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Abstract Nuclear atypia identification is an important stage in pathology proce-
dures for breast cancer diagnosis andprognosis. The introduction of imageprocessing
techniques to automate nuclear atypia identification has made the very tedious, error-
prone, and time-consuming procedure of manually observing stained histopatholog-
ical slidesmuch easier. In the last decade, several solutions for resolving this problem
have emerged in the literature, and they have shown positive incremental advance-
ments in this field of study. The nuclear atypia count is an important measure to
consider when assessing breast cancer. This work provides a comprehensive review
of automated nuclear atypia scoring process which includes the current advance-
ments and future prospects for this critical undertaking, which will aid humanity in
the fight against cancer. In this study, we examine the various techniques applied in
detecting nuclear atypia in breast cancer as well as the major hurdles that must be
overcome and the use of benchmark datasets in this domain. This work provides a
comprehensive review of automated nuclear atypia scoring process which includes
the current advancements and prospects for this critical undertaking, which will aid
humanity in the fight against cancer.

Keywords Breast cancer · Machine learning · Nuclear pleomorphism ·
Histopathological image · Nuclear atypia detection · Deep learning

1 Introduction

Cancer is a phrase that refers to diseases that cause abnormal cell proliferation in
the body, resulting in tumours [1]. It can spread to other organs of the body from the
initial affected site. Every year, cancer claims the lives of huge number of people
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throughout theworld. According to the statistics report ofWorldHealth Organization
(WHO), the second major reason for mortality in the world is cancer [2].

According to the GLOBOCAN 2018 [3] report, 24.2% of cancer diagnosed
amongst women all over the world is breast cancer, and 15% of all cancer-related
death is due to breast cancer. Cancer patients’ chances of survival can be greatly
improved by early detection and treatment [2]. For better early detection of cancer,
intensive research investigations are being done worldwide [4]. Many medical
multi-imaging modalities are utilized screening and classification of breast cancer,
including histopathological images taken through biopsy, digital mammography,
sono-mammography, magnetic resonance imaging, and computerized thermography
[5].

As biopsy is a clinical procedure of tissue analysis for the screening of cancer
[5]. Tissues from vulnerable areas are carefully removed andmounted onmicroscope
slides. These images are called histopathological images. These images can be safely
preserved in digital format and transmitted over the Internet for future study [6].
Digital pathology has helped researchers to apply computer-assisted technology in
detection of biomarkers in cancer research [2]. The tedious and time-consuming tasks
of pathologists can be delegated to computers, and it can be accomplished with high
amount of accuracy [7–9]. Whole slide imaging (WSI) technology was introduced to
read and store the whole slide at very high magnification [2, 10]. It also aided in the
creation of many region of interest (ROI) images that were used to diagnose breast
cancer as malignant or non-cancerous [11]. A sample of a high-power field (HPF)
image of a breast cancer biopsy is shown in Fig. 1.

The cancer detection method in histopathological images usually includes clas-
sifying the image biopsy as malignant or non-cancerous. Pathologists classify the
images based on criteria such as form, colour, cytoplasm proportion, and size of the
nucleus of the cell. The contrast between normal and malignant cells is depicted in
Fig. 2 [12]. Score of nuclear atypia provides an estimate of the prognosis of disease

Fig. 1 HPF image of breast cancer histopathological image from MITOSIS-ATYPIA dataset
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Fig. 2 a Nuclear atypia, b tubule formation, c mitotic cell [13]

in the patient and aids in the development of specific treatment strategies for the
patient. According to the number of mitotic cells, tube formation, and nuclear pleo-
morphism, the cancer is classified as first, second, and third grade breast cancer.
Computerized nuclei delineation and classification, which are usually required for
cancer diagnosis and grading, are a time-consuming operation made more complex
in abnormal images by the majority of nuclei’s complex and irregular shape and size.

.

1.1 Grading and Staging

Grading and staging are the two major steps in the cancer treatment plan [14]. The
degree to which malignant tumours resemble the surrounding tissue is graded. The
main purpose of cancer grading is to identify the disease’s aggressiveness. Themalig-
nancies which can be differentiated well have a better prognosis than poorly differ-
entiated once because they are less aggressive [2]. The tumour’s aggressiveness is
a measure of its rate of growth and extension to other organs in the body. Staging
in cancer determines up to what extend the growth has advanced from the initial
affected organ to other organs of the body. Oncologists use grading and staging to
finalize the treatment options and anticipate disease progression [2].

The stage of the breast cancer can be understood using tumour, node, metastasis
(TNM) staging [2]. The stage of a tumour is determined by its size, spread, and
location. Stage T describes the size and spread of the tumour in the primary site
and adjacent organs. Stage N indicates the existence of cancer cells in the lymph
node [15]. This is an indication that the cancer is spreading. The lymphatic system
is the primary carrier which moves cancer cells to other organs of the body. Stage
M specifies that the cancer has extended to an organ other than the one where it was
diagnosed first [2].

