induced translocation of AQP1

occurs rapidly, which is Ca2+/calmodulin, PKC
and microtubule dependent [135–137]. On the
other hand, interestingly, exposure to hypertonic-
ity also increases AQP1 expression in cultured
renal proximal and inner medullary cells
[138, 139]. The effect of hypertonicity may be
mediated by promoter-mediated activation of
AQP1 synthesis [140] and by inhibition of
AQP1 protein degradation [104].

2.3.2.3 AQP4
It is well established that AQP4 water permeabil-
ity can be regulated by reversible protein phos-
phorylation. There are several potential
phosphorylation sites of AQP4 for PKA, PKC,
PKG, casein kinase (CK) and calcium/calmodu-
lin-dependent protein kinases (CaMK).

The Ser111 residue of AQP4 is a potential site
for both PKA phosphorylation and calcium-
dependent CaMKII phosphorylation. The phos-
phorylation of Ser111 by PKA increases water
permeability of AQP4 [49, 51, 102]. Agents that
stimulate cAMP production including forskolin,
AVP and V2 receptor agonist were reported to
increase the water permeability in a renal cell line
transfected with AQP4 [102]. The increased
membrane water permeability of an astrocyte
cell line transfected with AQP4 cDNA induced
by Ser111 phosphorylation was able to be
reversed by a Ca2+/CaMKII inhibitor, suggesting
that phosphorylation of Ser111 via CaMKII
increases the water permeability of AQP4
[141]. Calmodulin binds directly at the carboxy
terminus of AQP4, causing specific conforma-
tional changes and driving AQP4 to localize on
the cell membrane [142]. It is therefore reason-
able to speculate that Ser111 is phosphorylated by
PKA in kidney cells and by CaMKII in
astrocytes, both phosphorylation leads to
increased permeability of AQP4. Early studies
have suggested that Ser111 could also be
phosphorylated by PKG via CaMKII-NO-
cGMP-PKG signalling [51]. In contrast to phos-
phorylation of Ser111, phosphorylation of Ser180
by PKC downregulates AQP4 water permeability
both in Xenopus oocyte expression system and in
cultured kidney epithelial cells [49, 129], which is
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previously considered due to a gating effect, since
expression of AQP4 in the cytosolic compartment
is negligible both under basal conditions and in
hormone-stimulated cells [49]. Recent research
has shown that addition of laminin to astrocytes
in culture can affect the membrane localization and
function of AQP4 through the PKC pathway [143].

However, evidence from crystal structure,
functional studies and molecular dynamics
simulations seems not support phosphorylation
dependent gating of AQP4 via Ser111 and
Ser180 [7, 144, 145]. Mass spectrometry data
demonstrated that AQP4 plasma membrane traf-
ficking or channel gating is not significantly
modulated by phosphorylation at COOH-terminal
serine residues [144].

2.3.2.4 AQP5
AQP5 membrane trafficking has been shown to
be affected by cAMP in a PKA-dependent man-
ner [52, 53]. Elevated intracellular cAMP appears
to have distinct acute and chronic effects, which
cause a decrease in AQP5 membrane abundance
in short-term (minutes) and increased total AQP5
protein in long-term (hours) [146]. Two consen-
sus PKA sites in AQP5 that are able to be
phosphorylated have been identified, Ser156 in
cytoplasmic loop D [147] and Thr259 [52, 148]
in the carboxy-terminus. However, mutation of
these phosphorylation sites resulted in constructs
with the same membrane abundance as wild-type
AQP5, indicating that phosphorylation may not
occur under basal conditions. In contrast, AQP5
phosphorylation at Thr259 by cAMP-PKA was
shown to be associated with lateral diffusion of
AQP5, potentially regulating water flow in glan-
dular secretions [149]. Previous data
demonstrated that membrane expression of
AQP5 is affected by Ser156 phosphorylation, by
increased targeting or decreased internalization or
both [57]. Recent data have shown that AQP5
requires the C-terminal domain to pass protein
quality control and be transported to the plasma
membrane, where Leu262 was shown to be criti-
cal for the plasma membrane localization of
AQP5 [150]. In a phosphorylation-dependent
manner, AQP5 can be gated by extracellular pH,
with higher activity at physiological pH 7.4 [151].

2.3.2.5 AQP8
AQP8 is primarily located within the liver cell in
a vesicular compartment [152, 153] and in
mitochondria [154]. The expression of AQP8 on
cell surface is very low under basal conditions
[153, 155]; however, hormone glucagon or its
second messenger cAMP strongly induced
redistribution of AQP8 to the plasma membrane
from intracellular compartment
[155, 156]. Thereby, the water permeability of
plasma membrane is increased, facilitating
osmotic water transport and canalicular bile for-
mation. These studies suggest that both PKA and
PI3K pathways are involved in glucagon-induced
trafficking of AQP8 [155, 157]. Recent data have
shown that extracellular hypertonicity can induce
increased AQP8 gene expression, and use of
inhibitors of the PI3K signalling pathway reduces
AQP8 expression [158].

2.4 Summary and Prospect

As the structures of AQPs have been reported one
after another, not only the selective transport
mechanism of AQPs for substrates, including
water, glycerol, ions, etc., is revealed at the
molecular level, but also a better understanding
of the functional mechanisms of AQPs and how it
is regulated by PTM and protein–protein
interactions can be achieved. Most importantly,
AQPs serve as important drug targets, and their
specific inhibitors also have druggable potential.
Based on the structure of AQPs, it will better
guide the design of drugs.
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Abstract

Aquaporins (AQPs) mediate the bidirectional
water flow driven by an osmotic gradient.
Either gating or trafficking allows for rapid
and specific AQP regulation in a tissue-
dependent manner. The regulatory
mechanisms of AQP2 are discussed mainly
in this chapter, as the mechanisms controlling
the regulation and trafficking of AQP2 have
been very well studied. The targeting of AQP2
to the apical plasma membrane of collecting
duct principal cells is mainly regulated by the
action of arginine vasopressin (AVP) on the
type 2 AVP receptor (V2R), which cause
increased intracellular cAMP or elevated intra-
cellular calcium levels. Activation of these
intracellular signaling pathways results in
vesicles bearing AQP2 transport, docking and
fusion with the apical membrane, which
increase density of AQP2 on the membrane.
The removal of AQP2 from the membrane
requires dynamic cytoskeletal remodeling.
AQP2 is degraded through the ubiquitin
proteasome pathway and lysosomal
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proteolysis pathway. Finally, we review
updated findings in transcriptional and epige-
netic regulation of AQP2.

Keywords
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Trafficking · V2R

3.1 Introduction

Aquaporins (AQPs) are expressed in a wide range
of tissues and usually spatially located within a
certain region of the cell. AQPs mediate the bidi-
rectional water flow driven by an osmotic gradi-
ent. The transport of water mediating by AQPs is
regulated either by gating, a conformational
change, or by altering the AQP density in partic-
ular membrane. The trafficking of AQPs is
regulated at the transcriptional and/or transla-
tional level and also involves shuttles of AQPs
between intracellular storage vesicles and the tar-
get membrane. Posttranslational modification
(PTM), especially phosphorylation, are one of
the important mechanisms regulating redistribu-
tion of AQPs in the cell. The regulation of AQPs,
either through gating or trafficking, allows for
rapid and specific water regulation in a tissue-
dependent manner. There is another relatively
long-term regulation by which increased/
decreased protein abundance of AQPs is affected
by systemic hormones (e.g., vasopressin, insulin,
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angiotensin II), local molecules, and other com-
mon microenvironment signals including pH,
divalent cation concentrations, and osmolality.
These regulations of AQPs are often associated
with certain physiological or pathophysiological
conditions.

In this section, regulatory mechanisms of
AQP2 are discussed mainly. The mechanisms
controlling the regulation and trafficking of
AQP2 and the critical role of it in maintenance
of body water balance in mammals have been
thoroughly studied during the past 30 years. As
highlighted by Fenton RA et al. in his review, in
some respect AQP2 has become a “model pro-
tein” for understanding protein trafficking in
epithelia, the role of posttranslational
modifications, and the complex hormone-
regulated signaling mechanisms that control
exocytic and endocytic transport events [1].

3.2 Gating of AQPs

In plants and yeast, the plasma membrane-
localized AQPs are gated in response to environ-
mental stress [2]. Gating regulation of aquaporin
has been reviewed recently [3]. In mammals,
gating regulates the water permeability of
AQP0, in a pH-dependent and Ca2+-calmodulin
dependent manner [4, 5].

AQP1 is shown to function as an ion channel
upon cGMP activation. Phosphorylation of tyro-
sine Tyr253 in the carboxyl terminal domain of
AQP1 acts as a master switch regulating
responsiveness of AQP1 to cGMP, and the tetra-
meric central pore is the ion permeation pathway
[6]. In an early study on mechanism of gating and
ion conductivity of a possible tetrameric pore in
aquaporin1, cGMP is found to interact with an
unusually arginine-rich, cytoplasmic loop
facilitating its outward motion, which is
hypothesized to trigger the opening of a cytoplas-
mic gate [6].

Gating of AQP4 via phosphorylation has also
been suggested [7]. It is well established that
eukaryotic AQPs can be gated by phosphoryla-
tion, but the trigger for AQP5 gating is still
unclear [8]. AQP5 channel can switch between
different conformations characterized by distinct

rates of water flux, thus changing between open
and closed, and between wide and narrow
conformations, respectively [9].

Data on gating of AQP2 via phosphorylation is
still debatable. Studies from different research
groups by using similar systems or different
systems have failed to unanimously agree [10–
12]. Recently molecular dynamics stimulations
are used to investigate the gating mechanism of
AQP2. The aromatic/Arg (ar/R) selectivity filter
region is a gating site of AQP2, depending on the
side-chain conformation of His172. The H172G
mutant of aromatic residue His172 is very impor-
tant in AQP2 gating mechanism, due to its ring
orientation and approaching Arg187, resulting to
the narrower pore of AQP2 channel and
decreased transport of water molecules
[13]. Mutation of V168M and G64R on the
AQP2 structure impede the permeation of water
molecules, indicating that mutant of V168M and
G64R also involve in the gating of AQP2
[14]. The electric field direction also plays an
important role in the gating of AQP2. The same
direction of external electric field and intrinsic
electric field along the +Z direction of the AQP2
channels induces selectivity filter regions
remaining in the wide conformation, increasing
the water permeability [15].

3.3 Trafficking of AQP2
to the Membrane

Facilitated transport processes across epithelia
require an apically to basally polarized distribu-
tion of transmembranous transport proteins like
AQP. AQPs must be transported in vesicles spe-
cifically to the apical or basolateral plasma mem-
brane domain, which requires trafficking
machineries, including exocytosis, endocytosis,
sorting, clustering, and the maintenance of inte-
gral membrane proteins at the plasma
membranes [16].

Following translation, AQP2 is folded into its
monomeric conformation, and subsequently a tet-
rameric complex, in the endoplasmic reticulum.
These tetramers are later transported to the Golgi
apparatus where two monomers are
N-glycosylated before they are transported
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through the trans-Golgi network to different sub-
cellular compartments [17]. A large proportion of
AQP2 that exits the trans-Golgi network stored in
some form of endosomal vesicles and upon rele-
vant stimulus (e.g., arginine vasopressin, AVP) is
transported to the apical plasma membrane
[17, 18]. Trafficking of intracellular vesicles
containing AQP2 to the membrane, docking and
fusion of AQP2 vesicles with the apical plasma
membrane (exocytosis), and removal of AQP2
from the membrane (endocytosis) are likely
attributed to total plasma membrane abundance
of AQP2 [17].

3.3.1 The cAMP-Mediated Effect
of Vasopressin on AQP2
Trafficking

AQP2 is present in the principal cells of the renal
collecting ducts. AQP2 abundance and intracellu-
lar localization in response to the AVP determine
water reabsorption in this segments [17–19]. In
the absence of AVP, AQP2 is localized in subapi-
cal vesicles. Upon stimulation of AVP, a predom-
inantly apical membrane localization of AQP2 is
induced. Classically, AVP binds to the
basolaterally located vasopressin V2 receptor
(V2R), which is coupled to adenylate cyclase
(AC) by the heterotrimeric G-protein, Gs. The
binding of vasopressin to its receptor causes
α-subunit of G-protein to release GDP, bind to
GTP, and dissociate from the β- and γ-subunits.
This G-αGTP complex, in turn, activates
adenylate cyclase to synthesize cAMP which
activates protein kinase A (PKA). PKA in turn
directly or indirectly phosphorylates AQP2 at the
carboxyl terminus. AQP2 can be phosphorylated
at four sites—Ser256, Ser261, Ser264, and
Ser269 (in humans, Ser269 is conserved as
Thr269). Ser256 and Ser269 seem to be the
most important to AQP2 targeting and accumula-
tion in the plasma membrane, and thereby they
appear to be keystones for the regulation of both
endocytosis and exocytosis of AQP2. In contrast,
AVP decreases phosphorylation at Ser261, which
may increase the stability of the AQP2 protein,
without affecting its trafficking [18–23]. The

phosphorylation of AQP2 then increases trans-
port or trafficking via the cytoskeleton from the
storing cytoplasmic vesicles to the apical mem-
brane (Fig. 3.1).

As PKA has many cellular targets, localization
of PKA to specific sites of targets is necessary for
a timely and spatially effective phosphorylation
of target protein. This is mediated by
PKA-anchoring proteins (AKAP). AKAPs bind
to both PKA R-subunits and other signaling
molecules, thereby allowing the phosphorylation
of PKA substrates specifically [24]. For the phos-
phorylation of AQP2, anchoring of PKA by
AKAP in close proximity to AQP2 is a prerequi-
site [16, 25]. Several splice variants of AKAP18,
AKAP18 delta [26], and AKAP220 [27] have
been reported to be involved in the shuttling of
AQP2 [28–30]. Recent omics data indicate sev-
eral AKAPs expressed in renal collecting ducts
[31], which probably coordinate PKA activity to
regulate AQP2 phosphorylation in the vasopres-
sin signaling pathway.

3.3.2 The Role of Calcium
in Vasopressin-Induced AQP2
Trafficking

Several studies have demonstrated a role of intra-
cellular Ca2+ mobilization in vasopressin-
mediated AQP2 trafficking. By binding to V2
receptors, vasopressin causes a transient increase
in intracellular Ca2+ concentration and calcium
oscillations in IMCD cells [32–34]. However,
calcium mobilization induced by vasopressin
appears not due to coupling of the V2 receptor
to the G-protein alpha-subunit Gq/11, as inositol
1,4,5-trisphosphate (IP3) levels are not increased
or protein kinase C is not activated in collecting
duct cells [35]. It was suggested that the calcium
mobilization appears to result from the effects of
PKA-mediated phosphorylation of IP3
receptors [36].

Ryanodine inhibitors, calmodulin inhibitors,
or intracellular Ca2+ chelators were shown to
block vasopressin-stimulated translocation of
AQP2 to the plasma membrane and increase of
osmotic water permeability in primary cultured
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Fig. 3.1 Protein regulation of AQP2 by AVP. AVP binds
to the vasopressin type-2 receptor (V2R), present on the
basolateral membrane of renal collecting duct principal
cells. This induces a signaling cascade, involving Gs
protein-mediated activation of adenylate cyclase (AC), a
rise in intracellular cAMP, activation of protein kinase A
(PKA), and subsequent phosphorylation of AQP2. This
results in the redistribution of AQP2 from intracellular
vesicles to the apical membrane. AVP stimulation also
results in increased intracellular Ca2+ levels via Ca2+

release from calmodulin-dependent ryanodine-sensitive

intracellular stores, which induces apical membrane
expression of AQP2. On the long term, vasopressin
increases AQP2 expression via activating transcriptional
factors, which stimulates transcription of AQP2 at the
AQP2 promoter. Once the water balance is restored,
AVP levels drop and AQP2 is internalized via
ubiquitination. Driven by the transcellular osmotic gradi-
ent, water enters principal cells through AQP2 and pass
through basolateral plasma membrane via AQP3 and
AQP4 to the blood. ER, endoplasmic reticulum

IMCD cells [32–34]. These observations suggest
that vasopressin-induced intracellular increase of
Ca2+ is important for AQP2 translocation to the
apical membrane (Fig. 3.1). This involves intra-
cellular Ca2+ released from ryanodine-sensitive
stores and the influx of extracellular Ca2+. How-
ever, Ca2+ release from endoplasmic reticulum
cannot maintain a prolonged intracellular Ca2+

mobilization required for an adequate response
of collecting duct cells to vasopressin. The Ca2+

necessary to sustain cellular response to vasopres-
sin is provided by means of store-operated cal-
cium entry via ORAI1 channel [37]. In contrast,
data from other studies in primary cultured epi-
thelial cells from renal inner medulla showed that
cAMP is sufficient for triggering the exocytic

recruitment of AQP2, which is not evoked by
vasopressin-induced intracellular calcium
increases [38]. Interestingly, Wnt5a, a ligand for
frizzled receptors increasing intracellular calcium
[39], is recently shown to induce AQP2 protein
expression, phosphorylation and trafficking via
Wnt5a/calcium/calmodulin/calcineurin signaling
pathway [39, 40].

3.3.3 Vesicles Bearing AQP2
Transport to the Membrane

For the coordinated delivery of vesicles to spe-
cific sites, their transport along the cytoskeleton is
needed [16]. How the cytoskeleton precisely
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modulates AQP2 trafficking is unclear. The
AQP2 C-terminus interacts directly with actin
monomers and phosphorylation of AQP2
enhances its interaction with tropomyosin-5b,
causing F-actin destabilization and promoting
AQP2 exocytosis [41], thereby the reorganization
of microtubules and actin cytoskeleton are essen-
tial in AQP2 trafficking. The actin cytoskeleton
provides a cage anchoring AQP2 in unstimulated
cells, preventing their exocytosis. The binding of
AVP to V2R causes the depolymerization of
F-actin in collecting duct cells, which is critical
in promoting the trafficking and fusion of AQP2-
bearing vesicles with the apical membrane
[42, 43]. Interestingly, evidence shows that at
the same time when vasopressin induces F-actin
depolymerization facilitating AQP2 apical mem-
brane insertion, vasopressin also frees α-actinin
4 to enter the nucleus where it binds glucocorti-
coid receptor to enhance AQP2 gene expression
[44]. Indeed, AQP2 itself can directly modulate
the local actin cytoskeleton depolymerization and
subsequent exocytosis. PKA-induced phosphory-
lation of AQP2 at Ser256 reduced the direct bind-
ing of AQP2 to G-actin, but increased the affinity
of AQP2 to myosin-Vb, one of the central
regulators in apical trafficking. This interaction
results in a reduced quantity of myosin-Vb that
bounds to F-actin, resulting in F-actin destabili-
zation that allows translocation of AQP2 vesicles
to the plasma membrane [41, 45, 46] (Fig. 3.2).
AQP2 also interacts with ERM (Ezrin, Radixin
and Moesin) family proteins [47], key in cross-
linking actin filaments with the plasma mem-
brane. The A-kinase anchoring protein
220 (AKAP220) is a ubiquitously expressed
vesicular and membrane-associated anchoring
protein that positively regulate actin polymeriza-
tion and microtubule stability during membrane
protrusion [48]. Early studies showed that
AKAP220 is physically associated with AQP2
in the principal cells of the kidney collecting
ducts [27]. This study supports the role of actin-
barrier dynamics in the subcellular localization of
AQP2 in the kidney.

There are some binding proteins at C-terminus
of AQP2 (or in AQP2-bearing vesicles) that
mediate AQP2 sorting and the destination of

AQP2. A large-scale proteomic analysis showed
that more than 180 proteins were identified,
including SNARE proteins, trans-Golgi network
markers, motor proteins, etc. These proteins inter-
act with AQP2 via direct binding, indirect link-
age, forming a protein complex, or colocalization
in the same vesicles [49, 50], which is actively
involved in regulation of AQP2 dynamics. For
example, immunoisolated AQP2-bearing intra-
cellular vesicles are associated with the presence
of a large variety of actin-related cytoskeletal
proteins such as actin-related protein (Arp)2/3,
b-actin and c-actin, myosin isoforms, tubulin,
Rab GTPases [49], suggesting a complex network
of proteins that interact with actin during AQP2
vesicular trafficking. For example, Rho GTPase
activation stabilizes cortical F-actin and inhibits
AQP2 trafficking [51]. The GTPase-activating
protein Spa-1 (SPA-1) inhibits Rap1 GTPase-
activating protein, which triggers F-actin disas-
sembly and may maintain the basal mobility of
AQP2 [52]. Recently, an actin-related protein
Arp2/3 was found essential for AQP2 trafficking,
specifically for its delivery into the post-trans-
Golgi network exocytotic pathway to the plasma
membrane [52]. Myosin II and its regulatory light
chain are present in an AQP2-binding protein
complex [53], and it is critical for AQP2 recycling
[53]. Myosin light chain kinase, which regulates
actin filament organization by phosphorylating
the regulatory light chain of myosin, was recently
showed to be required for vasopressin-induced
actin depolymerization and AQP2 transition
from early to late endosomes [54] (Fig. 3.2).

3.3.4 Docking and Fusion of Vesicles
Bearing AQP2 with the Apical
Membrane

Fusion of AQP2-bearing vesicles with the plasma
membrane is a key terminal step in vasopressin-
regulated water transport. The docking and fusing
of AQP2-bearing vesicles is mediated by SNARE
(Soluble N-ethylmaleimide sensitive factor
attachment protein receptors) mechanisms [17]
which involves vesicle (v) SNAREs (soluble
NSF attachment protein receptors) and target
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Fig. 3.2 Exocytosis and endocytosis of AQP2. AVP
triggers cAMP signaling and induces phosphorylation of
AQP2 which dissociates G-actin from AQP2 and
promotes AQP2 interaction with myocin-Vb. This releases
myocin-Vb from F-actin and induces destabilization and
depolymerization of the F-actin network, allowing vesicles
bearing-AQP2 transport to the membrane. AQP2-bearing
vesicles contain specific v-SNAREs that bind to specific
t-SNAREs on the apical plasma membrane; AQP2 is thus
fused with the apical plasma membrane. After AVP

washout, AQP2 localizes to clathrin-coated pits and
undergoes clathrin-mediated endocytosis. Internalized
AQP2 can be targeted either to recycling pathways or to
degradation via lysosomes. Internalized Rab5-mediated
AQP2 vesicles are transported to early (Rab5), late
endosomes (Rab7), and multivesicular bodies (MVBs)
transporting along microtubules for storage. From
MVBs, they can then either be lysosomally degraded or
recycled via the Rab-11-dependent slow recycling
pathway

membrane (t) SNAREs. Multiple components of
the SNARE system are found in the collecting
duct principal cell. The v-SNARE proteins
vesicle-associated membrane protein (VAMP)-
2 and VAMP-3 are found in AQP2-containing
vesicles [18, 27], and t-SNARES (syntaxin-4,
syntaxin 3, SNAP23, and SNAP25) are observed
in the apical membrane of principal cells
[55, 56]. Snapin, an intermediate scaffolding mol-
ecule, was found to serve as a linker between
AQP2 and the t-SNARE complex and can aid
AQP2 trafficking from storage vesicles to the
apical plasma membrane [55, 56]. The cleavage

of VAMP-2 by tetanus toxin blocked the
AVP-mediated AQP2 translocation to the plasma
membrane, suggesting a role of v-SNARS in
AQP2 docking [57]. Knockdown of Munc18, a
protein-inhibiting SNARE-mediated membrane
fusion, increased AQP2 membrane accumulation,
whereas knockdown of VAMP-2, VAMP-3,
syntaxin 3, and SNAP23 inhibited AQP2 fusion
at the apical membrane [58]. These studies
strongly suggest involvement of SNARE in
AQP2 docking and fusion to the membrane. It is
noted that many other proteins (e.g., annexin-2,
GTPase, AKT substrate) are also involved in
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AQP2 trafficking and exocytosis, although their
precise roles and how they interact with AQP2
(or AQP2-bearing vesicles) remains to be fully
established [17] (Fig. 3.2).

3.3.5 Removal of AQP2 from
the Membrane
and Degradation

Regulated endocytosis of AQP2 contribute sig-
nificantly to final plasma membrane levels of
AQP2. Inhibition of endocytosis can increase
the amount of AQP2 at the apical membrane
[17, 59–61], indicating another way to increase
the water permeability of collecting ducts. Endo-
cytosis of AQP2 is shown to require dynamic
actin cytoskeletal remodeling, and actin is
involved in multiple steps in the endocytosis
pathway, including coated pit formation, constric-
tion, internalization, splitting, and merging of
clathrin-coated vesicles, and lateral mobility on
the cell surface [62].

In the endocytotic process, AQP2 accumulates
in clathrin-coated pits and is internalized via a
clathrin-mediated process in a dynamin-
dependent manner [63–65]. The role of dynamin
in AQP2 endocytosis is confirmed by the finding
that GTPase-deficient dynamin mutants exhibit
arrested endocytosis and accumulation of AQP2
in the apical membrane independently of vaso-
pressin stimulation [65]. The microtubule-
associated motor protein dynein and the
associated dynactin complex are associated with
intracellular vesicles bearing AQP2 [66],
indicating a role of microtubule complex in
AQP2 trafficking.

The AQP2 C-terminus interacts directly with
the actin cytoskeleton linker Ezrin, an actin-
binding protein facilitating endocytosis of AQP2
[66]. Direct binding of Ezrin to AQP2 promotes
AQP2 endocytosis, linking AQP2 trafficking to
the dynamic actin cytoskeletal network
[66]. While, knockdown of Ezrin was associated
with elevated AQP2 membrane accumulation and
decreased AQP2 endocytosis.

Hsc70, a heat shock protein, which is impor-
tant for uncoating clathrin-coated vesicles, may

bind to the C-terminus of non-phosphorylated
AQP2 and is reported to be required for AQP2
endocytosis [67]. Mimicking phosphorylation of
AQP2 at S256 and S269 decreased their interac-
tion with clathrin, hsp/hsc70, and dynamin along-
side a decreased rate of endocytosis [12, 67]; thus,
phosphorylation of AQP2 may alter the efficiency
of pit maturation and clathrin-coated vesicle and
modulate quantity of AQP2 in clathrin-coated pits
and internalization [68].

AQP2 was shown to interact with caveolin-1, a
principal component of caveolae membranes that
are involved in receptor-independent endocytosis
[69]. Both AQP2 and caveolin-1 were
internalized in response to forskolin removal
[69], indicating that AQP2 is internalized through
caveolae/caveolin-1 dependent mechanisms. In
addition, evidences support the role of membrane
rafts in regulation of AQP2 endocytosis.
Reagents depleting membrane cholesterol
induces plasma membrane accumulation of
AQP2 in vivo and in vitro, likely a result of
decreased AQP2 internalization [60, 61, 70, 71].

When endocytosis starts, AQP2 is internalized
into early, late endosomes and multivesicle bod-
ies (MVBs) for sorting or storage. MVBs can be
either lysosomally degraded or recycled via the
Rab11-dependent recycling pathway. By these
ways, AQP2 could be recycled either via the
trans-Golgi network or directly to the plasma
membrane, leading to AQP2 expression in
plasma membrane. MVBs degradation could
lead to downregulation of AQP2 in the plasma
membrane and the cells [72, 73].

A number of Rab GTPases: Rab4, Rab5,
Rab18, and Rab21 (associated with early
endosomes), Rab7 (associated with late
endosomes), and Rab11 and Rab25 (associated
with recycling endosomes) have been identified
in immuno-isolated AQP2-containing intracellu-
lar vesicles [66], suggesting roles of these Rab
GTPases in AQP2 trafficking [74]. For example,
after endocytosis, AQP2 is retrieved to early
endosomes through a PI3K-dependent mecha-
nism and then is transferred to Rab11-positive
storage vesicles [50, 75, 76] (Fig. 3.2). A
heterotrimeric retromer complex made up of
three vacuolar sorting proteins (Vps): Vps26,
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Vps29, and Vps35 is found to interact with Rabs
mediating cargo (e.g., AQP2) sorting to plasma
membrane, transport from endosomes to the
trans-Golgi network or degradation [77].

Ubiquitination works as a signal for endocyto-
sis and subsequent degradation by multivesicular
body or proteasome. Ubiquitination of lysine
270 of AQP2 is important for AQP2 endocytosis
and degradation [78]. The E3 ubiquitin ligase
CHIP ubiquitinylates AQP2 through interacting
with AQP2, Hsp70, and Hsc70. CHIP knock-
down increases AQP2 expression in the plasma
membrane, indicating its involvement in AQP2
endocytosis and degradation [78]. Some AQP2
transferred to multivesicular body is excreted
into the urine as exosomes [79–81].

A database reports 139 AQP2-interacting
proteins identified by mass spectrometry in rat
inner medullary collecting duct [78]. This
interactome delineates an overall picture of a
dynamic biological process in which AQP2 is
synthesized in the rough ER, matures via the
Golgi apparatus, transported to endosomes that
move into or out of the plasma membrane, and
regulated in the plasma membrane [78].

3.4 Transcriptional Regulation
of AQP2

3.4.1 Transcription Factors
Responsible for the Expression
Regulation of Aqp2

Aside from intracellular trafficking and PTM, the
protein levels of AQP2 are also regulated tran-
scriptionally. Several different transcription
factors (TF), such as CREB, the AP1 [82],
NFAT family (TonEBP and NFATc) [83, 84],
and NF-γB [84] have been involved in this regu-
lation. Vasopressin treatment or dehydration for a
certain time results in increased water permeabil-
ity of the collecting ducts, a response called
“long-term regulation”. This response is mainly
attributed to an increased abundance of AQP2
protein due to stimulated transcription of the
Aqp2 gene [85], which is mediated by the

vasopressin-V2R signaling cascade
[86]. Sequencing of the 5-flanking region of the
Aqp2 gene revealed several putative cis-binding
element motifs including a cAMP-response ele-
ment (CRE) and an SP-1 site [87, 88]. CRE pres-
ent in the Aqp2 gene regulates transcription of the
gene [83, 89]. While the PKA-CRE pathway is
shown to be involved in the initial rise in AQP2
levels after dDAVP stimulation, long-term regu-
lation of AQP2 may involve the activation of
Epac [90]. Hypertonicity affects transcription of
many genes through the interaction between the
tonicity-responsive enhancer (TonE) and its tran-
scription factor TonEBP. TonEBP knockout mice
show downregulated protein expression of
AQP2, confirming the role of TonE/TonEBP in
AQP2 transcription [83]. A system-level analysis
of cell-specific Aqp2 gene expression in renal
collecting duct revealed many transcriptional
regulators and transcriptional regulators binding
elements that were involved in the transcription of
the Aqp2 gene. The transcriptional regulators that
bind to ETS, HOX, RXR (retinoid X receptor
family), CREB, and GATA (GATA-binding
factors) of the Aqp2 gene are likely to be involved
in cell-specific regulation of Aqp2 gene expres-
sion [91], providing further insight into the tran-
scription regulation of the Aqp2 gene. Recently, a
Bayes’ theorem was used to integrate several
omics data sets to stratify the 1344 TFs present
in the mouse genome with regard to probabilities
of regulating Aqp2 gene transcription [92]. The
analysis identified 17 of 1344 TFs that are most
likely to be involved in the regulation of Aqp2
gene transcription, including Cebpb, Elf1, Elf3,
Ets1, Jun, Junb, Nfkb1, Sp1. Atf1, Irf3, Klf5,
Klf6, Mef2d, Nfyb, Nr2f6, Stat3, and Nr4a1.
Surprisingly, among these TFs, CREB (Creb1)
is absent [92]. A recent genome-wide mapping
of DNA accessibility and binding sites for CREB
and C/EBPβ showed that in vasopressin-sensitive
collecting duct cells, C/EBPβ (but not CREB), a
pioneer transcription factor critical to cell-specific
gene expression, bound strongly at the identified
enhancer downstream from Aqp2 [92]. Thus, any
role for CREB in the regulation of Aqp2 gene
transcription is unlikely to be direct.
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3.4.2 AQP2-Targeting miRNAs
in the Kidney

miRNAs, important modulators of gene expres-
sion that act via regulation of the mRNA transla-
tion, provide novel insights in the intricate
regulation of protein expression and function
[93]. Integrated bioinformatic analysis of the
miRNAome and proteome suggested that AQP2
expression was regulated by epigenetic machin-
ery and various transcription factors [93]. About
19 major miRNAs (miR-1193, miR-3549,
miR-181d, miR-92b, miR-463, miR-342,
miR-93, miR-3573, miR-127, miR-324,
miR-411, miR-1, miR-873, miR-16, miR-3074,
miR-206, miR-678, miR-496, and miR-298) were
found to be responsive to vasopressin in rat kid-
ney inner medullary collecting duct (IMCD) cells
using microarray chip assay. miR-127, miR-1,
miR873, miR-16, miR-206, miR-678, miR-496,
miR-298, and miR-463 exhibited 1.3-fold
increase in changes in expression after vasopres-
sin stimulation [93].

Among them four miRNAs (miR-32,
miR-137, miR-216a, and miR-216b) are shown
to target the 30-untranslated region of rat AQP2
mRNA. Target seed regions of miR-32 and
miR-137 were also conserved in the 3-
0-untranslated region of mouse AQP2 mRNA.
Overexpression of miR-32 or miR-137, which
was not identified as vasopressin-responsive
microRNAs, decreased dDAVP-regulated AQP2
mRNA and protein levels in mpkCCDc14 cells,
indicating that the interaction of miRNAs with the
AQP2 regulatory pathway is likely vasopressin-
independent [90]. Consistent with this, a
downregulation of AQP2 expression induced by
stimulation of the calcium sensing receptor sig-
naling is likely attributed to the miR-137
generation [93].

Dicer is a critical regulator of the biogenesis of
miRNA, which helps to process pre-miRNAs to
mature miRNAs in the cytoplasm. DicerAQP2Cre1+

mice (selectively suppressed Dicer expression in
AQP2-positive cells of the mouse kidney
collecting ducts) have severely reduced AQP2 in
the kidney. Among 56 differentially expressed

miRNAs, 31 had at least a twofold difference in
expression (14 upregulated and
17 downregulated) between DicerAQP2Cre1+ and
control mice. Only three miRNAs (miR-7688-
5p, miR-8114, and miR-409-3p) altered in the
renal inner medulla of DicerAQP2Cre1+ mice,
which could be putative regulators of AQP2
expression. However, Luciferase assays failed to
demonstrate a direct interaction of AQP2 or the
three potential transcription factors with
miR-7688-5p, miR-8114, and miR-409–3p. In
fact, these miRNAs were found involved in epi-
genetic control (Phf2, Kdm5c, and Kdm4a) or
transcriptional regulation (GATA3, GATA2,
and ELF3) of AQP2 [93].

3.5 Epigenetic Regulation of AQP2

Histone H3 lysine 27 (H3K27) is a histone
marker associated with open chromatin and
increased transcription. H3K27 acetylation
mapping is widely used to identify open regions
of DNA overlapping both promoters and
enhancers [93]. Vasopressin or dDAVP induced
a marked increase in histone H3K27 acetylation
(H3K27ac) across the body of the AQP2 gene,
and in the promoter, as well as in upstream of the
AQP2 transcriptional start site in mpkCCDc14
cells [90]. A very recent study demonstrated that
in hypokalemia-induced nephrogenic diabetes
insipidus, the level of acetylated H3K27
(H3K27ac) was decreased in the Aqp2 promoter
region, which was associated with reduced Aqp2
mRNA levels. Histone deacetylases inhibitors
prevented the downregulation of AQP2 mRNA
and protein, likely by enhancing H3K27 acetyla-
tion [93]. This study indicates a key role of
H3K27ac in AQP2 regulation during pathophysi-
ological conditions. Epigenetic regulation of
other AQPs including DNA acetylation or meth-
ylation is seen in other reviews [94].
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Abstract

Aquaporins (AQP) are a class of the integral
membrane proteins. The main physiological
function of AQPs is to facilitate the water
transport across plasma membrane of cells.
However, the transport of various kinds of
small molecules by AQPs is an interesting
topic. Studies using in vitro cell models have
found that AQPs mediated transport of small
molecules, including glycerol, urea,
carbamides, polyols, purines, pyrimidines and
monocarboxylates, and gases such as CO2,
NO, NH3, H2O2 and O2, although the high
intrinsic membrane permeabilities for these
gases make aquaporin-facilitated transport
not dominant in physiological mechanism.
AQPs are also considered to transport silicon,
antimonite, arsenite and some ions; however,
most data about transport characteristics of
AQPs are derived from in vitro experiments.
The physiological significance of AQPs that
are permeable to various small molecules is
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necessary to be determined by in vivo
experiments. This chapter will provide infor-
mation about the transport characteristics
of AQPs.

Keywords

Aquaporins · AQPs · Aquaglyceroporins ·
Water channel

4.1 Water Transport Mediated by
Aquaporins

The main physiological function of aquaporins
(AQPs) is to facilitate the water transport across
plasma membrane of cells (Fig. 4.1) [1, 2]. Water
transporting property of AQPs was first con-
firmed via biophysical function studies of AQP1
that possesses extremely high water permeability
reaching 2 ~ 3 � 109 water molecules per subunit
per second [3].

Almost all of rat AQPs are permeable to water
with various single-channel water permeability
including: AQP0 (0.25 � 10�14 cm3/s) [4],
AQP1 (6.0 � 10�14 cm3/s) [4], AQP2
(3.3 � 10�14 cm3/s) [4], AQP3
(2.1 � 10�14 cm3/s) [4], AQP4 (24 � 10�14 cm3/
s) [4], AQP5 (5.0 � 10�14 cm3/s) [4]. The water
permeability of other AQPs was measured by vari-
ous groups: human AQP6 was reported to be
inhibited by HgCl2 [5], nevertheless, when the rat
AQP6 expressed in oocytes, it was activated by

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-7415-1_4&domain=pdf
mailto:baoxue@bjmu.edu.cn
https://doi.org/10.1007/978-981-19-7415-1_4#DOI
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Fig. 4.1 AQP1 mediates transmembrane water perme-
ability. AQP1 is organized as a tetrameric assembly of
four identical polypeptide subunits. Water molecules
pass through a pore of each AQP1 monomer

Hg2+ to dramatically increase the osmotic water
permeability (Pf ¼ 93.0 � 10�4 cm/s) [6]. The
mouse AQP6 was identified to have low water
permeability activated by Hg2+ [7]. Another group
confirmed that rat AQP6 lacks water permeability
[8]. AQP7 was initially found and cloned from rat
testis, and water permeability coefficient of
Xenopus oocytes injected with rat AQP7-cRNA
reached 186 μm/s [9]. The cloning and water trans-
port measurement of mouse AQP8 were performed
using Xenopus oocytes, and the single channel
water permeability of AQP8 was up to
8.2 � 10�14 cm3/s [10]. Rat AQP9 cRNA-injected
Xenopus oocytes expressed ~fourfold increase of
coefficients of osmotic water permeability (Pf)
[11]. The function of AQP10 was also examined
in Xenopus oocyte expression system, in which the
osmotic water permeability increased up to sixfold
with AQP10 expression [12]. Using CHO cells
transfected with GFP-AQP11 to measure the
water permeability of AQP11, the osmotic water
permeability Pf value enhanced up to
8.0 � 10�4 cm/s [13]. Another group confirmed
that mouse AQP11 was water permeable using
stopped-flow analysis of vesicles containing
mouse AQP11 [14]. Whether AQP12 could trans-
port water has not been determined yet.

With selective pore for the rapid movement of
water across cell membranes, AQPs are crucial
for the transport of water and regulation of water
homeostasis. In body, there are two trans-tissue

water flow routes: transcellular water flow
mediated by AQPs and paracellular flow. AQPs
are thought to be the specific channels for rapid
water transport in response to osmotic gradient,
making a critical contribution to the regulation of
transcellular water flow [15].

When expressed in X. laevis oocytes, AQP1
exhibited significantly high osmotic water perme-
ability that was 20-fold higher than that of the
control oocytes [16, 17]. AQP1 protein
reconstituted into membrane proteoliposomes
causes the 50-fold raise in water permeability
[18, 19]. This process occurs with low Arrhenius
activation energy and is inhibited by HgCl2 or
other mercurial and is reversed by a reducing
agent. Water permeability mediated by most
AQPs can be inhibited by mercurial reagents
such as HgCl2 whose mechanism was elucidated
by molecular dynamics simulations [20]. Mercury
inhibits water and glycerol transport by mamma-
lian AQPs through binding to cysteine residues
[21]. However, AQP4 and AQP6 are not inhibited
by HgCl2 [22, 23].

To explain how a simple pore without moving
parts could allow rapid transit of water without
movement of protons, the groups of Robert
Stroud and Bing Jap solved the atomic structures
of AQP1 from bovine red blood cells at 2.2 Å
resolution [24]. Later, several groups performed
molecular dynamics simulations on the basis of
this solved structure [25, 26]. Now, the essence of
how AQPs facilitate the movement of water but
not protons has been revealed. Peter Agre
explained how AQP1 could selectively accom-
modate water molecules transporting in his
Nobel lecture [27]: water maintains the bulk solu-
tion condition at the extracellular vestibule and an
internal vestibule both have the hourglass struc-
ture of the AQP1 molecule. In a single file, water
could pass through a 20 Å channel that separates
vestibules, the water molecules could interact
with pore-lining residues to prevent the formation
of hydrogen bonds between the water molecules.
Especially near the top of the bridged site, the
channel reaches its narrowest constriction of
2.8 Å, thus the pore is so narrow that it just
accommodates a single water molecule. The
mechanism of repealing proton from its
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permeation of AQP includes [24, 27–29]: (1) The
side chain in loop E forms a fixed positive charge
and a conserved histidine residue of another wall
forms a partial positive charge, these two positive
charges collectively repel protons. (2) Moreover,
a single water molecule could form hydrogen
bonds simultaneously when it transiently
undergoes a transient dipole reorientation, which
also serves to be the barrier to protons.

AQPs mediate the bidirectional water flow
driven by an osmotic gradient, which can be
adjusted either by gating, conformational change,
or altering the AQPs density in a particular mem-
brane. Among them, the protein abundance of
AQPs can be affected by systemic hormones
(e.g., vasopressin, insulin, angiotensin II), local
molecules (e.g., purine, prostaglandins, bradyki-
nin, dopamine) and other common microenviron-
ment signals, including pH, divalent cation
concentrations and osmolality. The functions of
aquaporins are regulated by posttranslational
modifications, such as phosphorylation,
ubiquitination, glycosylation, subcellular distri-
bution, degradation, and protein interactions [30].

The structure and mechanism of AQP0 gating
have always been controversial. Gonen et al.
observed two contraction sites along the pores
of AQP0, suggesting that the structure of AQP0
in sheep may be closed. In addition, AQP0 also
exhibits unusually low water conductance com-
pared to other AQPs, and pH gating can only
regulate water conductance threefold, so the
structural changes between the open and closed
conformations may be unclear yet [31]. Due to
tight contacts between extracellular regions,
differences in crystal packing may lead to a gating
effect of AQP0.

In previous studies, “capping” and “pinching”
gating mechanisms were proposed based on chan-
nel analysis of AQPs crystal structure. AqpZ is a
typical representative of “pinching” gating mech-
anism. In the crystal structure model of AqpZ
homologous tetramer, the R189 side chain has
two different conformations of “up” and “down”
Further molecular dynamics simulations showed
that the R189 side chain could swing up and
down rapidly. Therefore, R189 residue is consid-
ered to be the switch of AqpZ gating, which

swings up and down the side chain to change
the diameter of the nearby channel to control the
channel switch. Recently, Yang et al. investigated
the structure, dynamics and water proximity of
key “gated” residues of AqpZ in a functionally
active state, revealing that the water molecular
channel of AqpZ is in a “permanently open”
state. Therefore, it is now widely accepted that
most AQPs function as the permanently open
channels for water permeation without a gate
while a permanently open conformation of the
R189 side chain of AqpZ exists in native or
native-like membrane environments [32].

4.2 Glycerol Transport Mediated
by AQPs

In addition to the primary function of AQPs to
facilitate water transport, glycerol transport could
be another significant function of AQPs.
Aquaglyceroporins, including AQP3, AQP7,
AQP9 and AQP10, are a subset of aquaporin
family and the exclusive mammalian proteins
with the ability to permeate glycerol with their
relatively broad solute specificity and sequence
homology. One of the physiological functions of
aquaglyceroporins is to facilitate the transport of
glycerol across the cell membrane. Such glycerol-
transporting function of aquaglyceroporins is
involved in the movement of glycerol and energy
metabolism process.

AQP3 (originally called glycerol intrinsic pro-
tein, GLIP, based on its glycerol-transporting
function) was first cloned by three different
groups, respectively [33–35]. AQP3 is a rela-
tively weak transporter of water but functions as
an efficient glycerol transporter. Measurements of
the 10-min glycerol uptake of Xenopus oocytes
after microinjection of 5 ng of AQP3 cRNA and a
24 ~ 27 h incubation at 18 �C indicate that glyc-
erol uptake is remarkably increased compared
with control. Glycerol uptake in oocytes
expressing AQP0, AQP1, AQP2, AQP4 or
AQP5 is not increased significantly compared
with control [4]. AQP3 is mainly expressed at
the basolateral membrane of epithelial cells in
kidney collecting duct, airway and intestine, as



56 X. Geng et al.

well as in epidermis, urinary bladder, conjunctiva
and cornea [36]. As an aquaglyceroporin, AQP3
mediates glycerol permeability in certain organs,
tissues and cells. In skin, the stratum corneum
(SC) is the most superficial layer whose hydration
determines skin appearance and physical
properties [37]. Phenotype analysis of AQP3-
deficient mice indicates that AQP3 expressed in
epidermal keratinocytes plays an essential role in
hydration process and maintaining biological
function of skin [38, 39]. Study on AQP3 null
mice showed that deficiency of skin AQP3
impaired glycerol transport through basal
keratinocyte layer into the epidermis and SC,
resulting in the reduced glycerol content of epi-
dermis and SC and therefore impairing hydration
and epidermal biosynthetic functions [39]. These
data provide us compelling evidence that
glycerol-transporting property of AQP3 is impor-
tant for the skin function (Fig. 4.2) [37].

AQP7 is abundantly expressed in human adi-
pose tissue and acts as an adipose glycerol chan-
nel (Fig. 4.3) [40], it is found to act as a
facilitative carrier for water by tenfold
(186 � 15 μm/s), glycerol by fivefold (the calcu-
lated Pglycerol was 18.9 � 10�6 cm/s) and urea by
ninefold (the calculated Purea was
12.0 � 10�6 cm/s), in Xenopus oocytes
expressing AQP7 [9].

Rodríguez et al. reported that AQP3 and AQP9
are also expressed in omental and subcutaneous
fat depots, in addition to the well-known expres-
sion of AQP7 in adipose tissue [41]. AQP3 and
AQP9 act as glycerol channels in adipocytes and
the liver, respectively, representing novel addi-
tional pathways for the glycerol transport in
human adipocytes [42, 43]. Studies on AQP7
and AQP9 knockout or knockdown mice demon-
strate the pathophysiological relevance of glyc-
erol channels through effects on glycerol
metabolism. Impairment or lack of AQP7 func-
tion might have a causal role in obesity and dia-
betes mellitus [43].

AQP9 is mainly expressed in liver, testis,
brain, leukocytes, epididymis and spleen [44–
46]. By injecting rat AQP9-cRNA into oocytes

and determining the permeability profile of
AQP9, it is concluded that AQP9 confers high
permeability for water as well as other solutes
including carbamides, polyols, purines,
pyrimidines and monocarboxylates [46]. A
subsequent research shows AQP9 mainly
facilitates glycerol and urea transport [47]. Further
study also shows that AQP9 facilitates glycerol
influx and urea efflux in hepatocytes, providing
evidence that AQP9 acts as an important solute
channel associated with energy metabolism [11].

In human adipocytes, AQP3, AQP7 and AQP9
represent the glycerol channels involved in the
regulation of lipid and glucose metabolism
[40, 42]. AQP3 is present in the plasma mem-
brane and cytoplasm. AQP7 is expressed predom-
inantly in the cytoplasm upon the lipid droplets.
AQP9 is constitutively expressed in the plasma
membranes [41]. The role of aquaglyceroporins
expressed in adipocytes is to control the transport
of glycerol into and out of adipocytes, which are
critical steps for lipogenesis and lipolysis [43]. In
the lipogenic process, AQP9-mediated glycerol
uptake provides glycerol for the glycerol-3-phos-
phate proceeds, and further involves in the
triacylglycerols synthesis of adipocytes
(Fig. 4.4) [42]. In the lipolysis, stimulation of
adrenergic receptors by catecholamines leads to
a translocation of AQP3 and AQP7 to the plasma
membrane to facilitate the glycerol release, which
parallels with the translocation of HSL to the lipid
droplets and its activation, and leptin (via the
PI3K/Akt/mTOR signalling cascade) and
catecholamines downregulate AQP7 expression,
which restrict glycerol release from adipocytes
(Fig. 4.3) [42].

AQP10 is abundantly expressed in the duode-
num and the jejunum [48], which is subsequently
identified as aquaglyceroporin on account of its
functional and structural similarity with other
aquaglyceroporins AQP3, AQP7 and AQP9
[12]. Using oocytes, isotopic solute uptakes
mediated by AQP10 were detected, resulting
that the glycerol permeability was significantly
increased threefold with AQP10, which was
inhibited by HgCl2 [12].
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Fig. 4.2 AQP3 mediates
transmembrane glycerol
permeability in epidermis.
Urea transporters UT-A1,
UT-A2 and AQP3 facilitate
urea uptake in skin, which
may induce keratinocyte
differentiation and improve
barrier and antimicrobial
defense function of skin.
Moreover, AQP3 facilitates
water and glycerol transport
from blood and sebaceous
glands to keratinocytes

4.3 Urea Transport Mediated
by AQPs

Urea is mainly generated from ammonia in liver
as a key role in protein catabolism in mammals.
As a terminal product, approximately 90% of urea

Fig. 4.3 Proposed role of aquaglyceroporins in lipolysis.
Translocation of AQP3 and AQP7 to the plasma mem-
brane is led by the stimulation of adrenergic receptors by
catecholamines to facilitate the glycerol release. AQP7
expression is downregulated by leptin and catecholamines,
which represents a negative feedback regulation in lipo-
lytic states to restrict glycerol release from adipocytes

is eliminated in urine by the kidney [49]. In the
kidney, urea transport and cycle are vital in uri-
nary concentrating mechanism [50]. Some of
human AQPs are permeable to urea including
AQP3 [34], AQP7 [51], AQP9 [44], AQP10
[12] and possibly AQP6 [52], but the physiologi-
cal significance of these aquaporins in urea trans-
port is not fully revealed.

Fig. 4.4 Proposed role of aquaglyceroporins in lipogene-
sis. Triacylglycerols (TAG) is synthesized from FFA and
glycerol-3-phosphate in adipocytes. Glycerol-3-phosphate
proceeds from: (1) glucose, (2) glycerol from
HSL-dependent lipolysis that is phosphorylated by GK
or (3) AQP9-mediated glycerol uptake
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Whether AQP3 is one of urea channels
remains conflicting. With AQP3 expressing in
Xenopus oocytes and measurement of the urea
permeability, early work suggests that urea
uptake is increased to twofold after 30 min incu-
bation with radio-labelled urea, which can be
completely blocked by phloretin, the inhibitor of
urea transporters [34]. Controversially,
subsequent study did not find urea-permeating
property of rat AQP3 [53]. The difference may
be resulted from the use of diverse concentrations
of urea, and the AQP3-mediated urea transport is
so low that it does not induce significant change
in volume under lower urea concentration
(20 mM) [54].

AQP6 possesses water permeability under the
activation of Hg2+ as described by Yasui et al.
[6]. AQP6 was determined to be permeable to
urea using AQP6-expressing oocytes, and the
uptake of [14C]urea stimulated by HgCl2 was
initially large (Purea ¼ 21.3 � 10�7 cm/s) but
decreased with time. However, the uptake of
[14C]urea into AQP6-expressing oocytes without
stimulation of HgCl2 was about three times
less [52].

Ishibashi et al. found that urea uptake was
increased up to ninefold in 5 min and 16-fold in
10 min with AQP7 expression in the oocytes,
whose stimulation effect of urea uptake was
much higher than that of AQP3 [9].

AQP9 expressed in cRNA-injected oocytes
showed the increase of urea permeability coeffi-
cient (Purea) from 1.5� 10�6 cm/s (water-injected
as control) to 23.5 10�6 cm/s [45].

Urea permeability of AQP10 was measured in
Xenopus oocyte expression system, and the result
showed urea uptake was significantly increased
twofold, which was inhibited by phloretin [12].

AQP3, AQP7 and AQP9 appear to play roles
in urea transport in skin. AQP3 and AQP9 are
expressed in the differentiating layers of human
epidermal skin equivalents [55]. AQP7 localizes
to superficial epithelial cells of the gastrointesti-
nal tract [56]. Expression of AQP3, AQP7 and
AQP9 could be upregulated by urea [57]. Studies
revealed that urea transporters and AQPs trans-
port exogenous urea into keratinocyte, playing a
critical role in keratinocyte differentiation, lipid

synthesis and maintaining epidermal homeosta-
sis. Moreover, AQP3 is proposed as the important
channel of epidermis in which AQP3 facilitates
water and glycerol transport from blood and seba-
ceous glands to keratinocytes involved in prolif-
eration and differentiation of keratinocytes
(Fig. 4.2) [16].

AQP3 null mice have nephrogenic diabetes
insipidus under normal conditions. When given
a urea load, the concentration of urine reaches
high level; however, the excretion of other solutes
reduces significantly [58]. The capacity of urea to
increase the concentration of non-urea solutes
relies on AQP3 and its function in transporting
both urea and water [59]. AQP10 is only found in
duodenum and jejunum [48], and it transports
water, urea and glycerol when expressed in
Xenopus oocytes [12]. Further study of AQP10
in urea transport is less carried out. AQP9 is a
urea-permeable protein localized at the
basolateral membrane of hepatocytes, since the
liver is a major site of urea production
[44]. AQP9 is also abundantly expressed in the
peripheral leukocytes permeable to water and
urea [45].

4.4 Gas Transport Mediated
by AQPs

AQPs including AQP1, AQP3, AQP4, AQP5,
AQP8 and AQP9 could potentially transport
gases such as CO2, NO, NH3 and O2.

4.4.1 Carbon Dioxide

Carbon dioxide (CO2) is a neutral linear molecule
with a diameter similar to water. Early study
showed that permeability of CO2 was signifi-
cantly increased in Xenopus oocytes injected
with AQP1 cRNA and proteoliposomes
containing purified AQP1 [60, 61], supporting
the hypothesis that AQP1 is a pathway for CO2

transport across the membrane. Also, one study
adopting 18O-labelled HCO3

� to examine the
CO2 permeability of AQP1-null human
erythrocytes compared with normal ones verified
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that AQP1 is responsible for 60% of the high
PCO2 of erythrocytes [62], directly suggesting
that AQP1 plays the critical role in mediating
CO2 transport. It is suggested that it goes across
plasma membrane through central space of tetra-
mer of AQP1 and does not go through water pore
(Fig. 4.5).

Further study on cholesterol-containing
membranes reconstituted with human AQP1-
mediating CO2 permeability showed significant
increase in membrane CO2 permeability,
suggesting that both cholesterol and AQP1 are
necessary in CO2 permeability across biological
membranes [63].

When expressed in oocytes, bovine AQP0,
human AQP1, rat AQP4-M23, rat AQP5, rat
AQP6, rat AQP6N60G, or rat AQP9 exhibited
significantly increased permeability to CO2

measured by microelectrode positioned at the sur-
face of the oocytes to detect pH change [8].

However, some studies suggest that AQP1-
dependent CO2 transport has no physiological
relevance [64, 65]. Verkman group reported
experiments in which physiological
consequences of CO2 transport by AQP1 were
studied by comparing CO2 permeability in
erythrocytes and intact lung of wild-type and
AQP1 null mice. Results show no difference in
CO2 permeability between AQP1 null mice and
wild-type mice, providing direct evidence against
physiological significance of CO2 permeability
mediated by AQP1 [64, 65].

4.4.2 Nitric Oxide

As another physiologically important gas, nitric
oxide (NO) plays a critical role in cardiovascular,

Fig. 4.5 Gas passes through the central space of AQP
tetramer in plasma membrane

renal, and central nervous system (CNS). The
diameter of NO is similar to that of water, so it
may be reasonable for NO to pass through water
holes. Early studies show that NO is produced by
the endothelial cells of the vasculature in which it
can relax adjacent vascular smooth muscle cells
to regulate blood flow and blood pressure [66–
68]. Previous conception that the process of NO
transporting from endothelial cells to the vascular
muscle cells occurred by free diffusion through
the lipid bilayer of the cell membrane was
challenged by the discovery of AQP1 in
transporting NO. In the vascular system, AQP1
expressed in endothelial cells [69] involved in
vascular function. By transfecting AQP1 into
CHO cells and reconstituting purified human
AQP1 into the lipid vesicles, transport property
of NO by AQP1 was measured. In CHO cells
expressing AQP1, NO permeability was
identified to be correlated with water permeabil-
ity. The use of AQP1 inhibitor led to a NO trans-
port reduction by 71%, and the NO transport is
saturable. In the reconstituted lipid vesicles
expressing AQP1, NO influx was increased by
316% [70]. All the above results support the
hypothesis that NO is transported by AQP1.

Using AQP1 null mice, Herrera et al. subse-
quently identified that transport of NO by AQP1
was required in full expression of endothelium-
dependent relaxation, though NO free diffusion
still occurred in the absence of AQP1 slowly
[71, 72].

In addition to AQP1, AQP4 located in brain is
also permeable to NO through its central pore,
and it even provides a more favourable perme-
ation pathway for gas molecules than AQP1
[73]. Further investigation is required to clarify
the role of AQP4 in the control of NO flow in the
central nervous system.

4.4.3 Ammonia

Ammonia (NH3) transport by AQPs has not been
widely studied. Holm et al. first observed a role of
AQPs as NH3 channels [74]. Xenopus oocytes
and lipid bilayers expressing AQP1, AQP3,
AQP8 and AQP9 have been shown to facilitate



60 X. Geng et al.

NH3 transport [74–76]. Another group measured
NH3 permeability of the AQP cRNA-
microinjected Xenopus oocytes, and their results
indicated that human AQP1, rat AQP3, rat AQP6,
rat AQP6N60G, human AQP7, human AQP8 and
rat AQP9 have a significantly increased perme-
ability to NH3 [8]. Nevertheless, the physiologi-
cal significance of AQPs as NH3 transporters
remains unclear [72].

4.4.4 Oxygen (O2)

Molecular dynamics (MD) simulations on the
AQP1-embedded membranes and on the pure
lipid bilayers indicated that the central pore of
AQP1 is an ideal channel for the permeation of
both CO2 and oxygen (O2). The result of MD
simulations showed the central pore of APQ1
permeates O2 with a � 0.4 ~ �1.7 kcal/M energy
well [77].

4.5 Other Molecules Transported
by Aquaporins

4.5.1 Hydrogen Peroxide

Hydrogen peroxide (H2O2) belongs to the group
of reactive oxygen species (ROS). ROS are
generated in a number of key metabolic processes
in cells such as the electron transport chain in the
inner mitochondrial membrane [78]. Because of
the potential damage of ROS on nucleic acids,
proteins and lipids, cells have a number of
ROS-scavenging systems to remove these
molecules and to maintain a relatively low and
constant ROS concentration [79]. Although the
formation and scavenging of ROS has been stud-
ied thoroughly relatively, little is known about
their transport mechanism from the site of origin
to the place of action or detoxification [79]. The
obvious chemical similarity between water and
H2O2 suggests that AQPs could likely be
candidates for H2O2 permeation, and many stud-
ies confirmed that certain AQPs could mediate
H2O2 transmembrane transport [79–83]. H2O2

molecules display a dipole moment of 2.26 D,

which are slightly greater than that of water
molecules (1.85 D). In 2006, human AQP8 was
evidenced to facilitate the diffusion of H2O2

across membranes adopting fluorescence assay
with intact yeast cells and intracellular
ROS-sensitive fluorescent dye [79]. And as the
H2O2 has been revealed to be an important sig-
nalling molecule for immune response, growth,
differentiation, migration processes, Miller et al.
demonstrated that AQP3 and AQP8 promote
uptake of H2O2 in HEK 293 cells transfected
with AQP3 or AQP8 expression vectors, and
that intracellular H2O2 accumulation can be
modulated by endogenous AQP3 expression
which influences downstream cell signalling
cascades [83]. Another study showed that the
AQP3-meidated H2O2 uptake is essentially
required for the chemokine-dependent T-cell
migration during immune response, which
revealed a novel physiological role of AQP3-
mediated H2O2 transport [82].

4.5.2 Some Ions

AQPs were originally regarded as plasma mem-
brane channels that are freely permeable to water
or small uncharged solutes but not to ions
[84]. But now there is increasing evidence that
certain AQPs have ion channel function
[84, 85]. In 1996, Yool group reported that
AQP1 acts as a cation channel (K+, Cs+, and
Na+ and to a lesser degree tetraethylammonium)
[86] which was initially controversial.
Subsequent researches by Yool group showed
that human AQP1 expressed in Xenopus oocytes
could mediate cationic conductance gated by the
activation of cGMP [87] and defined not only the
ion channel function but also the detailed molec-
ular mechanisms that govern and mediate the
multifunctional capabilities of AQP1 [88]. In
AQP1, the central pore at the fourfold axis of
symmetry in the tetramer has been proposed as
the most likely pathway for cation conduction
[85]. AQP1 functions as a non-selective monova-
lent cation channel when activated by intracellu-
lar cGMP, with a large single channel
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conductance of approximately 150 pS in standard
physiological saline conditions [87].

In other AQPs such as AQP0 and AQP6, the
possible role of the intrasubunit pores as ionic
conductance pathways is proposed by many
research groups [6, 88–90]. As the major protein
component of isolated lens junctions, AQP0
shows ion channel activity when reconstituted in
bilayers [91]. Bovine AQP0 has a conductance of
200 pS in unilamellar vesicles with 100 mM
saline, which supports ion channel activity
[88]. The ion channel of AQP is detected to be
voltage- and pH-sensitive, open at acidic pH and
close permanently at neutral pH [89].

Rat AQP6 was found expressed in intracellular
vesicles of renal epithelia. As a gated channel,
mammalian AQP6 expressed in oocytes shows
intermediate conductance (49 picosiemens in
100 mM NaCl) induced by HgCl2 [90]. At pH
lower than 5.5, anion conductance is rapidly and
reversibly activated in AQP6 oocytes. The cation/
anion selectivity changed with the site-directed
mutation of lysine to glutamate at position 72 in
the cytoplasmic mouth of the pore leaving low pH
activation intact [6]. The studies of Ikeda et al.
indicated that AQP6 exhibits a form of anion
permeation with significant specificity for nitrate
[84]. The functions of AQPs as gated ion channel
and as water channel are considered to have phys-
iological and potentially translational
relevance [92].

4.5.3 Silicon

Silicon is abundantly and differentially
distributed in body. Researchers showed that
unlike that silicon transporter exists in plants
and algae, human aquaglyceroporins (AQP3,
AQP7, AQP9 and AQP10) can mediate silicon
transport in Xenopus laevis oocytes and HEK-293
cells. Further, aquaglyceroporins could act as the
relevant silicon permeation pathways in both
mice and humans, regulating the Si balance in
body. And this study surprisingly found that
phloretin stimulated the Si transport of
AQP9 [93].

4.5.4 Antimonite and Arsenite

GlpF in the E. coli was shown to be responsible
for the uptake of the toxic antimonite Sb(III).
Deletion of the fps1 gene in S. cerevisiae rendered
the yeast cells more resistant to antimonite as well
as to arsenite. Trivalent antimonite and arsenite
have a pKa of 11.8 and 9.2, respectively. Hence,
at physiological pH, these metalloids may pass
aquaglyceroporins as neutral hydroxides Sb
(OH)3 or As(OH)3, which are structurally similar
to glycerol. The mammalian aquaglyceroporins
AQP7 and AQP9 may also pass Sb(III) and As
(III) [94].
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Non-Transport Functions of Aquaporins 5
Xiaowei Li and Baoxue Yang

Abstract

Although it has been more than 20 years since
the first aquaporin was discovered, the specific
functions of many aquaporins are still under
investigation, because various mice lacking
aquaporins have no significant phenotypes.
And in many studies, the function of aquaporin
is not directly related to its transport function.
Therefore, this chapter will focus on some
unexpected functions of aquaporins, such the
decreased tumor angiogenesis in AQP1
knockout mice, and AQP1 promotes cell
migration, possibly by accelerating the water
transport in lamellipodia of migrating cells.
AQP transports glycerol, and water regulates
glycerol content in epidermis and fat, thereby
regulating skin hydration/biosynthesis and fat
metabolism. AQPs may also be involved in
neural signal transduction, cell volume regula-
tion, and organelle physiology. AQP1, AQP3,
and AQP5 are also involved in cell prolifera-
tion. In addition, AQPs have also been
reported to play roles in inflammation in vari-
ous tissues and organs. The functions of these
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AQPs may not depend on the permeability of
small molecules such as water and glycerol,
suggesting AQPs may play more roles in dif-
ferent biological processes in the body.

Keywords

Non-transport function · Aquaporin

5.1 AQPs in Cell Migration

Many studies have found that AQPs are involved
in cell migration in different cell types and in
AQP-null mice. AQP1 was the first aquaporin
found to be involved in cell migration and angio-
genesis. Knockout of AQP1 in mice not only
slows tumor development and mortality but also
slows wound healing [1]. This migration effect
extends to chick neural crest cells because they
play a key function in development through the
extracellular matrix. The migration speed of aor-
tic endothelial cells in Aqp1-deficient mice in
response to chemotactic stimuli was lower than
that of wild-type cells, and after AQP transfec-
tion, cell migration in various cells increased.
However, alternative mechanisms are currently
being investigated, such as AQP-dependent
changes in cell volume during the migration and
interaction of AQP with other proteins. The pro-
motion of cell migration by AQP appears to be a
general mechanism applicable to tumor metasta-
sis, wound healing, and immune cell chemotaxis.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-7415-1_5&domain=pdf
mailto:baoxue@bjmu.edu.cn
https://doi.org/10.1007/978-981-19-7415-1_5#DOI
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Loss of AQP4 slows the migration of reactive
astrocytes to chemotactic stimuli and increases
glial scar formation [2, 3].

Tumor cells expressing AQP1 have enhanced
transvascular exudation and local invasion
capabilities [4]. In addition, high levels of AQP
expression have been detected in many tumor
types (such as glioblastoma) and are related to
tumor classification [5].

It has been reported in AQP1-null mice, the
volume, blood vessel density, and lung metastasis
of polyomas formed by T oncogene (MMTV-
PyVT) in the mouse breast tumor virus are all
reduced. These results indicate that AQP1 is
related to tumor development and lead to the
hypothesis of AQP1 as a potential target for adju-
vant therapy of solid tumors [6]. In peritoneal
macrophages extracted from AQP1-deficient
mice, AQP1 ablation affects the morphology,
cytoskeletal organization, membrane polariza-
tion, and migration of macrophages. It was
found that the ablation of AQP1 caused
macrophages to extend, axially polarize, and
direct membrane lipids transfer to the cell front
edge. The number of peritoneal infiltrating
macrophages in AQP1-deficient mice was
reduced two times [7]. Taken together, these
results indicate that the proper expression of
AQP1 is necessary for macrophages and possibly
for tissue remodeling and wound healing. In fur-
ther human studies, the pharmacological inhibi-
tion of AQP1 may be useful in cancer treatment,
and the induction of AQP1 may accelerate wound
healing and promote organ regeneration.

Subsequent evidences have shown that AQPs
promote cell migration, regardless of AQP and
cell type. AQP4 promotes the migration of
astrocytes [2, 3], AQP3 promotes the migration
of corneal epithelial cells [8] and epidermal cells
[9], and AQP1 promotes migration of proximal
renal tubule cells [10], melanoma and breast can-
cer cells [4]. In addition to the angiogenesis defect
in AQP1 deficiency, other consequences of AQP
promoting cell migration include tumor migra-
tion, glial scar formation, and wound healing.
AQP1 expression in tumor cells increases their
migration across the endothelial barrier, local
invasiveness, and metastatic potential [4]. Loss

of AQP4 slows down the migration of reactive
astrocytes to chemotactic stimuli and increases
glial scar formation [2, 3]. AQP3 deficiency
causes damage in skin wound healing [11] and
corneal wound closure [8]. AQP-dependent cell
migration may be involved in other processes,
such as organ regeneration and leukocyte chemo-
taxis, which remains to be studied. In addition,
AQPs may also be involved in intracellular vesi-
cle transport, such as secretory granule exocytosis
and astrocyte cytokine vesicle secretion in pan-
creatic acinar cells [12, 13].

Several hypotheses have been proposed to
explain the mechanism by which AQPs enhance
cell migration. The cell migration of multiple
AQPs with different structures was enhanced,
indicating that the transmembrane water transport
promoted by AQP is a responsible mechanism.
Biophysical studies propose that aquaporin polar-
ization to the leading edge of migrating cells
facilitates water influx during lamellipodial exten-
sion [14]. Actin depolymerization and ion influx
increase the osmotic pressure of the cytoplasm at
the front end of the migrating cell [15, 16]. These
local changes in cytoplasmic osmotic pressure
drive the influx of water through the plasma mem-
brane. The water influx facilitated by AQPs
causes the adjacent plasma membrane to expand
by increasing the local hydrostatic pressure,
followed by rapid repolymerization of actin to
stabilize the cell membrane protrusion (Fig. 5.1)
[1]. AQPs promote the flow of osmotic water
through the plasma membrane in the cell
protrusions formed during the migration process,
thereby promoting the cell migration process.

5.2 AQPs in Central Neural System
(CNS)

The role of AQPs in the nervous system has also
been revealed in recent years of research. AQPs
are widely expressed in the central nervous sys-
tem, of which AQP4 and AQP1 are the most
expressed, and a small amount of AQP9 is
expressed in some neurons [17]. In brain tissue,
AQP1 is most prominently located in the luminal
membrane of the choroid plexus epithelium
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Fig. 5.1 The role of aquaporin in cell migration. Through
an osmotic gradient created by actin depolymerization and
reactive solute influx (left), water is driven into the

cytoplasm primarily through AQPs in the lamellipodia,
promoting lamellipodia extension in the direction of cell
migration (right)

[18]. Reports have indicated that AQP1 is mostly
absent in the brain parenchyma of rodents [19]. In
contrast, non-human primates have AQP1 expres-
sion mainly in white matter and glial-restricted
astrocytes [20]. Although the abundance of AQP1
and AQP9 in human and mouse brain cells is
extremely low under physiological conditions
[21, 22], AQP1 is upregulated under some patho-
logical conditions [23–25]. AQP4 is expressed in
the foot processes of astrocytes in the central
nervous system, whose tail feet are in contact
with blood vessels related to the blood–brain
and brain–fluid interfaces [26]. AQP4 has been
proposed to be involved in many aspects of brain
physiology and pathophysiology, including brain
edema formation, K+ clearance and related glial
cell swelling, glymphatic, ISF (interstitial fluid)
flow, volume of interstitial fluid in the brain, for-
mation of astrocytes, optic neuromyelitis, brain
tumor growth, and memory [27].

5.2.1 AQP4 in Brain Edema

In the cellular cytotoxic brain edema model (per-
manent cerebral ischemia and acute water intoxi-
cation model), brain swelling was reduced in
AQP4-null mice, and neurological outcome was
improved, which include water intoxication, focal
cerebral ischemia, and bacterial meningitis
[28, 29]. The upregulation of AQP4 expression
is mainly found in glial cells, choroid plexus,
ependymal cells, and hippocampus in the edema
area, suggesting that AQP4 expression is related

to brain edema after cerebral ischemia, especially
cytotoxic edema. MCAO model experiments
show that compared with wild-type mice, AQP4
knockout mice have significantly less brain
edema [30, 31]. AQP4 deficiency in the cerebral
infarction reduced cytotoxic edema after cerebral
ischemia. It is confirmed that AQP4 is an impor-
tant factor in the formation of cytotoxic edema
after ischemia [32]. In vitro studies have shown
that the inhibition of AQP4 expression in
astrocytes by RNA interference technology
delayed the edema occurrence.

However, in the vasogenic edema model
induced by freezing injury, AQP4-null mice
showed more severe brain swelling, including
cortical freeze injury, brain tumors, brain
abscesses, higher intracranial pressure, and
hydrocephalus, which may be due to impaired
AQP4-dependent hydrocephalus clearance
[33, 34]. Upregulation of AQP4 reduced trau-
matic brain tissue edema, suggesting that AQP4
plays an important role in the clearance of
vasogenic edema [35]. These studies suggest
that AQP4 has dual roles in development and
resolution of CNS edema, with water flow
through AQP4 driving cytotoxic edema develop-
ment in the early post-injury stage but later clear-
ing vasogenic edema.

5.2.2 AQP4 in Neuroexcitation

In addition to the role of AQP4 in water balance
in the brain and spinal cord and astrocyte
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migration, evidence indicates that AQP4 is
involved in neurostimulation [36–38]. Mice
lacking AQP4 have prolonged seizure activity
after electrical stimulation [39] and long-term
cortical spreading inhibition after mechanical
stimulation [40]. Previous studies have found
that the decreased expression of AQP4 in the
brain of patients with epilepsy suggests that
AQP4 is involved in the process of neural excita-
tion [41]. Just like in the brain and spinal cord,
AQP4 is expressed in astrocytes adjacent to excit-
able cells (neurons), and AQP4 is also expressed
in supporting cells adjacent to excitable cells in
the optic nerve sensory tissue, including Müller
cells, Sertoli cells in the inner ear, and Sertoli
cells in the olfactory epithelium [42, 43]. AQP4
knockout mice showed impaired evoked potential
responses to light [44] sound [45], and olfactory
stimuli [46].

Results from AQP4-deficient mouse brain
showed that the accumulation of potassium ions
(K+) in the extracellular space (ECS) was reduced
during neural excitation [39, 47], and the rate of
K+ clearance in ECS was slowed down after
neural excitation [40, 47]. Altered K+ dynamics
in the ECS is believed to be responsible for the
neuroexcitation phenotype, and slower K+ clear-
ance will prolong the duration of seizures
[39]. The ECS is a closed water chamber between
brain cells and accounts for 20% of the total brain
volume [48, 49]. K+ is released into ECS by
neurons in response to membrane depolarization
during neural excitation and is mainly cleared by
uptake by astrocytes to re-establish the
pre-excitation state. K+ reuptake is mediated by
inwardly rectifying K+ channels, Kir4.1, and
other astrocyte K+ transporters [50, 51] and
accompanied by a shrinkage of ECS [52]. The
main determinants of K+ uptake after nerve exci-
tation include electrochemical driving force,
astrocyte K+ permeability, ECS volume, and
AQP4 water permeability of unknown mecha-
nism. The mechanism link between the uptake
of K+ by astrocytes in the absence of AQP4 and
the water permeability of AQP4 is unclear. A
widely speculated possibility indicates the func-
tional interaction between AQP4 and Kir4.1
[53]. However, AQP4 expression did not affect

Kir4.1 K+ channel function in freshly isolated
astrocytes [54] and Müller cells [55], or
brain [47].

Quantitative ECS volume measurement results
showed that the brain ECS volume of AQP4
knockout mice is about 20% higher than that of
wild-type mice [56]. Therefore, it is suggested
that AQP4 may change the K+ dynamics by
affecting the volume of ECS. One explanation is
that the reabsorption of K+ by astrocytes after
nerve excitation drives the inflow of osmotic
water and the subsequent contraction of ECS,
which will maintain the electrochemical drive
force of K+ re-uptake (Fig. 5.2). Therefore,
when AQP4 is deficient, water cannot enter
astrocytes through AQP4, resulting in the expan-
sion of the ECS volume, which further slows
down the reuptake of K+ by astrocytes. This
hypothesis was confirmed by a mathematical
model [57]. Therefore, it is suggested that
AQP4-mediated water permeability may directly
regulate the process of nerve excitation [58].

Collectively, substantial evidence has
indicated that aquaporins play vital roles in cell
proliferation through various mechanisms. How-
ever, whether the effects of aquaporins on cell
proliferation are related to their own water perme-
ability characteristics has not been demonstrated.
Aquaporins are responsible for maintaining the
balance between cell proliferation and apoptosis
by affecting the progression of the cell cycle, as
well as through crosstalk with other cellular cas-
cade signals or transcription factors, thereby
regulating cell cycle progression or by regulating
the biosynthetic pathways of cellular structural
components.

5.3 AQPs in Fat Metabolism

In the past few years, the key role of AQP7 in
obesity has been proposed. AQP7 is highly
expressed in white adipose tissue (WAT), brown
adipose tissue (BAT), and testis [59]. AQP7
expressed in the plasma membrane of adipocytes
promotes the transport of glycerol across the cell
membrane [60]. Studies have found that AQP7
mRNA levels decrease after eating and increase
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Fig. 5.2 The role of AQP4
in neural excitation. AQP4
promotes entry of water
into astrocytes, resulting in
extracellular space (ECS)
volume contraction and
increased ECS K+

concentration (right panel),
which further drives
astrocyte K+ uptake

after fasting [61]. AQP7 expression levels corre-
late with these nutrient changes and have an
opposite trend to plasma insulin levels. In
3T3-L1 adipocytes, insulin dose-dependently
suppressed AQP7 mRNA levels. An insulin-
negative response element (IRE) was identified
in the promoter region of the AQP7 gene
[59]. This result suggests that AQP7 transcription
and expression levels are tightly regulated by
insulin. The storage of glycerol and triglycerides
in the adipocytes of AQP7-deficient mice is sig-
nificantly increased, causing the adipocytes to
become hypertrophy, which in turn leads to the
development of adult obesity [62]. Overall, these
results provide evidence that the increase in fat
cell volume may be due to the decreased glycerol
permeability of adipocytes and the subsequent
accumulation of glycerol and triglycerides.
AQP9 is considered to be an important way for
the liver to take up glycerol [63]. However, fur-
ther studies on AQP9 knockout mice have shown
that plasma glycerol and triglyceride levels are
significantly increased, and glycerol metabolism
is insufficient. These results indicate that AQP9
may be a metabolic regulator for hepatic glycerol
internalization [64]. Therefore, AQP7 and AQP9
are important promoters of glycerol transmem-
brane transport and regulators for controlling
glycerol metabolism, contributing to investiga-
tion on obesity and diabetes [63, 65].

Intra-abdominal visceral fat mainly
accumulates in the mesentery. The anatomical
distribution of abdominal visceral fat suggests

that substances released from visceral fat flow
directly into the liver through the portal vein.
AQP9 is highly expressed in liver, leukocytes,
lung, and spleen [66]. Glycerol, another product
of fatty triglycerides produced during lipolysis,
flows directly into the liver through the portal
vein and becomes a substrate for gluconeogene-
sis. AQP9 is considered to be the only glycerol
channel in the liver and is located in the plasma
membrane of the sinusoid facing the portal vein
[67]. In conclusion, AQP9 functions as a channel
for glycerol uptake in the liver. AQP9 mRNA
levels were increased by fasting and decreased
by feeding [68]. Likewise, insulin suppressed
AQP9 mRNA levels in H4IIE hepatocytes in a
time- and dose-dependent manner. Promoter
analysis indicated that insulin decreased AQP9
transcript levels through IREs located in the
496/502 promoter region. Fasting induces lipoly-
sis in adipocytes and gluconeogenesis in the liver.
AQP7 mRNA levels are elevated, AQP7
translocates to the plasma membrane, and AQP7
acts as an efficient release of glycerol from
adipocytes under fasting conditions. Fasting also
increases AQP9 mRNA levels in the liver, the
increased portal glycerol flows directly into the
liver, and AQP9 may contribute to the entry of
glycerol into hepatocytes. In the liver, glycerol is
one of the substrates for gluconeogenesis. The
glycerol cascade from adipose tissue to the liver
is maintained by the coordinated regulation of
AQP7 and AQP9 in the fasting state. In the fed
state, plasma insulin increases, shifting
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Fig. 5.3 Coordinated regulation of adipocyte AQP7 and
hepatic AQP9 in fasted and fed states. In the fasted state
(above), AQP7 mRNA levels are elevated, AQP7
translocates to the plasma membrane, and AQP7 acts as
an efficient release of glycerol from adipocytes under
fasting conditions. Fasting also increases AQP9 mRNA
levels in the liver, the increased portal glycerol flows
directly into the liver, and AQP9 may contribute to the
entry of glycerol into hepatocytes. In the liver, as one of
the substrates for gluconeogenesis, glycerol is converted to

glucose. In the fed state (bottom), adipose AQP7 mRNA
levels are reduced, while glucose transporter 4 (GLUT4) is
transported to the plasma membrane and brings glucose
into adipocytes. Increased plasma insulin shifts metabo-
lism from lipolysis to lipogenesis in adipocytes and
inhibits the production of glucose by the liver. Adipocytes
store triglycerides (TG) by esterifying glucose and fatty
acids. Portal glycerol levels decreased with a decrease in
adipose AQP7 and hepatic AQP9 mRNA

metabolism from lipolysis to lipogenesis in fat
cells, and inhibits the production of glucose in
the liver. Adipose AQP7 mRNA levels are
reduced in the fed state, while glucose transporter
4 transports to the plasma membrane and brings
glucose into adipocytes (Fig. 5.3). Adipocytes
store triglycerides by esterifying glucose and
fatty acids. Portal glycerol levels decreased with
a decrease in adipose AQP7 and hepatic AQP9
mRNA. However, despite the presence of
hyperinsulinemia, high-fat AQP7 and hepatic
AQP9 mRNA levels were observed in obese and
insulin-resistant animals. These animals showed
an increase in glycerol release from adipose tissue
in parallel with an increase in AQP7 mRNA, and

also increased glycerol levels in the portal vein.
Finally, high glycerol levels in the portal vein will
cause gluconeogenesis, leading to hyperglycemia
through pathological induction of hepatic AQP9
[68]. Taken together, the coordinated physiologi-
cal and pathological regulation of organ-specific
glycerol channels, adipose AQP7, and hepatic
AQP9 may contribute to glycerol and glucose
metabolism in vivo.

5.4 AQP and Cell Proliferation

Studies have shown that cells overexpressing
AQP1 and AQP3 have larger cell volume, and
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proliferation and cell growth are closely related to
changes in cell volume [69, 70], thus suggesting
that AQP1 and AQP3 promote cell proliferation.
Studies have shown that AQP1 expression
changes as cells enter different stages of the cell
cycle, with higher levels of AQP1 mRNA and
protein when cells are in the G0/G1 phase. In
contrast, when cells entered S phase and G2/M
phase, AQP1 mRNA and protein levels are lower
[71]. Besides, it was found that AQP2 accelerates
the proliferation and cell cycle progression of
renal collecting duct cells by reducing the cells
in S phase and G2/M phase and facilitates the
increase of cell volume [72]. The direct link
between the expression levels of AQPs and the
cell cycle may explain the higher proliferation
rates in cells overexpressing AQP1 or AQP3,
and a series of studies have suggested an impor-
tant role for AQPs in proliferation. Asynchronous
cell cycle analysis in cells overexpressing AQP1
and AQP3 showed that cells overexpressing
AQP1 and AQP3 had a higher percentage of
cells in S and G2/M phases compared to the
distribution of control cells not expressing AQP,
and thus the percentage of cells in G0/G1 phase
was decreased. Further studies used bioinformat-
ics methods to analyze the whole genome of
AQP1-overexpressed cells to reveal the mecha-
nism by which AQP1 promotes cell proliferation.
Microarray analysis showed that in cells
overexpressing AQP1, more than half of the
genes whose expression was altered had cell
proliferation-related functions. Numerous tran-
scription factors that promote cell proliferation,
such as ZEB2, JUN, JUNB, and NF-kβ2, are
upregulated in AQP1-overexpressing cells. Fur-
thermore, it confirmed high expression of the
chemokines TNFSF18 and TNF receptors capa-
ble of activating the stabilization and transloca-
tion of NF-kβ from the cytoplasm to the nucleus.
Studies have indicated that the expression levels
of proliferative NF-kβ target genes such as ZEB2,
cyclin D, and cytokines CXCL9 and CXCL10 are
upregulated in cells overexpressing AQP1
[69, 73].

The important role of AQP3 in cell prolifera-
tion has been observed in various tissues, includ-
ing skin, colon, and cornea. AQP3 is essential for

the phosphorylation of p38, ERK, and JNK in
keratinocytes of skin, and less phosphorylation
of p38 and JNK was observed in the epidermis
of AQP3-deficient mice, thereby compared to
wild-type mice, the wound healing ability in the
skin and cornea of AQP3-deficient mice is signif-
icantly impaired [8, 74, 75], and colonic epithelial
cells are regenerated [76]. Studies have shown
that the expression of AQP3 is increased in colo-
rectal cancer [77], human lung cancer [78], gas-
tric adenocarcinoma [79], and human skin
squamous cell carcinoma [80]. In addition, glyc-
erol metabolism and biosynthesis are altered in
cells derived from AQP3-deficient mice,
indicating that the glycerol transport promoted
by AQP3 is involved in epidermal cell prolifera-
tion and carcinogenesis, and involved with the
mechanism of cellular glycerol production of
ATP energy. Therefore, AQP3-deficient mouse
epithelial cells may reduce the level of cell prolif-
eration through reduced “energy.” Decreased cell
glycerol concentration and ATP levels were
observed in these mice, and lipid biosynthesis
and MAPK signal transduction were impaired,
which ultimately led to decreased cell prolifera-
tion [75]. In addition, a study has confirmed that
stable or transient AQP3-expressing cells treated
with auphen, a potent inhibitor of glycerol perme-
ability of AQP3, arrest the S-G2/M phase of cell
cycle, suggesting that inhibition of AQP3 perme-
ability may arrest cell cycle, thereby slowing cell
proliferation [81]. The same mechanism has been
observed in breast cancer, where the increased
expression of AQP3 promotes the transport of
glycerol to cancer cells, thereby facilitating the
production of ATP and providing cancer cells
with sufficient energy for cancer cell proliferation
[82]. Therefore, targeting AQP3 to suppress
tumor cell migration and proliferation may
become a new strategy for tumor treatment. Cur-
rently, studies have revealed that AQP1, AQP3,
and AQP5 among all of the AQPs are most fre-
quently associated with human cancers [83–
86]. Several studies have suggested a link
between AQP and intracellular pathways, but
the complete phosphorylation and activation cas-
cade leading to transcription factors and/or
cytokines that promote cell proliferation have
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not been elucidated [87–89]. The expression of
AQP is preferentially associated with the activa-
tion of the MAPK cascade signaling pathway,
which in turn will lead to the transcription of
genes associated with cell proliferation, leading
to various human cancers [80]. For example,
AQP5 expression was positively correlated with
drug resistance factors, and silencing of AQP5
inhibited cell proliferation while reducing
MAPK p38 phosphorylation. Furthermore, acti-
vation of GSK-3β, ERK, JNK, and p38 MAPK
pathways was associated with AQP2 expression
levels in lithium-treated renal collecting duct cells
[90]. The antiproliferative and antimetastatic
activities of the anti-prostate cancer compound
Rg3 were associated with p38 MAPK-mediated
downregulation of AQP1 [91].