According to Nottingham grading system (NGS) [2, 16], mitotic count, nuclear
pleomorphism (atypia), and tubule development are the three major characteristics
utilized for grading breast cancer. Nuclear atypia count is subjective in nature where
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Table 1 Breast cancer grading characteristics by NGS [2]

Parameter Score Criteria

Mitotic count 1 < 10 mitotic cells

2 10–19 mitotic cells

3 ≥ 20 mitotic cells

Nuclear pleomorphism (nuclear atypia) 1 Small and similar type nuclei

2 Moderately variable nuclei shape and size

3 Many nuclei with clear variation

Tubule formation 1 Tubule forms (> 75%)

2 Tubule forms (10–75%)

3 Tubule forms (< 10%)

the grading depends on the proficiency of the pathologist. Table 1 shows breast cancer
grading characteristics by NGS [2, 16].

1.2 Need for Automated Nuclear Atypia Detection

A pathologist analyzes stained histology slide under a microscope and manually
assigns a score to every criteria in NGS. A human grading approach is difficult,
tedious, and erroneous due to the inequality in the appearance of the cells and
numerous cells per high magnification field (HPF) [2]. These factors contribute
to a high amount of diversity in pathological results between observers [17]. Due
to lack of qualified pathologists in many nations, early cancer detection is chal-
lenging. As a result, cancer death rates in developing countries are high [3, 18].
In this case, automated diagnostic methods can help with a quicker and more
effective diagnosis. In this case, automated detection is the best option. In this
case, automated diagnostic technologies can help with rapid diagnosis and accurate
grading in order to define the optimal treatment strategy, lowering the cancer-related
death rate significantly [19].

1.3 Challenges in Nuclear Atypia Detection

In histopathology image analysis, detecting nuclear atypia automatically is a diffi-
cult task. Dissimilarity in texture shape and size of the nuclear atypia makes the
detection of nuclear atypia detection tough [2]. There are several cellular formations
that resemble nuclear atypia, but they are not atypia. Such resemblance increases
the false positive rate and thereby decrease the accuracy of classification [2, 20]. In
the manual staining of histology slides, there may be variation in the staining due
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to the human involvement. Apart from this, the colour intensity of the images varies
depending on the scanner used. Aperio and Hamamatsu are the most common type
of scanners used in histological images, and they have a significant amount of vari-
ation in colour intensity. So if we use colour component in feature extraction, then
it might affect the overall accuracy of classification process. To avoid this, various
colour normalization techniques are used in nuclear atypia detection approaches [2].

1.4 Dataset in the Public Domain

The researchers startedworkingmore in thefield of nuclear atypia detection due to the
public dataset availability through open challenges. The most common histopatho-
logical datasets available in the public domain for nuclear atypia scoring as per the
literature are given in the Table 2 [2].

Despite the fact that several datasets for breast cancer histopathological image
analysis such as TUPAC 2016, MITOSIS2012, MITOSIS ATYPIA14, AMIDA,
BRAEKHIS DATASET10, and BreCaHAD 2019 but none of them contain labelled
images for nuclear atypia detection. The MITOS-ATYPIA14 challenge dataset is
the best suited dataset for our topic of interest in this regard. As a result, in our
comparative study, we employed the MITOSiS-ATYPIA14 dataset.

In this review paper, the major emphasis is given to nuclear atypia characteristics
which is used to grade breast cancer. The paper focusses on the various techniques
and procedures for grading breast cancer, assesses the challenges that these tech-
niques encounter, and explores the strategy adopted by image analysis methods to
overcome these challenges. These tools assist in determining topics that have not
been thoroughly investigated in the field of nuclear atypia detection, which is where
future study will be focussed. The paper also discusses the various evaluationmetrics

Table 2 Public domain datasets for nuclear atypia scoring [2, 21]

Public dataset Year Explanation Image size

MITOS-2012 [22] 2012 50 HPF images at 40 ×
magnification

A:2084 × 2084
H:2250 × 2252
M:1360 × 1360

AMIDA [23] 2013 311 HPF of 23 subjects at 40×
magnification

2000 × 2000

MITOS- ATYPIA14
[24]

2014 1136 HPF images at 40×
magnification

A:1539 × 1376 H:1663 ×
1485

TUPAC 16 [25] 2016 73 breast cancer of different
patients at 40× magnification

2000 × 2000

BREAKHIS
DATASET10[26]

2018 9109 WSI of 82 patients 700 × 460

BreCaHAD
2019[27]

2019 162 WSI of 82 patients 1360 × 1024
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used in analyzing the detection of nuclear atypia. The following sections make up
the document. The first section contains an introduction, breast cancer grading, and
the need for nuclear atypia detection, the second section contains a literature review
in the field of nuclear atypia detection, the third section summarizes the different
evaluation performance measures used for the process of nuclear atypia scoring, the
fourth section does an analysis of existing techniques used in the field, and the fifth
section gives future prospects in the field of grading of breast cancer [2, 27].

2 Literature Review

For the detection of nuclear atypia, there are two types of histopathological image
analysis techniques. They are hand crafted feature-based algorithms that have been
constructed and feature-based algorithms. In handmade feature-based approaches,
image featuresmust be retrieved precisely. Pre-processing of image, nucleus segmen-
tation, feature extraction, and classification operations is all part of the handcrafted
feature-based method.

Pre-processing techniques such as noise smoothing, intensity normalization,
colour separation, thresholding, stain normalization, reduction, and augmentation
are used to improve the characteristics of histopathological images. After pre-
processing, nucleus segmentation is done [21]. For nuclei segmentation, many tech-
niques, such as active contour model, mean shift, and Gaussian model watershed,
[28–31] are frequently utilized. One of the most essential requirements for grading
breast cancer in histopathology images is extraction of features of biological struc-
tures such as lymphocytes and cancer nuclei. The morphological characteristics and
shape and size of these structures are frequently utilized as indicators of disease
severity. The collected features are given into the classification step, which analyzes
them statistically and typically uses machine learning techniques to categorize them
into multiple classes. K-means clustering, SVMs, Bayesian classifiers, and artificial
neural networks (ANNs) are some of the most often used classifiers. The steps of
handcrafted feature-based nuclear atypia detection are shown in Fig. 3.

Fig. 3 Steps of handcrafted feature-based nuclear atypia detection
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The second set of histopathological image classification methods includes trained
feature-based algorithms that extract high-level featureswithout direct feature extrac-
tion operation from histopathology images. Since the initiation of convolutional
neural networks (CNNs) learned feature-based approaches received a lot of attention
of researchers. Themajority of newly developed algorithms for breast cancer grading
[21] use convolutional neural networks (CNNs), transfer learning (TL), and residual
networks (RN) concepts.

2.1 Handcrafted Feature-Based Algorithms

2.1.1 Pre-processing Techniques

Pre-processing removes undesired distortions from images and improves very rele-
vant feature required for grading of histopathological images. The initial step in the
pre-processing is elimination of noises and artefacts from the images which has got
in at the time of slide preparation [32]. Apart from this stain normalization, colour
separation is also done to improve the quality of the image [30, 33]. Prior knowledge
on the stain vectors is used for stain normalization. Otsu thresholding, clustering,
and trust region optimization techniques are used for stain optimization. After stain
normalization, de-convolution technique is used for colour separation [34].

An adaptive technique was proposed in [35] to decrease colour variation. Colour
unmixing or colour de-convolution, a special instance of spectral unmixing, is used
by Veta et al. [31] and Basavanhally [36] to separate the stains. In paper [30], stain
normalization and colour separation are the pre-processing steps used. Wan et al.
[37] perform stain normalization which used non-linear mapping technique to adjust
image intensity discrepancies due to variations in tissue preparation.

2.1.2 Segmentation of Anatomical Structures

Nuclei identification and segmentation are important processes in cancer diagnosis.
Different features of nuclei, such as their morphological structure, size, and mitotic
nuclei count, are crucial for identifying the disease and understanding themalignancy
and intensity of the disease. Mainly, there are three types of nuclei segmentation
algorithms utilized in breast cancer grading. They are threshold-based approaches,
region growing-based techniques, and boundary-based techniques.

In an image, threshold can be used for distinguishing foreground objects from
the background objects. Choosing a right threshold value helps to convert the image
into a binary image which give adequate knowledge about the shape and size of the
nucleus [38]. This makes the feature extraction and classification process compara-
tively easy due to the reduced complexity of the images. Due to its simple concept,
many breast cancer classification systems are used thresholding approach for nuclei
segmentation [21].
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In [39], Petushi et al. use a combination of local morphological methods and
optimum adaptive thresholding. Later in [21, 40], Petushi et al. combine edge level-
ling andmorphological filling technique to determine the appropriate threshold value.
Weyn et al. [41] combined background smoothing and thresholding based on the
median of histogram intensity to get the contour of nuclei. Moncayo et al. [42] use
the hematoxylin contribution map and maximally stable extreme regions to segment
the nuclear region (MSER) where different thresholds are applied to the image, and
the areas which reflect the least change are labelled as maximally stable extreme
regions. The nuclei and the surrounds are then distinguished using open and close
morphological operations.