On the other hand, NF-κβ appears to be a key
transcription factor regulating the proliferative
effect of AQP, on which the effects of AQP
converge to promote cell proliferation. In addi-
tion, NF-κβ appears to regulate the expression of
some AQPs, which in turn controls cell prolifera-
tion [92, 93]. Furthermore, hypoxia-inducible
transcription factors HIF-1α or 2α may be
involved in AQP-mediated proliferation.
Overexpression of AQP1, AQP3, and AQP5 has
been shown to increase the stability of HIF-2α
upon chronic exposure to hypoxia [94, 95],
thereby increasing the expression of many genes
involved in processes related to tumor growth,
such as glucose uptake, cell metabolism, angio-
genesis, proliferation, and apoptosis.

5.5 AQPs in Inflammation

Recent findings have revealed that AQPs play
roles in the inflammatory, indicating that they
can be used as new therapeutic targets for anti-
inflammatory therapy in the clinical field. The
cells involved in the inflammatory process lose
the changes according to the osmotic microenvi-
ronment, which include the significant increase in
cell water permeability and cell volume and cyto-
skeletal structure changes [96]. Active resolution
of the inflammatory process is essential because it
is beneficial to tissue repair after injury, and

accumulation of inflammation can lead to contin-
uous tissue damage and progressive fibrosis
[97]. Many studies have emphasized that AQPs
may be involved in the development of these
inflammatory processes, providing new evidence
for the importance of AQPs regulating water
homeostasis during infection and inflammation.
Many data showed that AQPs play roles in
maintaining the homeostasis of many physiologi-
cal processes in tissues related to the secretion
and absorption activities of various (such as
kidneys, salivary glands, lungs, skin, sweat
glands, and intestines).

5.5.1 AQPs and Lung Inflammation

Several AQPs are expressed in lung and
bronchopulmonary, where they act as regulators
of intercellular water transport [98, 99]. Their
dysregulated expression will alter lung physiol-
ogy and trigger obvious airways inflammation
[100, 101]. AQP5 is located in the apical mem-
brane of alveolar epithelial cells and acinar gland
cells and provides the main pathway for osmotic-
driven water flow in the entire airway system,
thereby regulating the hydration of the airway
surface [102–104]. AQP5 expression is signifi-
cantly downregulated during lung inflammation
and edema. A recent work has shown that AQP5
function is essential in regulating the bronchocon-
striction response. AQP5-deficient mice overreact
to cholinergic bronchoconstriction, which is a
clinical feature of asthma and a common genetic
disease caused by a combination of genetic and
environmental factors [105]. In addition, AQP5
expression is reduced in chronic obstructive pul-
monary disease and other inflammatory airway
diseases [106]. In fact, preclinical data shows
that AQP3 and AQP5 are associated with allergic
airway inflammation that induces asthma
[107]. AQP1 expression is reduced in a model
of mechanical ventilation-induced lung injury and
edema [108]. LPS, HCl, and ventilation induce
lung inflammation in a mouse model resulting in
increased pulmonary vessel permeability and
inflammatory cell infiltration in bronchoalveolar
lavage fluid, ventilation also causes changes in
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lung mechanics. These data indicate that the
involvement of AQPs in the acute inflammation
process depends on the location and type of lung
injury. Among the AQP subtypes evaluated
(AQP1, AQP4, AQP5, and AQP9), the expres-
sion of AQP4 in lung is reduced in HCl and
ventilation induction models that primarily
target alveolar epithelium, while the expression
of AQP5 targets capillary endothelium, and alve-
olar epithelium is impaired in the LPS induction
model [109]. Also research indicated the expres-
sion of AQP3 changes in patients with lung can-
cer and suggested that AQP3 may be involved in
tumor differentiation and processes related to the
clinical staging of lung adenocarcinoma [110–
112].

5.5.2 AQPs and Digestive System
Inflammation

The digestive system is the main place for body
fluid movement. The widely distributed AQPs in
the gastrointestinal tract indicate that they may
play an important role in channel-mediated
water transport, intestinal permeability, and
body fluid secretion/absorption [113]. Interest-
ingly, this is consistent with the potential role of
AQP in the pathophysiology of gastrointestinal
diseases associated with intense inflammation in
organ networks [114–116]. AQP plays an impor-
tant role in the movement of water across cells
and is essential for water absorption in the colon.
Inflammatory bowel disease (IBD) is a chronic
disease of the gastrointestinal system,
characterized by the continuous activation of the
immune system leading to chronic and significant
inflammation of the intestine [117, 118]. The
expression of AQP1, 3, 7, and 8 is significantly
reduced in IBD patients, Crohn’s disease patients,
and ulcerative colitis (UC) patients [119–122],
which led to speculation. This decrease is related
to the development of these diseases.
5-Fluorouracil (5-FU)-induced mouse diarrhea
model showed increased pro-inflammatory
cytokines (TNF-α, IL-1β, IL-6, IL-17A, and
IL-22), which is related to the decreased

transcription levels of AQP4 and AQP8 in the
colon [123].

5.5.3 AQPs and Neuroinflammation

AQP4 is the most representative AQP isoform in
the brain. Because it is involved in the pathophys-
iology of a variety of brain diseases, it has been
extensively studied [124]. In a model of
endotoxemia induced by intraperitoneal injection
of LPS in C57Bl/6 mice, resulting in severe cen-
tral nervous system damage, the expression of
AQP4 was increased with cytokine release. Inter-
estingly, dexamethasone attenuates AQP4
expression and IL-6 release, restoring the inflam-
matory effect of LPS [125]. In addition,
microRNA-130a is suggested as a therapeutic
target because it inhibits the transcription of
AQP4 in the terminal foot of astrocytes, thereby
reduced astroedema and neuroinflammation
[126]. AQP4 is also an astrocyte proteomic
marker, because it was found to be upregulated
in delirium caused by sepsis and Parkinson’s
disease [127, 128]. In addition, studies on rat
models of cerebral edema have shown that during
transient hypoxia, activation of TLR4 and
corticotropin-releasing hormone (CRH)/CRH
receptor 1 (CRHR1) signals can upregulate
AQP4 and water permeability in the brain. In
the same model, LPS treatment itself increases
AQP4 and pro-inflammatory cytokines, but cere-
bral edema can only be achieved by combining
LPS treatment with hypoxia. Humans receiving
hypobaric hypoxia also showed elevated plasma
levels of TNF-α, IL-1β, IL-6, and CRH. These
data indicate that systemic inflammation
promotes the occurrence of hypoxic cerebral
edema, in which AQP4 plays an important
role [129].

5.5.4 AQPs and Arthritis

Osteoarthritis is a degenerative disease with irre-
versible course. It is mainly caused by chondro-
cyte apoptosis and cartilage matrix degradation.
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They are the key factors that regulate the function
of articular cartilage by synthesizing the structural
components of extracellular matrix and matrix
degrading proteases. AQPs have been described
in chondrocytes involved in fluid transport and
physiological regulation of cartilage [130]. In a
rat osteoarthritis model with severe cartilage dam-
age, AQP1 expression is positively correlated
with caspase-3 expression and activity, indicating
that AQP1 triggers caspase-3 activation,
promotes chondrocyte apoptosis, which eventu-
ally lead to osteoarthritis [131, 132]. In synovial
tissue from patients affected by osteoarthritis and
rheumatoid arthritis, TNF-α regulates Aqp9 gene
and protein expression, indicating that cytokines
are modulators of AQPs function [133–
135]. Studies have revealed the expression of
AQP4 in articular cartilage in adjuvant-induced
arthritis(AIA) rat models, proving that AQP4
activation may be involved in the development
of AIA in rats [136].

5.5.5 AQPs and Liver Inflammation

Cirrhosis of the liver is another type of severe
chronic inflammation associated with pathologi-
cal water retention. It is the ultimate co-endpoint
of various toxic, metabolic, infectious, and auto-
immune chronic liver diseases [137]. Several
reports have demonstrated that AQP1 is signifi-
cantly over-expressed in chronic liver disease in
humans and rodents [138, 139]. Therefore, the
increased expression of AQP1 during cirrhosis
promotes angiogenesis and enhances endothelial
invasion through the dense extracellular microen-
vironment associated with the disease [140]. In
fact, current studies have shown that AQP1
knockout in vivo has a significant effect on angio-
genesis, fibrosis, and portal hypertension after
bile duct ligation in mice, further confirming
that AQP1 is a convincing treatment target for
chronic liver disease treatment [114, 141]. In
addition, AQP3 promotes tissue inflammation
by increasing the reactive oxygen species through

H2O2 penetration and stimulating damage pro-
cesses, such as fibrosis [17]. For many years,
researchers have been working to find specific
aquaporin inhibitors that are therapeutically effec-
tive. According to reports, a new monoclonal
antibody reduced CCl4-induced liver damage
through blocking the penetration of H2O2 by
AQP3 in macrophages [142]. It is hoped that
blocking the penetration of H2O2 by AQP3 may
be more generally applicable to other inflamma-
tory processes involving macrophages that
express AQP3.

5.6 Conclusion

In many cases, the elusive roles of many
aquaporins in the physiology of normal tissues
and organs has not been specifically determined,
even with AQP knockout mice, which usually
(but not always) show no or mild phenotype.
However, more and more in vivo and in vitro
studies have shown that the function of
aquaporins in normal physiological and disease
states are usually not experimentally related to
their transporting activity. For example,
aquaporins are involved in processes such as
cell migration, obesity, inflammation, cancer pro-
gression, neurodegenerative diseases, and various
inflammatory diseases. Facilitating water and sol-
ute movement across membranes might be
involved in these processes, but other functions
of the aquaporins also play important roles
directly, such as their participation in protein–
protein interactions with components of the cyto-
skeleton, as well as with various signal transduc-
tion mechanisms and other intracellular
pathways. Therefore, investigating the physiolog-
ical importance of aquaporin function is an ongo-
ing exploration.
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Evolutionary Overview of Aquaporin
Superfamily 6
Kenichi Ishibashi, Yasuko Tanaka, and Yoshiyuki Morishita

Abstract

Aquaporins (AQPs) are present not only in
three domains of life, bacteria, eukaryotes,
and archaea, but also in viruses. With the
accumulating arrays of AQP superfamily, the
evolutional relationship has attracted much
attention with multiple publications on “the
genome-wide identification and phylogenetic
analysis” of AQP superfamily. A pair of NPA
boxes forming a pore is highly conserved
throughout the evolution and renders key
residues for the classification of AQP super-
family into four groups: AQP1-like, AQP3-
like, AQP8-like, and AQP11-like. The com-
plexity of AQP family has mostly been
achieved in nematodes and subsequent evolu-
tion has been directed toward increasing the
number of AQPs through whole-genome
duplications (WGDs) to extend the tissue spe-
cific expression and regulation. The discovery
of the intracellular AQP (iAQP: AQP8-like
and AQP11-like) and substrate transports by
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the plasma membrane AQP (pAQP: AQP1-
like and AQP3-like) have accelerated the
AQP research much more toward the transport
of substrates with complex profiles. This evo-
lutionary overview based on a simple classifi-
cation of AQPs into four subfamilies will
provide putative structural, functional, and
localization information and insights into the
role of AQP as well as clues to understand the
complex diversity of AQP superfamily.

Keywords

NPA box · Domain-based classification ·
Whole-genome duplication (WGD) ·
Horizontal gene transfer (HGT)

6.1 Introduction

Aquaporins (AQPs) are present in three domains
of life: bacteria, eukaryotes, and archaea with an
extension to viruses [1]. In structure, AQP was
most likely constructed by a tandem duplication
or a fusion of three membrane-spanning helices
with an NPA (Asn-Pro-Ala) box (Fig. 6.1) [2]. As
this pair of NPA boxes forms the pore, it should
be critical for AQP function that has been
conserved through evolution. Thus, a pair of
NPA boxes is a signature domain for AQP family
and domain-based analysis and classification of
AQP family will be instrumental to speculate the
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mechanics and selection forces that govern the
evolution of AQP family.

In the past, homologous proteins based on a
pair of NPA boxes were identified by a PCR
cloning using degenerative PCR primers from
each NPA box [3]. With increasing availability
of public databases from large-scale genome
sequencings, many AQP-like sequences have
been identified, which sometimes contain highly
deviated NPA boxes with overall homology of
less than 25% at the level of supergene family
[4]. Accordingly, AQP family is more properly
called AQP superfamily.

With accumulating arrays of AQP superfam-
ily, evolutional relationships are becoming more
and more intriguing with multiple publications on
phylogenetic analysis of AQP superfamily. Since
the sequences around the two NPA boxes are the
important functional domains, they may contain
clues to classify AQP superfamily. Indeed, we
have identified such key residues for the classifi-
cation of AQP superfamily into three groups in
previous reviews [5, 6]. Such a simplified
domain-based classification of AQP superfamily
will be useful to obtain an overview of widely
distributed AQP family in every kingdom of lives
and may provide new insights into the function
and subcellular localization.

In addition to general protein and genome
databases, a couple of specialized AQP databases
are available online such as MIPDB and
MIPModDB [7, 8]. Based on a variety of
databases, several phylogenetic analyses have
been conducted to speculate the evolutional
pathways of AQP family [9–14]. However, with-
out new insights into the evolution of AQP family
[15] or the combination of other functionally
related gene families [16], publishing an original
paper on “the genome-wide identification and
phylogenetic analysis of AQP family” by a
computational analysis of genomic sequence
database in certain species will be an easy sci-
ence. In such studies, the genes analyzed within
the phylogenetic tree should be the orthologous
genes. However, it is difficult to identify
orthologous genes among similar genes (homolo-
gous and paralogous genes) and sometimes com-
plicated by polyphyletic lineages. For example,

genes with high amino acid identity more than
50% can be non-orthologous genes by convergent
evolution, while genes with low amino acid iden-
tity less than 30% can be orthologous genes by
functional divergence. Moreover, stronger func-
tional effects will be expected by amino acid
replacement in the pore-forming region inside
the molecule than on the surface of the molecule,
although 3D structures are only available in lim-
ited numbers of AQPs.

Another way to identify orthologous genes
will be the identification of syntenic region
where orthologous genes are usually localized.
However, the presence of pleural homologous/
paralogous genes, genome rearrangement, or
duplicated genome with subsequent deletion will
make it difficult to identify syntenic region
[17]. Therefore, the evolutionary reconstruction
deduced from this kind of analysis may not reflect
the divergence of assigned orthologous genes,
which is expected to coincide with the divergence
of species. Furthermore, the presence of horizon-
tal gene transfer (HGT) will produce a phyloge-
netic tree mismatch between AQP family and
species. Similar to prokaryotes with the majority
of their genomes composed of genes derived from
HGT [18] including possibly an archaeal AQP,
AqpM [19], eukaryotic genes have also been
acquired by HGT associated with symbiotic or
parasitic relationships with bacteria [20, 21]
including possibly plant AQPs, NIP, and GIP
[22, 23]. Moreover, the results may be compli-
cated by the presence of paralogues and the selec-
tion bias under ever-changing environmental
conditions where AQP has been expected to
play vital roles with possible faster molecular
evolutionary rates. On the contrary, some AQP
genes may have been lost [15], which may
obscure the interpretation of the origin and
modes of diversification through the evolution
of AQP superfamily.

As many AQPs transport small substrate, the
field of AQP research seems to be moving toward
complex functions and profiles of substrates
transported by AQP rather than a water transport
alone, which will uncover and expand more
dynamic roles of AQP especially in environmen-
tal adaptation. This shift has been accelerated by
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Fig. 6.1 A putative evolutionary pathway of AQP
subfamilies. AQP may have been formed by a tandem-
repeat or fusion of two genes encoding a hemipore channel
with an NPA box (square box). AQP3-like is often located
in an operon related to a solute metabolism complex with a
conserved Asp (D) residue (triangle) at two residues
downstream of the second NPA box. AQP3-like might
have been converted to AQP1-like by truncating longer
Loop C and Loop E. AQP1-like may have been
transformed into AQP8-like in multicellular plants and

animals excluding arthropods by widening the ar/R motif
selectivity filter (SF). AQP11-like with a conserved Cys
(C) residue (circle) at nine residues downstream of the
second NPA box may also have been derived from
AQP1-like in metazoa either by conversion with low
similarities or even by a horizontal gene transfer (HGT)
of AQP with deviated NPA boxes from bacteria or
protozoa. AQP3-like has been lost in plants and higher
insects

the following observations. Firstly, AQP is absent
in many microorganisms as revealed by extensive
genome projects [24]. Moreover, AQP is also
absent in some fungi and a parasitic protozoan,
cyst-forming apicomplexan Cryptosporidium.
Similarly, only a single AQP seems to be suffi-
cient for malaria parasites, another apicomplexan
[25]. As non-essential AQP may be antigenic at
the cell surface in these parasites as a target for
host immunity, only essential AQP may have
been preserved in the genome. Therefore, AQP
may be dispensable in some microorganisms or
harmful as a target from host defense. Secondly,
the phenotypes of AQP knockout (KO) mice and
humans are generally mild [26, 27] or even nor-
mal [28], suggesting AQP may not play essential
roles in advanced vertebrates either. Thirdly,
AQP has also been identified at the membrane
of intracellular organelles including tonoplasts,

mitochondria, and the endoplasmic reticulum
(ER), where osmotic gradient is relatively small
and the intracellular membrane itself probably has
a sufficient water permeability without water
channel due to a high surface-to-volume ratio
except in a low temperature. Within the cell, the
production and regulatory transport of osmotic
substances will be more important than water
transport to control organellar volume as water
movement should follow the osmotic gradient
produced by osmotically active substances. In
other words, water transport by the intracellular
AQP may be a safe guard to prevent the develop-
ment of osmotic gradient inside the cell.

Fourthly, another channel family adopting a
similar protein folding in 3D structure of AQP
has been identified in bacteria as a formate/nitrite
channel (FNT). FNT facilitates anion/H+

co-transport but not water [29]. However, a
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widening mutation of the pore has transformed
FNT into a water-selective channel without
permeating other substances [30]. Therefore, it
is possible that AQP used to be a solute trans-
porter as FNT and later have acquired water per-
meability. In other words, solute transport may be
a more fundamental function of AQP family.
More intriguing possibility would be that there
could be another water channel other than AQP
family with a similar 3D structure but without any
homology in the primary sequence with AQP. In
particular, this shift of the research interest on
AQP will be more relevant to AQP of intracellu-
lar organelles and small-sized organisms includ-
ing bacteria and possibly parasitic protozoa,
which may have developed specialized AQP
permeating profiles to manage the intracellular
milieu [31–33].

This review is an update for our recent reviews
on the same topic and detailed sequences around
the NPA box of each subfamily are available in
these reviews [5, 6].

6.2 Classification of AQP
Superfamily

6.2.1 Dichotomy Between Plasma
Membrane AQP
and Intracellular AQP

AQP superfamily can be divided into two
subfamilies based on its subcellular localization:
plasma membrane AQP (pAQP) and intracellular
AQP (iAQP). This dichotomy will be helpful to
speculate its physiological significance because
water transport is more important in pAQP
while solute transport will be more important in
iAQP. As the water permeability induced by AQP
is huge, the research on AQP has been centered
around this function. Moreover, since the water
transport at the plasma membrane is important for
cell volume regulation as well as transcellular
water transport, pAQP as a water channel was
thought to be indispensable for the viability of
the organism. However, this preconception is
now changing as many pAQPs permeate solutes
as well as water and solute transport seems to be

more important in several tissues including the
adipose tissue and liver.

To be away from the water oriented idea on
AQP, it would be appropriate to consider that
water transport may be acquired to mitigate
quickly the built-up osmotic gradient produced
by the solute transport by pAQP to keep cytosolic
osmolarity constant. For example, even though a
malaria parasite has a single AQP, P. falciparum
aquaporin (PfAQP) similar to bacterial glycerol
channel, GlpF to transport mainly nutrients from
housed eukaryotic erythrocytes, it may also be
important as pAQP in blood for the survival
against osmotic stresses during passing through
hypertonic kidney medulla and hypotonic kidney
cortex with an additional permeability to water
[25]. On the other hand, an enhanced water per-
meability by pAQP may be harmful to some
bacteria living in hypo- or hyper-osmotic envi-
ronment even protected by the cell wall. Indeed,
some bacteria do not have any AQP and their
small size may render sufficient water permeabil-
ity with a higher surface-to-volume ratio. Simi-
larly, the membrane of intracellular organelles
may also have sufficient water permeability even
in the absence of iAQP, which may have led to
the development of different function other than
water transport for iAQP.

To provide the basis for the dichotomy
between pAQP and iAQP, the mechanisms for
AQP trafficking are needed be clarified. How-
ever, the mechanism and retention signals for
subcellular localization of iAQP have not been
clearly identified. On the other hand, the modifi-
cation of pAQP by intracellular signaling has
been shown to regulate its trafficking to the
plasma membrane [34]. For example, the traffick-
ing of pAQP is stimulated by cyclic AMP in
AQP2, AQP4 or AQP8 [35–37]. The transloca-
tion to the plasma membrane has also been
reported in AQP7/ AQP10 by isoproterenol and
in AQP1 by hypotonia [38, 39]. In fact, targeting
such trafficking signals will be promising thera-
peutic interventions to modulate the expression
levels of pAQP at the plasma membrane as shown
with AQP4 in brain edema and hypothermia
[36, 40].
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It should be cautioned, however, that the
dichotomy between pAQP and iAQP may not
be strictly applicable. As a reservoir, iAQP can
be recruited to the plasma membrane on the
demand of detrimental environments. Con-
versely, to meet the demand of intracellular
metabolism, pAQP may be endocytosed to be
targeted to intracellular organelles as shown
with plant pAQP, PIP that is sequestrated intra-
cellularly without further degradation triggered
by H2O2 [41]. Moreover, the same AQP can be
localized both at the plasma membrane and the
membrane of intracellular organelle as shown by
AQP8 [35]. Obviously, these observations will
obscure the dichotomy and indeed the limitation
of this classification. Hopefully, the identification
of trafficking or retention key signature sequences
in AQP will overcome this limitation. Similar
limitation, however, has been raised with the
functional dichotomy of AQP family depending
on the permeating substances: classical aquaporin
(water selective) and aquaglyceroporin (glycerol-
permeable), due to overlapping permeating
substances.

6.2.2 Classification Based on the NPA
Box Domain

To evade such limitations, AQP superfamily has
been classified based on the primary sequence.
We previously classified AQP family into two
groups based on the length of residues between
the pair of NPA boxes because AQP3-like has
longer residues due to longer Loop C and Loop D
[42]. Although this classification is still valid for
the identification of AQP3-like, further classifica-
tion will be needed for non-AQP3-like AQPs.
Here, AQP superfamily is classified based on
the primary sequence around highly conserved a
pair of NPA boxes, which turned out to be critical
for the function of AQP. Four AQP subfamilies
are identified and named after the nomenclature
of mammalian AQP family: AQP1-like, AQP3-
like, AQP8-like, and AQP11-like (Table 6.1).
The separation of AQP8-like from AQP1-like is
new in this review as compare with the previous
ones [5, 6]. The classification keys for each

subfamily are illustrated in Fig. 6.2 and a tentative
classification diagram is depicted in Fig. 6.3. As
the first NPA box of AQP11-like is not well
conserved and sometimes difficult to identify as
exemplified in three AQP11-likes in C. elegans
(Table 6.1), the second NPA box is employed to
classify AQP.

As shown in Fig. 6.3, after identifying a pair of
NPA boxes, the presence of Asp (D) in the second
NPA box following a common R should be
screened for AQP3-like as NPAR(D) (Table 6.1
in the bold type). This D is the signature key
residue for AQP3-like without exception which
is expected to enlarge the pore constriction and
makes more hydrophobic by canceling the posi-
tive charge of R enabling the permeation of
non-ionic larger substances such as glycerol. It
should be stressed that this classification is not
based on the function although most AQP3-likes
are glycerol channels. Thus, naming of
non-AQP3-like as glyceroporin or
aquaglyceroporin based on the function is confus-
ing because it may have no homology with
AQP3-like in the primary structure. For example,
a mosquito AQP1-like has been named
aquaglyceroporin AgAQP3 from Anopheles
based on the function as a member of entomogly-
ceroporin (Eglyp), AQP1-like [43, 44].

Next, Cys (C) at nine residues downstream of
the second NPA box should be sought to identify
AQP11-like (Table 6.1 in the bold type). This C is
the signature key residue for AQP11-like without
exception because it is critical for the function of
AQP11 as documented by the result of the point
mutation of this residue which produced similar
phenotypes of AQP11 knockout mice [45, 46]. It
should be cautioned that there are rare exceptional
AQPs with exactly located C but should not be
included in AQP11-like. For example, although
Chlorobaculum parvum AQP (WP_012502795)
has the second NPA box as NPVRSLAPALV(C),
the residue next to the second NPA box is Arg
(R), which should be classified as AQP1-like
because AQP11-like never has R here (Fig. 6.3).
Another way to avoid this misclassification is to
focus on the upstream sequences of the first NPA
box, which is highly homologous with AQP1-like
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Table 6.1 The sequence of NPA boxes in AQP from C. elegans and humans

First NPA box Second NPA box

AQP1-like

CeAQP4 -FGHISGGHFNPAVSWAIAGA- -TGSITGASMNPARSLGPSIIGS-

CeAQP5 –FGKISGGHFNPVVSWAMVLC- -TASITGTAMNPVRALSPNIVGE-

CeAQP6 -FGGVSGAHINPAVTFGIALV- -AGAISGASMNPARSFGPNIMGQ-

AQP0 -VGHISGAHVNPAVTFAFLVG- -GMYYTGAGMNPARSFAPAILTR-

AQP1 -VGHISGAHLNPAVTLGLLLS- -AIDYTGCGINPARSFGSAVITH-

AQP2 -LGHISGAHINPAVTVACLVG- -GIHYTGCSMNPARSLAPAVVTG-

AQP4 -FGHISGGHINPAVTVAMVCT- -AINYTGASMNPARSFGPAVIMG-

AQP5 -LGPVSGGHINPAITLALLVG- -GIYFTGCSMNPARSFGPAVVMN-

AQP6 -TWKASGAHANPAVTLAFLVG- -GIHFTGCSMNPARSFGPAIIIG-

AQP3-like

CeAQP1 -TARMSGGHLNPAVSLLLWSL- -FGMNIGYPINPARDLGPRLFSY-

CeAQP2 -SAKLSGGHINPAVSFAFLSV- -FGYNCGYPVNPARDFAPRLFTS-

CeAQP3 -GSKISGAHLNPAVSFFQLTQ- -LALNAGYAINPARDFAPRLFNL-

CeAQP7 -CSKTSGGHFNPAVSIAFLTL- -YGMNLGYPINPARDLGPRLFSF-

CeAQP8 -AASVSGGHLNPAISVAQSIL- -FGANGGFAINPARDFGPRVFCL-

AQP3 -AGQVSGAHLNPAVTFAMCFL- -MGFNSGYAVNPARDFGPRLFTA-

AQP7 -AGRISGAHMNAAVTFANCAL- -LGMNTGYAINPSRDLPPRIFTF-

AQP9 -AGGVSGGHINPAVSLAMCLF- -LGLNSGCAMNPARDLSPRLFTA-

AQP10 -GGNVSGAHLNPAFSLAMCIV- -MGANCGIPLNPARDLGPRLFTY-

AQP8-like

CeAQP12 –VSHLTPAHLNPAISLLQWLR- -SYPLYGFTSNISLLLVTSTVSY-

AQP8 -LGNISGGHFNPAVSLAAMLI- -GGPVSGGCMNPARAFGPAVVAN-

AQP11-like

CeAQP9 -IEFQRDAVAHPCPLVTNCYR- -GINYTGMYANPIVAWACTFNCL-

CeAQP10 -NIFNRGAMTNCAPIFEQFVF- -LYVVGVPGLNPIVATARLYGCR-

CeAQP11 -ALCNRTAFCSPLAPIEQYLF- -VTFVGDQALDPLVASTLFFGCR-

AQP11 -GLTLVGTSSNPCGVMMQMML- -GGSLTGAVFNPALALSLHFMCF-

AQP12 -GVTLDGASANPTVSLQEFLM- -AGPFTSAFFNPALAASVTFACS-

AQP12L -GVTLDGASANPTVSLQEFLM- -AGPFTSAFFNPALAASVTFACS-

NPA box is underlined. Each signature residue for AQP3-like and AQP11-like is in the bold type. CeAQP1~12 for
Caenorhabditis elegans: 4NP_505512.3, 5NP_505691.2, 6NP_505727.1, 1NP_495510.1, 2NP_495973.1,
3NP_502044.1, 7NP_508515.2, 8NP_001024758.1. 12NP_001022480.1 (updated in 09-Aug-2021).
9NP_001021552.2, 10NP_496105.1, 11NP_499821.2
AQP1~11 from humans

as VSGAHLNPAVT. Thus, even if the signature
Cys is identified, the upstream sequences of the
first NPA box need to be deviated from AQP1-
like to classify as AQP11-like. As AQP3-like is
already identified based on D residue, AQP3-like
with a coincidentally localized Cys as CeAQP8 in
C. elegans should not be a problem (Table 6.1).

After both AQP11-like and AQP3-like are
identified, the remaining AQP will be AQP1-

like or AQP8-like. Further classification of
AQP8-like from AQP1-like, however, is not
easy because both share highly similar NPA box
domains. Based on the previous report [47], His
(H) in the transmembrane 2 (TM2) residue in ar/R
motif for a selectivity filter (SF) (vide infra) is
tentatively assigned as a key residue for AQP8-
like although it is far upstream of the first NPA
box (21 residues upstream of the first NPA box)
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Fig. 6.2 Transmembrane structures of AQP subfamilies.
The intron insertion sites for mammalian AQPs are shown
by the arrow. The sites of four amino acid residues for the
ar/R motif SF are shown in AQP3-like as a representative
with the second transmembrane domain (TM2), TM5,
Loop E1 (LE1), and LE2. Typical AQP1-like has ar/R
motif of “FHXR.” AQP3-like always has D in the second
NPA box following LE2 as NPAXD. Typical AQP8-like
has ar/R motif of “HIXX.” AQP11-like always has C at
nine residues downstream of the second NPA box as
NPAXXXXXXXXC

(Fig. 6.2) and not completely conserved. Similar
to the results from whole protein comparison, the
diagram identified most plant tonoplast intrinsic
proteins (TIPs) as AQP8-like, although His resi-
due is not always identifiable. For example, three
AQP8-likes in Ciona intestinalis do not have His
at TM2 although they are more similar to AQP8
than AQP1 by whole protein comparison
(Table 6.2). Conversely, AQP1-like named AX4
or D (GenBank: XM_639170) from a protozoan,
amoeba Dictyostelium discoideum has His at
TM2 [10, 48] simulating AQP8-like although
whole protein sequence comparison has revealed
that AX4 is more similar to AQP1 than AQP8
(Table 6.2). Moreover, all other AQP1-like from
protists [13], fungi [49], and arthropods [43] do
not have such His. These observations suggest
that AQP8-like may have first appeared in multi-
cellular organisms although arthropods are
devoid of AQP8-like (Table 6.2). Obviously,
this classification has the limitation to identify

Fig. 6.3 A simplified diagram for the classification of
AQPs into four subfamilies. It is based on the presence
of a single amino acid residue (D, C, R, and H) around
NPA boxes. The characteristics for each subfamily are
shown in Fig. 6.2. TM2 (20 residues upstream of the first
NPA box) and LE2 (two residues downstream of the
second NPA box) are the component of the first and
forth residues of ar/R motif SF. See text for details

AQP8-like, which sometimes requires whole pro-
tein sequence comparison to distinguish AQP8-
like from AQP1-like definitively.

Indeed, this classification corresponds to pre-
viously reported phylogenetically distinct AQP
subfamilies by whole protein comparison except
for AQP8-like that lacks a reliable key sequence
in NPA box domain to be separated from AQP1-
like. Roughly speaking, this classification also
corresponds to the subcellular localization of
AQP: AQP1-like and AQP3-like for pAQP
while AQP8-like and AQP11-like for iAQP,
although the key sequence for the dichotomy
between pAQP and iAQP remains to be
identified. In spite of these limitations, above
classification is simple and will be helpful to
speculate the function and subcellular
localizations of AQP based on its subfamily in
the face of many uncharacterized AQPs in
database.

6.2.3 Correlation to the Selective
Filter (SF) of AQP Channel

As the size and the electro-chemical properties of
solutes are the main factors determining the
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Table 6.2 The distribution of aquaporins in four subfamilies

Organisms Total AQP1-like AQP3-like AQP8-like AQP11-like

Bacteria
E.coli 0
S. oligofermentans 0
L .plantarum 0
M. tuberculosis 0
H. pylori 0
M. marburgensis 0
Protozoa
T. gondii 0
P. falciparum 0
D. discoideum 0
L. major 0
T. cruzi 0
T. brucei 0
Fungi
C. neoformans 0
S. cerevisiae 0
S. pombe 0
A. nidulans 0
T. harzianum 0
Plants
Moss 23 18 1 4 0
Rice 33 23 0 10 0
Arabidopsis 35 25 0 10 0
Cotton 71 48 0 23 0
Soybean 72 49 0 23 0
Invertebrates
C. elegans (nematode) 12 3 5 1 3
S. purpuratus (sea urchin) 12 3 5 2 2
C. intestinalis (sea squirt) 7 2 1 3 1
Arthropods
D. melanogaster (fruit fly) 8 7 0 0 1
B. tabaci (silverleaf whitefly) 7 8 0 0 1
L. salmonis (louse) 9 2 5 0 2
Vertebrates
Zebra fish 19 7 7 3 2
Mouse 12 6 3 1 2
Pig 13 6 4 1 2
Human 14 6 4 1 3

AQP1-like from the amoeba Dictyostelium discoideum AX4 or D (GenBank:XM_639170) has His at TM2 simulating
AQP8-like but it should be AQP1-like with whole protein comparison. Plant TIP is included in AQP8-like subfamily as
most of them has His at TM2
Strongylocentrotus purpuratus, Ciona intestinalis, Drosophila melanogaster, Bemisia tabaci, Lepeophtheirus salmonis

diffusion through AQP, permeating substances
will be predicted from the primary sequence.
Indeed, the 3D structure analysis of AQP family
has identified the functionally relevant residues
for the permeation of AQP, which form two pore

constrictions as selectivity filters (SFs): NPA
region and ar/R (aromatic residue (ar) and argi-
nine (R)) region [50]. NPA region located at the
middle of the channel also serves as a larger
electrostatic barrier. On the other hand, ar/R
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region located in the outer channel entrance forms
a narrower SF inside the channel, which
determines the size of permeating solutes by
four channel lining residues: two residues each
from TM2 (20 residues upstream of the first NPA
box) and TM5 (19 residues upstream of the sec-
ond NPA box), and two residues each from
loopE1 (LE1) (three residues upstream of the
second NPA box) and LE2 (two residues down-
stream of the second NPA box), comprising
“TM2, TM5, LE1, LE2”(Fig. 6.2). The position
of the residue may vary depending on the 3D
structure especially TM2 and TM5. In fact, the
whole transmembrane sequences of TM2 and
TM5 are relatively less conserved and may pro-
vide the room for functional fluctuations of
permeating substrates as both are closely located
to the pore.

As the permeating molecule may be suspected
based on a combination of aperture and
hydrophobicity of ar/R SF, the validity of the
above classification will be examined based on
the sequences of ar/R SF for each subfamily.
Water selective AQP1-like usually have
“FHAR” or “FHCR” with large side-chains [ben-
zene ring in Phe (F) and imidazole in His (H)],
which extend to the inner surface of AQP channel
restricting the diameter of the pore to ~2.8 Å
fitting just to the diameter of a water molecule
and the hydrophilic properties of His favors the
permeation of water molecules. On the other
hand, the absence of the hydrophilic amino acid
(His) restricts water movement and the replace-
ment with smaller Gly expands the ar/R SF wider
to ~3.4 Å or more permeating small, uncharged
solutes such as glycerol, urea, ammonia, or even
metalloids including arsenite in AQP3-like as a
glycerin channel with “FGYR,” “FGCR,” or
“GGYR.” In contrast, AQP8-like has the first
two amino acids of ar/R SF with His and Ile as
“HIXX,” suggesting a wider pore and a higher
water permeability with a hydrophilic His. As
diagramed in Fig. 6.3, this His is assigned as a
signature residue for AQP8-like although it is not
highly conserved. Since the 3D structure of
AQP11-like is not yet available, the a/R SF
sequence is difficult to identify [51]. A putative
ar/R SF sequence appears to be highly deviated

from other AQP subfamilies with the absence of
Arg (R) at LE2 such as “GLGL” or “LAAL”
forming a completely hydrophobic filter
suggesting a larger pore with poor water perme-
ability in the absence of hydrophilic His. Obvi-
ously, as AQP function may not follow the
structure of ar/R SF alone, functional studies are
needed to define structure and functional
relationships.

6.3 Putative Evolution of AQP
Superfamily

6.3.1 Overview of Gene Evolution

Multiple lineage-specific expansions including
single-gene duplications, splice variations and
their losses have been observed through the evo-
lution. Moreover, multiple whole-genome
duplications (WGDs) have occurred in selected
species associated with obtaining new functions
and transformation into pseudogenes leading to
gene loss [52]. As AQP family in particular has
been regarded as vital for the survival especially
in significant life events, it is not surprising that
the number of AQP paralogues in different spe-
cies is highly variable and seems to be correlated
with environmental complexities [53].

WGD has been known to play an important
role in vertebrate evolution. For example, com-
mon ancestors of early vertebrates underwent two
rounds of WGD more than 500 million years ago
[54, 55]. In addition, teleost, bony fish further
experienced another round of WGD about
300 million years ago [54] resulting in 10–19
AQP genes, highest in zebrafish [56, 57]. Salmon
and carp even had additional WGD in total of four
rounds of WGD [58] about 80 and ten million
years ago, respectively [15, 59]. Allotetraploid
frogs such as Xenopus laevis also had another
WGD with three rounds in total [58], while dip-
loid frogs such as Xenopus tropicalis had the
same number of WGD as mammals with two
rounds [54, 55]. Such WGDs have produced mul-
tiple homologues (ohnologues) from the
orthologue to expand the gene complexity.
Recently, a detailed analysis of frog AQP family
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has been reported in the context of the vertebrate
evolution with careful identification of syntenic
regions for the orthologue of each AQP to trace
the polyploidization, subsequent
pseudogenization and deletion [17].

Another way of gene expansion is tandem
duplications or transposon activations to produce
paralogues. The newly formed paralogues and
homologues initially preserved nearly identical
sequences to the original gene (orthologue).
Over time, however, paralogues and homologues
would have accumulated non-functionalizing
mutations to be pseudogenes [60] and eventually
lost, or more importantly developed new
functions which may have played crucial roles
in the survival in harsh environments leading to
the evolution of species as well as AQP
family [60].

6.3.2 The Relationship Between
AQP1-Like and AQP3-Like

From the evolutional point of view, ancestors of
AQP might have appeared in bacteria as AQP1-
like (similar to AQPZ) or AQP3-like (similar to
GlpF) but not AQP11-like nor AQP8-like.
Whether they initially had water permeability is
a matter of debate. In fact, the function of AQP3-
like as a water channel in bacteria is controversial
as GlpF has no water permeability with dominant
glycerol permeability [61] although mammalian
AQP3-like permeates both glycerol and water
efficiently [62, 63]. On the other hand, AQPZ
has a selective water permeability similar to mam-
malian AQP1-like [64]. If the water transport by
ancient AQPs was a fundamental function,
AQP1-like most likely first appeared. Subsequent
residue alternations may have transformed the
ancient AQP1-like to be permeable to solutes to
become AQP3-like as suggested by molecular
dynamics simulation studies based on the differ-
ence between GlpF and AQPZ [65, 66], in which
a double mutant of AQP1 at H180A/R195V of
ar/R SF has rendered urea permeability [67]. On
the other hand, if the solute transport by ancient
AQPs was required for the survival, AQP3-like
will be the original AQP. Similarly, a double

mutant of GlpF at W24F/F200T of ar/R SF has
allowed water to pass with reduced glycerol per-
meability [68, 69] resulting in the conversion of
AQP3-like to AQP1-like.

An archaeal AQP1-like, AqpM has been
reported to permeate weakly water and glycerol
without urea permeability suggesting that the role
of water transport in AQP1-like has been dimin-
ished in anaerobic environments at 65 °C with
sufficient water permeability without AQP1-like
[19]. The crystallography of AqpM has also
indicated a narrow pore similar to AQPZ but
His in ar/R SF is replaced by isoleucine to be
hydrophobic, explaining poor water and glycerol
permeabilities [70]. Since archaea have evolved
from eubacteria, the results suggest that archaea
have developed the intermediate function of
AQP1-like and AQP3-like and possibly the trans-
formation from AQP1-like into AQP3-like in
structure will have been difficult, although HGT
from eubacteria to archaea could explain the
acquisition of AqpM [19]. Another observation
in favor of AQP3-like as the first ancient AQP
will be the truncation of AQP to render water
permeability. Wild-type AqpB, AQP1-like in
structure, from a protozoan, Dictyostelium
discoideum, is impermeable to water and glyc-
erol. Interestingly, a mutational truncation of
12 amino acids in Loop D has induced the perme-
ability for water but not for glycerol [71]. As
AQP3-like has longer Loop C and Loop E but
not Loop D than AQP1-like as indicated by our
previous review [42], they need to be truncated to
become AQP1-like structure (Fig. 6.2). Although
the effect of truncating Loop C or Loop E on the
function is unknown, such might have
transformed AQP3-like to be water permeable
but to be restrictive to glycerol similar to the
function of AQP1-like. Moreover, deletion events
will be more likely to occur than insertion events.
This conversion might be facilitated by the built
up of osmotic gradients with the solute transport
through AQP3-like, which needs to be balanced
rapidly by water transport. Further searches will
be required to find the intermediated form of
AQP1-like and AQP3-like in bacteria to deter-
mine which was the initial ancient AQP.
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From the sequenced genomes of 5294 bacteria
and 299 archaea, orthologs of AQP1-like and
AQP3-like were found in 3315 (60%) prokaryotic
species [24]. Among these AQPs, 977 bacteria
encode both AQP1-like and AQP3-like, whereas
698 bacteria encode only AQP1-like and 1552
bacteria encode only AQP3-like, indicating
AQP3-like is a predominant subfamily in bacte-
ria. Notably, 2067 (40%) bacteria do not have any
AQP homologues in their genomes especially in
animal pathogenic microorganisms such as
H. pylori (Table 6.2) and extreme-environment
inhabitants suggesting that they do not need any
AQP by employing other apparatus for the solute
transport. Alternatively, the presence of AQP
may be harmful for the survival in the environ-
ment with huge osmotic gradients. Similarly,
more evolved archaeal phyla living in harsh
environments rarely have AQP as indicated by
MIPModDB [7] containing only 157 AQPs
from Euryarchaeota mostly from methanobacteria
possibly for the need of metabolite transports.

In bacteria, AQP3-like but not AQP1-like is
often located in operons for glycerol metabolic
pathways including glpK encoding glycerol
kinase. Accordingly, AQP3-like will be transmit-
ted as a functional complex to the descendants
with a conserved function, while AQP1-like is
present in the genome in isolation will be more
easily mis-localized and transformed or even
deleted, which may explain less AQP1-like in
bacteria. For example, the S. oligofermentans
genome carries three AQP homologous genes: a
single AQP1-like, So-aqpA, and two AQP3-likes,
So-aqpB and So-aqpC (Table 6.2). Only So-aqpC
is localized in a three-gene operon for glycerol
metabolism while So-aqpA has been converted to
peroxiporin to transport H2O2 probably due to a
less stringent transmission [72]. Not surprisingly,
AQP3-like is more prevalent in some bacteria like
Lactobacillus plantarum with six glpFs
(glpF1 ~ glpF6) without AQP1-like (Table 6.2),
which export the metabolic end products such as
lactic acid especially by GlpF1 and GlpF4
[73]. Thus, AQP in bacteria may well be for solute
transports and not much for water transport.

Interestingly, 27 viral genomes contain AQP
genes as shown in MIPModDB [7] including

25 AQP3-like genes. As virus may have taken
up partial bacterial genomes, the result may indi-
cate AQP-3 like in bacteria used to be more
widespread and possibly have a longer history
than AQP1-like, suggesting AQP1-like may
have been produced after the emergence of
AQP3-like or derived from AQP3-like. Con-
versely, it could have been the origin of bacterial
AQP functioning at the viral envelop or the mem-
brane of the infected bacteria, which may explain
the dominant AQP3-like in bacteria. In fact, the
AQP3-like (Aqpv1) from dsDNA Chlorovirus
has been shown to be functional and expressed
in infected tobacco localized to the plastid and
plasma membranes with a role of mitigating
drought stress responses [1]. Interestingly, a func-
tional potassium channel (Kcv) has also been
identified in large dsDNA chlorella viruses
which is functional and essential for the virus
life cycle [74].

In bacteria, a channel protein, FocA, has been
identified with a similar 3D structure to AQP
family. Both FocA and AQP have two structural
repeats in six transmembrane segments: TM1–
TM3 and TM4–TM6. Similar to the NPA box of
AQP, the second transmembrane segment of
FocA in each repeat (TM2 or TM5) is disrupted
by a highly conserved loop named L2 and L5,
respectively, although with different sequences
from AQP. In spite of the similarity in 3D struc-
ture, the tertiary structure and function of FocA
are different from AQP. FocA is organized in a
homopentamer in contrast to a homotetramer of
AQP [75]. FocA is a member of the formate/
nitrite transport (FNT) family transporting vari-
ous anions during anaerobic bacterial growth and
localized at the functional operon exporting major
end products of anerobic mixed-acid fermentation
such as formate, lactate, acetate to prevent their
intracellular accumulation [76]. Among anions,
HS- binds to FNT with a higher affinity than
formate, Cl-, or NO2

- [77]. While AqpZ
permeates formate albeit less efficiently, FocA-
loaded proteoliposomes have displayed no water
channel activity [29]. Surprisingly, a widening
mutation of the pore has transformed FocA into
a selective water channel without permeating
other substances [30]. Speculatively, ancestor
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AQPs might have the function as a solute trans-
porter similar to FNT. Unlike FNT, AQP may
have acquired a water channel function before
evolving to eukaryotes. As FNT family has been
lost from the eukaryotic lineage, the function of
FNT may be replaced by other channels in
eukaryotes and possibly not by AQP. If FNT
family or proteins with a similar 3D structure
have been transmitted to eukaryotes, they might
have acquired the ability to transport water. So
far, no such structural homologues of AQP as
FNT have been identified yet.

6.3.3 Evolution of AQP3-Like

AQP3-like is widespread in both prokaryotic and
eukaryotic organisms [15] playing important
roles as shown in trypanosomes where the disrup-
tion of all AQP3-likes has made them sensitive to
respiratory-inhibitor [78]. However, AQP3-like is
not ubiquitous and lost in some protozoa or all
plants and insects. Even in vertebrates, a selected
AQP3-like has been turned to a pseudogene as
AQP7 in primates [15], and AQP10 in cattle [79]
and mice [80] or even lost as AQP10 in tortoise
and echidna (spiny anteater) [15]. Moreover, KO
mice of three AQP3-like each have produced
relatively mild phenotypes [27]. As the function
of AQP1-like has expanded to transport
substrates beyond water and intracellular AQP8-
like/AQP11-like may distribute to the plasma
membrane, a battery of plasma-membrane-
restricted AQP3-like with limited water transport
may not be necessary for most of multicellular
organisms excluding fungi and small
invertebrates where AQP3-like seems to play
more important roles as revealed by a gene dis-
ruption study in C. elegans [81].

In the absence of AQP3-like, land plants have
acquired AQP1-like, nodulin 26-like integral pro-
tein (NIP) via HGT from bacterial AQP1-like
especially from root nodule bacteria [23]. More-
over, bacterial AQP1-like with arsenic detoxifica-
tion function prevalently located in arsenic
resistance operons has been converted in plants
to facilitate nutrient transport including glycerol
and ammonia through NIP [82]. On the other

hand, hemipteran and holometabolous insects
have developed a more efficient glycerol channel,
Eglp from endogenous AQP1-like [43]. For
example, silverleaf whitefly, B. tabaci has eight
AQPs (BtAqps): seven AQP1-like including Bib,
Drip, Prip, and Eglps and a single AQP11-like
(Table 6.2). To compensate for the loss of AQP3-
like, at least three separate AQP1-likes as Eglp
have been obtained by mutating His in ar/R SF of
AQP1-like to transport larger substrates such as
glycerol and limit water transport by losing
hydrophilic His, which is a typical example of
an adaptive evolution at the molecular level [83].

6.3.4 The Origin of AQP8-Like
and AQP11-Like

AQP11-like and AQP8-like seemed to appear
relatively late in evolution, i.e. after the emer-
gence of multicellular organisms (Table 6.2).
AQP8-like may have evolved from AQP1-like
by converting ar/R SF to become wider with
conserved water permeability, which is often
localized inside the cell such as plant TIP. As
AQP11-like is also present intracellularly, water
transport may not be the main function of these
subfamilies. Multicellular organisms may have
acquired AQP8-like and AQP11-like as iAQP
with new functions or regulations to adapt to a
new frame of multicellular life style. For exam-
ple, as the tonoplast is so huge that it requires a
water channel for efficient water transport
through cytoplasm as well as for the accumula-
tion of substrates inside the tonoplast, which may
have facilitated for plants to obtain multiple and
huge amounts of TIPs (Table 6.2) [84]. In fact,
TIP appeared relatively late in plant evolution
following algae [85]. On the other hand, metazoa
seem to have a few AQP8-like in the genome and
arthropods even have lost it. For example, a nem-
atode, C. elegans has a single AQP8-like
(Tables 6.1 and 6.2), and more evolved Ciona
intestinalis (sea squirt) has three AQP8-likes
(Table 6.2). The increase of AQP8-like may not
be related to larger sizes of organisms as human
has only one AQP8-like. Interestingly, a diploid
frog, Xenopus tropicalis has two AQP8-likes, and
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one of them has been lost through evolution lead-
ing to a single AQP8-like of tortoise and chicken
in the genome [17]. As coelacanth (lobe-finned
fish) also has a single AQP8-like, the reason for
the expansion of AQP8-like in amphibians com-
pared with other vertebrates is intriguing, which
may be related to the landing of tetrapods.

Unlike AQP8-like sharing high similarities
with AQP1-like, AQP11-like has been highly
mutated from AQP1-like possibly due to a loose
restriction in less harsh intracellular milieu than
extracellular environments. Alternatively, such a
wide deviation is unusual among other AQP
subfamilies as exemplified by three
AQP11-likes in C. elegans (Table 6.1) showing
almost no homology even with each other
suggesting the individual evolution from separate
ancestors. Such an outstanding diversity of NPA
box domains of AQP11-like may suggest that
AQP11-like has been obtained by HGT from
AQP1-like of intracellular microorganisms or
parasites as they sometimes have highly deviated
NPA boxes as well as the replacement of R at the
LoopE2 of ar/R SF. Moreover, only some bacte-
rial AQPs share a similar hydrophobic ar/R SF as
“IVLL” or “IAAV” with AQP11-like as
“LVAL.” Interestingly, intracellularly localized
protozoal AQP1-like [13, 31] and the
ER-localized plant short intrinsic basic protein
(SIP) [86] also have the replacement of R in
LoopE2 although they belong to AQP1-like but
not to AQP8-like based on the absence of His at
TM2 and on the whole protein comparison, even
not to AQP11-like in the absence of the key Cys.
Plant AQP8-like, TIP but not mammalian AQP8
has the replacement of R in LoopE2 as well.
Accordingly, the absence of R next to the second
NPA box as NPAX instead of NPAR may be a
key sequence for iAQP. In the absence of AQP3-
like and AQP11-like, plants may have developed
complex arrays of AQP1-like including plasma
membrane intrinsic protein (PIP), NIP, SIP,
uncategorized X intrinsic protein (XIP), large
intrinsic protein (LIP), and hybrid intrinsic pro-
tein (HIP). For example, XIP also present in
protozoa and fungi has been shown to be located
at the plasma membrane and impermeable to

water but permeable to boric acid, glycerol,
hydrogen peroxide, and urea [87].

Although homologues of AQP1-like and
AQP3-like in lower animals are surprisingly
well conserved, AQP11-like is highly deviated
among them. In particular, first half of AQP11-
like in lower animals is more deviated from that
of AQP1-like or AQP3-like, while the second half
is relatively conserved. This may be due to the
fact that the second half mainly defines the
entrance selective filter forming ar/R
SF. Accordingly, the second half may be
constrained through evolution resulting in higher
conservation while the first half may be more
freely changeable possibly enabling to obtain
new functions. For example, salmon lice have
unusual members of AQP11-like with very low
homology (11%–18%) which are localized intra-
cellularly and difficult to be expressed in Xenopus
oocytes [12]. More deviated three AQP11-likes
are also found in the C. elegans genome, which
have not yet been tested in Xenopus oocyte
expression system (Table 6.1). Interestingly,
AQP11-like in mosquito is very highly expressed
intracellularly in a pupae stage and functions as a
mercury-sensitive water channel when expressed
in cultured cells although the physiological role is
unknown [88]. The comprehensive analysis of
phenotypes in genetically modified animals with
disrupted AQP11-like will be a clue to identify
new functions as well as novel permeating
molecules. So far, only a limited number of
AQP11-like knockout studies have been reported
including zebrafish and mammals. AQP11 dis-
ruption in zebrafish has produced a phenotype of
body axis curvature [89] while AQP12 knockout
mice have appeared normal although they have
developed severe acute pancreatitis when
stimulated by secretagogues [90]. On the other
hand, AQP11 knockout mice have suffered from
polycystic kidney disease (PKD) with intracellu-
lar vacuoles in the kidney and liver [45, 91]. The
mechanism for the development of PKD in
AQP11 knockout mice seems to be related to
the failure of PKD1 trafficking to the plasma
membrane from the ER [92] which may be caused
by ER disfunction due to the absent of AQP11 at



94 K. Ishibashi et al.

the ER membrane possibly regulating H2O2

transport [93]. Curiously, conditional AQP11
knockout mice from postnatal 12 days onward
have not produced the defect in renal develop-
ment even without PKD [94]. The role of AQP11
in the development of the kidney remains to be
clarified.

6.4 Perspectives

When viewed from the evolutionary perspective,
AQP family is highly diversified already in small
animals like a nematode, C. elegans which has
12 AQPs: three AQP1-likes, one AQP8-like
(NP_001022480.1 updated in 2021: the second
NPA box is not clear probably due to a wrong
exon connection, but N-terminal half is similar to
AQP8 without His in TM2), five AQP3-likes and
three AQP11-likes (Table 6.1). Not only the num-
ber of AQPs is similar to that of human, but its
complexity is also comparable to human who has
14 AQPs: six AQP1-likes, four AQP3-likes, one
AQP8-like, and three AQP11-likes (primate-spe-
cific AQP12L is included). Therefore, the evolu-
tion of AQP complexity has already been
achieved in nematodes and subsequent evolution
seems to be shifted toward increasing the number
rather than the complexity by single-gene
duplications and WGDs or even HGT to enable
the tissue specific distribution and regulation
[53]. Accordingly, the research on these small
organisms may provide the answer for the funda-
mental question of the purpose of AQP in life.
Their strategies for adapting to ever-changing
environments will also be useful for us and may
open a new avenue for AQP research with novel
therapeutic applications.

The view that the major role of AQP family is
water transport may not hold in bacteria. More-
over, AQP may be important in protozoa and
fungi as osmolyte channels such as a glycerol
channel, where osmoregulation is critical and
AQP will be required for cell survival under
harsh conditions [95]. On the other hand, as
AQP is highly expressed in almost all fluid-
related structures in metazoa, the evolution of

AQP seems to be tightly linked to fluid homeo-
stasis as well as osmoregulation. In addition to the
regulation of transcellular water transport by
AQP, the possibility of AQP as an osmosensor
by facilitating cell volume change has been pro-
posed and there is accumulating information to
support this hypothesis [96]. For example, the
association between transient receptor potential
vanilloid 4 (TRPV4) and AQP5 has been shown
to control the regulatory volume decrease (RVD)
in salivary gland cells exposed to
hypotonicity [97].

The dichotomy between pAQP and iAQP will
shift the research more toward the role of AQP in
the regulation of intracellular milieu. As
prokaryotes have few intracellular organelles if
any, the role of iAQP will be negligible. On the
other hand, free-living protozoa may need iAQP
for the adaptation to hypotonic environments to
expel the water accumulated in the cytosol from
outside. For example, in a ciliated Paramecium,
the presence of water channel on the membrane of
contractile vacuole has been documented as
AQP1-like, AQP1. The AQP1-GFP fusion pro-
tein has clearly demonstrated the subcellular
localization of AQP1 on the contractile vacuole
complex [98]. The regulation of water accumula-
tion together with energy-consuming osmolyte
transporters seems to be facilitated by an efficient
water transport by AQP initiated by intracellular
signaling. In fact, cells in multicellular organisms
may also face similar osmotic stresses and need a
similar mechanism to survive. Such mechanisms
may also be involved in exocytosis facilitated by
AQP [90, 99]. Even a cancer cell as a single cell
organism may take advantage of this role of AQP
to move around in our body [100, 101].

Obviously, hormonal controls of AQP func-
tion and expression will be most relevant to
human physiology and pathophysiology. To elu-
cidate the mechanisms orchestrating AQPs in
concert to overcome environmental challenges
will be one of the ultimate goals of AQP research,
which requires specific inhibitors [102] and con-
ditional knockout [94] in healthy and diseased
conditions. These will be detailed in other
chapters. Moreover, cooperative evolutions of
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AQPs and regulating hormones as well as
associated proteins including channels,
transporters, and pumps will also be intriguing.

Finally, this evolutionary overview based on a
simple classification of AQP into four subfamilies
will provide putative structural, functional, and
localization information, and hopefully insights
into the role of AQP as well as clues to understand
the complex diversity of AQP superfamily.
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Abstract

Aquaporins (AQPs) mediate water flux
between the four distinct water compartments
in the central nervous system (CNS). In the
present chapter, we mainly focus on the
expression and function of the nine AQPs
expressed in the CNS, which include five
members of aquaporin subfamily: AQP1,
AQP4, AQP5, AQP6, and AQP8; three
members of aquaglyceroporin subfamily:
AQP3, AQP7, and AQP9; and one member
of superaquaporin subfamily: AQP11. In addi-
tion, AQP1, AQP2, and AQP4 expressed in
the peripheral nervous system are also
reviewed. AQP4, the predominant water chan-
nel in the CNS, is involved both in the
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astrocyte swelling of cytotoxic edema and the
resolution of vasogenic edema and is of pivotal
importance in the pathology of brain disorders
such as neuromyelitis optica, brain tumors,
and neurodegenerative disorders. Moreover,
AQP4 has been demonstrated as a functional
regulator of recently discovered glymphatic
system that is a main contributor to clearance
of toxic macromolecule from the brain. Other
AQPs are also involved in a variety of impor-
tant physiological and pathological process in
the brain. It has been suggested that AQPs
could represent an important target in treat-
ment of brain disorders like cerebral edema.
Future investigations are necessary to eluci-
date the pathological significance of AQPs in
the CNS.

Keywords

Aquaporins · Nervous system · Brain disorders

7.1 Introduction

Water homeostasis in the central nervous system
(CNS) is of pivotal physiological and clinical
importance, since about 80% weight of brain is
water [1]. Water transport is linked to a number of
brain functions such as production and drainage
of cerebrospinal fluid, cell volume regulation, and
controlling of the dimensions of the extracellular
space [2–4]. In a pathophysiological context,
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water transport plays important role in cerebral
edema, which may lead to ultimately cerebral
herniation and death due to progressive increase
in brain water content [5–7].

In the brain and other organs, water passes
through plasma membranes by three distinct
mechanisms: mere diffusion through the lipid
bilayer, cotransport with organic or inorganic
ions, and by way of specialized water channels
(aquaporins, AQPs) [2, 8, 9]. It is recognized that
AQPs are seen to mediate water flux between the
four distinct water compartments existing in the
brain: intracellular fluid (ICF), interstitial fluid
(ISF), cerebrospinal fluid (CSF), and blood
[10, 11], which are driven by osmotic and hydro-
static pressure gradient [12].

At present, nine AQPs have been identified at
distinct brain sites, including AQP1 [13, 14],
AQP3 [15, 16], AQP4 [17, 18], AQP5 [15, 19],
AQP6 [20, 21], AQP7 [22–24], AQP8 [15, 25],
AQP9 [26, 27], and AQP11 (Fig. 7.1) [28, 29]. A
number of studies have reported the unexpected
roles for the three members of this family (AQP1,
AQP4, and AQP9) in physiology and pathology
of CNS such as cerebral edema [30, 31], tumor
angiogenesis [14, 32], autoimmune disease [33],

Fig. 7.1 Distribution of
AQPs in the central nervous
system. Astrocytes express
AQP1, AQP3, AQP4,
AQP5, AQP8 and AQP9.
AQP1, AQP5, AQP7 and
AQP11 are expressed in the
choroid plexus. AQP1,
AQP4, AQP6 and AQP8
are found in the spinal cord.
AQP6 is expressed in the
cerebellum. AQP11 is
found in the cerebellar
Purkinje cell.
Oligodendrocytes
express AQP8

neurodegenerative disorders [34], glial scar for-
mation [35], and neuro-excitation [36]. To date,
little is known about the function and regulation
of AQP3, AQP5, AQP6, AQP7, AQP8, and
AQP11 in the CNS [10]. This chapter will pro-
vide an update of recent findings in these rarely
reviewed AQPs, and further the field of AQPs in
the nervous system, and in particular the potential
pathophysiological role of AQP4 in the CNS.

7.2 Expression of AQPs in Nervous
System

7.2.1 AQPs in the Central Nervous
System

7.2.1.1 AQP1
AQP1 is primarily distributed at the apical mem-
brane in epithelial cells of the choroid plexus
where the transcellular water movement via
AQP1 contributes 25% of CSF production as
shown by study on AQP1 null mice [37]. AQP1
has also been found in small diameter sensory
neurons in dorsal horn of the spinal cord and
trigeminal and nodose ganglia, with a strong
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implication that AQP1 may be involved in pain
signaling [38, 39]. Moreover, intensive AQP1
expression is detected in neuronal filaments in
the septum after juvenile traumatic brain injury
[40]. In addition to these locations, AQP1 is
expressed in astrocytes in the white matter and
the glia limitans, and neurons innervating the pial
blood vessels in the non-human primate and
human brains [41, 42].

Besides these hereinbefore expression, AQP1
also abnormally distributes at specific sites in
some brain disorders. For instance, AQP1 is
localized in vascular structures of glioblastomas,
microvascular endothelia and astrocytoma, and
metastatic carcinomas [14, 43]. Moreover, in
combination with NKCC1 (the Na-K-2Cl
cotransporter 1), AQP1 is identified in meningi-
oma cells and capillaries invading the dura
[44]. These findings suggest that AQP1 may be
involved in the tumor spread [45]. More recently,
the alteration of AQP1 expression has been
detected in the temporal neocortex of patients
with Parkinson's disease (PD) and Alzheimer’s
disease (AD), indicating that astrocytes-involving
water homeostasis is disturbed along with the
neurodegenerative progression [46, 47].

7.2.1.2 AQP3
AQP3, permeable to glycerol and urea, was first
found in brain meningeal cells in the CNS
[48]. Studies show that similar to AQP5
and AQP8, AQP3 is expressed in astrocytes and
neurons of piriform cortex, hippocampus, and
dorsal thalamus [18, 49]. However, no expression
of AQP3 is found in pig brain [23]. It seems that
the distribution of AQP3 in the CNS shows a
species-specific model. The role of AQP3 in the
CNS remains scarcely investigated, earlier
research has demonstrated that AQP3 expression
is upregulated within the first 6 h after ischemia,
suggesting a role of AQP3 in the early formation
of the cerebral edema and the neuronal swelling
[16]. Consistently, mRNA expression of AQP3
increases in human cerebral cortex neurons dur-
ing edema, as assessment by a single cell digital
PCR [50]. A recent study showed rare
duplications of AQP3 in SCZ patients, suggesting
a correlation between abnormal AQP3 expression

and SCZ. Conditional knockout of
neruofascin155 (NF155), a key protein of
paranodal junction in oligodendrocytes, signifi-
cantly decreases AQP3 expression in mouse
brain. By contrast, overexpression of AQP3 in
motor cortex neurons of in NF155 conditional
knockout mice results in a significant increase in
caspase 3-dependent neuronal apoptosis in
AQP3-transduced cells [51]. These data indicate
that targeting AQP3 expression may provide new
therapeutic approaches for SCZ.

7.2.1.3 AQP4
AQP4 is the principal water channel in the CNS,
primarily expressed in perivascular astrocyte foot
processes throughout the brain structures [52, 53],
the spinal cord [54], retina and optic nerve [55],
periventricular organs [56], ependymal cells that
line the lateral ventricles and cerebellum [17],
hypothalamic magnocellular nuclei [57], dentate
gyrus [58], and temporal neocortex [46]. The
extensive distribution of AQP4 between the
brain and various fluid compartments suggest its
role in the brain water homeostasis [59]. Interest-
ingly, the expression of AQP4 coincides the loca-
tion of the potassium channel 4.1 (Kir4.1) [60].

AQP4 expression shows heterogeneous
region-specific expression pattern with highest
in the cerebellum [53]. AQP4 is also abundant
in osmosensory areas, including the supraoptic
nucleus and subfornical organ [18]. In the hippo-
campus, AQP4 expression exhibits laminar-
specific pattern, with highest expression in the
CA1 stratum lacunosum moleculare and the
molecular layer of the dentate gyrus
[58]. Activated astrocytes increase AQP4 expres-
sion in the whole astrocyte elements, causing
AQP4 depolarized from the vascular end feet to
parenchymal process, which occurs in the aging
brain and a variety of neurological pathological
conditions [61–65]. Notably, the polarity of
AQP4 in brain is under circadian control. The
perivascular polarization of AQP4 is highest dur-
ing the rest phase, facilitating movement of CSF.
By contrast, the awake brain has less perivascular
AQP4 with low interstitial space volume. Dele-
tion of AQP4 in mice eliminates circadian CSF
distribution [66]. The molecular clock in
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astrocytes may regulate the AQP4 gene expres-
sion, but the exact mechanism warrants further
investigation [67]. In addition to circadian
rhythm, an interesting finding reported that brain
interleukin33 (IL33) is required for regulation of
AQP4 expression in astrocytes, especially those
at neuron-facing membrane domain. IL33 dele-
tion in mice causes a loss of AQP4 in astrocyte
process facing neurons after middle age, which
coincides with exacerbated tauopathy and
neurodegeneration [68].

Moreover, AQP4 can form both homo and
hetero tetramers, with the hetero tetramers formed
by a longer AQP4-M1 isoform and a shorter
AQP4-M23 isoform. The M23-containing
tetramers could assemble into orthogonal arrays
of particles (OAPs), acting as a critical compo-
nent of blood–brain barrier (BBB) [69–71]. Func-
tionally, OAPs might be involved in the
development and maturation of the BBB and
serve to increase water permeability, enable the
modulation of AQP4 membrane distribution [72–
74]. Consistent with this concept, the ratio of M1
to M23 tends to decrease during the day that a
time for rodents to rest. These data indicate that
the expression of AQP4 in brain not only exhibits
regional heterogeneity, but also undergoes
dynamic changes on membrane domains in
astrocytes; and various factors participate regula-
tion of AQP4 expression and polarity, suggesting
that AQP4 has complex biological functions.

7.2.1.4 AQP5
AQP5 expression in the CNS is similar to that
described for AQP3, AQP4, and AQP8, mainly
expressed in the astrocytes and neurons of cho-
roid plexus, piriform cortex, hippocampus, and
dorsal thalamus [75], and could expand to the
nucleus caudatus putamen and globus pallidus in
rat ischemic hemisphere [16, 76]. Whether AQP5
facilitates the highest water transport in the body
remains uncertain [77, 78].

AQP5 might be an important water channel in
astrocytes that is differentially expressed during
various brain injuries [76]. AQP5 expression in
brain is upregulated both after permanent focal
cerebral ischemia [16] and following preterm
intraventricular hemorrhage [79]. Upregulation

of AQP5 after scratch injury is polarized to the
astrocyte processes and cytoplasmic membrane in
the leading edge of the scratch-wound, and
facilitated astrocyte process elongation
[76]. AQP5 expression is also detected near the
ischemia-induced infarct border in the rat brain,
and AQP5 level could be regulated by hypoxia
[18] and protein kinase A (PKA) [19]. Recent
research has also demonstrated that AQP5
expression is associated with the development
and intensity of peritumoral edema in meningi-
oma patients [80].

7.2.1.5 AQP6
AQP6 mRNA has been observed in neonatal and
adult mouse cerebellum by using reverse tran-
scription PCR [20]. AQP6 gene was found in
mouse hind brain (involving cerebellum) and spi-
nal cord [21], while AQP6 protein was detected at
synaptic vesicles in rat brains [81]. The role of
AQP6 in the CNS remains unknown. Since AQP6
mRNA expression is regulated in a tissue-specific
and age-related way, it is likely that AQP6 plays a
role in mouse development [20]. In addition, the
location of AQP6 in synaptic vesicles might par-
ticipate in their swelling and secretion [82]. Fur-
ther investigation is needed to understand the
function of AQP6 in the CNS.

7.2.1.6 AQP7
By using northern blot analysis, a weak band of
AQP7 was first detected in rat brain. [83] Func-
tion as a glycerol channel mainly in fat metabo-
lism, AQP7 is largely localized in the choroid
plexus in brain of mice [22, 24]. Similarly, signals
of AQP7 mRNA are also detected in pig brain
[23]. Recent study shows that AQP7 expression is
found to be restricted to the apical membrane of
choroid plexus epithelial cells (CPECs) and endo-
thelial progenitor cells (EPCs), in parallel with
previous study [22], suggesting that AQP7 could
be involved in CSF secretion [24].

7.2.1.7 AQP8
AQP8 was early detected in astrocytes, neurons,
and oligodendrocytes [18], and in ependymal
cells lining the central canal in spinal cords
[55]. AQP8 is expressed in the cytoplasm of
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astrocytoma cells in piriform cortex, hippocam-
pus, and dorsal thalamus; weakly in ependyma
and choroid plexus [25]. AQP8 is also present in
the Bergmann glial cells of cerebellum, cochlear
nucleus, and trapezoid nuclei [76]. AQP8 may
play an important role in the development of
brain disorders (edema and tumor), and can be
used as a potential therapeutic drug for astrocy-
toma and glioma. For instance, AQP8 expression
level is upregulated both along with the severity
grade of astrocytoma and gliomas [25, 84]. In
addition, AQP8 expression is upregulated after
brain ischemia, suggesting that AQP8 contributes
to the early formation of edema [16]. Even though
AQP8 null mice show surprisingly mild pheno-
type [83], its role in the CNS seems to be pivotal.

7.2.1.8 AQP9
AQP9, a channel permeable to water, glycerol,
urea, and monocarboxylates, has been evidenced
in rodent and primate brains [41]. AQP9 is pres-
ent in the ependymal cells lining the ventricles
and the tanycytes of hypothalamus [26],
astrocytes, endothelial cells of pial vessels, cate-
cholaminergic neurons [27, 85], and the intracel-
lular distribution of AQP9 is in mitochondrial
inner membranes of brain cells [86]. It has also
been reported that AQP9 is expressed in malig-
nant astrocytic cells and leukocytes, which infil-
trate the tumor in glioblastoma [87]. AQP9
knockout mice do not show severe abnormalities
[88]. However, silencing of AQP9 in astrocyte
cultures contributed to decreased glycerol uptake
and increased glucose uptake and oxidative
metabolism [88]. In addition, AQP9 expression
was decreased under hypoxia and recovered with
reoxygenation [18]. It has been suggested that
signal transduction via PKA pathway may regu-
late the expression of AQP9 by some factors
induced by dibutyryl-cAMP [19].

7.2.1.9 AQP11
AQP11 is found to be expressed in the CNS in
rats and mice [89, 90], appearing in hippocampal
and cerebral cortical neurons, purkinje cell
dendrites in rat brains [28], and epithelium of
the choroid plexus and endothelium of the brain
capillary in mouse brains [29, 91]. The brain of

AQP11 null mice appears normal, without any
morphological and functional abnormalities
[29]. However, AQP4 expression at the BBB is
reduced by half in AQP11 null mice, suggesting
AQP11 may functionally interact with AQP4
[29]. In agreement with this, acute hypernatremia
increases AQP4 but decreases AQP1 expression
in heterogeneous AQP11 null mice, whereas
decreases AQP1 and AQP11 by half without
changing AQP4 expression in WT mice [92]. It
has been proposed that, when osmotically
challenged, AQP11 may reduce its expression to
protect the brain [91]. This view is further
supported by a recent study that AQP11 may
serve as a neuroprotective target of miR-27a-3p
in the CNS, because miR-27a-3p mimic can sup-
press the upregulation of AQP11 in the
perihematomal area and in brain microvascular
endothelial cells, and protect against the BBB
disrupt and brain injury intracerebral
hemorrhage [93].

Since AQP11 has a unique high affinity mer-
cury ion binding site (tri-cysteine motif site),
AQP11 distributed in Purkinje cells may interact
with the cations like mercury in autism, and be the
therapeutic target for this cognition-related
disorders [94]. Future investigations are neces-
sary to elucidate the physiological role of
AQP11 in the CNS.

7.2.2 AQPs in the Peripheral Nervous
System

In the peripheral nervous system (PNS), three
AQPs (AQP1, AQP2, and AQP4) are localized
to neurons or glial cells in the ganglia and visceral
plexuses.

7.2.2.1 AQP1
AQP1 is mainly localized to the cytoplasm and
cell membrane of some medium and small-sized
trigeminal or dorsal root ganglion (DRG) neurons
[38, 94]. The expression pattern of AQP1 in the
primary afferent sensory neurons suggests
involvement in the specific somatosensory trans-
duction including pain signal transduction
[39, 95–97]. Furthermore, a recent study suggests
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that AQP1 is mediated in DRG axonal growth
and regeneration [98]. Additionally, AQP1 has
been found in peripheral trigeminal axons and
spinal nerve axons of humans and mice
[99]. Interestingly, differences in the cellular
localization of AQP1 in the central trigeminal
root between humans and mice were detected.
AQP1 is specifically expressed in astrocytes of
humans, but is restricted to nerve fibers within the
central trigeminal root and spinal trigeminal tract
and nucleus in mice [99]. In the visceral plexuses,
strong AQP1 expression is localized to satellite
cells rather than neurons of humans [100]. In
contrast, the localization of AQP1 protein in a
particular neuronal subtype has been observed in
the enteric nervous system of rats
[101, 102]. Together, these morphological
evidences have revealed a species difference of
AQP1 expression in the PNS, but the underlying
mechanisms remain to be determined. Apart from
pain signal transduction, AQP1 may regulate
DRG axonal growth and regeneration, thus can
serve as a therapeutic target of peripheral nerve
injuries [98]. A recent study demonstrated that
AQP1 is expressed by Schwann cells in human
and mouse skin, which might be involved in
neuropathy and pain hyperalgesia [103]. The
exact pathophysiological roles of AQP1 in the
PNS disorders need to be further studied.

7.2.2.2 AQP2
An early study reported AQP2 expression in rat
trigeminal ganglion neurons, with strong labeling
in the medium- and large-sized types and weak
labeling in the small-size type. After formalin
treatment, there was a marked increase of AQP2
expression in small-sized neurons and a decrease
in medium- and large-sized neurons
[104]. Another study shows that AQP2 expres-
sion is not detectable in the DRG of normal rats,
but remarkable increase in small-sized DRG
neurons in response to chronic constriction injury
treatment. These data suggest that AQP2 is
involved in pain transmission in the PNS
[105]. The cellular localization of AQP2 in the
human PNS has not been studied yet.

7.2.2.3 AQP4
Compared to extensive studies of AQP4 in the
normal CNS and neuropsychological diseases,
little is known about its expression and function
in the PNS. A study by Thi et al. (2008) identified
AQP4 protein expression in the myenteric and
submucosal nerve plexuses of mice and rats
[106]. There are about 12% myenteric neurons
positive for AQP4 in the myenteric plexus, while
nearly 80% neurons are positive for AQP4 in the
submucosal plexus of colon. Glial cells in the rat
and mouse enteric plexuses are immunonegative
to AQP4. Kato and colleagues reported that
AQP4 is exclusively localized to satellite glial
cells surrounding the cell bodies of the primary
afferent sensory neurons in the trigeminal ganglia
and DRG of mice [107]. Jiang and colleagues
reported that there are different patterns of
AQP4 expression in the enteric nervous system
of human, guinea pig, rat, and mouse colon
mucosa. In rat and mouse, AQP4 is expressed at
a small subpopulation of neurons, while in the
guinea pig and human AQP4 is localized to
enteric glial cells [108]. Increasing evidence
suggests that apart from NMOSD, anti-AQP4
antibodies are also involved in peripheral demye-
lination [109–112]. The cellular localization and
function of AQP4 in the PNS including in the
trigeminal and dorsal root ganglia need further
study.

7.3 Functions of AQPs in Nervous
System

7.3.1 CNS Water Balance

Phenotypic analysis of AQP4-knockout mouse
model [31, 113–116] has shown that AQP4
facilitates a detrimental cellular water uptake as
well as a protective clearance of extracellular fluid
in cerebral edema following stroke [30], trau-
matic brain injury [117, 118], transient focal cere-
bral ischemia [119], spinal cord injury [120, 121],
brain tumors [122], bacterial meningitis [123],
and brain metabolic disturbances such as
hyponatremia and water intoxication
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Fig. 7.2 Role of AQP4 in cytotoxic brain swelling. (a)
Brain AQP4 protein expression detected by immunoblot
analysis of whole brain homogenates from AQP4-
overexpressing mice (GFAP-AQP4), wild-type mice (+/
+) or AQP4 knockout mice (–/–). (b) Representative intra-
cranial pressure (ICP) curves for mice with indicated

genotype in a water intoxication model of cytotoxic brain
edema. (c) Summary of ICP curve analysis: ΔICP at
10 and 20 min, (*p < 0.05, **p < 0.01 vs. +/+ mice).
(d) ΔICP at 10 min determined from ICP curve analysis
plotted against AQP4 protein expression determined by
immunoblot analysis (S.E.). Adapted from [125]

[30, 124]. In accordance with this dual role of
AQP4, its overexpression in glial cell accelerates
cytotoxic brain swelling in transgenic mice
(Fig. 7.2) [125].

The high AQP4 polarization at blood-brain
and blood-CSF interfaces is crucial for rapid
transport of water into and out of the brain paren-
chyma [59, 126]. The AQP4 deletion causes a
slightly increase in the baseline water content in
the brain and spinal cord of adult mice [120, 121,
127–129], which further supports that AQP4 may
facilitate water efflux from the brain parenchyma
into the brain vessels, ventricles and subarachnoid
space. AQP4 also facilitates the elimination of
excess brain water following vasogenic edema
[31, 130–132]. However, there is also evidence
indicating that AQP4 is responsible for rapid
water movement into the brain [133]. AQP4 null
mice have reduced brain swelling and improved
survival when compared with wild-type

littermates following water intoxication, focal
cerebral ischemia or controlled cortical impact
brain injury [30, 118]. These studies together
suggest that AQP4 is a bidirectional water chan-
nel that facilitates water transport into and out of
the brain.

Apart from maintaining brain water balance
under physiological and pathophysiological
conditions, AQP4 is also involved in the estab-
lishment of brain water homeostasis during the
development. Early studies reported that AQP4
expression coincides with the BBB differentiation
in the cerebellum of postnatal rat and the optic
tectum of embryonic chicken [134–
136]. Subsequent studies revealed that increased
AQP4 expression levels partially relate to
decreased brain water content in postnatal mice
[137]. Systemic or conditional AQP4 knockout
mice show a significant delayed decrease in brain
water content during the postnatal development,
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providing the direct evidence for a role of AQP4
in postnatal brain water uptake [127, 138].

7.3.2 Clearance of ISF Substances

An imbalance between the production and clear-
ance of beta-amyloid (Aβ) and Tau has been
regarded as the central event in AD pathogenesis
[139]. Data have accumulated to support that
AQP4 is necessary for clearance of interstitial
solutes, including Aβ, Tau and α- synuclein
through the glymphatic system [64, 65, 140,
141]. The lymphatic system, also entitled
perivascular pathways, is responsible for tissue
homeostasis clearance via clearance of excess
fluid and interstitial solutes. The lymphatic
vessels are present throughout all parts of the
peripheral tissues. The CNS has long been
regarded as lack of lymphatic network because
no conventional lymphatic vessels are found
within brain parenchyma. However, this view
has been challenged by recent studies that reveal
the clearance of ISF with its constituent proteins
and other solutes along the perivascular space
[142–145]. On the basis of in vivo two-photon
imaging of small fluorescent tracers, Iliff et al.
reported that CSF tracers rapidly enter brain
parenchyma along the cortical pial arteries, and
then influx into the Virchow-Robin spaces along
penetrating arterioles [140]. The tracers rapidly
distribute into brain parenchyma and subse-
quently exit the CNS primarily along the central
deep veins and lateral ventral caudal rhinal veins
[140]. The ISF within the perivenous space flows
into dural lymphatic vessels, and eventually
drains toward the deep cervical lymph nodes
[145]. The perivascular pathways within brain
parenchyma mainly include periarterial space,
pericapillary space, and perivenous space, all of
which are surrounded by astrocyte vascular end
feet [146]. These astrocyte end feet have 50 nm
gaps each other, creating the outer wall of the
perivascular space and forming a donut-shaped
tunnel surrounding the vasculature. These unique
perivascular pathways not only provide efficient
routes for rapid interchange of CSF and ISF, but

also for clearance of soluble proteins and
metabolites from the brain [147].

Particularly, Iliff et al. found that intrastriatal
injected fluorescent or radiolabeled Aβ1–40 is rap-
idly cleared from the mouse brain along the
glymphatic perivenous efflux pathway
[140]. Moreover, AQP4 null mice exhibit slowed
CSF influx through this system and a ~65%
reduction in ISF clearance and a ~45% reduction
in clearance of intrastriatal injected radio labeled
Aβ1–40 [140]. These data highly suggest that
AQP4-dependent astroglial water fluxes couple
the clearance of interstitial solutes, including sol-
uble Aβ from the brain. Further studies have
revealed that the perivascular clearance pathways
are impaired in the aging brain [64]. Compared to
young controls, old mice show dramatic
decreases in the efficiency of exchange between
subarachnoid CSF and brain parenchyma and
clearance of intraparenchymally injected Aβ.
Apart from aging brain, impairment of
glymphatic pathway function has been observed
in mouse models of traumatic brain injury, ische-
mic stroke, AD and PD [65, 141,
148]. Impairments of glymphatic transport in the
above pathological conditions are mainly due to
mis-localization of AQP4 from the perivascular
feet to the soma and non-perivascular processes
of reactive astrocytes. These results imply that
specific expression of AQP4 on the perivascular
end feet of astrocytes is necessary for glymphatic
system-mediated ISF bulk flow. Indeed, recent
studies have shown that voluntary exercise
improves astrocytic AQP4 polarization in aged
mice and APP/PS1 mice, which facilitates
glymphatic clearance of Aβ [149]. AQP4 deletion
in APP/PS1 mice eliminates the alleviating effect
of voluntary exercise in AD-like pathology
[150]. All of these evidences suggest that
targeting AQP4 polarization may be an effective
strategy to prevent brain homeostasis disorders.

7.3.3 Spatial Buffering
of Extracellular Potassium

Astrocytes mediated potassium (K+) homeostasis
is of critical importance for the regulation of
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neuronal excitability. Synaptic activity causes
release of K+ into the extracellular space (ECS).
The ECS K+ is efficiently taken up by astrocytes
through the inward rectifier potassium channel
Kir4.1, then redistributed through the astroglial
syncytium via gap junctions, thereby stabilizing
neuronal activity [151]. The early study reported
that AQP4 is co-localized with Kir4.1 in the end
feet of retinal Müller cells, indicating their func-
tional interaction [60, 152]. By contrast, the
subsequent studies on AQP4 null mice provide
evidence against functional interaction between
AQP4 and Kir4.1 in retinal Müller cells
[153]. However, the deletion of AQP4 in mice
does impair extracellular K+ clearance, which
subsequently affects neuro-excitation with
reduced seizure threshold and increased seizure
duration [154–156]. These results support that
AQP4 contributes to K+ clearance, although the
underling mechanism remains unclear.

Neuronal activity is associated with a shrink-
age of the ECS around the active synapses
[157, 158], which may be dependent on AQP4-
mediated rapid water movement. AQP4 facilitates
water entry into astrocyte processes surrounding
the synapse, transports water through the
astroglial network, and releases distantly into the
ECS surrounding micro-vessels, thus subse-
quently produces a local shrinkage of ECS during
the synaptic activity. Certainly, the AQP4-
mediated rapid transport of intercellular water
would drive reuptake of the ECS solutes includ-
ing K+ by astrocytes, because water serves as a
transport medium for these substances.