Anothermethod for image segmentation is region growth,which segregates neigh-
bourhood pixels based on homogeneity and adds them to a region where the simi-
larity criteria of the class are met. This method is applied for each of the pixels in the
neighbourhood region. The technique of region growing begins by choosing a seed
location based on certain criteria [21]. These discovered seed sites are then used to
expand these regions depending on some conditions. In noisy images with difficulty
to detect boundaries or edges, region growing algorithms are the best options.

After segmentation, [29] performs neoplasm localization using a multi-resolution
approach. Cell segmentations are performed on high-resolution pictures using Gaus-
sian colour models, whilst [31] uses a marker controlled watershed segmentation
approach. To discover the prospective nuclei, pre-processed images with indicated
locations with strong radial symmetry and local minima are used. The water shed
segmentation algorithm is then utilized to determine the nuclei’s contour. In [43], the
external margins of nuclei are segmented using a convex grouping technique that is
best suited for patchy and open vesicular nuclei found in breast cancer with a high
aggressiveness [21]. This irregular nuclei structure is segmented using the K-means
clustering algorithm [44].

The edge and intensity discontinuity in image are important features that provide
knowledge about object contours and are extensively utilized in image segmentation
and item identification. For nuclei segmentation of breast histopathology image,
many edge-based segmentation techniques have been used [21].

Cassato et al. [35] apply a difference of Gaussian (DoG) filter to the image. The
resultant edge map is then extracted using the Hough transform. With the edge map,
the boundary of the nuclei is defined using an active contour model. Faridi et al.
[45] used morphological feature extraction procedures and DOG filtering to detect
nuclei’s centre and the distance regularized level set evolution (DRLSE) technique to
recover nuclear border [21]. In paper [46] to find the candidate cell nuclei, the author
has employed morphological techniques and a distance transform. The thresholding
technique is applied to a gamma-corrected image to generate a binary image before
being subjected to morphological procedures like dilatation and erosion. Paper [47]
uses thresholding andmorphological filtering techniques for pre-processing and later
a snake-based method on an image to retrieve nuclear edges [21]. A polar space
transformation is conducted, and then, the nuclei boundary is identified with iterative
snake technique. For nuclei segmentation, Basavanhally et al. [36] developed a colour
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gradient-based geodesic active contour (CGAC) technique. In the gradient-based
technique, segmentation is achieved by minimizing an energy function that includes
a typical geodesic active contour [21].

For automatic segmentation of nuclei, many algorithms have been developed and
experimented. Due to the errors at the time of image capture and the diverse shape
and size of the nucleus, finding the region of interest and segmenting is considered
as a difficult task. The accuracy of the nuclear atypia detection technique is strongly
dependent on the success of the segmentation technique.

2.1.3 Feature Extraction

A crucial phase in the handcrafted feature-based technique, in which themost signifi-
cant features of an image are retrieved from a big number of features, is called feature
extraction. Excess cell proliferation in cancer tissues is caused by disruptions in the
cell life cycle, resulting in impaired cellular function [21]. The various grades of
cancer have different cellular characteristics. The majority of these characteristics
are graph-based topographical, morphological, and textural features. Various feature
extraction methods available in the literature for breast cancer grading are covered
in this section [21]. When compared to normal cells or nuclei, malignant cells differ
in size and shape, and pathologists utilize this difference to grade malignancy. The
form and size of a cell are frequently revealed by morphological trait. Smoothness,
symmetry, length of axes, roundness, and concavity are used to describe their shape,
whereas the radius, perimeter, and area of segmented nuclei are commonly used to
describe their size. For cancer identification and grading, morphological aspects of
the nucleus structures have been extracted and used by various algorithms.

For each of the images, Petushi et al. [39] calculated standard deviation, area,
intensity mean, the minimum intensity value, major and minor axes of the nuclei
that have been segmented. The feature vector generated is given for clustering along
with a binary decision tree. The features like mean value of intensity, area, and count
of nuclei are extracted from the source image in paper [45]. For cancer grading and
prediction, Veta et al. [31] considered the standard deviation and mean of the area of
the segmented nuclei for feature extraction.

Textural characteristics provide crucial information on the intensity variation of
pixel over a surface with respect to smoothness and regularity. Statistical, spectral,
and structural approaches are commonly used to extract textural information. This
section discusses about the papers which use various texture features for cancer
grading and classification.