7.3.4 Calcium Signal Transduction

Calcium (Ca2+) signaling serves as a mediator of
bidirectional interactions between neurons and
astrocytes. Impaired Ca2+ signaling plays a criti-
cal role in the progression of brain edema
[159]. Recent evidence suggests an involvement
of AQP4 in astrocyte Ca2+ signaling. Deletion of
AQP4 reduces hypo-osmotic stress-evoked Ca2+

signaling in astrocytes [160]. Subsequent func-
tional studies revealed that AQP4 and TRPV4, a
polymodal nonselective cation channel,

synergistically regulate cell volume, and Ca2+

homeostasis [161]. Coimmunoprecipitation and
immunohistochemistry further demonstrated that
AQP4 and TRPV4 co-localize within astrocytes
and retinal Müller glia [161, 162]. Functional
analysis of an astrocyte-derived cell expressing
TRPV4 but not AQP4 shows that cell volume
control, and intracellular Ca2+ response can be
reconstituted by transfection with AQP4 but not
with AQP1 [162]. These data indicate that a
TRPV4/AQP4 complex that constitutes a molec-
ular system that finely regulates astroglial volume
via integrating Ca2+ signaling and water trans-
port, and might exacerbate the pathological out-
come when an edema develops.

7.3.5 Regulation
of Neurotransmission

Glutamate is the most prominent excitatory neu-
rotransmitter in the CNS. Astrocytes absorb
extracellular glutamate via excitatory amino acid
receptors [163]. Glutamate uptake is also
accompanied by water transport, which causes
astrocyte processes to swell around the synapses,
subsequently reducing the extracellular synaptic
space during synaptic transmission and
processing [164]. To restore ECS volume,
astrocytes rapidly transport water into the
surrounding capillary via AQP4 located in the
perivascular end feet. Previous studies demon-
strate that the AQP4 deletion downregulates glu-
tamate transporter 1 expression in astrocytes and
impairs their ability of glutamate uptake [165–
168]. Previous studies also suggested that AQP4
is involved in the metabolism of dopamine, sero-
tonin, and other neurotransmitters [169, 170].

7.3.6 Synaptic Plasticity

There is growing evidence that astrocytes play a
role in long-term potentiation (LTP) and long-
term depression (LTD) [171–173], which could
be regulated by AQP4 [174, 175]. Experiments
using mice with a deletion of the astrocyte-
specific channel AQP4 on hippocampal synaptic



108 M. Xiao et al.

plasticity and spatial memory function has been
investigated by Skucas et al. [176]. The mecha-
nism appears to be related to neurotrophins, and
especially brain-derived neurotrophic factor
(BDNF) because pharmacological blockade of
neurotrophin Trk receptors or scavenging BDNF
restores synaptic plasticity [176]. However, the
underlying mechanism for AQP4 modulating
synaptic plasticity still needs more research.

7.3.7 Adult Neurogenesis

A previous study demonstrated that in
corticosterone-treated model, AQP4 deficiency
aggravates decreased proliferation and survival
of new-born cells in the dentate gyrus
[177]. Recent studies suggest that the develop-
ment of depression-like behavior in
corticosterone-treated models is paralleled by hip-
pocampal neurogenesis, and adult hippocampal
neurogenesis buffers stress responses and depres-
sive behaviors [178, 179]. Thus, the aggravated
neurogenesis inhibition in the hippocampus could
also contribute to the exacerbated depressive
behaviors in AQP4 null mice. This is consistent
with the previous in vitro studies demonstrating
that deletion of AQP4 impairs proliferation,
migration and neuronal differentiation of adult
neural stem cells (ANSCs) [180].

The lack of AQP4 could change the intrinsic
property of ANSCs and enhance the injurious
effects of corticosterone to ANSCs [181]. It has
been revealed that AQP4 is essential for the initi-
ation of intracellular Ca2+ event, including Ca2+

spikes and Ca2+oscillation [160], AQP4 defi-
ciency results in abnormal expressions of Ca2+

handling proteins in skeletal muscle cells and
cardiac muscle cells [182, 183], and it has been
suggested that AQP4 modulates the effects of
corticosterone on ANSCs by regulating Ca2+ sig-
naling [181]. However, the exact mechanisms
still are not fully explored yet.

7.3.8 Energy Metabolism

AQP9 permeability to various molecules suggests
a role in energy metabolism in addition to water

homeostasis [74]. AQP9 plays a role in normal
cell metabolism, under physiological conditions,
and also increase cell stress tolerance, under path-
ological conditions [184]. For instance, AQP9
expression is upregulated by decreased insulin
concentration in diabetic rats [185], after transient
focal cerebral edema [27], in astrocytic tumors
[186], after permanent middle cerebral artery
occlusion [187], and with hirudin treatment after
intracerebral hemorrhage [188]. All these findings
would suggest that AQP9 is involved in astrocyte
energy metabolism and the malignant progression
of astrocytic tumors. Changes in AQP9 expres-
sion may be the consequence of glial cell attempt
to response to hypoxic and ischemic conditions
via facilitating clearance of glycerol and lactate
[10]. In addition, a recent study reports that an
upregulation of AQP9 expression in the brain
plays a compensatory role in response to intracra-
nial hemorrhage, via promoting brain angiogene-
sis, and preventing subsequent neuronal death
and deterioration of neurological outcome [189].

7.3.9 Other Functions

AQP4 is known to be associated with astrocyte
migration in glial scar formation [35, 190], and
involved in facilitating gas diffusion [191] and
cell adhesion between astrocytes [192, 193]. In
terms of metal intoxication, AQP4 may act as
either a neuro-protector or a mediator during the
development of oxidative stress in the brain
[194]. Furthermore, interactions of AQP4 and
TRPV4 (transient receptor potential isoform 4)
could function as an osmoregulatory complex in
astrocytes [195].

7.4 AQPs in Diseases in Nervous
System

It has been observed that AQP4 is clearly
upregulated in several pathological conditions
including brain tumors [196, 197], cerebral ische-
mia [198, 199], traumatic brain injury [40, 200,
201], and neuroinflammation [202]. In general
terms, the upregulation of AQP4 in astrocytes is
associated with edema resolution [1, 40, 202,
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203]. Most cases, the increase and redistribution
of the AQP4 is detected near the lesion site
because of reactive astrogliosis [40, 196,
197]. Indeed, decreased AQP4 expression also
occurs in some pathological conditions like
severe traumatic brain injury [204, 205], epilepsy
[206], and depression [207], which may be
related to atrophy of glial cells or loss of pro-
cesses. Moreover, in the same disease, such as
AD, changes in the expression levels of AQP4 are
variable among different brain areas and different
stages [208]. The above heterogeneity of AQP4
expression is related to the different states of
astrocytes.

7.4.1 Cerebral Edema

The role of AQP4 in cerebral edema has been
extensively established by using AQP4-knockout
models [52, 59, 143]. Considering the timeline of
the newly observed AQP4 changes in ischemia,
some researchers propose that cerebral edema
should be divided into three major types: anoxic,
ionic, and vasogenic edema, to replace two tradi-
tionally categories: cytotoxic and vasogenic
edema [1, 209]. The initial anoxic edema, cur-
rently used, is characterized as the induces of ions
into cells, accompanied by water entry and astro-
cyte swelling, while ionic edema occurs due to

Fig. 7.3 Schematic drawing of AQP4 in 3 different
edema phases: anoxic, ionic, and vasogenic edema.
Anoxic edema is characterized as a swelling of the
astrocytes caused by a disruption of the cellular ionic
gradients and the entry of ions followed by water entry
and leading to cellular swelling. During the ionic edema,

astrocytes become swollen, AQP4 is upregulated.
Vasogenic edema is a result of disruption of the tight
junctions between the endothelial cells, leading to
increased expression of AQP4 and permeability of the
cerebral blood vessels, further contributing to swelling of
astrocytes

further alternations of the endothelial cell’s trans-
capillary flux of sodium ion [210]. The develop-
ment of ionic brain edema is associated with
upregulation of AQP4 [1, 198, 199]. The final
step termed as vasogenic edema, occurs with the
disruption of the tight junction between the cere-
brovascular endothelial cells, which comprise the
BBB. At this time, a second increase of AQP4
expression is observed [198, 209], the presence of
AQP4 is to facilitate clearance of excess fluid in
vasogenic brain edema (Fig. 7.3) [31].

The dynamic spatial distribution of AQP4 at
the astrocyte membrane is one of the two major
modulation following injuries. AQP4 becomes
more uniformly distributed on the astrocyte plas-
malemma, termed as “dysregulation,” which
seems occur in parallel with cytotoxic edema to
counteract early edema formation [40, 211,
212]. Interestingly, the ratio of AQP4-M1 and
AQP4-M23 is increased in the ischemic hemi-
sphere [199], the physiological role of this change
remains unclear. Dysregulation of AQP4 may be
produced via the reduction of the perivascular
laminin, agrin, and ß-dystroglycan, which facili-
tate AQP4 to diffuse freely throughout the astro-
cyte membrane [212, 213]. The true function of
AQP4 dysregulation remains largely
unknown [213].

The activity of ion transporters or channels
that induce AQP4-mediated cytotoxic and ionic
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edema is the other major modulation following
injury [213]. Besides, AQP4 probably integrates
with other astrocyte proteins like connexin-43
(Cx43) and the potassium channel Kir4.1 to elim-
inate the excess fluid [1]. SiRNA to silence the
AQP4 expression, used as a potential drug to
block AQP4, contributes to reduction of the
edema formation after post-traumatic brain injury
[214, 215]. An early study suggests that there is
no convective solute flow in the pathology of
acute brain edema, as proposed in “glymphatic”
system [216]. However, this view is corrected by
a recent study reporting that CSF entry into the
brain along the glymphatic pathway is the princi-
pal mechanism for edema formation and ion per-
turbation during acute ischemic stroke. Spreading
edema depends on AQP4 expression because
deletion of AQP4 significantly suppresses
ischemia-induced CSF tracer influx into the corti-
cal cortex [217].

Fig. 7.4 AQP4 and the pathogenesis of neuromyelitis
optica. (a) AQP4-IgG binds to AQP4 on astrocyte foot
processes. Complement is activated via the classical path-
way with deposition of C5bC9 complexes in astrocyte cell
plasma membranes. (b) Activated complement
components attract peripheral neutrophils into the lesion,

which causing astrocyte death. (c) Dying astrocytes attract
macrophages, causing death of oligodendrocytes and
neurons. (d) Microglia enter the lesion as well as reactive
astrocytes. The lesion core is necrotic with a macrophage
infiltrate

7.4.2 Neuromyelitis Optica

AQP4 specific antibodies have been identified as
the therapeutic target for neuromyelitis optica
(NMO), an autoimmune inflammatory disease of
CNS that develops to paralysis and loss of vision
[33, 218–220]. The binding of AQP4-IgG to
AQP4 on astrocyte end feet is involved in activa-
tion of the complement cascade, a classical
inflammatory response that occurs with pro-
nounced granulocyte and macrophage infiltration,
followed by oligodendrocyte damage, demyelin-
ation, and even neuron death (Fig. 7.4) [220]. To
date, this complement-dependent cytotoxicity
may be the most accepted hypothesis for NMO
pathogenesis [221]. AQP4 IgG generally has
greater binding affinity to OAPs than individual
AQP tetramers [222–224], the structural changes
in the AQP4 epitope upon array assembly greatly
increases complement activation [224]. However,
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AQP4 water permeability and the size of OAPs
are not altered by binding to NMO-IgG [225].

A novel NMO therapeutics that target AQP4,
involves using aquaporumab, a monoclonal anti-
body that blocks the binding of AQP4-IgG to
AQP4 without cytotoxic side-effects
[226]. Another approach to block the binding of
AQP4-IgG and AQP4 is via a small-molecule
blocker strategy [227]. AQP-IgG-targeted enzy-
matic therapeutics involves bacteria-derived
endoglycosidase S (EndoS) and the enzyme
IdeS, which neutralizes NMO-IgG pathogenicity
[228, 229]. Other potential therapeutic strategies
for NMO include reducing the entry of AQP4-
IgG into the CNS or the expression of AQP4 on
astrocytes, as well as preventing the formation of
OAPs, or upregulating complement inhibitor
proteins such as CD59 [6].

Recently, AQP4 specific antibody was applied
for the diagnosis of NMO by using AQP4 extra-
cellular loop-based carbon nanotube biosensor
[230]. Since AQP4-targeted therapies are quite
selective, new drugs (like aquaporumab,
sivelestat, and eculizumab) entered into clinical
trials need to be proved effective for NMO. [203]
Moreover, there exist many important unsolved
questions about the relationship of AQP4-lgG and
NMO. For instance, the role of AQP4-lgG in the
classification of NMO remains uncertain
[231]. Furthermore, it is largely unknown about
the reason why peripheral AQP4-expressing
organs cannot be damaged by AQP4-IgG. Further
studies in patients worldwide could help to iden-
tify more genetic susceptibility factors for
NMO [232].

7.4.3 Brain Tumor

It has been clearly established that AQP1 expres-
sion is upregulated in brain astrocytomas [14, 45,
233] and positively correlated with the grade of
malignancy, which is associated with angiogene-
sis and tumor invasion [7, 32, 234]. In this case,
the AQP1 polymorphisms could be used as a
survival prognosticator in patients suffering
from glioblastoma multiforme [235]. One possi-
ble mechanism could be the induction of cell

migration mediated by the water permeation of
AQPs in “Osmotic Engine Model” [236], or the
water influx into the cells leading to an expansion
of their lamellipodia [237]. AQP1 expression is
also upregulated in other brain disorders includ-
ing choroid plexus tumors [238],
subependymomas [239], and neoplastic invasive-
ness [240, 241].

AQP4 is expressed in astrocytoma cells and
around the tumor [197]. And its expression is
upregulated in astrocytoma and glioblastoma
[12, 197]. A role for AQP4 in cell migration and
cell–cell adhesion suggest its involvement in pro-
moting glioblastoma cell migration, glioma inva-
sion, and glioblastoma cell apoptosis [35, 190,
192, 242–244].

The possible mechanism is that AQP4 induces
cell morphological changes via polarizing to cell
lamellipodia and inducing an increased number or
size of lamellipodia in migrating cells [242–
244]. Structure of AQP4 (including OAPs) sug-
gest its role in channel-mediated cell adhesion
[192]. However, absence of such abnormalities
in AQP4 knockout mice raises the argument
about whether AQP4 plays a role in cell–cell
adhesion [113]. Once, data against involvement
of AQP4 in cell adhesion were demonstrated
[245]. However, recent experiments display that
the larger AQP4-M23 rich OAPs could bind with
adhesion complexes [83]. So it could be
speculated that whether AQP4 plays a role in
cell adhesion is determined by the involvement
of OAPs.

7.4.4 Alzheimer’s Disease

Alzheimer’s disease (AD) is the most common
neurodegenerative disease among the elderly and
characterized by Aβ plaque deposition, neurofi-
brillary tangles, and neuronal and synapse loss in
learning and memory related regions [246]. It has
been adequately reported that AQP1 plays impor-
tant role in neurodegenerative disease like AD
[47, 247–249] and Parkinson’s disease
(PD) [46]. AQP1-expressing fibrillary astrocytes
are closely around Aβ plaques in patients with
AD [47] or prion plaques in GSS disease [250],
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suggesting an involvement in plaque formation.
AQP1 is abnormally expressed by neurons in the
brain of AD patients [247] and transgenic AD
mice [251–253]. Upregulated expression of
AQP1 in neurons may inhibit Aβ production by
reducing the interaction between β-amyloid pre-
cursor protein and β-secretase [248, 254].

As mentioned earlier, activated astrocytes
accompanied with altered polarization of AQP4
occur in the brain tissues of patients with AD and
several AD models [61, 62, 247], indicating an
involvement in AD pathology. A recent study
reported that the AQP4 gene deletion in
APP/PS1 transgenic AD model mice impairs Aβ
clearance from brain parenchyma and exacerbates
spatial learning and memory defects associated
with more severe Aβ plaque deposits and synaptic
protein loss [255]. This finding provides the direct
evidence for a key role of AQP4 in the pathogen-
esis of AD. Actually, accumulatively direct and
indirect evidences have indicated that AQP4
affects the onset and progress of AD via various
mechanisms, such as Aβ clearance, glutamate
transduction, synapse plasticity, Ca2+ signal
transduction, neuroinflammation, and
neurotrophic factor secretion [64, 65, 140, 148,
162, 255–258]. For example, reactive gliosis with
loss of perivascular AQP4 polarization impairs
the glymphatic pathway function, causing reduc-
tion in CSF-ISF exchange and Aβ deposition in
cortical and leptomeningeal vessels [139].

In agreement with animal experiment results,
glymphatic transport ability of AD patients has
been found to be lower than that of healthy
controls of the same age, via assessment of
perivascular fluid movement with diffusion tensor
magnetic resonance imaging [259]. Loss of
perivascular AQP4 localization is associated
with increased Aβ deposition [260]. Perivascular
AQP4 localization is preserved among
individuals older than 85 years who remains cog-
nitively intact, highlighting a critical role of
AQP4 polarity in maintaining cognitive function
during the age process [260]. This review is fur-
ther supported by the fact that alterations in AQP4
expression and localization in the fronto-temporal
lobe are associated with AD status and pathology.
A noncoding Aqp4 SNPs may contribute to these

changes [261]. In addition, a recent study
reported that functional variants in AQP4 modu-
late deep non-rapid eye movement sleep and cog-
nitive consequences of prolonged wakefulness
[262]. These data suggest that AQP4 SNPs may
affect sleep quality that is one of key factors in the
occurrence and progression of patients with
AD. More evidence is necessary in order to con-
firm this presumption. Together, these results
from both animal and human studies indicate
that AQP4 is vital for glymphatic clearance, thus
serving as a hopeful target for prevention and
treatment against AD.

7.4.5 Other Diseases in Nervous
System

AQP1 is also upregulated expression in other
brain disorders including spinal cord injury
[263], cerebral edema [264, 265], neoplastic inva-
siveness [232, 233], NMO-spectrum disorders
[266], Gerstmann-Sträussler-Scheinker (GSS)
disease [259], and Creutzfeldt-Jakob disease
[248]. Moreover, it seems that there is a possible
link between AQP1 and neuropathic pain sensa-
tion, since pain responses are decreased in con-
sistence with reduced AQP1 expression
[39, 263]. Based on these findings, AQP1
inhibitors could be used as potential drugs in
treatment of these brain diseases [7, 37,
258]. Interestingly, AQP1 could be inhibited by
melatonin in rodents with spinal cord injury and
agmatine in cerebral edema [263, 264],
suggesting that melatonin and agmatine agonists
could be used as such potent agents.

AQP4 null mice demonstrate that AQP4 defi-
ciency reduces neuroinflammation, in support of
a deleterious role of AQP4 in the pathophysiol-
ogy of multiple sclerosis [267]. Similarly, AQP4
deletion is neuroprotective after severe global
cerebral ischemia [268] and micro-traumatic
brain injury in mice [269]. However, the absence
of AQP4 shows more hyperactive microglial
inflammatory responses, potentially increasing
the severity of PD [46, 270]. Moreover, AQP4
knockout in mice produces several impairments
in neuro-excitation phenomena including
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hearing, vision, olfaction, epilepsy, and cortical
spreading depression [271]. Besides, AQP4 defi-
ciency impairs synaptic plasticity and associative
fear memory in the lateral amygdala [167], causes
an impairment of blood–retinal barrier [272], and
increases capillary density in the brain [273].

7.5 Modulators of AQPs in the CNS

It has been proposed that AQP4 modulators have
potential utility in the treatment of AQP4 related
brain diseases [274, 275]. AQP4 inhibitors such
as vasopressin, melatonin, PKC, mercury (Hg+),
trombin, dopamine, hypoxia, tetraethy-
lammonium (TEA), bumetanide, acetazolamide
(AZA), siAQP4, curcumin, and H2S may be
regarded as potential therapeutic drugs for cyto-
toxic brain swelling, seizure, glial scar [215, 275–
279]; while the AQP4 enhancers including gluta-
mate, syntrophin, dystrophin, connexin
43 (Cx43), K+ (Na+, K+-ATPase; NKCC1),
Kir4.1, lead (Pb2+), cyclic AMP, and lactic acid
have therapeutic potentials in reducing vasogenic
brain swelling [154, 275, 280, 281]. AQP4
modulators could offer new therapeutic options
for many brain disorders like preventing tumor
malignancy in glioblastoma [10]. Notably, many
of the AQP4 modulators have been experimen-
tally examined in isolation. However, these
factors are likely to interact after injury [213]. A
recent study confirmed that TGN-020, the novel
AQP4 inhibitor, inhibits glymphatic CSF
lymphatic-ISF exchange and tau protein clear-
ance from the brain [282]. These studies further
support AQP4 as a promising druggable target for
regulation of the glymphatic system function and
related neurological diseases.

7.6 Future Directions

AQPs are involved in a variety of important phys-
iological process in the CNS, by coordinating
water and solutes trafficking among the different
fluid compartments [10]. Specific upregulation of
some AQPs expression along with their involve-
ment in brain edema formation has been

consistently investigated by many scientists. It
has been strongly suggested that AQPs could
represent important targets in treatment of cere-
bral edema, brain tumor [14, 32], CNS autoim-
mune disease [33], neurodegenerative disorders
[34], and psychiatric disorders [283, 284]. How-
ever, we are still far from having a full compre-
hension of the physiological and pathological
significance of all AQPs in the CNS
[285]. Although AQP inhibitors or agonists have
been used to treat brain edema in laboratory
animals, their clinical application is still a long
way off. To date, the major challenge is still to
facilitate drug delivery across the BBB
[286]. Considering the importance of AQPs in
brain disorders, it will be of great achievement
to find out novel drugs capable to cross the BBB
and to selectively suppress AQP
upregulation [10].
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Abstract

Recent studies have shown that aquaporins
(AQPs) are involved in the regulation of car-
diovascular function and the development of
related diseases, especially in cerebral ische-
mia, congestive heart failure, hypertension,
and angiogenesis. Therefore, further studies
are needed to elucidate the mechanism
accounting for the association between AQPs
and vascular function-related diseases, which
may lead to novel approaches to the preven-
tion and treatment of those diseases. Here we
will discuss the expression and physiological
roles of AQPs in vascular tissues and summa-
rize recent progress in the research on AQPs
related cardiovascular diseases.

Keywords

Aquaporin · Cerebral ischemia · Congestive
heart failure · Hypertension · Angiogenesis

8.1 Introduction

The cardiovascular system (CVS) comprises the
heart and blood vessels, including arteries,
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capillaries, and veins [1, 2]. In the embryo, the
CVS is the first functional organ system to
develop. The main functions of CVS are
transporting oxygen, active compounds
(nutrients, metabolic intermediates, hormones,
etc.), and waste products throughout the body.
Once damaged, CVS has a very limited capacity
for regeneration [3]. Therefore, exploring CVS
diseases and regulatory mechanisms has always
attracted great attention. Identification of novel
therapeutic targets would provide opportunities
for developing more effective strategies.

Aquaporins (AQPs), a family of transmem-
brane proteins present in almost all species
including viruses [4], mediate the permeability
of water and some small molecules across cell
membranes driven by osmotic or concentration
gradient. Since the first AQP was identified in
red blood cells in 1991, 13 AQPs (AQP0–12)
have been identified in mammals [4, 5], which
regulate various important biological functions in
the kidney, brain, lung, digestive system, eye,
skin, etc. Consequently, dysfunction of AQPs
leads to a diverse range of diseases. Studies
have shown that AQPs are also involved in the
regulation of cardiovascular function and the
development of related diseases, especially cere-
bral ischemia, congestive heart failure, hyperten-
sion, and angiogenesis. Meanwhile, because of
the intrinsic undruggable aquaporin pore
compounded by issues with the reproducibility
of current assays, the development of AQP
drugs made little progress [6]. Therefore, further

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-7415-1_8&domain=pdf
mailto:xjli@bjmu.edu.cn
mailto:tielu@bjmu.edu.cn
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studies are needed to elucidate the mechanism
accounting for the association between AQPs
and cardiovascular diseases, which may lead to
novel approaches to the prevention and treatment
of those diseases.

8.2 Expression and Physiological
Function of AQPs
in the Cardiovascular System

AQP1, AQP4, AQP7, and AQP9 have been
found in the cardiovascular system. They distrib-
ute in the heart, endothelial cells, and vascular
smooth muscle cells [7, 8], and participate in the
transportation of water, glycerol, and lactic acid,
which play an important role in vascular physio-
logical function. AQP function may be related to
the pathological process of CVS diseases. AQPs
have a specific distribution pattern in
cardiomyocytes, but whether their presence is
essential for proper (electro)physiological cardiac
function has not intensively been studied [9].

8.2.1 AQP1

AQP1 is widely distributed in the body where it
plays a role in the regulation of water transport.
AQP1 is also essential in angiogenesis, cell
migration, and cell growth of microvessels in
the kidney, lung and airways, secretory glands,
skeletal muscle, pleura, and peritoneum. AQP1
was also expressed in endothelial cells in the
cornea and lacteals of the small intestine [10, 11].

The cardiac AQP presence and expression
depend on various species, sex, development,
and aging, with data sometimes being contradic-
tory between species, such as the expression of
AQP1 is high in the rat embryonic heart, but its
expression level was substantially reduced after
birth, whereas mice showed an even further
decrease postnatally. Aging increased AQP1 and
AQP4 expression levels in the myocardium of db/
db mice [9, 12, 13]. AQP1 facilitates trans-
endothelial water movement in osmotically
driven membrane processes. More and more
data show that AQP1 can mediate the transport

of small molecules such as urea, CO2, NH3,
H2O2, nitric oxide (NO), Sb(OH)3, As(OH)3
[5, 14–16]. As the main isoform in cardiac
myocytes, AQP1 expression level correlates
with the severity of hypertrophic remodeling. A
recent study by Montiel et al. showed that cardiac
hypertrophy is caused by AQP1-mediated trans-
port of H2O2 [12]. Extracellular H2O2 was a
major involvement in the hypertrophic response.
NADPH oxidase-2 (NOX2) can produce super-
oxide anions in the extracellular space and then
rapidly dismutated by superoxide dismutase 3 to
H2O2. AQP1 has been found to be colocalized
with the p47phox subunit of NOX2 at the periph-
eral plasma membrane, which facilitated H2O2

transport and activated the oxidant-sensitive
kinases (ERK/MAPK) signaling pathway in
myocardial hypertrophy (Fig. 8.1). Therefore,
inhibition of AQP1 may provide a new direction
toward the effective treatment of hypertrophic
cardiomyopathies. In CVS diseases, AQP1
regulates the entry of NO into endothelial cells
and affects vascular tension and blood pressure
by controlling NO levels, bioavailability, and dif-
fusion distance [9, 17]. In liver cirrhosis, AQP1 is
upregulated in the fibrotic diaphragm of the liver
and promotes angiogenesis by enhancing endo-
thelial invasion/proliferation [18].

AQP1 knockout attenuated the angiogenesis,
fibrosis, and portal hypertension that follows bile
duct ligation in mice [19, 20]. In retinal vascular
endothelial cells, AQP1 is involved in hypoxia-
inducible angiogenesis through a VEGF signaling
pathway independent manner [21, 22]. However,
in oxygen-induced retinopathy microvessel pro-
liferation was not affected in AQP1 knockout
neonatal mice [23, 24].

Moreover, AQP1 is highly expressed in micro-
vascular endothelial cells in malignant tumors.
Inhibited tumor growth and reduced vascularity
with extensive necrosis were found in AQP1
knockout mice after subcutaneous or intracranial
tumor implantation [25, 26]. Our previous study
demonstrated that a carbonic anhydrase inhibitor
acetazolamide could inhibit AQP1 protein
expression and angiogenesis in tumor tissues
(Fig. 8.2) [27]. AQP1 DNA immunity based on
the ubiquitin-proteasome system can directly
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Fig. 8.1 AQP1 and
myocardial hypertrophy.
AQP1 has been found to be
colocalized with NOX2 at
the peripheral plasma
membrane, facilitated H2O2

transport, and activated the
oxidant-sensitive kinases
(ERK/MAPK) signaling
pathway in myocardial
hypertrophy [12]

damage the vascular system of melanoma tumors,
thereby inhibiting tumor growth in mice
[28, 29]. Therefore, targeting to regulate AQP1
expression in vascular endothelial cells may play
a positive role in tumor angiogenesis and
treatment.

8.2.2 AQP4

AQP4 is mainly expressed in the central nervous
system and is highly expressed in the brain, spinal

Fig. 8.2 AQP1 and angiogenesis. Expression of AQP1 in
capillaries (a, b) and postcapillary venules endothelial cell
(c, d) of the primary tumor; (a) and (c) untreated group, (b)

and (d) treated with acetazolamide. (e) AQP1 in endothe-
lial cells could assist cell migration and promote
angiogenesis

cord, and optic nerve [30–34]. AQP4 mainly
exists in astrocytes surrounding cerebral
capillaries and is distributed in the astrocytic
foot processes, external glial limiting membrane,
ependyma, and subependymal internal glial. Most
scientists do not think that AQP4 is expressed in
cerebrovascular endothelial cells. However,
Amiry-Moghaddam and colleagues demonstrated
that AQP4 is expressed in brain endothelial cells
by using immunogold electron microscopy, at
lower levels than in astrocytes [35, 36]. A selec-
tive knockout of the AQP4 in the astrocytic foot
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processes delayed cerebral edema, despite the
presence of a normal complement of endothelial
AQP4. But whether the endothelial AQP4 is
involved in maintaining water balance in the
brain is still elusive.

AQP4 plays an important role in the blood–
brain barrier and blood–cerebrospinal fluid bar-
rier by maintaining the balance of brain water in
the central nervous system [37]. The highly
polarized AQP4 expression (in glial membranes
that are in direct contact with capillaries and pia)
indicates that AQP4 mediates the flow of water
between glial cells and the cavities filled with
CSF and the intravascular space. AQP4 defi-
ciency impairs the migration of mouse astrocytes.
In addition, AQP4 deficiency impairs the migra-
tion of astrocytes cultured in vitro, which shows
that another role of AQP4 is to promote astrocyte
migration and neural signal transduction.
[38, 39]. In the heart, the content of AQP4 in
mouse cardiomyocytes is higher than that in rat
cardiomyocytes [10].

8.2.3 AQP7

AQP7, a water/glycerol transporting protein,
regulates adipocyte glycerol efflux and influences
lipid and glucose homeostasis, mainly distributed
in adipose tissue, testis, cardiac and striated mus-
cle, and renal proximal tubules. A microarray
study showed that the heart was the second big-
gest expression tissue of AQP7 mRNA after adi-
pose tissue [40], but studies on the cardiac role of
AQP7 are limited. In 2009, Hibuse and
colleagues demonstrated that AQP7 knockout
mice have lower cardiac glycerol and ATP con-
tent than those of wild-type mice [41]. Thomas
Hospital's solution 2 (STH2) is usually used to
protect the myocardium during surgery, but
AQP7 deficiency does not affect the protective
efficacy of STH2 [42]. Under basal conditions,
AQP7 knockout mice had normal cardiac histol-
ogy and morphology; when injections of isopro-
terenol or subjected to transverse aortic
constriction (TAC), AQP7 knockout mice devel-
oped advanced hypertrophy and lower survival
than wild-type mice, indicating the importance

of glycerol as a cardiac energy substrate [41]. In
addition, AQP7 was expressed in capillary endo-
thelial cells of adipose tissue, but its functions
remain to be fully elucidated [43, 44]. Therefore,
it is necessary to clarify the physiological and
pathological significance of cardiac and endothe-
lial AQP7 in the future.

8.2.4 AQP9

AQP9 is also an aquaglyceroporin and has per-
meability to water, monocarboxylate, glycerol,
urea, and other small neutral solutes. AQP9 has
two isoforms: a short isoform located on the inner
membrane of mitochondria, and a long isoform
located within the cell membrane [45–47]. AQP9
is distributed in the brain, liver, spleen, testis, and
other tissues. The expression of AQP9 is also
detected in the endothelial cells of pial blood
vessels [48, 49]. AQP9 is believed to contribute
to extracellular water homeostasis, and its func-
tional effects are similar to AQP4 [50]. AQP9
might participate in brain energy metabolism. It
is also expressed in neuronal mitochondria and
glucose-sensitive neurons, and its expression
could be negatively regulated by insulin
[49]. AQP9 is involved in the transport of lactate
and ketone bodies across the blood–brain barrier.
It has been suggested that AQP9 may participate
in the clearance of excess lactate and other
metabolites during cerebral ischemia [45]. More-
over, AQP9, as an aquaglyceroporin, is expressed
in many types of immune cells and plays impor-
tant role in tumor initiation and progression.
However, the relationship between AQP9 and
tumor-infiltrating cells, and its prognostic value
in cancers still require comprehensive
understanding [51].

8.3 AQPs and Cardiovascular
Disease

8.3.1 Cerebral Ischemia

Stroke is a complex and destructive neurological
disease with limited treatment options. In
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ischemic stroke, edema is the main factor leading
to the aggravation of stroke, and brain edema is a
serious complication of stroke. Therefore, edema
is an important target for the treatment of stroke.
Early edema formation can significantly contrib-
ute to infarct formation and thus represents a
promising target. Seven AQP subtypes, including
AQP1, AQP3, AQP4, AQP5, AQP8, AQP9, and
AQP12, have currently been identified in the
brain. Among them, AQP1, AQP4, and AQP9
are the most abundant AQPs in the brain. The
expressions of AQP4 and AQP9 were changed
during cerebral edema after ischemic stroke, but
AQP1 expression was unchanged [52, 53]. AQP4
expression was found to be increased on astrocyte
endfeet in the core and the border of the lesion 1 h
after cerebral ischemia, and increased in
astrocytes in the border of the lesion over the
whole cell for 48 h after ischemia; both were
coinciding with the peak of cerebral edema
[53]. AQP4 was more abundant in the early
stage of cerebral ischemia [54, 55]. A novel
Ser111Thr variant exists in AQP4 in cerebral
ischemia patients [56]. Various studies have
shown that AQP4 deficiency mice exhibited a
significant reduction in infarct volume and
improvement in neurological prognosis after
cerebral ischemia. AQP4 deficiency can partially
prevent the destruction of the blood–brain barrier
and reduce neuroinflammation caused by cerebral
ischemia [57–59]. Hastings and colleagues
demonstrated that cerebral hemispheric edema
was reduced in AQP4 null mice 1 hour after
ischemia [57]. In addition, Hirt and colleagues
reported that AQP4 absence on behavioral
outcomes and lesion volume was not associated
with the reduction of edema formation on days
3 and 7 after ischemia [60].

The expression of AQP9 was significantly
induced 24 h after ischemia and increased gradu-
ally with time, which had nothing to do with cell
swelling [53]. Its functional roles remain to be
fully elucidated. A few studies have examined the
associations between AQP3, AQP5, or AQP8 and
cerebral ischemia. Yang and colleagues
demonstrated that the expression of AQP3,
AQP5, and AQP8 enhanced until 24 h after

cerebral ischemia in the border region but
decreased 6 h after ischemia in the ischemic
core, suggesting their involvement in edema for-
mation after cerebral ischemia [61, 62]. Therefore,
the selective regulation of aquaporin may provide
a new and effective strategy for the treatment of
cerebral ischemia.

8.3.2 Congestive Heart Failure (CHF)

The end-stage manifestation of most heart
diseases is heart failure, of which the most typical
end-stage manifestation is congestive heart failure
(CHF), accompanied by disturbance of water
excretion. Acute CHF aggravation stimulates the
pituitary gland, resulting in activation of the
renin-angiotensin-aldosterone system (RAAS)
and increased release of adrenocorticotropin
(ACTH) and arginine vasopressin (AVP). Subse-
quently, sodium and water retention are induced.
The kidney is essential for the reabsorption of
water and the retention of water and sodium.
AVP increases the water permeability of the kid-
ney collecting tube cells, allowing more water to
be absorbed back into the blood from the urine of
the collecting tube. In addition, AVP acts on the
V2 receptor in the renal collecting duct, thus
regulating the expression and transport of AQP2
[63–65]. AQP2 is a promising marker of the
concentrating and diluting ability of the kidney.
AVP triggers a reversible translocation of AQP2
from intracellular storage vesicles into the apical
plasma membranes (APM) over several minutes,
and AQP2 protein levels could be elevated by
AVP over a period of hours to days [63, 66,
67]. Renal AQP2 expression is significantly
increased in CHF rats, whereas other subtypes
of AQP expressions (such as AQP1 and AQP3)
were unaltered. Besides its expression, urinary
excretion of AQP2 was also markedly increased
in CHF patients [68, 69]. There is a close correla-
tion between plasma AVP levels, renal AQP2
expression, and the severity of CHF. Administra-
tion of V2 receptor antagonist tolvaptan could
downregulate renal AQP2 protein levels in CHF
rats [70]. Tolvaptan was approved in 2009 by
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FDA to treat hyponatremia associated with CHF,
however, the ideal responders to tolvaptan have
not yet been identified. AQP2 may be served as
an ideal predictor of response to tolvaptan and
guide its treatment in the future [71].

8.3.3 Hypertension

Hypertension is a common cardiovascular dis-
ease, that can lead to heart disease, stroke, as
well as hypertensive retinopathy, and chronic
kidney disease. Blood pressure (BP) is affected
by various factors, including peripheral resis-
tance, vessel elasticity, blood volume, and cardiac
output. Therefore, the mechanism of hypertension
is too complex. Recently, much interest focused
on the role of AQPs in the pathophysiology of
hypertension. In spontaneously hypertensive rats
(SHR), AQP2 expression in renal tubule epithe-
lial cells is upregulated, along with activation of
the cAMP pathway induced by AVP
[72, 73]. Same results have been found in
DOCA-salt hypertensive rat model [74]. In addi-
tion, treatment with AVP V2 receptor antagonist
would lower BP and urinary osmolarity, and alle-
viate urinary AQP2 levels both in control and
SHR, indicating AQP2 and AVP are involved in
the pathogenesis of hypertension in spontane-
ously hypertensive [75]. In addition to AQP2,
the expression of AQP1 and AQP3 in the medulla
of SHR also increased significantly compared
with the corresponding control group (WKY
rats), while the expression change of AQP4 was
not significant [73].

Klein Fukuoka and colleagues demonstrated
that medullary AQP2 expression was decreased
in response to angiotensin II or norepinephrine-
induced acute hypertension [76, 77]. Alterations
in the expressions of AQPs in the brain were also
found during hypertension. AQP1 expression was
increased in the choroid plexus epithelium of
SHR, and elevated AQP4 expression was found
in the frontal cortex, striatum, and hippocampus
of SHR compared to control WKY rats [78]. The
increased AQPs expression may modulate the
fluid exchange between the blood–brain barrier

and blood–CSF barrier, and evoked an acute
increase in blood pressure and impairment of the
blood–brain barrier.

In 2007, Herrera and colleagues reported that
AQP1 mediated transfer of NO at a K1/2 (the
concentration of NO that produces half of the
maximum transport rate) of 0.54 μmol/L, and
knockdown of AQP1 by siRNA could prevent
NO release by 44% in endothelial cells
[11]. They further (2007) demonstrated that
AQP1 facilitated transport of NO out of endothe-
lial cells and influx into vascular smooth muscle
cells, and got involved in endothelium-dependent
vascular relaxation [9]. However, humans with
AQP1 deletion and AQP1 knockout mice do not
suffer from hypertension, so the role of AQP1 in
hypertension requires further investigation
[79, 80].

8.3.4 Pulmonary Hypertension

Hypoxic pulmonary hypertension (HPH) is
characterized by excessive proliferation and
migration of endothelial and smooth muscle
cells. AQP1 has been revealed to play a promi-
nent role in the proliferation and migration of
pulmonary artery smooth muscle cells. However,
its potential role in the pathogenesis of pulmonary
hypertension (PH) has not been addressed so far.
Studies have found that AQP1 directly drives
hypoxia-induced vascular remodeling, increased
pulmonary arterial pressure and right ventricle
hypertrophy. AQP1 deficiency could directly
reverse dysregulation of pulmonary artery smooth
muscle cells (PASMCs) and primary mouse lung
endothelial cells induced by hypoxia [81]. AQP1
promotes the proliferation and migration of
PASMCs via upregulation of β-catenin protein
levels [82]. Higher endothelial AQP1 expression
leads to an increase in the critical pressure of
subendothelial intimal compression and a
decrease in arterial wall hydraulic conductivity
[83]. These findings thus offer novel insights
into the pathogenetic understanding of HPH and
propose AQP1 as a potential therapeutic target.
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8.3.5 Angiogenesis

Angiogenesis plays a critical role in both physio-
logical functions and disease pathogenesis.
Excessive angiogenesis can promote neoplastic
diseases and retinopathies, while inadequate
angiogenesis can lead to aberrant perfusion and
impaired wound healing. Angiogenesis is
regulated by many factors, such as VEGF,
PDGF, TGF-β, FGF, ANG, NOTCH, WNT, etc.
Recently, AQPs have been shown to be involved
in angiogenesis, especially in tumor angiogene-
sis. Tumor angiogenesis includes three
procedures: (1) matrix breakdown (2) prolifera-
tion, migration, and differentiation of endothelial
cells, (3) supplement of periendothelial cells [84].

In brain cancer and glioblastoma, AQPs
expression is positively correlated with tumor
histological differentiation [85–87]. In other
cancers, such as breast cancer, brain cancer, and
multiple myeloma, high expression of AQPs
results in localized edema that aggravated matrix
breakdown [26, 88, 89].

AQP-dependent cell migration has been found
in a variety of cell types both in vitro and in vivo
(Fig. 8.2). Saadoun et al. found that upregulated
expression of AQP1 in tumor microvascular
endothelial cells could assist cell migration and
its expression was positively correlated with
tumor microvascular density. AQP1 deletion
reduces endothelial cell migration and inhibits
tumor angiogenesis and growth [25, 90]. Tumor
cells with high expression of AQP1 have stronger
metastatic potential and increased local invasion.
When AQP1 was deleted, the migration ability of
proximal tubular epithelial cells was impaired. In
addition, impaired cell migration was also
observed in corneal epithelial cells, intestinal
cells, and skin keratinocytes with AQP3 deletion
[90], while AQP4 deletion mainly slowed down
the migration of astrocytes, thus impaired glial
scar formation after brain injury [87]. The mech-
anism of AQPs and cell migration is not clear, and
further research is needed.

The study of aquaporin and tumor angiogene-
sis provides a theoretical basis for tumor treat-
ment. AQPs-mediated water influx may affect the
proliferation, migration, metastasis, and

angiogenesis potential of cancer cells. Provides
a new direction for tumor treatment and helps to
improve the treatment of various tumors and their
poor prognosis [91, 92].

8.4 Summary

Due to the diversity and complexity of the AQP
family, the cardiovascular system may require a
variety of AQP subtypes to collaborate to finish
their normal physiological function. It is neces-
sary to study the expression and function of AQPs
in the cardiovascular system further from the
level of integration. AQPs are involved in many
related disease occurrences, development, and
cardiovascular function regulation. It has impor-
tant clinical significance to understand the accu-
rate correlation between AQPs expression
variation and cardiovascular diseases, which can
provide new ideas and methods for cardiovascu-
lar disease treatment.
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Abstract

Aquaporins (AQPs) are water channel proteins
facilitating fluid transport in alveolar space,
airway humidification, pleural fluid absorp-
tion, and submucosal gland secretion. In this
chapter, we mainly focus on the expression of
four AQPs in the lungs, which include AQP1,
AQP2, AQP4, and AQP5 in normal and dis-
ease status, and the experience of AQPs func-
tion from various model and transgenic mice
were summarized in detail to improve our
understanding of the role of AQPs in fluid
balance of respiratory system. It has been
suggested that AQPs play important roles in
various physiology and pathophysiology
conditions of different lung diseases. There
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still remains unclear the exact role of AQPs
in lung diseases, and thus continuous efforts
on elucidating the roles of AQPs in lung phys-
iological and pathophysiological processes are
warranted.
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Aquaporins · Lung disorders · Fluid transport

9.1 Introduction

Respiratory system by definition includes respira-
tory center located in brain stem; respiratory mus-
cle including external and internal intercostal
muscle, sternocleidomastoid muscle, and dia-
phragm; airways including upper airway and
lower airway; alveolus and surrounding pulmo-
nary and systemic circulation. Each part has spe-
cific function and mainly carries the function of
ventilation and oxygenation with coordination of
ventilation and pulmonary circulation that
provides adequate oxygen delivery to distal
organs. However, the lungs also have metabo-
lism, defending, immune, and fluid transport
function. The fetus lung is filled with fluid before
the fetus is delivered, and the fluid inside of the
lungs is absorbed immediately to keep the lungs
relatively dry to maintain adequate ventilation
and oxygenation after delivery. When the lungs
or airways were insulted, it may bring fluid trans-
port disorders, such as airway and lung edema,

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-7415-1_9&domain=pdf
mailto:song.yuanlin@zs-hospital.sh.cn
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pleural effusion, etc. However, if there is extra
fluid absorption, the airway may become rela-
tively dry and induce thick sputum and
subsequent airway inflammation. Thus, it is criti-
cal to keep fluid balance in alveolus, interstitial
space, airway and pleural space to maintain nor-
mal respiratory function.

The fluid transport follows few rules: the
osmotic fluid transport due to osmotic gradient;
the Starling mechanism due to hydrostatic pres-
sure; and the fluid pinocytosis. It has been a long
history for the researchers to discover that the cell
membrane expresses a water channel aquaporin
(AQP) to control fluid transport [1]. Since the first
report of AQP1 in red blood cells, there were
numerous publications addressing expression
and function of AQPs in various organs including
respiratory system. So far, there are four AQPs
expressed in the lungs, including AQP1 in the
vascular endothelium and pleural membrane,
AQP3 in epithelium of large airway, AQP4 in
epithelium of small airways, and AQP5 in alveo-
lar type I cells and submucosal glands. In this
chapter, the expression of above mentioned
AQPs in normal and disease status, and the expe-
rience of AQPs function from various model and
transgenic mice were summarized in detail to
improve our understanding of the role of AQPs
in fluid balance of respiratory system.

9.2 Expression of AQPs in Lungs
and Airways

There are four AQPs expressed in the lungs
including AQP1, AQP3, AQP4, and AQP5.
AQP1 is expressed in the endothelium of pulmo-
nary capillary, vein, and artery [2, 3], the apical
and basolateral membrane of the microvascular
endothelium within pleural membrane, including
inner and outer membrane [4]. AQP3 is located in
the basolateral membrane of basal cells of the
tracheal epithelium and in submucosal gland cell
membranes in rodents and in apical membrane of
bronchioles and type II alveolar epithelial cells
(ACEs) of adult humans, while AQP4 is
expressed in the basolateral membrane of colum-
nar cells in the bronchi and trachea of rats and in

type I AECs in humans [5–8]. AQP5 is expressed
in apical membrane of type I ACEs, as well as
apical membrane of serous cells of upper airway
submucosal glands, it has also been detected in
type II AECs in mice [8, 9]. Some studies show
AQP5 is also expressed at apical membrane of
ACEs [10].

Levels of AQPs expression depend on timing
of lung development and pathological conditions.
There is a dramatic difference of AQPs expres-
sion in airway and alveolar epithelium before and
after birth delivery. The underlying mechanism
might be the accommodation of fluid transport
because airway epithelium and alveolar epithe-
lium play an important role in fetal lung fluid
secretion before delivery and turn to absorption
function after delivery to clear lung fluid for
oxygenation. Most of the studies about AQPs in
fetal lungs are derived from animal experiments.
Fetal sheep have been used as an important ani-
mal model for lung developmental studies, partic-
ularly of factors regulating the physiological
development of the fetal lung [11, 12]. Sheep
fetal lungs express AQP1, AQP3, AQP4, or
AQP5 in mRNA and protein levels during mid-
term gestation [13]. Rat fetal lungs express very
little AQPs before birth, and only AQP1 and
AQP4 in rats has been detected at present before
birth [14–16]. Although AQP1 expression in
mRNA and protein levels in the lungs of fetal
and neonatal rats is increased when treated with
syn- thetic glucocorticoids [7, 15], little is known
about the physiological factors to control its
expression before birth. Besides, Ya sui et al.
[15] found that AQP4 could be induced to
increase by corticosteroids and β-adrenergic
agents. However, AQP5 mRNA expression in
very low level was detected before birth in
mice [13].

The deletion of one or more AQP genes in the
studies of mice suggested that AQPs are not
essential for neonatal survival [17]. However,
what is true in mice may not be true for all
species, including humans [18]. Because the
expression and distributions of different AQPs
in the lungs vary from the different species, it is
difficult to make a consistent conclusion about the
physiological role of AQPs in fetal lung
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development and the transition to extra-uterine
life at birth, especially in the species with long-
gestation such as humans.

9.3 Functions of AQPs in Lung
Fluid Transport

Besides ventilation and oxygenation, the lungs
exert other biological functions such as lung
fluid transport, metabolism, cell migration,
immune defense, etc. Herein, lung fluid transport
refers to the alveolar fluid balance, airway hydra-
tion, pleural fluid transport, and submucosal
glands secretion.

9.3.1 Alveolar Fluid Balance

Fluid transport between alveolar and capillary
endothelium presents with several forms includ-
ing the osmotic fluid transport, blood–gas barrier
disruption induced fluid leakage and hydrostatic
fluid transport. AQP1 and AQP5 are mainly
expressed at apical membrane of capillary endo-
thelial cells and type I AECs [8, 9, 19] (Fig. 9.1).
The location of these two AQPs suggests possible
roles in facilitating water transport. As stated
before, AQP expression varies during gestation
time, 45 min immediately after delivery do not

Fig. 9.1 AQP1, AQP3, AQP4, and AQP5 expression in
capillary, airway, and alveolar space [20]

shown difference of lung wet/dry weight ratio
between wild-type and AQP1, 4, 5 knockout
mice [21], suggesting slow fluid absorption does
not require AQP facilitation, plus these AQPs do
not have full expression at the time point of
experiment. Several studies have showed that
knockout AQP1 and AQP5 could significantly
reduce osmotic fluid transport [17, 22]. However,
deletion of AQP1 or AQP5 did not alter lung
edema formation and resolution difference in
acute lung injury model [23, 24], in which
increased capillary permeability leads to the
fluid accumulation in interstitial and alveolar tis-
sue. This might be explained that AQP-mediated
fluid transport is slower than fluid transport
through enlarged capillary leakage, and fluid
transport through cell membrane is little
[23, 24]. Similarly, to study the effects of AQP5
on hydrostatic pressure induced lung edema, high
pressure infusion plus blockage of outflow from
left atrium are designed to mimic left heart failure
induced lung edema. Deletion of AQP5 did not
affect lung edema induced by high pulmonary
pressure infusion [22]. These studies further indi-
cate that AQP1 and AQP5 mainly facilitate
osmotic fluid transport through the apical mem-
brane of capillary endothelial cells and AECs, but
they may not participate in fluid transport driven
by capillary permeability and hydrostatic pressure
changes.

Peri-bronchial edema formation was found to
decrease in AQP1 mutation patients after bonus
saline infusion, for capillary network formation
defects after AQP1 mutation, and thus it is
unlikely that AQP1 could contribute to hydro-
static pressure induced fluid accumulation
[25]. Besides, deletion of AQP4, which is
expressed on the epithelium of small airways
close to alveolar spaces, does not significantly
affect fluid transport compared to wild-type
mice. However, AQP4 deletion displays a more
decrease in osmotic fluid transport compared with
AQP1 knockout in mice, suggesting AQP4 acts
as the main role in facilitating fluid transport
through small airway epithelium [25]. The poten-
tial effect of AQP4 is under covered by AQP1,
because function of AQP4 appeared more signifi-
cant when AQP1 is deleted.
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9.3.2 Airway Fluid Balance

Airway must keep high humidity to protect air-
way epithelial cells that work together with sub-
mucosal glands to secret fluid to facilitate cilliary
movement to expel inhaled exopathogens.
Although AQP3 and AQP4 has been found to
be expressed on apical membrane of ciliated epi-
thelial cells [20] (Fig. 9.1) and studies showed
that AQPs play minor role in airway
humidification, ASL hydration, and isosmolar
fluid absorption in AQP3 and AQP4 knockout
mice [26]. By calculating fluid transport rate, the
fluid movement across airway epithelium
challenged by dry air is relatively slower com-
pared to salivary gland secretion where AQP5
facilitates fluid transport. Furthermore, the minor
effect of AQP3 and AQP4 in airway physiology
suggests slow fluid movement does not rely on
water channel necessarily unless it is challenged
by osmotic fluid movement [26].

A recent study showed AQP3 deletion reduce
airway re-epithelialization [27], the possible role
is reduced epithelial cell migration due to water
and glycerol transport reduction [28]. The role of
AQP3 in airway epithelial growth provide poten-
tial role of AQP in tissue repair.

9.3.3 Pleural Fluid Balance

The pleural space plays an important role in pleu-
ral fluid secretion and absorption and lubricating
visceral and parietals membrane of pleural space
to facilitate lung extension. The fluid is filtered
through capillary within visceral membrane and
reabsorbed by parietal lymphatic duct located on
parietal membrane. In some malignancy, these
lymphatic ducts can be blocked to result in fluid
accumulation within pleural space. AQP1 is
expressed at apical membrane of visceral and
parietal pleura, and apical membrane of endothe-
lial cell within visceral membrane [4]. Our group
found that AQP1 could facilitate the osmotic fluid
transport within pleural space, and deletion of
AQP1 could significantly reduce osmotic fluid
transport. However, AQP1 did not take part in

pleural isosmolar fluid clearance
[29, 30]. Similarly, there is no relationship of
AQP1 with clinically relevant mechanisms of
pleural fluid accumulation or clearance [4].

9.3.4 Submucosal Gland Secretion

Submucosal glands are located at upper and lower
airway submucosal area, where capillary and
nerves are surrounded to keep normal function
for gland secretion. In general, when glands are
stimulated with nerve or chemical through mus-
carinic receptors, increased cytosolic cAMP level
will activate CFTR function, to induce chloride
secretion, and sodium will increase in cell to
follow the electronic neutralization through intra-
cellular and paracellular pathway, and then water
will come out of the cells following the ionic
osmotic gradient mainly through AQP5 water
channel. This phenomenon was evidenced in air-
way submucosal glands and salivary glands [31]
(Fig. 9.2). Deletion of AQP5 significantly
reduced gland fluid secretion and thus made the
secreted fluid more viscous [32]. There are few
studies showing that dry mouth due to salivary
glands radiation or Sojoren syndrome are
associated with abnormal distribution of AQP5
[33, 34], suggesting AQP5 modulation may
potentially improve dry moth syndrome through
correction of saliva secretion. It is therefore

Fig. 9.2 AQP1, AQP3, AQP4, and AQP5 expression in
airway submucosal glands [32]
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interesting to test whether AQP5 modulation
could be useful to promote airway mucus clear-
ance in COPD or bronchiectasis patients.

9.4 AQPs in Respiratory Diseases

9.4.1 Lung Cancer Development

Several studied found that AQP1, AQP3, AQP4,
and AQP5 are over-expressed in lung cancer [35–
38]. The expression of AQP1 is higher in lung
adenocarcinoma (ADCs) and bronchoalveolar
carcinoma than that in lung squamous cell carci-
noma and normal lung tissue [36]. AQP1 is
located in the endothelial cells of capillaries
within lung cancer tissue and responsible for
tumor angiogenesis [39, 40]. AQP1 is also
involved in invasion of lung cancer cells, and
reducing AQP1 expression by AQP1-shRNA
could inhibit lung cancer cell invasion and migra-
tion [40]. Moreover, AQP1 expression is
correlated with high postoperative metastasis
ratios and low disease-free survival rates in
ADCs, especially with micropapillary ADC
components [35]. These studies suggest that
AQP1 could be a significant prognostic index
for stage and histologic differentiation of lung
cancer.

AQP3 is over-expressed in non-small cell car-
cinoma (NSCLC), especially ADCs, well
differentiated bronchioloalveolar carcinomas and
papillary subtypes. Some studies found that
AQP3 might regulate biological functions of
lung cancer cells, in the early stage of lung ADC
[35], and even involve in angiogenesis of lung
cancer through HIF-2α-VEGF pathway and lung
cancer cell invasion partly by the AKT-MMPs
pathway, mitochondrial ATP formation and cel-
lular glycerol uptake [41]. The anticancer effect
of shRNA- targeting AQP3 is confirmed in exper-
imental NSCLC models, and further is confirmed
in preclinical studies [41]. Besides, AQP4 wis
involved in the invasion of lung cancer cells
[40]. Higher transcript and protein levels of
AQP4 in well differentiated lung ADCs suggest
an association with a better prognosis [37].

The expression of AQP5 was also detected to
dramatically increase in lung ADCs and
correlated with poor prognosis of patients with
NSCLC [42]. AQP5 promoted cell migration and
angiogenesis in NSCLC as demonstrated in
H1299 cell line [43], and silencing of AQP5
mRNA inhibited the growth in vitro and in vivo
for A549 lung cancer cells [44]. AQP5-expressed
cells exhibited a loss of epithelial cell markers and
activation of c-Src through SH3 binding domain
to promote epithelial to mesenchymal transition
(EMT) which might be responsible for the pro-
mote metastasis of lung cancer [42]. Over-
expressed AQP5 could facilitate lung cancer cell
growth and invasion through the activation of the
EGFR/ ERK/p38 MAPK pathway [42, 45]. The
cAMP- protein kinase (PKA) consensus site in
AQP5 is also preferentially phosphorylated and
promoted cell proliferation ability in tumor. The
phosphorylation S156 in PKA consensus site is
demonstrated to play an important role in tumor
proliferation and invasion [46]. Therefore, S156
in AQP5 may provide a potential therapeutic tar-
get by developing small molecules as an inhibitor.
Moreover, developing specific monoclonal anti-
body targeting AQP5 will also be another
approach.

9.4.2 Lung Inflammation/Lung Injury

Several studies have shown that both AQP1 and
AQP5 are down-regulated after lung injury
[23, 24, 47]. Deletion of AQP1 does not show
significant phenotype changes while AQP5 dele-
tion shows worsened lung injury after
P. aeruginosa challenge [21, 24]. The mechanism
may be that AQP1 was expressed in pulmonary
capillary endothelium cells, and deletion of AQP1
impairs osmotic fluid transport but not near
isosmolar fluid transport during capillary leaking
due to increased permeability changes. AQP1
mutation in human does not cause morphology
changes, but results in retarding fluid accumula-
tion around airways [23]. The underlying mecha-
nism could be a change in capillary networks. It is
believed that hydrostatic force could affect
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isosmolar fluid transport through water channels.
Besides, the worsened lung injury in AQP5 null
mice after P. aeruginosa challenge could be due
to airway surface liquid property changes [24], in
which AQP5 deficiency leads to reduced mucin
production in lung. Moreover, and declined acti-
vation of mitogen-activated protein kinase and
nuclear factor-kappa B before and after PA
infection.

Considering that AQP 1 and AQP5 are
expressed at blood–gas barrier, and both of them
facilitate osmotic fluid transport, it has been
though that AQP1 and AQP5 may play an impor-
tant role in acute lung injury, especially in the
pulmonary edema. Several studies showed that
AQP1 and AQP5 are significantly down-
regulated after lung injury [23, 24], and deletion
of AQP1 does not show any difference of lung
edema formation or resolution in LPS induced
acute lung injury, suggesting slow fluid transport
or fluid leakage from paracellular pathway may
not require AQPs for intracellular fluid transport
in acute lung injury. Meanwhile, AQPs may facil-
itate osmotic fluid transport but not near
isosmolar fluid movement. Studies also found
prolonged mechanical ventilation deregulated
AQP1 and AQP5 mRNA expression, and
increased lung water. The effect of pulmonary
protective ventilation strategy on expression of
AQP1 and AQP5 was relatively small [48]. More-
over, studies found that lipoxin A4 and Fasudil, a
selective rho kinase (ROCK) inhibitor, could
restore the expression of AQP5 to eliminate LPS
induced lung edema, suggesting AQP 5 may play
protective role in LPS induced ALI [49, 50].

Besides AQP knockout mice, AQPs inhibitor
has been implicated in research. TGN-020, a spe-
cific AQP4 inhibitor, has been used in an acute
lung injury model induced by LPS. Results
showed protective effect of AQP4 inhibition and
this effect is associated with inhibition of IL-17A
[51]. The exact mechanism of AQP 4 and lung
inflammation need to be further investigated
although AQP4 is associated with neuroimmu-
nological abnormalities on astrocyte in brain [52].

9.4.3 Asthma

Asthma is featured by increased airway constric-
tion, eosinophilic infiltration, hypersecretion of
airway mucus, and small airway epithelium
edema formation. Immunostaining study shows
AQP1 expressed not only in alveolar type I and
type II cells, as well as in airway epithelium.
AQP1 and AQP5 levels in the sputum of asthma
patients were proposed as a diagnostic marker in
mild to moderate adult-onset asthma
[53]. OVA-induced Asthma animal model
shows an increase in expression of AQP1 and
AQP5 compared to control group, suggesting
AQP1 and AQP5 may participate in airway epi-
thelium edema formation [54]. Bronchial provoke
test usually shows hyperactivity and
hyperresponsiveness to methacholine
[55]. AQP5 knockout mice study shows deletion
of AQP5 increased airway reactivity challenged
by inhalation of methacholine accompanying
with increased airway resistance [10]. It is not
clear why deletion of AQP5 decreases airway
challenge threshold. Besides, same loci of AQP5
and other asthma gene located at chromosome
12q and mouse chromosome 15 further indicated
potential role of AQP5 in asthma
development [10].

9.5 Summary

AQPs are water channel proteins supposed to
facilitating fluid transport in alveolar space, air-
way humidification, pleural fluid absorption, sub-
mucosal gland secretion, and cell migration.
Previous studies suggested the roles of AQPs in
various physiology and pathophysiology condi-
tion of different lung disease in vivo or vitro. It
still remains unclear the exact role of AQPs in
lung diseases, and thus continuous efforts on
elucidating the roles of AQPs in lung physiologi-
cal and pathophysiological processes are
warranted.
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Abstract

In this chapter, we mainly discuss the expres-
sion and function of aquaporins (AQPs)
expressed in digestive system. AQPs are
highly conserved transmembrane protein
responsible for water transport across cell
membranes. AQPs in gastrointestinal tract
include four members of aquaporin subfamily:
AQP1, AQP4, AQP5, and AQP8, and three
members of aquaglyceroporin subfamily:
AQP3, AQP7, and AQP10. In the digestive
glands, especially the liver, we discuss four
members of aquaporin subfamily: AQP1,
AQP4, AQP5, and AQP8, three members of
aquaglyceroporin subfamily: AQP7, AQP9,
and AQP12. In digestive system, the abnormal
expression of AQPs is closely related to the
occurrence and development of a variety of
diseases. AQP1 is involved in saliva secretion
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and fat digestion and is closely related to gas-
tric cancer and chronic liver disease; AQP3 is
involved in the diarrhea and inflammatory
bowel disease; AQP4 regulates gastric acid
secretion and is associated with the develop-
ment of gastric cancer; AQP5 is relevant to
gastric carcinoma cell proliferation and migra-
tion; AQP7 is the major aquaglyceroporin in
pancreatic β cells; AQP8 plays a role in pan-
creatic juice secretion and may be a potential
target for the treatment of diarrhea; AQP9
plays considerable role in glycerol metabolism
and hepatocellular carcinoma; Studies on the
function of AQP10 and AQP12 are still lim-
ited. Further studies are necessary for specific
locations and functions of AQPs in digestive
system.

Keywords

Aquaporins · Digestive system ·
Gastrointestinal tract · Water electrolyte
balance · Glycerol metabolism · Diabetes

10.1 Introduction

Digestive system includes the digestive tract and
digestive gland. The digestive tract is composed
of oral cavity, pharynx, esophagus, stomach,
small intestine, colon, and anus. The digestive
glands include large digestive glands and plenty
of small digestive glands spreading over the wall
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of the digestive tract. The large digestive glands,
such as three-pair salivary glands, pancreas and
liver, have secretary portion and ducts formed by
gland cells to drain the excreta into the digestive
tract. Moreover, pancreas can also perform as an
endocrine gland, as A-cells excrete glucagon,
B-cells excrete insulin, D-cells excrete somato-
statin, and PP-cells excrete pancreatic polypep-
tide. These endocrine hormones regulate blood
glucose and the movement of gastrointestinal
tract. The total amount of digestive juice secreted
by various digestive glands can reach 6–8 L/day.
During a meal, after the primary digestion of
saliva, the osmolarities of the food we eat can
change rapidly from zero (water) to several hun-
dred million moles (solid meal). In response to the
rapid change of the osmolarity in gastrointestinal
tract, gastric juice or other kind of digestive fluids
will be secreted to balance the osmolarity of gas-
tric content [1]. In addition, the digestive juices
secreted by digestive glands provide a suitable pH
environment to maintain digestive enzyme activ-
ity. Apart from secretion, absorption is an impor-
tant function for digestive systems, especially for
gastrointestinal tract. When the content comes to
small intestine, most water will be absorbed with
solutes and nutrition. When it comes to colon, the
content is further dehydrated and forms feces.
Totally, about 7.5 L of fluid is secreted into the
tract, which includes saliva, gastric secretions,
bile, pancreatic juice, and intestinal secretion,
and about 9 L fluid is absorbed each day
[1, 2]. Moreover, the liver is related to substance
metabolism.

Aquaporins (AQPs) are expressed and play
physiological roles in the digestive system
[1]. The distributions of AQPs are relevant to
their functions. Basolateral water channels
AQP3 and AQP4 are more expressed in secretive
epithelia (e.g., stomach), whereas apical water
channels are more localized in absorbing epithelia
(e.g., small intestine). In the colon, which can
both absorb and secrete water, both apical and
basolateral AQPs are expressed [3]. AQP9,
which is an aquaglyceroporin, correlates with
the absorption of glycerol and are expressed in
the liver, involved in fat metabolism. Here we

describe some important isoforms of AQPs in
digestive system, and mention others that are not
very clearly studied. The general distributions of
AQPs in digestive system are summarized in
Fig. 10.1 [4–6]. Figure 10.2 presents the possible
pathways for transepithelial water transport in
digestive system. It mainly consists of
paracellular pathway, transcellular pathway, dif-
fusion, and osmolality-dependent AQP pathway.
Figure 10.3 presents the biological functions of
AQPs in the digestive system. Considering the
constant phenotype of specific AQP knockout
mice regarding the fluid secretion [7, 8], the func-
tion of AQPs in the digestive system might be
limited.

10.2 Expression of AQPs
in the Gastrointestinal Tract
and Digestive Glands

10.2.1 Aquaporin Subfamily

10.2.1.1 AQP1
In gastrointestinal tract, AQP1 is diversely
expressed on the endothelial barriers, while
there is no expression in the epithelia and mucosa.
It is more expressed in the body of the stomach,
duodenum, and ascending colon than the pyloric
antrum [9]. A moderate amount of AQP1 was
also observed in the stromal tissue of the anus,
but it is difficult to identify the specific
location [10].

In digestive glands, AQP1 is localized to the
basolateral membrane of the gallbladder,
intrahepatic cholangiocytes, hepatic ducts, labial
glands, endothelial barriers in the liver, and pan-
creatic ducts and centroacinar cells in the pan-
creas [10, 11]. Moreover, AQP1 is specifically
expressed in the intralobular and interlobular
ducts, modulating the water transport through
the cells [1].

In human tissues, AQP1 was demonstrated on
the endothelial cells of the lymphatic vessels in
the submucosa and lamina and capillary endothe-
lial cells in the smooth muscle layer throughout
the gastrointestinal tract. For other species,
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Fig. 10.1 Distribution of aquaporins in the digestive sys-
tem. AQP1, AQP5, and AQP8 are expressed in salivary
glands. AQP1, AQP3, and AQP5 are present in oral cav-
ity. In the stomach, AQP1 is expressed in the endothelial
cells of capillaries and small vessels; AQP3 is expressed in
the basolateral membrane of surface mucous cells; AQP4
is expressed in the basolateral membrane of parietal cells,

and AQP5 is present at the apical membrane of parietal
cells. Small intestine expresses AQP1, AQP3, AQP4,
AQP5, AQP8, and AQP9. AQP1, AQP3, AQP4, and
AQP8 are expressed in large intestine. AQP1, AQP8,
and AQP9 are expressed in the liver. AQP1 is diversely
expressed in gallbladder, bile duct, and pancreas, while
AQP8 is present in the pancreas as well

abundant expression of AQP1 was detected in
endothelium of capillaries and small vessels in
digestive system [12–16].

10.2.1.2 AQP4
AQP4 is selectively expressed in the basolateral
membrane of parietal cells of the stomach, espe-
cially at the base of gastric pits, which is also
expressed in the basolateral membrane of the
crypt cells located at the bottom of the crypt in
small intestine and the basolateral membrane of
surface epithelial cells in the colon.

The salivary glands are involved in the secre-
tion of saliva. For a long time, the presence of
AQP4 in the glands remained controversial.
Sabrina Lisi's group confirmed the presence of
AQP4 in human salivary glands through
immunohistochemistry, high-resolution confocal

microscopy, quantitative image analysis, Western
blot, and real-time RT-PCR [17].

10.2.1.3 AQP5
AQP5 is typically expressed in glandular tissues,
which include salivary glands, lacrimal glands,
and pancreas. In addition, the expression of
AQP5 was shown by reverse transcriptase-
polymerase chain reaction (RT-PCR) analysis in
the liver [2]. In salivary gland, AQP5 is present at
the apical membrane, including the intercellular
secretory canaliculi of acinar cells [1]. In pan-
creas, AQP5 is located at the apical membrane
of centroacinar and intercalated ductal cells [18].

In digestive tract, it is present in the stomach
and duodenum in rat. For stomach, it is expressed
in apical membrane of secretory cells of the pylo-
ric gland, and there is almost no expression in the
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Fig. 10.2 Possible pathways for transepithelial water
transport in the digestive system. There are four pathways
for transepithelial water transport. Water can traverse
through the cell by paracellular pathway via tight
junctions; it can also diffuse through the apical/basolateral
membranes. These two pathways are bidirectional.
AQP-mediated pathway is also available. In absorptive
epithelia, the osmolality is higher in lateral intercellular
space (LIS) than in the cell. Therefore, water first
transports into the cell, then to blood via LIS, which is
also a possible method for water transport

Fig. 10.3 Biological functions of AQPs in the digestive system

fundic gland. In the duodenum, AQP5 is present
along the apical membrane of secretory cells in
duodenal gland [19]. AQP5 is not detected in
other tissues of digestive system by
immunohistochemistry.

10.2.1.4 AQP8
AQP8 transcript is widely expressed in the diges-
tive system, including the salivary glands, small
intestine, colon, pancreas, and liver. In digestive
tract, it is mainly present at the subapical intracel-
lular sites of epithelial cells in the duodenum,
jejunum, and colon [1, 20, 21]. Studies have
found that AQP8 is also expressed on the
human gallbladder mucosa [22]. For digestive
glands, AQP8 is mainly expressed in parotid,
salivary glands, liver, and pancreas. AQP8 is
present in myoepithelial cells around the acini
and the intercalated duct rather than the acinar
or ductal cells of rat parotid, submandibular, and
sublingual cells [23].
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10.2.2 Aquaglyceroporin Subfamily

10.2.2.1 AQP3
In digestive system, AQP3 is highly expressed in
the esophagus, proximal, and distal colon in par-
ticular [21]. According to immunohistochemical
results from rat digestive tract, AQP3 is also pres-
ent in the oral cavity, forestomach, and anus,
where AQP3 situates at the basolateral membrane.

10.2.2.2 AQP7
In human gastrointestinal tract, AQP7 is detected
on the superficial epithelial cells throughout the
small intestine and colon [24]. For rats, it is pres-
ent on the apical region of the enterocytes in the
villi; epithelial cells of the colon and caecum
suggests its involvement in rapid fluid movement
through the villus epithelium.

In addition, AQP7 is the major
aquaglyceroporin in pancreatic β cells, which is
a regulator of glycerol kinase activity, β-cell
mass, and insulin production and secretion [25].

10.2.2.3 AQP9
AQP9 is expressed on the basolateral membrane
of mouse ileal goblet cells. In the human digestive
system, AQP9 is distributed on the cytoplasmic
surface of small intestine and liver [26].

10.2.2.4 AQP10
It has been reported that AQP10 mRNA has been
detected in the pyloric antrum of the human stom-
ach, but the protein expression and specific loca-
tion has not yet been determined [1]. In human
intestine, AQP10 was found to be expressed on
the apical membrane of epithelial cells, which
was expressed higher in duodenum and jejunum
than in ileum [26–29]. Moreover, AQP10 performs
as a pseudogene in some kinds of species [1].

10.2.3 Superaquaporin Subfamily

10.2.3.1 AQP12
AQP12 is selectively expressed in the pancreas,
especially in acinar cells, and it is proved to be
expressed inside the cell. Previous research with
double or even triple knockout mice for AQP1,

AQP8, or AQP12 were not observed evident
abnormalities [30].

10.3 Functions of AQPs
in the Digestive System

10.3.1 Fat Digestion

AQP1 is present in endothelial cells of central
lacteals in the villi of small intestine, which
produces chylomicrons when digesting food.
Therefore, AQP1 might be involved in the fat
digestion process. AQP1 null mice showed a
defect of dietary fat [13], which indicates that
the invalidation or downregulation of AQP1 is
responsible for malabsorption [1].

10.3.2 Digestive Fluid Secretion

AQP4 is acknowledged to play the main role in
modulating the secretion of the acid. AQP4 null
mice were applied to find the role of AQP4 in
gastric acid secretion by Verkman’s group
[7]. There is no apparent difference in morphol-
ogy in the parietal cells within the gastric pits for
AQP4 null mice. And the deficiency of AQP4
shows no difference to the rates of basal or
stimulated acid or gastric fluid secretion. Nor
did it affect the pH level and fasting serum gastrin
concentration in the stomach. These data suggest
that AQP4 has little influence on gastric acid
production [8].

In the AQP5 knockout mice, when compared
to wild-type mice, the saliva production was
reduced and was hypertonic, which shows that
AQP5 plays a main role in saliva secretion
[1]. In Sjögren’s syndrome models, AQP1
expression was increased and AQP5 expression
was decreased, suggesting new pathways to
explain the disease [31].

In salivary glands, strong transcripts were
detected while AQP8 could not be found at pro-
tein level by immunofluorescence or immunoblot
analysis. Furthermore, salivary secretion was not
affected by AQP8 deficiency, according to the
comparison about the phenotypes between
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AQP8 knockout mice and wild-type mice, nor
was it affected in the comparison of AQP8/
AQP5 double knockout mice and AQP5 knock-
out mice.

10.3.3 Water Absorption

It is suggested that AQP4 is involved in colonic
fluid transport. However, in AQP4 null mice, the
water permeability was decreased in the proximal
colon but not the distal colon, while the water
content of the feces has no difference compared
to wild-type mice. All in all, AQP4 in surface
epithelial cells has no influence on feces dehydra-
tion and colonic fluid secretion [1].

In small intestine, AQP8 knockout model
made no difference in cholera toxin- or agonist-
stimulated maximal fluid secretion. In colon,
AQP8 knockout model had little effect on the
colonic fluid absorption or fecal dehydration.
And water content in stool changed little in
AQP8 knockout mice. Only mild phenotype
differences between the wild-type and AQP8
knockout mice were found. And the function of
AQP8 in the water absorption and secretion of
small intestine and colon is limited [32].

Studies have shown that AQP3 plays an
important role in colonic water absorption. In
human colon, AQP3 is predominantly expressed
in the mucosal epithelial cells [33, 34], which
indicates its important role in water transport. It
is reported that the inhibition of AQP3 in the
colon leads to diarrhea. AQP3 inhibitor (HgCl2
and CuSO4) applied for more than 1 h, the fecal
water content increased to approximately four
times that in the control group. And severe diar-
rhea was observed [35, 36]. The stimulant laxa-
tive, such as bisacodyl, works by promoting the
peristaltic movements of the bowel. When it was
applied to rats, AQP3 expression was found
downregulated, and severe diarrhea was observed
without osmotic pressure changes. However, sev-
eral laxatives present a laxative effect by the
upregulation of AQP3 expression. For osmotic
laxatives such as magnesium sulfate, previously
thought to work by increasing the osmotic

pressure in the intestinal tract, AQP3 expression
was found upregulated, suggesting that osmotic
laxative might play its role in response to the
increased AQP3 expression. Contrary to diarrhea,
AQP3 expression is also involved in the consti-
pation. Morphine is clinically used as a narcotic
analgesic with usual adverse effect of constipa-
tion, which is caused by the decrease of peristaltic
movements of the bowel. In this model, AQP3
expression is upregulated, which might take part
in the constipation. Generally speaking, deeper
investigation for the mechanism of AQP3-
involved water transport may provide candidates
for new laxatives and antidiarrheal drugs in the
future [33].

10.3.4 Intestinal Barrier

AQP3 is involved in regulating the integrity of the
intestinal barrier [34]. Looking into the AQP3
null mice, the intestinal barrier integrity was
impaired based on previous work [37]. The
results show that the AQP3 deletion induces a
dramatic increase in E. coli C25 translocation,
which exists in the colon and its translocations
is relevant to the impairment of intestinal barrier,
and the reduction of claudin-1 and occludin
expression, which are compositions of the tight
junction, indicating that it might open the tight
junction complex of paracellular pathway and
enhance paracellular permeability in the process.

10.3.5 Insulin Secretion

AQP7 is the major aquaglyceroporin in pancre-
atic β cells, which is a regulator of glycerol kinase
activity, β-cell mass, and insulin production and
secretion [25]. Studies have found that AQP7
knockout mice exhibit adult-onset obesity,
impaired insulin secretion, and insulin resistance
compared with control mice. However, loss of
AQP7 function in humans has not been associated
with obesity or type 2 diabetes [38]. A recent
study found that metformin can promote the
influx of glycerol into pancreatic β cells by
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inhibiting the MAPK signaling and upregulating
the expression of AQP7 in pancreatic β cells,
ultimately promoting the secretion of insulin in
type 2 diabetes [39].

10.3.6 Glycerol Metabolism

AQP9 is also associated with glycerol metabo-
lism in liver. Glycerol, as a product from adipose
triglycerides during lipolysis, flows into the liver
through the portal vein. And it takes part in glu-
coneogenesis later. AQP9 is verified as the only
glycerol channel in the liver, which selectively
localizes at the sinusoidal plasma membrane fac-
ing the portal vein. Thus, AQP9 is considered to
be the channel for glycerol uptake in the liver
[40–44].

AQP9 knockout model was constructed to
study its role in glycerol metabolism. The results
revealed that AQP9 null mice had evident
hyperglycerolemia and hypertriglyceridemia
compared to AQP9 heterozygous mice. When
AQP9 null mice crossed with Leprdb/Leprdb

mice, a model of obese and type 2 diabetes, it
showed that Leprdb/Leprdb AQP9 null mice had
lower blood glucose levels than Leprdb/Leprdb

AQP9 heterozygous mice. AQP9 null mice had
lower plasma glycerol levels than AQP9 hetero-
zygous mice. These results suggest the possible
role of AQP9 in the hepatic glycerol absorption as
well as glucose metabolism [40].

10.4 AQPs and Digestive Diseases

10.4.1 Cancer

Studies have shown that biological behavior of
cancer cells depends on the transport of water
molecules across the membrane. AQP1, which
is widely distributed in the gastrointestinal tract,
may play an important role in the development of
gastric cancer [45]. Previous studies have found
that the mRNA and protein levels of AQP1 in the
tumor tissues of patients with epithelial gastric

neoplasms are upregulated and are associated
with high recurrence rates, suggesting that
AQP1 may be a potential prognostic biomarker
for gastric cancer [46].

AQP5 could promote the rapid transmembrane
water transport and the progression and invasion
of several cancers [47]. It is upregulated in a
variety of cancers and associated with the clinico-
pathological characteristics of patients, which
include colon cancer, lung cancer, chronic mye-
logenous leukemia, breast cancer, and biliary tract
carcinoma. In gastric carcinoma, AQP5 is rele-
vant to the tumorigenesis and progression, such
as differentiation, lymph node metastasis, and
lymphovascular invasion [3, 47], which shows
that AQP5 may be a potential therapeutic target
for cancer.

Studies have found that AQP5 is highly
expressed in hepatocellular carcinoma cell lines.
Downregulation of AQP5 could suppress tumor
metastasis and epithelial-mesenchymal transition
(EMT) process by inhibiting NF-κB signaling
pathway. This suggests that AQP5 may serve as
a potential therapeutic target for hepatocellular
carcinoma.

AQP3 is also involved in the development of
gastrointestinal tumors. Studies have found that
when AQP3 is knocked down, the proliferation
reduces and proliferation elevates in gastric can-
cer cells [48].

AQP9 has been proved to be the major routes
of arsenite uptake into the mammalian cells,
whose accumulation might result in hepatocellu-
lar damage and hepatocellular carcinoma. A
recent study found that AQP9 mRNA level was
significantly reduced in hepatocellular carcinoma
tissues, which was positively correlated with the
survival rate of HCC patients. Overexpression of
AQP9 can inhibit the proliferation, invasion, and
migration of HCC cells through the
Wnt/β-catenin pathway and inhibit tumor growth
in vivo. Another study showed that AQP9 inhibits
the expression of hypoxia-inducible factor 1α in a
hypoxic tumor environment, which suppresses
the invasion of hepatocellular carcinoma [49].
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10.4.2 Sjogren’s Syndrome

Studies demonstrated that the abnormal expres-
sion or lack of AQP1 can affect the transportation
of water, leading to the occurrence of digestive
system diseases. The AQP1 expression in the
labial glands of patients with Sjogren’s syndrome
was downregulated and the expression level of
AQP1 in epithelial cells increased after rituximab
treatment, suggesting that AQP1 may be involved
in the secretion of saliva [11].

Studies found that the expression level of
AQP4 was downregulated in myoepithelial cells
in the salivary glands of patients with primary
Sjögren’s syndrome, and the water permeability
in myoepithelial cells was changed, suggesting
that AQP4 may be used as a new target for the
treatment of xerostomia [17].

10.4.3 Pancreatitis

A previous study showed that AQP1 expression
is upregulated in the apical and lateral pancreatic
duct membranes of patients with autoimmune
pancreatitis. This phenomenon may be due to
the compensatory upregulation of AQP1
stimulated by reduced pancreatic secretion.

In pancreas, AQP5 is located at the apical
membrane of centroacinar and intercalated ductal
cells [18]. AQP5 might be involved in the diabe-
tes and pancreatitis.

In the model of acute pancreatitis induced by
the caerulein, the pathological damage of pan-
creas in AQP12 knockout mice was more severe
than that in WT mice [50]. Further research is
needed in its function studies.

10.4.4 Liver Disease

When AQP1 knockout mice undergo bile duct
ligation, it leads to a decrease in angiogenesis
and fibrosis and less portal hypertension,
indicating that AQP1 may play an important
role in the development of chronic liver
disease [51].

10.4.5 Inflammatory Bowel Disease
(IBD)

Studies have shown that the lack of AQP4, which
is expressed on the basolateral membrane of
colonic epithelial cells, can alleviate experimental
colitis in mice induced by dextran sodium sulfate.
This result suggests that blocking AQP4 may be a
novel therapeutic approach for ulcerative
colitis [52].

In 2,4,6-trinitrobenzene sulfonic acid (TNBS)-
induced colitis model, which mimics human
Crohn’s disease, AQP8 expression is
downregulated with the increase of inflammation
and injury [53], indicating that AQP8 is possibly
involved in inflammatory bowel disease. A recent
study found low AQP8 expression in intestinal
epithelial cells of patients with collagenous coli-
tis, which is strongly associated with higher stool
frequency in patients with collagenous colitis. It
is suggested that AQP8 may be a potential target
for the treatment of diarrhea [54].

Previous studies have shown that the expres-
sion of AQP3 is also closely related to the devel-
opment of intestinal diseases. In TNBS-induced
colitis, AQP3 expression is downregulated in
accordance with AQP8, accompanied with intes-
tinal inflammation and injury. After small bowel
resection and improvement of intestinal functions
in IBD rats, AQP3 is upregulated during the
adaptation [33]. The evidence indicates that
AQP3 might involve in the pathogenesis of
inflammatory bowel disease [21, 53].

10.5 Conclusion

AQPs is widely expressed in the digestive tracts
and glands. AQP1 is involved in saliva secretion
and fat digestion and is closely related to gastric
cancer and chronic liver disease. AQP3 is
involved in diarrhea, constipation, and inflamma-
tory bowel disease. AQP4 regulates gastric acid
secretion and is associated with the development
of gastric cancer, while its deletion can alleviate
experimental colitis in mice induced by dextran
sodium sulfate. AQP5 can promote the secretion
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of saliva and the progression and invasion of
several cancers. AQP7 is the major
aquaglyceroporin in pancreatic β cells, which is
a regulator of glycerol kinase activity, β-cell
mass, and insulin production and secretion.
AQP8 plays a role in pancreatic juice secretion
and may be a potential target for the treatment of
diarrhea. AQP9 plays considerable role in glyc-
erol metabolism, urea transport, and hepatocellu-
lar carcinoma. Studies on the function of AQP10
and AQP12 are still limited. Further investigation
is necessary for specific locations and functions of
AQPs in digestive system.
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Aquaporins in Urinary System 11
Zhiwei Qiu, Tao Jiang, Yingjie Li, Weiling Wang,
and Baoxue Yang

Abstract

There are at least eight aquaporins (AQPs)
expressed in the kidney. Including AQP1
expressed in proximal tubules, thin descending
limb of Henle and vasa recta; AQP2, AQP3,
AQP4, AQP5, and AQP6 expressed in
collecting ducts; AQP7 expressed in proximal
tubules; AQP8 expressed in proximal tubules
and collecting ducts; and AQP11 expressed in
the endoplasmic reticulum of proximal tubular
epithelial cells. Over years, researchers have
constructed different AQP knockout mice and
explored the effect of AQP knockout on kid-
ney function. Thus, the roles of AQPs in renal
physiology are revealed, providing very useful
information for addressing fundamental
questions about transepithelial water transport
and the mechanism of near isoosmolar fluid
reabsorption. This chapter introduces the
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localization and function of AQPs in the kid-
ney and their roles in different kidney diseases
to reveal the prospects of AQPs in further basic
and clinical studies.

Keywords

Water · Urine concentrating mechanism ·
Polyuria · Knockout mouse · NDI

11.1 Introduction

The urinary system includes the kidneys, ureters,
bladder, and urethra. The upper urinary tract is
composed of kidneys, while the lower urinary
tract is composed of other structures [1]. Urine
formed in the kidneys flows into the renal pelvis,
ureters, and bladder. Finally, the urine stored in
the bladder is expelled through the urethra.
Throughout the urinary system, the kidney is the
central organ that reabsorbs water and
concentrates urine.