In [40], texture features which help to calculate the density of cell nuclei are
used in supervised classification approaches such neural networks, decision trees,
linear classifiers, and quadratic classifiers. For nuclear grading of breast tumours,
Khan et al. [48] developed a textural-based characteristic called the geodesic mean
of region covariance descriptors (gmRC). In the next phase, K-nearest neighbour
(KNN) classifier is applied on gmRC matrix. Ojansivu et al. [49] used descriptors
such as local phase quantization (LPQ) and local binary patterns (LBPs) to create
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histograms that describe the image’s statistical textural qualities. Later, support vector
machine classifier is applied on the pre-processed image data for categorizing the
nuclear atypia score. A bag of features (BoF) with multi-scale descriptors is used to
represent the discovered nuclei in [42], and later, the K-means clustering algorithm
is utilized to split the extracted descriptors, which are then employed as the dictio-
nary’s atoms. Rezaeilouyeh in [50] used textural characteristics like shearlets for
cancer tissue classification using convolutional neural network (CNN) classifier. For
nuclear grading, Lu et al. [30] retrieved a set of morphological and textural parame-
ters like size of nuclei, mean, standard deviation, sum, and entropy of image features.
The histogram of each of these attributes is used for grading using an SVM classifier.
[43] uses features to reflect the size differences between mitotic nuclei and normal
nuclei. The feature set is made up of the mean and standard deviation of ten param-
eters like contrast, skewness, solidity, grey value, eccentricity, entropy, diameter,
area, smoothness, and symmetry retrieved from the segmented nuclei. Gandomkar
et al. [22] used texture-based feature extraction method to extract attributes from
histopathology slides which can identify the grade of the cancer. These features are
later analyzed and coupled with the ensemble of trees to evaluate and to calculate
the atypia count.

Topological features in a tumour tissue provide information on the structure and
spatial arrangement of nuclei. The spatial interdependence of the cells is represented
in this way using various forms of graphs, from which the required information
for classification is derived. For cancer grading, graph-based criteria are frequently
combined with morphological or textural features.

Naik et al. [51], Das et al. [21] extracts many morphological and graphical repre-
sentations of features usingVoronoi diagram (VD), Delaunay triangulation (DT), and
minimal spanning tree (MST) for automated breast cancer grading. Apart from that
morphological features as well as boundary features derived from nuclear structure
are subjected to principal component analysis (PCA) for feature reduction, and clas-
sification is carried out later using an SVM classifier. Textural features and graphical
representation of features using MST, VD, and DT are used to represent the archi-
tecture of nuclei and grade cancer in Doyle et al. [21, 52]. The textural features like
standard deviation, minimum to maximum ratio, and average are included in the
study along with graph-based features, and these two feature vectors are subjected to
spectral clustering (SC) techniques to reduce the number of features, which is then
supplied to the SVM classifier. In paper [53], Wan et al. apply Gabor filters, kirsch
filters to access pixel level features, object-based features are extracted throughMST,
DT, VDs, and convolutional neural networks (CNNs) helps to extract semantic level
features, and this helps to identify heterogeneity of cancerous tissue. Later, graph
embedding technique is used to reduce the dimensionality of the image, and the
resultant image is given to SVM classifier [21]. [48] presents a novel image level
descriptor based on area covariances for assessing breast full slide images. The image
is divided into non-overlapping area and region covariance (RC) which is calculated
for each area. To extract features of this area, maximum response 8(MR8) filter banks
are used [21]. The extracted RC descriptors form points on Riemannian manifold.
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This is integrated to get single image descriptor called geodesic geometric mean of
region covariance, and later, geodesic K-nearest neighbour classifier (GKNN) is used
for grading the breast cancer [21].

2.1.4 Image Classification

The features retrieved from tumour tissue are required for cancer classification and
grading. Classifiers are divided into learning and testing phase. The characteris-
tics retrieved from digital annotated slides are used to train the classifier during the
learning phase [21]. These classifiers are then put to the test with previously unseen
data. Algorithms such asGaussianmixturemodels, K-nearest neighbourhood (KNN)
algorithm, decision tree, random forest classifier (RF), Bayes classifiers, and super-
vised learning techniques are used for nuclear atypia detection widely. Table 3 gives
details of the few most frequently used machine learning techniques in the domain
of nuclear atypia scoring. The most widely used deep learning (DL) techniques can
avoid explicit feature extraction process [21] and organize discriminative information
of the data as its in built functionality.

The cancer features derived from histopathology images are used in an auto-
mated breast cancer grading system. This could necessitate precise identification
and segmentation of biological structures, which is a difficult operation due to the
complex structure of histologic data. As a result, computerized intelligent systems
for nuclear atypia scoring are in high demand.

2.2 Learned Feature-Based Algorithms

Deep neural networks (DNNs) have been widely used to solve a variety of medical
image analysis problems like genetic disorder identification, speech recognition,
Alzheimer’s disease classification, etc. DL methods have outperformed traditional
methods in several areas. This does not necessitate the feature extraction phase.
The layers are capable of learning an implicit representation of the raw input by
themselves. Several deep learning algorithms for nuclear atypia scoring have recently
appeared in the literature. In this section,wewill go through the existing deep learning
techniques used in the domain of nuclear atypia detection. Figure 4 shows the learned
feature-based nuclear atypia detection process.

Rezaeilouyeh et al. [50] employed the magnitude and phase shearlet coefficients
as secondary information for the neural network to train CNN and classify cancer.
For the classification of breast cancer images, Rakhlin et al. [55] employ a gradient
boosting method pre-trained CNN on Image Net. Bardou et al. [56] used CNNwith a
fully connected classifier layer to classify cancer subtypes using handcrafted features
[21].

To extract details from nuclei in different scale in paper [57], Araujo et al. applied
CNN architecture. In [58], author proposed a deep convolutional activation feature
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Table 3 Nuclear atypia scoring using handcrafted feature-based machine learning technique

Paper Pre-processing
technique

Segmentation
technique

Feature
extraction
technique

Classification
technique

Cosatto et al.
[35]

Adaptive
thresholding
technique

Active contour
using Hough
transform

Texture and
shape features

SVM

Naik et al. [51] – Bayesian
classifier

Morphological
and graph-based
features

SVM

Dalle et al. [29] – Region growing Morphological
features

–

Dalle et al. [46] – Boundary Size, shape, and
texture features

Gaussian mixture
model

Huang et al.
[47]

– Snake-based
algorithm

Size and textural
features

Bayesian classifier

Veta et al. [21,
31]

Colour
normalization

Watershed
segmentation

Morphological
features

–

Basavanhally
et al. [21, 36]

Orthonormal
transformation of
RGB vectors

Snake-based
segmentation

Textural and
graph-based
features

Random forest

Lu et al. [30] Stain
normalization
and colour
de-convolution

Region growing Morphological
features

SVM

Maqlin et al.
[21, 43]

– K-means
clustering

Mean and
standard
deviation of
textural and
morphological
features

Artificial neural
network

Moncayo et al.
[21, 42]

Colour
de-convolution

Threshold Textural features SVM

Faridi et al. [45] Unmixing of
colour channels

Boundary Morphological
features

SVM

Wan et al. [37] Stain
normalization

Snake-based
segmentation

Textural,
graph-based, and
CNN derived
features

SVM-based
cascaded ensemble
classifiers

Gandomkar
et al. [21, 54]

Stain
normalization
and colour
de-convolution

Threshold Textural features Multiple regression
trees

Khan et al. [21,
48]

– – Geodesic mean
of region
covariance
descriptors

Geodesic K-nearest
neighbour
classifier(GKNN)
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Fig. 4 Learned feature-based nuclear atypia detection process

(DCAF) for classification of histopathological images. In this, a pre-trained CNN
for feature extraction is used, and later, it is fed into a new classifier that has been
trainedonproblemspecific data.Nahid et al. [59] categorize histopathological images
using long short-termmemory (LSTM) and an integrated CNN+ LSTMmodel, and
a softmax and SVM layers employ the extracted global and local information to
determine the class. Guo et al. [60] used a CNN architecture that combines patch
level voting, merging module and reduces generalization of error using hierarchy
voting approach and bagging technique [21].

Golatkar et al. [61] used Inception-V3 CNN technique on patches extracted based
on nuclei density for histological breast cancer classification as the initial step and in
the later stage of the process, majority voting technique was used for the final clas-
sification [21]. For grading breast cancer, Jannesari et al. [62] employed pre-trained
ResNet, ImageNet, and inception model networks. For the multiclass histopatho-
logical image classification, Jiang et al. [63] integrated the squeeze and excitation
patch and the ResNet model, which reduced the number of parameters and thereby
avoiding the problem ofmodel over fitting [21]. In [33] in order to adaptively identify
the sample, the author has proposed batch mode active learning on the Riemannian
manifold for breast cancer nuclear atypia scoring [21, 64]. In [65], the author proposed
sparse coding and dictionary learning on symmetric positive definite (SPD)matrices.
The sparse coding problem on the SPD manifold is a convex problem in the higher
dimensional reproducing kernel Hilbert space (RKHS), which allows for greater use
of the reparability of histopathological images [21, 65].

Recently, generative adversarial networks (GANs) are recently widely employed
in biomedical area of research [26] such as medical image reconstruction, image
generation, segmentation, classification, and histopathological image analysis since
its beginnings [66]. GAN can be used for artificially staining digital pathology
images which helps to avoid the problems created through manual staining and
thereby reduce the effort and expense of staining process [66]. GANmodels are also
used to eliminate unknowing and intentional discolorations in stained histopathology
pictures that could impair analysis usingdeep learning algorithm.Onbreast histology,
Xu et al. [67] employed a multi-resolution convolutional network with plurality
voting approach for nuclear atypia detection [66].
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Conditional GANs [68] are a type of GAN conditioned on labelled images whilst
attempting to match the target data directly. This necessitates precisely labelled and
registered dataset for training, which might be costly and laborious in histopatholog-
ical dataset [66]. A coupled GAN (CoGAN) [69] is a GAN version that share weights
of layers and combines two GANs to learn a joint distribution from only the resid-
uals [66]. Disadvantage of this GANmodel is mode collapse and the gradient growth
and instabilities during the process of training. GAN variant [53] recommends that
the Wasserstein distance can used to improve the model. The convergence of these
methodologies is still uncertain, its implications are still unknown, and the level of
computational complexity is likewise quite high [66].