The kidneys concentrate and dilute urine by
regulating water excretion and reabsorption. The
water permeability of the proximal tubules,
descending limbs of Henle, late distal tubules,
and collecting ducts are important during water
excretion and reabsorption. Conversely, those
persistently impermeable segments such as
ascending limbs of Henle are also required to
establish osmotic gradients from the renal cortex
to the inner medulla. Antidiuretic hormone
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(ADH) alters the water permeability of late distal
tubules and collecting ducts, which modulates
urine concentration.

During urine concentration and dilution, the
water permeability of certain segments of renal
tubules, collecting ducts, and vasa recta are
mediated by aquaporins (AQPs), the water
channels in the plasma membrane of epithelial
and endothelial cells.

11.2 Expression and Localization
of AQPs in Urinary System

Kidney expresses at least nine AQPs, including
AQP1~8 and AQP 11. AQP1 is expressed in the
proximal tubule, thin descending limb of Henle,
and vasa recta, AQP2~6 are expressed in the
collecting duct, AQP7 is expressed in the proxi-
mal tubule, AQP8 is expressed in the proximal
tubule and collecting duct, and AQP11 is
expressed in the endoplasmic reticulum of proxi-
mal tubule cells (Fig. 11.1) [2–6].

Interestingly, studies reported that AQP2 and
AQP3 could transport water and solutes in
urothelium, although mammalian urothelium is

Fig. 11.1 Expression of AQPs in kidney. AQP1 in the
proximal tubule, thin descending limb of Henle, and vasa
recta; AQP2-6 in the collecting duct; AQP7 in the proxi-
mal tubule; AQP8 in the proximal tubule and collecting
duct and AQP11 in the endoplasmic reticulum of proximal
tubule

generally regarded as a urine component-
impermeable barrier [7, 8].

11.2.1 AQP1

AQP1 is expressed at the apical and basolateral
plasma membranes of the proximal tubule and the
thin descending limb of Henle (TDLH), and the
microvascular endothelium of the descending
vasa recta (DVR) of medulla [9, 10]. In details,
AQP1 is localized in the apical and basolateral
membranes of epithelial cells from S1 (except for
the earliest part of S1) to S3 [11, 12]. In ureter and
bladder, AQP1 is also localized in capillary endo-
thelial cells and arteriole endothelial cells [7, 13].

11.2.2 AQP2

AQP2 is expressed at the principal cells of
collecting duct, and localized from the connecting
tubule through the papillary duct. In detail, AQP2
traffics between the intracellular vesicular com-
partment and the apical plasma membrane of the
cell, which is regulated by vasopressin [14–
16]. In ureter and bladder, AQP2 is circumfer-
entially localized in the epithelial cell membranes
(except for the apical membrane of the epithelial
cells adjacent to the lumens) [17].

11.2.3 AQP3

AQP3 is expressed at the basolateral membrane
of collecting duct epithelium in cortex and outer
medulla [18]. In the basal and intermediate layers
of urothelium, AQP3 is also expressed intensely
at cell borders [17, 19].

11.2.4 AQP4

AQP4 is expressed at the basolateral membrane
of epithelial cell and is localized in the epithelium
of inner medullary collecting duct and the S3
region of proximal tubule [20–23]. The rat
AQP4 expressed by Chinese hamster ovary
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(CHO) cells will form orthogonal arrays of
particles (OAPs) in basolateral membrane,
which could be found by freeze-fracture electron
microscopy (Fig. 11.2) [23, 24].

11.2.5 AQP5

AQP5 is expressed at the apical membrane of
type B intercalated cells in collecting duct [25].

11.2.6 AQP6

AQP6 is expressed primarily at the membrane of
the intracellular vesicles of type A intercalated
cells and is localized in the collecting duct
[26]. And some AQP6 is colocalized with H+-
ATPase [27].

11.2.7 AQP7

AQP7 is expressed at the apical membrane of
epithelial cell in the S3 segment of proximal
straight tubules [28, 29].

11.2.8 AQP8

AQP8 is expressed in the apical, central, and
basal cytoplasmic domains of epithelial cell in
proximal tubule and collecting ducts [30].

11.2.9 AQP9

AQP9 is only found in the urinary concentration
system of birds [31].

11.2.10 AQP11

As an unorthodox AQP, AQP11 is expressed at
the endoplasmic reticulum (ER) [32, 33] of epi-
thelial cells in the proximal tubules [34].

11.3 Functions of AQPs in Urinary
System

11.3.1 AQP1

As early as 1998, Verkman’s group constructed
AQP1 knockout mice. Except for mild growth
retardation, there was no significant difference
between AQP1 knockout mice and wild-type
mice in survival, gross physical appearance, and
organ morphology [35–39].

Further, Verkman’s group investigated the
effect of AQP1 knockout on water permeability
of proximal tubule. They used a raffinose gradient
to drive water out of the tubule lumen and
measured transepithelial osmotic water perme-
ability (Pf) in isolated microperfused S2 segments
of proximal tubule. Results showed that the Pf

value of AQP1 knockout mice was nearly five-
fold lower than that of wild-type mice. It
suggested that in the perfused S2 segment of the
proximal tubule, water transport was primarily
transcellular, and this process was mediated
by AQP1.

Stop-flow measurements also showed that the
purified apical plasma membrane vesicles
isolated from proximal tubules of AQP1 knock-
out mice had nine-fold lower Pf values at 10 °C
than that of wild-type mice. Moreover, this low
water permeability in vesicles of AQP1 mice was
not affected by mercurial agents. AQP1 knockout
mice had a Pf value of 0.033 cm/s, and if assum-
ing a folding factor of about 10 to account for
membrane redundancy in the proximal tubule,
and equal apical and basolateral membrane
water permeability, then at 37 °C, the intrinsic
membrane Pf was about 0.006 cm/s. Such low
water permeability was almost identical to that
of the lipid portion of the membrane. Thus,
these findings suggested that the water permeabil-
ity of the proximal tubule was mainly mediated
by AQP1 and that other aquaporins or
non-aquaporin transporters represented little
influence on the water permeability of this tubular
segment. In addition, it also indicated that osmot-
ically driven paracellular transepithelial water
transport in proximal tubule was less than 20%.
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Fig. 11.2 Freeze-fracture electron micrographs of
collecting duct principal cell basolateral plasma
membranes. (a) OAPs in the basolateral membrane
P-face of a collecting duct principal cell. (b) E-face of

the basolateral plasma membrane of a collecting duct
principal cell showing the appearance of imprints left in
this membrane leaflet by the P-face OAP arrays (Data cited
from [24])

The urinary flow rate was significantly
increased in AQP1 knockout mice despite normal
distal delivery, suggesting that AQP1 knock-
out induced diuresis was primarily due to
decreased fluid absorption in the collecting
ducts. Since AQP1 is highly expressed in TDLH
and DVR under normal physiological condition,
AQP1 knockout may result in a defective coun-
tercurrent mechanism that prevented the forma-
tion of a hyperosmolar medullary interstitium.
Consistent with this speculation, it is found that
in water-deprived AQP1 knockout mice, dDAVP
stimulation made urinary and medullary intersti-
tial osmolality nearly equal, but not increased
urine osmolality [40]. However, unlike
nephrogenic diabetes insipidus (NDI), AQP1
knockout mice did not experience sharp drop in
urine osmolarity that NDI mice did, although it
had significantly increased urine output. AQP1
knockout mice had slightly concentrated urine
due to functional salt transporters and water-
permeable collecting ducts.

To directly explore the effect of AQP1 on
water transepithelial transport in TDLH, Chou
et al. compared the Pf values of isolated perfused
segments of TDLH from wild-type and AQP1
knockout mice. Results showed that Pf values
were significantly reduced in AQP1 knockout
mice (wild-type mice, 0.26 cm/s; AQP1 knockout
mice, 0.031 cm/s) [41]. Indicating that AQP1 is
the principal water channel in the TDLH, and the
osmotic equilibration along the TDLH

maintained by AQP1-mediated water transport
plays a key role in the renal countercurrent con-
centration mechanism.

How much water reabsorption and solute entry
contribute to the osmotic equilibrium along the
TDLH has been debated [42]. Loss of AQP1
resulted in a severe defect in urine concentration
capacity and reduced TDLH water permeability,
suggesting that high water permeability in TDLH
is required for urine concentration. Although it
has not been demonstrated whether TDLH are
permeable to NaCl and urea, they are unlikely to
be affected by AQP1 expression levels, as AQP1
has been shown to be impermeable to NaCl or
urea. Thus, these findings suggested that osmotic
water transported out of the TDLH lumen was
important for the countercurrent proliferation
mechanism and that solute entry is not sufficient
to form the maximum concentration of urine.

To further determine whether AQP1 is neces-
sary for urine concentration, Verkman’s group
conducted a 36-h water deprivation experiment.
The results showed that wild-type mice lost
20–22% of body weight with mean serum
osmolality of 311–325 mosm/kg H2O after
water deprivation. The average urine osmolality
in wild-type mice increased from 1400 mosm/kg
H2O to 3000 mosm/kg H2O after water depriva-
tion. But it remained active, which was no differ-
ent from that before water deprivation. In
contrast, AQP1 knockout mice lost 35% of their
body weight with mean serum osmolality of
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517 mosm/kg H2O after water deprivation. The
osmolality gradient cannot be established without
AQP1 (Fig. 11.3); therefore, the urine osmolarity
of AQP1 knockout mice was very low (only
580–610 mosm/kg H2O) and did not increase
after water deprivation. Besides, four out of five
AQP1 knockout mice had low concentrations of
sodium (less than 10 mM) in their urine. AQP1
knockout mice were unresponsive and became
lethargic after water deprivation. Intraperitoneal
injection of V2 receptor agonist dDAVP did not
restore the urine osmolality of AQP1 knockout
mice, indicating that the decrease in urine osmo-
lality induced by AQP1 dysfunction was related
to kidney but not central osmoreceptor sensing.

In summary, the inability of AQP1 knockout
mice to form concentrated urine may be caused
by defects in synergism. After AQP1 knockout,
the permeability of TDLH and DVR is reduced
and the proximal tubules are unable to reabsorb
water, leading to fluid overload in the distal neph-
ron and damage to the medullary countercurrent
multiplication mechanism [43, 44].

11.3.2 AQP2

AQP2 is localized mainly in intracellular vesicles
of collecting duct epithelial cells in the basal state.
Upon stimulation with ADH, AQP2 is
translocated from the intracellular compartment
to the apical plasma membrane by exocytic fusion
of AQP2-bearing vesicles [45, 46]. The transport
of AQP2 to the apical membrane can regulate the
water permeability of apical membrane [47–
50]. AQP3 and AQP4 are expressed in the
basolateral membrane of principal cells. There-
fore, once AQP2 is transported to and appears on
the apical membrane, water will be reabsorbed
easily. Since mutations in AQP2 lead to NDI,
AQP2 may be important in urine concentration
[51, 52].

Rojek et al. generated a gene-edited mouse
with collecting duct-specific knockout of AQP2
while junctional tubules expressing AQP2. These
mice were found to have a severe defect in urine
concentration ability. In contrast, globally knock-
out of AQP2 caused severe dehydration, and

these mice will die within 2 weeks [53]. These
results suggest that AQP2 plays important roles in
the kidney.

In normal conditions, AQP2 is stored in intra-
cellular vesicles under water-saturated conditions.
However, when dehydration or hypernatremia
occur, the secretion of the pituitary antidiuretic
hormone arginine vasopressin (AVP) by the pitu-
itary increases. AVP binds to vasopressin V2
receptor in the basolateral membrane, thereby
activating the cAMP-PKA signaling pathway
[16, 54–56]. This process triggers phosphoryla-
tion at serine 256 of the C-terminal AQP2 protein,
which promotes AQP2 trafficking to the apical
membrane [57–59].

Phosphorylation at serine 256 of AQP2
promotes its transport to the apical membrane
upon AVP stimulation [60, 61]. But the localiza-
tion of AQP2 is also affected by phosphorylation
at serine 261, 264, and 269 [62–65].

Phosphoproteomics analysis also showed that
AQP2 was phosphorylated at serine 261 in rat
inner medullary collecting duct epithelial cells
[66, 67]. In addition to inducing
monophosphorylation at serine 256, ADH also
induced double diphosphorylation at serine
256 and serine 261. These findings indicated
that phosphorylation of both sites was involved
in AQP2 trafficking [68]. Interestingly, AQP2
phosphorylated at serine 261 was mainly
localized intracellularly and distinct from the
endoplasmic reticulum, Golgi apparatus, and
lysosomes [69]. Phosphorylation at serine
261 does not affect AQP2 regulation and consti-
tutive trafficking [70].

AQP2 also undergoes constitutive recycling,
which is independent of vasopressin. Li et al.
reported that activation of bile acid receptor
Takda G protein-coupled receptor 5 (TGR5) pro-
moted the expression of AQP2 by upregulating
PKA signaling pathway, which reversed the
defection of urinary concentration in NDI mouse
model [71]. Luo et al. reported that hydrogen
sulfide (H2S) activated the cAMP-PKA signaling
pathways, which inhibited the downregulation of
AQP2 and polyuria in lithium-induced NDI
mouse model [72]. Lei et al. identified MnCl2 as
a potent AQP2 trafficking regulator. In LLC-PK1
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Fig. 11.3 Osmolality
gradient inside or outside
the lumen with or without
AQP. Top, the osmolality
gradient in the lumen was
established by water
reabsorbing via AQP.
Bottom, the osmolality
gradient could not be
established without AQP

cells, MnCl2 promoted the internalization and
intracellular accumulation of AQP2 without
affecting its phosphorylation. But MnCl2
inhibited vasopressin-induced inhibition of
AQP2 phosphorylation at serine-256, -264, and
-269 residues and dephosphorylation at
serine-261. MnCl2 promoted the polymerization
of F-actin and downregulation of RhoA, which
inhibited membrane accumulation of AQP2. In
C57BL/6 mice, MnCl2 treatment caused polyuria
and urinary concentration reduction, which could
not be corrected by vasopressin [73].

In addition to AVP/cAMP/PKA signaling
pathway, expression, phosphorylation, and traf-
ficking of AQP2 are also regulated by other signal
pathways. Ando et al. reported that Wnt5a
increased the apical membrane localization of
AQP2 by activating calcium/calmodulin/
calcineurin signaling pathways, which reversed
the decrease of urine osmolality in NDI mouse
model [74]. Cheung et al. reported that erlotinib,
an epidermal growth factor receptor (EGFR)
inhibitor, promoted the phosphorylation of
AQP2 at Ser-256 and Ser-269 and reduced the
endocytosis of AQP2, which enhanced the
plasma membrane accumulation and water reab-
sorption function of AQP2 [62]. Jung et al. found
that C/EBPβ was involved in the transcriptional
regulation of CREB on Aqp2, which illustrated
that the effect of CREB on Aqp2 was indirect

[75]. Besides, other transcription factors, such as
AP-1, NF-κB and NFAT, also regulate the
expression of AQP2 [18].

The redistribution of AQP2 results in
increased transcellular water permeability and
urine concentration. Once the correct water bal-
ance is restored, AQP2 is internalized and
redirected to storage vesicles or targeted for deg-
radation through ubiquitin-mediated endocytosis.

11.3.3 AQP3

AQP3 knockout did not affect perinatal survival
and postnatal growth of mice. But AQP3 knock-
down resulted in a significant increase in fluid
consumption and urine production in mice. It is
reported that AQP3 knockout mice consumed and
excreted ten-fold of fluid than wild-type mice
[76]. The mean urine osmolality of AQP3 knock-
out mice was about 262 mosm/kg H2O, which
was much lower than that of wild-type mice
(1270 mosm/kg H2O). Researchers performed
36-hour water deprivation experiment or
dDAVP administration to investigate the urine
concentration ability of AQP3 knockout mice.
Results showed that urine osmolality in AQP3
knockout mice was significantly increased after
water deprivation and dDAVP administration,
although the increase was still much smaller
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than that in wild-type mice. These results indicate
that the countercurrent exchange in the kidney of
AQP3 knockout mouse remains basically intact,
but the osmolality of the renal medulla is lower
than that of wild-type mice due to the diuresis
washout. These findings suggest that AQP3 defi-
ciency causes NDI by a different mechanism than
AQP1 and that dysfunction in both countercurrent
exchange and collecting duct can cause NDI [77].

When the osmotic water permeability (Pf) of
the basolateral membrane of the cortical
collecting duct was measured by spatial filtration
microscopy. Results showed that the volume of
the cortical collecting duct changed rapidly with a
half-time (t1/2) for osmotic equilibration of 1.1 s
in wild-type mice. However, osmotic equilibra-
tion in the collecting ducts of AQP3 knockout
mice was markedly slow with a t1/2 of 2.7 s. The
rate of solution exchange in the tubules of wild-
type mice may be underestimated because the
time of solution exchange in the system is finite.
Therefore, AQP3 knockout resulted in at least a
three-fold decrease in water permeability in the
basolateral membrane of the cortical
collecting duct.

The impaired urine concentration ability of
AQP3 knockout mice confirmed that the water
permeability of the basolateral membrane of the
collecting duct may act as a rate-limiting barrier
when AQP3 is absent, suggesting that AQP3-
mediated water transport across the basolateral
membrane of collecting duct epithelium is impor-
tant for concentrated urine formation.

11.3.4 AQP4

In the basal state, there was no significant differ-
ence in urine osmolality, serum sodium concen-
tration, and serum osmolality between AQP4
knockout mice and wild-type mice [78, 79]. How-
ever, the results of 36-hour water deprivation
experiment showed that the maximum urine
osmolality of AQP4 knockout mice decreased
significantly after water deprivation, and
desmopressin could not effectively restore the
osmolality of QP4 knockout mice

[80, 81]. These findings suggest that AQP4
knockout mice have a mild urine concentrating
defect.

The researchers also compared Pf values of
perfused IMCD segments isolated from wild-
type mice and AQP4 knockout mice. The results
showed that in the condition of 18–48 h water
deprivation and presence of vasopressin, the
transepithelial Pf values of microdissected
IMCD in wild-type mice and AQP4 knockout
mice were 0.056 cm/s and 0.013 cm/s, respec-
tively. These results suggested that AQP4 was a
major player in water movement in the basolateral
membrane of IMCD.

Although the water permeability of IMCD in
AQP4 knockout mice was greatly reduced, their
urine concentration ability was only slightly
impaired. This may be related to the normal dis-
tribution of water transport along the collecting
duct. Because the amount of water reabsorbed by
cortical collecting duct is far more than that of
medullary collecting duct [82], and AQP4 is
mainly expressed in medullary collecting duct.
Therefore, the reduction in water absorption
caused by AQP4 knockdown is limited.

11.3.5 AQP5

There was no difference in renal function between
AQP5 knockout mice and wild-type mice
[83]. Therefore, the role of AQP5 in the kidney
remains to be explored.

11.3.6 AQP6

Although AQP6 is a classical aquaporin, it is
quite different from other aquaporins. Hg2+,
well-known AQP inhibitor, causes aquaporin
dysfunction, but increases the permeability of
AQP6 to water and anions. In addition, acidic
conditions also induce enhanced AQP6 function
[84–87]. These phenomena suggest that AQP6
might be involved in the acid secretion process
of collecting duct.
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However, the role of AQP6-mediated perme-
ability of water and anions in renal tubules
remains unclear. Intercalated cells are the main
acid-secreting cells in distal tubules and
collecting ducts. Intercalated cells contain a
large number of mitochondria, which provide
energy for cellular activities [88]. Intercalated
cells rely on intracellular vesicles containing the
H+-ATPase to transport H+ [87]. And AQP6
localizes to these vesicles. It has been found that
H+-ATPase could be transported from intracellu-
lar vesicles to apical membrane in response to
acid–base changes. However, AQP6 was not
found in the plasma membrane of intercalated
cells [89, 90]. These findings suggested that
AQP6 functioned only at the intracellular sites.
Current opinions suggest that AQP6 may play a
role in maintaining acid–base balance in cellular
regulation [91, 92], without effects on direct fluid
transport in renal tubules. But these views need
further confirmation.

11.3.7 AQP7

AQP7 contributed little to the permeability of
proximal straight tubes, as the water permeability
of the outer medullary vesicles of AQP7 knock-
out mice was 18 × 10–3 cm/s, it is only slightly
lower than that of wild-type mice, which is
20 ×10–3 cm/s [93]. And it is reported that the
water permeability of AQP7 in proximal straight
tubules is only 1/8 of that of AQP1 protein [35].

It is reported that AQP7 knockout mice did not
show defect in urine concentration, but AQP7
knockout significantly increased the urine output
of AQP1 knockout mice. The 24-hour urine out-
put of AQP1 knockout mice was about 5.7 mL
and the 24-hour urine output of AQP1 and AQP7
double knockout mice was about 7.3 mL. These
results suggest that the water permeability of
AQP7 in proximal straight tubules contributes to
reabsorption.

The serum glycerol concentration of AQP7
knockout mice was about 0.036 mg/ml, which
was slightly lower than that of wild-type mice of
0.042 mg/ml. However, the urine glycerol con-
centration of AQP7 knockout mice was 1.7

mg/ml, much higher than the 0.005 mg/ml of
wild-type mice. These results suggested that the
primary role of AQP7 in the proximal straight
tubules is to reabsorb glycerol. Moreover, there
might be no other glycerol reabsorption system in
the kidney to complement the impaired glycerol
reabsorption caused by AQP7 knockout [94–
96]. It also suggested that AQP7 played a second-
ary role in renal water reabsorption.

Studies also found that AQP7 can penetrate
ammonia [97, 98]. However, the physiological
role of AQP7-mediated ammonia permeability
has not been elucidated. As we know, glutamine
metabolism occurs in the proximal tubules, which
produces HCO3

– and NH4
+. The HCO3

-and NH4
+

will be excreted into the renal tubules, and some
NH4

+ may exit from the proximal tubule cells to
the renal tubule as NH3, where it is protonated
[99]. The researchers speculated that AQP7 may
be involved in the secretion of NH3 and NH4

+,
thereby mediating tubular regulation of ammonia
concentrations on both sides of the membrane
over a shorter period of time.

11.3.8 AQP8

AQP8 has no essential role in renal urine concen-
tration function. Studies found that AQP8 knock-
out did not affect the urine osmolality both in
basal and 36-hour water deprivation condition in
mice [100]. Researchers generated AQP1 and
AQP8 double-knockout mice, and the results
showed that there was no significant difference
in urine osmolality between AQP1 knockout mice
and AQP1 and AQP8 double-knockout mice
[98, 101–103]. These findings suggested that
AQP8 had no effect on urine concentration.

Besides, Molinas et al. found that AQP8 was
expressed in the inner mitochondrial membrane
of HK-2 cells. After knockout of AQP8, the rate
of ammonia release from HK-2 cells decreased,
and the expression of AQP8 in HK-2 cells was
significantly upregulated when exposed to acidic
medium [104]. These studies suggest that AQP8
may be involved in the transport of ammonia in
the kidney.
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11.3.9 AQP11

AQP11 is involved in renal oxygen homeostasis.
Previous study reported that AQP11 knockout
mice showed upregulation of NOX2 and
enhancement of oxidative stress in kidney,
which accompanied by macrophage infiltration
[105]. Moreover, due to severe renal failure,
AQP11 knockout mice started dying within
2 weeks, which suggested that this isoform was
of fundamental importance [34].

11.4 AQPs in Renal Diseases

11.4.1 Nephrogenic Diabetes Insipidus

AQP2 plays a critical role in the progress of NDI
[106]. Acquired NDI is mainly caused by
abnormalities of chemical substances and electro-
lyte, or obstructive uropathy [107–109]. Lithium-
induced NDI is a disorder characterized by the
inability of the renal collecting duct to concen-
trate urine in respond to ADH. Studies found that
the expression level of AQP2 was significantly
decreased after lithium induction [110–
112]. Whereas, the mutation of AQP2 is also an
important cause of congenital NDI [113–
116]. Two modes of inheritance of AQP2
mutations are known, autosomal recessive and
autosomal dominant. In autosomal recessive
AQP2 mutation, the AQP2 protein loses its func-
tion as a water channel and is mislocalized in the
endoplasmic reticulum. In autosomal dominant
AQP2 mutation, AQP2 is abnormally localized
in intracellular compartments such as the Golgi
apparatus, late endosomes, and lysosome, or in
the basolateral membrane [76].

Elucidating the regulatory mechanism of
AQP2 is of great significance for the treatment
of NDI and the development of potential drugs
[117]. Therefore, researchers generated an induc-
ible mouse model of recessive NDI by AQP2-
T126M gene mutation [118–120]. Western blot
results showed that the molecular size of AQP2
bands was about 34~40 kDa (Fig. 11.4a),
indicating complex glycosylation of fully

processed AQP2 [121]. In addition, there were
also bands of unglycosylated AQP2 (about
29 kDa). However, the AQP2 bands were about
31 kDa in AQP2-T126M mutation mice, which
were endoplasmic reticulum-retained, core-
glycosylated form of AQP2-T126M. If treated
with endoglycosidase H, the 31 kDa bands will
largely disappear.

The urine output of AQP2-T126M mutant
mice was seven times higher than wild-type
mice. After 18 h of water deprivation, the urine
osmolality of wild-type mice increased from 1840
mosm/kg H2O to 2872 mosm/kg H2O, while that
of AQP2 knockout mice did not increase, but that
of AQP2-T126M mutant mice increased to 1027
mosm/kg H2O. These results indicated that AQP2
in AQP2-T126M mutant mice still retained a
certain water permeation function. In addition,
Hsp90 is a molecular chaperone of AQP2,
which can regulate the activity of AQP2. Studies
have shown that the HSP90 inhibitor 17-AAG
can partially reverse the increased urine output
induced by AQP2-T126M mutation. These
results suggested that Hsp90 inhibitors were
potential therapeutics for NDI (Fig. 11.4b,
c) [121].

PKA signaling pathway was found to play an
important role in regulating AQP2 in NDI.
Genetic or pharmacological inhibition on
adenylate cyclase 6 or glycogen synthase kinase
3β (GSK3β) significantly decreased the level of
cAMP, which downregulated AQP2 and caused
NDI [122, 123]. Ando et al. reported that 3,3′-
-diamino-4,4′-dihydroxydiphenylmethane
(FMP-API-1) and its derivatives showed inhibi-
tory effect on NDI through upregulating AQP2 by
activating PKA [124]. Gao et al. reported that
prostaglandin E2 receptor EP4 decreased AQP2
expression by activating cAMP-PKA pathways in
renal collecting ducts, which impaired urinary
concentration and caused NDI [125]. These
findings implied that PKA signaling pathway
was potential target for NDI treatment. However,
inhibition of cAMP-PKA pathways not only
exhibited limited efficacy but also accompanied
with a large number of side effects, denying its
potential in NDI treatment [18].
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Fig. 11.4 17-AAG
partially corrects defective
urinary concentrating
function in AQP2-T126M
mutant mice. (a)
Representative Western
blots of AQP2 protein from
wild-type (+/+) and AQP2-
T126M mutant (T126/–)
mice. (b) Representative
Western blots of AQP2
protein from the kidney
homogenates of wild-type
and AQP2-T126M mutant
mice treated without or with
17-AAG. (c) Urine
osmolality in wild-type,
AQP2-T126M mutant, and
AQP2 knockout (–/–) mice
before and after 17-AAG
treatment. (Data cited from
[121])

AQP2 is also regulated by many other factors.
Suzuki et al. reported that in the Keap1-/-;
Nrf2flox/flox; K5-Cre mice, dysfunction of
KEAP1 caused the abnormal activation of NRF2
in the kidney, which downregulated AQP2 and
led to defects in water reabsorption. These data
suggested that abnormal activation of NRF2 in
the kidney caused NDI by reducing AQP2
expression [126]. Hatem-Vaquero et al. reported
that integrin-linked kinase (ILK), as a scaffold
protein that linking ECM to intracellular signal-
ing pathway, upregulated AQP2 by activating
ILK/GSK3β/NFAT signaling pathways. Dys-
function of ILK caused NDI. These findings

suggested that regulating ECM may be an effec-
tive therapy for NDI [127]. Bonfrate et al. found
that statins could upregulate the expression of
AQP2 in the kidney, which increased water reab-
sorption and remedied NDI [128].

In addition, deficiency of AQP1, AQP3, or
AQP4 causes NDI in mouse models. AQP1
knockout mice showed increased urinary flow
rates with low urinary osmolality [35]. The diure-
sis of AQP1 knockout mice came mainly from the
reduced fluid absorption in the proximal tubule
[35]. Therefore, there was no abnormality found
in AQP1-deficient human patients not subjected
to water-deprivation stress [129]. AQP3 null mice
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showed polyuric and collecting duct function
defect. But the countercurrent exchange in the
kidney of AQP3 knockout mouse is basically
intact, although diuresis washout made medullary
interstitial osmolalities lower than that in wild-
type mouse [76, 77]. AQP4 deficiency caused
very mild defect in urine-concentrating ability,
although the water permeability of IMCD was
greatly reduced [78–81].

11.4.2 Polycystic Kidney Disease

Autosomal dominant polycystic kidney disease
(ADPKD) is a human inherited disease with an
estimated prevalence of between one in 2500 to
one in 1000 individuals. It is characterized by
progressive enlargement of fluid-filled cysts
derived from renal tubular epithelial cells. Mas-
sive cysts gradually compress renal parenchyma,
destroy the normal renal structures, and eventu-
ally cause the loss of kidney function. The forma-
tion and growth of renal cysts are mainly caused
by the abnormal proliferation of cyst epithelial
cells and the secretion of fluid, but the underlying
mechanism still need to be clarified.

In human ADPKD patients, AQP1 was found
to be expressed in 71% of renal cyst epithelial
cells, and 44% of them were derived from proxi-
mal tubules [130]. Wang et al. found that AQP1
was important in retarding renal cyst expansion
[131]. AQP1 knockout significantly promoted
renal cyst formation and growth in kidney-
specific Pkd1 knockout mouse (Fig. 11.5a). And
the excess cysts were concentrated in proximal
tubule. The MDCK cyst model is an in vitro
model that simulates the formation and growth
of renal cysts. It is reported that overexpression of
AQP1 in MDCK cells significantly inhibited
MDCK cyst formation in MDCK cyst model
(Fig. 11.5b).

The inhibitory effect of AQP1 on cyst forma-
tion and growth may be derived from its inhibi-
tory effect on β-catenin and cyclin D1, which
leads to the downregulation of Wnt signaling
pathway. The results of co-immunoprecipitation
suggested that AQP1 could interact with

β-catenin, GSK3β, LRP6, and Axin1. And sub-
cellular fractionation experiments also showed
that β-catenin, GSK3β, and Axin1 co-existed in
the cytosolic and membrane fractions, whereas
LRP6 and AQP1 were detected only in the mem-
brane fractions (Fig. 11.5c).

It is hypothesized that the interactions between
AQP1 and GSK3β, βLRP6, Axin1, serine/threo-
nine kinases (CK1), APC could stabilize
“destruction signaling complex” on the plasma
membrane (Fig. 11.5d). These processes pro-
moted β-catenin phosphorylation. β-TrCP
recognizes and ubiquitinates phosphorylated
β-catenin, causing β-catenin degradation. AQP1
knockout decreased the stability of “destruction
signaling complex,” which blocked the
ubiquitination and degradation of β-catenin.
Excessive β-catenin will be translocated into the
nucleus and found a β-catenin/TCF complex by
binding to TCF, which promoted the transcription
of Wnt target genes. These findings suggested
that AQP1 may be a therapeutic target for
ADPKD.

It is found that AQP2 was expressed in
two-thirds of the cyst epithelial cells [132, 133],
and AQP2 dysregulation occurs in ADPKD
[16]. Aboudehen et al. reported that in the
HIF-1α mutated mice, AQP2 was overexpressed
and mislocalized in the collecting duct cell cyto-
plasm, which promoted renal cyst formation and
urinary concentration defect [134]. Noitem et al.
reported that steviol facilitated the cyst growth by
downregulating AQP2 [135]. These findings
implied the potential role of AQP2 in ADPKD
treatment.

AQP3 plays an important role in promoting
the progress of ADPKD. It was reported that in
the MDCK cyst model, overexpression of AQP3
significantly upregulated the expression of HIF1-
α and glucose transporter 1 (GLUT1)
(Fig. 11.6a), which promoted glucose uptake
and accelerated cyst expansion (Fig. 11.6b). Con-
sistent with these, in kidney-specific Pkd1 knock-
out mouse model and inducible Pkd1 knockout
mouse model, AQP3 knockout significantly
reduced the kidney volumes and renal cyst
indices (Fig. 11.6c). Moreover, AQP3
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Fig. 11.5 AQP1 inhibits
renal cyst development in
polycystic kidney disease.
(a) Representative images
of wild-type, Pkd1–/– and
Aqp1–/–; Pkd1–/– kidneys.
(b) Representative images
of MDCK cysts formed by
non-transfected MDCK
cells and AQP1-MDCK
cells. (c) Representative
coimmunoprecipitation
images of AQP1, β-catenin,
GSK3b, LRP6, and Axin1
in AQP1-MDCK cells. (d)
Schematic of proposed
β-catenin regulation by
AQP1. (Data cited from
[131])

dysfunction significantly reduced ATP content in
the kidney of Pkd1 knockout mouse model
(Fig. 11.6c), which promoted the phosphorylation
of AMPK and dephosphorylation of ERK and
mTOR. These processes finally retarded renal
cyst development (Fig. 11.6e–g) [136].

Studies have shown that AQP11 knockout
mice exhibited the same phenotype of enlarged
kidneys, polycystic, and anemia as human PKD
patients. However, renal cysts of AQP11 knock-
out mice mainly generated form cortex but no
medulla (AQP11 is highly expressed in
cortex) [137].

It is reported that AQP11 knockout mice
showed vacuolization and ER lumen enlargement
in proximal tubule cells [34]. Among these abnor-
mal cells, there were a large number of TUNEL-
positive cells and cleaved caspase-3-positive
cells, suggesting an enhancement of apoptosis

[138]. In the abnormal ER, the expression of ER
stress-related genes such as Hspa5 and Hsp90b1
were significantly increased, suggesting ER
stress. In addition, the expression of Ki-67 and
epidermal growth factor receptor were also sig-
nificantly increased, suggesting an abnormality in
cell proliferation. Atochina et al. also reported
that in the kidneys of AQP11 knockout mice,
the expression of ER stress marker Bip and apo-
ptosis marker cleaved caspase-3 were signifi-
cantly increased, accompanied by mitochondrial
damage [139]. These results suggest that AQP11
knockout causes ER stress which induces renal
injury.

Besides, Inoue et al. found significant
upregulation of PC1 and significant
downregulation of PC2 in the kidneys of
AQP11 knockout mice, which were accompanied
by a significant increase in primary cilia of
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Fig. 11.6 AQP3 promotes
renal cyst development in
polycystic kidney disease.
(a) Representative Western
blots of HIF1α and GLUT1
protein from Pkd1–/–;
Aqp3+/+ and Pkd1–/–;
Aqp3–/– mice. (b) MDCK
cysts formed by normal
MDCK cells and AQP3-
transfected MDCK cells.
(c) Representative images
of wild-type, Aqp3–/–,
Pkd1–/– and Pkd1–/–;
Aqp3–/– mouse kidneys. (d)
ATP content in the kidney
of Pkd1–/–; Aqp3+/+ and
Pkd1–/–; Aqp3–/– mice. (e)
Representative western
blots of AMPK and
p-AMPK in the kidney of
wild-type, Aqp3–/–, Pkd1–/–

and Pkd1–/–; Aqp3–/– mice.
(f) Immunoblots of ERK,
p-ERK, S6 and p-S6 in the
kidney of wild-type,
Aqp3–/–, Pkd1–/– and
Pkd1–/–; Aqp3–/– mice. (g)
The suggested mechanism
of AQP3 in promoting the
progress of ADPKD. (Data
cited from [136])

proximal tubule epithelial cells, similar to the
phenotype observed in polycystic kidney
[33]. These findings suggest that ER dysfunction
may induce abnormal N-glycosylation of PC1,
leading to impaired transport of PC1 to the cilia.
And AQP11 knockout may lead to polycystic
kidney by affecting the function of PC1
[140]. However, how AQP11 affects the progres-
sion of ADPKD is still unclear. Further elucida-
tion of the function of AQP11 is expected to
provide a new idea for the study of ADPKD.

11.4.3 Acute Kidney Injury

AQP1 plays a functional role in acute kidney
injury (AKI). Wang et al. reported that loss of
AQP1 promoted the endotoxin-induced acute
kidney injury in AQP1 knockout mice
[141]. Liu et al. reported that macrophage M2
polarization was likely the cellular mechanism
for the anti-AKI property of AQP1, and that
PI3K activation was involved in AQP1-induced
M2 phenotype switch [142].

AQP2 plays a functional role in renal ische-
mia/reperfusion (I/R) injury-induced AKI.
Hussein et al. reported that the expression of
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AQP2 was decreased in I/R mice, which caused
urinary concentration defect [143]. Asvapromtada
et al. reported that in the bilateral and unilateral
renal I/R rats, release of urinary exosomal AQP2
was decreased [144]. Fan et al. reported that
AQP2 was decreased as the occurrence of
pyroptosis in renal I/R mouse model and
overexpressed AQP2 in the HK-2 cells partially
reversed hypoxia-reoxygenation-induced
pyroptosis [145]. Besides, the urinary AQP2
level is a potential biomarker of AKI in coronary
care unit patients with acute decompensated heart
failure [146].

AQP3 was involved in I/R-induced kidney
injury. Lei et al. reported that 25 min of I/R did
not result in abnormal changes in the kidneys of
wild-type mice. But the levels of serum creati-
nine, urea, and LDH in AQP3 knockout mice
were significantly increased after I/R, and the
contents of MPO and MDA in the kidney were
also increased, while SOD activity was
decreased. HE staining showed no obvious
change in the kidneys of wild-type mice after I/
R. But dilated lumens of collecting ducts, incom-
plete tube walls, and swollen epithelial cells were
found in AQP3 knockout mice after I/R
(Fig. 11.7a). F4/80 staining showed that the infil-
tration of macrophages in collecting ducts was
significantly increased in AQP3 knockout mice
after I/R. TUNEL staining showed that AQP3
knockout significantly enhanced I/R-induced
apoptosis. Consistent with this, the ratio of Bax
to Bcl-2, cleaved-caspase-3 to caspase-3, and
p-p53 to p53 heightened by I/R were also
enhanced in AQP3 knockout mice (Fig. 11.7b).
AQP3 knockout downregulated the MAPK sig-
naling pathway in physiological conditions, but it
enhanced the I/R-induced abnormal activation of
MAPK signaling pathway (Fig. 11.7c). Similarly,
AQP3 promoted MDCK cell proliferation and
migration in the basic condition. Overexpression
of AQP3 significantly alleviated the hypoxia/
reoxygenation-induced cell death by reducing
the ratios of Bax to Bcl-2, cleaved-Caspase-3 to
Caspase-3, and p-p53 to p53 and suppressing
apoptosis. At the same time, AQP3 enhanced
the activity of MAPK signaling pathway in
MDCK cells and inhibited the changes of ERK,

P38 and JNK caused by hypoxia/reoxygenation
or cobalt chloride stimulation (Fig. 11.7d) [147].

Besides, a report showed that AQP3 dysfunc-
tion occurred in cisplatin-induced kidney injury
animal model [148].

11.4.4 Epithelial–Mesenchymal
Transition and Fibrosis

AQP1 is involved in the process of epithelial–
mesenchymal transition (EMT). Li et al. reported
that, in HK-2 cells, aristolochic acid I (AA-I)
induced EMT by activating TGF-β/Smad-inde-
pendent signaling pathways, including β-catenin,
Ras-Raf-ERK1/2 signaling pathways. These pro-
cesses upregulated the expression of AQP1,
which could be reversed by ERK1/2 inhibitor
PD98059 [149]. Lovisa et al. reported that
AQP1 was down-regulated in the kidneys of uni-
lateral ureteral obstruction (UUO) mice, which
could be reversed by suppressing EMT. These
findings supported the important role of AQP1
in EMT [150].

AQP2 has been proven to function in
UUO-induced renal fibrosis. Ampawong et al.
reported that AQP2 was upregulated in
hydronephrosis mice [151]. Wang et al. reported
that the downregulation of AQP2 in UUO mouse
contributed to the urinary concentrating defect
[152]. Activating AQP2 and AQP4 by cholecal-
ciferol cholesterol emulsion also significantly
inhibited UUO-induced renal fibrosis
[153]. Therefore, activators that target to AQP2
have enormous potential in renal fibrosis
treatment.

AQP4 plays a functional role in promoting
renal fibrosis. Liu et al. reported that AQP4 was
upregulated in UUO animal models. Cholecalcif-
erol cholesterol emulsion significantly suppressed
the expression of AQP4, which retarded
UUO-induced renal fibrosis. These results
implied a functional role of AQP4 in promoting
renal fibrosis [153]. MacManes et al. reported that
AQP4 was downregulated in a desert-adapted
animal model with acute dehydration, suggesting
that AQP4 might prevent kidney injury by
handling water [154].
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Fig. 11.7 AQP3 promotes
ischemia/reperfusion-
induced kidney injury. (a)
Hematoxylin- and eosin-
stained pictures of kidneys
from wild-type and AQP3
knockout mouse treated
without or with I/R. (b)
Representative western
blots of Bax, Bcl-2,
Caspase-3, cleaved-
Caspase-3, p-p53, and p53
proteins in the kidneys of
wild-type and AQP3
knockout mice treated
without or with I/R. (c)
Representative western
blots of p-p38, p38, p-ERK,
ERK, p-JNK, and JNK2
proteins in the kidneys of
wild-type and AQP3
knockout mice treated
without or with I/R. (d) The
suggested mechanism of
AQP3 in inhibiting I/R-
induced kidney injury.
(Data cited from [147])

In addition, studies have confirmed that the
expression level of AQP4 is negatively correlated
with the degree of renal injury [155]. AQP4 was
upregulated and AQP1 and AQP2 were
downregulated in the salt-sensitive hypertension
patients [156].

11.4.5 Tumors

AQP1 has been shown to be associated with a
varity of tumors, especially those originating in
water-permeable organs, such as kidney and blad-
der [157–159]. It has been confirmed as an
enhancer of cell growth and migration, which
promotes tumor angiogenesis [160, 161]. Because
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of the heterogeneity of its distribution and expres-
sion, AQP1 could be used as a biomarker of
tumors [162, 163].

AQP3 plays an important role in tumor. Yu
et al. reported that AQP3 was upregulated in
arsenical cancers and arsenic-treated
keratinocytes, accompanied by an increase of
autophagy flux. Inhibiting AQP3 by aquaporin
inhibitors AgNO3 or RNA interference signifi-
cantly suppressed the arsenic-induced autophagy,
implying the functional role of AQP3 in promot-
ing autophagy [164].

Studies have shown that the expression of
AQP6 changes with the development of renal
cell carcinoma (RCC) and oncocytoma,
suggesting that AQP6 could be used as a diagnos-
tic marker for renal cancer [165, 166].

11.4.6 Pyelonephritis and IgA
Nephropathy

Increase of urinary AQP2 excretion was found in
pyelonephritis and IgA nephropathy patients. The
reduction of AQP2 was regarded as the main
cause of polyuria [167, 168]. Landegren et al.
reported that targeting AQP2 or its upstream
molecules by autoantibodies resulted in tubuloin-
terstitial nephritis in patients with autoimmune
diseases [169], suggesting AQP2 as the therapeu-
tic targets for these diseases.

11.4.7 Chronic Kidney Diseases

AQP5 may play a functional role in diabetic
nephropathy (DN). AQP5 was found in kidney
biopsies from ND patients, while was not found
in normal controls [170]. Mechanistic studies
suggest that upregulated AQP5 may lead to poly-
uria by affecting AQP2 membrane localization.
These results suggest that AQP5 in urine may
serve as a biomarker of ND [171].

DN is also affected by AQP11. The results of a
prospective cohort study on patients with DN
suggest that AQP11 rs2276415 variant affects
the prognosis of DN patients. The integrity of
AQP11 function dose-dependently affects

cumulative events-free survival, in which the A
allele of AQP11 gene (GA + AA) increased the
risk of CKD progression [172].
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Abstract

AQP0-12, a total of 13 aquaporins are
expressed in the mammalian reproductive sys-
tem. These aquaporins mediate the transport of
water and small solutes across biofilms for
maintaining reproductive tract water balance
and germ cell water homeostasis. These
aquaporins play important roles in the regula-
tion of sperm and egg cell production, matura-
tion, and fertilization processes. Impaired
AQP function may lead to diminished male
and female fertility. This review focuses on
the distribution, function, and regulation of
AQPs throughout the male and female repro-
ductive organs and tracts. Their correlation
with reproductive success, revealing recent
advances in the physiological and pathophysi-
ological roles of aquaporins in the reproduc-
tive system.
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12.1 Aquaporins in the Male
Reproductive System

12.1.1 Water Transport in the Male
Reproductive System

The male reproductive system of mammals
consists of paired testes, efferent ducts,
epididymides, vas deferens, urethra, penis, and
accessory gonad (seminal vesicle, prostate,
bulbourethral gland, ampullary gland, preputial
gland, etc.), of which ampullary gland and prepu-
tial gland are unique to rodents such as mice
and rats.

The transport and metabolism of water in the
male reproductive system are more active and
have obvious particularities. Germ cells require
the transport, secretion, and reabsorption of large
amounts of water during development.
Spermatogonia develop into spermatids after
multiple divisions in the seminiferous tubules of
the testis, and then spermatids will flow through
the seminiferous tubules, testicular rete, efferent
tubules with fluid in the testis, and finally store in
the epididymis and further mature. In the above
processes, especially the stage when round
spermatids are transformed into elongated
spermatids, the significant reduction in cell vol-
ume due to osmotically driven fluid outflow is
one of the most significant morphological
changes. The distal parts of the outflow duct
system, especially the epididymis, undergo
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massive fluid resorption resulting in a significant
increase in their internal sperm concentration.

Aquaporins (AQP) expressed in spermato-
genic cells and epithelial cells of the reproductive
tract regulate the movement of water and are
responsible for balancing the intraluminal envi-
ronment of spermatogenesis. In addition, AQPs
play an important role in the vas deferens, seminal
vesicles, and prostate, which have secretory and
resorptive functions and produce nutrient-rich
fluids to maintain sperm maturation.

12.1.2 Aquaporins in Testis

Testis is one of the important male internal repro-
ductive organs, which can produce sperm and
androgen and promote the emergence of second-
ary sexual signs and the development of other
sexual organs. There are AQP0, AQP1, AQP3,
AQP4, AQP7, AQP8, AQP9, and AQP11. These
eight AQPs are expressed in different cells in
testicular tissue, including stromal cells, Sertoli
cells (SCs), and spermatogenic cells (Fig. 12.1).

AQP0 has been found in SCs and Leydig cells,
but not in the efferent duct or epididymis
[1]. AQP1 is mainly localized in the plasma mem-
brane of epithelial cells and microvascular endo-
thelial cells of the testis [2]. AQP3 is expressed in
mouse and rat SCs [1, 3]. AQP4 is present in the
tunica media of human seminiferous tubules [4]
and rat SCs [5]. AQP5 is localized in the Leydig
cells [6]. Double-labeling, confocal microscopy
showed co-expression of AQP5 with capillary
AQP1 in the testis [6]. AQP7 is expressed in
elongated spermatids and sperm tails in the testis
[6]. A concurrent study also described AQP7
expression on rodent spermatocytes
[7]. Immunolocalization showed that AQP8 was
located in the plasma membrane of SCs
[8, 9]. AQP9 expression has been detected in
human SCs, primary spermatocytes, and haploid
germ cells within the enucleation [10, 11]. Evalua-
tion of AQP11 expression in rat testes by
immunohistochemistry showed signals in germ
cells and only in the distal tail of elongated
spermatids and residual bodies within SCs,

possibly caused by inactive elongated spermatid
phagocytosis and intracellular organelles [12].

Histological sections of rat seminiferous
tubules showed that AQP0 expression levels in
SCs correlated at different stages of the seminif-
erous epithelial cycle. Higher AQP0 expression
was observed at intermediate stages (V-VIII)
[1]. In fact, AQP0 expression in SC is associated
with the process of detachment of elongated
spermatids from these somatic cells into seminif-
erous tubule. AQP1 is directly involved in
regulating the transport of fluid in the testicular
microvascular endothelial cell membrane
[13]. During the development of the rat testicular
outflow duct, the structural and functional expres-
sion of AQP1 is vulnerable to neonatal estrogen
exposure and may be a direct effect [14]. AQP3 is
thought to mediate the transport of glycerol,
which is an essential substrate for germ cell devel-
opment and spermatogenesis [3]. In rodent SCs,
AQP4 and cystic fibrosis transmembrane conduc-
tance regulator (CFTR), a Cl- channel [5],
interacts, which indicates that AQP4 and CFTR
can regulate the steady state of water fine tube.

The transcripts of AQP7 are detectable at
23–25 days postpartum, when round spermatids
begin to appear [15]. However, studies showed no
alterations in male fertility in AQP7 knockout
mice compared to wild-type mice, especially no
abnormalities in daily spermatogenesis, motility,
or even offspring number [16]. AQP9 functional
studies on mouse SCs have shown that estrogen
treatment results in downregulation of the AQP9
gene with a concomitant reduction in glycerol
transport [3]. In rats, AQP9 is thought to mediate
water and uncharged solutes between cells and
blood vessels and/or interstitial spaces, which
helps to maintain the homeostatic dynamics of
cells [17, 18]. AQP11 plays a role in recovering
the remaining cytoplasmic fraction of elongated
spermatids and maintaining SC capacity [12]

12.1.3 Aquaporins in Sperm

In the male reproductive tract, spermatogenesis is
associated with massive fluid secretion and
absorption [19–21]. The role AQPs play in
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Fig. 12.1 Expression of
AQPs in male reproductive
system

sperm is mainly associated with changes in cell
volume during spermatogenesis and changes in
the osmotic pressure of the surrounding environ-
ment when sperms are motile in the male and
female reproductive tracts.

Human spermatozoa have been shown to
express four aquaporins, AQP3, AQP7, AQP8
and AQP11, which localize specifically to the
plasma membrane and intracellular organelles.
In human spermatozoa, AQP3 expression was
localized in the tail of spermatids by immunoflu-
orescence staining [22], localization of which is
consistent with that found in other mammals [22–
24]. The first aquaporin found in human sperm
cells is AQP7, which is localized in the midpiece
and front part of the sperm [25]. AQP8 protein is
localized in the middle piece of sperm, where it is
more pronounced in the mitochondria
[10, 26]. The results of immunohistochemical
staining showed intense labeling of AQP11 in
the distal quarter of mouse and rat sperm tails
[12, 26]. The presence of AQP11 protein in
humans was confirmed by Western blot and
immunostaining [27, 28], which was localized in
vesicular structures in the sperm tail and
cytoplasm.

Due to the hypertonic environment of the
cauda epididymis (~415 mOsm/kg in mouse)

and an isotonic environment of the uterine body
(~310 mOsm/kg in mouse), osmotic adaptation is
essential during the transition of sperm from the
male to the female reproductive tract [22]. Studies
have shown that AQP3-null mice show normal
spermatogenesis and normal motor activation
caused by hypotonic stimuli, but have increased
vulnerability to cell swelling and tail bending
caused by hypotonicity, and specifically, deletion
of AQP3 was found to result in tail deformation,
formation of hairpin-like structures due to
mechanical membrane stretching, resulting in
impaired migration of sperm into the fallopian
tube, which in turn leads to reduced fertilization
ability [22, 29, 30]. AQP3 may form a molecular
complex with other ion channels (such as
volume-sensitive chloride channel CLC-3),
which can detect the osmotic change and trigger
the subsequent volume regulation process
[22, 29, 31]. Recently, it has been found that
AQP3 plays an important role in human sperm
motility and mitochondrial membrane potential
integrity [32].

AQP7 has been studied extensively in mouse
and human sperm. About 20% of infertile patients
have low sperm motility and low AQP7 expres-
sion [25]. Studies on AQP7 knockout mice have
shown no difference in testicular and epididymal
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morphology, sperm quality, fertilization capacity,
and offspring compared with wild-type mice
[16]. Data suggest that AQP7 knockout mice
neither have abnormality in sperm function and
morphology nor develop infertility. The
experiments with another AQP7-null mouse
model showed that compensatory upregulation
of AQP8 may guarantee normal water perfusion
and eversion capacity of mouse spermatozoa
[21]. While emphasizing the importance of
AQP8 for sperm water transport in mice during
osmoregulation, this precludes a critical role for
AQP7 in regulating sperm volume change neces-
sary for fertilization in vivo [21]. AQP7 functions
primarily as a solute channel rather than a water
channel in spermatozoa. Immunofluorescence
showed that AQP7 was expressed in the
pericentriolar area, midpiece, equatorial segment,
and weakly in the tail of normal sperm, while
abnormal sperm had a diffuse low intensity of
AQP7 expression in coiled tail and head [33]. In
addition, a correlation between AQP7 localiza-
tion and percentage of normal morphology and
forward motion was demonstrated [33]. In
another study, Yang and colleagues compared
fertile controls and infertile patients and also
found that the relative content of AQP7 in
sperm detected by flow cytometry correlated
with sperm motility. The relative content of
AQP7 was higher in fertile donors than in infertile
patients [10]. It has also been shown that AQP7
acts as an aquaglyceroporin to promote glycerol
transport in spermatozoa for use as an energy
substrate [26]. Taken together, the current evi-
dence supports the notion that AQP7 plays a
crucial role during spermiogenesis and epididy-
mal maturation, glycerol metabolism in sperm,
and changes in sperm cell volume [10, 34].

In humans, AQP8 levels were found to be
inversely correlated with the degree of sperm
tail curling [10]. When researchers used two
inhibitors (HgCl2 and phloretin) to determine the
role of AQP8 in sperm volume regulation, they
found that HgCl2 but not phloretin was effective
in blocking quinine-induced swelling [10]. Con-
sidering these evidences, it can be assumed that
AQP8 is the main permeation pathway for water
in the sperm midstream [21]. However, sperm

from AQP8-null mice did not show significant
difference in number or morphology compared
with wild-type mice, and fertility remained nor-
mal [35]. In a recent study, the expression of
AQP8 in the mitochondrial membrane of human
spermatozoa was confirmed [27], which
highlights the role of AQP8 involved in ROS
processing in spermatozoa [36].

AQP11 is present in the terminal stages of
elongated spermatids and localizes to the distal
sperm tail, suggesting that AQP11 plays a role in
the terminal stages of spermatogenesis and in
promoting the elimination of residual caudal
cytoplasm during spermiogenesis [12]. Studies
on changes in the testicular transcriptome in
Syrian hamsters during photoperiodic stimulation
to regulate fertility indicated that AQP11 was
significantly associated with testicular weight
and testicular fertility markers, supporting the
critical role of AQP in fertility control [37]. The
possible role of AQP11 in the elimination of
H2O2 and other metabolic waste products in
mitochondria and other organelles makes
AQP11 a possible modulator of redox homeosta-
sis and signaling [38]. Currently, a study using
porcine sperm cells, which have expression
patterns similar to those observed in human
spermatozoa, noted that AQP11 expression is
associated with higher sperm quality
[27]. Spermatozoa with higher AQP11 expression
also had higher membrane integrity and motility,
further demonstrating the relevance of AQP11 for
sperm function.

After spermiogenesis, in the process from
seminiferous tubules to oviduct, it is necessary
to regulate its own volume to adapt to the repro-
ductive tract microenvironment of males and
females with different osmotic pressures. This
osmotic adaptation can prevent sperm swelling
and avoid affecting the bending movement of its
tail, so as to ensure sperm motility and maintain
the maximum fertilization ability [30]. This adap-
tation depends not only on ion channels but also
on water channels [10]. Therefore, various AQPs
are expressed in spermatozoa and play the role
and function related to water and solute transport
and energy metabolism, ultimately enabling suc-
cessful fertilization of spermatozoa.
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12.1.4 Aquaporins in Efferent Ducts

The efferent ductules of mammals are a group of
fine ducts that connect the testis to the epididymis
and are entrapped by adipose tissue. The efferent
tubule epithelium consists of nonciliated principal
cells and ciliated cells containing kinocilia as well
as basal cells. Its main function is to transport
sperm and reabsorb the water, ions, and proteins
of the testis. The plasma membrane on its surface
expresses AQPs and water-ion transporters,
which also contributes to the reabsorption of tes-
ticular fluid by the efferent tubules and maintain
the homeostasis of testicular fluid.

AQP1 expression in the efferent tubules was
confirmed in mice, rats, marmosets, and adult
dogs [39–42]. In adult dogs, AQP2 is expressed
in the efferent duct [42]. AQP9 has been found to
be expressed in the microvilli of principal cells
without cilia in rat efferent ducts [9] and in the
apical membrane of principal cells in humans
[43]. It has been reported that AQP10 is also
present in ciliated and non-ciliated cells of the
rodent efferent duct [1].

AQP9 may contribute to the entry of glycerol
and other neutral solutes into the lumen [44]. It
was found that in the efferent duct of the epididy-
mis, the expression of AQP9 protein was
increased by 300% in the animals treated with
diethylstilbestrol, while there was no difference
in AQP9 mRNA expression [45]. Moreover, the
expression of AQP1 and AQP9 in the efferent
tubules may be regulated by estrogen, as AQP
expression of these two isoforms is significantly
reduced in the efferent tubules of estrogen
receptor-deficient mice [46].

12.1.5 Aquaporins in Epididymis

The epididymis can be divided into three distinct
parts: head, body, and tail, which, as part of the
vas deferens, not only functions to deliver sperm
but is also associated with sperm maturation.
Immature spermatids undergo a series of devel-
opmental processes in the microenvironment of

the epididymis, acquiring motility and the ability
to fertilize with oocytes [47].

AQP1 is expressed on endothelial cells of epi-
didymal vascular [9, 48]. AQP3 expression was
demonstrated in basal cells in rodent epididymis
[1]. AQP4 is expressed in columnar epithelial
cells of the rat epididymal duct. AQP5 expression
has not been described in human tissues but is
present in principal cells of rat epididymal body
and tail sections [49]. AQP7 is expressed in the
basolateral membrane of adjacent principal cells
in the head of the rat epididymis and also in the
plasma membrane of principal cells in the cauda
epididymis [50]. AQP8 expression has also been
demonstrated in rat epididymal basal cells
[8]. AQP9 appears to be one of the most abundant
AQP in the epididymis, which is expressed in all
sections of the epididymal epithelium, especially
in the apical microvilli of principal cells [49], and
its expression has been described in humans with
a similar expression pattern as reported in rodents
[43]. Similarly, AQP11 expression has been
demonstrated in microvilli of principal cells in
the caudal as well as more distal regions of the
rat epididymis [51].

AQP1 can assist the final reabsorption of water
into the circulation in epididymal vascular
[1]. The expression of AQP4 in epididymal pari-
etal membrane is significantly stronger than that
in basal parietal membrane, which is the most
important part of epididymal canal fluid secretion.
The high expression of AQP4 in lumen surface
suggests that AQP4 is related to epididymal canal
fluid secretion and plays a role in sperm matura-
tion. AQP9 expression during epididymal devel-
opment in neonatal rats is downregulated by
diethylhexylestradiol, GnRHa, ethinyl estradiol,
and utamide, these effects are mediated by estro-
gen and prevented by testosterone [52]. CFTR,
acting as a cAMP-activated chloride channel [53],
and AQP9 [43] co-expressed in the membrane of
rat and human epididymal principal cells, which
play an important role in the formation and stor-
age of the mature luminal fluid of sperm, espe-
cially in the cauda epididymis [46, 54].
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12.1.6 Aquaporins in Vas Deferens

The vas deferens is a direct continuation of the
epididymal duct, which begins at the caudal end
of the epididymis and terminates in the ejacula-
tory duct and is divided into three different parts:
the proximal, the middle and the distal, which are
about 50 cm long in adult males. After maturation
in the epididymis, spermatozoa are guided to the
vas deferens. AQP-mediated transepithelial water
reabsorption in the vas deferens plays an impor-
tant role in maintaining the environment during
sperm maturation [55].

It has been found that AQP1 is expressed in
the membrane of the distal principal cells and the
basolateral membrane of the rat vas deferens
[40]. In adult rats, AQP2 is expressed throughout
the vas deferens, where it is more strongly
expressed in principal cells in the middle and
distal parts compared to those in the principal
cells of the bullae part [56]. The variable expres-
sion of AQP1 and AQP2 in different regions of
the vas deferens may result from differences in
principal cell architecture along the vas deferens
[57]. AQP5 localizes to the basal cells of the vas
deferens [6]. AQP7 was also expressed in the vas
deferens of adult dogs [42]. However, AQP9 is
expressed in the principal cells of the entire seg-
ment of the rodent vas deferens [43, 47], which
may be to ensure rapid glycerol uptake by sperm
cells and thus energy metabolism [44].

AQP1 is responsible for the movement of large
amounts of water and may be used to concentrate
sperm cells in the vas deferens, keeping with the
physiological function of the efferent duct itself
[47]. Interestingly, AQP2 expression levels
change during postnatal development in rats,
showing the expression pattern detected in adult
animals at 4 weeks of age. The studies suggest
that AQP2 expression is coordinated through
translational or posttranscriptional mechanisms
[49]. A study using AQP9 knockout mouse
model showed elevated glycerol concentrations
in serum despite the fertility of these animals,
highlighting the ability of AQP9 to transport this
substrate. Furthermore, the role of AQP9 in the
efflux products associated with its peroxidase
activity is not excluded.

12.1.7 Aquaporins in Male Accessory
Glands

Expression of AQP1 and AQP4 was found in
both the prostate and seminal vesicle, and AQP1
was also expressed in the plasma membrane of
ventral prostate and seminal vesicle epithelial
cells [2]. These AQPs play important functions
during fluid secretion and reabsorption [4, 40,
43].

12.2 Aquaporins in the Female
Reproductive System

In the female reproductive system, AQPs are
widely distributed in various reproductive organ
tissues, including uterus, ovary, fallopian tube,
and vagina (Fig. 12.2). AQPs play important
roles in the physiological function of female
reproductive organs and the pathological process
of gynecological diseases. In addition, changes in
vaginal secretions, follicle ovulation, menstrua-
tion formation, amniotic fluid during pregnancy,
malignant tumor development, or benign gyneco-
logical diseases are related to the fluid flow, uter-
ine cavity or follicular cavity volume, in which
AQPs play important roles.

12.2.1 Aquaporins in Vagina

Vagina is the organ of sexual intercourse in
women, the conduit for expulsion of menstrual
blood, and delivery of the fetus and is an organ
with fluid secretion ability that maintains the
vagina moist and has a self-cleaning effect. Vagi-
nal lubrication increases during sexual activity
and can also play a role in carrying sperm after
ejaculation in men. So, vaginal epithelial cells
express a variety of AQPs that assist in the pro-
duction of vaginal fluid.

The available data for AQP0 only concerns its
presence in the rodent vagina, where it is abun-
dantly expressed in the rat vaginal epithelium
[58]. AQP1, AQP2, AQP3, AQP5, and AQP6
were expressed in rat and human vaginal mares
[59–61]. In addition, rat vaginal epithelium also
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Fig. 12.2 Expression of
AQPs in female
reproductive system

expresses AQP10, AQP11, and AQP12, which
have not yet been demonstrated in human vaginal
tissues [58].

It was shown that AQP1 and AQP2 expressed
in rat vaginal endothelial cells were transferred
from the cytoplasm to the membrane compart-
ment immediately after nerve stimulation and
decreased 5 min after nerve stimulation
[60]. The protein expression levels of AQP2,
eNOS, and nNOS were significantly reduced
after ovariectomy, and returned to pretreatment
levels with 17β-estradiol administration
[62]. Expression of AQP10, AQP11, and
AQP12 is decreased after ovariectomy in rat vag-
inal epithelium, possibly due to a significant
reduction in estrogen (E2) secretion, but the spe-
cific function of these AQPs is still not clear [58].

12.2.2 Aquaporins in Cervix

The uterine cervix is a complex heterogeneous
organ that undergoes extensive changes through-
out pregnancy and delivery [63]. These changes
include the character and amount of cervical

mucus secreted by endocervical glands, which
are associated with AQPs [64].

It is reported that AQP3, AQP5, and AQP8 are
expressed in the mouse cervix [65]. The localiza-
tion patterns of these AQPs depend on the cell
type and gene expression and change during preg-
nancy in mice. AQP1 is expressed in cervical
vascular endothelial cells. AQP3 and AQP8
were found in the cervix of women with mild
cervicitis and cervical cancer [66].

In mouse, AQP3 is expressed in basal cell
layer of mouse cervical epithelium, whose
expression is low in the non-pregnant and
mid-pregnant cervix, with peak expression at ges-
tational day 19 and postnatal day 1 [65]. In addi-
tion, AQP3 plays an important role in the
increased water content of cervical tissue in preg-
nant mice, as well as in the process of promoting
cervical ripening [67]. AQP4, 5, and 8 were
mainly expressed in apical cell layers, whose
content also changed in varying degrees during
pregnancy [65]. AQP3, 4, 5, and 8 regulate dis-
tinct aspects of cervical water balance during
pregnancy and parturition [65].

The expression of AQP3 and AQP8 in human
cervical cancer and HPV-transformed cells,
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respectively, suggests that AQPs may play a role
in human cervical hyperplasia and carcinogenesis
[68]. The expression of AQP8 was positively
correlated with Bcl-2 in human cervical cancer.
The AQP3 expression in hTERT positive cervical
cancer was confirmed by real-time RT-PCR and
immunohistochemistry, indicating that AQP3
may become a molecular biomarker for the diag-
nosis of cervical cancer [68].

12.2.3 Aquaporins in Uterus

The uterus is an organ that is located in the pelvic
cavity and has thick muscular cavity wall. It
breeds embryos and fetuses during pregnancy.
Its endometrium thickens and falls off periodi-
cally with the change of hormone level in the
body to form menstruation. AQPs have been
detected in the uterus. AQP1 is the first water
channel found in the reproductive system [69]. It
is expressed in mouse, rat, dog, pig, and human
uteri [70–75]. AQP2 is present in mouse, dog,
and human uteri [70, 74, 76]. AQP3 and AQP4
were expressed only in the mouse uterus [70, 71,
77]. AQP5 is present in mouse, rat, pig and
human uteri [71, 74, 75, 78, 79]. AQP7 and
AQP8 are expressed in mouse and human uteri
[70, 77, 79], whereas AQP9 is expressed in rat
and pig uteri [75, 78]. Accumulating evidence
suggests that ovarian steroids hormones may
influence the expression of several AQPs in the
female genital tract [70, 74, 75, 80].

In humans, AQP1 and AQP2 are expressed in
the endometrium [76, 81, 82]. AQP1 mRNA
expression can be detected in the endometrium
during the proliferative and secretory phases of
the normal menstrual cycle. AQP1 protein is
expressed in capillaries of endometrial stroma
and endothelial cells of small vessels
[82]. AQP2 is localized in endometrial and glan-
dular epithelial cells [76, 82]. AQP2 expression in
the endometrial glandular epithelium was higher
in the secretory phase than in the proliferative
phase, with the highest in the mid-secretory
phase, which is consistent with the production
of endometrial edema. AQP2 may be involved
in human endometrial water transport and plays

an important role in cyclic changes in the endo-
metrium. The expression of AQP2 was related to
the concentrations of estradiol and progesterone
and regulated by estrogen and progesterone
[76]. Recently, the estrogen response element in
the promoter region of AQP2 gene has been suc-
cessfully identified [80]. Studies have shown that
complexes of estrogen and its receptor can bind to
estrogen response elements located in the pro-
moter region of the AQP2 gene, thereby
activating AQP2 expression.

AQP3 is expressed in the smooth muscle of the
uterus, endometrial glands, and uterine tissue
[83]. In mice, AQP3 is involved in the efflux
and influx of water from the uterine cavity of
the neutron during the estrous cycle. It is worth
mentioning that the mouse uterus has an AQP3
expression pattern similar to that described in
humans [83, 84], demonstrating that the effects
described in mouse models may be homologous
to humans, although humans present menstrual
cycles rather than estrous cycles.

Several studies have also provided evidence
confirming the role of AQPs in embryo implanta-
tion and pregnancy. In mice, greater intensity of
AQP4 on the epithelium was found [71]. Interest-
ingly, uterine compartmentalization is normal
during development in AQP4 knockout mice.
However, these knockout mice have reduced
uterine hypertrophy and endometrial thickness
compared to wild-type mice, which could explain
the subfertility exhibited by these animals
[85]. One of the important effects of estrogen on
the endometrium is to promote the absorption of
water by the endometrium. Estrogen mainly acts
through estrogen receptor type α (ERα). Mice
with knockout of ERα are not fertile. Further
studies showed that estrogen acts by directly
regulating the AQP5 gene through ERα
[86]. The estrogen response element in the
AQP5 promoter region provides a direct regula-
tion of the AQP5 gene by estrogen. High expres-
sion of AQP5 occurred at the time of embryo
implantation in the rat uterus [78].

In mouse uterine tissue, AQP8 was found to be
present in stromal cells of the endometrium and
uterus, which is thought to modulate water distri-
bution in these tissues and to be involved in
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uterine edema formation in the stromal layer
[70]. AQP9 is expressed in endometrial epithelial
cells of pigs and pregnant rats [6, 78]. In the latter,
AQP9 expression is enhanced at implantation and
may contribute to uterine volume reduction and
uterine cavity closure, which are specific features
of this gestational stage [78].

12.2.4 Aquaporins in Oviduct

The passage from the ovary to the uterus, known
as the fallopian tube, is the conduit that transports
eggs into the uterus. The organ can be divided
into three different sections: the canyon (section
close to the uterus), the ampulla (middle section),
and the infundibulum (section close to the ovary).
The fluid produced and secreted by the oviduct
enables gamete transport, fertilization, and early
embryonic development. Oviductal fluid volume
fluctuates during the estrous cycle, indicating that
water supply is hormonally controlled [87].

AQP1 was detected in female rat and pig
oviducts [6, 59, 88]. AQP2 in the human fallopian
tube is located at the apical or intracellular side of
the ovarian cortical cell [83, 89]. AQP3 is
expressed within the human fallopian tube, on
both non-ciliated and ciliated cells, but is more
pronounced in the latter [83]. AQP5, AQP8, and
AQP9 are expressed in rat and pig oviducts
[6, 90].

In rats, the expression of AQP1 was also con-
firmed in the mesothelial cells of the outer surface
of the tube and in the membrane of the smooth
muscle cells of the muscular myosalpinx [59]. It
has been reported that AQP1 assists in regulating
the volume of smooth muscle cells and thus
assists in regulating the diameter. The process is
thought to be important for controlling transport
of the fertilized egg through the fallopian tube
into the uterus [59]. Ciliated cells are responsible
for secreting nutrients into the oviduct and
reaching the uterine cavity [83]. AQP3 expressed
in ciliated cells assists in the transport of glycerol
and other neutral nutrients, which are necessary
for the insemination process as an energy source
for sperm and fertilized eggs.

AQP5 is expressed in the cytoplasm, parietal
membrane, and basolateral membrane of mouse
secretory non-ciliated cells and is more abundant
in the infundibulum and ampulla of oviduct
[91]. AQP5 is responsible for assisting secretion
and resorption of oviductal fluid before and after
ovulation, respectively, given the expression pat-
tern of the AQP5 gene throughout ovulation
[91]. In the rat oviduct, AQP8 expression is pres-
ent in epithelial cells throughout the ampulla and
the canyon [90]. In humans and rats, the location
of AQP9 is mainly restricted to epithelial cells
[92]. In order to achieve fertilization, sperm
require a lot of energy to promote activity so
that they can push themselves through the zona
pellucida. Glycerol release mediated by AQP9
may be important for the end of this process and
help sperm reach the oocyte and achieve
fertilization [93].

12.2.5 Aquaporins in Ovary

The main functions of the ovary include the pro-
duction and expulsion of eggs and the secretion of
sex hormones to promote the development and
maintenance of female sexual characteristics.
AQPs expressed in human ovarian tissues
include: AQP1, AQP2, AQP3, AQP4, AQP6,
AQP7, AQP8, AQP9 [94, 95].

In humans, AQP1 is present in vascular cells,
theca cells, and granulosa cells that surround the
theca layer [96]. In granulosa cells surrounding
the oocyte, AQP1 transcript is increased after
post-ovulatory follicle rupture, which suggests
that AQP1 may play a role in the process of
follicular to luteal transformation
[96]. Researchers suggest that low AQP1 expres-
sion is a manifestation of luteal phase insuffi-
ciency [97]. AQP3 mainly distributes in primary
oocytes, corpora lutea, and oviducts
[83]. Research found that secondary follicles
with knockdown of AQP3 gene expression were
less prone to follicular lumen than those without
knockdown [98]. Another study showed that
AQP3 expression continued to increase in devel-
oping follicles, but decreased after complete fol-
licular maturation, indicating that AQP3
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contributes to follicular development of mature
follicles [99]. AQP4 is expressed on theca and
granulosa cells, albeit at a lower intensity com-
pared to the previously mentioned AQPs. AQP4
mRNA expression increases during the early
stage of ovulation, and AQP4 may be involved
in the production of the follicular antrum [96]. In
short, AQP1 increased in granulosa cells during
and after ovulation, and AQP2 and AQP3
increased significantly during early ovulation,
while AQP4 decreased from before ovulation to
early ovulation. These changes indicated that
AQP1 played a role in the process of
luteogenesis, while AQP2 and AQP3 played a
role in the process of follicular rupture.

In addition, AQP6 [100] and AQP7 are
expressed in the cytoplasm and plasma membrane
of human ovarian epithelial tissues and parietal
granulosa cells, respectively. Interestingly, AQP7
expression in granulosa cells is positively
correlated with female fertility and normal
folliculogenesis [95].

AQP8 is expressed in granulosa cells of mouse
and rat ovaries, but is found in ovarian tissue of
healthy women [101], which has only been
reported to be present in epithelial tumor tissues
[100]. In AQP8 knockout mice, ovarian
granulosa cell apoptosis was reduced and the
number of mature follicles was increased, com-
pared with wild-type mice [102]. Subsequent
studies found that AQP8 knockout mice had a
significantly increased number of multiple oocyte
follicles (MOFs), which are MOFs that contain
multiple oocytes in one follicle [103]. Further
research shows that the number of antral follicles
in the ovaries of AQP8 knockout mice was sig-
nificantly increased, and the formation of follicu-
lar cavities in AQP8 knockout follicles cultured
in vitro was significantly increased, indicating
AQP8 plays an important role in the development
and maturation of follicles. The mechanism may
be related to the increase of intracellular space
caused by the defect of proliferation and migra-
tion of granulosa cells [104].

Studies on ovine follicles have shown that
AQP3 and AQP9 play an important role in the
process of antral follicle formation, while AQP7
has only appeared before antral formation and has

little association with antral follicle formation
[105]. During the observation of follicular matu-
ration in rats, it is found that AQP9 only appeared
in follicles in proestrus, while it disappeared in
estrous follicles, indicating that AQP9 expression
is not required during follicular maturation [106].

12.2.6 Aquaporins in Oocyte

Oocytes undergo meiosis during oogenesis,
including primary oocytes and secondary
oocytes. Oocyte maturation is accompanied by
expansion and spread of the cumulus cell-oocyte
complex (COC). AQP3 and AQP7 are expressed
in human and mouse oocytes [107], are perme-
able not only to water but also to small neutral
solutes, such as glycerol and urea [108]. This is
important for oocyte cryopreservation. On com-
parison of the expression of AQP3 between
oocytes matured and cultured in vitro and imma-
ture oocytes in vivo by superovulation treatment
of ICR female mice, the results showed that the
mRNA levels of AQP3 significantly increased
during oocyte maturation [99].

It was found that AQP8 knockout mice had
significantly increased COC, enhanced follicular
development, and increased litter size and
improved reproductive performance of offspring
of knockout mice [102, 109]. Some experts have
found that there was a significant difference in the
expression of rat Aqp9 gene between immature
and mature follicles, the permeability of immature
follicles to water was significantly higher than
that of mature follicles. After follicular matura-
tion, AQP9 mRNA expression also disappeared
correspondingly [106].

12.3 Aquaporins and Sperm
Cryopreservation

It was found that AQP3 and AQP7 increase cryo-
preservation ability for porcine sperm, as
evaluated by recovery of sperm survival and
motility after thawing [110]. In cattle, both
AQP3 and AQP7 are associated with sperm cold
tolerance [111]. Studies found that the relative
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content of AQP11 is not only related to the higher
resilience of sperm to cryopreservation but also to
the fertilization results of frozen-thawed sperm
[112]. As far as equine spermatozoa are
concerned, AQP3 and AQP11 are related to
their cold tolerance. Fresh ejaculates with higher
relative levels of AQP3 and AQP11 are more
likely to have higher viability after thawing [113].

12.4 Aquaporins and Reproductive
Diseases

12.4.1 Varicocele

In Leydig cells, AQP1 acts as a key reabsorption
factor in reducing intracellular and extracellular
abnormal fluid retention matrix [114]. The
findings suggest that AQP1 reduced excessive
intratubular and extratubular fluid caused by vari-
cocele. A study on the testis of adolescents with
varicocele showed that AQP9 was absent in the
testis of these adolescent patients [11]. The
authors concluded that AQP9 may play a role in
the transport of lactate from SCs to developing
germ cells, leading to lactate deprivation in devel-
oping germ cells of varicocele patients [11]. Lac-
tate is known to be the preferred substrate for
energy production by developing germ cells
[115]. Therefore, lactate deficiency due to AQP9
downregulation may explain the slow rate of
spermatogenesis reported in patients with
varicocele [11].

12.4.2 Endometriosis

Endometriosis (EMS) is defined as the presence
of active endometrial cells in sites other than
endometrial coverage, with three subtypes: super-
ficial EMS, ovarian EMS, and deep infiltrating
EMS. The recognized mechanism of EMS is the
occurrence of offsite adhesion-invasion-angio-
genesis and abnormal immune system function
in the eutopic endometrium. It was found that
the expression levels of AQP2, AQP5, and
AQP8 in eutopic endometrial cells were signifi-
cantly higher than those in ectopic endometrial

cells, and the migration activity of eutopic endo-
metrial cells was higher than that of ectopic endo-
metrial cells, suggesting that AQP promotes the
migration of eutopic endometrial cells [79].

During the exploration of the specific mecha-
nism for single AQP, it was found that AQP2
could also regulate the migration and invasion
of intimal cells by altering the expression of
F-actin and annexin 2 as well as the reorganiza-
tion of F-actin [80]. In addition, estrogen is key to
EMS regulation. AQP2, on the other hand, is
regulated by estrogen, so changes in the expres-
sion level of estrogen in endometrial cells can
affect the migration ability of cells [116]. It has
been found that AQP2 can inhibit cell invasion by
decreasing the activity of estrogen. AQP2 knock-
down can downregulate the expression of estro-
gen, while estrogen can induce morphological
change in endometrial cells [117]. In addition,
AQP4 knockdown can also reduce estrogen and
progesterone levels, which in turn inhibit cell
invasion [118]. These reports suggest that AQP2
and AQP4 may affect cell migration by regulating
the expression of estrogen, while estrogen is
regulated and secreted by neurotransmission, so
there may be a relationship between AQP and
neurotransmission.

The generation of new blood vessels is key to
the development of EMS, and high AQP1 expres-
sion was found in ectopic lesions of EMS
patients, preliminarily demonstrating that AQP
is closely related to angiogenesis in EMS. In
recent years, it has been found that hypoxia-
inducible factor family is widely involved in
tumor formation. High expression of hypoxia-
inducible factor under hypoxic conditions can
lead to tumor development. The expression level
of AQP is closely related to the stability of
hypoxia-inducible factor 1α, while low expres-
sion of AQP1 and AQP5 and their mRNA ensures
the stability of hypoxia-inducible factor 1α
[119]. Therefore, it is speculated that AQP1 and
AQP5 may promote the formation of blood
vessels in ectopic endometrial tissues by
interfering with the stability of the hypoxia-
inducible factor family. The vascular endothelial
growth factor/nuclear factor κB signaling path-
way can promote the development of miR-138-



190 H. Zhang and B. Yang

induced exosome-mediated inflammation and
apoptosis in the blood and tissues of EMS
patients [120]. It has been found that the secretion
of vascular endothelial growth factor is positively
correlated with the expression of AQP5, so AQP5
gene silencing may reduce EMS angiogenesis
ability and thus inhibit EMS formation [121].

After ectopic implantation of endometrial
cells, abnormal expression of excessive prolifera-
tion is formed through a series of changes in
proliferation and secretion. Proliferative nuclear
antigen is an indispensable factor in the DNA
synthesis period of cells [122]. Compared with
eutopic endometrium, there are a large number of
proliferative nuclear antigens in ectopic endome-
trium. AQP5 gene silencing inhibits vascular cell
adhesion molecule-1, thereby reducing the prolif-
eration and migration of ectopic endometrial
glandular epithelial cells, and the mechanism
may be related to protein kinase B activation.
AQP3 is highly expressed in epithelial cells and
glandular epithelial cells. Studies have shown that
there is a correlation between AQP3 expression
and tumor grade. AQP3 inhibits cell differentia-
tion and promotes cell proliferation [108]. AQP5
is able to stimulate estrogen secretion, facilitate
ectopic endometrial cell implantation, promote
ectopic cell proliferation in EMS, and then pro-
mote the formation of ectopic lesions [123].

12.4.3 Cervical Cancer

Cervical cancer, the most common of gynecolog-
ical malignancies, is one of the leading factors in
the cause of cancer death in women worldwide.
Human papillomavirus (HPV) infection and other
carcinogenic factors play a key role in the devel-
opment of cervical cancer. The important factor is
the downregulation of telomerase catalytic sub-
unit human telomerase reverse transcriptase
(hTERT) expression, increasing telomerase activ-
ity. AQP1 is expressed in capillaries of human
endometrial stroma and endothelial cells of small
vessels. The decrease of AQP1 in the endome-
trium of patients with dysfunctional uterine bleed-
ing may lead to poor angiogenesis. AQP1 may be
involved in the development of the disease

[124]. A study found that the ratio of AQP1/
IMD (intratumoral microvessel density) was
high in the endometrial adenocarcinoma group,
followed by the endometrial dysplasia group, and
low in the normal proliferative endometrium
group. In endometrial adenocarcinoma, the ratio
of AQP1/IMD was significantly correlated with
the grade of adenocarcinoma, surgical stage,
invasion, and extrauterine metastasis. The expres-
sion of AQP1 was positively correlated with the
expression of IMD and vascular endothelial
growth factor (VEGF). It is speculated that
AQP1 may be involved in the angiogenesis of
tumors and thus related to the development of
endometrial adenocarcinoma. Additional studies
have found that decreased expression of AQP1
can reduce the formation of uterine spiral arteries.
AQP1 may be used as a marker of tumors
[125]. AQP1 was expressed on capillaries and
small vessel endothelial cells in normal ovarian
tissue, while AQP5 was expressed in ovarian
tumor cells. As ovarian epithelial tumors progress
from benign to malignant, the expression of
AQP1 and AQP5 gradually increases. The
expression of AQP1 in ovarian cancer with clini-
cal stage III and IV was significantly higher than
that in stage I and II. The expression of AQP1 and
AQP5 was positively correlated with ascites vol-
ume. The high expression of AQP1 and AQP5
was related to the occurrence, development, and
prognosis of ovarian cancer, which may be the
main cause of ascites in ovarian cancer [89].

12.5 Conclusions and Prospects

AQPs are widely distributed in the male
and female reproductive tract and germ cells and
play key roles in the regulation of water and
solute concentrations in the reproductive tract,
which affects fertility. Differences in AQP
expression patterns between healthy and sick
individuals may be applied as potential
biomarkers for evaluating male and female repro-
ductive health. The current understanding of the
function and regulation of AQPs in the human
male and female reproductive tract and gametes is
still in its infancy. Further studies on humans and
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transgenic animal models will provide new infor-
mation of some reproduction-related diseases
related to water and energy metabolism and
novel strategies for clinical treatment of reproduc-
tive diseases.
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Abstract

Recent studies have shown that at least six
aquaporins (AQPs), including AQP1, AQP3,
AQP4, AQP5, AQP7, and AQP9, are
expressed in immune system. These AQPs
distribute in lymphocytes, macrophages, den-
dritic cells, and neutrophils, and mediate water
and glycerol transportation in these cells,
which play important roles in innate and adap-
tive immune functions. Immune system plays
important roles in body physiological
functions and health. Therefore, understanding
the association between AQPs and immune
system may provide approaches to prevent
and treat related diseases. Here we will discuss
the expression and physiological functions of
AQPs in immune system and summarize
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recent researches on AQPs in immune
diseases.

Keywords

Water · Immune cells · Macrophage · Dendritic
cells · Neutrophils

13.1 Introduction

The immune system is a network of interactions
among lymphoid organs, cells, humoral factors,
and cytokines. It provides defense against
pathogens and functions to maintain tissue
homeostasis for the life of the organism. The
immune system can be divided into innate immu-
nity and adaptive immunity, although in practice
there is much interaction between them. Innate
immunity bases on physical, chemical, and
microbiological barriers, and also includes the
elements of the immune system (neutrophils,
monocytes, macrophages, complement,
cytokines, and acute phase proteins), which pro-
vide immediate host defense. Adaptive immunity
response consists of antigen-specific reactions
through T lymphocytes and B lymphocytes.
Innate immune cells respond quickly, while adap-
tive immune cells have a delayed response and
may take days to fully develop but continue to
form immunological memory [1, 2].

The ability of immune cells to communicate
and to shift shape is critical to their function, such
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as the secretion of chemokines and cytokines,
migration, phagocytosis, and antigen uptake
[1]. These diverse functions of immunity are
mostly dependent on cell membrane for signal
transduction and maintaining the homeostasis of
the microenvironment. In fact, responding to the
external states, the cells regulate their internal
microenvironment. Failure on regulating fluid
movement across plasma membrane leads to
intense alterations of cell physiology. AQPs are
a class of protein channels that are expressed on
cell membrane and mediate water and small
uncharged molecules (such as glycerol or hydro-
gen peroxide) across the membrane. At present,
13 AQP homologous molecules (AQP0-AQP12)
have been identified in mammals, which are
widely distributed in various tissues and organs
of the body. According to their transportation
capacity, they are divided into three subgroups:
water selective AQPs (AQP0, 1, 2, 4, 5, 6, 8),
aquaglyceroporins (AQP3, 7, 9, 10), and
superaquaporins (AQP11, 12) [3]. A number of
AQP isoforms are expressed in a variety of
immune cells and participate in processes such
as phagocytosis and migration.

13.2 Expression of AQPs in Immune
System

There are six AQPs expressed in the immune cells
including AQP1, AQP3, AQP4, AQP5, AQP7,
and AQP9. They distribute in lymphocytes,
macrophages, dendritic cells, and neutrophils,
participate in water and glycerol transportation
(Table 13.1), which play important roles in innate
and adaptive immune response.

13.3 Functions of AQPs in Immune
System

13.3.1 Immune Cell Priming

AQPs isoforms were shown to be upregulated
during immune cell priming and activation. In
human, AQP1, AQP3, and AQP5 are expressed
in activated B and T lymphocytes. AQP3 and

AQP5 are expressed in immature dendritic cells.
However, none of these AQPs is expressed in
inactivated B or T lymphocytes [4]. In human
leukocytes, AQP1 was detected and upregulated
after in vitro lipopolysaccharide (LPS) stimula-
tion. AQP1 expression was induced at the onset
of sepsis and was further increased in leukocyte
during septic shock [18]. In addition, AQP9
expression is enhanced in activated polymorpho-
nuclear leukocytes from patients with systemic
inflammatory response syndrome [19]. The gene
expression analysis of blood from patients with
infective endocarditis also revealed that AQP9 is
upregulated and significantly associated with the
occurrence of acute heart failure. AQP9 is also
expressed on macrophages and plays a role in the
process of Pseudomonas aeruginosa infection
[26]. The P. aeruginosa infections increase and
relocalize AQP9 expression to the leading and
trailing regions in macrophages, which changes
cell area and length. These processes are related
to water flux across cell membrane through AQP9
[20, 21].

13.3.2 Migration, Phagocytosis,
and Antigen Uptake of Immune
Cells

Macrophages take up residence in all tissues of
the body and are mostly relatively long-lived.
They are adept phagocytic cell, capable of migrat-
ing to the infection sites and swallowing invading
pathogens, foreign substances, and apoptotic
cells. Macrophages induce inflammation by pro-
ducing cytokines and chemokines that both attract
and activate other immune cells to the site of
infection. Mouse resident peritoneal macrophages
(mRPMs) express the AQP3 in plasma mem-
brane. It has been shown that AQP3 is involved
in the phagocytosis and migration of
macrophages mediated by the water- and
glycerol-transporting functions. In the model of
bacterial peritonitis, AQP3 null mice showed
remarkably reduced survival than wild-type
mice. Compared to the wild-type mRPMs,
AQP3 null mRPMs reduced migration speed
and impaired phagocytic activity and energy
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Table 13.1 Expression of AQPs in immune cells of human and mouse

AQPs Species Immune cells References

AQP1 Human Lymphocytes [4]
Mouse Macrophages [5, 6]

RAW264.7 cells [7]
AQP3 Human Lymphocytes [4]

Dendritic cells [4, 8]
Mouse Macrophages [9, 10]

THP-1 monocytic cells [11]
Dendritic cells [12, 13]
T cells [14]

AQP4 Mouse T cells [15]
AQP5 Human Lymphocytes [4]

Dendritic cells [4]
Mouse Dendritic cells [16]

AQP7 Human Dendritic cells [8]
Mouse Dendritic cells [12, 17]

AQP9 Human Leucocytes [18, 19]
Macrophages [20, 21]
Dendritic cells [8]
Neutrophils [22, 23]
Neutrophil-like HL60 cells [23]

Mouse Neutrophils [23, 24]
Mast cells [24]
Dendritic cells [12]
T cells [25]

metabolism. In the AQP3 null mRPMs, glycerol,
glucose, and ATP contents were lower than those
of wild-type mRPMs. Besides, incubation of
AQP3 null mRPMs with glycerol significantly
increased the cellular glucose, ATP content,
phagocytosis, and migration [9].

AQP1 are also associated with macrophage
migration. The effect of AQP1 on macrophage
migration cannot be simply summarized as pro-
moting or inhibiting, but depends on external
stimuli. Macrophage, a heterogeneous cell popu-
lation, can switch phenotype depending on envi-
ronmental conditions. There are two main
phenotypes: classically activated macrophages
(M1) and alternatively activated macrophages
(M2). M1 macrophage exhibits
pro-inflammatory, anti-tumor, and anti-microbial
properties. M2 macrophage shows anti-
inflammatory activity and is instead involved in
tissue remodeling, healing, and repairing
[27]. M1 and M2 macrophages have different
features in cell shape, cytoskeletal organization,

and migration [28]. For undifferentiated
macrophages (M0), ablation of AQP1 spontane-
ously induces macrophage elongation, axial
polarization, and membrane lipid orientation to
the leading edge via Src/PI3K/Rac signaling path-
way to promote migration and switch M0 to M2
phenotype. However, for M1 macrophage, the
ablation of AQP1 has the opposite effect on mac-
rophage migration. In the acute bacterial peritoni-
tis model, AQP1-/-mice has a decreased number
of infiltrating macrophages [5].

Neutrophils are regarded as short-lived effec-
tor cells of the innate immune system, playing a
major role in acute inflammation and fighting
extracellular pathogens. These cells are able to
act as phagocytic cells, releasing lytic enzymes
from their granules and producing reactive oxy-
gen intermediates (ROI) with anti-microbial
potential. Neutrophils are usually the first cells
to extravasate into tissue in response to noxious
stimuli. They are highly reactive to a variety of
stimuli, especially pathogen- and
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damage-associated molecular patterns (PAMPs
and DAMPs, respectively). Once in the tissue,
they undergo degranulation responses, oxidative
burst and NETosis, promoting recruitment of
additional granulocytes and phlogistic monocytes
to promote inflammation and the clearance of
pathogens. They also engage in complex bidirec-
tional interactions with macrophages, mesenchy-
mal stem cells, dendritic cells, natural killer cells,
and B and T cells, and contribute to the activation,
orientation, and expression of adaptive immune
responses [29, 30].

AQP9 plays a key role in neutrophil motility.
Targeting AQP9 with anti-AQP9 antibodies and
with low concentrations of HgCl2 or tetraethyl
ammonium (TEA) can block chemoattractant-
stimulated shape change and subsequent motility.
AQP9 channels were preferentially localized at
the leading edge of morphologically polarized
cells, and co-localized with N-formyl peptide
receptor [22]. Further research showed that the
phosphorylation of AQP9 on serine 11 is essential
for its proper plasma membrane localization,
which is accomplished through a Rac1-dependent
pathway [23].

The involvement of AQP9 in the migration of
neutrophils has also been demonstrated in disease
models. Hapten-induced contact hypersensitivity
(CHS) can be used as a murine model of allergic
contact dermatitis (ACD). Neutrophils are impor-
tant for both the sensitization and elicitation phase
of CHS. In AQP9-/- mice, ear swelling, the
hallmark of CHS, was decreased as compared to
wild-type mice after the challenge with hapten
dinitrofluorobenzene (DNFB). AQP9 deficiency
decreased the accumulation of neutrophils in skin
draining lymph nodes (dLNs) during the sensiti-
zation phase of CHS. Neutrophil recruitment to
dLNs after sensitization was modulated by
AQP9. The efficiency of sensitized neutrophil
migration toward CCR7 ligands was markedly
impaired in AQP9 null cells compared with
wild-type cells. These results suggest that AQP9
may have a prominent role in neutrophil migra-
tion by participating water transport in
neutrophils during chemotaxis [24].

Innate immunity presenting information to
adaptive immune cells requires antigen-

presenting cells (APCs). Dendritic cells (DCs)
are APCs that are able to induce primary immune
responses, thus permitting establishment of
immunological memory. In the bone marrow,
DC progenitors promote circulating precursors
back to tissues, where they reside as immature
DC cells with high phagocytic capacity. Precursor
DCs are patrolling through blood, lymphatics,
and lymphoid tissues. Upon pathogen recogni-
tion, they release large amounts of cytokines,
e.g. IFN-α, to limit the spread of infection. Imma-
ture DCs possess high endocytic and phagocytic
capacity. After antigen capture, immature DCs
migrate to lymphoid organs where, after matura-
tion, they express high levels of costimulatory
molecules permitting antigen presentation, thus
communicate the presence of pathogens to the
adaptive immune system thereby initiating long
lasting, antigen-specific responses [31, 32].

Four AQPs have been identified in DCs,
including AQP3, AOP5, AQP7, and AQP9
[4, 8, 12, 17]. Previous studies suggested the
involvement of AQPs in antigen uptake in DCs.
Immature monocyte-derived DCs have a high
endocytic capacity and capture antigens via dis-
tinct mechanisms [33]. The endocytic activity is
stronger in the immature stage and is lost as DCs
mature and migrate to the secondary lymphoid
organs. Among them, soluble antigens are
represented by receptors or micropinocytosis.
Macropinocytosis requires DCs rapidly exchang-
ing water across plasma membrane. AQP3 and
AQP7 are expressed in immature DCs and are
downregulated after maturation. Functional inhi-
bition of aquaporins in DCs decreases uptake and
concentration of macrosolutes and leads to dra-
matic cell swelling. It indicates that AQPs play an
essential role in the process of antigen uptake and
concentration via fluid phase micropinocytosis
[8]. AQP3 and AQP7 are also expressed in epi-
dermal Langerhans cells and dermal DCs.
Although AQP3 expression had little effect on
skin DC function, AQP7 is involved in
macropinocytosis and/or phagocytosis, specifi-
cally antigen uptake. Compared to wild-type
cells, water/glycerol transport was impaired and
the uptake of LY (Lucifer yellow CH potassium
salt), FITC (fluorescein isothiocyanate),
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FITC-dextran, and FITC-ovalbumin was signifi-
cantly reduced in AQP7 null DCs [17].

AQP5 and AQP9 are also expressed in DCs
and participate in antigen presentation. AQP5 null
DCs reduce endocytosis of antigen, and if
plasmids expressing AQP5 were transfected to
the AQP5 null DCs, endocytosis ability is
reversed. In addition, AQP5 null DCs have less
expression of CD80 and CD86 than wild-type
DCs before being stimulated with LPS
[16]. Another study showed that AQP9 is the
most frequently expressed AQP in murine bone
marrow-derived dendritic cells (mBMDCs).
There is a significant increase of AQP9 expres-
sion at sixth hour after LPS administration. AQP9
inhibition and AQP9 null BMDCs reduce inflam-
matory cytokines secretion. The anti-
inflammatory cytokine IL-10 was increased in
the supernatant of AQP9 null BMDCs [12].

While studying the effect of AQPs on DC
antigen presentation, researchers also found that
LPS administration in the absence of AQP9
results in a decreased release of chemokines
[12]. Chemotaxis was significantly impaired in
AQP7 null Langerhans cells (LCs) and dermal
DCs (dDCs) compared to wild-type cells
[16]. These data indicate that AQPs are involved
in DC migration.

Regulated T cell migration and trafficking are
essential for both steady-state T cell homeostasis
and active immune responses. AQPs were found
to be expressed in T cells and involved in adap-
tive immune regulation.

AQP3 is expressed on skin-infiltrating T cells
and participates in skin immune regulation by
affecting cell migration. In response to chemotac-
tic signals, T cells reorganize their actin
cytoskeletons and polarize in the direction of the
chemoattractant gradient, which leads to chemo-
taxis and T cell trafficking. In AQP3 null T
lymphocytes, F-actin polymerization and the
Cdc42 activation in response to CXCL12 were
impaired and chemotaxis efficiency reduced.
These processes are related to the decrease of
intracellular H2O2 content caused by AQP3-
mediated H2O2 uptake but not the canonical
water/glycerol transport. Moreover, AQP3 null
mice showed resistance to CHS development,

which is based on the trafficking of T cells to
regional sites. In conclusion, AQP3 regulates T
cell migration by mediating the transport of H2O2,
and plays an important role in skin
immunity [14].

AQP4 is expressed in naive and memory T
cells. AQP4 blockade with a small molecule
inhibitor prolongs murine heart allograft survival
at least partially through inhibiting early infiltra-
tion of endogenous memory CD8+ T cells and
CD4+/CD8+ T cell proliferation and effector
functions. CTLA4-Ig can block T cell activation
and T cell-dependent B cell function. The syner-
gistic effect of AQP4 inhibition and CTLA4-Ig
prolongs the survival of heart allografts [34]. Fur-
ther research investigated that how AQP4 func-
tion impacts T cells in the absence of antigen
stimulation. AQP4 blockade can down-regulate
transcription factor KLF2 and reduce the expres-
sion of chemokine receptors S1PR1 and CCR7
involved in T cell circulation, resulting in
decreased chemotaxis of their respective ligands
S1P and CCL2. Without systemic T cell deple-
tion, AQP4 inhibition transiently reduced the
number of circulating CD4+/CD8+ T cells in
naïve non-transplanted mice. The experimental
results indicate that AQP4 affects the normal
migration and trafficking of T cell [15].

13.3.3 Inflammatory Activation

Inflammation is an important player in the
immune response. AQP3 is involved in macro-
phage inflammation mediated by H2O2 transport.
In a model of liver injury and fibrosis produced by
CCl4, AQP3 null mice showed a significant
reduction in the secretion of chemokines and
inflammatory cytokines and the elevations in
serum AST and ALT in liver. AQP3 expression
also affects cellular ROS levels and oxidative
stress during acute liver injury. Extracellular addi-
tion of H2O2 produced higher intracellular H2O2

concentration in wild-type macrophage than
AQP3 null macrophage, which acted as a second-
ary messenger for NF-κB activation [10].

The inflammasome is an important player in
the immune response in macrophage. More
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recently, reactive oxygen species (ROS), lyso-
somal damage, intracellular potassium (K+)
efflux, and fast cell reswelling have been consid-
ered to be related to NLRP3 activation and con-
sequent IL-1β secretion [35]. Inhibition of AQPs
in macrophages specifically during the regulatory
volume decreases NLRP3-mediated inflamma-
tion [6]. AQP3, which transports glycerol and
hydrogen peroxide in THP-1 cells, is involved
in cell swelling induced NLRP3 activation. More-
over, AQP3 may affect nigericin induced IL-1β
release by facilitating cellular K+ efflux [11]. In
terms of AQP3-mediated H2O2 transport, intra-
cellular ROS rising with subsequent
inflammasome activation should also be consid-
ered in the further researches.

AQP1 is also associated with macrophage
inflammation. In a model of acute lung inflamma-
tion induced by crystals, AQP1 ablation in
macrophages was associated with a marked
reduction in NLRP3 inflammasome activation
and IL-1β release and neutrophilic inflammation
in the lung [6]. In LPS-induced acute kidney
injury (AKI) model, macrophage phenotype has
changed over time. With the increase of
pro-inflammatory cytokines, the expression of
AQP1 decreased. In vitro, experiments have
found that the silencing of AQP1 in RAW264.7
cell enhanced the activation of p38/MAPK path-
way induced by LPS [7]. However, another study
showed that the comparable LPS-induced
p38/MAPK activation, iNOS expression, and
IκBα phosphorylation in wild-type and AQP1
null macrophages [5].

13.3.4 Other Aspects

One study investigated the role of AQP3 in devel-
opment, subtypes, and activation of DCs. AQP3
depletion did not affect the development of
BMDCs by GM-CSF or the Flt3 ligand and the
level of expression of CD86 on unstimulated and
LPS-stimulated BMDCs. However, the frequency
of CD4+CD8- cDCs was significantly lowered in
the spleen of AQP3 null mice. There was higher

CD103 expression in CD4-CD8+ subpopulation
of splenic cDCs obtained from AQP3 null mice
than in those from wild-type mice. These results
suggest that AQP3 depletion may not affect the
maturation of DCs but the composition of DC
subtypes [13].

In addition, AQP9 is expressed in memory
CD8+ T cells and is essential for the T cell mem-
ory. IL-7 plays an important role in
lymphopoiesis and peripheral T cell survival.
Research shows that IL-7 induces AQP9 expres-
sion in virus-specific memory CD8+ T cells, but
not naive cells. AQP9 promotes glycerol import
into memory CD8+ T cells for fatty acid esterifi-
cation and triglyceride (TAG) synthesis and stor-
age, which is beneficial to the survival and
homeostasis of CD8+ memory T cells [25].

13.4 AQPs and Immune Disease

Allergic contact dermatitis (ACD) is one of the
most prevalent skin diseases, which has two
phases including sensitization and elicitation. It
is classified as a delayed-type hypersensitivity
response. Murine contact hypersensitivity (CHS)
is one of the most frequently used animal models
of ACD. The important role of AQPs in immune
cells in ACD have been implicated from studies
on CHS. The CHS response to hapten
dinitrofluorobenzene (DNFB) was impaired in
AQP7 null and AQP9 null mice compared with
wild-type mice. AQP7 is expressed in mouse DCs
and involved in antigen uptake and chemokine-
dependent cell migration. AQP7 deficiency
decreases accumulation of antigen-retaining DCs
in the LNs after antigen application to the skin
[17]. AQP9, which expressed in neutrophils, is
important for the sensitization phase of CHS.
AQP9 null neutrophils showed a reduced CCR7
ligand-induced migration efficacy and decreased
IL-17A production by dLN cells [24]. These
findings suggest that blocking AQPs by the use
of topical drugs might be a treatment strategy
for ACD.
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13.5 Conclusion and Prospect

AQPs are involved in a variety of important phys-
iological processes in the immune cells by
coordinating water and solutes trafficking. In a
variety of immune cells, AQPs are involved in
cell migration and immune response. However,
we are still far from having a full comprehension
of the physiological and pathological significance
of all AQPs in the immune system. In view of the
important role of immune system in various
diseases, we believe that it is necessary to further
explore the function of AQPs in immune cells.
Targeting AQPs may be one of the feasible
strategies for many diseases.
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Aquaporins in Eye 14
Thuy Linh Tran, Steffen Hamann, and Steffen Heegaard

Abstract

The major part of the eye consists of water.
Continuous movement of water and ions
between the ocular compartments and to the
systemic circulation is pivotal for many physi-
ological functions in the eye. The movement
of water facilitates removal of the many meta-
bolic products of corneal-, ciliary body-, lens-,
and retinal metabolism, while maintaining
transparency in the optical compartments.
Transport across the corneal epithelium and
endothelium maintains the corneal transpar-
ency. Also, aqueous humor is continuously
secreted by the epithelia of the ciliary body
and maintains the intraocular pressure. In the
retina, water is transported into the vitreous
body and across the retinal pigment epithelium
to regulate the extracellular environment and
the hydration of the retina. Aquaporins are a
major contributor in the water transport
throughout the eye.
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14.1 Introduction

Precise regulation of ocular fluids is necessary for
the optimization of visual function, as the greater
part of the eye is comprised of water [1]. Continu-
ous movement of water and ions between the
ocular compartments and to the systemic circula-
tion is essential. The movement of water
facilitates removal of the many metabolic
products of corneal-, ciliary body-, lens-, and
retinal metabolism, all while maintaining trans-
parency in the optical compartments [1]. The
transport of water across the corneal epithelium
and endothelium maintains corneal transparency.
Rapid changes in the water content of the iris
stroma facilitate changes in shape during pupil
constriction and dilatation. In the retina, water is
transported transcellularly across the retinal pig-
ment epithelium into the choroid preventing
subretinal edema and retinal detachment
[1, 2]. The intraocular pressure (IOP) is
maintained by the aqueous humor [3]. Aqueous
humor is secreted by the pigmented and
nonpigmented epithelia of the ciliary body in a
concerted action involving active membrane
proteins and passive ion and water channels
[3]. Aquaporins (AQPs) are expressed in several
of these structures and facilitate the transport of
water (Fig. 14.1). AQP0 contributes to lens trans-
parency, and AQP1 is involved in the secretion
and drainage of aqueous humor. AQP3 and AQP5
have corneal and conjunctival barrier functions,
and AQP4 plays an important role in retinal water
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homeostasis [2, 4, 5]. AQP9 has been suggested
to provide neurons with lactate and glycerol for
energy metabolism [6]. AQP7 and AQP11 have
also been localized to various epithelia in the
human eye with unclarified function [7].

14.2 Expression of AQPs in Eye

14.2.1 Cornea

The cornea is the first light refractive medium
when light hits the eye and the transparency of
the cornea relies on the precisely organized
stroma consisting of collagen fibrils and
glycosaminoglycans. Precise regulation of the
water content is required to keep the stroma
neatly packed avoiding light scatter. The water
content of the cornea is 78% by weight and nega-
tively charged glycosaminoglycans and propor-
tionate cations make the cornea slightly
hyperosmolar compared to the aqueous humor
[8, 9]. Consequently, the continuous transport of
solutes and steady water expulsion away from the
cornea is needed. The corneal endothelium
expresses AQP1 and is responsible for transport
of the major part of water out of the corneal
stroma [5, 8, 10]. The corneal endothelium
contains active transporters (Na+/K+ -ATPase,
Na+/K+/2Cl–, HCO3

-/Cl-) that pump solutes
from the stroma into the aqueous humor. Water
is transported passively, driven by the osmotic
gradient, into the anterior chamber partly through
AQP1 but also paracellularly [8, 10]. In addition,
AQP1 expressed by the keratocytes has been
suggested to facilitate volume changes in the
keratocytes in response to changing corneal
hydration [5, 11].

The outer stratified epithelium of the anterior
corneal epithelium expresses AQP3 and AQP5,
and facilitates water transport away from the cor-
nea. Deletion of AQP5 in mice increases the
corneal thickness and reduces the osmotic water
permeability across the corneal epithelium
[5, 8]. However, when exposed to hyperosmolar
stress no noticeable changes occur during
swelling and recovery. Mainly the corneal endo-
thelium maintains the hydration of the cornea,

therefore, transport via AQP5 across the epithe-
lium does not affect the overall transparency of
the cornea [8].

Maintenance of the corneal epithelium is cru-
cial in providing a smooth and transparent refrac-
tive surface [2, 12]. The stratified corneal
epithelium expresses the water- and glycerol
transporting AQP3 [5, 12]. During reepithelia-
lization AQP3 facilitates the water and glycerol
transport in the corneal epithelial cell migration
and proliferation [12]. AQP3-facilitated cell
migration has also been demonstrated in wound
healing of the skin [13]. In the migration phase of
reepithelialization, marginal cells extend
lamellipodia and filopodia at the wound’s leading
edge and AQP3 provides for the local water trans-
port here. Corneal epithelial cell migration also
requires mobilization of energy stores, particu-
larly glycogen [12]. Defective glycerol transport
in AQP3 deficiency may impair the glycogen
synthesis or utilization by direct or indirect effects
on glycolysis [13]. AQP3 deletion in mice
demonstrated reduced glycerol permeability but
the steady state corneal epithelial glycerol content
was not significantly affected [12]. However, a
significant delay in resurfacing was found and the
AQP3-deficient corneas were thinner suggesting
impaired proliferation in AQP3 deficiency.

Furthermore, during corneal wound healing
AQP1 may facilitate keratocyte migration
through AQP-facilitated water influx into
lamellipodia at the leading edge of migrating
cells [14]. Also, AQP5 may promote corneal
wound healing through higher levels of cell
migration and proliferation [15]. AQP7 has been
localized in the corneal epithelium and endothe-
lium and AQP11 is expressed in the basal cells of
the anterior epithelium the corneal-limbal region,
however, the function of these aquaporins here is
not known [7].

14.2.2 Trabecular Meshwork

AQP1 is expressed by the endothelial cells of the
trabecular meshwork (TM) and Schlemm’s canal
[5, 16, 17]. In the conventional outflow pathway,
fluid drainage is predominantly paracellular and
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Fig. 14.1 Schematic
drawing of the cellular
localization of AQPs in eye

therefore AQP1 might not directly regulate the
aqueous humor outflow [17]. Rather, AQP1 may
regulate the TM endothelial intracellular volume
and indirectly modulate the paracellular drainage
[16]. Also, AQP1 may contribute to endothelial
cell survival to resist the mechanical strain during
the passage of aqueous humor [17]. A study
showed that downregulation of AQP1 by
endothelin-1 resulted in glaucomatous changes
such as actin fiber reorganization, collagen pro-
duction, extracellular matrix deposition, and con-
tractility alteration of TM cells [18]. AQP7 is also
expressed in the trabecular meshwork
endothelium [7].

14.2.3 Ciliary Body

Aqueous humor provides nutrients and removes
metabolic waste product from the avascular
structures in the anterior eye, namely the cornea
and the lens. Furthermore, aqueous humor
maintains the intraocular pressure (IOP)
[3]. Aqueous humor is secreted by the ciliary
body through combined actions of active pumps
and AQPs in the ciliary epithelia [19]. The
ATP-consuming pumps and channels transport
ions and major solutes from the ciliary capillaries
into the posterior chamber. AQP1 and AQP4
facilitate the major part of the passive water trans-
port in the apical and basolateral membrane of

ciliary nonpigmented epithelial cell [5, 19]. AQPs
are not expressed in the ciliary pigmented epithe-
lium, and water may be actively cotransported
into the pigmented epithelial layer together with
major solutes [20]. AQP7, AQP9 and AQP11 are
all expressed in the ciliary nonpigmented
epithelium [7].

14.2.4 Lens

The lens is another important refractive structure
and transparency of the lens is equally important.
The lens is avascular, and therefore, transport of
oxygen, nutrients and ions occur by diffusion and
active transport across the epithelial layer from
the aqueous humor [21, 22]. The transport of
water into the lens is mediated by AQP1 in the
epithelial cells and AQP0/MIP (major intrinsic
protein) expressed by the lens fibers
[21, 22]. AQP0 either functions as a water chan-
nel or a structural protein depending on the
molecular changes and post-translational
modifications occurring during shifts in the spa-
tial location of the lens fibers [22].

In the cortical fibers, AQP0 interacts with
other proteins such as connexins, filensin,
phakinin, and crystallins and AQP0 mediates pas-
sage of water. However, in the nuclear fibers
cleaving of AQP0 results in conformational
changes and closes the water transporting pores
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of AQP0. The AQP0 function switches from
water channel to adhesion molecule, since
AQP0 no longer interacts with the surrounding
proteins [21, 22]. Instead, AQP0 forms tight
junctions and assists in maintaining minimal
space between the fibers. Thus, AQP0 facilitates
microcirculation and also interfiber adhesion
within the lens and consequently contributes to
maintaining transparency of the lens. AQP7 is
also expressed in the lens epithelium [7].

14.2.5 Retina

In the retina, considerable amounts of water are
produced during the large metabolic turnover
[4, 23]. Cotransport of water during uptake of
metabolic glucose and lactate from the blood
also contributes to the water content [23, 24]. Fur-
thermore, hydrostatic forces driven by the intra-
ocular pressure also push water to enter the retina
from the vitreous body. Therefore, significant
amount of water has to be cleared to maintain
local balance of ions for effective signal transduc-
tion [4, 25].

In the inner retina the major glial support cells,
the Müller cells, redistribute water, and ions
[4, 23]. Neuronal activity accompanying synaptic
transmission results in a transient increase in [K+]
in the plexiform layers of the retina and a decrease
in the extracellular [K+] in the subretinal space.
Rapid removal of K+ is important to maintain
neuronal excitability during prolonged light stim-
ulation. The Müller cells regulate the K+ balance
by uptake of K+ through Kir4.1, the inwardly
rectifying potassium channel, and siphoning K+

into the vitreous body or retinal capillaries
[4, 23]. AQP4, co-localized with Kir4.1,
facilitates the accompanying osmotic water trans-
port in response to the K+-flux and together they
maintain the spatial buffering of [K+] [4].

The RPE cells are responsible for clearing
metabolic waste product, neurotransmitters,
excess ions and water from the outer retina, and
subretinal space through active transport and
solute-linked transport [26, 27]. Cotransport
proteins known to facilitate transcellular ion
movement elsewhere in the body also function

as molecular water pumps in the retina in the
absence of an osmotic gradient [20]. AQPs may
also contribute to ion- and water elimination in
the RPE cells. However, AQP1 has only been
identified in the cell membrane of cultured cells
[5, 28]. Interestingly, AQP1 expression has been
found in RPE cells overlying retinal drusen
suggesting that fluid transport is altered across
the drusen [29].

AQP9 is expressed by the retinal ganglion
cells (RGC) [5, 30, 31], and has formerly been
found in the brain, primarily in the astrocytes
[6]. AQP9 has been suggested to provide neurons
with lactate and glycerol for energy metabolism
[6, 23, 32]. The presence of AQP9 in both the
brain and retina is not surprising given their close
connection. Accordingly, AQP9 may have a sim-
ilar function in the retina and brain and may
facilitate the uptake of lactate or glycerol into
the RGCs and photoreceptors [31, 33]. Animal
models show that downregulation of AQP9 nega-
tively affects RGC survival [34, 35]. In the retina,
the Müller cell endfeet showed AQP7 and AQP11
labeling [7].

AQP6 has been localized to the outer plexi-
form layer in the rat retina, but not confirmed in
human retina [36].

14.2.6 Lacrimal Gland

In the lacrimal gland, AQP5 is expressed in the
apical membranes of the acinar and duct cells,
AQP4 in the basolateral membranes of the acinar
cells, and AQP1 in microvascular endothelia.
AQP3 is expressed in the basolateral membrane
of the acinar cells [5]. AQPs expression are essen-
tial in exocrine glands such as the lacrimal gland,
and salivary and sweat glands [2]. However,
knock out mice lacking AQP1, AQP4, AQP3 or
AQP5 does not show decreased tear production
[37]. It is suggested that as the fluid secretion by
the lacrimal gland is substantially lower than sali-
vary glands the secretion does not rely on
AQP-dependent water transport. AQP5 may
therefore regulate the osmolality of tears rather
than tear production [37].
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14.3 Functional Abnormality
of AQPs in Eye and Diseases

AQPs are present in all structures in the eye that
have a water regulating function and this poses
the question whether dysfunction or inhibition of
AQPs lead to pathology, especially in diseases
where oedema is a prominent clinical observa-
tion. In Fuch’s endothelial dystrophy and
pseudophakic bullous keratopathy, oedema of
the cornea is the central problem. Downregulation
of AQP1 in the corneal endothelium has been
demonstrated in these keratopathies [38]. Healing
of corneal abrasions is linked with AQP3 expres-
sion by the corneal epithelium, as deletion of
AQP3 delays epithelial cell resurfacing and
results in a thinner epithelium [12, 13].

The role of AQP0 in the lens has been clearly
demonstrated and several mutations in AQP0 or
any of the molecules interacting with AQP0 result
in cataract formation [21]. Complex coordination
of the lens proteins is required, as each protein
contributes to lens transparency, appropriate
refractive index, and accommodation. All
characterized mutations in AQP0 result in auto-
somal dominant bilateral cataract [21, 22].

In glaucoma, several structures in the eye are
involved. The ciliary body, the trabecular mesh-
work, the retina, and the optic nerve may be
coupled with the development of glaucoma.
Deletions in AQP1 and AQP4 result in modest
reductions in IOP and aqueous humor production
[39]. AQP1 and AQP4 null mice show preserved
anterior chamber morphology. Wu et al. (2020)
showed that specific AQP1 deletion in the ciliary
body through gene therapy resulted in significant
IOP reduction in both normal eyes and in a glau-
coma model [40].

AQP9 has been shown to be downregulated
with increased intraocular pressure
[31]. Downregulation of AQP9 expression by
RGC has been shown to be coupled with RGC
metabolism and apoptosis [31, 35, 41].

Diabetes mellitus and age-related macular
degeneration (AMD) are two major reasons for
impaired vision. Severe stages of both diseases
involve neovascularization resulting in retinal

oedema due to leakage from the newly formed
capillaries. The excess fluid exceeds the capacity
of the glial cells and RPE cells in clearing fluid
from the retina. Changes in the expression of ion
channels and transporters, and of AQPs may
intensify the retinal oedema. Additionally, AQP
expression has been demonstrated to be altered in
a complex pattern in the diabetic rat retina [42].

Finally, in Sjögrens syndrome a modified
AQP5 distribution, and presence of anti-AQP5
autoantibodies has been described [43, 44].
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Aquaporins in Skin 15
Zhuming Yin and Huiwen Ren

Abstract

The skin is the largest organ of our body and
plays a protective role against the external
environment. The skin functions as a mechan-
ical and water permeability barrier, assisting
with thermoregulation and defending our body
against a variety of stresses such as ultraviolet
radiation, microbial infection, physical
injuries, and chemical hazards. The structure
of the skin consists of three main layers: the
hypodermis, the dermis, and the epidermis.
Aquaporins (AQPs) are a family of integral
membrane proteins whose function is to
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regulate intracellular fluid hemostasis by
facilitating the transportation of water, and in
some cases small molecules, across the cell
membranes. Up to six different AQPs
(AQP1, 3, 5, 7, 9, and 10) are expressed in a
variety of cell types in the skin. The AQP
family plays an important role in these various
locations, contributing to many key functions
of the skin including hydration, wound
healing, and immune responses. The involve-
ment of different aquaporin family members in
skin is discussed.

Keywords
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15.1 Introduction

Skin is the largest organ of our body and plays a
protective role against the external environment.
The skin functions as a mechanical and water
permeability barrier, assisting with thermoregula-
tion and defending our body against a variety of
stresses such as ultraviolet radiation, microbial
infection, physical injuries, and chemical hazards
[1]. Skin is also the first organ seen by others,
such that some skin abnormalities or diseases are
often immediately apparent and can negatively
affect our social interactions.
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Aquaporins (AQPs) are a family of integral
membrane proteins whose function is to regulate
intracellular fluid hemostasis by facilitating the
transportation of water, and in some cases small
molecules, across the cell membranes [ ]. Up to
six different AQPs (AQP1, 3, 5, 7, 9, and 10) are
expressed in a variety of cell types in the skin
(Fig. ) [ ]. AQP1 is mostly localized in the
walls of skin blood capillaries, while AQP3 has
been identified mostly in the epidermal layer of
the skin. AQP5 is mostly observed in the secre-
tory glands of skin and sometimes in the epider-
mis of the thick skin of the palms [ . AQP7 is
located primarily in fat tissues in the hypodermis
and dendritic cells in dermal layer [ . Both
AQP9 and 10 are located in the epidermis. The
AQP family plays an important role in these vari-
ous locations, contributing to many key functions
of the skin including hydration, wound healing,
and immune responses. Thus it is necessary to
clarify how the localization and function of this
channel are regulated in order to find out effective
treatment strategies for relative skin diseases.

5]

4]
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15.2 Expression of AQPs in Different
Layers of Skin

The structure of skin consists of three main
layers: the hypodermis, the dermis, and the epi-
dermis (Fig. 15.1). The hypodermis is the deepest
layer of skin and is mainly comprised of adipose
tissue that serves as a calorie reservoir and an
insulator of the body [6]. The dermis is located
in between the layers of epidermis and hypoder-
mis. Its main role is to provide support and nutri-
tion to the epidermis. It is composed primarily of
connective tissue that is rich in extracellular
matrix and fibroblasts. The hair follicles, sweat
glands, sebaceous glands, capillaries, and nerves
are also located in this layer. The epidermis is the
outermost layer of the skin, which is comprised of
a variety of cell types. The keratinocytes are the
main constituents of the skin barrier, accounting
for approximately 90% of the epidermal cells.
They can be further divided into four sublayers
from deep to superficial: the stratum basale, stra-
tum spinosum, stratum granulosum, and stratum

hydrogen peroxide in addition to water [10–
12]. AQP3 is mainly expressed on the plasma

corneum. An additional layer called the stratum
lucidum, located in between the stratum
granulosum and stratum corneum, exists in areas
of thick skin such as the palms of hands and soles
of feet. The epidermal melanocytes are pigment-
generating cells that synthesize the melanin to
absorb the harmful environmental ultraviolet
light energy and protect the skin from oxidative
stress and DNA damage [7]. The Langerhans
cells in the epidermis are antigen-presenting den-
dritic cells, while the Merkel cells assist in pres-
sure sensation by the skin.

The epidermal turnover process is extremely
important for normal skin function, as well as
wound healing and some skin diseases. It takes
about 4 weeks for the unmature keratinocytes to
keratinize and form an impermeable layer of the
stratum corneum. The physiological process is
basically the proliferation, differentiation, and
maturation of keratinocytes. It is initiated by the
basal progenitor cells in the stratum basale adja-
cent to a collagenous basement membrane. The
basal stem cells proliferate and migrate superfi-
cially to regenerate other cells in the epidermis [8]
Apart from the characteristics of proliferation, the
basal layer also expresses the immature keratins
keratin 5 and 14, which dimerize and combine as
the cytoskeleton to provide mechanical stability
to the keratinocytes [9]. After leaving the stratum
basale, the keratinocytes migrate upward into the
stratum spinosum layer. The spine-like cells stop
proliferating and begin to express mature keratins
such as keratin 1 and keratin 10, which make up
keratin intermediate filaments that provide
mechanical stability to the epidermis [8]. In addi-
tion, there is an upregulation of desmosomes and
involucrin, leading to increased intercellular
adhesion in the stratum spinosum.

15.2.1 AQPs in Epidermis

AQP3 is the most abundant aquaporin in the
epidermal layer of the skin and has been studied
comprehensively and deeply. AQP3 is an
aquaglyceroporin, able to transport glycerol and
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Fig. 15.1 Summary of skin structure and localization of
AQPs in the skin. The structure of the skin consists of
three main layers: the hypodermis, the dermis, and the
epidermis (from deep to superficial). The hypodermis is
mainly comprised of adipose tissue. The dermis is com-
posed primarily of connective tissue which is rich in
fibroblasts. The keratinocytes are the main constituents

of the epidermis. They can be further divided into four
sublayers: the stratum basale, stratum spinosum, stratum
granulosum, and stratum corneum. There are at least six
different AQPs (AQP1, 3, 5, 7, 9, and 10) are expressed in
the skin. The localization of each AQP in various cells of
the skin is illustrated in this figure

membrane and intracellular compartment of
keratinocytes in the basal layer [13]; in fact, how-
ever, AQP3 has also been detected to localize on
the plasma membrane of keratinocytes in the stra-
tum spinosum [14–17] and even in the stratum
corneum [18]. The membranous expression is
consistent with the findings in the in vitro differ-
entiation test [19], but its aberrant expression and
localization may cause a series of skin
disorders [20].

AQP1 is the first-discovered member of AQP
family with the well-established role in
maintaining tissue water balance and osmotic
gradients. In the epidermis, it has been detected
in melanocytes and keratinocytes [21]. AQP5 is
predominantly expressed in the plasma mem-
brane of keratinocytes in the stratum granulosum
of thick skin areas [4]. AQP9 is another type of
AQP family that is located in many tissues
throughout the human body, including the epider-
mis. It is specifically located in the layer of stra-
tum granulosum above the level where AQP3 is
commonly seen [22]. AQP10 is found in the
keratinocytes of the epidermis. It is commonly
localized in the outmost layer of the skin, the

stratum corneum and may play a role in the
water permeability barrier formation [3, 18].

15.2.2 AQPs in Dermis
and Hypodermis

To begin with, AQP1 and AQP3 are often found
in dermal fibroblasts and vascular endothelial
cells [21, 23]. AQP5 is specifically expressed in
the sweat glands of the skin, modulating the
secretion and absorption of sweat. Moreover,
there are a variety of immunocytes in the layer
of dermis, in which the AQP family also plays a
key role in immune modulation. AQP7 is
expressed in Langerhans cells and dermal den-
dritic cells of the skin and involved in primary
cutaneous immune responses.

The hypodermis is mainly comprised of adi-
pose cells, on the membrane of which AQP7 is
located. Adipocytes regulate lipogenesis and
lipolysis to store and provide energy. When
there is an excess of nutrition supply, adipocytes
absorb glucose from the blood and metabolize
and combine it with fatty acids to synthesize
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triglycerides in a process called lipogenesis. In
times of starvation or exercise when energy is
needed, adipocytes initiate lipolysis, hydrolyzing
triglycerides to glycerol and fatty acids so that the
body may use them for energy.

15.3 Functions of AQPs in Different
Layers of Skin

15.3.1 Functions of AQPs in Epidermis

AQP3 is an aquaglyceroporin, able to transport
small solutes such as glycerol. Within the layer of
the epidermis, AQP3 firstly plays an essential role
in skin hydration by regulating epidermal glyc-
erol percentage [24, 25]. This idea has been
proved by the phenotypes of AQP3-knockout
mice, which exhibit decreased stratum corneum
hydration as measured by changes in skin surface
conductance and stratum corneum water content
[24, 26]. The hydration difference between
AQP3-knockout and wild-type mice is not signif-
icant under the condition of low (10%) environ-
mental humidity [26] and is not accompanied by
differences in stratum corneum morphology,
thickness, lipid content, or levels of metabolites
such as amino acids, lactic acid, glucose, or urea
[24]. However, the dysfunction can be reversed
by pharmacologic administration of glycerol (via
a topical, intraperitoneal or oral route), indicating
that the epidermal glycerol level is correlated with
stratum corneum hydration [24–26].

AQP3 also affects the proliferation and migra-
tion of keratinocytes in vitro and epidermal layers
in vivo [24, 27–30]. AQP3 overexpression
increases the glycerol uptake, keratin 5 and
14 expression, and cell growth in keratinocytes,
whereas AQP3 knockdown inhibited cell prolif-
eration stimulated by CCL17 [30]. AQP3 knock-
down decreased keratinocyte proliferation and
increased the expression of several differentiation
markers (keratin 10, involucrin, and filaggrin)
[31]. AQP3-knockout mice also show a similar
inhibition of epidermis proliferation, even treated
with retinoic acid [27]. The mechanisms include
regulation of cellular ATP levels and uptake and
metabolism of glycerol. Keratinocyte

proliferation induced by wounding is also
weakened by AQP3 deficiency, and glycerol sup-
plementation can correct the cell cycle arrest
[28]. On the other hand, AQP3-knockout mice
exhibit reduced tumor formation in a mouse
model of carcinogenesis [29, 32]. Besides, the
12-O-tetradecanoyl phorbol 13-acetate (TPA)-
induced epidermal hyperplasia and keratinocyte
proliferation are mitigated in AQP3-knockout
versus wild-type mice [29]. AQP3 also plays a
role in keratinocyte migration through regulating
the permeability of water [32]. Decreased glyc-
erol uptake, scratch wound healing, and transwell
migration are observed in AQP3-knockdown
keratinocytes [28]. Keratinocytes isolated from
AQP3-knockout mice also show reduced migra-
tion compared with wild-type control, while the
adenoviral-mediated expression of AQP3 is able
to restore normal capability of cell migration.

Thirdly, AQP3 participates in the regulation of
keratinocyte differentiation [33, 34]. The
keratinocytes in the stratum basale need to
undergo growth arrest and maturation before
they move to the next layer. Upregulated AQP3
expression is observed in the high-cell-density-
induced human keratinocyte differentiation, con-
comitant with increased keratin 1 levels,
indicating a pro-differentiation role of AQP3
[31]. In addition, AQP3 re-expression in AQP3-
knockout keratinocytes increased the expression
of several representative differentiation markers
such as keratin 10, either alone or together with
differentiation promotors such as agonists of the
nuclear hormone receptor PPARγ [35–37]. AQP3
knockdown results in downregulation of
E-cadherin, β- and γ-catenins, which are related
to adherens junctions [38, 39], and reduced phos-
phorylation of phosphoinositide 3-kinase (PI3K),
which is critical for the survival of keratinocytes
in the stratum spinosum [38, 40]. These results
are again consistent with the effect of AQP3 on
the early keratinocyte differentiation [41] and
provide strong evidence for the important role
for AQP3 in maintaining keratinocyte viability
during the differentiation process. However, the
influence of AQP3 on the keratinocyte maturation
process is still controversial. Hara-Chikuma et al.
[27] found insignificant effect of AQP3
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knockdown on the expression of differentiation
markers in both calcium-induced human
keratinocyte differentiation and AQP3-knockout
mouse epidermis. The controversial roles for
AQP3 in keratinocyte differentiation versus pro-
liferation may lie in a lipid-metabolizing enzyme
phospholipase D-2 (PLD-2) [19, 42] PLD-2 can
produce the phospholipid, phosphatidylglycerol
(PG) using glycerol, which is transported by
AQP3 [20]. PG is well acknowledged as a second
messenger that can induce the growth arrest and
differentiation of epidermal keratinocytes
[33, 34]. Thus, the activity of PLD-2 and the
amount of PG are regulated by AQP3 by
orchestrating the intracellular glycerol levels.

An increase in AQP1 expression has been
reported in melanocytes under osmotic stress
[3]. It has also been shown that AQP1 can regu-
late the keratinocyte migration by mediating the
transmembrane water permeability indicated in
the “osmotic engine model” [28, 43]. Influx of
water through either AQP1 or AQP3 polarization
provides the hydraulic pressure discrepancy
which is necessary for cell movement. Apart
from the changes in expression level, the mislo-
cation of AQP1 may be another cause of human
diseases. AQP1 is dominantly expression on the
cellular and intracellular membranes of multiple
kinds of human cells. We recently have found that
AQP1 is aberrantly co-localization in triple nega-
tive breast cancer cells with the receptor-
interacting protein kinase 1 (RIPK1), which is
exclusively located in the cytoplasm (Fig. 15.2)
[44]. Further studies proved that the cytoplasmic
AQP1 is one of the main reasons for the aggres-
sive phenotype of triple negative breast cancer
and the cytoplasm is the main field where the
AQP1-RIPK1 complex assembles and functions.

A recent transcriptome sequencing study
demonstrated that AQP5 is able to regulate the
balance of proliferation and differentiation of epi-
dermal stem cells in skin aging changes
[45]. However, the mechanisms how AQP5
contributes physiologically to the formation of
the water permeability barrier in thick skin
remains to be further explored.

The retinoic acid downregulates the expres-
sion of AQP9 but upregulates AQP3 in

keratinocytes [22, 46], indicating the different
functions and mechanisms of AQP9 compared
to AQP3. Apart from water transport, AQP9
also facilitates the transport of glycerol, urea and
hydrogen peroxide [22, 47]. The intracellular urea
can regulate the differentiation, lipid synthesis,
and antimicrobial reaction of keratinocytes [48].

AQP10 is believed to share similar functions
as AQP3 in the epidermis and may also be
involved in pompholyx [49]. The specific mecha-
nism by which AQP10 is involved in the regula-
tion of keratinocyte proliferation and
differentiation still needs further investigation.

15.3.2 Functions of AQPs in Dermis
and Hypodermis

The main function of AQP1 in the fibroblasts and
vascular endothelial cells is to exchange water
between the blood and dermis to maintain skin
hydration during hypertonic stress. Thus, AQP1
may contribute to skin inflammation,
vasculopathy, and dermal fibrosis by regulating
tissue edema and cell proliferation and migration.

AQP3 enhances the oxidative stress by
transporting the hydrogen peroxide into dermal
fibroblasts of the bleomycin-treated mice. AQP3
knockout mice showed reduced dermal thickness/
fibrosis, hydrogen peroxide levels, TGF-β1 abun-
dance, and collagen expression in bleomycin-
induce fibrosis models [50]. In addition, AQP3
mediates epidermal growth factor receptor
(EGFR)-induced dermal fibroblast migration,
displayed by delayed scratch wound healing
in vitro [51]. EGFR activation also increases the
expression of AQP3 through mitogen-activated
protein kinase (MAPK) signaling pathway and
PI3K activity. Finally, AQP3 protects dermal
fibroblasts from ultraviolet-induced cell death by
upregulating the anti-apoptotic protein BCL-2
[52]. These results suggest a potential involve-
ment of AQP3 in dermal fibroblast proliferation
and migration and collagen synthesis, although
future studies are still needed to determine the
exact function of AQP3 in fibrotic diseases.

AQP5 is necessary for the process of sweat
secretion, as absence of AQP5 has been shown
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Fig. 15.2 AQP1 mislocation in triple-negative breast
cancer cells. AQP1 is commonly seen on the cell mem-
brane of normal breast tissues. But it is aberrantly
expressed in the cytoplasm of triple negative breast cancer
(TNBC) cells. This figure shows representative images of
anti-AQP1 (green) and anti-RIPK1 (red) immunofluores-
cence staining of MDA-MB-231 (human TNBC cell line)
and 4 T1 (mouse TNBC cell line) cells stably

overexpressing AQP1and RIPK1. Orange/yellow fluores-
cence in the merged images represents the co-localization
of AQP1 and RIPK1. These results demonstrates that
cytoplasmic AQP1 is one of the main reasons for the
aggressive phenotype of triple negative breast cancer and
the cytoplasm is the main field where the AQP1-RIPK1
complex assembles and functions to promote the progres-
sion and metastasis of TNBC. Scale bar: 20 μm

to lead to a large decrease in active sweat glands
[53, 54]. Humans have an estimated two to four
million eccrine sweat glands located throughout
the body [6]. They function as a pathway of water
and electrolytes out of the body, regulating the
internal environment of human body, maintaining
body temperature, and protecting the skin from
harmful microbe. In the subcellular level, AQP5
is located in both the apical membrane and the
basolateral membranes of the secretory coils of
the eccrine sweat glands. It moves to the apical
membrane during the active process of sweating
to increase plasma membrane water permeability
[55]. Acetylcholine is the main regulator of
sweating and increases intracellular calcium,
followed by the apical translocation of AQP5.
Therefore, active chemicals modulating AQP5
activity may be a potential and promising thera-
peutic strategy for patients suffering from sweat-
ing disorders.

AQP7-knockout mice show impairment of
contact hypersensitivity response and decreased
sensitization [5]. Further experiments indicate

that AQP7 is required for the ability of dermal
dendritic cells to take up antigens for presenta-
tion, while AQP7 knockout dendritic cells dem-
onstrate reduced internalization of antigens of
various sizes, indicating an impairment of
micropinocytosis in these cells. AQP7 is also
necessary for dendritic cell chemotaxis, with the
AQP7 knockout dendritic cells exhibiting
reduced migration in response to C-X-C motif
chemokine ligand 12 (CXCL12, also known as
stromal-derived factor-1 or SDF-1) or C-C motif
chemokine ligand 21 (CCL21) [5]. Together,
these results indicate an involvement of AQP7
in cutaneous dendritic cell function, and thus
hypersensitivity reactions in the skin.

AQP9 has also been recently shown to play a
role in contact hypersensitivity. Despite showing
comparable numbers of immune cell types, AQP9
knockout mice exhibited significantly lighter ear
edema in contrast to the wild-type animals upon a
sensitization model [56]. Further studies found
decreased numbers of infiltrating CD4-positive
and CD8- positive T cells and neutrophils, but
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not mast cells. The ear swelling could be reversed
in AQP9 knockout mice by replace the bone
marrow with wild-type one, indicating that the
relevant cell type in this system seems to be an
immune cell rather than keratinocytes. In particu-
lar, the response could be restored by
reconstituting AQP9 knockout mice with wild-
type neutrophils, but not T cells, and was
decreased upon antibody-mediated neutrophil
depletion (in wild-type mice) [56], suggesting
the importance of neutrophils in this contact
hypersensitivity response. Skin draining lymph
nodes isolated from AQP9 knockout mice models
also exhibited reduced secretion of
interleukin-17A (IL-17A), with no effect on
interferon-gamma (IFN-γ) levels. In addition,
AQP9 knockout mouse-derived neutrophils
demonstrated reduced chemokine-induced cell
migration [56]. Together these results suggest
that the AQP9 expressed in neutrophils
contributes to the induction of contact hypersen-
sitivity by allowing chemokine-mediated recruit-
ment of IL-17A-producing neutrophils to sites of
skin sensitization.

During the process of lipolysis, AQP7 plays a
crucial role by transporting glycerol out of the
adipocytes to allow maintained triglyceride
breakdown [57]. In silent period, AQP7 is found
in the cytoplasm near the nucleus, but when lipol-
ysis is triggered, epinephrine acts on adrenergic
receptors to increase the levels of cAMP, which
subsequently activate protein kinase A to result in
the stimulation of hormone-sensitive lipase activ-
ity. The lipase hydrolyzes triglycerides to yield
glycerol and fatty acids, and AQP7 is then
translocated to the cell membrane to allow for
the transport of glycerol out of the cell and into
the blood for gluconeogenesis. AQP7 expression
and localization are found to be regulated by
insulin. Thus, AQP7 are upregulated when lipol-
ysis is induced by starvation and declined amount
of insulin [57].

AQP7 is also a target of peroxisome
proliferator-activated receptor-gamma (PPAR-γ),
a regulator of many genes in adipose tissue, and is
upregulated when PPAR-γ is activated. PPAR-γ
is the main target of the drug class of thiazolidi-
nediones used in diabetes to decrease insulin

resistance. These drugs have been shown to sen-
sitize adipocytes to insulin, probably due to the
increased expression of AQP7 [57]. On the other
hand, absence of AQP7 has been shown to lead to
obesity and insulin resistance for the reason of
glycerol accumulation and subsequent adipocyte
hypertrophy. Adipocytes in AQP7-knockout
mice exhibit increased intracellular glycerol,
enhanced uptake of fatty acids, and accelerated
triglyceride synthesis [58]. Due to these findings,
modulation of AQP7 has been suggested as a
possible therapy for obesity as well as
diabetes [47].

15.4 AQPs in Skin Diseases

15.4.1 Xeroderma and Skin Dryness

The xeroderma is a disease characterized by dry-
ness and roughness and a fine scaly desquamation
of the skin, which is largely correlated with the
content of glycerol [24]. The glycerol is
extremely important for maintaining the skin
function, supported by a study using an asebia
mouse model. The deficient mice carry a mutation
in the gene encoding stearoyl-CoA desaturase-1
and exhibit reduced production of sebum (rich in
triacylglycerols and phospholipids) by hypoplas-
tic sebaceous gland [59]. The defect in sebum
production subsequently results in decreased epi-
dermal glycerol content and abnormal stratum
corneum hydration, which in turn leads to hyper-
keratosis (epidermal thickening), epidermal
hyperplasia, and mast cell activation. This dys-
function can also be corrected by topical admin-
istration of glycerol. The glycerol is also routinely
added to skin lotions and wound salves, improv-
ing the skin hydration and enhanced wound
healing [60]. In addition, AQP3 is regulated in a
circadian pattern, and the skin hydration levels
changes in accordance with the cyclical expres-
sion of AQP3 [61]. The xeroderma is a kind of
skin disease with the manifestation of skin dry-
ness and hardness, which is usually observed in
diabetes. In a streptozotocin (STZ)-induced dia-
betes mouse model, downregulation of epidermal
AQP3 has been revealed in concomitant with a
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reduction in the transepidermal water loss
(TEWL) [62]. The decrease in AQP3 expression
started to be significant 1 week after the model
establishment and seemed not to be the result of
elevated serum glucose levels. Meanwhile, the
expression of several circadian rhythm regulators
(Bmal1, Clock, and Dbp) were reduced at
2 weeks (but not 1 week) after STZ administra-
tion, suggesting that the disturbance of the circa-
dian rhythm may be the true reason for AQP3
downregulation in diabetic mice. Consequently,
the above results support the important effect of
glycerol on skin hydration as well as the critical
function of AQP3 in maintaining epidermal glyc-
erol content and stratum corneum water-holding
capacity. Since AQP3 improves the efficiency of
entry of glycerol into keratinocytes, increased
AQP3 levels may enhance the beneficial effect
of this agent in the skin. This may lead to further
research on novel agents to induce AQP3 expres-
sion, aiming to improve epidermal hydration and
other aspects of skin function [16, 62–64]. In
addition, skin dryness associated with aging has
also been linked to AQP3. Thus, decreased AQP3
contributes to both extrinsically (sun-exposed)
and intrinsically (age-related) aged human skin
[65, 66], leading to epidermis atrophy and poor
wound healing. Similar phenotype is observed in
mouse skin models and keratinocytes [62, 67],
indicating that AQP3 overexpression may be
effective for dry skin pathology.

Another disease characterized by skin dryness
is the Sjogren’s syndrome. Patients with
Sjogren’s syndrome has their AQP5 mislocated
in the cytoplasm of the sweat secreting cells,
leading to significantly decreased saliva and tear
production [68]. Moreover, the abundance of urea
transporter A1 (UT-A1) and UT-B1 in uremic
sweat glands was significantly increased in
patient skin tissues, while the expression of
AQP5 was decreased [69], indicating again the
regulatory role of AQP5 in sweat secretion.

15.4.2 Psoriasis

Psoriasis is a commonly seen skin disease that
brings patients decreased quality-of-life and a

negative impact on social communication
[34, 70]. It is characterized by hyperproliferation
and abnormal differentiation of keratinocytes
[71]. Mechanically, although the immune dys-
function is involved in psoriasis, accumulating
evidence has been obtained regarding the effect
of AQP3 on the development of psoriasiform skin
lesions in vitro and in vivo. Decreased or
mislocalized AQP3 has been found in psoriatic
lesions [15, 41, 72]. AQP3-knockout mice exhibit
reduced psoriasiform lesion development and epi-
dermal hyperplasia compared with wild-type
mice in two mouse models of psoriasis [12],
while overexpression of AQP3 exacerbates
psoriasiform acanthosis [73]. However, some
semiquantitive studies have indicated increased
expression of AQP3 in psoriatic skin lesions
[74, 75]. Intriguingly, unchanged AQP3 level
has also been reported in psoriasis [12]. Thus,
AQP3 in keratinocytes seems to play an impor-
tant role in psoriasis; however, whether AQP3 is
up- or downregulated in psoriasis remains contro-
versial. Possible explanations include that
proliferating keratinocytes with increased AQP3
expression comprise a greater proportion of pso-
riatic epidermis specimen than of the normal skin
tissues, but AQP3 expression is decreased with
later differentiation and keratinization [19] and
mislocated in a cytoplasm-dominant staining pat-
tern [15]. Nevertheless, the previous data support
critical involvement of this channel in the disease.
Meanwhile, AQP3 might play a modulating role
by regulating the permeability of glycerol in pso-
riasis because glycerol can ameliorate psoriasis
symptoms alone or in conjunction with other
treatments [76].

15.4.3 Vitiligo

A reduction in AQP3 levels is also revealed in
depigmented vitiligo skin of both patients and
AQP3 knockout mice, as AQP3 in epidermal
keratinocytes is involved in maintaining the
health of the melanocytes by regulating the
amount of E-cadherin and the activity of
phosphoinositide 3-kinase (PI3K) [24, 36]. Specif-
ically, acral vitiligo skin differs from non-acral
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skin in showing gradual fading of AQP3 expres-
sion through the epidermis and weaker AQP3
expression in the stratum spinosum in perilesional
compared to lesional skin specimens [77].

15.4.4 Dermatitis

In atopic dermatitis, discrepant results suggest
either up- or down- regulation of AQP3
[3, 78]. Nonetheless, these results indicate a role
for AQP3 in the pathological process of atopic
dermatitis. Epidermal AQP3 levels are also ele-
vated in babies with erythema toxicum
neonatorum [14]. Besides, its transportation func-
tion of water and glycerol is involved in the
initiation and development of pompholyx, a type
of eczema characterized by vesicles or blisters on
the hands and feet [49]. Aberrant high AQP1
level has been found in the pathological epider-
mis of infants with erythema toxicum neonatorum
[14]. However, the causative relationship
between the amount of AQP1/3 and the common
neonatal disease is largely unknown. AQP7 and
AQP9 are involved in the immune cells
(neutrophils, T cells, etc.) of the skin tissue, thus
also regulating inflammatory and infectious
diseases in the skin.

15.4.5 Skin Tumors

In basal cell carcinoma and squamous cell carci-
noma, nonmelanoma skin cancers characterized
by excessive proliferation and downregulated dif-
ferentiation, AQP3 abundance reduces in tumor
cells compared with the normal epidermis [15]. In
addition, an increase in AQP1 expression has
been reported in melanocytic skin tumors
[79]. However, the mechanisms why the abun-
dance of AQPs change and how they functions in
skin tumors remains unclear.

15.4.6 Palmoplantar Keratoderma

Mutations in AQP5 have been identified in
patients with a form of diffuse nonepidermolytic

palmoplantar keratoderma a disease characterized
by thickened skin of the soles and palms and a
defective water permeability barrier [4, 80,
81]. The involved areas are negatively affected
upon the water exposure, resulting in a white
spongy appearance of the skin [4, 80, 82]. How-
ever, the mechanism why these mutations can
cause the annoying keratoderma remains to be
further explored. Moreover, topical urea has
been shown to improve skin barrier function and
is used for a variety of conditions such as
hyperkeratotic or xerotic skin [48, 83]. Thus, by
regulating the transport of urea in keratinocytes,
AQP9 plays a role in both antimicrobial defense
and barrier permeability function of the
epidermis.

15.4.7 Systemic Sclerosis

In the dermal fibroblasts and endothelial cells of
patients suffering from scleroderma/systemic
sclerosis (SSc), a multisystem autoimmune dis-
ease characterized by vasculopathy and fibrosis,
AQP1 is upregulated partially due to autocrine
transforming growth factor-β (TGF-β) stimula-
tion and Fli1 deficiency [84]. AQP3 in dermal
fibroblasts may also play a role in SSc. In a
bleomycin-induced mouse model of SSc, AQP3
is upregulated in mice injected with bleomycin
compared with control, as well as in fibroblasts
isolated from the dermis of the same animals
[50]. However, another study showed paradoxical
results that the expression of AQP3 decreases in
dermal fibroblasts isolated from the skin of SSc
patients compared with normal dermal fibroblasts
[85]. Possible explanations on discrepancies of
different studies may include that AQP3 is
downregulated in SSc patients as negative feed-
back in an attempt to reduce a profibrotic effect of
this channel. It is also possible that the results of
those two studies cannot be directly compared
because of the apparent differences on species
(mouse vs. human) and model establishment
methods (acute vs. chronic SSc) between these
studies model differences.



220 Z. Yin and H. Ren

15.4.8 Wound Healing

AQP3 exerts a key role in skin wound healing,
especially for the epidermis regeneration. AQP3-
knockout mice exhibit delayed wound healing of
full-thickness skin wounds. The delay in skin
wound healing can also be restored by glycerol
supplementation, which is often included in
wound ointments [28]. Moreover, AQP3 expres-
sion is reduced in the wounds of diabetic rats with
impaired wound healing [86], indicating AQP3 is
indispensable for normal skin regeneration. How-
ever, there is an argument that the conclusion
drawn from a rodent model may not be extended
to human skin wound healing, because rodent
wounds heal predominantly by contraction,
whereas human wounds heal primarily by
re-epithelialization. Unfortunately, it is still
unknown whether AQP3 is also involved in
human skin wound healing. Nevertheless, the
data showing the ability of AQP3 to promote
proliferation and migration of human
keratinocytes may in part support the potential
of this channel in human skin wound healing
as well.

15.5 Summary

The skin is the largest and outmost organ in
human body, serving as a mechanical and
biological barrier, assisting with thermoregula-
tion, protecting against ultraviolet radiation and
chemical hazards, and allowing tactile sensation.
Aquaporins, channels that transport water and
sometimes other small molecules, are expressed
in a variety of cells in different layers of the skin.
Accumulating data in the literature indicate a key
role for AQPs in skin homeostasis, with its
dysregulation, dysfunction, and mislocation
contributing to multiple skin disorders. They con-
tribute to many key functions of the skin includ-
ing hydration, formation of the water
permeability barrier, keratinocyte maturation,
sweat secretion, wound healing, lipolysis, and
immune responses. However, continued studies
are still warranted to better understand the role of

each aquaporin in both normal skin tissues and
abnormal skin disorders.
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Abstract

Exocrine and endocrine glands deliver their
secretory product, respectively, at the surface
of the target organs or within the bloodstream.
The release of their products has been shown
to rely on secretory mechanisms often involv-
ing aquaporins (AQPs). This chapter will pro-
vide insight into the role of AQPs in secretory
glands located within the gastrointestinal tract,
including salivary glands, gastric glands, duo-
denal Brunner’s glands, liver, gallbladder,
intestinal goblets cells, and pancreas, as well
and in other parts of the body, including air-
way submucosal glands, lacrimal glands,
mammary glands, and eccrine sweat glands.
The involvement of AQPs in both physiologi-
cal and pathophysiological conditions will also
be highlighted.

Keywords

Aquaporins · Exocrine glands · Endocrine
glands · Secretion · Function · Expression

G. Calamita
Department of Biosciences, Biotechnologies and
Environment, University of Bari “Aldo Moro”, Bari, Italy

C. Delporte (✉)
Laboratory of Pathophysiological and Nutritional
Biochemistry, Faculty of Medicine, Université Libre de
Bruxelles, Brussels, Belgium
e-mail: christine.delporte@ulb.be

# The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
B. Yang (ed.), Aquaporins, Advances in Experimental Medicine and Biology 1398,

225

16.1 Role of AQPs in Secretory
Glands Located within
the Gastrointestinal Tract

Aquaporins (AQPs) are expressed to several
secretory glands located within the entire length
of the gastrointestinal tract including salivary
glands, gastric glands, duodenal Brunner’s
glands, liver, gallbladder, intestinal goblets cells,
and pancreas. Figure 16.1 summarizes the
involvement of AQPs in the secretory gland
functions that is detailed in the following
sections.

16.1.1 Salivary Glands

Major salivary glands, namely parotid, subman-
dibular, and sublingual glands, and minor salivary
glands contribute to whole saliva secretion
[1, 2]. The secretory structure of the glands
consists into several lobes subdivided into
lobules. Lobules are made of secretory units
namely acini (consisting into the association of
multiple acinar cells) connected through a net-
work of ducts formed of ductal cells.
Myoepithelial cells surround the secretory
epithelia [3]. The acinar cells are either serous,
mucous or seromucous, based on their secretory
products and characteristics [3]. The ductal sys-
tem can be subdivided into intralobular
(intercalated and striated), interlobular, interlobar
(excretory) ducts. Saliva secretion relies on a two
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Fig. 16.1 Involvement of AQPs in secretory gland functions

steps mechanism in which acinar cells secrete an
isotonic-like fluid rich in NaCl and water and
ductal cells reabsorb some NaCl and secrete
bicarbonate [4, 5]. These two steps mechanism
results into the secretion of a final hypotonic
saliva into the oral cavity.

In the first step, water flows to the lumen of the
acini through the apically-located AQP5 thereof
playing a major role in saliva secretion (Fig. 16.2)
[6, 7]. Indeed, a 60% decrease in pilocarpine-
stimulated saliva secretion, and a more viscous
and hypertonic saliva have been observed in
AQP5 knockout mice [6, 7]. Furthermore, sub-
stantial decrease in water permeability of parotid
(65%) and sublingual (77%) acinar cells has been
shown in AQP5 knockout mice [7]. Therefore,
studies infer that AQP5 is responsible for acinar
water movement [4, 5, 8, 9]. However, it has been
suggested that AQP5 could act as an osmosensor
controlling the tonicity of the transported fluid by
mixing transcellular and paracellular water flows
[10]. In response to muscarinic stimulation induc-
ing intracellular calcium increase, AQP5 traffics

from intracellular vesicles to plasma membrane
[11–13]. Concomitantly to its physiological role,
AQP5 expression is mostly confined to the apical
membrane of serous acinar cells from all human
salivary glands [14, 15] and from submandibular
and parotid glands in rats [15–18] and mice
[11, 19, 20]. The AQP5 expression reported in
rat and mouse ductal cells [11, 18, 21, 22] i
difficult to explain on a physiological point of
view considering ductal cells are water imperme-
able [23]. Noteworthy, a naturally occurring point
mutation of AQP5 has been identified in rats and
associated with decreased AQP5 expression and
saliva secretion [24]. Until now to our knowl-
edge, no AQP5 mutation has been associated
with saliva flow dysfunction in humans.

The use of knockout mice models has not been
able to show the involvement of other AQPs,
i.e. AQP1, AQP4, and AQP8, in saliva secretion
[6, 25, 26]. Therefore, AQP1 expressed in mouse
salivary gland endothelial and myoepithelial cells
[27] is not involved in saliva secretion. AQP1 is
also expressed in human myoepithelial [28] and
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Fig. 16.2 Proposed mechanism of AQP-mediated water
transport in saliva formation in salivary gland acinar cells.
Upon nerve stimulation, acetylcholine and adrenalin bind
to muscarinic receptors M1 and M3 and α1-adrenergic
receptors leading to phospholipase C activation and
subsequent intracellular calcium increase, while noradren-
alin and vasoactive intestinal peptide bind to β1-adrenergic
and VIP receptors leading to adenylyl cyclase activation
and subsequent intracellular cyclic adenosine
monophosphate (cAMP) increase. cAMP leads to protein
kinase C activation and exocytosis of proteins, while intra-
cellular calcium increase leads to Cl- and HCO3

- secre-
tion driving water transport though AQP5 into the acini
lumen. AC acetylcholine, A adrenalin, PLC
phospholipase C, NA noradrenalin, VIP vasoactive intesti-
nal peptide, AC adenylyl cyclase, cAMP cyclic adenosine
monophosphate, PKC protein kinase C

endothelial [14, 15, 29, 30] cells, as well as in rat
endothelial cells [22, 31–34].

Other AQPs have been detected in salivary
glands. In human, AQP3 is located at the
basolateral membrane of serous and mucous
acini, but not the ducts [14, 29, 30] while only
AQP4, AQP6, and AQP7 mRNAs have been
detected [14, 30]. In rat, some controversy still
exists concerning the expression of both AQP3
and AQP4 [21, 22, 35, 36]. In rat parotid glands,
AQP6 is located to secretory granule membrane
[37], while AQP8 is present in myoepithelial cells
[38–40]. In mice, AQP3, AQP4, and AQP8 are
expressed at the basolateral membrane of acinar
and ductal cells [27]; AQP7 is located in endothe-
lial cells; [20] AQP9 distribution remains to be
determined [19, 20, 41]; AQP11 is found in duc-
tal cells [19, 20]. Distinct patterns of AQPs
expression have been found during the develop-
ment of salivary glands in mouse, rat, and human
[22, 42–45].

In some patients suffering from Sjögren’s syn-
drome, an autoimmune disease characterized by
lymphocytic infiltration of exocrine glands and

particularly salivary and lacrimal glands, altered
AQP5 localization is hypothesized to play a role
in the disease pathogenesis and saliva flow reduc-
tion. However, altered AQP5 localization has not
been detected in all patients suffering from
Sjögren’s syndrome [46–48]. These data could
arise from the use of distinct patient subsets
and/or antibodies. In mouse model of Sjögren’s
syndrome, altered AQP5 localization has indis-
putably been reported in several studies [49–
54]. The presence of inflammatory infiltrates
within salivary glands [51], cytokines [55–58],
autoantibodies against muscarinic M3 receptors
[59, 60] have been suggested to play a role in the
modified AQP5 distribution. Even though altered
expression and/or localization of AQP5 could not
totally account for saliva impairment observed in
Sjögren’s syndrome patients, it could still play a
role in the pathogenesis of the disease. Very
recently, in salivary glands from patients
suffering from Sjögren’s syndrome, it has been
shown that altered distribution of prolactin-
inducible protein and ezrin, identified as new
proteins partners of AQP5 in salivary glands
under physiological conditions, may also account
for abnormal AQP5 localization [61–63]. Anti-
AQP5 antibodies have been detected in blood
samples from patients suffering from Sjögren’s
syndrome and have been incriminated in disease
manifestations. Indeed, anti-AQP5 antibodies
may be directly linked to salivary gland dysfunc-
tion [64] and may represent additional useful
biomarker for Sjögren’s syndrome diagnosis.
However, this remains to be confirmed as anti-
AQP5 antibodies have not been detected in all
patients with Sjögren’s syndrome [65], possibly
due to distinct patient subsets and methods of
determination. Concerning AQP1, studies using
knockout mice showed that this AQP is not
involved in saliva secretion [6, 25]. However,
decreased AQP1 expression in salivary gland
myoepithelial cells from Sjögren’s syndrome
patients and reduced saliva flow [29] can be
counteracted using Rituximab depleting B-cells
[66]. Autoantibodies have been detected in
patients with Sjögren’s syndrome patients
[65, 67] but were not associated with decreased
saliva flow rate [67]. Therefore, further
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investigation is required to better understand the
role of AQP1 in salivary gland function. Abnor-
mal distribution of AQP4 has also been described
in salivary glands from patients suffering from
Sjögren’s syndrome [68], but its physiological
significance remains to be further studied consid-
ering this AQP does not appear to be involved in
saliva secretion using knockout mice [6, 25].

In patients with head and neck cancer treated
with ionizing radiation therapy, decrease or loss
of AQP5 expression [69, 70] and/or impaired
AQP5 trafficking [71] could account for
xerostomia. In mice and rats, ionizing radiation
also induced decrease in AQP5 expression [72–
76]. Pilocarpine, a muscarinic receptor agonist
restored AQP5 expression and saliva flow in
irradiated rats [77].

In diabetes, it is presently unclear whether
high glucose induces [78] or not [79] an altered
distribution of AQP5 and decreased AQP5
expression [80]. Distinct mouse species, experi-
mental conditions, and analytical methods could
account for these distinct results.

In salivary glands, AQPs represent new thera-
peutic targets or can be used as therapeutic agents
to treat xerostomia. Cevimeline restored proper
AQP5 trafficking [81–83]. DNA demethylation
agents increased AQP5 expression [57, 84]. Treat-
ment with cystic fibrosis transmembrane regula-
tor (CFTR) corrector and potentiator allowing the
correction of CFTR activity restored AQP5
expression and saliva secretion in mouse model
of Sjögren’s syndrome [85]. Furthermore, the
delivery of a recombinant adenovirus vector cod-
ing for AQP1 (AdhAQP1) to irradiated glands of
animals and human led to saliva flow restoration
[86–90], as well as resolution of inflammation
[91]. New viral vectors allowing more efficient
and persistent expression of a transgene, such as,
for instance, hAQP1, in salivary glands, would be
useful to further study the usefulness of gene
therapy to treat xerostomia. The use of CRISPR-
CAS9 gene editing allowing the replacement of
endogenous AQP1 gene promotor with the cyto-
megalovirus (CMV) promoter led to increased
AQP1 expression and could open avenues to
new gene therapy [92]. The gene therapy
approaches described hereabove represent

promising therapies for patients suffering from
xerostomia consequent to head and neck irradia-
tion therapy or Sjögren’s syndrome, but the pres-
ence of autoantibodies against AQP1 may
represent an obstacle to such therapeutic
approach.

16.1.2 Gastric Glands

Mammalian gastric glands found in gastric pits
within the gastric mucosa are composed of fundic
glands (in the cardia), cardiac glands (in the fun-
dus and body of the stomach), and pyloric glands
(in the antrum of the pylorus). Gastric glands are
made of distinct cell types with specific function.
Indeed, foveolar cells produce mucous, parietal
cells secrete gastric acid and bicarbonate ions,
chief cells secrete pepsinogen, G cells secrete
gastrin, and enterochromaffin-like cells release
histamine [93].

Many AQPs have been localized to various
areas of the stomach. The fundus express AQP1,
AQP3, AQP4, AQP5, AQP7, AQP8, AQP10, and
AQP11 mRNA and the antrum of the pylorus
express AQP1, AQP2, AQP3, AQP5, AQP7,
and AQP11 mRNAs [94–96]. Both parietal and
chief cells express AQP4 protein at their
basolateral membrane [36, 97–100]. AQP4
internalizes in a vesicle-recycling compartment
and undergo phosphorylation upon histamine
stimulation in gastric cells [101]. AQP4 is
unlikely involved in acid and fluid secretion as
shown using AQP4 knockdown mice [102], even
though other AQPs could compensate for the lack
of AQP4. However, it remains to be determined if
AQP4 could still be involved in gastric cell vol-
ume maintenance. AQP5 is strictly localized to
the apical and lateral membranes of pyloric
glands [103].

Several AQPs promote or are involved in
chronic gastritis and gastric cancer [96, 104–
111]. Particularly AQP3 and AQP5 play signifi-
cant roles in gastric cancer [112] and promote
gastric cancer cell epithelial-mesenchymal transi-
tion [106, 113]. Lower levels of miR-877 and
miR874, shown to regulate AQP3 and AQP5
expression, respectively, may account for the
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increased AQP3 and AQP5 expression and epi-
thelial mesenchymal transition [114, 115]. AQP3
and AQP5 expression has been shown to be posi-
tively correlated with gastric mucosal disease
progression in gastric carcinoma and other stages
of gastric diseases as well as with Helicobacter
pylori infection [116, 117]. Helicobacter pylori
promote AQP3 and AQP5 expression (through
the activation of downstream HIF-1α or ERK1/
2, MEK, respectively) that could be used as novel
molecular targets for therapeutic interventions
[116, 117]. Furthermore, as the expression of
certain AQPs is associated with better or poor
overall survival of patients with gastric cancer, it
can be used as predictive prognostic gastric can-
cer biomarker [110, 118].

In light of the involvement of AQPs in gastric
cancers, they have been considered as additional
molecular targets for therapeutic
intervention [119].

16.1.3 Duodenal Brunner’s Gland

The role of AQPs in duodenal Brunner’s gland
function remains poorly understood due to the
limited number of studies performed so far.
Brunner’s gland cells express AQP5 at their api-
cal, lateral, and secretory granule membranes
[103] and AQP1 at their apical and lateral
membranes [120]. The secretion of bicarbonate
and protein as well as the overall flow rate of rat
Brunner’s gland are increased by the vasoactive
intestinal peptide (VIP) acting though a cAMP-
dependent signaling pathway [121]. In addition,
VIP induces the trafficking of AQP5, but not of
AQP1, from secretory granules to apical plasma
membrane [120, 122]. The resulting presence of
AQP5 at the apical plasma membrane could
account for increased water flow and fluid secre-
tion. This hypothesis is further supported by the
co-localization and co-trafficking of cystic fibro-
sis transmembrane conductance regulator (CFTR)
and AQP5 providing a parallel pathway for elec-
trolyte secretion and osmotic water movement
[122]. The expression of AQP5 in Brunner’s
gland was decreased in celiac disease and cystic
fibrosis and may consequently be involved in the

pathogenesis of these diseases characterized by
altered duodenal secretion [122].

16.1.4 Liver, Bile Ducts,
and Gallbladder

Bile is a complex fluid composed of an aqueous
solution (95% of water) of organic and inorganic
compounds [123]. The major organic compounds
are represented by three lipids, bile acids, choles-
terol, and phospholipids, and the bile pigments.
Proteins and metabolites deriving from various
endogenous substances (i.e., hormones) are pres-
ent at low concentrations [123]. Ions Na+, K+,
Ca++, Mg++, Cl-, and HCO3

- are the major inor-
ganic electrolytes whose concentrations in the
common duct bile are very close to those found
in plasma.

Bile is the main route for the excretion of body
cholesterol in the form of unesterified cholesterol
or as bile acids. In turn, biliary bile acids assist the
emulsification and absorption of lipids at intesti-
nal level. Also, bile mediates the elimination of
drugs and toxins from the body. In health,
humans secrete about 0.8–1.0 L of hepatic bile
daily at a rate of 30–40 mL per hour. Bile produc-
tion is about six times higher in rats [124], a
species lacking gallbladder. Human canalicular
bile is remodeled into the lumen of the bile
ductules and duct through secretory and absorp-
tive processes operated by the ductal epithelial
cells. Bile is stored and concentrated in the gall-
bladder, and released into the duodenum
[125, 126]. Bile water is mostly reabsorbed in
the proximal segment of the small intestine
[127] while bile salts are recovered in distal
ileum to be carried back to the liver by the
enterohepatic circulation [128, 129]. Bile forma-
tion starts at the bile canaliculus triggered by an
osmotic process that involves solutes and water
and where the driving force needed to bile forma-
tion is represented by the active concentration of
bile acids and other biliary constituents in the bile
canaliculi [124]. Canalicular bile flow can also be
found in the absence of bile acids or at low bile
acid outputs, indicating the existence of two
components for canalicular bile formation, the
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bile acid-dependent bile flow (i.e., bile flow
related to bile acid secretion) and the bile acid-
independent bile flow (i.e., bile flow attributed to
active secretion of osmotically active inorganic
electrolytes and organic anions). Lastly, total
bile flow consists of constant ductal/ductural
secretion and total canalicular bile flow with a
linear relation in both total bile flow and total
canalicular bile flow.

The epithelial cells of the mammalian
hepatobiliary tract express several AQPs vari-
ously localized among the different system
sections (Table 16.1). Endothelial cells express
AQP1 [34] and AQP7 [130]. AQPs are also

Table 16.1 Reported localization and suggested physiological relevance of hepatobiliary aquaporins expressed at
significant levels

Hepatobiliary
Cellular
location and
species

Subcellular

Liver
parenchyma

AQP3 Hepatocytes (h) Undefined Unclear
AQP7 Hepatocytes (h) Undefined Unclear
AQP8 Hepatocytes (r,

m, h)
APM,
SAV,
IMM, SER

Canalicular bile secretion; cytoplasmic osmotic
homeostasis; mitochondrial ammonia detoxification
and ureagenesis; mitochondrial H2O2 release
hepatocyte cholesterol biosynthesis; regulation of
metabolic signaling

AQP9 Hepatocytes (r,
m, h)

BLM Uptake of glycerol during starvation; lipid
homeostasis; import of water from sinusoidal blood;
catabolic urea extrusion

AQP11 Hepatocytes
(m)

RER RER homeostasis; liver regeneration

Intrahepatic
bile ducts

AQP1 Cholangiocytes
(m, r, h)

APM,
SAV, BLM

Secretion and absorption of ductal bile water

AQP4 Cholangiocytes
(m, r)

BLM Secretion and absorption of ductal bile water

Gallbladder AQP1 Epithelial cells
(m, h)

APM,
BLM, SAV

Cystic bile absorption/secretion

AQP8 Epithelial cells
(m, h)

APM, SAV Cystic bile absorption (?)

Portal
sinusoids;
PVP; BV

AQP1 Endothelial
cells (h)

APM, BLM Bile formation and flow

Other hepatic
cell types

AQP3 Kupffer cells
(h)

PM Cell migration and proinflammatory cytokines
secretion (?)

AQP8 Kupffer cells (r) PM Repopulation of Kupffer cells during liver
regeneration (?)

AQP3 Stellate cells (h) PM Adiponectin-mediated inhibition of hepatic stellate
cells activation

AQP11 Stellate cells (r) Undefined Control of activated hepatic stellate cells proliferation

APM apical plasma membrane, BLM basolateral plasma membrane, BV blood vessels, IMM inner mitochondrial
membrane, PM plasma membrane, PVP peribiliary vascular plexus, RER rough endoplasmic reticulum, SAV subapical
membrane vesicles, SER smooth endoplasmic reticulum

present in Kupffer cells [130, 131] and hepatic
stellate cells [132–136].

16.1.4.1 Liver
Rodent hepatocytes express AQP8, AQP9, and
AQP11 [130, 137–142]. Two more homologues,
AQP3 and AQP7, have been reported in human
hepatocytes. The distinctive subcellular localiza-
tion and transport selectivity featured by these
AQP channels may explain their redundancy in
hepatocytes [143]. Important roles have been
ascribed to AQP8, AQP9, and AQP11 in
hepatocytes whereas the function (if any) of
hepatic AQP3 and AQP7 is unclear.
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Likely due to its multiple subcellular
localizations [138, 139] and ability to allow trans-
port of ammonia and hydrogen peroxide in addi-
tion to water, several functions have been
suggested for AQP8 in hepatocytes such as
those of facilitating the secretion of canalicular
bile water [144], preserving the cytoplasm osmo-
larity during the synthesis and degradation of
glycogen, [139] transporting ammonia in mito-
chondrial ammonium detoxification and
ureagenesis [145–147], and mediating the release
of hydrogen peroxide from mitochondria [148,
149]. Peroxiporin mitochondrial AQP8 has been
suggested to intervene in the hepatocyte choles-
terol biosynthesis controlled by the sterol regu-
latory element-binding protein (SREBP) [150–
152]. The AQP8-facilitated diffusion of H2O2

across the hepatocyte plasma membrane has
been recently reported to be involved in the dif-
ferential regulation of metabolic signaling by α1-
and β-adrenoceptors (ARs) and to induce Ca2+

mobilization. Since H2O2 inhibits the
β-AR-mediated activation of the glycogenolytic,
gluconeogenic, and ureagenic responses induced
by α1-AR this observation was suggested to be a
novel NOX2-H2O2-AQP8-Ca

2+ signaling cas-
cade acting downstream of α1-AR in hepatocytes.
The inhibitory effect exerted by H2O2 on β-AR
signaling leads to negative crosstalk between the
two pathways [153]. Intense is the investigation
addressed to the role exerted by AQP8 in the
secretion of canalicular bile. After stimulation
by choleretic agonists, such as dibutyryl cyclic
adenosine monophosphate or glucagon, subapical
AQP8 was suggested to translocate to the apical
plasma membrane via phosphatidylinositol-3-
kinase-dependent microtubule-associated traf-
ficking [154]. This redistribution raises the hydric
permeability of the canalicular plasma membrane
facilitating the osmotically driven transport of
water into the bile canaliculus (Fig. 16.3) [144,
155, 156]. A similar cAMP-induced redistribu-
tion to the canalicular membrane also occurs for
carriers implicated in canalicular bile secretion
such as the isoform 2 of the Cl-/HCO3

-

exchanger (AE2) and the multidrug resistance-
associated protein 2 (MRP2). This mechanism is
in line with a work with rat primary hepatocytes

where glucagon increased the expression AQP8
reducing its degradation through a process
involving cAMP-PKA and PI3K signal pathways
[157]. However, in another study, hepatocytes
isolated from AQP8 knockout mice showed
water permeability comparable to that of
hepatocytes from wild type mice [26]. This appar-
ent discrepancy may be explained by the redun-
dancy of AQPs in hepatocytes and/or to the
functional modification to which other genes
may undergo in response to the disruption of the
Aqp8 gene. On the other hand, in rat hepatocytes
it has been observed that a 60% decrease in AQP8
level in the apical membrane leads to a 15%
decrease in the overall osmotic permeability of
the canalicular membrane [158].