In [66], the author proposed NAS-SGAN to overcome the shortage of labelled
images. It is a stacked feature matching semi-supervised generative adversarial
network (GAN) technique used for breast cancer grading. The author used the
ability of semi-supervised GAN (SGAN) for representing the distribution of data
by utilizing the unlabelled and labelled samples [66]. A combined training of the
discriminator with the use of feature matching and layered architecture also makes
the model much more stable than other GAN models. Deep learning methods for
nuclear atypia scoring are summarized in Table 4

2.3 Evaluation Metrics

The evaluationmetrics are used to assess the trained classifier model’s generalization
ability as well as a model evaluation assessor. They are used to evaluate and summa-
rize the efficiency of the classifier model when it is put to the test with data that has
not been seen before. For quantitatively summarizing the outcomes, the majority of
the approaches we looked at used confusion metrics as the validation metrics.

Performance and quality of classification model are interpreted with confusion
matrix table. The true negative (TN), true positive (TP), false positive (FP), and false
negative values of the confusion metrics are used to calculate the following metrics
like accuracy (Acc), precision (Pr), specificity (TNR), sensitivity or recall (Re), and
F1 score (FS), Matthew’s correlation coefficient (MCC), false negative rate (FNR),
true negative rate (TNR), true positive rate (TPR), false positive rate (FPR), and
negative predictive value (NPV) to evaluate the performance of the model classifier.

Receiver operating characteristics (ROC) graphs are an excellent way for
analyzing classifiers and visualizing their performance. The relative trade-off
between the true positive rate (TPR) and the false positive rate (FPR) at various
thresholds is depicted by a ROC curve. The area under the curve (AUC) can be
measured to see how well the extracted features can distinguish between different
categories of breast cancer. The system is better if the area beneath the curves is
larger. Table 5 shows the most commonly used validation metrics in the nuclear
atypia detection papers which discussed in the literature review.
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Table 4 Nuclear atypia scoring using deep learning techniques

Paper Classification
technique used

Pros of the
technique

Cons of the
technique

Araujo et al. [57] CNN Extract details from
nuclei in different scale

Imbalances in the class
is not considered

Rakhlin et al. [55]] CNN Transfer learning using
ImageNet

No pre-processing

Bardou et al. [56] CNN Combination of
handcrafted and
learned features

Multi-class
classification is not
efficient

Spanhol et al. [58] DL Pre-trained deep
convolutional
activation feature

Complicated structures
in the image will pull
down the accuracy

Nahid et al. [59] DL Integrated CNN and
long short-term
memory (LSTM)
model guided by
structural and
statistical features

Small dataset

Guo et al. [60] DL CNN combined with
hierarchy voting and
bagging technique
which shows good
performance

Sensitivity value is low

Golatkar et al. [26] CNN variants Pre-trained CNN
Inception-v3 is used

Grading accuracy is
low

Rezaeilouyeh et al.
[50]

DL Improved accuracy due
to DNN fed with
shearlet coefficients

Very complex process

Xu et al. [67] DL Multi-resolution
convolutional network
combined with
plurality voting

Multiple levels of
training required

Jannesari et al. [62] CNN variants High sensitivity
achieved through
combination of
residual network and
inception network

Requires fine tuning of
parameters

Jiang et al. [63] CNN variants ReSNet with reduced
set of parameters

Very complex process

(continued)



732 J. Varghese and J. S. Saleema

Table 4 (continued)

Paper Classification
technique used

Pros of the
technique

Cons of the
technique

Asha Das et al. [64] Batch mode active
learning(BMAL)

Active learning on
Riemannian manifold
helped to reduce
manual effort in
labelling the images

Very complex process

Asha Das et al. [65] Kernel-based sparse
coding and dictionary
learning(KSCDL)

A sparse coding and
dictionary learning on
SPD matrices provide a
better discrimination

Very complex process

Gulrajani et al. [53] WGAN-GP GAN model which use
Wasserstein distance

Very complex
computation process

Liu et al. [69] CoGAN Coupled GAN which
share weights and learn
with join distribution

Gradient expansion,
vanishing, and mode
collapse aresues whist
training

Mirza et al. [68] CGAN GAN model which is
conditioned on labelled
images

Needs perfectly
annotated data

Asha Das et al. [66] CNN variant
NAS-SGAN model

A semi-supervised
generative adversarial
training, which
improves accuracy and
robustness with limited
annotated data

Not using clustering
properties for improved
classification accuracy

2.4 Performance Analysis of Nuclear Atypia Scoring
Algorithms

The histopathological image classification continues to be a difficult task due to the
huge storage requirement of the image data. Furthermore, the processing required
for the image analysis and classification is huge and can take several hours. As
a result, computer analysis of histopathological images frequently necessitates the
employment of highly efficient computing technologies such asmulti-core processors
and graphics processing units (GPUs) that are required to speed up the processing.
A comparison of the many strategies detailed in the literature is time-consuming
because each method uses its own unique dataset, and the findings are given using
different assessment measures. This section discusses a comparative examination of
some papers which had worked on breast cancer nuclear atypia scoring [24].