AQP9 is an aquaglyceroporin of broad selec-
tivity allowing transport of a wide variety of
non-charged solutes including glycerol and other
polyols, hydrogen peroxide, urea, carbamides,
nucleosides, monocarboxylates, purines,
pyrimidines, and metalloid arsenic besides to
water. It is mainly expressed in liver parenchyma,
at the sinusoidal plasma membrane of
hepatocytes [137]. In rodents, AQP9 is the main
pathway through which glycerol is taken up from
portal blood to hepatocytes during short-term
fasting [159–161]. Once transported into the
cells, by means of the glycerol kinase glycerol is
promptly converted into glycerol-3-phosphate
(G3P) to be used as substrate for gluconeogene-
sis. Hepatocyte AQP9 is also involved in lipid
homeostasis as G3P is required for the synthesis
of triacylglycerols (TAGs) [162]. AQP9 has also
been suggested to contribute to rodent bile forma-
tion [163] and to the extrusion of catabolic urea
[164]. In rodents, the transcriptional expression of
hepatocyte AQP9 is negatively regulated by insu-
lin [165], an observation that may explain why
liver AQP9 is increased in conditions of insulin
resistance [166, 167]. Functional significance for
AQP9 in glucose and lipid homeostasis and
energy balance is also indicated by Aqp9 knock-
out mice where the ablation of AQP9 is
associated to reduced liver glycerol permeability
and increased levels of plasma glycerol and
TAGs [164, 168]. Mouse models of obesity and
obese patients with type 2 diabetes show reduced



232 G. Calamita and C. Delporte

Fig. 16.3 Proposed mechanism of AQP-mediated water
transport in canalicular bile formation and secretion in
hepatocytes. AQP8 facilitates the osmotic secretion of
water into the bile canaliculus, whereas AQP9 contributes
to the diffusion of water from the sinusoidal blood into the
cell. Choleretic hormones, such as glucagon, can stimulate
the microtubule-dependent canalicular targeting of AQP8-
containing subapical vesicles. AQP8 is also found in

mitochondria and smooth endoplasmic reticulum where
it is suggested to play other roles other than facilitating
the canalicular secretion of bile water. AQP9 is also the
main pathway through which glycerol is imported by
hepatocytes (see Table 16.1). BC bile canaliculus, PKA
protein kinase A, SAV subapical vesicles, ST salt
transporters

levels of hepatocyte AQP9 with a significant
decrease of the liver glycerol permeability
[169, 170]. Liver AQP9 is also regulated by leptin
[162, 171]. However, the regulation played by
both insulin and leptin on the gene transcription
of AQP9 seems to differ between rodents and
humans [167]. Sex-specific dimorphism of
hepatic AQP9 expression is found both in rodents
and humans consistent with the differences with
which the two genders handle glycerol [171–
174].

Sex-dependent differences were also seen
regarding two other aquaglyceroporins of meta-
bolic relevance, AQP3 and AQP7, in fat tissue
[171]. Hepatocyte AQP9 has been recently found
to be involved in the lipid-lowering activity of the
nutraceutical phytocompound silybin through

modulation of autophagy and lipid droplets com-
position [175]. A role of liver AQP9 in the early
acute phase of the inflammatory reactions trig-
gered by TLR4 ligands has been suggested
where AQP9-facilitated uptake of hydrogen per-
oxide would be implicated in the production of
inflammatory NO and O2

- through the involve-
ment of the NF-kB pathway [176]. AQP11 has
been found in mouse and human hepatocytes
where roles are suggested in rough endoplasmic
reticulum homeostasis and liver regeneration
[130, 141]. The recent functional identification
of AQP11 as a peroxiporin opens new horizons
about the potential function of this homologue to
the regulation of intracellular H2O2 homeostasis
to prevent ER stress [177]. Further studies are
expected to assess the role of AQP11 in liver.
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16.1.4.2 Bile Ducts
Cholangiocytes, the epithelial cells lining the bil-
iary tree, account for secretin-induced ductal bile
secretion through a cAMP-dependent pathway
[124] and activation of Cl- efflux via cystic fibro-
sis transmembrane conductance regulator (CFTR)
that drive the extrusion of HCO3

- into the lumen
via apical AE2 (i.e., the chloride/bicarbonate
exchanger). Both HCO3

- and Cl- provide the
main driving force for the osmotic movement of
water by means of apical AQP1 into the biliary
lumen [124]. AQP1 is expressed in human and
rodent cholangiocytes [34, 178] where it plays a
key role in the apical water secretion during both
basal- and hormone-regulated ductal bile forma-
tion [179]. AQP1 is also located in subapical
membrane vesicles [180] where co-expression
with AE2 and CFTRwas observed [181]. Secretin
regulates the exocytic insertion of these vesicles
into the cholangiocyte apical membrane leading
to the novel concept of functional bile secretory
unit [180, 181]. At their basolateral plasma mem-
brane cholangiocytes express AQP4 and AQP1
[180, 182]. AQP-facilitated water movement
would allow the relative isosmolar status of the
cell to be maintained during ductal bile formation.
This is consistent with the physical association
between the basolateral membrane of
cholangiocytes and the peribiliary vascular plexus
that surrounds bile ducts and from which bile
water originates explaining the relative isosmolar
status seen during ductal bile formation
(Fig. 16.4) [143, 183]. Surprisingly,
cholangiocytes from Aqp1-/- knockout mice
did not show impairment in water movement
[184]. Lack of AQP1 could lead to compensatory
upregulation of other AQPs expressed in mouse
cholangiocytes [185, 186] such as AQP8.
Intrahepatic bile ducts not only secrete but also
absorb water. Osmotically induced net water
absorption has been demonstrated in isolated
rodent intrahepatic bile duct units [187]. Water
would be absorbed osmotically following the
active absorption of sodium-coupled glucose
and bile salt by means of the SGLT1 and ASBT
cotransporters, respectively [124]. Hormones

decreasing the intracellular levels of
cholangiocytes cAMP such as somatostatin, gas-
trin, and insulin could act by inhibiting the
secretin-induced vesicular transport of AQP1,
CFTR, and AE2 to the cholangiocytes apical
membrane with a decrease of the ductal bile
secretion. This mechanism could explain why
somatostatin can cause inhibition of ductal secre-
tion and stimulation of net ductal water
absorption.

16.1.4.3 Gallbladder
The mammalian gallbladder acts as a storage
compartment for bile fluid produced by
hepatobiliary secretion with important roles in
maintaining digestive and metabolic homeostasis.
Water movement across gallbladder epithelium is
driven by osmotic gradients created from active
salt absorption and secretion. Human and mouse
gallbladder epithelial cells express AQP1 and
AQP8. Both in human and mouse AQP1 is
localized at the apical and basolateral domains
of the plasma membrane of the epithelial cells
that line the neck of the organ [188, 189]. In
mouse gallbladder, additional immunoreactivity
was seen at the corpus portion with staining at
level of subapical vesicles and over the plasma
membrane [190]. Leptin was found to slightly
upregulate AQP1 in mouse gallbladder
[191]. AQP8 has been found at the plasma mem-
brane and, at lesser extent, at intracellular level of
the gallbladder epithelium of different species
[34, 138]. Recently, liver X receptor β (LXRβ),
an oxysterol-activated transcription factor
strongly expressed in the gallbladder epithelium,
was seen to regulate the expression of AQP1 and
AQP8 and the cystic fibrosis transmembrane con-
ductance regulator (CFTR) [192]. Constitutively
high water permeability in mouse gallbladder epi-
thelium involving transcellular water transport
through AQP1 was found in a study using
AQP1 knockout mice [193]. Subapical AQP1
was hypothesized to translocate to the apical
membrane to secrete water as in the bile duct
epithelium, a functional homologue of the gall-
bladder epithelium. Based on its pattern of
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Fig. 16.4 Proposed mechanism of AQP-mediated water
movement in ductal bile secretion. Intrahepatic bile ducts
cholangiocytes. Secretin hormone, via cAMP, induces the
microtubule-dependent apical targeting and exocytic
insertion of subapical vesicles containing AQP1 and
CFTR Cl- channels, and the Cl-/HCO3

- exchanger
AE2 into the apical membrane. The efflux of Cl- via
CFTR provides the luminal substrate to drive the extrusion

of HCO3
- into the lumen by means of AE2. HCO3

- and
Cl- ions provide the osmotic driving force for the move-
ment of water from blood plasma (mostly through
basolateral AQP4) to biliary lumen (through apical
AQP1). AE2 anion exchanges isoform 2, CFTR cystic
fibrosis transmembrane conductance regulator, SAV sub-
apical vesicles

Fig. 16.5 Proposed mechanism of AQP-mediated water
in cystic bile absorption/secretion. Gallbladder epithelial
cells. AQP8 and AQP1 facilitate the osmotic absorption
and secretion of water into and from the gallbladder lumen,
respectively. Basolateral AQP1 mediates the entry/extru-
sion of water into/out of the epithelial cells. SAV subapical
vesicle

subcellular localization gallbladder AQP8 was
suggested to contribute to the secretion of water
and to facilitate the absorption of water
(Fig. 16.5) [138]. However, the physiological
importance of AQP1 and AQP8 roles in gallblad-
der function remain debated matter due to the
discrepant results reported in literature. Bile salt
concentration was of similar extent in
gallbladders from wild type and Aqp1 knockout
mice with AQP8 that was not appearing to func-
tionally substitute for AQP1 [193]. This observa-
tion was not consistent with previous studies
showing temporal association between decreased
gallbladder concentrating function and reduced
AQP1 or AQP8 expression [190], and leptin-
deficient mice submitted to leptin replacement
where leptin was altering the gallbladder volume
likely by influencing the AQP-mediated absorp-
tion/secretion of water [194]. Additional work is
needed to clarify the question.
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16.1.5 Intestinal Goblet Cells

Current knowledge concerning the role of AQPs
in intestinal goblets cells is very limited. So far,
only AQP9 mRNA has been detected in a subset
of mucus-secreting intestinal goblet cells
[195]. Therefore, additional studies would be
valuable to further study the expression and func-
tion of AQPs in these cells.

16.1.6 Exocrine Pancreas

The exocrine pancreas accounts for about 90% of
the total pancreas and morphologically resembles
salivary glands despite few differences. Indeed, it
contains serous acinar cells only and centroacinar
cells (extension of intercalated ducts into each
acinus). In addition, the exocrine pancreatic fluid
secretion drains into a main collecting duct. The
major role of pancreatic fluid is to neutralize the
stomach acid and the food digestion. Pancreatic
fluid secretion is regulated by several
neurotransmitters (i.e., acetylcholine, cholecysto-
kinin, and secretin) that stimulate both pancreatic
enzyme and fluid secretion or mainly fluid secre-
tion, and that exert potentiated effects [196].

AQP1, AQP3, AQP4, AQP8, and AQP12
mRNAs are expressed in human exocrine pan-
creas. However, only few AQPs proteins have
been detected, i.e., AQP1, AQP5, and AQP8
[197, 198]. Endothelial cells, centroacinar cells
(apical membrane), intercalated ductal cells
[197], and pancreatic zymogen granules express
AQP1 [199, 200]. Intercalated ductal cells (apical
membrane) express AQP5 [197]. AQP12 expres-
sion localization remains to be determined [198].

AQP1, AQP4, AQP5, AQP8, but not AQP12,
mRNAs are expressed in rat exocrine pancreas
[197, 198, 201]. AQP1 is localized to the apical
and basolateral membranes as well as caveolae
and vesicle-like structures of intralobular and
intralobular ductal cells [202, 203], in acinar
zymogen granules [199] and in endothelial cells
[201]. AQP5 is expressed at the apical membrane
of centroacinar and intercalated ductal cells
[204]. AQP8 is located at the apical acinar cell
membrane [198].

AQP1, AQP5, and AQP12 are expressed in
mouse exocrine pancreas. Indeed, AQP1 and
AQP5 are located at the apical membrane of
interlobular ductal cells, and AQP5 is also
expressed at the apical membrane of intercalated
and intralobular ductal cells [204]. AQP12 is
expressed intracellularly in acinar cells [205].

Pancreatic juice is produced by acinar cells
secreting a small volume of isotonic fluid and
ductal cells secreting ions and ensuring most of
the water movement [4, 206]. The presence of
AQP8 located at the apical acinar cell membrane,
AQP1 located at both apical and basolateral duc-
tal cell membranes, and AQP5 located at the
apical ductal cell membrane ensure water move-
ment to the acinar or ductal lumen [204]. AQP8
accounts for most water permeability (90%) in rat
pancreatic acinar cells [201]. However, exocrine
pancreatic function is unmodified in AQP8
knockout mice, possibly due to the fact the
much contribution of acinar cells than ductal
cells to the overall water movement [26]. In rat
pancreatic acinar zymogen granules, AQP1
contributes to basal and GTP-mediated vesicle
water movement and swelling [199, 200]. In rat
interlobular ductal cells, AQP1 account for most
of secretin-stimulated pancreatic juice secretion
[203]. However, AQP1 knockout mice display
normal exocrine pancreatic function, like the
AQP5 knockout mice [197]. These data may be
due to weak level of AQP1 and AQP5 expression
or functional redundancy. In this context, double
AQP1 and AQP5 knockout mice might be useful
to assess the specific contribution of each of these
AQP to the exocrine pancreatic function. In addi-
tion, further studies are necessary to shed light on
the possible role of AQP12 in pancreatic juice
secretion.

16.1.7 Endocrine Pancreas

Endocrine pancreatic cells account for a minor
fraction of total pancreatic cells (about 10). They
form the islets of Langerhans composed of
insulin-producing β-cells surrounded by
glucagon-producing α-cells, somatostatin-
producing δ-cells, and pancreatic polypeptide-
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producing PP cells [207]. The major function of
human endocrine pancreas, and in particular of
the β-cells, is to secrete insulin [208, 209]. Insulin
secretion by β-cells relies on the following
subsequent steps: glucose entry via the glucose
transporter type 2 (GLUT2), glucose
metabolization, intracellular ATP concentration
increase, ATP-sensitive K+ channels inhibition,
membrane depolarization, voltage-dependent
Ca2+ channels opening, intracellular calcium ele-
vation, and finally insulin-containing granules
exocytosis [208]. Moreover, glucose induces
β-cell swelling [210] that triggers subsequent
volume-regulated anion channel (VRAC) activa-
tion, cell membrane depolarization, voltage-
dependent Ca2+ channels activation, calcium
entry and insulin secretion [211, 212].

Although to our knowledge the expression of
AQPs in human endocrine pancreas remains to be
assessed, it has been shown that rat β-cells
express AQP7 [213–215] and mouse β-cells
express AQP5, AQP7, and AQP8 [214]. Never-
theless, the expression of AQPs remains to be
determined in the other cell types composing the
rat and mouse islets of Langerhans.

Functional studies have shown the involve-
ment AQP7 in the regulation of intracellular glyc-
erol content, insulin production, and secretion in
β-cells. Indeed, AQP7 knockout mice displayed a
reduction in β-cell size and mass, insulin content
and cAMP-driven glycerol release [215, 216] and
an increase in basal and glucose-stimulated insu-
lin secretion rates, glycerol and triglyceride
contents and glycerol kinase activity [215]. How-
ever, genetic background influences the AQP7
knockout mouse phenotype. Indeed, according
to their genetic background, AQP7 knockout
mice had hyperinsulinemia [215, 216] with
[216] or without [215] hyperglycemia, or had
normal glycaemia with undetermined insulin
levels [217]. In both β-cells and rat pancreatic
β-cell line BRIN-BD, the addition of extracellular
isosmotic glycerol induces sequential cell
swelling, VRAC activation, membrane depolari-
zation, electrical activity, and insulin secretion
(Fig. 16.6) [213, 218, 219]. The entry of glycerol

glycerol Cl-
AQP7A

cell swelling
VRAC

+
+
+
+

+

Ca++

Ca++

insulin

exocytosis

Fig. 16.6 Proposed mechanism of AQP7-mediated insu-
lin secretion in pancreatic β-cells. Glycerol entry via AQP7
induces sequential cell swelling, VRAC activation, mem-
brane depolarization, electrical activity, and insulin secre-
tion. VRAC Volume-regulated anion channel

and its subsequent metabolization are likely
contributing to the activation of β-cells
[213]. Compared to AQP7 wildtype mice, AQP7
knockout mice had reduced insulin release in
response to increased D-glucose concentration,
extracellular hypotonicity or extracellular isos-
motic addition of glycerol [214]. AQP7 regulates
insulin release by allowing both glycerol entry
and exit, and by acting directly or indirectly at a
distal downstream site in the insulin exocytosis
pathway [214]. So far, no clear conclusion has
been drawn regarding the association between
mutations or single-nucleotide polymorphisms
of AQP7 and diabetes and/or obesity [220–
224]. In rat pancreatic β-cell line RIN-m5F,
tumor necrosis factor α decreased AQP7 expres-
sion and insulin expression but increased AQP12
expression, while lipopolysaccharides increased
AQP7 and AQP12 expression but decreased insu-
lin secretion. In addition, in cells treated by tumor
necrosis factor α or lipopolysaccharides,
overexpression and silencing of AQPs revealed
the involvement of AQP7 in insulin secretion and
of AQP12 in inflammation [225]. In rat RIN-m5F
β-cells, AQP8, located in the mitochondrial and
plasma membranes, has been shown to play a role
in attenuating cytokine-mediated cell toxicity
[226]. Further studies are required to pursue
deciphering the physiological and pathophysio-
logical role of AQPs within β-cells.
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16.2 Airway Submucosal Glands

Airways submucosal gland are present in the
human trachea and bronchial airways or in rat
and mouse trachea. They are made of serous and
mucous acinar cells forming secretory tubules,
and ductal cells forming lateral and collecting
ducts [227]. The airway submucosal glands
secrete a fluid rich in water, ions, and mucins to
ensure proper hydration of the airway surfaces,
mucociliary transport, and reception of secreted
molecules such as mucins [227]. Acetylcholine
and VIP stimulate submucosal gland secretion
[227]. The secretion of Cl- and HCO3

- creates
an electrical gradient allowing paracellular move-
ment of cations such as Na+. This leads to the
formation of an osmotic gradient driving the
transcellular movement of water to the glandular
lumen [227]. AQP5, located at the apical mem-
brane of submucosal serous epithelial cells, plays
a role in the transcellular water movement
[228, 229] as shown in AQP5 knockout mice
displaying a 50% reduction in submucosal secre-
tion as compared to wild type mice [230]. Inter-
estingly, in patients suffering from chronic
obstructive pulmonary disease, AQP5 expression
is decreased in submucosal glands and correlated
to the disease’s severity [231]. Submucosal
glands from asthmatic patients displayed
increased AQP5 expression [232]. In an animal
model of asthma, AQP5 deletion decreased both
mucin secretion and inflammatory cytokines
levels [232]. Therefore, it is hypothesized that
AQP5 is involved in the development of mucous
hyperproduction and inflammation during
chronic asthma [232, 233]. Further studies will
contribute to a better understanding of the regula-
tion and role of AQP5 in submucosal glands in
relation to pulmonary diseases.

16.3 Lacrimal Glands

Lacrimal glands are made of multi lobules. Each
lobule is made of acinar cells secreting a fluid into
a network of ducts made of intralobular, interlob-
ular, intralobar, interlobar, and ducts. Acinar cells

are surrounded by myoepithelial cells. Acetylcho-
line and adrenalin are the major neurotransmitter
controlling lacrimal glands secretion. The main
function of lacrimal glands is to secrete a fluid
rich in water, lipids, mucins, and antimicrobial
substances to protect cornea from exogenous
and environmental insults, thus facilitating the
maintenance of a refractive surface necessary for
clear vision [234].

Rat lacrimal glands express several AQPs.
Indeed, AQP1 and AQP5 are expressed in endo-
thelial cells express. Acinar cells express AQP3 at
their basolateral membrane, AQP4 at their lateral
membrane, AQP5 at their apical membrane, and
AQP11 intracellularly [235]. Mouse lacrimal aci-
nar cells express AQP3 only in fetal tissue but not
in adult tissue [236], AQP4 at their basolateral
membranes, and AQP5 at their apical membranes
[16, 236, 237]. Mouse lacrimal ductal cells
express AQP5 at their apical membrane
[236, 238]. Mouse lacrimal ductal and
myoepithelial cells express both AQP8 and
AQP9 [236].

Lacrimal fluid secretion results from the for-
mation of a primary isotonic fluid by acinar cells
and its subsequent modification by the ductal
cells [239]. However, ductal cells have been con-
sidered to also play a role in electrolytes and
water secretion [240, 241]. The final lacrimal
fluid composition may vary according to the
flow rate and species considered [239]. AQPs
expressed in both acinar and ductal cells are likely
contributing to tear secretion. However, the
involvement of AQPs in lacrimal fluid secretion
has not been confirmed using knockout mice for
AQP1, AQP3, AQP4, or AQP5 [238, 242]. How-
ever, one study showed significant in situ tear film
hypertonicity in AQP5 knockout mice
[243]. Recently, it was shown that AQP5 knock-
out mice presented primary dye eye phenotype
that may result from the differential expression of
circular RNA [244]. Genetic background and/or
ways to generate AQP5 knockout mice could
account for these phenotypic differences in
terms of lacrimal fluid secretion. Therefore, fur-
ther studies are necessary to address the assump-
tion that AQPs may not be required for low rates
such as in lacrimal glands [245] and to further
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study the role of AQPs in lacrimal glands, and
particularly AQP8 that has recently been shown
to be expressed in ductal cells.

Defective AQP5 trafficking has been shown in
lacrimal acinar cells from patients suffering from
Sjögren’s syndrome, an autoimmune disease
characterized by dry eyes and dry mouth
[246]. In addition, animal model of Sjögren’s
syndrome displayed modified AQP5 mRNA and
protein levels in ductal (increased) and acinar
(decreased) cells, as well as AQP4 expression in
ductal cells (decreased) [247]. Altered calcium
signaling and volume regulation occurring in
Sjögren’s syndrome may account these
modifications [248]. Further experimentation is
necessary to decipher the role of AQPs
pathologies affecting lacrimal glands.

16.4 Mammary Glands

Mammary glands are apocrine glands made of
alveoli lined with milk-secreting cuboidal acinar
cells surrounded by myoepithelial cells, and lac-
tiferous ducts (intralobular and interlobular ducts)
draining milk to the openings in the nipple
[249]. Milk is composed of sugars, lipids,
proteins, vitamins, minerals, and water
[250]. According to species and physiological
status considered, milk contains variable percent-
age of water [251].

Rat and mouse mammary glands express
AQP3 at the basolateral membrane of acinar
cells and in intralobular and interlobular ductal
cells, and AQP5 at the apical membrane of acinar
cells [252]. They also express AQP1 at the apical
and basolateral membranes of endothelial cells
[253]. Bovine mammary glands express AQP3
and AQP4 respectively at the basolateral mem-
brane of acinar cells and at the apical membrane
of some ductal cells [254]. In addition, AQP7 is
present at the apical membrane of some acinar
cells and AQP1 is expressed in endothelial and
myoepithelial cells [254].

AQP3 may be involved in both water and
glycerol transport that are essential for milk syn-
thesis and secretion [253]. Glycerol uptake via
AQP3 may participate to milk triglycerides

synthesis [253]. Interestingly, the expression pat-
tern of AQP3 and AQP5 is distinctly regulated by
lactogenic hormones in acinar and ductal mam-
mary cells before and after parturition
[255]. Besides, AQP5 may regulate milk osmo-
larity [255]. In mammary glands with mastitis,
proinflammatory cytokines reduce milk produc-
tion possibly by inducing decreased AQP3
expression [256]. Higher AQP3 expression
induced by polyherbal formula accounts for
increased milk production in rats [257]. AQPs
are likely to play a role in mammary tumors and
breast cancer [107, 258, 259]. However, it is
unclear whether altered AQP expression is the
cause or the consequence of neoplasia
[258]. The use of Aqp knockout mice models
and further studies will be valuable for a better
understanding of the role of AQPs in milk secre-
tion under physiological and pathological
conditions, and to determine if AQPs could be
used as therapeutic targets, diagnostic or prognos-
tic biomarkers.

16.5 Eccrine Sweat Glands

Eccrine sweat glands are made of single tubular
structure containing acinar cells and ductal cells.
Mouse, rat, and human eccrine sweat gland acinar
cells express AQP5 at their apical membrane
[260–262]. Upon stimulation, AQP5 traffics to
that location [260]. Acinar cells secrete a primary
fluid rich in ions and water that undergoes salt
reabsorption when reaching the ductal cells [263].

Whether AQP5 plays a role in eccrine sweat
glands remains an open debate due to variable
data obtained using different Aqp5 knockout
mice strains and methods to assess the secretion
[261, 264]. Therefore, further studies will help
precising the role of AQP5, and possibly as well
other AQPs, in sweat secretion.

Various skin pathologies are characterized by
modified AQP5 expression within the eccrine
sweat glands [265–267]. Activin a receptor type
1 and cholinergic receptor nicotinic alpha 1 sub-
unit are involved in the AQP5 overexpression
detected in hyperhidrosis [268, 269]. In addition,
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mutations of AQP5 gene are responsible for
palmoplantar keratoderma [270–273].

16.6 Conclusions

A variety of exocrine and endocrine gland
express AQPs that play a role in exocrine or
endocrine secretory processes. Furthermore,
some AQPs are involved in some secretory
gland dysfunction or diseases. Despite consider-
able efforts made to understand the role of AQPs
in the physiology and pathophysiology of secre-
tory glands, further studies are still necessary to
further advance the current knowledge in the
field.
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Abstract

Water homeostasis is essential for fetal
growth, and it depends on the successful
development of the placenta. Many aquaporins
(AQPs) were identified from blastocyst stages
to term placenta. In the last years, cytokines,
hormones, second messengers, intracellular
pH, and membrane proteins were found to
regulate their expression and function in the
human placenta and fetal membranes.
Accumulated data suggest that these proteins
may be involved not only in the maintenance
of the amniotic fluid volume homeostasis but
also in the development of the placenta and
fetal organs. In this sense, dysregulation of
placental AQPs is associated with gestational
disorders. Thus, current evidence shows that
AQPs may collaborate in cellular events
including trophoblast migration and apoptosis.
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In addition, aquaglyceroporins are involved in
energy metabolism as well as urea elimination
across the placenta. In the last year, the pres-
ence of AQP9 in trophoblast mitochondria
opened new hypotheses about its role in preg-
nancy. However, much further work is needed
to understand the importance of these proteins
in human pregnancies.

Keywords

Aquaporins · Placenta · Fetal

17.1 The Water Transport across
the Human Placenta

The development of the placenta and the fetus is a
continuous process that begins with fertilization.
The placenta is a transient organ with highly
specialized functions, found only in mammals. It
consists of an intricately branched, fetally derived
villous tree, bathed directly by maternal blood
released from the uterine spiral arteries into the
intervillous space. The fetal-maternal exchange
takes place in these villi.

The main functions of the placenta are to allow
the selective transfer of substances between the
mother and the fetus and to keep the fetal fluid
homeostasis [1, 2]. Fetal water requirements rise
significantly during pregnancy as a result of the
exponential increase in fetal weight [2, 3]. Conse-
quently, proper fetal growth and homeostasis
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depend on the successful formation of the
placenta.

Water exchange can occur directly between
amniotic fluid (AF) and fetal blood. This is
known as the intramembranous pathway. On the
other hand, water can also move transcellular
between the intervillous space and the fetal
blood by a route governed by the syncytiotro-
phoblast, the outmost covering cell layer of the
floating chorionic villi. Previous studies using
isolated vesicles showed that water could perme-
ate across the syncytiotrophoblast by lipid diffu-
sion [4, 5]. However, this mechanism is
insufficient to meet the fetal water needs during
pregnancy. In subsequent experiments, AQP3
and AQP9 were identified in the apical membrane
of the human syncytiotrophoblast, supporting the
idea of a water-facilitated transport across the
syncytium [6]. In addition, functional
experiments using human placental explants con-
firmed that these AQPs could mediate water
transfer across the placenta [7]. Therefore, the
discrepancy between isolated vesicles and placen-
tal explants results may indicate that the function
of these proteins is tightly controlled by several
mechanisms, such as the cytoskeleton and other
proteins, which may be lost during the isolation of
the vesicles [8]. On the other hand, emerging
physiological data reveals the presence of scarce
tight junctions in syncytiotrophoblast that allows
a paracellular pathway for water transfer
[9]. Nowadays, it is well-accepted that water is
transferred across the syncytiotrophoblast
through paracellular and AQP-mediated
transcellular routes [2].

17.2 Expression of AQPs in Placental
and Fetal Membranes
throughout Pregnancy

After fecundation, the zygote undergoes rapid
cellular division to form a morula. Subsequently,
compaction begins by enhancing the cell-to-cell
contact. This process triggers the development of
the trophectoderm that starts and regulates the
formation of a fluid-filled cavity inside the

morula. Thus, the morula develops into the blas-
tocyst [10, 11].

Previously, in murine embryos from the
one-cell stage up to the blastocyst stage the
expression of AQP1, AQP3, AQP5, AQP6,
AQP7, and AQP9 was found [12]. In addition,
Barcroft and co-workers reported a differential
localization of AQP3, AQP8, and AQP9 in
mouse blastocysts [12]. They showed that AQP9
was detected in the apical membrane of the
trophectoderm, while AQP3 and AQP8 were
localized in the basolateral membrane. AQP3
was also observed in the inner cell mass
[12]. The presence of these AQPs in both, the
apical and basolateral membrane domains of the
trophectoderm, suggests that they may promote
the trans-trophectoderm fluid accumulation that
takes place during cavitation [10, 11].

In preimplantation human embryos, mRNAs
of AQP1, AQP2, AQP3, AQP4, AQP5, AQP7,
AQP9, AQP11, and AQP12 were detected. How-
ever, only AQP3 and AQP7 expressions are
sustained from the zygote through the blastocyst
stage, indicating that both AQPs may have an
important role in the early stages of
embryogenesis [13].

Since the placenta (trophoblast) and the cho-
rion are derived from the trophectoderm, it seems
to sense that these proteins would be expressed in
both the placenta and the fetal membranes. The
differentiation of the trophoblast cells is required
for placentation. Thus, trophoblast cells develop
into two cell types: the villous mononucleated
cytotrophoblast cells, which proliferate, differen-
tiate, and establish the placental floating villi by
fusing into multinucleated syncytiotrophoblast
cells, and the extravillous trophoblast (EVT)
cells related to the anchoring villi [14]. Villous
syncytiotrophoblast cells are in immediate con-
tact with the maternal blood and mediate the feto-
maternal exchange. The syncytiotrophoblast cells
also participate in the synthesis of critical
hormones for the progression of gestation. On
the other hand, EVT cells take part in the
remodeling of the uterine spiral artery to ensure
the proper blood supply to the fetal-placental
unit [15].



17 Aquaporins in Fetal Development 253

Early in human pregnancy, the expression of
AQP1, AQP3, AQP4, AQP5, AQP8, AQP9, and
AQP11 mRNA was detected in chorionic villi.
Interestingly, AQP3 and AQP9 showed the
highest levels of expression [16, 17]. As AQP3
and AQP9 can permeate glycerol and urea, in
addition to water, it was proposed that both
proteins may take part in energy metabolism
throughout gestation. However, the role of
AQPs in the early stages of gestation remains
unknown.

The expression of AQP4 was particularly stud-
ied throughout gestation. It was reported that its
expression decreases in chorionic villi with the
advance of gestation [18, 19].

Regarding AQP11, given its cytoplasmatic
location, it could have an important role in
intravesicular homeostasis and organogenesis
[16, 20, 21].

In human term placenta, AQP3 and AQP9
were the first AQPs identified in the apical
membranes of the villous syncytiotrophoblast
[6]. AQP8 was also detected in the trophoblasts
but its cell polarity distribution was not
established yet [22]. AQP4 expression was nearly
undetectable in the syncytiotrophoblast at term,
but its expression was higher in endothelial cells
and stroma of placental villi [18, 19] Table 17.1.

Conflicting evidence exists on AQP2 expres-
sion in human placenta. Although several
publications have shown that AQP2 cannot be
detected in human placenta, Table 17.1 [16, 26],
Zhao and co-workers have found AQP2 expres-
sion in chorionic villi and fetal membranes from
normal placentas, as well as an increase of this
protein in placentas from preeclampsia-affected
pregnancies [25].

AQPs have also been extensively explored in
human fetal membranes. The expression of
AQP1, AQP3, AQP8, AQP9, and AQP11
mRNAs and proteins were found in human
amnion and chorion throughout gestation [17]. It
was also described that the levels of AQP1,
AQP3, and AQP8 were higher during the first
trimester, while the expression of AQP9 and
AQP11 increased in the second trimester
[17]. Thus, the time-specific expression pattern
of these AQPs may reflect modifications in the

volume and composition of human AF through-
out gestation.

Mann and co-workers observed the expression
of AQP1 and AQP3 in fetal membranes at term
and also localized AQP1 in placental endothelial
cells [23]. Chorioamniotic membranes were also
shown to expressAQP8 andAQP9 [22, 24].More-
over, cytosolic expression of AQP11 was also
detected in amniotic membranes at term [17].

Interestingly, Bednar and co-workers
described regional differences in the individual
expression of the five AQPs found in the amnion.
They observed higher AQP-mRNA levels and
lower AQP-protein levels in the placental amnion
(which covers the placenta) compared to the
reflected amnion (which covers the membranous
chorion) [21]. Based on these findings, it was
assumed that each AQP may have a particular
role in the human amnion.

In Table 17.1, the expression of AQPs in
human placenta and fetal membranes throughout
pregnancy is shown.

17.3 Expression of AQPs in Fetal
Tissues

During fetal development, AQPs are expressed in
fetal tissues to allow the proper fluid exchange.
Park and Chon have found that AQP11 expres-
sion is enhanced during embryogenesis and pro-
posed that this protein may participate in the
development of several organs including the
kidneys and salivary glands [20]. Furthermore,
AQP11 gradually decreases with the advance of
gestation and fetal growth, suggesting that when
fetal organ functionality has reached maturity,
other AQPs such as AQP1, AQP3, AQP8, or
AQP9, may take over water regulation [20].

In animal models, it is well-documented that
AQPs are necessary for the correct development
of several organs including the lung, skin, heart,
central nervous system, and so others [1, 27]. Con-
versely, limited data describes the expression and
function of AQPs in human fetal tissues. In
Table 17.2, AQPs found in fetal tissues of rats,
mice, pigs, sheep, and humans are summarized.
AQPs identified in human adult organs are also
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Table 17.1 Expression of AQPs in the human placenta and fetal membranes throughout pregnancy

Location AQPs EXPRESSION Reference

Blastocyst Trophectoderm AQP3, AQP7 [13]
Early placenta Chorionic villi AQP1, AQP3, AQP4, AQP5, AQP8, AQP9, AQP11 [16–20]
Term placenta Fetal membranes AQP1, AQP3, AQP8, AQP9, AQP11 [17, 22–24]

Placental vessels AQP1, AQP4 [18, 23]
Villous trophoblast AQP2, AQP3, AQP4, AQP8, AQP9 [6, 18, 19, 22, 25]

shown [28, 40, 48]. It is important to mention that
there are some differences among the different
species in terms of placentation, gestation length,
and vital organ maturation, which can affect
water transport into and out of the compartments.

The expression of AQPs in fetal lung and
kidney are of particular significance because
fetal urine and lung secretions are involved in
AF formation.

17.3.1 Fetal Kidneys

Nephrogenesis begins during the embryonic stage
but continues throughout the fetal stage. The
expression of AQPs during fetal kidney

Table 17.2 AQPs expressed in fetal tissues of rats, mice, pigs, sheep, and humans

Fetus

Rat Mouse Pig Sheep Human

Kidney AQP1, AQP2, AQP3,
AQP4, AQP5, AQP6,
AQP7, AQP8, and
AQP11 [28]

AQP1,
AQP2,
AQP3, and
AQP4 [29–
31]

AQP1, AQP2,
AQP3, and
AQP4 [29, 31,
32]

AQP1, AQP2,
AQP3, and
AQP4 [33]

AQP1 and
AQP2
[34, 35]

AQP1,
AQP2, and
AQP3
[29, 36–
39]

Bladder
and
urothelium

AQP3, AQP4, AQP7,
AQP9, and AQP11 [40]

AQP1, AQP3,
AQP5, AQP9,
and AQP11
[41]

Lung AQP3, AQP4, and
AQP5 [28]

AQP1,
AQP4
[42, 43]

AQP5 [44] – AQP1,
AQP3,
AQP4, and
AQP5 [45]

–

Skin AQP0, AQP1, AQP3,
AQP4, and AQP5 [28]

AQP1,
AQP3 [46]

Heart AQP1, AQP3, AQP4,
AQP5, AQP7, AQP9,
AQP10, and AQP11
[28]

– AQP1,
AQP3,
AQP4, and
AQP8
[27, 47]

–

Brain AQP1, AQP4, and
AQP9 [28, 48]

AQP4
[49, 50]

AQP4 [51] AQP1 and
AQP4 [52]

development was studied in rats, mice, pigs,
sheep, and humans [29–38, 53]. In human beings
and sheep, the expressions of AQP1 and AQP2
can be found earlier in gestation compared with
mice and rats. AQP1 is expressed in the proximal
tubules before AQP2, AQP3, and AQP4 are
expressed in the collecting ducts [29, 35, 39]. In
human fetuses, AQP1 and AQP3 increase pro-
gressively with gestational age, whereas AQP1
expression is very intense in renal tubules
[36, 37]. Studies on knockout mice lacking
AQP1, AQP2, AQP3, or AQP4 revealed that
these AQPs have a central role in the kidney‘s
ability to concentrate urine [29, 54, 55]. Thus, the
increase in the expression levels of these AQPs
may indicate maturation of the urinary
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concentrating capacity [56]. Low levels of AQP2
were also reported and correlated with the big
amounts of dilute urine produced, which is essen-
tial for the maintenance of AF homeostasis [29].

17.3.2 Fetal Urinary Tract

Jakobsen and co-workers have recently reported
the expression of AQP1, AQP1, AQP3, AQP5,
AQP9, and AQP11 mRNA along the urinary tract
in porcine fetuses [41]. They also described that
expression levels of these proteins change
throughout gestation. AQP11 is downregulated.
In contrast, other AQPs are upregulated, such as
AQP1. In addition, AQP5 mRNA transcript was
detected in the urethra while AQP1 was also
found in endothelial cells of vessels in the bladder
wall [41]. However, the functional and develop-
mental consequences of these findings have not
been explored.

17.3.3 Fetal Lungs

Lung development during fetal life depends on
water secretion into early alveolar spaces and
airways. In addition, AQPs in fetal lungs may
also be contributing to AF formation. Regarding
AQP expression in the lungs, four AQPs (AQP1,
AQP3, AQP4, and AQP5) were described in
sheep before birth, with high mRNA levels of
AQP1 and AQP5 [45]. In mice, a small amount
of mRNA of AQP5 was found [44]. In the rat
lung, Early stages of development already show
AQP1 expression and its levels increase just
before birth and during the first weeks after birth
and adulthood [42]. On the other hand, during the
prenatal period, AQP4 expression is relatively
low, and it briefly rises in the first few days
following delivery [43]. Finally, AQP5 expres-
sion rises throughout pregnancy and then gradu-
ally increases until maturity [42]. These perinatal
changes in AQPs expression correlate with an
increase in water permeability depending on
increased water channel activity.

17.3.4 Fetal Heart

In sheep fetal hearts, AQP1 was found in the
endocardium at a very early stage [27]. Later in
gestation, this protein localizes predominantly in
vascular sites [47]. Wintour and co-workers have
also detected AQP1, AQP3, AQP4, and AQP8 in
the late gestational ovine fetal heart [27].

17.3.5 Fetal Skin

The expression of AQPs was also explored in rat
skin at different stages of fetal growth. AQP1 was
localized in dermal capillaries, while AQP3 was
present in the basal cells of the epidermis of fetal
rats [46]. The increased expression of these AQPs
in fetal skin compared to more mature skin
suggests that these proteins may be involved in
the control of epidermal hydration.

17.3.6 Fetal Brain

In the chick brain, the expression of AQP4 begins
during prenatal life, while in rodents its expres-
sion appears just after birth [49, 50]. These
differences between avians and mammals may
result from species-specific characteristics and a
different time course for the development of the
blood–brain barrier. In the fetal mouse brain, a
non-polarized AQP4 expression was also
observed [51]. In humans, Gömöri showed that
AQP1 and AQP4 proteins are expressed in the
fetal brain since the 14th week of gestation and
progressively increase with the advance of
gestation [52].

17.4 Physiological and Pathological
Significance of AQPs in Fetal
Membranes

AF volume homeostasis is necessary for healthy
fetal growth and development. AF volume regu-
lation depends on a balance between the produc-
tion and resorption of this fluid. Physiologically,



256 N. Martínez and A. E. Damiano

fetal water requirements progressively increase
throughout gestation. Near term, the fetal
membranes allow up to 400 mL of fluid per day
to flow from the amniotic cavity into the fetal
circulation, driven by an osmotic gradient
between the amniotic compartment and the fetal
blood (255 mOsm/kg versus 280 mOsm/kg,
respectively) [57–59].

Many theories were postulated to clarify the
mechanisms that control the intramembranous
flow. According to recent research, an active uni-
directional vesicular transfer of water and solutes
through the amnion is the primary mechanism
that regulates the intramembranous flow
[60, 61]. A second mechanism is the passive
bidirectional transcellular water movement in
response to osmotic gradients, mediated by
AQPs [62, 63]. Although it appears that AQPs
have a limited impact on AF volume regulation,
an abnormal expression of these proteins is
associated with several disorders such as abor-
tion, premature birth, AF volume abnormality,
malformation, and fetal growth restrictions.
Thus, these disorders may affect the homeostasis
of the maternal-fetal fluid exchange [2].

Consequently, the relationship between AQPs
and obstetrical pathologies such as
polyhydramnios (high AF volume) and
oligohydramnios (low AF volume) was widely
studied. In idiopathic polyhydramnios, Mann
and co-workers reported that AQP1 increased
33-fold mainly in the amnion [64], and
hypothesized that this increase may be a compen-
satory response to polyhydramnios. Moreover,
Zhu and colleagues showed a significant increase
of AQP8 in the amnion and AQP9 in the amnion
and the chorion, and a considerable decrease in
the placenta [65]. Along with these findings, these
authors assumed that several modulating factors
trigger changes in AQP8 and AQP9 expressions,
increasing the intramembranous absorption and
decreasing the water flow from the mother to the
fetus.

In contrast, in pregnancies complicated with
oligohydramnios, Zhu and co-workers found a
downregulation in AQP1 expression in the
amnion. However, no significant changes were
observed in the chorion and the placenta

[66]. Concerning AQP3 in oligohydramnios,
these authors showed a decrease in the amnion
and the chorion and a significant increase in the
placenta [66]. Furthermore, Jiang and co-workers
reported that in this pathology, AQP8 and AQP9
decreased in amnion and increased in the placenta
[67]. They also found a reduced AQP9 expression
in the chorion, while AQP8 remained
unchanged [67].

Even though changes in AF volume and the
expression of AQPs seem to be linked, their role
remains uncertain. In this regard, some
AQP-knockout mice have been established, but
none of them are suitable for studying changes in
AF volume [68–70]. Thus, AQP1 null mice
showed an increase in AF volume with a reduced
osmolarity [68], but in humans, polyhydramnios
is not associated with a decrease in AQP1 expres-
sion [64]. Additionally, a recent study by Luo and
co-workers found that the absence of AQP1 led to
the overexpression of AQP8 and the
downregulation of AQP9 in fetal
membranes [71].

Furthermore, Sha et al. showed in AQP8-
knockout mice an AF volume increase
[69]. Assuming that AQP8 and AQP1 are highly
permeable to water, these results revealed a com-
pensating mechanism between both AQPs in the
regulation of AF volume. Interestingly, neither
oligohydramnios nor polyhydramnios occurred
in AQP3- knockout mice [70]. Indeed, the lack
of AQP3 in the placenta and fetal membranes led
to reduced metabolite concentrations in the AF
and affected normal fetal growth, suggesting that
AQP3 may facilitate the transport of glycerol
from the mother to the fetus [70].

According to these findings, Di Paola and
co-workers have recently investigated the partici-
pation of the amnion AQPs in the transamniotic
water flux [63]. They demonstrated that the main-
tenance of AF volume homeostasis is more
largely supported by AQP1 and cannot be
substituted by any other AQPs. This fact strongly
suggests the idea that AQP1 might play a key role
in oligohydramnios and polyhydramnios. How-
ever, amnion AQPs are more expected to be
engaged in compensatory mechanisms rather
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than in the pathogenesis of these pregnancy
disorders.

17.5 Physiological and Pathological
Significance of AQPs in Human
Trophoblast

The classical role of AQPs is to mediate water
movements across cell membranes induced by
osmotic gradients. Therefore, these proteins may
contribute to the feto-maternal water exchange
and also to the rapid movement of solutes across
cell membranes, with minimal osmotic perturba-
tion [6]. Nevertheless, the importance of placental
AQPs in the water transport between the mother
and the fetus is still debated.

Several obstetric complications such as pre-
eclampsia and diabetes showed an altered expres-
sion of these proteins in the placenta with no
impact on water transfer between the mother and
the fetus [7, 25, 72–74]. In preeclamptic
placentas, AQP3 and AQP4 decreased, whereas
AQP2 and AQP9 increased [7, 25, 72, 73]. Func-
tional experiments showed that transcellular
water movement was dramatically reduced in
these placentas, and it was not mediated by
AQPs [7]. In addition, an unusual increase in
AQP9 expression was observed in diabetic
placentas [74]. None of these changes were linked
to clinical evidence of altered feto-maternal water
flux. Consequently, these findings support the
hypothesis that these proteins may be involved
in other cellular processes that require rapid
changes in cell volume [75].

The most extensively studied AQP in tropho-
blast cells is AQP9. AQP9 is of particular rele-
vance because, additionally to water, it is
permeable to neutral solutes such as polyols,
purines, and pyrimidines [76]. In this regard,
in vitro experiments were performed in placental
explants to explore AQP9 function. Thus, it was
reported that AQP9 protein decrease mediated by
insulin did not modify water uptake [77]. On the
other hand, in explants exposed to hypoxia/reox-
ygenation, the increased expression of AQP9 did
not correlate with an increase in water uptake
[78]. Given that AQP9 also functions as a

metabolite channel, it is plausible that this protein
has a minimal impact on water transfer across the
human placenta. Recently, Medina and
co-workers have reported that trophoblast cells
can use lactate as a glucose substitute source of
energy by an AQP9-mediated transport. Further-
more, it was observed that the blocking of AQP9
in placental explants cultured in a low glucose
medium supplemented with L-lactate triggered
trophoblast apoptosis [79]. Consequently, AQP9
may facilitate the transfer of lactate together with
monocarboxylate transporters in the human
placenta.

Interestingly, this protein was also localized in
the large/heavy mitochondria subpopulation [79]
which is related to the apoptotic processes needed
for the normal differentiation and turnover of
villous trophoblast cells [80]. In this context, an
abnormal AQP9 may impair mitochondrial func-
tion, giving rise to the activation of the mitochon-
drial pathway of apoptosis. Consequently, the
presence of heavy/large mitochondria with a
functional AQP9 may help the villous trophoblast
cells to respond to stress more effectively [79].

Previous reports in preeclamptic placentas
revealed an abnormal increase of AQP9 which
was localized not only in the syncytiotrophoblast
membranes but also in the cytoplasm [7]. Func-
tional experiments also demonstrated that water
and monocarboxylate uptakes were dramatically
reduced and were not sensitive to HgCl2 [7]. Alto-
gether these results reveal that AQP9 permeabil-
ity is altered in this pathological condition
[7]. Preeclampsia is a pregnancy syndrome
associated with enhanced oxidative and nitrative
stress which is crucial in exacerbating villous
trophoblast apoptosis [81, 82]. Thus, reactive
oxygen (ROS) and nitrogen (RNS) species
increase may modify the structure of many
proteins such as AQPs, affecting their function
[83]. It was recently found an increase of a
nitrated AQP9 in placentas from pregnancies
complicated with preeclampsia [84]. As a result
of the reduced expression of glucose transporters
[85] and the decreased aerobic glycolysis in pre-
eclamptic placentas [86], lactate concentrations
may be raised in this syndrome [87–89]. In this
scenario, it was hypothesized that a dysfunctional
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AQP9 may affect the ability of the placenta to use
lactic acid, promoting more accumulation of ROS
and negatively compromising the survival of the
trophoblast cells.

Furthermore, AQP9 overexpression in the
placentas of women with gestational diabetes
mellitus may also strengthen the role of AQP9
in energy metabolism [74, 90].

Regarding AQP3, it was recently documented
that this protein participates in the migration,
invasion, and endovascular differentiation of
EVT cells [91–93]. Even though the expression
of AQP3 in early placentas that result in pre-
eclampsia or fetal growth restriction at the end
of pregnancy is unknown, it was observed in cell
lines of EVT such as Swan 71 [91, 92] or HTR8/
SVneo [93], and in rat models [94] that a reduced
AQP3 expression or the blocking of its function
impaired these processes. Thus, an abnormal
expression of AQP3 at the early stages of placenta
formation may lead to a superficial trophoblast
invasion and inadequate remodeling of the mater-
nal spiral arteries impairing fetal growth
[75]. This poor transformation of the maternal
spiral arteries may also produce an ischemia-
reperfusion insult, enhancing the oxidative stress
and the apoptosis of the villous trophoblast. Thus,
the results of these changes could lead to a com-
bination of preeclampsia and fetal growth
restriction.

On the other hand, it is well-accepted that the
efflux of K+ creates an osmotic gradient that
moves water out of the cell through AQPs forcing
the decrease of the cell volume known as apopto-
tic volume decrease (AVD) [95]. After AVD, the
inactivation of AQPs results in alterations in the
plasma membrane, which become much less per-
meable to water, while the ongoing loss of ions K
+ reduces the ionic strength of the cytoplasm and
triggers the activation of the apoptotic caspases
[96]. Szpilbarg and co-workers have shown that
in placental explants exposed to hypoxia/reoxy-
genation to induce cell death, the blocking of
AQP3 abrogates the villous trophoblast apoptosis
[97]. Consequently, placental AQP3 may also

play a role in the physiological apoptosis required
for the normal turnover of the villous trophoblast
[98]. Therefore, the reduced expression of AQP3
in preeclamptic placentas could affect this physi-
ological process increasing the cellular stress of
the syncytiotrophoblast [73].

Finally, uptake experiments using placental
explants have demonstrated that AQP3 and
AQP9, together with urea transporters (UTs),
may also facilitate urea transfer. Thus, the partici-
pation of both AQPs in the urea excretion across
the placenta cannot be discarded [7].

Up to now, the significance of AQP2, AQP4,
and AQP8 in human trophoblast was not
explored. However, it is important to remark
that the expression of AQP4 in the trophoblast
progressively decreases with advancing preg-
nancy, proposing that this protein may have a
role in placentation [19, 72]. In recent years, in
autoimmune diseases associated with AQP4-IgG,
it was found that these autoantibodies cause pla-
cental necrosis and inflammatory cell infiltration
into the placenta [99, 100]. Moreover, in a preg-
nant animal model, the AQP4 antibody was
reported to induce placenta insufficiency [19].

Finally, AQP11, in contrast to the other AQPs
identified during gestation, is localized in the
membranes of some organelles as the endoplas-
mic reticulum (ER) [101]. Due to its unusual
location in the cell, it is still unclear if this protein
can act as a water channel [102, 103]. It was
suggested that AQP11 may regulate the perme-
ability of the endoplasmic reticulum membrane to
water, ensuring an adequate environment for pro-
tein translation and folding [16, 17, 101]. In this
way, the increased levels of AQP11 during
embryogenesis could be related to the develop-
ment of fetal organs [1, 2, 20].

Recent evidence demonstrated that AQP11
may also function as a peroxiporin, expanding
its role in the management of intracellular H2O2

homeostasis to avoid ER stress [104]. However,
additional research is required to elucidate its role
in the human placenta.
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17.6 Regulation of AQPs in Human
Fetal Membranes
and Trophoblast Cells

Emerging evidence shows that cytokines,
hormones, second messengers, intracellular pH,
and membrane proteins may control AQPs
expression and function in the human placenta
and fetal membranes. The identified factors, to
date, involved in the regulation of these AQPs
are summarized in Table 17.3.

17.6.1 Fetal Membranes

17.6.1.1 cAMP
In human amnion epithelial cells, the effect of
3,5-cyclic adenosine monophosphate (cAMP)
was widely studied. cAMP is one of the most
frequently second messengers in the endocrine
signaling pathway. It was reported that AQP1,
AQP3, AQP8, and AQP9 mRNA expressions
are stimulated by cAMP [105–107]. However,
these AQPs respond differently to cAMP activa-
tion. In the case of AQP3, the rise in intracellular
cAMP levels triggers a quick but transient
increase in AQP3 expression through a
PKA-dependent mechanism [107]. On the other
hand, AQP1, AQP8, and AQP9 mRNA
expressions were upregulated by cAMP via a
PKA-independent pathway [105, 106]. In addi-
tion, the increase of AQP8 was rapid and
sustained whereas AQP1 and AQP9 response
was delayed and persistent [106]. Up to now,
the link between cAMP and disorders associated
with altered AF volume is unknown.

17.6.1.2 Osmotic Stress
In amnion epithelial cells, osmotic stress was also
found to be a regulator of AQP8 expression. In
this way, AQP8 mRNA and protein expression
were significantly increased in hypotonic media
while being dramatically lowered in hypertonic
media [108]. These changes in AQP8 are of spe-
cial interest in oligohydramnios. However, the
molecular mechanism involved in this regulation
is not explored yet.

17.6.1.3 Insulin
Regarding hormone regulation, it was recently
documented in the amnion, but not in the chorion,
that insulin considerably reduces the transcrip-
tional expression of AQP3 and AQP9
[109]. The reduced expression of both AQPs
could reduce the glycerol transcellular transport.
Moreover, it was also reported that the inhibition
of the phosphatidylinositol 3-kinase abrogates the
AQP-downregulation mediated by insulin
[109]. These results propose that in pregnancies
complicated by Diabetes Mellitus type 2 and Ges-
tational Diabetes Mellitus, commonly linked to
polyhydramnios, insulin may repress AQP3 and
AQP9 in the amnion, resulting in AF volume
increase.

17.6.1.4 Retinoic Acid
It was documented that the all-trans-retinoic acid,
the main active metabolite of vitamin A, regulates
AQP3 mRNA in human amnion and epithelial
amniotic cells [110]. The upregulation of AQP3
results in an increased uptake of glycerol. How-
ever, the relevance of these findings in
maintaining AF homeostasis is still uncertain,
but it was speculated to be linked to the premature
rupture of membranes.

17.6.2 Trophoblast Cells

17.6.2.1 Oxygen
A relatively hypoxic environment is required for
the human placenta development to promote
proper embryonic growth, trophoblast differenti-
ation, and placental angiogenesis. It is well-
established that placentation is tightly controlled
by oxygen tensions through the hypoxia-
inducible factor-1 (HIF-1) [116].

Previous research showed that AQP9 protein
decreases abruptly in human placental explant
cells, exposed to O2 deprivation [78]. The stabili-
zation of HIF-1α by CoCl2 treatment showed the
same response. In silico analysis of the human
AQP9 gene revealed 14 putative hypoxia-
response elements (HRE) sites (5′-ACGTGC-
3′), although none of them were in the promoter



" "

–

" – –

# " #
– "

– –

– – "

– "
#

#

– –

260 N. Martínez and A. E. Damiano

Table 17.3 Regulation of AQPs in human placenta and fetal membranes

Fetal membranes
AQP1 AQP3 AQP8 AQP9

cAMP " in amnion
cells
[105, 106]

in amnion cells [107] in amnion cells [105, 106] " in amnion cells
[105, 106]

Osmotic
stress

– " in amnion cells exposed to
hypotonic media
# in amnion cells exposed to
hypertonic media [108]

–

Insulin – # in amnion but not in chorion
[109]

– # in amnion but not
in chorion [109]

Retinoic
acid

– in amnion [110]

Trophoblast cells
AQP1 AQP3 AQP4 AQP9

Oxigen – in VT [97] in VT [72] in VT [78]
hCG – – in VT [111]
Vasopressin " in EVT cells

[112]
cAMP " in EVT cells

[112]
in VT [111]

Leptin – – in VT [113]
Insulin – = in VT [77] – in VT [77]
TNF-α – in EVT cells and VT [94] – = in VT [77]
CFTR CFTR is required to preserve the function of AQPs [114]
pH Disturbances in the pHi of the syncytiotrophoblast negatively affect the water permeability of AQPs

[115]
Caveola/
Caveolin-1

– # by disruption of the caveolar
structure in EVT cell [92]

EVT extravillous trophoblast, VT villous trophoblast

region, proposing that they were not critical to
trigger AQP9 transcription upregulation
[78]. Thus, HIF-1α may enhance the expression
of some intermediate which promotes the
downregulation of AQP9 expression.

Hypoxia also reduced AQP3 protein expres-
sion in syncytiotrophoblast cells and changed its
subcellular localization, exhibiting a predomi-
nance in the cytoplasm [97].

Finally, the impact of low oxygen tension on
AQP4 expression has recently been investigated.
Hypoxia and HIF-1, in contrast to AQP3 and
AQP9, were found to promote AQP4 mRNA
and protein expression in human placental
explants. In silico analysis revealed three poten-
tial HIF-1 binding sites in the AQP4-gene pro-
moter region [72].

Oxygen modification of AQPs expression
showed a reduced water uptake, which is

non-sensitive to HgCl2, a common blocker of
AQPs, suggesting that oxygen can also change
AQP-water permeability [78].

17.6.2.2 hCG
Human chorionic gonadotropin (hCG) is released
by villous trophoblast cells. This hormone
increases the molecular expression and function-
ality of AQP9 in a concentration-dependent man-
ner [111]. Experimental evidence also showed
that the stimulatory effect of hCG on AQP9
takes place via cAMP.

In concordance with its effect on AQP9
expression, hCG may also increase the
transcellular water flux mediated by AQPs [111].

17.6.2.3 Vasopressin
In EVT cells, vasopressin may upregulate AQP1
expression [112] by a cAMP-dependent pathway.
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Thus, vasopressin action on AQP1 may promote
EVT cell migration and the following transforma-
tion of maternal spiral arteries. Furthermore,
increased levels of vasopressin were found in
the AF of fetuses with oligohydramnios
[117]. Taking into account that AQP1 detected
in human fetal membranes responds to cAMP
[106], it is possible that vasopressin also may
have a role in the upregulation of AQP1 in the
amnion.

17.6.2.4 Leptin
Leptin is a peptide hormone that has a significant
role in the regulation of trophoblast development
and metabolism. In Gestational Diabetes Mellitus
it was observed an increase in leptin serum levels
which correlates with an increase in placental
AQP9 expression [74]. In subsequent
experiments, it was demonstrated that leptin
enhanced AQP9 transcriptional and protein levels
[113]. These results may hypothesize that AQP9
might be involved in the glycerol transfer to the
fetus, to meet the increased energy intake needs in
the macrosomic fetus of diabetic
pregnancies [90].

17.6.2.5 Insulin
Insulin repressed the expression of placental
AQP9 through a negative insulin response ele-
ment (IRE) in the promoter region of the AQP9
gene [77]. On the other hand, insulin did not
modify AQP3 expression in trophoblast
cells [62].

Interestingly, in vitro experiments showed that
water uptake mediated by AQPs was not
perturbed after insulin treatment despite the
AQP9 decrease, suggesting a non-classical role
for this protein in the human placenta [77].

17.6.2.6 TNF-a
It was recently reported that the tumor necrosis
factor-alpha (TNF-α) downregulates AQP3
expression in EVT cells, and negatively affects
cell migration [94].

On the contrary, TNF-α has no direct effect on
placental AQP9 expression [77]. However, it was
proposed that this cytokine may impair insulin
signaling. It was found that TNF-α may enhance

the serine phosphorylation in the Ser(307) residue
of the insulin receptor substrate-1 (IRS-1)
[118]. Consequently, the increased serine phos-
phorylation impedes tyrosine phosphorylation of
IRS-1 induced by insulin, reducing the action of
the hormone. Along with this, in vitro
experiments using normal placental explants,
showed that the previous treatment with TNF-α,
avoided the insulin-mediated decrease of AQP9
expression [77].

17.6.2.7 CFTR
Cystic fibrosis transmembrane conductance regu-
lator (CFTR) co-localizes with AQP9 in the api-
cal microvillous membranes of
syncytiotrophoblast cells [114]. Although CFTR
did not modify AQP9 expression in the human
placenta, water uptake experiments demonstrated
that the AQP-facilitated transcellular water trans-
port was dramatically reduced after the inhibition
of CFTR. These findings highlight that both
proteins work synergistically and propose that
CFTR protein is necessary to maintain the func-
tionality of AQPs.

17.6.2.8 pH
Changes in the pH microenvironment can affect
many cellular processes, including water trans-
port and cell volume regulation [83, 119–
121]. Na+/H+ exchangers (NHEs) may control
the intracellular pH (pHi) of syncytiotrophoblast
cells [122]. As a result of the presence of func-
tional NHEs, AQP-mediated transcellular water
movement was unaffected in normal placental
explants after cytosolic acidification [115]. How-
ever, the blocking of these exchangers leads to
disturbances in the pHi of the syncytiotrophoblast
negatively altering the water permeability of
AQPs [115].

17.6.2.9 Caveola/Caveolin-1
The fluidity of the lipid bilayer strongly affects
transmembrane transport activities. Caveolae are
a particular type of lipid rafts membrane
subdomains enriched in sphingomyelin and cho-
lesterol. Caveolin-1 (Cav-1) is an integral mem-
brane protein and the main component required
for the formation of caveolae [123].
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Several proteins that interact with Cav-1 have
cytoplasmic accessible sequences that are assem-
bled to the caveolin scaffolding domain [124]. A
caveolin-binding motif was recently identified in
the protein sequence of human AQP3 [92]. In
addition, it was demonstrated that both proteins,
AQP3 and Cav-1, co-localized in the plasma
membrane of EVT cells. Consequently, the dis-
ruption of the caveolar structure increases Cav-1
degradation, losing its interaction with AQP3
[92]. Since the proper assembly of caveolae
needs a particular lipid composition, changes in
sphingomyelin and cholesterol content may affect
the caveola structure. Altogether, these alterations
may impair cell migration and endovascular dif-
ferentiation of EVTs resulting in preeclampsia or
fetal growth restriction. Previous works have
shown that the content of sphingomyelin
increased in the apical membranes of the
syncytiotrophoblast from preeclamptic placentas,
leading to a reduced number of caveolae and a
decreased Cav-1 protein expression [125]. In this
scenario, the lack of Cav-1 may negatively affect
AQP3 expression, which is markedly decreased
in these pathological placentas [73].

17.7 Conclusion

Accumulating evidence suggests that AQPs are
necessary for the regulation of fetal water homeo-
stasis and the proper formation of the placenta.
Although data in humans is limited, several
reports in animal models highlight the role of
these proteins in organogenesis.

The identification of AQP9 in trophoblast
mitochondria has led to new speculations about
its role in pregnancy.

Nonetheless, much remains still to do to eluci-
date their significance in healthy and pathological
pregnancies.
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Abstract

Disruption of water and electrolyte balance is
frequently encountered in clinical medicine.
Regulating water metabolism is critically
important. Diabetes insipidus (DI) presented
with excessive water loss from the kidney is
a major disorder of water metabolism. To
understanding the molecular and cellular
mechanisms and pathophysiology of DI and
rationales of clinical management of DI is
important for both research and clinical prac-
tice. This chapter will first review various
forms of DI focusing on central diabetes
insipidus (CDI) and nephrogenic diabetes
insipidus (NDI). This is followed by a discus-
sion of regulatory mechanisms underlying
CDI and NDI, with a focus on the regulatory
axis of vasopressin, vasopressin receptor
2 (V2R) and the water channel molecule,
aquaporin 2 (AQP2). The clinical manifesta-
tion, diagnosis, and management of various
forms of DI will also be discussed with
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highlights of some of the latest therapeutic
strategies that are developed from in vitro
experiments and animal studies.
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18.1 Diabetes Insipidus

Maintaining water homeostasis is essential for
mammalian life. Proper water metabolism is
responsible for the balance between water intake
and secretion. Each side of this balance is impor-
tant for fluid homeostasis. Diabetes insipidus (DI)
is characterized by excessive water loss/polyuria.
DI is classified as central diabetes insipidus (CDI)
and nephrogenic diabetes insipidus (NDI). CDI is
due to impaired production and/or secretion of the
antidiuretic hormone, ADH, also called vasopres-
sin (VP) from the central nervous system. NDI is
caused by lack of response of the target tissue, the
collecting ducts of the kidney, to circulating
ADH/VP. In both cases, the kidney fails to con-
centrate urine and results in polyuria. DI patients
may produce up to 18 L of urine a day and exhibit
a constant need for water intake. Both CDI and
NDI can be either inherited or acquired. If undi-
agnosed or improperly managed, DI is associated
with a range of clinical symptoms due to severe
volume depletion and electrolyte abnormalities.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-7415-1_18&domain=pdf
mailto:halu@partners.org
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In this chapter we will review the regulatory
function of VP for central DI, and the critical
role of vasopressin receptor 2 (V2R) and
aquaporin 2 (AQP2), in modulating water reab-
sorption in the collecting duct principal cell in
NDI. Finally, we will discuss the clinical mani-
festation, diagnosis and treatment for DI, and
review some of the most recent progress in devel-
oping novel strategies for treating nephrogenic
diabetes insipidus.

18.2 Central Diabetes Insipidus
and Vasopressin

The antidiuretic hormone, ADH, later known as
vasopressin (VP), is the primary determinant of
free water excretion or absorption in mammals.
Central diabetes insipidus is usually caused by
inadequate production and/or secretion of VP
from the post-pituitary gland in response to
osmotic stimulation. Central DI is rarely heredi-
tary in humans. Most frequently it is caused by
traumatic or pathological destruction of the neu-
rohypophysis that leads to complete or partial
absence of circulating VP.

Vasopressin is a nine-amino acid peptide in
most mammals. It is synthesized in the hypothal-
amus. Substitution of lysine for arginine at posi-
tion 8 yields lysine vasopressin which is found in
pigs. Substitution of isoleucine for phenylalanine
at position 3 and leucine for arginine at position
8 yields oxytocin (OT), a hormone with weak
antidiuretic activity but a potent smooth muscle
constrictor in the uterus. Arginine vasopressin
(AVP) and lysine vasopressin (LVP) are the
major antidiuretic hormones for mammals. In
addition to regulating water reabsorption by the
kidney, they also cause vasoconstriction, an effect
that occurs at concentrations many times higher
than those required for antidiuresis. AVP and OT
are produced by the posterior pituitary gland
[1, 2]. Even though secretion of AVP can be
influenced by many factors, the most important
stimulus under physiological conditions is the

plasma osmolality [3–8]. Cells located in the
anterior hypothalamus are able to sense small
changes in plasma osmolality and stimulate
AVP secretion [2, 8, 9]. Most studies support
the existence of a possible osmotic threshold of
VP secretion and there is a linear relationship
between plasma osmolality and circulating AVP
concentration indicating a sensitive regulation of
water excretion by vasopressin [5, 6, 8, 10, 11].

The osmolality threshold or set point of vaso-
pressin secretion varies from person to person.
Normally, in adults, it ranges from 275 to
295 mOsm/kg H2O, with an average of 280 to
285 mOsm/kg H2O [10]. Many factors are known
to affect the set point of the osmoregulation for
AVP secretion [4]. For example, aging increases
the sensitivity of osmoregulation, pregnancy dra-
matically reduces the set point of osmoregulation
and exercise could increase plasma osmolality
[4, 12, 13]. Observations have suggested that
osmoregulation by AVP secretion is subjected to
both stimulatory and inhibitory inputs to the neu-
rohypophysis [6]. Therefore, osmolality sensing
is a highly regulated and sensitive process
[7, 11]. In addition to the central regulation of
production and secretion, VP has a short half-life
in circulation from 10 to 20 minutes, allowing the
kidneys to respond to changes in plasma osmolal-
ity on a minute-to-minute scale. Therefore, from
the VP secretion and its action on the kidney, this
system enables a fine-tuned osmoregulation that
adjusts the rate of water excretion acutely and
accurately to the plasma osmolality [11].

In addition to the primary stimulation of the
plasma osmolality, hypovolemia is also a potent
stimulus for AVP secretion in humans [14–16]. In
rats, plasma AVP increases as an exponential
function of the degree of hypovolemia and hyper-
tension [17, 18]. This hemodynamic influence of
AVP secretion is thought to be mediated, at least
in part, by neural pathways that originate in the
stretch-responsive receptor, the baroreceptor in
the central nervous system. This osmolality-
independent regulation of VP production was
found to be associated with many pathological
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conditions, such as sodium depletion, hypoten-
sion, congestive heart failure, cirrhosis, and
nephrosis [16, 18–20]. In addition, mutations
that affect VP prohormone processing such as
Sel1L-Hrd1 ER-related degradation also modu-
late VP production and function [21].

18.3 Gestational Diabetes Insipidus

This type of diabetes insipidus is caused by a
relative deficiency of circulating VP during preg-
nancy [22]. It is only observed in pregnant
women and therefore is termed as gestational
diabetes insipidus [23, 24]. It is due to the eleva-
tion of a circulating enzyme, cysteine aminopep-
tidase, also called vasopressinase or oxytosinase
that degrades plasma vasopressin and oxytoxin
[25, 26]. The vasopressinase or oxytoxinase is
normally produced by the placenta to prevent
premature uterine contractions induced by oxyto-
cin. Vasopressinase causes accelerated metabolic
clearance of circulating VP, and overwhelms the
VP-generating capacity of the neurohypophysis,
leading to VP deficiency. In addition, the activity
of vasopressinase may be abnormally elevated in
pathological conditions that associate with preg-
nancy, such as preeclampsia, acute fatty liver and
HELLP syndrome (hemolysis, elevated liver
enzymes and low platelet count). This is due to
a decreased metabolism of vasopressinase by the
liver [27, 28].

Gestational DI can become overtly symptom-
atic and poses a serious threat of dehydration and
electrolyte imbalance in pregnant women, and
therefore should be readily recognized and man-
aged [29]. The pathophysiology of gestational
diabetes insipidus is similar to that of central
diabetes insipidus, except that gestational diabe-
tes insipidus is resistant to AVP treatment. Like
endogenous vasopressin, AVP can be rapidly
degraded and cleared from the circulation. How-
ever, the synthetic vasopressin receptor V2R ago-
nist, desmopressin is resistant to vasopressinase
degradation, and has been used to diagnose and
correct gestational diabetes insipidus [24, 30,
31]. Whether there is also a component of
nephrogenic diabetes insipidus (due to lack of

response to circulating vasopressin) during preg-
nancy is unclear.

18.4 Nephrogenic Diabetes
Insipidus

Nephrogenic diabetes insipidus (NDI) is defined
as diabetes insipidus caused by resistance of
vasopressin action by the kidney [32, 33]. In con-
trast to central diabetes insipidus (CDI), in NDI,
the plasma VP level is usually normal or elevated.
NDI can be either acquired or congenital in
origin [33].

18.4.1 Congenital Nephrogenic
Diabetes Insipidus

Congenital NDI was first recognized in the 1950s
in several male patients presented with the famil-
ial, sex-linked form of the diabetes insipidus
(Cannon 1955). Subsequently, it was found that
the disorder was due to defects in arginine vaso-
pressin receptor 2 gene (V2R) located on the X
chromosome (Xq28) [34, 35]. In congenital NDI,
patients frequently present with polyuria from
birth. The disease manifestation in congenital
forms of NDI varies from partial NDI to complete
NDI. It affects mostly males, and is usually mild
or absent in female carriers. Genetic analysis
revealed that more than 90% of cases of congeni-
tal NDI are caused by mutations in the arginine
vasopressin receptor 2 (V2R) [36, 37]. To date,
over 225 mutations that result in congenital NDI
have been identified in the V2R [38–41]. Most of
these mutations are missense mutations [38].

The remaining 10% of congenital NDI cases
are due to genetic defects in the water channel
AQP2 gene that is located on chromosome
12 (12q13) [40]. AQP2 is the major aquaporin
that mediates water transport in principal cells of
the collecting ducts (CDs) of the kidney. While
congenital NDI due to AQP2 mutations is mostly
inherited in an autosomal recessive mode, a few
cases have also reported autosomal dominant
inheritance [38, 42]. Since the first report of a
compound heterozygote of two missense
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mutations of AQP2 genes (R187C and S217P) in
a male NDI patient [43–45], approximately
49 putative disease-causing AQP2 mutations
have been described [38, 40, 43, 46–50]. These
mutations are roughly grouped into two
categories, based on the outcome. The first cate-
gory of mutations affect the formation of the
functional channel “pore” structure that allows
the translocation of water molecules across the
plasma membrane. Most of the autosomal reces-
sive forms of NDI are thought to be due to
mutations that fail to form the tetramer with
wild type AQP2, therefore causing a defect in
“pore” formation. The second category of AQP2
mutations affect the routing or trafficking of
AQP2 to the plasma membrane and/or inside the
cells. For example, AQP2 is retained in the Golgi
apparatus, or sorted to late endosomes, lysosomes
or the basolateral plasma membrane instead of the
apical membrane [49, 51–58]. This defect is fre-
quently due to mutations that occur in the
C-terminal tail of AQP2, which is essential for
the correct intracellular routing in response to
multiple signaling pathways [51, 52, 54, 56–59].

18.4.2 Acquired Nephrogenic Diabetes
Insipidus

Compared to congenital NDI, the acquired form
of NDI is much more common. It can be caused
by multiple factors, including lithium toxicity,
urinary obstruction, hypokalemia, hypercalcemia,
etc. [60–62]. Sometimes, the etiology may not be
well defined in the clinical situation. Despite
complicating factors that are involved in the path-
ophysiology of acquired NDI, direct or indirect
interruption of VP-V2R and AQP2 signaling and
trafficking is evident. Therefore, the VP-V2R/
AQP2 regulatory axis is the central component
of both congenital and acquired NDI. Indeed,
genetic studies of congenital NDI have greatly
facilitated the discovery of the vasopressin/ vaso-
pressin V2 receptor and AQP2 signaling pathway
that is known to be the major regulatory pathway
for water transport in the mammalian kidney.

18.4.3 VP-V2R/AQP2 Axis
in Regulating Water Transport

AQP2 is a major water channel expressed in the
principal cells (PCs) of the collecting ducts of the
kidney [63, 64] (Fig. 18.1). It mediates water
transport across the plasma membrane in
response to vasopressin. Circulating vasopressin
binds to V2R located in the basolateral membrane
of the PCs, activates the adenylyl cyclase (AC),
and thus causes the elevation of intracellular
cyclic AMP. Elevation of cAMP activates the
protein kinase A (PKA), leading to the phosphor-
ylation of AQP2. Phosphorylation of AQP2,
mainly at the serine 256 residue results in accu-
mulation of AQP2 on the apical membrane.
Within the plasma membrane, AQP2 forms
tetramers containing a functional “pore”
facilitating the passage of water molecules
through the channel. Water absorbed from the
apical membrane via AQP2 is transported into
the interstitium through basolaterally located
AQP3 and AQP4 channels. In addition to
cAMP, the cGMP and calcium/calmodulin
pathways are also involved in regulating AQP2
traffic [47]. Further details of AQP2 trafficking
mechanisms are elucidated in Chap. 1.

In addition to regulated trafficking, AQP2 is
also constitutively recycling [41, 64]. Blocking
AQP2 endocytosis by a cholesterol-chelating
reagent, methyl-beta cyclodextrin or by
expressing dominant negative dynamin causes a
rapid and dramatic membrane accumulation of
AQP2 in cultured cells [65, 66]. It suggests that
a significant amount of AQP2 is recycling under
baseline conditions, and this recycling does not
require any phosphorylation, since the phosphor-
ylation “dead” mutation of AQP2, AQP2-S256A
recycles as well as the wild type AQP2
[65, 67]. The discovery of the presence of a
significant pool of AQP2 that is able to recycle
independently of VP stimulation prompted a burst
of studies searching for molecular mechanisms
and alternative approaches that cause membrane
accumulation of AQP2 in the absence of VP-V2R
regulation. Many novel targets have been
identified to regulate AQP2 trafficking while
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Fig. 18.1 Cellular
composition of a kidney
collecting duct (CD) from
the medulla of a mouse
kidney. The CD is
immunostained for AQP4
(red), AQP2 (green), and
V-ATPase (blue). The
merged image shown in the
right panel revealed the
presence of principal cells
(PCs) that are positive for
AQP2 and AQP4 staining,
and the intercalated cells
(ICs) that are positive for
V-ATPase staining. AQP4
staining is located on the
basolateral membrane of
the PCs. AQP2 staining is
present mainly in the
subapical and basolateral
region inside cells. AQP2
signal is occasionally seen
on the apical membrane
without VP stimulation
(indicated by arrow).
V-ATPase signal is clearly
present on the apical
membrane of intercalated
cells

bypassing the VP/V2R signaling, the commonly
defective pathway in most congenital DI patients
[47]. This novel strategy has led to several impor-
tant discoveries that have proven to be effective in
treating NDI in animal models [65, 68, 69]. This
will be further detailed in the treatment of NDI
section in this chapter. More recent discovery of
the existence of clathrin-dependent transcytosis
of AQP2 adds more complexity of the
VP-independent AQP2 trafficking and its physio-
logical significance is unknown [70].

18.5 Clinical Manifestation,
Diagnosis, and Treatment
of Diabetes Insipidus

18.5.1 Clinical Manifestation
of Diabetes Insipidus

The primary clinical symptoms that are character-
istic for diabetes insipidus are polyuria and

polydipsia resulted from the impairment of uri-
nary concentrating mechanisms. Patients with DI
frequently describe a strong sensation of thirst
(if their thirst sensation is intact) and are craving
for water, especially cold water [71]. Under nor-
mal circumstances, DI patients have an intact
thirst mechanism, and therefore they are able to
maintain normal serum osmolality and volume
status without clinical symptoms other than poly-
uria and polydipsia. However, when water
deficits occur due to inadequate water intake to
compensate for polyuria, symptoms of dehydra-
tion and electrolyte abnormalities such as
hypernatremia develop. Volume depletion leads
to hypotension, acute kidney injury, liver injury,
muscle injury, and shock. Hyperosmolality and
dehydration also cause a series of neurological
symptoms ranging from irritability, cognitive
decline, disorientation, and confusion to
decreased levels of consciousness, seizure, and
coma. These signs are suggestive of hypertonic
encephalopathy [72]. Various focal neurological
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deficits may also develop in this context.
Increased incidence of subarachnoid hemorrhage,
cerebral infarction, and deep venous thrombosis
(DVT) are also reported in patients with
hyperosmolality. The severity of symptoms is
roughly correlated with the degree of
hyperosmolality, however, the individual
variability is marked, and therefore the serum
sodium level cannot accurately predict the clinical
presentation of a DI patient. The chronicity of the
hyperosmolality is important for the development
and degree of clinical manifestation. Acute and
severe hyperosmolality are frequently associated
with marked neurological presentation compared
to generally milder symptoms in patients with
subacute and chronic hyperosmolality [72].

18.5.2 Differential Diagnosis
of Diabetes Insipidus

Clinical differentiation of central DI and
nephrogenic DI, and sometimes primary polydip-
sia are important for the management
[62, 73]. The presence of truly hypotonic polyuria
should be established by measuring urine osmo-
lality and volume from a 24-hour urine collection.
The generally accepted diagnostic criteria of DI is
that a 24-hour urine volume exceeds 50 ml/kg and
urine osmolality is less than 300 mOsm/kg H2O
[62, 74, 75]. Meanwhile the presence of hyper-
glycemia from diabetes mellitus and kidney fail-
ure should be ruled out. In patients with
hyperosmolality, polyuria and suboptimal urinary
concentration (urine osmolality less than
800 mOsm/kg H2O) define the diagnosis of DI;
primary polydipsia can be ruled out with normal
or low serum osmolality and concomitant low
urine osmolality. Once the DI is diagnosed, the
central DI can be distinguished from NDI by its
response to exogenously administrated AVP
(1-deamino-8-D-arginine vasopressin), or
DDAVP (1–2 g subcutaneously or intrave-
nously). A significant increase in urine osmolality
of more than 50% within 2 h after administration
of AVP or DDAVP supports the diagnosis of
central DI. In contrast, an increase of less than
10% in urine osmolality indicates NDI. Partial

responders (in between these values) are undeter-
mined and need to be further assessed by measur-
ing serum AVP level to aid the diagnosis.
Although it has been a subject of debate in the
literature, the water deprivation test has been pro-
posed to better distinguish the different types of
DI and aid with diagnosis and management
[76]. Measurement of serum VP level has been
difficult and time consuming, therefore it is rarely
used clinically. We need to keep in mind that
clinical diagnosis of various forms of DI can be
complex and confusing. Firstly, measuring serum
AVP is difficult and most available assays are not
sensitive enough. Recently sandwich immunoas-
say has been developed to measure serum
copeptin level. Copeptin is the C-terminal seg-
ment of the arginine vasopressin prohormone, and
is used as a surrogate marker for circulating VP.
However copeptin assay has not yet been widely
used in the clinical setting for the diagnosis of DI
[77]. Secondly, many disorders of DI can overlap
and co-exist. We need to be mindful while
interpretate laboratory data and clinic
presentation [74].

18.5.3 Treatment of Diabetes Insipidus

The principles for treating all forms of diabetes
insipidus are a correction of water deficit and a
reduction in the ongoing water loss from the
kidney. Theoretically, with an intact thirst mech-
anism and ability to access water, most DI
patients should be able to drink a sufficient
amount of water and attain a relatively normal
fluid balance [71]. However, polydipsia and poly-
uria can significantly affect the quality of life of a
DI patient. DI treatment becomes necessary in
order to manage the symptoms of DI. The specific
treatment varies based on the type of DI and the
specific clinical situation.

18.5.4 Treatment of Central Diabetes
Insipidus

The synthetic form of human AVP, pitressin, has
been used for the treatment of acute central DI. It
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is given intravenously with a short half-life
(2–4 h). Desmopressin/DDAVP, a synthetic
AVP V2R agonist, has been commonly used for
treating both acute and chronic central DI. It has a
long half-life (8–20 h), and can be administered
intranasally, orally, or by injection based on the
clinical situation and the patient’s preference
[78, 79]. Because it is specific to vasopressin
signaling through the V2R, it normally does not
affect the blood pressure as AVP does. Although
the central DI can be easily managed by DDAVP,
one needs to be aware of and closely monitor a
critical complication, which is hyponatremia.
Hyponatremia is a rare complication of
desmopressin therapy, which can cause severe,
even fatal sequelae [80]. It is reported in children
who are treated with desmopressin for hemophilia
and von Willibrand’s factor disorders and in chil-
dren treated for primary enuresis [76]. Therefore,
serum electrolytes need to be monitored closely in
patients during the initiation of desmopressin
therapy. The dose and intervals of administrated
desmopressin need to be adjusted to control the
symptoms of polyuria and polydipsia while
maintaining a safe serum sodium level [39].

Although not classified as central DI, the treat-
ment is the same for gestational diabetes
insipidus, which is with desmopressin. The AVP
is rapidly degraded by the high level of
circulating oxytoxinase or vasopressinase, while
desmopressin is resistant to the enzymatic degra-
dation and has been used successfully for the
treatment of gestational DI [30]. The dose of
desmopressin should be titrated to the individual
patient, and fluid administration should be
performed with caution. Serum electrolytes
should be closely monitored at the time of
delivery.

18.5.5 Treatment for Nephrogenic DI

In contrast to the relatively intact vasopressin-
V2R and AQP2 pathway in central DI, NDI has
a defective VP-V2R and AQP2 axis. Therefore,
patients with congenital NDI are resistant to the
water concentrating effect medicated by vaso-
pressin. Clinical therapy for treating congenital

NDI is limited to restricting sodium intake,
administrating a thiazide diuretic alone or in com-
bination with a non-steroid anti-inflammatory
drug (NSAID) or amiloride [39, 81]. Dieticians
play a pivotal role in managing NDI patient in
their first year of life [82]. The thiazide class of
diuretics is considered the mainstay for treating
NDI. They block the sodium reabsorption in the
cortical diluting segment. In combination with
restricted sodium intake, it causes modest
hypovolemia. Hypovolemia stimulates isotonic
solute absorption in the proximal tubule and
reduces solute delivery to the distal diluting seg-
ment. Thiazide also enhances water reabsorption
in the inner medullary collecting ducts indepen-
dently of vasopressin. However, care must be
excised when treating with thiazide diuretics to
correct hypokalemia, and to avoid severe volume
depletion and resultant kidney injury, especially
in combination with NSAIDs. Commonly used
NSAIDs to treat NDI are indomethacin and ibu-
profen. Administrating high doses of NSAIDs or
long-term NSAID use increases the risk of devel-
oping AKI and chronic kidney disease (CKD)
[83, 84]. Therefore, renal function needs to be
monitored with chronic use of NSAIDs in DI
patients.

Treatment for acquired NDI is focusing on
correcting insulting factors if possible. It includes
withholding lithium in lithium-induced NDI at
the early stage, correcting hypokalemia in
hypokalemia-induced NDI, correcting hypercal-
cemia if it is the cause, relieving urinary obstruc-
tion, and managing congestive heart failure with
medication or cardiac intervention. However,
under many circumstances, management of
underlying etiology for acquired NDI can be clin-
ically challenging.

One important consideration for treating dia-
betes insipidus in general is avoiding over correc-
tion of hyperosmolality/hypernatremia. The
theory is that under a state of hyperosmolality,
the brain counteracts osmotic shrinkage by
increasing the intracellular content of solutes,
including electrolytes such as potassium and
many organic osmolytes. The net effect of this
process is to protect the brain against excessive
shrinkage during sustained hyperosmolality.
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However, once the brain has adapted to this new
hyperosmolality state, rapid correction of
hyperosmolality can cause brain edema since it
takes time to re-equilibrate the previously
accumulated solutes. Similar to correction of
hyponatremia, cautious correction of chronic
hyperosmolality or hypernatremia needs to be
practiced. Even though severe sequelae from
rapid correction of hyperosmolality and
hypernatremia are rarely reported, they can
occur [85].

Despite that, the clinically proven treatment
for congenital NDI is limited. Very excitingly,
in recent years, with greater understanding of
AQP2 trafficking mechanisms, multiple novel
targets have been identified and provide
promising new strategies for treating NDI.

18.5.6 Novel Therapeutic Strategy
for NDI

Fundamental research on kidney physiology has
provided important insights into the development
of novel therapeutic targets and strategies to treat
human diseases. It is especially true for NDI
[86]. As mentioned previously, over 90% of con-
genital NDI is due to mutations in the V2R gene
and less than 10% is due to mutations in AQP2.
The water channel AQP2 remains intact in the
majority of congenital NDI patients. Similarly, in
many forms of acquired NDI, such as lithium-
induced NDI, AQP2 is also intact. Therefore, it
is possible to develop a strategy to induce mem-
brane accumulation of AQP2 independent of
vasopressin stimulation, therefore bypassing the
V2R-VP signaling regulation [68]. This has led to
great discoveries of multiple new targets for
treating NDI [87–91]. More recently, an exocyto-
sis assay was established and used for high-
throughput chemical screening, and identified, a
several new compounds, such as AG-490 that
modulates AQP2 trafficking to the plasma mem-
brane [84]. With continuous discovery, many
reagents were proved to be effective in NDI ani-
mal models, and a few reagents are subsequently
tested in X-linked NDI patients. The results are
promising.

18.5.6.1 Phosphodiesterase Inhibitors
It is well known that increasing intracellular
cyclic AMP in principal cells leads to membrane
accumulation of AQP2. Increasing cyclic guano-
sine monophosphate (cGMP) by sodium
nitroprusside, L-arginine and atrial natriuretic
peptide (ANP) also causes an increased AQP2
abundance on the apical membrane. The selective
cGMP phosphodiesterase (PDE5) inhibitor sil-
denafil citrate (Viagra) was shown to cause eleva-
tion of cGMP and subsequent membrane
accumulation of AQP2 in cells and in Brattleboro
rat kidney [92]. Sildenafil citrate was also
reported to reduce polyuria in rats with lithium-
induced NDI [93]. More recently, a case study
showed that sildenafil improves polyuria and
increases urinary osmolality in an X-linked NDI
patient [94].

18.5.6.2 Statins
The statin family is a family of 3-hydroxy-
3methyglutaryl-coenzyme A reductases. They
inhibit the synthesis of cholesterol and are used
for treating hyperlipidemia. Simvastatin was
shown to increase membrane accumulation of
AQP2 in cultured kidney epithelial cells. In addi-
tion, simvastatin treatment in Brattleboro rats
causes apical membrane redistribution of AQP2
in CDs in parallel with increased urinary concen-
tration in a VP-independent manner (Fig. 18.2)
[89]. A later study has also demonstrated that
atorvastatin, another member in the statin family,
significantly improves urinary concentration in
polyuria caused by urinary obstruction in animals
[95]. The specific mechanism underlying the
effect of statins is not fully understood, but has
been attributed to changes in prenylation of RhoA
family proteins that are involved in regulating
cytoskeleton and AQP2 trafficking [89].

18.5.6.3 Prostaglandins
Prostaglandin E2 is known to increase water per-
meability in the absence of vasopressin possibly
through activating prostanoid receptor EP2 and/or
EP4. Both Butaprost, an EP2 agonist, and
CAY10580, an EP4 agonist, stimulate AQP2 traf-
ficking to the apical membrane in cultured
MDCK cells [91, 96, 97]. Another EP4 agonist,
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Fig. 18.2 Simvastatin increases urine concentration,
reduce urine volume in vasopressin-deficient Brattleboro
rats. After 6 h treatment with simvastatin, urine volume

(left panel and inset image) was significantly reduced and
urine osmolality was significantly increased in simvastatin
treated Brattleboro rats

ONO-AE1-329, increases AQP2 membrane
expression, improves polyuria and increases
urine osmolality in V2R knock animals. Simi-
larly, Butaprost was shown to reduce urinary
volume and increase urine osmolality in rats
treated with a V2R antagonist [91]. More inter-
estingly, long-term treatment with
ONO-AE1–329 increases AQP2 abundance in
V2R knock-out animals. These studies suggest
that activating the prostaglandin pathway through
EP2 and EP4 holds promise for treating NDI
independently of VP-V2R signaling.

18.5.6.4 Metformin
Metformin is an oral antidiuretic drug that
stimulates the 5′ AMP-activated protein kinase
or AMPK, an enzyme that plays a role in cellular
energy homeostasis. A recent study has shown
that metformin stimulates AQP2 membrane accu-
mulation in rat inner medullary collecting duct
cells and increases urine concentrating ability in
two rodent models of NDI, V2R knock-out mice
and rats treated with Tolvaptan, the V2R antago-
nist [98]. Metformin was shown to increase pro-
tein abundance of inner medullary urea
transporter UT-A1 and AQP2, and membrane
accumulation of AQP2 possibly through
phosphorylating AQP2 at serine 256. Metformin
is able to produce a sustained urinary
concentrating effect for up to 10 days in

Tolvaptan treated animals. This study suggests
that through stimulating AMPK to phosphorylate
and activate AQP2 and UT-A1, metformin
increases urine concentrating ability, and there-
fore, is a promising treatment for congenital
NDI [98].

Besides the above listed reagents, other studies
have uncovered more and more novel targets for
therapeutic intervention for NDI. Many of them
were proved to be effective in vivo using various
NDI animal models. For example, calcitonin, a
32-amino acid peptide produced by the follicular
cells of the thyroid, causes an increase of intracel-
lular cAMP and membrane expression of AQP2
in principal cells. More importantly, calcitonin
was shown to improve urine concentration in
Brattleboro rats [90]. A heat shock protein
90 (HSP90) inhibitor, 17-Allylamino-17-
demethoxygeldanamycin, was shown to partially
correct NDI in a model of autosomal recessive
form of NDI in which the AQP2 mutation AQP2-
T126M is retained in the ER [99]. More recently,
Erlotinib, a receptor tyrosine kinase inhibitor that
acts on the epidermal growth factor receptor
(EGFR), was shown to cause membrane accumu-
lation of AQP2 in a cAMP-independent manner
and to alleviate polyuria in lithium-induced NDI
animals [100].

In summary, research on water transport
disorders including NDI is a fast evolving and
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exciting field. More and more novel reagents and
small molecules will continuously be discovered
and will provide more and possibly better thera-
peutic targets for treating NDI. Clinical trials are
urgently needed to examine and/or confirm the
efficacy and validity of many of the novel targets
that are identified by in vitro systems and animal
models.
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Abstract

One of the most prevalent indications of
water–electrolyte imbalance is edema.
Aquaporins (AQPs) are a protein family that
can function as water channels. Osmoregula-
tion and body water homeostasis are depen-
dent on the regulation of AQPs. Human
kidneys contain nine AQPs, five of which
have been demonstrated to have a role in
body water balance: AQP1, AQP2, AQP3,
AQP4, and AQP7. Water imbalance is
connected with AQP dysfunction.
Hyponatremia with elevated AQP levels can
accompany edema, which can be caused by
disorders with low effective circulating blood
volume and systemic vasodilation, such as
congestive heart failure (CHF), hepatic cirrho-
sis, or the syndrome of incorrect antidiuretic
hormone secretion (SIADH). In CHF,
upregulation of AQP2 expression and
targeting is critical for water retention. AQP2
is also involved in aberrant water retention and
the formation of ascites in cirrhosis of the liver.
Furthermore, water retention and
hyponatremia in SIADH are caused by
increased expression of AQP2 in the collecting
duct. Fluid restriction, demeclocycline, and
vasopressin type-2 receptor antagonists are
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widely utilized to treat edema. The relation-
ship between AQPs and edema is discussed in
this chapter.

Keywords

Water channel · Edema · Hyponatremia ·
Water balance

19.1 Introduction

Edema is one of the most typical symptoms of
water–electrolyte imbalance. It is caused by a
buildup of fluid in the gaps between the body’s
tissues and organs. The capillary hydrostatic pres-
sure gradient and the oncotic pressure gradient
across the capillary regulate the fluid exchange
between the interstitial and intravascular
compartments. The accumulation of fluid occurs
when local or systemic conditions disrupt the
equilibrium, resulting in increased capillary
hydrostatic pressure, increased plasma volume,
decreased plasma oncotic pressure
(hypoalbuminemia), increased capillary perme-
ability, or lymphatic blockage [1].

The kidney is the key organ involved in
maintaining body water and electrolyte balance.
There are nine aquaporins (AQPs) in human kid-
ney, including AQP1–8 and AQP11. AQP1 is
highly expressed in proximal tubules, descending
thin limbs and endothelial cells of the descending
vasa recta [2], where it controls water

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-7415-1_19&domain=pdf
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reabsorption. The critical role of AQP1 is consti-
tutive absorption of 70% of water in the glomeru-
lar filtrate. It was reported that deletion of AOP1
exhibits polyuria and impaired urinary
concentration [3].

AQP2 is expressed in the apical and subapical
vesicles of the luminal plasma membrane in the
principal cells of the collecting duct, where it
allows water to enter the cells [4]. AQP2 is one
of the most important channel proteins involved
in urine concentration regulation. The water reab-
sorption function of AQP2 is mainly regulated by
arginine vasopressin (AVP) [5–7]. Although
AVP has been shown to have a role in AQP2
transcription and trafficking via AVP-dependent
and -independent pathways, other variables, such
as inflammation and insulin/aldosterone/prosta-
glandin levels, can also have an impact
[8]. Along with this, the expression of AQP2
can be regulated by several transcription factors,
such as activator protein-1 (AP-1), nuclear factor
kappa-B (NF-κB), and nuclear factor of activated
T-cells (NFAT) [9].

AQP3 is localized to the basolateral membrane
of the connecting tubule and collecting duct prin-
cipal cells [10, 11]. AQP3 is thought to represent
an exit pathway for AQP2-mediated water reab-
sorption. AQP4 is present in the basolateral mem-
brane of the principal cells in the kidney
connecting tubule and collecting duct
[12]. Despite the fact that AQP3 and AQP4 are
both basolateral water channels, they are
distributed differently along the collecting duct
system, with AQP3 being more abundant in cor-
tical and AQP4 being more abundant in inner
medullary collecting ducts [13].

AQP5 is the closest homolog to AQP2, with
66% sequence identity. It is not detectable by
immunoblotting in normal mouse and human
kidneys [14, 15]. A few years ago, AQP5 was
firstly discovered to be expressed in the renal
cortex at the apical membrane of type-B
intercalated cells [16]. AQP6 is located in the
intracellular membranes in renal epithelia and
colocalized with H+-ATPase [17, 18]. AQP7 is
expressed in the brush border of proximal tubule
[19]. AQP8 is expressed at low levels in

intracellular domains of the proximal tubule and
the collecting duct cells [20] as well as in the
inner mitochondrial membrane of rat kidney
[21]. AQP11 is expressed in whole segments of
the proximal tubules [22] and localized in the
membrane of endoplasmic reticulum (ER). The
proximal tubules are important for water and glu-
cose reabsorption. AQP11 is regulated by glucose
and may be involved in maintaining ER homeo-
stasis and osmoregulation of the proximal tubule
[23]. Dysfunction of AQPs, especially AQP1-4,
can lead to various clinical conditions associated
with water–electrolyte imbalance [24], such as
edema.

19.2 AQPs and Edema

19.2.1 Congestive Heart Failure

Retention of sodium and water is a common and
clinically important complication of congestive
heart failure (CHF). CHF is characterized by ele-
vation of AVP leading to hyponatremia and
increased extracellular volume [25]. Stroke vol-
ume in patients with heart failure is reduced, and
cardiac output is subsequently reduced, resulting
in a decrease in effective circulating blood vol-
ume, and a decrease in the sensitivity of
baroreceptors located in the carotid artery, aortic
arch, left ventricle, and afferent arteriole of kid-
ney, which drives the non-osmotic release of
AVP. Although the osmotic pressure falls, the
osmotic pressure reception is extremely sensitive,
the AVP release is lowered. Due to the positive
adjustment of the AVP is insufficient, the AVP
level in the body is raised [25]. When V2R is
triggered, AQP2 expression is increased, and
water reabsorption of the collecting duct rises as
well is increased. In addition, AVP combines
with V1aR in vascular smooth muscle, which
causes the minor arterial vascular contraction,
increasing cardiac overloads. Activated V1aR in
myocardial cells, causing coronary artery contrac-
tion, directly leads to myocardial ischemia
[26]. The amount of cardiac output is reduced,
and the sympathetic nervous system (SNS) of
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kidney is activated. On the one hand, the renal
vasocontraction (the degree of intraoperative arte-
rial contraction is more than the spherical veneer),
the blood flow velocity of glomerular capillary is
reduced, and the glomerular filtration rate is
lowered. The small tubule solution decreases.
To a large extent, the volume of solution in the
distal tubule determines the level of urine concen-
tration, thus limiting the rate of renal water excre-
tion [27]. On the other hand, the activation of the
SNS will also promote AVP secretion and AQP2
expression, which increases water reabsorption
[28] (Fig. 19.1).

In 1997, Nielsen S [29] examined the changes
in renal AQP2 expression in rats with CHF
induced by ligation of the left coronary artery to
test if upregulation of AQP2 expression and
targeting may play a role in the edema in CHF.
The study found rats with severe CHF had signif-
icantly elevated left ventricular end-diastolic
pressures (LVEDP) and lower plasma sodium
concentrations. Besides, the results demonstrated
that renal water retention in severe CHF in rats is
associated with dysregulation of AQP2 in the
renal collecting duct principal cells involving
both an increase in the AQP2 expression and a
marked redistribution of AQP2 to the apical
plasma membrane [29], whereas AQP3 expres-
sion slightly decreased. Acute exacerbation of
CHF stimulates the pituitary, leads to the activa-
tion of renin–angiotensin–aldosterone system
(RAAS) and increases the release of adrenocorti-
cotropin (ACTH) and AVP. AVP increases the
water permeability of the renal collecting duct
cells, allowing more water to be reabsorbed
from collecting duct urine to blood. In addition,
AVP acts on V2 receptors in the renal collecting
duct, which regulates the expression and traffick-
ing of AQP2. The selective increase in AQP2
expression and enhanced plasma membrane
targeting provide an explanation for the develop-
ment of water retention and hyponatremia in
severe CHF.

The other study showed upregulation of both
AQP2 protein and AQP2 mRNA levels in kidney
inner medulla and cortex in rats with CHF
[30]. These severe CHF rats had significantly
decreased cardiac output and increased plasma

vasopressin levels. In comparison to untreated
rats with CHF, the V2 antagonist OPC-31260
dramatically increased urine output, decreased
urine osmolality, raised plasma osmolality, and
decreased AQP2 expression [30]. The large-scale
event-driven Phase III trial—EVEREST—was
designed to explore both the short- and long-
term effects of the V2 antagonist tolvaptan when
added to standard therapy in patients hospitalized
with worsening HF and with symptoms of fluid
overload [31, 32]. Taken together, the evidence
from these trials do not justify continuation of
tolvaptan beyond the time of improvement in
fluid balance and clinical status in patients
hospitalized with worsening HF.

19.2.2 AQPs and Hepatic Cirrhosis

Hepatic cirrhosis is another chronic condition
associated with edema, hyponatremia, and
increased AVP levels [25]. The most important
reason for the development of hyponatremia in
patients with cirrhosis is suggested to be systemic
vasodilation, which causes increased AVP secre-
tion. Renal sodium retention leads to increase
of excellular fluid volume and development
of edema (Fig. 19.1). Unlike CHF, the changes
in expression of AQP2 protein levels vary con-
siderably between different experimental models
of hepatic cirrhosis. Several studies have explored
the variations in renal AQP2 expression in rats
with carbon tetrachloride-induced cirrhosis
[33, 34]. A strong correlation was seen between
AQP2 level and ascites volume, suggesting that
AQP2 is involved in the abnormal water retention
that leads ascites in cirrhosis [35]. Another study
showed that total AQP2 levels were not changed,
but the AQP2 increased in plasma membrane,
accompanied by the increased AQP3 expression
[36]. In contrast, rats with cirrhosis induced by
common bile duct ligation (CBDL) [35, 37–39]
exhibited impaired vasopressin-regulated water
reabsorption despite normal plasma vasopressin
levels. Furthermore, AQP2, AQP3, and AQP4
expressions were decreased, and AQP1 level
was unchanged.
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Fig. 19.1 AQPs and
edema. In the disorders of
edema, such as CHF,
hepatic cirrhosis, and
SIADH, the secretion of
AVP is promoted, which
increases the expression of
AQP2 that mediates water
reabsorption in kidney

There are studies on cirrhosis patients
[40, 41]. The results demonstrated a higher abun-
dance of AQP2 in the urine compared to control
group. Patients with ascites had the highest AQP2
level, which increased with the clinical severity of
cirrhosis, and levels were highest in patients with
ascites, suggesting the important role of AQP2 in
cirrhosis-induced water retention and edema.
Conversely, other studies have shown no signifi-
cant change, or even a decrease, in urinary AQP2
level in patients with cirrhosis [42, 43].

A study showed that urinary AQP2/creatinine
ratios were significantly higher in cirrhotic
patients with ascites than in healthy controls.
After administration of tolvaptan, urinary AQP2/
creatinine ratios decreased by 45.0% at 4 h and
77.0% at 8 h. Similarly, urinary osmolarity

decreased [44]. The results indicate that the
vasopressin-AQP2 system plays a major role in
water retention in cirrhosis.

19.2.3 AQPs and Syndrome
of Inappropriate Secretion
of Antidiuretic Hormone

Syndrome of inappropriate secretion of
antidiuretic hormone (SIADH) is one of the
disorders of disturbed osmoregulation. SIADH
occurs most frequently in relation to neoplastic
abnormalities in the lung or central nervous sys-
tem, neurological diseases, lung diseases, and a
wide kinds of drugs, particularly psychoactive
drugs and chemotherapy [45]. In SIADH, the
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levels of AVP are abnormally increased, and
result in excessive renal water reabsorption,
which can lead to severe hyponatremia [46]. It
was discovered that AQP2 expression increased
in the collecting duct of an experimental rat
model of SIADH [33]. The AQP2 increase can
be locked by a V2R antagonist, which correlates
closely with a marked diuresis and a normaliza-
tion of serum sodium levels, indicating that AQP2
plays an important role in water retention and
development of hyponatremia in SIADH
(Fig. 19.1).

The degree of hyponatremia is limited by the
process of counteracting the water retention of
vasopressin, that is, vasopressin escape. Vaso-
pressin escape is characterized by a sudden rise
in urine volume and drop in urine osmotic pres-
sure that is not related to high circulating vaso-
pressin levels. Renal AQP2 expression decreased
significantly at the same time as the commence-
ment of escape [47]. In contrast to AQP2, the
expression of AQP1, AQP3, or AQP4 in renal
was not decreased. These results suggest that
escape from vasopressin-induced antidiuresis is
attributable, at least in part, to a selective
vasopressin-independent decrease in AQP2
expression in the renal collecting duct.

19.3 Conclusion

In the last 20 years, the molecular and cell biology
mechanisms of AQP regulation have grown dra-
matically. The regulation of AQPs is critical to
osmoregulation and maintaining bodily water
homeostasis. It is not surprised that a variety of
AQPs, particularly AQP2, are involved in edema-
related illnesses such as CHF, hepatic cirrhosis,
and SIADH. The research revealed that AQP2
dysregulation is associated with edema. The
upregulation of AQP2 expression is critical in
CHF water retention. AQP2 is also involved in
the development of ascites in hepatic cirrhosis.
Furthermore, hyponatremia in SIADH is caused
by increased expression of AQP2 in the collecting
duct. All these studies suggest that AQP2 could
be employed as a biomarker or prognostic marker
in the treatment of edema.
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Abstract

Obesity is one of the most important metabolic
disorders of this century and is associated with
a cluster of the most dangerous cardiovascular
disease risk factors, such as insulin resistance
and diabetes, dyslipidemia, and hypertension,
collectively named Metabolic Syndrome. The
role of aquaporins (AQP) in glycerol metabo-
lism facilitating glycerol release from the adi-
pose tissue and distribution to various tissues
and organs unveils these membrane channels
as important players in lipid balance and
energy homeostasis and points to their
involvement in a variety of pathophysiological
mechanisms including insulin resistance, obe-
sity, and diabetes. This review summarizes the
physiologic role of aquaglyceroporins in glyc-
erol metabolism and lipid homeostasis,
describing their specific tissue distribution,
involvement in glycerol balance, and implica-
tion in obesity and fat-related metabolic
complications. The development of specify
pharmacologic modulators able to regulate
aquaglyceroporins expression and function,
in particular AQP7 in adipose tissue, might
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constitute a novel approach for controlling
obesity and other metabolic disorders.
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Aquaporins · Water transport · Obesity

20.1 Introduction

Obesity can be defined as the enlargement and
inflammation of the adipose tissue and is the most
significant metabolic disorder of this century,
reaching epidemic proportions [1]. Accumulation
of fat in visceral and subcutaneous abdominal
tissue and its deposition in internal organs is a
major risk for the development of numerous
disorders, including insulin resistance and diabe-
tes, dyslipidemia, hypertension, and cardiovascu-
lar and neurodegenerative diseases among others.
Some of these metabolic complications appearing
as a cluster are termed as metabolic syndrome and
have been associated with the most dangerous
cardiovascular risk factors. In this way, abdomi-
nal obesity, the most prevalent manifestation of
this syndrome and a marker of adipose tissue
dysfunction is now recognized as the predomi-
nant contributor to type 2 diabetes and cardiovas-
cular risk [2].
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20.2 Adipose Biology
and Pathophysiology

Adipose tissue is categorized into two major
types according to its physiological and endocrine
functions: the white adipose tissue (WAT),
mostly anabolic and involved in energy storage
in the triacylglycerol form, and the brown adipose
tissue (BAT), highly catabolic and involved in
thermogenesis [ ]. The accumulation of fat in
WAT with subsequent dysfunction and peripheral
lipotoxicity is the main etiological factor in
obesity.

3
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The WAT is composed by adipocytes, vascu-
lar tissue, and immune cells, surrounded by an
extracellular matrix formed by proteins, mostly
collagen. Preadipocytes are the mature adipocyte
precursors that undergo differentiation to become
mature and fully differentiated cells. This process
of differentiation has been widely studied in a
variety of models [4]. In situations of positive
energy balance (increased food uptake or
decreased energy expenditure), mature
adipocytes increase in number (hyperplasia) and
size (hypertrophy) to accommodate excess lipid
and their morphology changes due to increased
free fatty acids (FFA) uptake and triacylglycerols
(TAG) synthesis. To allow adipocyte enlarge-
ment, the extracellular matrix must be adjusted
by the action of proteases that hydrolyze the
excess of collagen to allow adipose hypertrophy.
In addition, the formation of new blood vessels
(angiogenesis) is also essential for adipose tissue
growth and is a duality between a response to
signals emanating from proliferating and enlarg-
ing adipocytes and a response to developmental
and metabolic signals, preceding the adipocyte
proliferation and enlargement [5]. Adipocytes
descend from adipose stem cells localized close
to the microvasculature of adipose tissue but not
in the vasculature of other tissues [6]. These stem
cells have already committed either prenatally or
early in postnatal life, differentiate into
adipocytes probably by signals coming from the
adipose vasculature that may function as an adi-
pocyte niche [6]. By secreting signaling proteins
collectively known as adipokines, adipose tissue

insulin resistance [8].

is an important endocrine and paracrine organ that
communicates with many other organs in the
body contributing to the maintenance of energy,
lipid, and glucose homeostasis and mediating
multiple biological processes such as inflamma-
tion, immunity, and metabolism.

While it is common to link abdominal obesity
with insulin resistance based on population stud-
ies, the pathogenicity of obesity and related met-
abolic complications such as insulin resistance
and type 2 diabetes is still not clear. Several
hypotheses have been advanced to explain the
development of adipose tissue dysfunction and
obesity. One of the most accepted that emerged
from corroboration of clinical and experimental
data, the adipose tissue expandability hypothesis,
is based on the limitation of the adipose tissue to
expand above a given threshold for a specific
individual [7]. When an individual gains weight
and increases in fat mass, the adipose tissue
enlarges till a point where it may exceed the
limit capacity of storage and is no longer able to
efficiently accumulate more fat. At this point,
bloodstream lipids start depositing ectopically in
other non-adipose tissues such as liver, muscle,
and heart, leading to lipid-induced toxicity
(lipotoxicity) and resulting in inflammation and
insulin resistance (Fig. 20.1) [7]. Importantly, the
maximal capacity of adipose tissue expansion is
dependent on the type of fat depot, subcutaneous
or visceral, the first being more adipogenic and
with greater expansion capacity and the latter
metabolically more active. It is well accepted
that in humans, increased visceral fat is associated
with increased metabolic complications, whereas
subcutaneous adiposity is not so harmful and may
even be protective [7]. While the reason is not
clear, the fact that visceral fat is more closely
related with liver through the portal vein than
subcutaneous adipose tissue, together with its
diminished expansion capability, supports the
increased risk of metabolic syndrome strongly
associated with visceral obesity. Moreover,
evidences that the individual adipose
expandability threshold is determined by genetic
and environmental factors may explain why both
apparently lean and obese people may develop



20 Aquaporins in Obesity 291

Fig. 20.1 Illustration of cyclic mechanism of adipose
tissue inflammation linking to insulin resistance and obe-
sity. When the uptake of nutrients overcomes the energy
expenditure, TAG accumulation in adipocytes induces
adipose hyperplasia and hypertrophy, secretion of
chemoattractants leading to macrophage recruitment.
Large adipocytes are induced to secrete more cytokines
and FFA, which in turn activate macrophages.

Macrophages secrete anti-adipogenic cytokines (TNF-α
and IL-6) that inhibit insulin action and lead to adipose
tissue inflammation. These cytokines also block the differ-
entiation of preadipocytes into new adipocytes, thus
inducing the enlargement of insulin resistant-adipocytes
that continue secreting more cytokines and FFA, recruiting
macrophages, and leading to severe inflammation

In addition to the expandability hypothesis,
adipose tissue inflammation mediated by overpro-
duction of pro-inflammatory adipokines and anti-
adipogenic cytokines such as TNF-α and IL-6 is
another recognized mechanism linking obesity to
insulin resistance. Large adipocytes express and
secrete high levels of chemoattractants, thus
inducing macrophage infiltration in the adipose
tissue and activation by FFA release. These

macrophages secrete anti-adipogenic cytokines
that inhibit insulin action. Insulin-resistant
adipocytes continue releasing FFA, thus
activating macrophages that surround adipocytes
to destroy compromised cells and secrete more
anti-adipogenic cytokines, increasing insulin
resistance in mature adipocytes and blocking mat-
uration of preadipocytes [7]. The cyclic
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mechanism of adipose tissue inflammation
linking to insulin resistance is depicted in
Fig. 20.1.

20.3 Aquaporins in Obesity

A number of recent studies evidenced aquaporins
(AQPs) as key players in adipose tissue biology
and involved in obesity onset. AQPs are trans-
membrane proteins that facilitate the permeation
of water and small solutes across membranes,
driven by osmotic or solute gradients [9]. In
mammals, the 13 aquaporin isoforms identified
so far (AQP0–12) are expressed in a wide range
of tissues and are involved in many biological
functions, including transepithelial fluid trans-
port, cell migration, proliferation and adipocyte
metabolism [10, 11]. AQPs are composed of
around 320 amino acid residues with approxi-
mately 28 kDa, architected in membranes as
tetramers. Each monomer is formed by six trans-
membrane domains and behaves as an indepen-
dent pore [12].

Based on their primary sequences and perme-
ation specificities, AQPs are divided into three
subfamilies: orthodox aquaporins, considered
strict water channels (AQP0, AQP1, AQP2,
AQP4, AQP5, AQP6, and AQP8);
aquaglyceroporins, permeable to water and
small uncharged solutes like glycerol (AQP3,
AQP7, AQP9, and AQP10); and unorthodox
aquaporins, found mostly intracellularly, with
lower sequence homology and permeability still
unclear (AQP11 and AQP12) [13, 14]. A sub-
group of aquaporins that additionally permeate
hydrogen peroxide was recently identified
(AQP0, AQP1, AQP3, AQP5, AQP8, AQP9,
and AQP11) and named peroxiporins [15–17].

Among the three subfamilies,
aquaglyceroporins are emerging as important
players in adipose tissue homeostasis and insulin
response with possible implications in metabolic
disorders such as obesity and metabolic syndrome
[18]. In fact, their roles in glycerol metabolism,
mediation of glycerol release from adipose tissue,
and uptake in liver and heart reveal that these
membrane channels are crucial for glycerol

balance and energy homeostasis and may be
used for obesity therapy.

20.4 Glycerol Metabolism
and Energy Homeostasis

The ability of aquaglyceroporins to facilitate
glycerol permeation through adipocyte
membranes and its impact in metabolic disorders
have raised attention to the involvement of glyc-
erol in metabolism and in a variety of pathophys-
iological mechanisms.

Glycerol (1,2,3-propanetriol) is a polyalcohol
that can be produced intracellularly from various
metabolic sources such as glucose, protein, and
glycerolipid (endogenous glycerol) as well as
taken up from dietary fats released during diges-
tion (exogenous glycerol). Glycerol is the basis of
TAG backbone and a precursor for phospholipids
synthesis and is also an important intermediate in
both carbohydrate and lipid metabolism. In addi-
tion, glycerol-3-phosphate (G3P) is a key mole-
cule in the regeneration of NAD+ from NADH
resultant from glycolysis, acting as a shuttle of
electrons from the cytosol into the mitochondria
[19, 20].

Dietary TAG are digested by lipases in the
digestive tract and converted to mono and
diacylglycerols by pancreatic lipases in the small
intestine that are then absorbed by the duodenum
mucosa. In the enterocytes, monoacylglycerols
and FFA are reconverted into TAG that are then
secreted through the basolateral membrane into
the lymphatic system as low-density lipoproteins
known as chylomicrons. Chylomicrons are
released from the lymph to the bloodstream
where they circulate till reaching adipose, cardiac,
and skeletal muscle tissues. Lipoprotein lipases,
attached to the surface of endothelial cells of
capillaries, hydrolyze TAG components of
chylomicrons in FFA, absorbed actively by the
tissues, and glycerol, taken up by the liver and
other organs. In the liver, glycerol is used in
glycolysis or gluconeogenesis but not before
being converted in the intermediate G3P by the
enzyme glycerol kinase (GK), which is mainly
present in the liver and kidney, but also, in low
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Table 20.1 Expression of aquaporins by organ/tissue and their implication in glycerol balance

Organ/tissue Aquaglyceroporin Glycerol balance

Small intestine AQP3 [26] Glycerol secretion and enterocyte proliferation [27]
AQP7 [28] Rapid glycerol absorption in villus epithelium [28, 29]
AQP10 [30–32] Carrier and channel for glycerol and other solutes transport [29]

White adipose tissue AQP3 [20] Glycerol metabolism [20]
AQP7 [33–35] Main glycerol transporter; control glycerol uptake and release

[35–37]
AQP9 [20] Glycerol influx [20]
AQP10 [35] Maintain normal glycerol levels [35]
AQP11 [38] Mediate intracellular glycerol movements [38]

Brown adipose tissue AQP3, AQP7, AQP9
[39, 40]

Glycerol permeation [39, 40]

Cardiac and skeletal
muscle

AQP3 [21, 41, 42] Glycerol transport for energy production in skeletal muscle [41]
AQP7 [21, 41, 42] Glycerol transport for energy production mainly in cardiac

muscle [21, 41, 43]
Liver AQP9 [44] Uptake of glycerol for glucose production [44]
Endocrine pancreas AQP7 [45] Regulation of insulin production/secretion [45, 46]
Kidney AQP7 [47] Involved in glycerol reabsorption [48–50]
Endothelia AQP3 [51] Endothelium glycerol permeation [51]

AQP7 [48] Involved in glycerol permeation in capillary endothelia of
adipose tissue [48]

concentrations, in muscle and brain. G3P is the
more important form of glycerol for the cell phys-
iology. In addition, glycerol is an energy substrate
via the G3P shuttle, which has a key role in
oxidizing glucose rapidly and generating adeno-
sine triphosphate (ATP) in the mitochondria
through the oxidation of G3P [21].

In humans, gluconeogenesis occurs mainly in
the liver and kidney, sites of greatest measured
GK activity. Under normal feeding conditions,
glycerol contribution to gluconeogenesis is
reduced, but it increases considerably during star-
vation where it becomes the primary source for
gluconeogenesis along with lactate, pyruvate, ala-
nine, and glutamine [22]. In prolonged fasting,
glycerol can be used as the only source for gluco-
neogenesis, since glycogen reserves are depleted
within two fasting days [19].

In situations of negative energy balance, such
as fasting or exercise, lipolysis of TAG stored in
white adipose tissue yields glycerol and FFA that
are released in the bloodstream to be used by
other organs as energy source. Lipolysis rates
are finely regulated by hormones and by bio-
chemical signals that modulate lipolytic enzymes,
allowing the finest response from adipose tissue

to changes in energy requirements and availabil-
ity [23, 24].

Besides the intake of dietary glycerol absorbed
in the small intestine, the amount of glycerol
circulating in the bloodstream is as well depen-
dent on the amount reabsorbed in kidney
microtubules; but its main source results from
lipolysis in adipose tissue.

All the above-described metabolic pathways
occur exclusively in intracellular compartments
forcing glycerol molecules to move across the
different tissues. Glycerol permeation through
membranes is facilitated by aquaglyceroporins,
and thus regulation of glycerol transport by
AQPs is crucial to control fat accumulation, lipol-
ysis, gluconeogenesis, and energy homeostasis
[20, 25]. Table 20.1 lists the tissue expression
and implication in glycerol balance described for
aquaglyceroporins, anticipating its possible
implication in fat fate and associated metabolic
alterations.

Figure 20.2 depicts a schematic model
showing the involvement of aquaglyceroporins
in glycerol metabolism and energy balance. The
expression and localization of the various
aquaglyceroporins in multiple organs are
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Fig. 20.2 Involvement of aquaglyceroporins in glycerol
metabolism and energy homeostasis. (a) Glycerol from
dietary fat is absorbed via AQP7 and AQP10 in the apical
membrane of small intestine epithelial cells and exits via
AQP3 located in the basolateral membrane. Endothelial
cells from adipose vasculature express AQP10 that allows
glycerol entry to the bloodstream to be used by other
organs as energy source. (b) Glycerol is taken up to the

liver by AQP9 (and possibly also AQP3 and AQP7)
expressed at the basolateral sinusoidal membrane of
hepatocytes. In the hepatocyte, glycerol is converted to
G3P by GK to be used in gluconeogenesis. (c) Glycerol is
used in cardiac and skeletal muscle as an energy source. It
permeates the membrane by AQP3 and 7 and, after con-
version in G3P by GK, is used for ATP production. (d) In
fasting conditions when lipolysis occur in the white



��

20 Aquaporins in Obesity 295

important to assure glycerol fluxes across tissues
and are crucial for glycerol metabolism and
homeostasis. A detailed description can be
found in Fig. 20.2 legend.

20.5 Aquaporins in Adipose Tissue

20.5.1 AQP7 Expression and Role
in Fat Accumulation

Among the various mammalian
aquaglyceroporins, AQP7 is the most representa-
tive glycerol channel and the first to be detected in
human and mouse adipose tissue [47, 52, 53] and
adipocytes [33, 34]. Despite claimed by other
researchers that AQP7 was localized in the vas-
cular tissue surrounding fat rather that in adipose
tissue membranes [48, 54], a double localization
in adipocytes and endothelial cells was also
described [35, 50] and AQP7 expression in both
human subcutaneous and visceral adipose tissue
was reported [20, 34].

The fundamental role of AQP7 in glycerol
release from adipocytes was attained when it
was found to function as a glycerol channel
[33]. Several experiments were performed to
demonstrate AQP7 function. Obese insulin-
resistant db/db mice showed higher AQP7
expression compared to control mice [33], and a
similar increase in AQP7 mRNA was also
observed in adipose tissue of a rodent model of
type 2 diabetes with obesity when compared with
normal rats [55]. These experiments suggested
that the dysregulation of AQP7 could lead to an
augmented input of glycerol for hepatic gluco-
neogenesis and to an increase of glucose in type

2 diabetes [47]. Studies using AQP7 knockout
mice showed development of adipocyte hypertro-
phy and early obesity onset were due to an accu-
mulation of glycerol and TAG [36, 37]. In
addition, aged AQP7 knockout mice developed
insulin resistance, compromising the whole body
metabolism. Hibuse et al. [37] proposed a mech-
anism to explain adipocyte hypertrophy, where an
increased accumulation of glycerol in adipocytes
stimulated glycerol kinase activity and led to
increased TAG levels in adipose tissue, indirectly
favoring the development of obesity and insulin
resistance [37]. Yet, susceptibility to develop
obesity was not confirmed by other AQP7 null
mouse lines [48, 56]. Nevertheless, although the
different phenotypes reported in distinct AQP7
knockout mouse studies, all confirmed the
involvement of AQP7 in glycerol metabolism.

Correlation of adipose AQP7 expression with
glycerol metabolism and related metabolic
complications were not so obvious in human
studies [57]. Albeit there was a link between
adipocyte AQP7 expression and insulin resis-
tance, genome-wide analysis found AQP7 gene
linked to type 2 diabetes [58] and metabolic syn-
drome [59] as well as associated with obesity but
only for the female participants [60]. Gender
differences in the role of AQP7 in adipose tissue
metabolism were supported by higher fasting
circulating levels of glycerol in women than in
men, probably due to higher percentage of subcu-
taneous fat in females, higher lipolytic rates and
higher AQP7 expression levels [54, 61].

Three AQP7 missense mutations (R12C,
V59L, and G264V) and two silent mutations
(A103A and G250G) were described in humans.
G264V mutation, held by a male homozygous

Fig. 20.2 (continued) adipocytes, TAG hydrolysis yields
FFA and glycerol that is released to the blood via AQP7
(and possibly also 3 and 10) expressed in both white
adipocyte and endothelial cell membranes. In feeding
conditions when plasma glycerol reaches high
concentrations, glycerol is taken up by white adipocytes
possibly via AQP9 being converted to TAG and stored in
the lipid droplets. (e) In response to high plasma nutrient
levels, glycerol enters pancreatic β-cells via AQP7 and

participates in a cascade of events that culminates with
insulin exocytosis. (f) During exercise or under cold expo-
sure, glycerol is taken up by the brown adipocyte via
AQP3, 7, and 9 and is oxidized in the mitochondria pro-
ducing heat. (g) Glycerol filtered in the kidney is
reabsorbed to the blood via AQP7 expressed in the brush
border membrane of proximal tubule cells, thus preventing
its excretion in the urine
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patient, was the only one demonstrating water and
glycerol permeability loss; however, it did not
correlate to obesity nor diabetes, and a lack of
increase in plasma glycerol was observed only
when stressed by exercise [57, 62]. Three other
patients with the same mutation were also
diagnosed as neither obese nor diabetic, but they
presented increased glycerol excretion in the
urine [63]. Moreover, recently identified
variations in the AQP7 promoter associated with
AQP7 downregulation and high serum glycerol
levels might contribute to child obese phenotype
and were correlated with familial predisposition
to type 2 diabetes [64].

20.5.2 Regulation of AQP7 Expression

In mice and humans, AQP7 gene expression is
upregulated by fasting or exercise, leading to
glycerol production from endogenous TAG,
whereas during the feeding state it is
downregulated. AQP7 abundance is inversely
related with plasma insulin levels [33]. Transcrip-
tion of AQP7 gene is inhibited by the increase of
insulin levels in the bloodstream through a nega-
tive insulin response element (IRE) identified in
the promoter region of AQP7 gene in mice and
humans [62, 65] and by blockage of the
phosphatidylinositol-3 kinase (PI3K) pathway
[20, 65]. Upregulation of AQP7 by peroxisome
proliferator-activated receptor gamma (PPARγ) is
also demonstrated in mouse and human
adipocytes [57, 66, 67]. PPARγ regulates adipo-
cyte differentiation through the regulation of sev-
eral adipose genes, and, in differentiating
adipocytes, simultaneous increase in glycerol
release to the media and AQP7 mRNA levels
were observed [33], suggesting a common regu-
latory pathway dependent of cell differentiation
[68]. In line with this, thiazolidinediones (syn-
thetic PPARɣ) and insulin sensitizers were
reported to upregulate AQP7 [55, 62, 65],
whereas leptin [20, 69], TNF-a, adrenergic
agonists and steroids, being insulin resistance
inducers, downregulate AQP7 expression
[70]. Ghrelin, a lipogenic hormone, also interacts
in AQP7 regulation, stimulating TAG

accumulation in parallel with a decrease in
AQP7 expression [71].

In the fasting state, concomitant with lipolysis,
low plasma insulin levels and catecholamine
stimulation induce AQP7 gene transcription and
intracellular AQP7 translocation to the plasma
membrane, thus potentiating glycerol release
from adipocytes [33]. A recent study
demonstrated that AQP7 was bound to the lipid
droplet protein perilipin 1 (PLIN1), suggesting
that PLIN1 was involved in the coordination of
the subcellular translocation of aquaglyceroporins
in human adipocytes [72].

In humans, studies with obese subjects showed
a different regulation of AQP7 depending on the
type of adipose tissue, subcutaneous or visceral.
Obese individuals show low AQP7 expression in
subcutaneous fat reflecting fat accumulation and
adipocyte hypertrophy but, conversely, show
increased AQP7 levels in visceral fat, which can
be correlated with increased lipolysis
[20, 25]. Since subcutaneous adipose tissue is
more insulin sensitive than the visceral, AQP7
downregulation may represent a feedback mech-
anism attempting to prevent lipid depletion and
consequent lipotoxicity and associated disorders
[25]. Moreover, gonadal steroids are important
factors in the determination of sex-dependent fat
distribution and accumulation and have been
reported to modulate AQP7 expression [73]. In
fact, estrogen response elements in the promoter
of the AQP7 gene, resulting in fat catabolism in
adipocyte, might explain the development of
menopausal obesity [74].

20.5.3 Other Aquaporins in Adipose
Tissue

The fact that obese AQP7 null mice still show
measurable glycerol secretion and AQP7 altered
expression or dysfunction could not be clearly
correlated with obesity and type 2 diabetes,
suggesting the existence of alternative glycerol
pathways in adipose tissue. In fact, the
aquaglyceroporins AQP3 and AQP9 were
detected in human subcutaneous and visceral adi-
pose tissue, with AQP3 being even more



20 Aquaporins in Obesity 297

expressed in visceral tissue than AQP7 [20],
although other authors did not confirm these
same results [33, 34, 75].

AQP3 was found both intracellularly and in
the plasma membrane of adipocytes in subcuta-
neous and visceral adipose tissue, but with a
stronger expression in the stromal vascular tissue
adjacent to adipose [20, 34, 75].

AQP5 was found expressed in mouse adipose
cells and with a crucial role in adipocyte differen-
tiation [67], and AQP5-KO mice have lower body
weight than wild-type animals [76]. Interestingly,
high-fat diet induces AQP5 expression in subcu-
taneous adipose tissue [40], suggesting a role for
AQP5 on adipose biology and cellular adaptation
to fat accumulation.

AQP9 was also detected in the plasma mem-
brane of adipocytes [20]. Described as mostly
expressed in the liver, AQP9 is responsible for
hepatic glycerol uptake for gluconeogenesis in
close coordination with adipose glycerol efflux
through AQP7 during fasting [77, 78] and is
strongly associated with adipose tissue metabo-
lism and fat accumulation. In addition,
non-alcoholic fatty liver disease (NAFLD) is
associated with altered hepatic AQP9 and glyc-
erol permeability [69, 79] that could be reverted
by leptin administration [69].

AQP10 was detected in the cytoplasm and in
the plasma membrane of adipocytes, in human
subcutaneous adipose tissue [35]. Both AQP3
and AQP10 were shown to translocate to the
plasma membrane in response to β-adrenergic
stimuli [35, 80]. More recently, the unorthodox
AQP11 was detected in both subcutaneous and
visceral adipocytes being localized in the vicinity
of the lipid droplets [38] and associated with the
endoplasmic reticulum (ER) in human visceral
adipose tissue [81]. AQP11 water and glycerol
transport was demonstrated in an adipose cell
model [38] possibly unraveling a facilitated glyc-
erol gateway from the intracellular lipid droplets
[25]. Moreover, since AQP11 facilitates H2O2

diffusion, its overexpression along adipocyte dif-
ferentiation was suggested to constitute a com-
pensatory mechanism to alleviate endoplasmic
reticulum stress in obesity [81].

Although most studies were focused in AQP
expression in WAT, their role in BAT has been
highlighted in the last years. Since brown
adipocytes are more prone to expend energy as
heat, browning of the white resulting in beige
adipocytes might reveal a useful approach to
treat obesity. When the beige phenotype is
induced in a murine adipocyte cell line, the most
expressed glycerol channels AQP7 and AQP9 are
downregulated along with upregulation of several
brown adipocyte markers such as the mitochon-
drial UCP1 [82], suggesting a relation between
AQP expression and the metabolic shift from
anabolic to catabolic thermogenic metabolism.

20.6 Aquaporins as Drug Targets
of Obesity

The implication of aquaglyceroporins in fat
metabolism and obesity indicates that from a
pathophysiological point of view these proteins
are promising drug targets. The possibility of
regulating the expression of aquaglyceroporins,
in particular AQP7 in adipose tissue, offers a
potential therapeutic approach for the regulation
of fat accumulation and treatment of obesity.
Altered AQP7 expression by hormones (insulin,
catecholamines), cytokines, and adipokines
[20, 69–71] is described in the previous section.
As for AQP7 channel activity, the only specific
modulator described so far is the gold compound
auphen that showed to inhibit glycerol permeabil-
ity in an adipocyte cell line [83]. However,
auphen may have a possible application in diag-
nosis to uncover AQP7 activity and gating
[84, 85], strategies to treat obesity point toward
activation of AQP7 function rather that inhibition.
Thus, the design of small molecule upregulators
of AQP7 expression and function is of utmost
interest and would undoubtedly have therapeutic
applications.

A recent study reported that supplementation
of high-fat diets with apple polyphenols impaired
adipocyte hypertrophy and prevented adiposity
increase by a mechanism that included increased
AQP7 and leptin mRNA levels in rat visceral
adipocytes [86]. However promising, the
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complex mixture of polyphenols included in this
functional food may hinder the identification of
structure–activity relationships of the phenolic
substances. Another study reported the anti-
obesogenic effect of resveratrol and pterostilbene,
reducing epididymal and subcutaneous adipose
tissue, respectively, in rats fed high-fat diet. Fur-
ther epigenetic studies are needed to gain more
insight concerning the regulation of AQPs by
these polyphenols [87]. In a similar animal
model, raspberry ketone administration
ameliorated adiposity via upregulation of AQP7
expression, but their clinical efficacy and safety
data to treat obesity need clarification [88].

Recent studies revealed the usefulness of
biologics, such as monoclonal antibodies [89]
and micro-RNAs [90], to modulate AQPs,
overcoming the toxic side effects of numerous
reported chemical compounds and opening new
strategies for AQP-based therapies. Hence, fur-
ther investigations to untangle aquaporins inter-
play with other adipose regulatory molecules,
regulation by hormones, and possibility of chan-
nel gating are needed to better establish the mech-
anistic basis of AQPs involvement in
pathogenesis of obesity, which is crucial for the
identification of novel modulators design of new
compounds.

20.7 Final Considerations

Notwithstanding the importance of glycerol as
key energy source in multiple vital metabolic
processes and in the physiopathology of several
disorders, the role of aquaporins on glycerol
membrane permeation has only recently been
recognized. Given the involvement of
aquaglyceroporins in energy and metabolic
homeostasis serving as mediators of glycerol
delivery and bridging tissues and organs, their
targeting might constitute a novel approach for
controlling several metabolic disorders. Adipo-
cyte glycerol permeability is a regulator of adipo-
cyte enlargement and weight gain, and thus,
upregulation of AQP7 expression or its functional
activation may provide a novel therapeutic
approach to prevent or treat obesity. However,

potent and selective pharmacologic modulators
are still missing. Identification or design of new
molecules targeting adipose aquaporins might be
seed for drug development and open new
perspectives of obesity treatment.
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Abstract

Recent researches have demonstrated that
aquaporins (AQPs), including water-selective
channels, aquaglyceroporins and
superaquaporins, are generally expressed in
various tumors, such as lung, colorectal,
liver, brain, breast tumors, etc. Therefore, it is
imperative to study the accurate relationship
between AQPs and tumor, which may provide
innovative approaches to treat and prevent
tumor development. In this chapter, we mainly
reviewed the expression and pathophysiologi-
cal function of AQPs in tumor, and summarize
recent work on AQPs in tumor. Although, the
underlying mechanism of AQP in tumor is not
very clear, growing evidences suggest that cell
migration, adhesion, angiogenesis, and divi-
sion contribute to tumor development, in
which AQPs might be involved. Therefore, it
is still necessary to conduct further studies to
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determine the specific roles of AQPs in the
tumor.
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21.1 Introduction

Aquaporins (AQPs) are membrane proteins that
allow the penetration of water, glycerol, and
hydrogen peroxide across bio-membranes and
play a pivotal role in the homeostasis of water in
various tissues and organs [1]. AQPs are
expressed in numerous endothelia, epithelia, and
other types of cells. Thirteen members (AQP0–
AQP12), having been identified in humans and
mammals, are segmented into three groups based
on their sequence homology and permeability
profile, such as water-selective channels (AQP0,
AQP1, AQP2, AQP4, AQP5, AQP6, and AQP8),
which are only permeable to water,
aquaglyceroporins (AQP3, AQP7, AQP9, and
AQP10), which are permeable to water and
some physiological solutes, e.g., glycerol, urea
and gas, and superaquaporins (AQP11 and
AQP12) [2–4]. Recently, a variety of studies
have showed that AQPs are found in more than
20 cell types of tumor and deeply related to tumor
biopathological functions [1, 5]. The expression
of AQP is positively linked with diagnostic and
therapeutic targets like migration, proliferation,
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mailto:Abulizi@shzu.edu.cn
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angiogenesis, grades, and edema formation [1, 2,
6, 7]. In this chapter, we mostly discussed the
essential role of AQPs in various specific tumors.

21.2 AQPs in Tumor

AQPs are found in numerous human normal
tissues and exert pivotal functions in erythrocytes,
epithelium cells, astrocytes, endothelium,
adipocytes, and skeletal muscle [8, 9]. However,
a growing body of studies suggest that AQPs are
dysregulated in several tumor tissues and closely
involved in the progression of tumor. The role of
AQPs in breast, brain, lung, liver, and colorectal
tumors has been mostly reported as shown in
Fig. 21.1 [6].

21.2.1 Water-Selective Aquaporins

21.2.1.1 AQP1
Normally, AQP1 is mainly found in kidney, cho-
roid plexus, vascular endothelial cells, and cor-
neal endothelium [10, 11]. Recently, it is reported
that AQP1 is involved in the neovessels, which is
important for the survival of tumor cells
[12]. Some preclinical studies suggest a correla-
tion between AQP1 and the development of mel-
anoma [13, 14] and highlight AQP1 as a pivotal
key indicator of tumor dissemination by
accelerating tumor cell extravasation and meta-
static formation. Inhibition of AQP1 reduced met-
astatic formation and increased survival through
regulating VEGF and MMP2 in mice bearing
melanoma tumor [15]. The main reason maybe
that AQP1 promotes tumor angiogenesis by
allowing faster endothelial cell migration [16]. It
is known that vascular permeability is associated
with endothelial cell migration, and some
researchers reported that vessel permeability can
be accelerated by AQP1, which augment the
transportation of cellular water, and angiogenic
cascade is promoted by plasma protein extravasa-
tion as a scaffold for endothelial cell
migration [17].

In addition to tumor angiogenesis and cell
migration, AQP1 also promoted the proliferation

of tumor cells. For example, researchers found
cell proliferation induced by AQP1 in mouse
embryo fibroblast cell line [18]. In lung tumor
cells, increased cell volume and migration speed
are associated with AQP1 overexpression that is
regulated by ERK1/2 and caveolin-1 signaling
[19]. In gastric tumor, one of the most common
malignancies of the digestive tract, AQP-1 pro-
moted the invasion and proliferation of gastric
tumor cells through GRB7-induced ERK and
Ras activation, suggesting that AQP1/RAS/ERK
signaling is a potential pathway in gastric tumor
aggression [20]. What is more, AQP1 knockout
not only apparently modified the expression of
some key cell cycle proteins associated with the
enhanced cell proliferation [21] but also had the
effect on the migration and proliferation of tumor
cell along with the downregulation of matrix
metalloprotein 9 (MMP-9) [22], focal adhesion
kinase (FAK) expression, which can induce mul-
tiple intracellular signaling cascades for tumor
cell adhesion, growth, migration, survival, and
invasion [23], and thrombospondin type-1
domain containing 7A (THSD7A) in
glioblastoma [24].

With the increased cellular invasion and pro-
liferation, hypoxia is regarded as a common char-
acteristic to most tumors and conduces to tumor
resistance and progression [25]. Some researchers
reported that hypoxia-induced upregulation of
AQP1 in spongioblastoma cells is associated
with the glycolysis, which suggests that expres-
sion of AQP1 is regulated by hypoxia-induced
glycolysis [26]. It is reported that the expression
of AQP1 in PC-3M cells is regulated by low
oxygen tension, MAPK, protein kinase C
(PKC), and calcium [27]. Collectively, AQP1 is
upregulated in many human tumors, such as
breast, prostate, cervix, nasopharynx, bladder,
biliary duct, brain, and lung tumors [28], and
contributes to tumor development by enhancing
angiogenesis, migration, invasion, proliferation,
and hypoxia.

21.2.1.2 AQP2
AQP2 was initially discovered in the renal
collecting ducts and acts as a vasopressin-
sensitive water channel [29]. AQP2 plays an
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Fig. 21.1 The expression
of AQPs most studied in
specific tumor tissues[6]

important role in water homeosta-
sis [30]. Recently, it is reported that AQP2 may
not only serve as a potential indicator for the
diagnosis of adrenal tumors, such as pheochro-
mocytoma and/or paraganglioma [31], but also is
capable of inhibiting cell invasion in glioma cell
lines [32] and endometrial carcinoma
[33]. Recently, it is found that Micropeptide
Inhibiting Actin Cytoskeleton (MIAC) bounds
directly with AQP2 to prohibit the actin cytoskel-
eton through regulating Septin 2/Integrin Beta 4I,
and finally inhibiting the metastasis and tumor
growth of head and neck squamous cell carci-
noma (HNSCC) [34].

21.2.1.3 AQP4
AQP4 is one of the most common brain water
channel protein and is mainly regulated by
astrocytes [35], which participate in forming
specialized microdomains at the interfaces
between cerebrospinal fluid (CSF) (CSF–brain
barrier) and blood (blood–brain barrier) [36]. Sev-
eral researchers reported that compared to healthy
brain, AQP4 is overexpressed in brain tumors.
Upregulation of AQP4 is correlated with AQP4-
OAP mislocalization in human glioma
[37]. Some authors disclaimed that upregulation

of AQP4 induced the invasion and migration of
glioma cells [38, 39]. Decreased expression of
AQP4 could lead to apoptosis in glioblastoma
cell [40], indicating that regulation of AQP4
may be the key treatment target for glioblastoma.
However, there are also some disagreements for
the function of AQP4 in brain tumors. Ding et al.
reported that AQP4 knockdown could lead to
impaired migration and invasion in glioma
cells [38].

In migrating cells, AQP4 polarizes to the
lamellipodia and results in the augment of size
or number of lamellipodia, where there is fast
transmembrane water movement [12, 41]. It is
reported that knockout of AQP4 in mouse and
human cells may be related to actin depolymeri-
zation and morphological dramatic changes. In
astrocyte from AQP4 deficiency animal, the rear-
rangement of F-actin cytoskeleton in the cerebral
cortex is thoroughly taken place of fibers with a
star-like organization [42]. Ding et al. [38]
reported that the decreased expression of
MMP-2 in LNLN229 cells by the reduction of
AQP4 coincided with fewer cell invasive ability
and increased of glioblastoma cell to cell adhe-
sion ability through β-catenin and connexin
43, indicating that AQP4 is participate in the
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regulation of glioblastoma cell migration and
invasion and may be an effective therapeutic tar-
get for it.

Hui et al. [43] found a linear positive correla-
tion between the cell migrating speed and the
expression of AQP4 through studying more than
20 various types of tumor cells. AQP4 knock-
down in invasive repopulated tumor stem cells
decreased their migration ability. Beside the
brain tumor, AQP4 also displayed essential role
in other tumor. For instance, long noncoding
RNA LINC00629 competitively bound to
miR-196b-5p to increase the expression of
AQP4 and retarding gastric tumor invasion
[44]. AQP4 downregulation prohibited breast
tumor cell migration, proliferation, and invasion
via extracellular regulated protein kinases (ERK)/
Ecadherin pathway [45].

21.2.1.4 AQP5
AQP5 encodes a protein of 265 amino acids
containing five connecting loops and six trans-
membrane domain [46]. The AQP5 expression
has been reported in the renal, digestive, integu-
mentary, respiratory, reproductive systems, and
sense organs [47]. It is demonstrated that AQP5
was distributed on the various cell membranes
like acinar cells, pulmonary epithelial cells, and
corneal epithelium cells in the lacrimal gland
[48]. Some researchers reported that promoter
region of AQP5 gene including activator
protein-1 (AP-1) binding sequences and NF-κB
responsive elements [49], estrogen response
elements [50], which suggests that the above
elements could directly control the expression of
AQP5. Recently, some researches demonstrated
that upregulation of AQP5 has been correlated
with different tumors/cancers, such as cervical,
colorectal, breast, liver, epithelial ovarian tumor,
and lung cancer, and suggest to be an important
therapeutic biomarker [6, 51, 52].

Some researchers demonstrated that the
expression of AQP5 and AQP3 was obviously
higher in triple-negative breast tumor (TNBC)
than normal tissue, and overexpression of AQP5
was correlated with high expression of Ki67, the
key marker proliferation, in TNBC samples [53],
and associates with worse outcomes regardless of

tumor stage and type, suggesting AQP5 as an
independent prognostic marker of survival
[54]. In response to oxidative stress, AQP5
promotes transmembrane diffusion of H2O2 and
regulates cell growth of AQP5-transformed yeast
cells, affecting tumor cell migration [55]. More-
over, the cyclic adenosine monophosphate
(cAMP)-dependent phosphorylation of AQP5 on
Ser156 by protein kinase A (PKA) modulates the
RAS/MAPK signaling pathway which
participates in cell survival and proliferation in
different tumors [56–58].

He et al. [59] indicated that highly expressed
AQP5 was found in hepatocellular carcinoma
(HCC) cell lines and its inhibition suppressed
tumor metastasis and HCC cell invasion in vitro
and in vivo. What is more, decreased expression
of AQP5 inhibited the epithelial–mesenchymal
transition (EMT) process in HCC cells by
regulating EMT-related proteins, such as
α-catenin, N-cadherin, E-cadherin and vimentin,
and suppressed HCC metastasis and EMT via
inhibiting the NF-κB signaling pathway. In line
with this research, inhibition of AQP5 retarded
the migration and proliferation of different tumor
cells. During tumorigenesis, interfering of AQP5
could significantly reduce the tumor growth in
mice [51] and remarkably inhibited the ERK1/
2 pathway and the phosphorylation level of epi-
dermal growth factor receptor in NSCLC [60] and
also increase the sensitivity of 5-fluorouracil to
colorectal tumor cells through inhibiting the
Wnt-β-catenin pathway [61]. Researchers also
found that AQP5 regulating miRNAs (miR-19b-
3p, miR-19a-3p, miR-1226-3p, and mir-185-3p)
reduced breast tumor and colorectal tumor cell
invasion and migration through decreasing the
AQP5, suggesting that it can be a possible thera-
peutic target of tumor [62, 63].

21.2.1.5 AQP6
AQP6 was originally exclusively found in the
intracellular vesicle membranes of acid-secreting
intercalated cells in the collecting duct of kidney
[64]. Recently, studies showed that AQP6 was
also distributed on gastrointestinal epithelium,
cerebellum, support cells of inner ear, and the
follicular cells of parotid gland [65–67]. Some
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researchers also demonstrated that APQ6 was
detected in ovarian tumors, and the expression
of AQP6 was remarkably reduced in serous ovar-
ian tumors when compared to benign tumors
tissues and normal healthy ovarian [68]. Zhu
et al. [69] reported that the AQP6 was positively
associated with relapse-free survival in breast
tumor patients but negatively associated with
post progression survival in grade II breast
tumor and lymph node-positive tumor. Moreover,
the gene expression of AQP0, AQP1, AQP4,
AQP5, AQP6, AQP8, and AQP10 was correlated
with worse overall survival in the prognosis of
gastric tumor [70].

21.2.1.6 AQP8
AQP8 is demonstrated to work as oncoprotein in
human cervical tumor and esophageal tumor, but
as a potential inhibitor in colorectal tumor. Some
studies showed that AQP8 inhibits apoptosis,
increases tumor cell viability, and promotes
metastasis in SiHa cells, suggesting AQP8 may
regulate EMT-related markers [71]. In accor-
dance with this study, others also reported that
epidermal growth factor (EGF) leads to
upregulation of AQP8 which involved in cellular
migration in human cervical tumor cells through
the EGFR/Erk1/2 pathway [72, 73]. The knock-
down of mtAQP8 in HuH-7 and HepG2 cells
contributes to necrotic but not apoptotic death,
suggesting AQP8 might be a good strategy
against liver tumor [74]. However, a recent
study indicated AQP8 was inhibited in colorectal
tumors and upregulation of AQP8 was positively
correlated with better survival in colorectal
cancers. Upregulation of AQP8 retarded the inva-
sion, proliferation, migration abilities of colorec-
tal cancer cells in vitro. Overexpression of AQP8
also suppressed CRC cell growth and metastasis
in vivo [75] via inhibiting protocadherin7
(PCDH7) and PI3K/AKT signaling [76] and
modulating EGFR-Erk1/2 pathway [77].

21.2.2 Aquaglyceroporins

21.2.2.1 AQP3
AQP3 facilitates glycerol transport in addition to
water. AQP3 is not only distributed in the human

urinary tract transitional epithelium, renal
collecting ducts, and respiratory epithelium but
also expressed in stratified squamous epithelial
cells of the esophagus, oral cavity, and skin
[78]. AQP3 is significantly dysregulated in differ-
ent kinds of tumors, including breast, gastric,
prostate, pancreas, lung, bladder, skin, cervical,
squamous cell carcinoma, colon, adenoid cystic
carcinoma, ovarian, colorectal, and liver
tumors [52].

Researchers found that expression of AQP3 is
upregulated in skin cancer, promotes glycerol
transport into the cell, and leads to the generation
of ATP and cell proliferation. AQP3 knockout
inhibited skin tumor formation in mice via reduc-
ing ATP and glycerol content of cells for biosyn-
thesis [79, 80]. Glycerol is a humectant to retard
the evaporation of water, and maintaining the
barrier action of the skin [81]. Glycerol may
lead to cancer cell proliferation and tumor growth
via building block in phospholipid synthesis
and/or regulator of ATP production [82]. It is
known that these pathways are pivotal to fast
proliferating tumor cells [1]. What is more, it
was reported that AQP3 knockdown
downregulated some lipid synthases via PI3K/
Akt pathway in gastric tumor cells, which was
related to the ATP production and impaired lipid
metabolism. It is reported that it is not only the
results of reduced glycerol uptake but also the
consequence of impaired lipid synthesis
[83]. On the one hand, AQP3 overexpression
provides the carcinoma with good glycerol per-
meability, then producing more ATP content
[84]. On the other hand, glycerol converted into
triglyceride (TAG), which is crucial for cell sur-
vival and proliferation. Tumor cells metabolized
triglyceride into free fatty acid through lipolytic
processes. Fatty acid oxidation (FAO) takes part
in the generation of ATP to support the tumor
development [1, 83]. Therefore, lipid synthesis
suppression with inhibition of AQP3 may lead
to energy supply defects and retards tumor
development.

There are also a lot of studies related to the
contribution of AQP3 in tumor. For example,
human epidermal growth factor (hEGF) induces
the expression of AQP3, which regulates the
migration capacity of human CRC cells in a
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time- and dose-dependent manner. The reinforced
migration capacity of HCT116 cells was retarded
by CuSO, the AQP3 inhibitor. hEGF-mediated
AQP3 overexpression was retarded by a novel
PI3K/AKT inhibitor, LY294002, suggesting that
AQP3 can promote CRC cell migration and
regarded as a therapeutic key indicator and target
for colorectal carcinoma prognosis and metastasis
[85]. It is also reported that AQP3 increased the
expression and secretion of matrix
metalloproteinase-3 (MMP-3) in prostate tumor
cells through the positive regulation of the ERK
signaling pathway. Silencing of AQP3 inhibited
the motility and invasion of these tumor cells.
Inhibition of the ERK pathway blocked AQP3-
induced invasion and motility in prostate tumor
cells [86]. AQP3 overexpression increased
lymphovascular invasion, lymph node metastasis,
and Lauren classification. Blocking
Wnt/β-catenin pathway with XAV939 inhibited
the overexpression of AQP3, suggesting that
AQP3 contributes to stem-like properties of gas-
tric carcinoma cells through mediating
Wnt/GSK-3β/β-catenin pathway [87]. Simulta-
neously, AQP3-mediated H2O2 was necessary to
activate the phosphorylation of Akt and regulates
subsequent directional cell migration of chemo-
kine (C-X-C motif) ligand 2 (CXCL2)-dependent
breast tumor cells in vitro [88], implicating that
AQP3 is an important driving factor of tumor
motility. Moreover, some researches have also
demonstrated that upregulation of AQP3 can
induce tumor growth, cell proliferation, cell inva-
sion in solid tumors, such as esophageal squa-
mous cell carcinomas (SCCs), hepatocellular
carcinoma (HCC), gastric adenocarcinoma
(GC) [86, 89–92], and pancreatic tumor cells
through stimulating the mTOR pathway [93],
suggesting that downregulation of AQP3 may be
a key therapeutic target for some oncotherapy.
However, there are some discrepancies that
AQP3 is low expressed in urothelial carcinomas
(UCs) and breast tumor, with the potential mech-
anism being unclear [69, 94, 95].

21.2.2.2 AQP7
As a member of aquaglyceroporin family, AQP7
also conveys glycerol, ammonia, arsenite, urea,

and hydrogen peroxide in adipocytes [96–100]
and plays a vital role in glucolipid metabolism
[101, 102]. Accumulating evidence revealed that
AQP7 may contribute to tumor pathogenesis and
development [103–105]. For instance,
researchers found that the expression of AQP7
was significantly higher in borderline and malig-
nant tumors than in normal healthy ovarian tissue
and benign tumor, suggesting that high level
expression of aquaglyceroporin could be crucial
for ovarian cancer [105]. Since AQP7 acts as a
channel for glycerol, a feasible interpretation is
that AQP7 is a main factor for glycerol availabil-
ity. Knockout of AQP7 in adipocytes results in
the accumulation of triglycerides and glycerol
[106]. During high energy demands, the exported
glycerol is absorbed by other cells and used for
energy supply, then promotes tumor development
[107]. Moreover, downregulation of AQP7
inhibited lung metastasis and tumor burden in
mice bearing breast tumor. Complex lipid profile
and metabolomics in tumors and cancer cells with
decreased expression of Aqp7 remarkably altered
the glutathione, lipid, and arginine/urea metabo-
lism compared to control mice. To respond to
stress and tumor nutrition, AQP7 regulates
tumor metabolism through p38 MAPK and
PI3K/AKT/mTOR pathways. These studies sug-
gest AQP7 as an essential metabolic regulating
factor in breast carcinomas, highlighting it as a
pivotal therapeutic treatment target for tumor
[107]. Recently, it was reported that inhibitor of
AQP7 can induce cellular stress to eliminate the
cancer cells and to reduce tumor bearing in com-
bination with mTOR inhibitors [108].

21.2.2.3 AQP9
It is known that AQP9 is a channel protein that
transports water, glycerol, and urea and promotes
glycerol uptake of hepatocyte. The protein
expression of AQP9 in murine and human has
been mainly found in epididymis, liver, skeletal
muscle, urothelium, skin, epidermis, adipose
tissues, and neuronal cells [100, 109, 110]. Previ-
ous researches mainly investigate the expression
of AQP9 in hepatocellular carcinomas, because
AQP9 is widely distributed in the hepatocytes
basolateral membrane. AQP9 was remarkably
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downregulated in the tissues and cells of hepato-
cellular carcinoma and correlated with 5-year sur-
vival rate, tumor size, tumor lymph node
metastasis stage, lymphatic and distal metastasis
of the patients, and stimulation of AQP9 retarded
the invasion, migration and proliferation of HCC
cells via Wnt/β-catenin signaling pathway [111],
which is crucial for differentiation, proliferation,
and apoptosis. A research reported that the
expression of AQP9 is deregulated in liver cancer
cells. AQP9 upregulation inhibited liver cancer
invasion via prohibiting epithelial-to-mesenchy-
mal transition [112] and PI3K/Akt/forkhead box
O1 (FOXO1) pathway [113]. Zheng et al. [114]
found that AQP9 overexpression led to the accu-
mulation of ROS, which suppressed β-catenin
through inhibiting the interaction of β-catenin
with TCF4 while concurrently enhancing the
interaction of β-catenin with FOXO3a, at the
end, attenuating LCSCs stemness, implying that
the regulation of AQP9 signaling may be a
promising therapeutic target and approach for
retarding liver tumor stem cells (LCSCs).

Recently, a study demonstrated that
overexpression of AQP9 was remarkably
associated with bad prognosis in some types of
tumor tissues, such as colon, breast, and lung, but
associated with better prognosis in gastric tumor.
Furthermore, AQP9 is correlated with different
immune infiltrating cells, such as macrophages,
CD4+ and CD8+ T cells, dendritic cells (DCs) and
neutrophils, and some other immune-related
genes in breast invasive carcinoma, colon adeno-
carcinoma, lung adenocarcinoma, stomach ade-
nocarcinoma, and lung squamous cell
carcinoma, implying that AQP9 can be an essen-
tial biomarker to determine the levels of immune
infiltrating and the prognosis in some tumors
[115]. Moreover, overexpression of AQP9 was
remarkably associated with poor survival,
immune infiltrations and aggressive progression
through inflammatory response, IL6/JAK–
STAT3, and TNF-alpha signaling pathways in
ccRCC patients [116]. The level of AQP9 could
be useful for estimating the prognosis with kidney
renal clear cell carcinoma (KIRC) patients, espe-
cially to the TME state transition via JAK/STAT,
P53, and lipid metabolism-related pathways that

regulate M2 polarization [117], suggesting that
AQP9 may be a potential prognostic target for
kidney carcinoma.

The upregulation of AQP9 inhibited the
glioma-related lactic acidosis through clearance
of lactate and glycerol from the extracellular
space through energy metabolism of the glioma
and/or surrounding neuronal cells [118]. Some
researchers give the evidence that AQP9 can be
a promising predictive indicator for adjuvant che-
motherapy in colorectal cancer. The higher
expression of AQP9 had the better rate of
disease-free survival (DFS) when compared to
those patients with low expression of
it. Moreover, upregulation of AQP9 increased
the antitumor sensitivity of 5-fluorouracil (5-FU)
both in vivo and in vitro. Induction of AQP9
expression increased intracellular level of 5-FU
in colorectal cancer cells, contributing to more
apoptosis rates after 5-FU treatment via cell
cycle arrest through RAS activation [119].

21.2.3 Super Aquaporins

Superaquaporins, including AQP11 and AQP12,
are a novel subfamily of AQPs and mainly
distributed in the cytoplasm to regulate the water
transport or intra-vesicular physiological states
[8, 120, 121]. AQP11 is mainly distributed in
testis and, to a lesser extent, in the adipose tissue,
liver, brain, and kidney [122, 123]. AQP12 is
located on the intracellular organelle membrane
and found in pancreatic acinar cells [124]. The
role of superaquaporins in tumor is relatively less
reported than other aquaporins, and there is no
study about the relationship between the AQP12
and tumor. Recently, some researchers found that
higher expression of AQP11 had better OS in
ovarian tumor [125] and gastric tumor patients
[70]. Furthermore, survival analyses
demonstrated that overexpression of AQP11 was
significantly correlated with better relapse-free
survival in breast cancers [69], indicating that
AQP11 might play an important role to estimate
prognosis and be a promising therapeutic strategy
for tumor treatment.
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Fig. 21.2 Roles of AQPs in tumor. (a) AQPs in primary
tumor cells may induce angiogenesis for vascular
exchange of some substance, like nutrients. (b) AQPs
promote lamellipodium formation and stabilization by
actin polymerization. Then, cancer cells lead to loss of
cell–cell adhesions that capacitate cancer cells to migrate
and dissociation, then invade the neighboring ECM, and

spill over into blood circulation, and finally extravasate to
corresponding organs or sites like brain, breast, and lung,
resulting in metastasis. Simultaneously, AQPs could
bound to some oncoproteins, and stimulate the related
intracellular signaling pathways that induce tumor cell
invasion, division, and proliferation

21.3 Conclusion and Prospect

Aquaporin has been extensively reported in tumor
tissues and cancer cells. Consistent investigations
revealed that almost all AQPs are upregulated,
but some of them, such as AQP8, AQP9, and
AQP11, downregulated in tumors, suggesting
that dysregulation of AQPs closely related to
cancer incidence and plays a different role in
different organs and tissues. Although the
mechanisms by which AQPs interfere with
tumorigenesis are not completely clear, an
amount of studies indicated that AQPs are
involved in angiogenesis, cell migration, adhe-
sion, invasion, and division in tumors
(Fig. 21.2), which are essential to tumor develop-
ment. Therefore, it is necessary to underlying the
accurate correlation between AQPs and tumor,
which can provide new treatment strategies for
cancer.
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Abstract

Aquaporins (AQP) working as membrane
channels facilitated water transport, play vital
roles in various physiological progress includ-
ing cell migration, energy metabolism, inflam-
mation, etc. They are quite important drug
targets, but elusive for discovery due to their
undruggable properties. In this chapter, we
summarized most fluently used methods for
screening AQP inhibitors, including cell
swelling assay, cell shrinking assay, and
stopped-flow assay. And three classes of
AQP inhibitors have been discussed, including
metal-related inhibitors, quaternary ammo-
nium salts, and small molecule inhibitors
which further divided into four parts, sulfanil-
amide analogies, TGN-020, antiepileptic
drugs, and others. It has been suggested that
although they showed inhibition effects on
AQP1, AQP3, AQP4, AQP7, or AQP9 in
some researches, none of them could be
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asserted as AQP inhibitors to some extent.
Discovering AQP inhibitors is a big challenge,
but if successful, it will be a great contribution
for human health.

Keywords

Aquaporins · Inhibitors · Water permeability ·
Chemical molecules · Screening

22.1 Introduction

As reviewed in elsewhere in this book, in mam-
malian, there are 13 subfamilies of aquaporins
(AQP), vary from AQP0 to AQP12. From them,
some channels (AQP3, 7, 9, 10) also facilitate the
transport of glycerol and other small neutral
solutes such as urea, carbon dioxide, and ammo-
nia, namely aquaglyceroporins. All these
aquaporins are assembled by four monomers
with ~30-kDa molecular size, each monomer
has a narrow aqueous pore (contained Asn-Pro-
Ala (NPA) motif) flanking a narrowing (~2.8 Å in
diameter for AQP1) allowing a single-file water
transport driving by an osmotic gradient which
participate in the regulation of physiological
functions including cell migration, energy metab-
olism, inflammation, etc. The narrowest segment
of the water channel is within the transmembrane
region of the pore, which is 2.8 Å for AQP1,
which is similar to the size of a single water
molecule [1]. Although each channel is

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-7415-1_22&domain=pdf
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functionally independent, which means an AQP
protein can be bound with four inhibitors, the
narrow pore and the small molecular size bring a
great challenge for identifying drugs targeting
AQPs. AQPs play a crucial role in the develop-
ment of diseases as previous chapters described.
But up to now, most molecules under investiga-
tion target AQP1, AQP3, AQP4, AQP7,
and AQP9.

In kidney, AQP1 is expressed in the epithe-
lium of the renal proximal tubule, the thin
descending limb of the loop of Henle, and the
descending vasa recta. In an AQP1 knockout
mouse model, severe urine concentration defi-
ciency is observed, with increased urine output
and reduced urine osmolality. AQP1 deficiency
impairs the renal counter-current multiplication
by reducing the permeability in the descending
limb of the loop of Henle and the descending vasa
recta. Besides, AQP1 has been found that
overexpressed in breast cancer [2]. In an AQP1-
knockout mouse model, impaired tumor growth
was observed, including a reduced tumor vascu-
larity and extensive tumor necrosis, and an
enhanced survival of tumor-bearing mice was
presented [3]. These studies suggest AQP1
inhibitors may have clinical indications as
diuretics for the treatment of the glaucoma, cere-
bral edema, elevated intraocular pressure which
are directly or indirectly related to abnormal fluid
homeostasis and as antitumor agents [4].

AQP3 is a water- and glycerol-transporting
membrane protein, expressed in the collecting
duct of the kidney [5], airway epithelia, secretory
glands, and skin [6, 7], that is involved in cell
proliferation and migration. Previous studies
show that inhibitors of AQP3 glycerol or H2O2

transport are thought to prevent or retard skin
tumor growth [8] or chronic inflammatory skin
diseases including psoriasis [9]. In addition,
AQP3 has a significant role in the parasite repli-
cation by inducing in human hepatocytes in
response to parasite infection [10]. And glycerol
mediated by AQP3 contributes to the replication
of the parasite during the asexual intraery-
throcytic stages [11]. So the inhibitors of AQP3
might be regarded as antiparasitic drugs.

AQP4 is expressed in perivascular end feet of
astroglia in the central nervous system, which is
proposed to serve physiologically as a route for
the net movement of water out of the brain but in
pathological conditions create vulnerability to
cerebral edema, for example, after acute brain
injury or stroke [12, 13]. AQP4 inhibitors are
predicted to reduce brain swelling in ischemic
stroke. And the glymphatic system, that is
aquaporin 4 (AQP4) facilitated exchange of CSF
with interstitial fluid (ISF), may provide a clear-
ance pathway for protein species such as amy-
loid-β and tau, which accumulate in the brain in
Alzheimer’s disease [14]. AQP4 plays an impor-
tant role in the glymphatic clearance of tau from
the brain, suggesting AQP4 might be a target for
the treatment of Alzheimer’s disease.

AQP7 expressed in adipose tissue and AQP9
expressed in liver tissue are members of
aquaglyceroporins, which are involved in adipose
metabolism and insulin resistance in liver
[15, 16]. AQP7 deficiency leads to the decreasing
of the permeability of the plasma membrane to
glycerol, which causes cellular accumulation of
glycerol and triglyceride as well as upregulation
of glycerol kinase expression [17]. It might
increase the accumulation of adipose and lead to
obesity. In addition, AQP7 is now considered as a
β-cell protein and critical regulator of intraislet
glycerol content as well as insulin production
and secretion [18]. There is evidence that AQP9
is related with the uptake of hepatocyte glycerol
that AQP7 and AQP9 might be target for obesity
or diabetes [17].

22.2 Methods for Screening AQP
Inhibitors

In this chapter, we are about to list main methods
used for screening the AQP inhibitors. All these
methods based on the measurement of the kinet-
ics of the cell volume in response to an osmotic
gradient presented as fluorescent quenching or
scattering time-course or directly measurement
using cell imaging.
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22.2.1 Cell Swelling Assay

Cell swelling assay is the earliest functional assay
for water permeability. Tetraethyl ammonium
(TEA) [19], acetazolamide [20] (AZA), and
some small molecules [21, 22] were identified
by this method, although it is proved to be fraught
with artifact because there are many determinants
of oocyte swelling later researches [17, 23,
24]. Xenopus laevis oocytes expressing
AQPs were used as tool cells. Oocytes are so
big that could be easily measured by image anal-
ysis (Fig. 22.1). Water permeability and
aquaporin function in X. laevis oocytes should
only be calculated from initial osmotically
induced volume changes [25].

22.2.2 Cell Shrinking Assay

Cell shrinking assay is also regarded as fluores-
cence quenching assay. It is on the basis of the
self-quenching of certain fluorophores such as
calcein at high concentrations. It correlates cell
volume with fluorescence intensity where cell
shrinking should have increased the fluorescence
concentration and thereby self-quenching occurs,
decreased fluorescence intensity could be
observed by Fluostar Optima plate reader
[26]. Calcein AM is the most useful fluorescent
material, which is a membrane permeable sub-
stance, releasing calcein intracellular as fluores-
cent material to indicate the viable cells.

The main steps could be divided into three
parts (Fig. 22.2). The first part is cell culture.
Cells expressing AQPs are grown as monolayer
in 96-well plate or other solid supports. Cell lines

Fig. 22.1 Cell swelling assay. AQP-overexpressed
oocytes are used for imaging analysis which records the
diameter representing relative increases of the cell volume
induced by hypotonic osmosis by video microscopy

Fig. 22.2 Cell shrinking assay. (a) Monolayer cells are
formed. (b) Fluorescent materials (Ca-AM) are loaded.
Initial fluorescence intensity is recorded. (c) Cells shrink
under hypertonic buffer and the intensity decrease

cultured could be CHO cells [27, 28], MDCK
[29], and other adherent cell lines that are used
for transfection such as RPE cells [26]. The sec-
ond part is fluorescent loaded. A fresh medium
containing probenecid (an anion transporter
inhibitor, to reduce the leakage of dye indicators)
and Calcein AM is added, and the cells are
cultured for at least 30 min. At the same time,
tested compounds could be added. The last part is
self-quenching. High osmotic gradients are
applied, a linear dependence of fluorescence
intensity is recorded, the kinetic curve is
presented as Fig. 22.2. A similar method, which
does not require dye loading, uses the genetically
encoded, cytoplasmically expressed yellow fluo-
rescent protein YFP-H148Q-V163S, whose fluo-
rescence is quenched by chloride [30].

22.2.3 Stopped-Flow Assay

Stopped-flow assay is carried out using an appa-
ratus in which two solutions are mixed together
rapidly (in <1 ms) and have an optical read-out
[17]. Stopped-flow measurements can be made in
plasma membrane vesicles from AQP-expressing
cells, in reconstituted proteoliposomes or in small
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cells such as erythrocytes. Their suspensions are
prepared and then mixed with hyper osmosis
medium rapidly, and cell volume reduces, thereby
scattering intensity changes. Water permeability
should be calculated from initial slope of scatter-
ing intensity changes induced by osmotic pres-
sure. Besides it could assess the water outflow
ability by mixed suspensions which is incubated
with hyper osmosis medium previously with iso-
tonic medium. And this technique is widely used
for screening AQPs inhibitors [23, 24] and other
channel inhibitors such as urea transporters [31],
and it could quantitate the water permeability, but
it requires specialized instruments.

22.3 AQPs Inhibitors

Due to the narrow Asn-Pro-Ala (NPA) motif in
AQPs, the drug discovery of AQP inhibitors
seems unexpectedly challenging. Here we
discussed the proposed direct inhibitors of AQPs
rather than molecules which affect AQP in indi-
rect ways. Three classes of AQP inhibitors have
been described: metal related inhibitors, quater-
nary ammonium salts, and small molecule
inhibitors.

22.3.1 Metal-Related Inhibitors

Metal ions exist in body fluids, and these will
form different bonds with biomolecules, involv-
ing in vital cellular processes. Hemoglobin is an
indispensable protein in mammals and plays a
role in transporting oxygen. It consists of four
chains, two α-chains and two β-chains, of which
contained a cyclic heme with a ferrous atom, that
would bond with oxygen. In addition, exogenous
metal-containing small molecules can be effect on
proteins or biomolecules targeting their metal
moiety [32]. In clinic, cisplatin is widely used
for the treatment of solid cancer [33], by damag-
ing DNA of vigorously proliferating cells by
forming intrastrand diadduct [34, 35] with bases
in DNA chain, especially, purines.

Some metal-related compounds also showed
AQP inhibition effect with lowering water

permeability. The first reported metal-related
inhibitor was pCMBS (p-chloromercuribenzene
sulfonate), which has been found that has inhibi-
tion of water permeation into erythrocytes. And
HgCl2, which has a covalent interaction with
Cys189 of AQP1 in the vicinity of the conserved
NPA motif in loop E, restrain the water perme-
ability sterically [17], too. Cys189 residue is
essential for the inhibition by mercury and in a
mutation in the Cys189 residue of AQP1 prevents
the inhibition by mercury [36]. Ag is one of the
transition elements, and the diameter of Ag+ ion
(2.5 Å) matches the predicted AQP channel diam-
eter of 2.8 Å, whereas the Hg2+ ion is 2.2 Å which
might also build interaction with sulfhydryl
groups. Indeed, it has been reported that Ag as
AgNO3 or silver sulfadiazine (Fig. 22.3) inhibited
the water permeability of human red cell (AQP1)
with high potency (EC50 = 3.9 μM or 1.24 μM,
respectively) [37]. However, these inhibitions are
non-reversible, while mercury-based inhibition is
reversible in the presence of mercaptoethanol,
suggesting there is a different mechanism, but it
is still not clear. Another common metal element,
Au3+ with the diameter of 2.7 Å also has been
reported that it has inhibitory effect on AQPs.
AuPhen [32, 38] ([Au(III)(phen)Cl2] Cl,
(phen = 1,10-phenanthroline)) is a specific inhib-
itor against AQP3, which has inhibition effect on
glycerol transport in human red blood cells
(hRBC) with an IC50 value of 0.08 mM, while
has no inhibitory effect on AQP1-mediated water
permeability. In addition, Audien [39] also
showed inhibition on glycerol permeability with
an IC50 value of 16.62 ± 1.61 μM in hRBC. It is
reported that the mechanism of Au is not the same
as mercury, but does have effect on pore closure,
due to protein conformational channel upon metal
binding with Cys40 which was confirmed by
computational modeling [39].

Although there are no direct evidences to sup-
port this assumption, it can be assumed that
metal-related inhibitors might have strong toxic-
ity due to its easily covalent bonding with Cys
residues which are abundant in proteins in vitro.
In addition, few researches have been done to
assess these novel metal-related inhibitors as
diuretics in animal models, not mention to
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Fig. 22.3 Structures of metal-related compounds

human, except for HgCl2 that was used histori-
cally only before the discovery of thiazides and
loop diuretics. However, these might be applied
to treat some uncurable diseases such as cancer if
these could be proved effective for clinic.

22.3.2 Proposed Quaternary
Ammonium Salts

Tetraethylammonium (TEA) chloride, which is
known as a blocker of voltage-gated potassium
channels, was reported to reduce the water per-
meability of human AQP1 channels expressed in
Xenopus oocytes reversibly [22]. TEA also
inhibits water permeation through AQP2 and
AQP4, whereas the water permeabilities of
oocytes expressing AQP3 or AQP5 were not
affected [19]. However, this effect could not be
reproduced at a concentration of up to 10 mM by
stopped-flow light scattering in erythrocytes,
which natively express AQP1, and in epithelial
cells that were stably transfected with AQP
[23]. The different results occurred are due to
the lower-sensitivity techniques used in earlier
studies, which might have been susceptible to
the secondary effects related to the distribution
of ions across the plasma membrane [17].

22.3.3 Small Molecules

Although AQPs show as elusive drug targets,
many efforts have been made.

22.3.3.1 Sulfanilamide Analogies
Sulfanilamide analogies (Fig. 22.4) which were
reported as AQP inhibitors could be divided into
two types, namely arylsulfonamide which derived
from CA (carbonic anhydrase, CA) inhibitors and
sulfamoyl benzoic analogies which developed
from bumetanide as loop diuretics.

AZA is used as a carbonic anhydrase inhibitor.
Previous studies showed that there was a big
similarity between AQP1 and some carbonic
anhydrase isoenzymes in the tissue distribution
and even the subcellular localization, suggesting
that the potential relationship between the two
proteins in structures or functions [40]. In an
AQP1-cRNA inject oocyte model [40] and
HEK293 cells transfected with pEGFP/AQP1
model, AZA inhibited the osmotic water perme-
ability, and surface plasmon resonance (SPR)
study proved this inhibition might function
through direct binding between AZA and AQP1
[20]. However, other conflicting data from the
same group showed acetazolamide-inhibited
AQP1 protein expression [41]. What is more, in
erythrocytes or AQP1-expressing epithelial cells,
no inhibition of AQP1 water transport at
concentrations of AZA up to 2 mM was observed
[23]. AZA might be an AQP1 downregulator.

Later, due to the sequence homology between
AQP1 and AQP4, AZA was tested using
Xenopus oocytes expressing AQP4 (hAQP4b),
and it was found to have an IC50 against AQP4
of 0.9 μM with a maximum inhibition of 85%
[42]. Besides, they explored additional pan-CA
inhibitors, namely N-(4-sulfamoylphenyl) acet-
amide and ethoxyzolamide (EZA), which showed
potential inhibition against AQP4 in different
extent in Xenopus oocyte model [42]. Also, the
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Fig. 22.4 Structures of sulfonamides

virtual docking studies showed that the sulfon-
amide interacts with the guanidyl group of
Arg216 as well as with the carbonyl group of
Gly209. It remains that the sulfonamide moiety
might be essential for AQP4 “inhibition,” but
these might be artifacts that compounds might
affect cell size or shape, cell volume regulation,
nonaquaporin ion, or solute transporters [24]. It
can not be concluded the inhibition only rely on
the Xenopus oocyte expression system.

AQPs are membrane channels, which have
similarities with other ion channels. With this
opinion, various channels and transporter
blockers have been screened for AQP inhibition.
From them, some loop diuretics, mainly,
bumetanide and furosemide [43] showed modest
inhibition effect on AQP-mediated osmotic
swelling in Xenopus oocytes. And though
computational docking and structure–function
relationship (SAR) study, sulfamoyl benzoic
scaffold was supposed to be an important
pharmacophore element, so based on the core
structure, series of compounds were developed,
AqB013 showed block effect on water permeabil-
ity facilitated by AQP1 and AQP4 with IC50
values of approximately 20 μM and 50 μM,
respectively [43].

Besides, bumetanide derivatives AqB007 and
AqB011 (Fig. 22.5) were proved as selective
blockers to inhibit AQP1 ion conductance with
no effect on water channel activity, and AqB011
was the most potent blocker with an IC50 value of
14 μM by two-electrode voltage clamp and opti-
cal osmotic swelling assays [21]. Except for
AqB007 and AqB011, AqB050 (the chemical
structure was not found) was regarded as a selec-
tive inhibitor of AQP1 by effecting ion conduc-
tance (A. Yool et al. manuscript in preparation),
and it only showed significant decrease in cell

proliferation in AQP1-high cells, while no statis-
tically difference in AQP1-low cells
[44]. Although the data in vitro presented anti-
malignant mesothelioma potential, but in a xeno-
graft mouse model, AqB050 had no biologically
significant effect on growth of established tumor
[44]. It needs to be clarified why “AQP1 inhibi-
tor,” which derived from loop diuretics, has the
same bioactivity with that caused by AQP1
knockdown, but showed no antitumor effect
in vivo.

And the inhibition on AQP1 needs to be con-
firmed using alternative functional assays that are
less prone to artifacts [17]. In addition, Verkman’s
group has retested the inhibition against AQP1 of
AqB013 by stopped-flow light scattering in
human and rat erythrocytes that natively express
AQP1, in hemoglobin-free membrane vesicles
from rat and human erythrocytes, and in plasma
membrane vesicles isolated from AQP1-
transfected Chinese hamster ovary cell cultures,
and it showed no significant inhibition on AQP1
water permeability [24], which is more
convincible. And in a MCAO mouse model [45]
and a spinal cord injury rat model [46],
bumetanide-treated group had a significant atten-
uation of AQP4 protein expression, which
reminds bumetanide might be an AQP1
downregulator, too.

22.3.3.2 TGN-020
Eighteen compounds were identified based on
conserved physicochemical features of previ-
ously discovered compounds in silico, and more
than half (10 compounds) of the compounds
(structures are showed in Fig. 22.6) showed
AQP4 inhibition in Xenopus oocytes transfected
to express AQP4 model [47, 48]. From them,
three compounds including TGN-020
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Fig. 22.5 Structures of bumetanide derivatives

Fig. 22.6 Structures of 10 compounds which might have AQP4 inhibition



s

324 S. Wang et al.

(2-(nicotinamoyl)-1,3,4-thiadiazole), sumatriptan
(5-HT1B/1D agonist), and rizatriptan (5-HT1B/
1D agonist) had strong AQP4 inhibition with
IC50 values of 3, 11, and 2 μM, respectively
[47]. And docking model showed TGN-020
directly blocked the pore of water transport.

The effects of TGN-020 on regional cerebral
blood flow (rCBF) were examined in wild-type
(WT) and AQP-4 knockout (KO) mice in vivo
[49]. And TGN-020 increased regional cerebral
blood flow but showed no effect on KO mice,
suggesting that the TGN-020 worked on AQP4.
In the diabetic retina model, TGN-020 suppressed
the expression of AQP4 and GFAP [50]. And in
another unilateral middle cerebral artery occlu-
sion (MCAO) model, TGN-020 also showed
downregulating effect on AQP4 in the SON
[51]. So it is more exactly to define TGN-020 as
an AQP4 modulator rather than an AQP4
inhibitor.

22.3.3.3 Antiepileptic Drugs
Cause of their pan-CA isozyme inhibitions and
similarity in physiochemical properties with AZA
and EZA, 14 antiepileptic drugs (AEDs), such as
topiramate (TPM) and zonisamide (ZNS) were
tested using virtual docking experiments in silico,
and nine of them were investigated functionally
in vitro in Xenopus oocyte expressing system
[52]. Seven of the candidates were found to
inhibit AQP4 function, then four compounds
including topiramate (TPM), zonisamide (ZNS),
phenytoin (PHT), and lamotrigine (LTG)
(Fig. 22.7) were then selected for a dose-
dependent study. The IC50 values were 10, 3.3,
9.8, and 8.1 μM, respectively. And the correlation
studies suggested that AEDS with a docking
energy>50 kcal/mol might have inhibitory effect
on AQP4. However, due to the use of a nonstan-
dard algorithm and no computational details
(such as search space and energy minimization
criteria), it is difficult to assess the merit of the
reported binding computations.

Despite its association with elevated seizure
threshold following chemical convulsants, it is
predicted that AQP4 deficiency could reduce
sound- and light-evoked potentials and increased
threshold and prolonged duration of induced

seizures [53]. In short, AQP4 inhibition would
likely worsen rather than prevent seizures. With
this doubt, Yang et al. [54] retested reported
AEDs with AQP4 inhibition in FRT cell plasma
membrane vesicles measured by stopped-flow
light scattering, in AQP4-expressing FRT cell
monolayers and in brain glial cells, none of
these showed inhibitory effect on AQP4-
mediated water permeability. None of them have
AQP1 inhibitions, too.

22.3.3.4 Other Compounds
A total of 3575 compounds including
418 FDA-approved drugs were screened by
calcein-loaded cells using an automated fluores-
cence microplate reader-based assay [55]. Four
molecules of National Cancer Institute’s chemical
library (NSC164914, NSC670229, NSC168597,
NSC301460, Fig. 22.8) were identified that
affected both AQP4- and AQP1-mediated water
permeability with IC50 values varying from 20 to
50 μM. Nevertheless, in another report [24], these
4 compounds showed no AQP1 or AQP4 inhibi-
tion by stopped-flow scattering analysis. Interest-
ingly, these two literatures came to different
conclusions although they adopted the same
assessment method by stopped-flow light-scatter-
ing measurement in erythrocytes from adult
Wistar rats. Artificial or objective factors might
be affected, but some points could be confirmed
that NSC 168597 and NSC 164914 as organolead
and organotin molecule, respectively, were
reported to be neurotoxins [56] and would cause
erythrocyte lysis [57]. As to NSC 301460 which
belongs to aminolipopeptide antibiotics [58] i
isolated from a marine sponge-derived fungus
Trichoderma sp., whose mechanism is to damage
bacterial cell membranes by forming pores
[24, 59]. Large volume of NSC 301460 chemical
structure makes it impossible to block the water
pore in AQPs directly. Another report [60]
identified two more compounds from NSC
derived from NSC 670229 as novel hAQP1
inhibitors by yeast freeze-thaw assay and
stopped-flow water permeability assay. However,
yeast freeze-thaw assay could not exclude high
toxicity compounds affecting yeast viability and
stopped-flow spectrometer. And in this chapter
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Fig. 22.7 Structures of four compounds of AEDs

somehow, interpretation of possible inhibitory
effects was confounded by the multiexponential
kinetics of the light-scattering data [24].

Novartis Co. also participated in drug discov-
ery of AQP1 inhibitors on account for the func-
tion of AQP1 by mediating water permeability
into the lens. Approximately 6000 drug-like
molecules from AICON’s collection were

Fig. 22.8 Structures of NSC compounds

selected for screen using a high-throughput
assay based on fluorescence quenching assay in
CHO cells overexpressed AQP1 [61]. Two clas-
ses of compounds belonging to aromatic sulfon-
amide (ASQ) and dihydrobenzofuran (DHBH)
(Fig. 22.9) showed IC50 values of hAQP1 in the
range of 3–30 μM in primary screening assay. In
addition, two lead compounds have AQP1
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Fig. 22.9 Structures of
ASQ and DHBH

Fig. 22.10 Structures of
Cpds identified by
molecular docking

inhibition in Xenopus oocyte-swelling assay and
stopped-flow assay [61]. Nevertheless, in another
research [24], lead compounds showed variable
activities in Xenopus oocyte, erythrocyte ghost,
and AQP1 proteoliposome assays due to the
erythrocyte crenation and aggregation which is
the main reason to induce the potential artifacts
in light-scattering assays.

Molecular docking is the efficient method for
discovering compounds which has interactions
with the target protein. Scientists have tried to
apply this method into primary screening for
AQP inhibitors followed by functional assays.
AEDs were discovered as AQP4 inhibitors by
the computational method [52], even though
they showed less AQP inhibition in a follow-up
research [23]. But we could not deny the compu-
tational method and efforts have been made to
optimize the algorithm to improve the precision.
The novel compounds (Fig. 22.10) were
identified by molecular docking against the
hAQP1 and experimentally tested the activity on
AQP1 inhibition in a Xenopus oocyte swelling
assay [62]. Subsequent molecular dynamics
simulations suggested a new binding mode that
strongly involves the ar/R selectivity filter and

Lys36, a residue that is not conserved among
the hAQP family. Although none of the
molecules showed an inhibitory effect in a red
blood cell assay, the inhibition of oocyte swelling
of these compounds could be abolished by mutat-
ing Lys36 to alanine. It suggested that the
observed reduction of water flux is hAQP1-
dependent and not triggered by an indirect effect,
but there is an obvious discrepancy between
results obtained from Xenopus oocyte and
erythrocyte.

Besides the continuous efforts made in discov-
ering AQP1 inhibitor and AQP4 inhibitors, it is
also worthy to mention that a compound, namely
HTS13286 from a 1920 small molecules library
stands out by its stronger selective inhibition of
AQP9 with an IC50 value of 0.15 μM by a CHO
mAQP9 cells shrinking assay [27]. And
HTS13286 also affected mAQP9 solute perme-
ability, including glycerol and urea, which has the
same effect with AQP9 gene deletion on glycerol
gluconeogenesis in perfused mouse livers. In a
word, a glycerol-specific increase in glucose out-
put in wild-type livers was suppressed by
HTS13286 and absent in AQP9-/- livers. How-
ever, due to its low solubility, it is not suitable for



22 Aquaporin Inhibitors 327

Fig. 22.11 Structure of HTS13286

experiment in vivo, yet. For 10 years, it has been
still no new developments for AQP9 inhibitors
and no further progress for this series of HTS
13286 (Fig. 22.11), which remind us there is a
long way and more exactly a tough way to go.

An optimization was applied in molecular
docking for screening both channel-binding
compounds and channel-blocking compounds
[63]. Thirty active compounds with the
105 compounds that were top-ranked by virtual
screen were identified by CHO-hAQP9 cell
shrinking assay. Nine of the 30 compounds pro-
duced an IC50 values of less than 50 μM (the
structures of best six compounds were presented
in Fig. 22.12). It is worth noting that they found
hAQP9 F180V mutant cells presented reduced
water permeability. We hope drug discovery in
AQP inhibitors could be benefitted from
advanced technology in silico.

AQP3 as an aquaglyceroporin is known to
conduct water, glycerol, as well as H2O2. Its
inhibitors have potential for treating disorders of

Fig. 22.12 Structures of
the best six compounds
screened by CHO-hAQP9
cell assay

water retention. DFP00176 was defied as hit com-
pound by CHO cells expressing mAQP3
shrinking assays from a library of 7360 drug-
like small molecules [28]. Then SAR study was
operated among 12 commercially available struc-
turally compounds, DFP00173 that possesses a
urea linker, 2,6-dichlorophenyl in the right-hand
site, and Z433927330 that possesses a methylurea
linker were selected for specificity test for AQPs
(Fig. 22.13). It was found that DFP00173 has
inhibition against mouse and human AQP3 with
IC50 of 0.1–0.4 μM, but low efficacy toward
mouse AQP7 and AQP9 while Z433927330, a
partial AQP3 inhibitor (IC50, 0.7–0.9 μM), also
has potent and efficacious inhibition against
mouse AQP7 water permeability (IC50, 0.2 μM)
[28]. These two compounds could be tools for
investigating the functions of aquaglyceroporins,
and we are looking forward to the further research
in vivo.

22.4 Summary and Prospect

From the point of the view, it is still no effective
AQP inhibitors except for metal-related
compounds whose toxicity could not be denied.
AQPs play important roles in various physiologi-
cal activities, including proliferation and
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Fig. 22.13 Structures of DFP00173, DFP00176, and Z433927330

migration in tumor disease, brain edema, and
other water-retention disorders, which makes
them important drug targets. With the rapid
development of artificial intelligence and com-
puter-aided drug discovery, new approach might
be applied, and we believe novel AQP inhibitors
could be expected. In addition, further study on
DFP00173 is worth waiting for.
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Abstract

Water transport through membrane is so intri-
cate that there are still some debates. AQPs are
entirely accepted to allow water transmem-
brane movement depending on osmotic gradi-
ent. Cotransporters and uniporters, however,
are also concerned in water homeostasis.
UT-B has a single-channel water permeability
that is similar to AQP1. CFTR was initially
thought as a water channel but now not
believed to transport water directly. By
cotransporters, such as KCC4, NKCC1,
SGLT1, GAT1, EAAT1, and MCT1, water is
transported by water osmosis coupling with
substrates, which explains how water is
transported across the isolated small intestine.
This chapter provides information about water
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transport mediated by other membrane
proteins except AQPs.

Keywords

Urea transporter B · CFTR · Cotransporter ·
Water transport

23.1 Introduction

Although the aquaporin (AQP) family has been
identified to allow water transmembrane move-
ment depending on osmotic gradient, there is
water transport mediated by proteins exclusive
of AQPs. Water is either transported through
AQPs driven by osmotic gradient or
cotransported with other substrates. Water is
also uphill transported by water pump
(Fig. 23.1). The most representative non-AQP
water channel is urea transporter B. Moreover,
some cotransporters not only transport specific
solutes or organic molecules across the cell mem-
brane but also act as water transporters. In this
chapter, various modes of water transport and
their physiological roles are reviewed.

23.2 Urea Transporter B

The urea transporter B (UT-B) is widely
expressed in many tissues, such as kidney,
brain, liver, colon, small intestine, pancreas,

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-7415-1_23&domain=pdf
mailto:baoxue@bjmu.edu.cn
https://doi.org/10.1007/978-981-19-7415-1_23#DOI


Fig. 23.1 Three ways of water transport. (a) Water is
transported through a simple channel, driven by osmotic

Fig. 23.1 (continued) driving force, such as AQPs and
UT-B. (b) Water is cotransported with another substrate
through a cotransporter that is bimodal, a passive compo-
nent transport and a secondary active component transport.
Some cotransporters function as both water channel and
water pump, such as NKCC1, KCC, and SGLT1. (c)
Water is transported by a pump that actively transports
water across membranes relying on ATP hydrolysis.
(A darker and larger font indicates less osmolality or
more substrates)
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testis, prostate, bone marrow, spleen, thymus,
heart, skeletal muscle, lung, bladder, and cochlea
[1]. UT-B transports urea and several chemical
analogues of urea, such as methylurea, formam-
ide, acetamide, acrylamide, methylformamide,
and ammonium carbamate. Several studies
suggested that UT-B functions as an efficient
water channel [2–4].

In 1998, Yang et al. found that UT-B was
permeable to water when they measured osmotic
water permeability in Xenopus oocytes
expressing UT-B (originally called UT3 or
UT11) (Fig. 23.2a) [4]. Quantitative measure-
ment of single-channel osmotic water permeabil-
ity (Pf) of UT-B gave a value of 1.4 cm3�s-1.
UT-B medicating water and urea transport were
weakly temperature-dependent, and mostly
inhibited by the urea transport inhibitor [2, 4, 5],
but not inhibited by the AQP inhibitor HgCl2 [2].

The most direct evidence for a common water/
solute pathway is the low solute reflection coeffi-
cient. In the induced osmosis method, oocytes
were briefly swollen in 100 mM Barth’s buffer,
and then the external solution was switched to
50 mM Barth’s buffer containing different
concentrations of urea [4]. As seen in Fig. 23.2a
(top), oocytes expressing UT-B are initially
swollen for external 200 and 400 mM urea and
shrunk for 600 and 800 mM, suggesting σurea (the
urea reflection coefficient) << 1. The
measurements were simulated numerically using
the Kedem–Katchalsky equations of coupled
water and solute transport for different values of
σurea (Fig. 23.2b). There was good agreement
between the simulated and experimental data set
for σurea ~ 0.3. An important control study was
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Fig. 23.2 Urea transporter UT-B functions as a water
channel. (a) Urea reflection coefficient of the UT-B path-
way determined in Xenopus laevis oocytes. (b) Predicted
urea reflection coefficient of the UT-B pathway in

mathematical model. Derived from ref. [4]. (c) Schematic
diagram of UT-B as a urea/water channel utilizing a com-
mon aqueous pathway. (Derived from [5])

done with oocytes coexpressing water channel
AQP1 that is permeable to water but not urea,
and UT-A2 (originally called UT2) that is perme-
able to urea but not water. Figure 23.2a (bottom)
shows little initial oocyte swelling or shrinking
for external 200 mM urea, suggesting that
σurea ~ 1, which was confirmed by the simulated
curves in Fig. 23.2b (bottom). These results
suggested that the UT-B is an aqueous channel
that transports water and urea in a coupled man-
ner (Fig. 23.2c).

Sidoux-Walter et al. confirmed increased
water permeability in Xenopus oocytes
expressing UT-B. However, they concluded that
UT-B-facilitated water transport did not occur
under physiological conditions. They proposed
that UT-B-associated water permeability occurs
only when UT-B expressed at
non-physiologically high levels [6].

To quantify UT-B-mediated water transport in
physiological conditions, double-knockout mice
lacking both UT-B and the major erythrocyte
water channel AQP1 were generated [4]. Osmotic
water permeability in erythrocytes from mice
lacking both AQP1 and UT-B is 4.2-fold lower
than in erythrocytes from mice lacking AQP1
alone. Similar low water permeability was found
in erythrocytes from AQP1 null mice after UT-B
inhibition by phloretin and in erythrocytes from

UT-B null mice after inhibition of AQP1 by
HgCl2. The single-channel (per molecule) water
permeability of UT-B in erythrocytes is very sim-
ilar to that of AQP1 (7.5 × 10-14 cm3 s-1) [2].

In 2013, Slim Azouzi et al. suggested that
UT-B should be considered as a new member of
water channel family, on the basis of the results
that osmotic water unit permeability of UT-B
(pfunit) is similar to that of AQP1. Five water
molecules were found inside the UT-B pore to
form a single file, which moved rapidly along a
channel by hydrogen bond exchange involving
two critical threonines [7]. UT-B is a homotrimer,
and each protomer contains a urea conduction
pore with a narrow selectivity filter [8]. The selec-
tivity filter is divided into three regions: So, Si,
and Sm sites. When the water molecules cross the
region Sm, the water–water (W-W) hydrogen
bonds decrease remarkably, and the number of
hydrogen bonds with the residues lining the pore
increases concomitantly [7]. The fact that urea
and water share the same pathway through the
pore of UT-B also indicates that UT-B acts as a
water channel.

A recent study reported that mouse UT-A2 and
UT-A3 also transport water. Experimenters
injected cRNAs encoding c-myc-tagged mouse
UT-B, UT-A2, or UT-A3 into Lithobates oocytes
and found that UTs successfully expressed
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oocytes and showed significantly increased,
phloretin-sensitive urea uptake, and water
permeability [9].

23.3 Cystic Fibrosis Transmembrane
Conductance Regulator

Cystic fibrosis transmembrane conductance regu-
lator (CFTR) is a membrane protein and chloride
channel in vertebrates [10]. CFTR is expressed in
the apical membrane of epithelial cells in the
airway, pancreas, and intestine [11]. It conducts
bicarbonate [12], interacting with other Cl-/
HCO3

- exchangers to provide a recycling path-
way [13]. CFTR is different from other Cl-

channels. As a unique member of ABC trans-
porter family, it is a primary active transporter
that relies on ATP hydrolysis to actively pump
the substrates across membranes [10]. It contains
five domains: two membrane-spanning domains
(MSDs) forming chloride ion channel, and two
nucleotide-binding domains (NBDs) regulating
channel to open or to close, and one regulatory
domain regulating channel activity [14].

CFTR has been shown to be a regulator of
Na+, K+, and Cl- channel, and it also enhances
osmotic water permeability when activated by
cAMP [15]. Because of the CFTR-dependent
activation of a water permeable membrane con-
ductance, the osmotic water permeability is
activated through stimulation of CFTR in
Xenopus oocytes. CFTR has a calculated single-
channel water conductance of 9 × 10-13 cm3 s-1,
suggesting a pore-like aqueous pathway [16].

In 2000, Schreiber et al. demonstrated func-
tional coupling between Cl- transport as
performed by the CFTR Cl- channel and water
channel performed by AQP3 [17]. Besides, other
members of AQP family interact with CFTR to
regulate osmotic water permeability in various
cellular systems, including in the epididymis
[18]. Considering that AQP7 and AQP8 are
expressed in tar testis with a remarkable similar
distribution of CFTR [19, 20], several studies
attempted to describe their molecular interaction.
The interaction between AQP4 and CFTR occurs
in vivo on condition of a fully intact blood–testis

barrier [21, 22]. The same mechanism was found
between AQP9 and CFTR as well
[23]. Pietrement et al. found water secretion
maybe driven by a CFTR-dependent mechanism
in the distal regions of the epididymis [24]. These
studies showed that CFTR controls the seminifer-
ous tubular fluid in close association with AQPs,
providing new sights of counteract male
subfertility/infertility. CFTR also acts as a regula-
tor of other membrane transporters. However, the
regulation of AQP-mediated water transport is
poorly understood, we think that CFTR cannot
transport water directly but through the establish-
ment of cAMP-stimulated aqueous pore or by
interaction with AQPs [15].

23.4 Cotransporters

Some cotransporters not only transport their spe-
cific substrates but also water (Table 23.1).
Because of the large number of cotransporters
per cell and the considerable unit water perme-
ability, the water transport medicated by
cotransporters may well be significant. The pro-
cess and mechanism of water cotransport has
been studied in cultured mammalian cells, native
tissue, and by heterologous expression in
Xenopus laevis oocytes. Transport of water and
substrates proceed in parallel in a strict stoichio-
metric coupling ratio, with no change when the
cotransport of water is altered abruptly by abrupt
changes of substrates. A variety of techniques
have been used in this area and added the new
vitality to it, for example, fluorescence reporters,
immunoprecipitation, electrophysiology,
ion-selective micro-electrodes, and other sensi-
tive optical methods for volume measurements.

23.4.1 K-Cl Cotransporter

The K-Cl cotransporter (KCC) has been proposed
to play a role in the maintenance and regulation of
cell volume [25] and the movement of chloride
and water in erythrocytes, endothelium, trout
hepatocytes, ascites tumour cells, and kidney epi-
thelial cells [26]. KCC is exclusively colocalized



23 Non-Aquaporin Water Channels 335

Table 23.1 Number of water molecules cotransported per transport cycle

Cotransporters Coupling ratio Passive water permeability per transporter (10-14 cm3 s-1) Reference

KCC4 500 0.01 [31]
NKCC1 59 4 [41]
SGLT1 (human) 230 – [58]
GAT1 (human) 330 0.7 [52, 53]
EAAT1 425 0.2 [57]
NaDC-1 176 1.5 [77]
MCT1 500 0.3 [46]

in the same membrane regions as the Na+/K+

ATPase is. Four isoforms of KCC (KCC1–4)
have been found and shown different expression
pattern depending on tissue types and stages of
ontogenesis with no cell-specific expression
[27]. KCC1, as the primary choroidal KCC iso-
form, is localized at the basolateral membrane
[28]. KCC4 is weakly expressed in the mamma-
lian cerebral cortex, hippocapus and cerebellum,
but abundant in the apical membrane of choroid
plexus and peripheral neurons, the water transport
medicated by KCC4 was mostly studied under
circumstances [29].

Thomas et al. studied the interaction between
the K+, Cl-, and H2O fluxes in the membrane of
the choroid plexus epithelium from Nectyrus
maculosus [30]. They hypothesized there is
cotransport of K+, Cl-, and H2O. Hydration of
the binding of K+ and Cl- induces a conforma-
tional change in the KCC, which causes the per-
meability barrier to shift from one side of the
membrane to the other [31]. The external osmo-
lality is higher than the intracellular osmolality by
100 mOsm; the intracellular concentrations of K+

and Cl- changed only a few millimolar during the
exposure to KCC. When the KCC was blocked by
furosemide, the cell shrank osmotically in
response to the addition of 50 mM KCl
[31]. Water transport by KCC is abolished with
the absence of the Cl-, and the passive water
permeability is lower than other cotransporters
(of the order of 10-16 cm3 s-1).

However, KCC1 from kidney inner medulla
does not serve as a secondary active transport,
with the evidence no water transport occurred in
the absence of osmotic pressure [32], contrary to
the water flux 1:500 stoichiometry of K+:H2O
ratio in the choroid plexus [30].

These findings of KCC clarified some unex-
plained findings for water transport and
questioned the simple osmotic models. As a
water pump, the function of KCC well explains
the ability of the epithelia, such as small intestine
and gallbladder absorb water against osmotic
gradients of up to 200 mOsm [33]. What surprises
us is that at physiological osmolality, the KCC
contributes to half of the capacity for water trans-
port across the exit membrane.

23.4.2 Na-K-Cl Cotransporters

The Na-K-Cl cotransporters (NKCC) are a class
of membrane proteins that transport Na+, K+, and
Cl- ions into and out of a wide variety of epithe-
lium and other cells [34]. So far, two distinct Na-
K-Cl cotransporter isoforms have been identified,
i.e., NKCC1 and NKCC2. NKCC1 is present in
basolateral and the apical membrane of choroid
plexus such as the small intestine and the kidney
proximal tubule [35–37]. NKCC2 is expressed
only in the kidney epithelial cells in the thick
ascending limb. Interestingly, NKCC1 is specifi-
cally distributed in the smooth muscle cell layer
that penetrates the small arteries and veins of the
brain and spinal cord, as well as in the endothe-
lium of capillaries and small veins, confined to
the vascular system of the subarachnoid space
[38], which is asymmetrical and most residing
into the luminal membrane [39].

NKCC1 transports both ions and water, but
NKCC2 only transports ions. The water transport
by NKCC1 proceeds uphill against osmotic
gradients. In the pigmented epithelium, NKCC1
contributes to half of the passive water permeabil-
ity through basolateral membrane at normal
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properties [40]. Different from the conventional
channel-mediated osmotic transport, the activa-
tion energy is higher than that of aqueous pores
(21 kcal mol-1) [41]. Water permeability per
protein is rather high about 4 × 10-14 cm3 s-1.
The NKCC1-dependent influx of water is voltage
insensitive, temperature dependence, and inde-
pendent of a functional Na+, K+-ATPase. Around
115 water molecules are transported per turnover
cycle in NKCC1 with one Na+, one K+, and two
Cl- ions [42].

As a water pump, the Cl--dependent influx
proceeds inwards against the osmotic gradient of
50 mOsm imposed by the mannitol, which
indicates that in NKCC1, ion fluxes are tightly
coupled to water influxes [41]. The selective
NKCC1 inhibitor bumetanide reduces the cyto-
toxic brain oedema during middle cerebral artery
occlusion. NKCC1, as an important molecule in
the water permeability of the blood–brain barrier,
contributes to the formation of cerebral oedema
after ischemia [39]. NKCC1-mediated water
cotransport is important for cerebrospinal fluid
(CSF) formation [43, 44], allowing CSF produc-
tion independent of the osmotic gradient in a
manner determined by the prevailing ionic gradi-
ent, produced and maintained by the synergistic
action of Na+/K+-ATPase and a large number of
other ion transporters and channels expressed in
the choroid plexus [28]. Under basal conditions,
apical NKCC1 is continuously active and works
in the net inward flow manner to maintain the Cl-

concentration and cellular water volume required
for CSF secretion [43]. The function that NKCC1
controls Cl- and water transport also has clinical
relevance about disorders of chloride transport
and fluid absorption that mainly causes blindness.

Not all isoforms of NKCC1 transport water.
The NKCC1 in renal medullary thick ascending
limb cells has no capacity to cotransport water
due to its low hydraulic conductance [40].

23.4.3 Moncarboxylate Transporter

Moncarboxylate transporter (MCT) catalyse the
facilitated of lactate with a proton and transport
other metabolically important monocarboxylates

such as pyruvates, the branched-chain oxo acids
derived from leucine, valine and isoleucine, and
the ketone bodies acetoacetate,
β-hydroxybutyrate, and acetate [45]. There are
nine MCTs, and they distribute in different
tissues. MCT1 and MCT4 are expressed ubiqui-
tously in most tissue but MCT2 restrictively
distributes in testis; MCT3 is exclusively
expressed in the retinal pigment epithelium
(RPE) [45]. Little consideration for MCT5–
MCT9 made it unclear for the function of them.

It has been proposed that MCT1 on the apical
surface of the retinal pigment epithelium plays an
additional role in regulating the volume of the
subretinal space, since lactate-H+ transport is
accompanied by water transport [46, 47]. The
water cotransport properties of MCT1 have also
been found in the human fetus, and the water
permeability is gated by lactate. The interdepen-
dence of the fluxes of MCT cotransport had a
fixed ratio of about 109 mmol of lactic acid per
liter of water, that is to say MCT1 cotransports
500 water molecules with each lactate molecule,
and exhibited saturation for increasing driving
forces [48].

It is worth raising that NKCC1 co-localized
with the MCT1 contributes to the uphill transport
of water against the osmotic gradient resembles in
the apical membrane [49]. The ability of MCT1 to
transport rapidly both lactic acid and water across
the RPE and into the blood will prevent an accu-
mulation of lactate, which would cause osmotic
swelling and the retina detaching from the RPE. It
suggests the physiological significance of MCT1.

Neuronal activity induced fluctuations in
extracellular lactate concentration and may have
decreased transiently during the first few seconds
of neuronal activation [50], such fluctuations are
similar to activity-evoked K+ transients, pH
transients and extracellular space volume dynam-
ics. Inhibition of MCT1 reduces activity-induced
extracellular gap contraction in rat hippocampal
slices [51]. The transient decrease in extracellular
lactate concentration induced by initial activity is
due to MCT-mediated lactate uptake resulting in
contraction of the extracellular space, possibly
through the ability of the MCT to cotransport
water and the consequent cell swelling.
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23.4.4 GABA Transporter

GABA is removed from the synaptic cleft by
means of Na+ -Cl- coupled reuptake. Four differ-
ent GABA transporter (GAT) subtypes have been
described (GAT-1, GAT-2, GAT-3, and the
betaine–GABA transporter-1 (BGT-1)). GAT1
behaved as an SKF89976A-sensitive water chan-
nel [52]. Using the Xenopus laevis oocyte expres-
sion system, the water permeability of the GAT-1
in the oocyte was about 3 × 10-6 cm�(s�osmol�l)-
1 or 1.6 × 10-4 cm�s-1. Data showed the strict
proportionality between the GABA transport and
the instant influx of water. The coupling ratio was
330 water molecules per cycle. Cotransport of
water was composed of two parts: the cotransport
component and the osmotic component. It was
constant and independent of external osmotic
gradients.

The GAT-1 also worked as a Li+ channel in the
absence of GABA and Na+. However, the water
permeability was reduced by 40% when Na+ was
replaced by Li+ in the bathing solution
[53]. Linked with the debates with SGLT, which
also supports the water cotransport, is dependent
on Na+-medicated cotransporter and not by the
accumulation of ions in an unstirred layer. Other-
wise, when Li+ replaces Na+ in the bathing solu-
tion, cotransport of water was also observed.

23.4.5 Na+-Coupled Glutamate
Transporter EAAT

The five Na+-coupled glutamate transporter
isoforms (EAAT1–5) have distinct expression.
The human EAAT1 was primarily found in glial
cells [54] and also locate in peripheral tissue
[55]. EAAT1 is highly expressed in brain capil-
lary endothelium [56], which provides a trans-
endothelial channel for glutamate and may play
a role in the endothelial contribution to CSF and
ISF secretion through the ability to cotransport
water. There are two modes of water transport in
human EAAT1, which are separated and proceed
in parallel. Every unit charge with about
436 water molecules was cotransported along
with glutamate and Na+ by a mechanism within

the protein. The transporter also sustained passive
water transport in response to osmotic challenges
[57]. Cotransport of water proceed uphill against
the water chemical potential difference. Gluta-
mate increases the osmotic water permeability of
the EAAT1 irrespective of the rate of cotransport.
Unlike the high external hyperosmolarity of Na+-
glucose cotransporter SGLT1 (15 mosmol l-1), in
ETAA1, it took a lower external hyperosmolarity
(5 mosmol l-1) to match osmosis with
cotransport [58].

23.4.6 Sodium Glucose Transporters
(SGLT)

Twelve members are found in the human sodium
glucose transporters (SGLT) family. Except for
SGLT1–5 cotransporting for sugars, they include
Na+ cotransporters for myo-inositol, iodide,
short-chain fatty acids, and choline. SGLT6 is
also known as Na+/inositol cotransporter
2 (SMIT, sodium myo-inositol [59]; CHT, cho-
line; SMVT, sodium multivitamin [60]; SMCT,
sodium monocarboxylic acid; NIS, sodium iodide
cotransporters) [61].

As a multifunctional protein, SGLT1 works as
a water channel and transporter coupled water and
glucose. The passive osmotic permeability of the
hSGLT1 plays an important role in the final
achievement of isotonic transport. And the water
cotransport (4 l of water with 1 M of glucose) in
the human small intestine plays a vital important
role in reuptake (total 9 l per day) [62].

Molecular dynamics studies of SGLTs have
shown that water flows through the sugar trans-
port pathway [63]. SGLT1 has three modes in
isotonic water transport. First, water influx is
directly correlated with Na+ and glucose in the
ratio of 260 H2O/2 Na

+/1 glucose with no delay in
human [64]. Second, it acts as a water channel
[58]. Last, it generates an osmotic driving force
that is employed by other pathways. Water per-
meability was increased more than tenfold in the
circumstances of co-expression of AQP1 with
SGLT1 [65]. The initial rate of water transport
varied with the membrane potential, temperature.
Arrhenius plots of Na+/glucose cotransport is as
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high as water flow (26 kcal�mol-1) [64]. The
cotransport of water was independent of the
osmotic gradient and even occurred in the pres-
ence of adverse osmotic gradients.

However, Charron et al. agreed with that the
water transport mediated by SGLT1 was osmotic
and proposed to arise as an unstirred layer effect
[66]. The cotransport hypothesis and the osmotic
hypothesis explain some numerical analysis at the
same time, but the cotransport hypothesis gave a
better fit to the volume changes [67].

Study of the Na+-coupled iodide transporter
(NIS), in which thiocyanate (SCN-), substituting
for iodide (I-), was conducted in the
cotransporters expressed in Xenopus oocytes.
Less water was cotransported along with the
larger substrates [68]. For example, the coupling
of rabbit SGLT1, human SGLT1, NIS, and a plant
H+/amino acid cotransporter (AAP5) ranged from
50 to 425 water molecules per turnover [69].

23.4.7 Sodium Borate Cotransporter

As a member of the Slc4 family, sodium borate
cotransporter is an extremely important protein
for both yeast and plant. Because borate plays a
significant role to cross-link vicinal diols to stabi-
lize the structure of cell walls in bacteria, plants,
and fungi [70]. However, it is still confused about
what role biochemical serves for borate in
mammals. Sodium borate cotransporter is abun-
dantly expressed in the renal descending loop of
Henle [71] and localizes basolaterally in the cor-
neal endothelium. Also, it is broadly expressed in
salivary glands, thyroid gland, and testis [72].

Sodium borate cotransporter mediated water
flux driven exclusively by an osmotic gradient
when expressed in Xenopus laevis oocytes and
HEK293 cells. Water-flux through Slc4a11 is
103-fold faster than water movement reported
for SGLT1 [73].

Sodium borate cotransporter localizes on the
opposite surface from apical AQP1, functions the
basolateral pathway for the water transport from
the corneal stroma into the endothelium, and
AQP1 mediates water transport out of the corneal
stroma into the aqueous humour. The studies

suggest that AQP1 and sodium borate
cotransporter are coefficient in mediating trans-
endothelial water reabsorption [73].

23.4.8 Na+-Dicarboxylate
Cotransporter

Na+-dicarboxylate cotransporter (NaDC-1)
belongs to the Slc13 family of anion transporters
[74]. Na+-dependent anion transporters contain
the Na+-dependent dicarboxylate transporter and
the renal Na+-sulfate cotransporter [75]. Na+-
dicarboxylate cotransporter was found in the api-
cal membrane of the kidney proximal tubules and
contributed to the reabsorption of tricarboxylic
acid cycle intermediates [76].

NaDC-1 mediates both passive and solute-
coupled water transport and contributes to fluid
reabsorption across the proximal tubule. Many
studies suggest that SGLT1 and NaDC-1 share a
common mechanism for passive water transport.
Water transport medicated by NaDC-1 occurs in
the absence or even against an osmotic gradient.
The ratio between Na+, citrate (or succinate), and
water is 3:1:176 per transport cycle [77].

NaDC1 plays an important role in regulating
succinate and citrate concentrations in the urine.
Single-nucleotide polymorphisms in the human
Na+-dicarboxylate cotransporter affect transport
activity and protein expression, which contributes
to human diseases such as kidney stones [78].

23.4.9 Glucose Transporter (GLUT)

Twelve isoforms of glucose transporters (GLUT)
have been found in mammalian cells. GLUT1
was the first cloned and most extensively studied.
It is abundantly expressed in erythrocytes and
endothelium of the blood–brain barrier
[79]. GLUT1, GLUT2, and GLUT4 have been
shown to support osmotic water fluxes in addition
to its own role as glucose transporters.

In 1989, by investigating the effects of
inhibitors of glucose transport on membrane
osmotic water permeability, Fischbarg et al.
concluded that glucose transporter serves as a
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water channel in some cells and is sensitive to the
specific inhibitor phloretin [80]. Xenopus laevis
oocytes injected with mRNA encoding the glu-
cose transporters exhibited an average of 4.8-fold
of the osmotic water permeability [81]. However,
GLUTs serve as water channels in brain, skeletal
muscles, and liver but not in kidney or intestine
epithelium [82].

Water transport in the GLUT1 and GLUT2 has
been demonstrated to be bimodal. They act as a
water channel, and water is cotransported
together with the glucose. The water permeability
of GLUT2 in oocytes is 0.11 × 10-5 cm�
(s�osmol�l)-1, equivalent to 6.1 × 10-5 cm�s-1.
GLUT2 cotransports less water in the inward than
in the outward. Compared to the Na+-coupled
glucose transporter, the coupling ratio of
GLUT2 is six times smaller [83].

Water is transported through GLUT1 by two
main mechanisms. First, GLUT1 has a small but
well-defined passive osmotic water permeability
that is effective both in the absence and in the
presence of glucose. Second, the inward flow of
glucose begins when glucose is added to the
external solution. Under this condition, a total of
40 water molecules were cotransported for each
glucose molecule [84]. Conformational changes
occur when glucose is applied to the GLUTs.
Glucose together with a number of water
molecules is occluded, and an aqueous cavity
opens to trans side with the glucose exited
[68]. The other three-compartment model for
transepithelial water transport suggests the cou-
pling space is associated with a static aqueous
cavity with substrate binding site [85].
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Methods to Measure Water Permeability24
Evgeniy I. Solenov, Galina S. Baturina, Liubov E. Katkova,
Baoxue Yang, and Sotirios G. Zarogiannis

Abstract

Water permeability is a key feature of the cell
plasma membranes, and it has seminal impor-
tance for several cell functions such as cell
volume regulation, cell proliferation, cell
migration, and angiogenesis to name a few.
The transport of water occurs mainly through
plasma membrane water channels, aquaporins.
Aquaporins have very important function in
physiological and pathophysiological states.
Due to the above, the experimental assessment
of the water permeability of cells and tissues is
necessary. The development of new
methodologies of measuring water permeabil-
ity is a vibrant scientific field that constantly
develops during the last three decades along
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with the advances in imaging mainly. In this
chapter we describe and critically assess sev-
eral methods that have been developed for the
measurement of water permeability both in
living cells and in tissues with a focus in the
first category.

Keywords

Aquaporin · Cell volume · Osmotic water
permeability · Plasma membrane

24.1 Introduction

Water transport in cell and tissue systems is a
necessary property for maintaining their homeo-
stasis [1]. Water is the most abundant component
of the human body; therefore, mechanisms that
regulate its transport are essential for life. Water
permeability is a key feature of the cell
membranes that is of critical importance for sev-
eral cell functions that among others include cell
fluid secretion and absorption, cell volume regu-
lation, cell proliferation, cell migration, angiogen-
esis, and other processes [2, 3]. Several different
pathways are involved in the transport of water
across the cell plasma membrane that involve
water transport by simple diffusion, transport of
water molecules through water channels by
facilitated diffusion, and water transport with
hydrated solutes. Facilitated diffusion of water
through plasma membrane channels is mediated
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through aquaporins (AQPs), a class of membrane
water channels whose primary function is to facil-
itate the passive transport of water across the cell
plasma membrane [4]. AQPs have attracted huge
research interest during the past 25 years, and
currently, there is enough evidence that they
have important roles in nervous, respiratory,
renal, cardiovascular, gastrointestinal, reproduc-
tive, and sensory system physiology [5–15]. Fur-
thermore, various studies have shown that AQPs
are involved in several pathologies such as can-
cer, brain edema, brain injury, epilepsy, obesity,
glaucoma, and others [4]. Finally, it is important
to note that in humans there is a class of diseases
recently termed aquaporinopathies and refer to
rare cases of loss-of-function mutations in
human AQPs. More specifically, loss-of-function
of AQP0 causes congenital cataract and of AQP2
causes nephrogenic diabetes insipidous (NDI)
[16, 17]. Serum autoantibodies against AQP4
are a hallmark of neuromyelitis optica (NMO), a
rare autoimmune disease [17]. Due to the involve-
ment of the channels that mainly mediate the
transport of water through cell plasma membranes
in so many physiological and pathophysiological
states, researchers need to have the appropriate
tools to assess and study water permeability. The
fact that a lot of focus is placed in identifying
modulators of AQPs for the treatment of several
diseases demonstrates the importance of having
precise and reliable experimental techniques for
water permeability measurements [18].

Cell volume is the most sensitive parameter to
the changes of the total water current across the
cell plasma membrane [19]. In general water per-
meability is measured from the kinetics of the cell
volume changes in response to an osmotic gradi-
ent. A variety of experimental approaches have
been developed to subject cells to an osmotic
gradient and subsequently record the resultant
kinetics of cell volume from which water perme-
ability is deduced. The problem of water perme-
ability determination is a problem of volume-
dependent physical parameters measurement.

The methods used to measure osmotic water
permeability are technically challenging, subject
to various mixing/flow-related artifacts, and not

easily applied to highly water-permeable cells. A
very critical characteristic of an experimental
setup is the time needed for the establishment of
the desired osmotic gradient. All the modern
experimental approaches for measuring cell
water permeability underestimate this parameter,
and the degree of the underestimation is depen-
dent on the lag time of the establishment of the
osmotic gradient during the experiment. Many
types of cells are highly permeable to water
because of the abundant expression of AQPs in
their plasma membrane [5, 20]. Studies of the
water permeability conducted in highly water
permeable cells require methods that have very
short osmotic gradient formation time. Failure in
the incorporation of such a parameter in water
permeability measurement studies compromises
the validity of the results and subsequently their
translation to clinically useful therapies. Indeed,
although AQPs are considered to be important
drug targets for a variety of diseases, and great
effort is put in the identification of appropriate
AQP modulators; there is poor progress in
targeted therapeutics, partially due to challenges
and artifacts in cell membrane water permeability
measurements [18].

The purpose of this review is to survey the
modern experimental approaches for the mea-
surement of water permeability of living cells
and multicellular tissues. We will discuss the
principles of each methodology, technical details,
and limitations. Strategies for the measurement of
the plasma membrane osmotic water permeability
(Pf) in living cells that are described involve
image analysis, light scattering, total internal
reflection fluorescence microscopy, confocal
microscopy, interferometry, spatial filtering
microscopy, scanning probe microscopy, bioelec-
trical impedance methods, and volume-sensitive
fluorescent indicators. The fundamental physical
principles of the cell membrane osmotic water
permeability were reviewed in detail earlier
[21]. In short, the osmotic volume flow (Jv, cm

3/
s) across a selectively permeant membrane is
described by the following equation and
Fig. 24.1:
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Fig. 24.1 Volume flow across a single barrier separating
compartments 1 and 2. ci1 and ci2 are the osmolalities of
impermeant solutes on sides 1 and 2, and cp1 and cp2 the
osmolalities of permeant solutes, Vw the partial molar
volume of water, S the membrane surface area, σp the
solute reflection coefficient, P the hydrostatic pressure.
Barrier permeability properties include the osmotic water
permeability coefficient Pf, the solute permeability coeffi-
cient Ps, and the solute reflection coefficient σp.Water flux
(Jv) and solute flux (Js) are defined as positive in the left-
to-right direction as indicated

Jv=
PfSVw ci2-ci1ð Þþp cp2-cp1

� ��

þ P1-P2ð Þ=RT� ð24:1Þ

The interpretation of the measured Pf assumes
accurate definition of the cell membrane surface
area S, the absence of significant unstirred layer
effects and types of transporters, which carry
water with or without hydrated solutes. As
defined by Eq. (24.1), Pf is measured from the
volume flux produced by a defined osmotic gra-
dient or hydrostatic driving force. In animal cells
that have just a soft plasma membrane, the hydro-
static driving force is considered insignificant.

Molecular transporters that contribute to the
total water flow could be temperature dependent
according to their Arrhenius activation energy.
The Arrhenius activation energy (Ea, kcal/mol)
is defined by the relation ln Pf = Ea/RT + A,
where R is the gas constant, T is absolute temper-
ature, and A is an entropic term. Ea provides a
measure of the energy barrier to the water move-
ment though the molecular transporter. For water
movement through aqueous channels, Ea is gen-
erally found to be low (3–6 kcal/mol). The low Ea

associated with water pores is assumed to be
related to the weak temperature dependence of

the water self-diffusion [21]. In the case that
water is transported along with hydrated solvents
and contributes significantly to the cell volume
changes, the Ea of the specific solute transporters
could produce temperature dependence of the Pf

of the living cell plasma membrane. In such a
case, the Pf values should be obtained at the
temperature that is normal for the cells under
study to be adequate for the purpose of a physio-
logical study.

24.2 Water Permeability Methods
Based on Cell Volume
Measurements

24.2.1 Water Permeability
Measurement by 2D Image
Analysis

In cells observed under wide field microscopy,
the changes in their cell volume are often
accompanied by small changes in their size that
can be measured in the images captured during
the experiment. To estimate the cell volume, the
area of a cell is measured by tracing its outline on
the video images. This method of cell volume
measurement is based on the analysis of
two-dimensional (2D) images and on the assump-
tion that the cells change its sizes to the same
extent in all three dimensions. Polarizing, phase
contrast, and various forms of interference
microscopy are the most frequently used micro-
scopic methods for observing living cells and
simultaneously recording images continuously
using a video camera [22–26]. The relative vol-
ume of the cell was estimated as V/V0= (A/A0)

3/2,
where V is the volume, A is the area, and the
subscript 0 indicates the control value. This
method using differential interference contrast
microscopy and digital imaging was created for
the measurement of the cell volume and to exam-
ine the effects of muscarinic stimulation on single
rat salivary gland acinar cells [27]. The advantage
of this approach is the use of unlabeled cells and
the possibility to measure the reaction of cells in
small tissue structures [28]. The disadvantages of
the several variations of this method are that they
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are mainly limited by: (a) the resolution capacity
of the lens system used, (b) the contrast that the
specimen generates in the image, and (c) the time
required for an image to be recorded. As men-
tioned above to estimate the cell volume, the area
of a cell is measured by tracing its outline on the
video images; therefore, this method is not ade-
quate for cells that have high water permeability
and thus fast kinetics of cell volume changes [25].

Based on the principles of this methodology in
the recent years, image-based cytometry systems
have been developed that use bright-field and
fluorescent imaging. These image-based systems
have been demonstrated to perform numerous
assays, such as quantitative cell size and morphol-
ogy analysis and potentially can be used for
measurements of cell water permeability but no
such experiments are currently published
[29, 30].

24.2.2 Water Permeability
Measurement by Scanning
Probe Microscopy

The most accurate measurements of cell volume
are achieved by the direct scanning of living cells
and the use of scanning probe microscopy (SPM),
and in this context both atomic force microscopy
(AFM) and scanning electrochemical microscopy
(SECM) have been used to image live cells
[31]. In these studies, three-dimensional recon-
struction of the cell shape is achieved by scanning
confocal microscopy and different modifications
of SPM such as real-time AFM [32, 33]. One of
the drawbacks of AFM is the fact that an external
mechanical force is applied to the cell because the
detection of the cell surface is performed with the
deflection of a cantilever. Such an external force
is not acceptable in physiologically relevant
experiments with mechanosensitive live eukary-
otic cells. Scanning ion conductance microscopy
(SICM) is a form of SPM that overcomes this
problem by allowing the imaging of the cell sur-
face under physiological conditions without any
physical contact and with a resolution of 3–6 nm
[34, 35]. Even SICM though like the other SPM
methods is more fit for relatively flat surfaces

given that in cases of convoluted surfaces there
is a collision of the probe that interferes with cell
integrity again. This problem is not an issue in
hopping probe ion conductance microscopy
(HPICM) where the probe never touches the sur-
face of the cell. In this case the probe that senses
current fluctuations and translates it in sample
height even at a reduction of 1% is at a
Z-position that still does not interfere with the
cell membrane at the imaging point. Using
HPICM non-contact imaging of the three-
dimensional surfaces of live cells can be achieved
with resolution better than 20 nm [36]. These
methods are quantitative and provide the best
spatial resolution of living cells, but scanning is
a relatively slow process and like all other SPM
techniques their use is restricted to imaging rela-
tively flat surfaces with the exception of HPICM.
These limitations make SPM probably not practi-
cal for studying the kinetics of cell volume
fluctuations in living cells.

24.2.3 Water Permeability
Measurement by Light
Scattering and Spatial Filtering
Microscopy

Cell volume changes lead to changes of the elas-
tically scattered light (Rayleigh scattering), and
this effect is the basis of the method of measure-
ment of the cell water permeability by light scat-
tering. The method is simple to apply and requires
very small sample quantity; however, there is no
practical theory that reflects the relationship of
scattered light intensity and cell volume because
of complexities in the cell optical configuration
and interference phenomena. Therefore, assess-
ment of light scattering provides a semiquantita-
tive index of the cell volume changes in relatively
large and adherent cells such as the macrophages
[37]. Quantitative data interpretation for this
method is efficient for a limited kind of objects
that have a relatively simple shape such as
vesicles or erythrocytes [38, 39]. Nevertheless,
the value of Pf of the cells can be calculated
from the time course of the light scattering, the
cell surface-to-volume ratio, and an empirical
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calibration of the cell volume and the intensity of
the light scattering [40]. An advantage of this
method is that it has satisfactory temporal resolu-
tion, and the main drawbacks are that a calibration
step is required in order to evaluate the cell vol-
ume and the values that are obtained are relative
values.

The angular dependency of the intensity of
light scattering by a moving individual particle
was the basis for the flying light scattering
indicatrix method (FLSI) using a scanning flow
cytometer (SFC) [29]. The FLSI method was used
for the measurement of individual particle
characteristics from light-scattering data, to deter-
mine the particle size of polystyrene, latex, milk
fat, and spores of Penicillium levitum, Aspergillus
pseudoglaucus. Measuring cell volume in a flow
cytometer could potentially be a prospective
approach for high-throughput screening studies
of the distribution of Pf values in populations of
cells in suspension.

Methods based on the measurement of
scattered light intensity are suitable for
investigations of homogeneous suspensions of
uniform objects like cells or vesicles. They have
been used for suspensions of erythrocytes [41], in
flow cytometers [29, 42, 43], in suspensions of
membrane vesicles and liposomes reconstituted
with water channels [40, 44, 45]. Due to the
sufficient temporal resolution, light scattering
was used to determine the Pf of lung alveolar
epithelial cells that have very high cell membrane
water permeability [46]. The method was also
applied to calculate the plasma membrane Pf of
cells in micro-dissected fragments of mouse kid-
ney collecting duct. More specifically, the time
course of the light scattering intensity measured
in dark field microscope on individual fragments
positioned in a thermo-stabilized flow chamber
was used to study the regulation of Pf by vaso-
pressin [47, 48].

A theory relating the signal intensity to the
relative cell volume was developed based on the
spatial filtering and the changes in the optical path
length associated with cell volume changes. It
was found that the integrated intensity of mono-
chromatic light in a phase contrast or dark field
microscope was dependent on the relative cell

volume. The method was applied to characterize
transfected cells and tissues that natively express
water channels, and the results established light
microscopy with spatial filtering as a technically
simple and quantitative method to measure water
permeability in cell layers (Fig. 24.2) [49]. The
method is simple, accurate, and robust if used in
cell layers or uniform cells; however, it may work
in systems with heterogeneous cells.

Other approaches to follow osmotically
induced changes in the cell volume include track-
ing of immobilized fluorescent beads at the cell
surface and laser reflection microscopy
[50, 51]. In another method, the measurement of
cell volume and osmotic water permeability in
Madin Darby Canine Kidney (MDCK) cell layers
has been performed by interferometry based on
the cell volume dependence of the optical path
length (OPL) of a light beam passing through
cells. The time course of relative cell volume in
response to an osmotic gradient was computed
from serial interference images. To relate the
interference signal to cell volume, a mathematical
model was developed for this purpose [52]. How-
ever, these methods are less practical since they
are experimentally challenging, require complex
instrumentation while at the same time may not
work in many systems.

24.2.4 Water Permeability
Measurement by Bioelectrical
Impedance Analysis

Impedance data obtained from microfluidic
impedance flow cytometry enable the characteri-
zation of cellular sizes, membrane capacitance,
and cytoplasm resistance in a high-throughput
manner [53]. Bioelectrical impedance analysis is
used in flow cytometry, for example, a Coulter
counter measures the changing of DC resistance
between two electrically isolated fluid-filled
chambers when microparticles act as an insulating
layer as DC passes through a small connecting
orifice [54]. Microfluidics is the technology of the
processing and manipulation of small amounts of
fluids (10-9 to 10-18 liters) in channels with
dimensions of tens of micrometers. These
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Fig. 24.2 Schematic of the principles of plasma mem-
brane water permeability measurement by means of spatial
filtering microscopy. A cell layer under phase contrast or
dark field microscopy is shown to change its cell volume
under corresponding changes in the medium osmolality

that lead to changes in the relative intensity of the higher
and zero order beams due to optical path length changes.
Attenuation of the zero-order beam at the back focal plane
of the objective results in light intensity dependency from
the cell volume fluctuations

advantageous features of microfluidic
technologies have been used for characterizing
the biochemical and/or biophysical properties
(mechanical and electrical) of cells at the single-
cell level [55]. This technology is prospective for
high-throughput single-cell characterization.
Electrical impedance-based noninvasive cell and
tissue-characterizing techniques have become
more and more popular in several fields of appli-
cation [53, 56, 57]. Microfluidic technology
includes manipulation with laser tweezers to
drag a single cell to a certain position for the
measurement of cell characteristics in
experiments of electrorotation (ROT) [58]. ROT
operates at a single-organism level and does not
require extensive cell preparations while the tech-
nique is a noninvasive and allows for sequential
investigations. A significant disadvantage of the
ROT technique for analyzing single cells is that it
takes approximately 30 min per test and also
requires a skilled operator to position a single
cell in the middle of a rotating electric field.
Therefore, the temporal resolution that it can
offer now is far from being suitable for
measurements of cell volume changes kinetics.

On the other hand, methods with high temporal
resolution based on light scattering, bioelectrical
impedance changes, and cell labeling with fluo-
rescent dyes are the most adequate to study the
cells with high water permeability.

Several optical approaches are applied to mea-
sure the fluorescence intensity of an aqueous-
phase fluorophore in the cytoplasm. Cell-loadable
fluorescent dyes are available with various
properties and wavelengths. Semiquantitative
information about the cytoplasmic fluorophore
concentration can be obtained using partial con-
focal optics in which the z-point spread function
of a wide-field optical system is increased using a
high numerical aperture objective and a limiting
aperture in the back focal plane of the emission
path [21]. The confocal methods have limited
utility in making quantitative Pf measurements
in polarized cell sheets. The z-point spread func-
tion of a wide-field optical system could not be
increased inside most of the flat cells where thick-
ness of the edges could be about 0.5 μm. This
means that the volume where the fluorescent sig-
nal is registered from is both undefined and unsta-
ble. The ratio signal/noise in such a system could



24 Methods to Measure Water Permeability 349

be low and unstable. This limitation has been
removed using laser confocal systems with
z-size of registering the volume inside the cell
less than 0.5 μm [59]. This method is extremely
sensitive to proper focusing and requires high-
quality optics. This limitation is the reason why
it has been scarcely used for the measurement of
cell water permeability.

A more robust method is based on the effect of
total internal reflection (TIR) that could be
applied using a conventional microscope. How-
ever, a more sophisticated approach to measure
the concentration of an aqueous-phase
fluorophore in the cytoplasm is the total internal
reflection fluorescence microscopy (TIRFM).
TIRFM involves the excitation of fluorophores
in a cell membrane area in great proximity with
the adjacent cytosol near a high-to-low refractive
index interface [60]. Fluorescence excitation is
usually accomplished using a laser source and a
glass prism to illuminate the sample at a subcriti-
cal angle at a glass–aqueous interface (Fig. 24.3).
It is not difficult and costly to equip a conven-
tional epifluorescence microscope with a laser
source and a prism to perform TIRFM
measurements. The procedure involves loading

Fig. 24.3 Measurement of osmotic water permeability in
adherent cells by total internal reflection fluorescence
microscopy. Cells are loaded with a membrane
impermeant volume marker. A thin (50–200 nm) layer of
cytosol (labeled “penetration depth”) is illuminated by a
laser beam directed through a glass prism at a subcritical
illumination angle. As the cell shrinks in response to an
osmotic gradient, fluorophore concentration in the
illuminated region increases, producing an increase in
detected signal. (Reprinted from Ref. [21])

cells with an aqueous-phase dye and the cell
swelling in response to an osmotic gradient result
in the cytosolic fluorophore concentration dilu-
tion and subsequently to decreased fluorescence
signal [61].

Optical near fields have been successfully used
to confine observation volumes of surface-
confined and solution fluorescence correlation
spectroscopy (FCS). The standard confocal FCS
has the immanent problem that the ellipsoidal
observation volume has a low axial confinement.
TIR-FCS uses objective-type TIRF illumination
to restrict the excitation to a thin section less than
200 nm above the interface in combination with
standard confocal detection to improve the lateral
confinement of the detection volume. The quanti-
tative study of cellular dynamics even in the level
of cellular compartments may be useful for the
study of processes close to a surface/solution
interface. Potentially, it can give access to local
fluorophore concentrations or kinetic rate
constants for reversible association of
fluorophores with specific substrates in
interface [62].

The methods for the measurement of rapid
osmosis in cultured cell monolayers using confo-
cal and spatial filtering microscopy may not pro-
duce acceptable signal changes in cells that have a
low water permeability profile and complex
shape. Hamann and coworkers evaluated a
calcein self-quenching method for water transport
measurements [63]. In this method, high
concentrations of calcein are loaded into the
cells to produce volume-dependent changes in
the total cell fluorescence in response to changes
in cytoplasmic calcein concentration due to cell
swelling or shrinkage. A more practical modifica-
tion of the calcein fluorescence quenching
method was created to measure osmotic water
permeability in highly differentiated cultures of
primary brain astrocytes from wild-type and
aquaporin-4 (AQP-4)-deficient mice [64]. Cell
swelling resulted in a reversible increase in the
calcein fluorescence, which was independent of
cytosolic calcein concentration at levels well
below where calcein self-quenching occurs. The
method is based on the quenching of calcein
fluorescence by cytosolic proteins. The
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fluorescent signal in cells is sensitive to osmotic
challenge because of changes in the cytosolic
protein concentration that alter calcein quenching,
explaining the increased fluorescence with cell
expansion after exposure hypotonic medium. A
significant advantage of this method is that it is
simple experimentally without expensive instru-
mentation requirements. A conventional fluores-
cent microscope equipped with a sensitive light
detector, such as a photo multiplier tube is suffi-
cient. However, the method provides relative
results since it is not quantitative and therefore
needs calibration as far as the adaptation of
calcein loading protocol and the fluorescent sig-
nal is concerned for every kind of cells of tissue
specimens [65].

Modern microfluidic technologies promote the
improvement of the methods for measuring Pf in
cells and membrane vesicles. As mentioned pre-
viously, the water permeability is generally
measured from the kinetics of the cell volume
changes in response to osmotic gradients. To
diminish potential mixing artifacts, the temporal
aspect of osmotic gradient establishment should
be minimized. This is an area where microfluidic
technologies can provide new potential for the
rapid creation of a gradient. Indeed, recently it
was demonstrated that a very fast development of
an osmotic gradient was reached in a
microfluidics platform in which cells labeled
with a cytoplasmic, volume-sensing fluorescent
dye were rapidly subjected inside a ~0.1 nL drop-
let surrounded by oil with a solution mixing time
of <10 ms. The osmotic water permeability was
deduced from a single, time-integrated fluores-
cence image of an observation area in which
time after mixing is determined by spatial posi-
tion. Water permeability was accurately measured
in aquaporin-expressing erythrocytes with half-
times for osmotic equilibration down to <50 ms
[66]. A similar approach was used for measuring
the quantitative volume changes of immobilized
intestinal enteroids in a microfluidics platform.
The enteroids were trapped in a “pinball
machine-like” array of polydimethylsiloxane
posts for measurement of the volume changes in
unlabeled enteroids by imaging of an extracellu-
lar, high-molecular weight long-wavelength

fluorescent dye. The enteroids volume was
deduced quantitatively from area-integrated fluo-
rescence of an excluded extracellular dye.
Changes in the enteroid volume altered the total
amount of dye in the enteroid-containing
area [67].

Finally, the method of light sheet fluorescence
microscopy (LSFM) uses a plane of light to
optically section and view tissues with subcellular
resolution (Fig. 24.4) as compared to confocal
and two-photon microscopy. This method is
well suited for imaging deep (1 cm) within trans-
parent tissues or within whole organisms. The
development of the technology and existing
LSFM devices are described in the review of
P.A. Santi (2011) [68]. Uncoupling of the illumi-
nation and detection axes of the microscope, so
that only the part of the specimen that is imaged
gets illuminated and provides the ability to image
biological systems for extended periods of time
with minimal phototoxicity and photobleaching
of the specimens and the fluorophores, respec-
tively. LSFM produces optical sections that are
suitable for three-dimensional image reconstruc-
tion. Stability is a critical issue in light-sheet
microscopy, but due to the low phototoxicity,
one can image a sample for hours or days.
Photobleaching is not a significant problem for
repeated imaging as compared to wide-field fluo-
rescent microscopy. Only a 13% reduction in the
fluorescence over 475 s occurs [69].

This advantage on the other hand necessitates
thinking about the optimal “physiological”
conditions that need to be established during the
imaging. The detection of fluorescent signals with
a wide-field detection device such as a charge-
coupled device (CCD) camera allows high-speed
imaging [70]. The LSFM technology may be used
in a variety of applications spanning all scales of
biological systems from molecules to organisms
while the high speed of image recording is an
advantageous feature for Pf measuring. Current
developments in LSFM by diagonal scanning
have improved even further the temporal resolu-
tion and the potential of the method [71]. As far as
the disadvantages of LSFM are concerned, the
light-sheet microscopes are complex, require
expensive hardware, and typically produce
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Fig. 24.4 Schematic of the principles of a light sheet
fluorescence microscope (LFSM) arrangement
demonstrating the top and side views. A light sheet is
formed by a laser, collimated and expanded by a beam
expander, and projected through an illuminative objective
through a cylindrical lens. The focal point of the light sheet
is centrally positioned on the specimen chamber made out
of clear glass walls with an opening on the topside for
specimen insertion purposes. The containing fluid in the
specimens chamber depends on the experimental modality
(live cell imaging or fixed tissue) therefore contains either
physiological solution or clearing fluid, respectively. The
specimen chamber is attached to rotating and translating
stages while the specimen is intersected by the light sheet
and a fluorescent plane collected by a horizontally posi-
tioned microscope

enormous amounts of data (in the range of
terabytes) streamed from digital cameras to com-
puter hard discs when the experiment lasts for
hours or even days. These properties render it a
powerful tool from one hand but not one that can
be widely used from the other. Despite their
potential utility in making quantitative Pf

measurements in heterogeneous cell populations

and tissue specimens, LSFM technologies have
been used little to measure cell water permeability
nowadays. Still so far, one can see how far we
have gone methodologically since the review of
J. J. McGrath (1997) on measuring membrane
transport properties of water for individual
cells [72].

24.2.5 Water Permeability
Measurement by Digital
Holographic Microscopy

Digital holography is a phase contrast technique
that offers an approach to obtain both qualitative
and quantitative phase information from the holo-
gram. It gives the possibility to focus on multiple
focal planes from a single digital hologram since
CCD cameras allow for the recording of a digital
hologram and its processing with specialized soft-
ware [73–75]. Absolute cell volume
measurements have been successfully achieved
by confocal fluorescence imaging, staining of
membrane surfaces with fluorescent beads, con-
focal fluorescence imaging, techniques that are
limited by their low temporal resolution as they
involve optical scanning [76, 77]. A digital holo-
graphic microscope (DHM) method is proposed
to measure the absolute volume of living cells.
The approach is based on phase retardation con-
trast, proportional to the thickness of the observed
specimen, that is a result of the difference in
refractive indices between the specimen and the
surrounding medium [78]. From a digital holo-
gram, it is possible to retrieve numerically the
wavefront information of a field scattered by an
object. One can recover plane by plane the three-
dimensional (3D) information of an object by
using a Fresnel back propagation algorithm. All
these concepts can be applied, also, to recover the
amplitude and phase of 3D microscope samples
[75, 79, 80]. The frequency content of each object
wave is then filtered in the Fourier space of the
hologram, and phase images are reconstructed
individually with the standard Fourier reconstruc-
tion algorithm in DHM [73]. The measurement
precision of the cell parameters cellular thickness,
and integral refractive index, depends strongly on
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the precision of the optical path length difference
(OPD) signals. When adding the absorbing dye as
a dispersive agent to the extracellular medium,
cellular thickness can be univocally determined.
In addition to the absolute cell volume, the
method can be applied to derive important bio-
physical parameters of living cells including
osmotic membrane water permeability coefficient
(Pf) while retaining the cell functionality. This
method has been applied to cultured human
embryonic kidney cells (HEK), Chinese hamster
ovary cells (CHO), human red blood cells (RBC),
mouse cortical astrocytes, and neurons [78].

DHM as a method to study cellular water
transport by deriving osmotic membrane water
permeability while retaining the cell functionality
has sub-micron, diffraction-limited resolution of
the images, and the most significant limitation of
this approach is the relatively low temporal reso-
lution. According to the current knowledge, the
fastest changes of the cell volume can be accu-
rately tracked with a reconstruction rate of 300 ms
for each hologram. Nowadays the low temporal
resolution makes DHM applicable only for cells
with relatively low osmotic water
permeability [81].

24.2.6 Water Permeability
Measurement by
Microfluidic-Based Methods

Microfluidics have an important role in numerous
biological and engineering applications [82–
84]. These applications include also the organ-
on-a-chip technology (OOAC) that focuses on the
biomimetic emulation of tissue characteristics in a
microfluidic device [85–90]. Fabrication of
microfluidic devices is currently dominated by
molding approaches based on poly(dimethyl-
siloxane) (PDMS) and thermoplastics
[83, 91]. Three major challenges have so far hin-
dered the creation of PDMS chips: (1) PDMS
molding (including PDMS curing, assembly,
bonding, and inlet punching) is a largely manual
process; (2) for many years, the user interfaces
(inlets/outlets) of PDMS chips were challenging
to connect and prone to leakage—as opposed to

the leak-free, intuitive connectors such as the
industry-standard Luer-lock; and (3) the control
systems required to run microfluidic valves
involve engineering expertise and equipment not
available in most laboratories [90]. Microfluidic
systems fabricated in poly(dimethylsiloxane)
(PDMS) using soft lithography techniques have
advantages over conventional systems [82, 92–
95] and have been employed in the study of the
osmotic behavior of cells [96–98]. Cells whose
diameter is larger than the height of the slit may
be trapped in microfluidic perfusion chambers
and monitored through microscope (Fig. 24.5).

This PDMS-based microfluidic device has
time for medium replacement which is around
1.7 s or shorter from 0% to near 100% when the
flow speed is controlled at 400 μm/s (or 1.8 nL/s).
Cell volume was measured by counting the num-
ber of pixels of cell image [99, 100].

Microfluidics provide an ideal platform for
microscale cell manipulation and precise descrip-
tion of the cell osmotic behavior. Such
applications of microfluidic approaches adopted
for quantification of cell membrane permeability
are reviewed by Gang Zhao and Jianping Fu
(2017). Microfluidic devices were classified in
two categories according to the materials from
which they were made: polydimethylsiloxane
(PDMS) and non-PDMS materials. The review
focuses on methods for suspended cells and

Fig. 24.5 Schematic of microfluidic perfusion chamber
and trapped cell. The PDMS-based microfluidic device has
medium replacement time of around 1.7 s or shorter from
0% to near 100% when the flow speed is controlled at
400 μm/s (or 1.8 nL/s). The cell volume was measured by
counting the number of pixels of cell image
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describes applications of microfluidic tools in cell
manipulation [101].

Water movement across the plasma membrane
of cells is one of the fundamental processes in cell
physiology, it is largely enhanced by the presence
of water channels, called aquaporins (AQPs).
Malfunctioning of AQP can cause clinical
diseases or disorder found in kidney [102, 103],
respiratory tract [104], brain [105], and eyes
[106]. It is important to understand the role of
AQPs and their regulation mechanisms and
search for small molecules that can selectively
modulate AQP activities. Water permeability of
AQPs has been indirectly measured by tracing
time-dependent cell volume change when
subjected to an osmotic challenge. Most of the
techniques described above to measure the water
permeability of the cell membrane are not suitable
for high-throughput screening.

The microfluidic cell volume sensors have
been developed to study the water permeability
of AQPs and to screen AQP-specific drugs. Dif-
ferent physical principles are used in microfluidic
volume sensors to measure the cell volume
change in real time [96]. The first measurement
of cell volume is based on the cell ability to
change electrical resistance at low frequencies in
a channel of fixed cross-section aimed at studying
the Pf of AQP3 and AQP4, in human embryonic
kidney-293 (HEK-293) cells after they were tran-
siently overexpressed. The sensing chamber was
17 μm deep and 1.5 mm wide. A glass slide
containing the tissue cells was inverted over the
sensor chip. The chamber resistance was
measured using a four-electrode array providing
sinusoidal current of 100 Hz, 200 nA. The time
constants of the cell swelling and the solution
exchange by the sensor were 60.3 and 3.2 s,
respectively [107]. A microfluidic device resem-
bling the capillary flow with time constant of
solution exchange sufficient to measure the rate
of water exchange between erythrocytes and the
surrounding medium (containing a fluorescent
reporter) was constructed reaching steady state
in ~60 ms. To get the appropriate parameters of
solution exchange, the hydrostatic pressure was
adjusted to achieve a flow rate within the main
channel of 1 mm/s. This experimental setup gives

water permeability of ~1.8E-2 cm/s in
erythrocytes [108, 109]. It is accepted that initial
volume changes are only due to water
movements; however, in living cells osmotic
changes are not necessarily abrupt but develop
gradually. Water flux might not be the only rele-
vant driving force shaping the vacuole volume
response. A perfusion system for monitoring
through time volume dynamics of isolated Beta
vulgaris root vacuole was used to study volume
response, and a mathematical model based on the
work of Kedem and Katchalsky (1958) [110] was
proposed to study the water transport processes
across cell membranes [111].

The functional synergy between TRPV4 and
AQP4 during cell swelling was studied in the
heterologous expressing Xenopus oocyte model
measured by calcein fluorescence [112]. Perme-
ability is a fundamental characteristic of the cell
membrane. Osmotic water permeability can be
determined by the volumetric measurements of
cells following an osmotic challenge.
Microfluidic single-cell trapping devices to deter-
mine the membrane permeability of rat
hepatocytes and patient-derived circulating
tumor cells (Brx-142) have been recently devel-
oped. The equilibrium cell morphology in the
hypertonic solution was analyzed on the basis of
the Boyle-van’t Hoff equation [113]. Quadriwave
lateral shearing interferometry (QWLSI), a quan-
titative phase imaging technique based on the
measurement of the light wave shift when passing
through a living sample was used to study water
transport in human airway epithelial CFBE and
CHO cells. Phase variations during osmotic
challenges reflect cellular volume changes and
water fluxes [114]. An open microfluidic platform
was created based on aqueous droplets, dispersed
in a lipid oil solution, onto a plate with cavities,
used to mimic of the cellular plasma membrane.
The method allows for the study of permeation of
fluorescently tagged compounds from a donor
droplet to an acceptor droplet. A mathematical
model was used to analyze the kinetics and deter-
mine the permeation coefficient [115]. Poly
(dimethylsiloxane)-type microfluidic device
integrating size-sorting and trapping modules
was developed to study the chemical models of
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contemporary living cells, the so-called water-in-
oil emulsion transfer (WOET) method, that is one
of the protocols for cell-sized liposomes
encapsulating macromolecules [116]. The
method does not require any added probes and
can be applied to any osmotically sensitive sys-
tem to probe the concentration changes at the
single-cell level based on the effect of osmotically
driven water flux between a droplet containing a
living cell toward the surrounding empty
droplets, within a concentrated inverse
emulsion [117].

Intestinal enteroids are ex vivo primary
cultured single-layer epithelial cell spheroids.
Measurement of enteroid swelling in response to
secretagogues has been applied to testing of drug
candidates for cystic fibrosis and secretory
diarrheas. Special microfluidics were developed
for the immobilization of enteroids and the mea-
surement of volume changes. In these settings,
enteroids are trapped in a “pinball machine-like”
array of polydimethylsiloxane slots. Volume
changes of unlabeled enteroids were studied by
imaging of an extracellular, high-molecular
weight fluorescent dye [67]. For building of
high-fidelity organoids, a droplet microfluidic
system was developed for fabrication of massive
3D culture and formation of functional organoids
derived from human-induced pluripotent stem
cells (hiPSCs) [118].

A microfluidics platform that allows for the
study of fast kinetics of the cell volume during
osmotic challenge has been developed. Cells
expressing a cytoplasmic, volume-sensing fluo-
rescent dye were rapidly subjected to an osmotic
gradient by solution mixing inside a ~0.1 nL
droplet surrounded by oil. Solution mixing time
was <10 ms. Osmotic water permeability was
deduced from a single, time-integrated fluores-
cence image of an observation area in which
time after mixing was determined by spatial posi-
tion. Water permeability was accurately measured
in aquaporin-expressing erythrocytes with half-
times for osmotic equilibration down to <50 ms
[66]. Also, microfluidic system where cells were
immobilized on poly-D-lysine-coated cover glass
was used to study membrane transport properties
of the human UT-7/TPO megakaryocytic cell line

[119]. Development of microfluidics platform to
advancing technology of microflow cytometry
faces challenges in focusing on the particles to
be analyzed in the microfluidic channel. By
utilizing the properties of a laminar fluid flow in
microfluidic devices, fluids can be used to
unsheathe and focus other fluids without mixing,
and thus to create confined streams within a chan-
nel. Currently, it is important to demonstrate that
the microflow systems provide data of the same
quality as laboratory systems [120].

Using a microfluidic device, the water perme-
ability (Lp) of vaginal CD3+ T cells and CD14+

macrophages was determined relative to the ini-
tial cell volume. The channel height of the
microfluidic perfusion chamber was 15 μm t
accommodate the monolayer expected cell size
of 8–12 μm, and at the edge of the channel the
height was 3 μm to trap cells while allowing fluid
flow. To evaluate cell volume a cell image was
recorded by a CCD camera at 24 frames/second
until osmotic equilibrium was obtained, (within
2 min) [121].

A microfluidics platform for the measurement
of water transport across a conventionally
cultured epithelial monolayer on a porous filter
requires a single image from a standard laboratory
fluorescence microscope [122]. Osmotic water
permeability was calculated from the steady-
state concentration profile along the length of
the channel of a membrane-impermeant fluores-
cent dye in the perfusate, in which an osmotic
gradient was imposed by an anisosmolar solution
overlying the epithelial monolayer (Fig. 24.6). A
comprehensive overview of static transwell
cultures and how they could be used to evaluate

Fig. 24.6 Schematic of microfluidic perfusion chamber
for static transwell culture. Concentration profile of a cell-
impermeant dye along the length of the channel could be
used for the measurement of water transport across a
cultured epithelial monolayer on a porous filter to evaluate
the epithelial water permeability. (Presented in the paper of
S. Youhanna and V. M. Lauschke [123])
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the epithelial permeability is presented in the
paper of Youhanna and Lauschke (2021) [123].

24.3 Water Permeability Methods
for In Vivo and Ex Vivo Studies

Experimental data on fluid-absorbing epithelia
are obtained in in vivo and ex vivo experiments.
An example of water permeability measurements
of more complex systems than living cells
involve in vivo studies of bodily cavities that
contain certain physiological amount such as the
pleural or peritoneal cavity. The balance of fluid
turnover of the pleural compartment occurs in
normal chest physiology and is changed in patho-
physiological conditions associated with pleural
effusions, thus excess accumulation of water,
solutes, proteins, and cells within the cavity.
Comparative physiological studies were
performed on wild-type vs. AQP1 null mice.
Osmotically driven water transport was measured
in anesthetized, mechanically ventilated mice
from the kinetics of pleural fluid osmolality after
instillation of hypertonic or hypotonic fluid into
the pleural space. Water permeability is deter-
mined assuming that the pleural barrier is a single
barrier separating the pleural cavity and the blood
compartment. The volume flux across the pleural
mesothelium (Jv) is given by Jv = PfVwS[Co -
Ci(t)], where Vw is the partial molar volume of
water (18 cm3/mol), S is pleural surface area
(cm2), Co is plasma osmolality (320 mosmol/
kgH2O), Ci(t) is pleural fluid osmolality, and Pf

is the osmotic water permeability. The same
experimental model used for measurement of
isosmolar pleural fluid clearance and modeling
of hydrostatically driven pleural effusions.
Hydrostatically driven pleural fluid accumulation
was induced by bilateral renal artery ligation and
infusion of saline in the peritoneal cavity (40%
body wt) to induce acute volume overload. The
pleural fluid was collected in all cases and
analyzed accordingly reaching the conclusion
that AQP1-mediated water permeability is critical
only in cases of aniso-osmolality [124]. This type
of experimental approach involving or not AQP
knockout animals and cavitary effusion formation

is useful in a range of medical disciplines for the
elucidation of water permeability kinetics of
water transporting membranes in the whole
body level. The rate of cavitary fluid absorption
can be used for identifying therapeutic drugs for
effusion resolution [124–128].

Regarding the ex vivo assessment of water
permeability in isolated tissues the application of
the Ussing System has provided a lot of insight to
such processes. Initially several isolated tissues
from frog have been studied for their water
transporting capacities, such as frog skin as well
as frog and toad urinary bladder [129–133]. The
activation energy (Ea) for the diffusion of water
across the epithelial cell layer of the toad bladder
was determined in the absence and presence of
vasopressin. It was shown that the hormone did
not influence the activation energy, thus the con-
clusion that vasopressin was not changing the
molecular structure of water channels was made
[130]. More recently the transport properties of
pleural, peritoneal, pericardial, and
leptomeningeal membranes in human and sheep
models in ex vivo studies are investigated using
the Ussing system [134–139]. Ussing Chamber
experiments using human and animal
transporting epithelia have established many of
the biophysical processes involved in the regula-
tion of liquid homeostasis. For understanding the
physiology that regulates biophysical processes
involved in epithelial liquid homeostasis, a bio-
physical model for water and ion transport to
quantify the permeabilities of all pathways apical,
basolateral, and paracellular was created using
Ussing Chamber data reported in the
literature [140].

Another imaging method that was developed
to map thickness changes in viable spinal cord
and brain slices was applied to measure osmoti-
cally induced water transport in spinal cord slices
from wild-type and aquaporin knockout mice.
Changes in the slice thickness were mapped
from the amount of light passing through a thin
(~100 μm) layer of perfusate bathing the slice, in
which hemoglobin (6 mg/ml) was added as an
inert absorbing chromophore. In response to
osmotic challenges imposed by changing perfus-
ate osmolality by steps of 100 mOsm, the
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Fig. 24.7 Schematic of a cross-section of an isolated
perfused tubule demonstrating the illumination and fluo-
rescence collection geometries. The gray represents the
volume of the illuminating fluorophore while P and Z are
the radial and axial coordinates, L is the length of the

illuminated area (defined by the illuminating window)
while Pi is the inner radius of the tubule. The horizontal
lines in the illuminating volume represent the stack of
optical sections used to assess the spatial distribution of
the light intensity and photobleaching the tubule

transmitted light intensity changed reversibly
with approximately mono-exponential kinetics
whose initial rate depended upon the position in
the slice [141].

Understanding the mechanisms of fluid
absorption and secretion by the kidney epithelia
has a long story of intense studies on water trans-
port in isolated perfused tubules [142]. In this
type of experiments, the tubule segments were
perfused in vitro in a modified version of the
technique described by Burg et al. [143]. The
tubules were placed into a temperature-controlled
flow chamber with a glass bottom and were
observed with an inverted compound microscope.
The upstream portion of the tubule was drawn
into a holding pipette, which contained a concen-
tric pipette. The downstream end of the tubule
was drawn into a holding pipette that had inside
a tip of collecting pipette. The theory and experi-
mental design of this class of studies were
described by Schafer et al. [144]. The osmotic
Pf was calculated from the net transepithelial
fluid flux (Jv) determined in the presence of an
imposed osmolality gradient. Measurements were
conducted by collecting the perfusate, which
contained an impermeant volume marker. The

marker could be a radioisotope [145] or a fluores-
cent probe using continuous fluorescence mea-
surement and photo bleaching as shown in
Fig. 24.7 [146]. The fluorescein sulfonate concen-
tration was measured in the perfusate and the
collected fluid using a continuous flow fluorome-
ter (coefficient of variation, 2%) [147]. The theo-
retical basis for Pf calculation in these
experimental approaches is the equation
formulated by Al-Zahid et al. [148].

24.4 Conclusion

In conclusion a wide variety of methods for mea-
suring osmotic water permeability have been
developed, each one of which takes advantage
of distinct biophysical principles of the process
or the instrumentation. The selection of the most
suitable method for water permeability measure-
ment depends on the purpose of physiological
study that will be designed. When measuring
accuracy and high resolution of water
transporting pathways across cell membranes or
in contralateral membranes of polarized cells, the
experimental approach needs to be carefully
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planned based on the most suitable method and
instrumentation. However, fundamental
limitations are imposed by the unstirred layer
effects and the complex composition of tissues
where the absolute water permeability
coefficients and the activation energies cannot
be even defined. Still, comparative measurements
may be informative for understanding the physi-
ological and pathophysiological mechanisms
involved. An important application of the
methods for water permeability measurement is
in high-throughput screening assays for the dis-
covery of modulators of water and electrolyte
balance in range from a cell to a whole organism.
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