The papers included in the comparative analysis are geodesic-distance-based K-
nearest neighbour (GKNN) classifier [48, 66], support vector machine [30], deep
neural network shearlet transform [50], multi-resolution convolutional network with
plurality voting (MR-CN-PV) model [66, 67], batch mode active learning (BMAL)
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Table 5 Validation metrics in the nuclear atypia detection

Metrics Formula Description

TP Count of nuclear atypia cells classified
correctly

TN Count of non-nuclear atypia cells
classified correctly

FP Count of nuclear atypia classified
incorrectly

FN Count of non-nuclear atypia classified
incorrectly

Accuracy (Ac) TP+TN
TP+TN+FN+FP It calculates the proportion of right

classifications to the total number of test
data analyzed

Precision (Pr) TP
TP+FP Count of correctly identified positives

F1-score (Fs) 2∗Precision∗Recall
Precision+Recall Harmonic mean of sensitivity gives

F1-score

Specificity TN
TN+FP Count of correctly identified negatives

Sensitivity TP
TP+FN Calculates the count of correctly

identified positives

Error rate FP+FN
TP+TN+FP+FN The ratio of inaccurate classifications to

the total number of test data analyzed

MCC (TP∗TN−FP∗FN)√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

The observed classifications’ correlation
coefficient with the projected
classifications

NPV TN
TN+FN The percentage of negatives properly

detected out of the total samples in the
negative class

FPR FP
FP+TN The proportion of negative samples that

were incorrectly classified as positive to
the count of negative samples

FNR FN
FN+TP The count of positive samples that was

incorrectly forecasted as negative to the
count of negative samples

[64, 66], kernel-based sparse coding and dictionary learning (KSCDL) [65, 66],
WassersteinGAN-gradient penalty (WGAN-GP) [53], coupledGAN (CoGAN) [69],
conditional GAN (CGAN) [66, 68], and nuclear atypia scoring semi-supervised
generative adversarial network (NAS-SGAN) [66]. Tables 6 and 7 show analysis of
performance of nuclear atypia scoring on the Aperio and Hamamatsu dataset.

The KSCDL technique was chosen for analysis because they investigate histolog-
ical breast images in a non-Euclidean framework, and its performancewas good [65].
In addition, the SVM, DNN-shearlet, GKNN, and MR-CN-PV were also taken into
consideration for comparisonbecause of their outstanding results in textural,morpho-
logical, deep learning, and transfer learning-based algorithms. Furthermore, batch
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Table 6 Performance analysis of nuclear atypia scoring algorithms on Aperio dataset [21]

Paper Algorithm Acc Re TNR Pr FS MCC

Khan et al. [48] GKNN 0.797 0.562 0.782 0.631 0.565 0.393

Lu et al. [30] SVM 0.780 0.455 0.771 0.445 0.447 0.262

Rezaeilouyeh et al. [50] DNN-shearlet 0.720 0.333 0.666 0.250 0.285 0.163

Xu et al. [67] MR-CN-PV 0.800 0.325 0.672 0.330 0.317 0.030

Asha et al. [64] BMAL 0.853 0.785 0.874 0.762 0.790 0.665

Asha et al. [65] KSCDL 0.826 0.762 0.855 0.721 0.741 0.621

Gulrajani et al. [53] WGAN-GP 0.875 0.813 0.902 0.786 0.813 0.701

Liu et al. [69] CoGAN 0.873 0.811 0.900 0.785 0.812 0.698

Mirza et al. [68] CGAN 0.857 0.792 0.880 0.767 0.790 0.667

Asha et al. [66] NAS-SGAN 0.982 0.964 0.974 0.965 0.963 0.940

Table 7 Performance analysis of nuclear atypia scoring algorithms on Hamamatsu dataset [21]

Paper Algorithm Acc Re TNR Pr FS MCC

Khan et al. [48] GKNN 0.812 0.571 0.779 0.627 0.569 0.395

Lu et al. [30] SVM 0.756 0.406 0.726 0.423 0.402 0.181

Rezaeilouyeh et al. [50] DNN-shearlet 0.747 0.333 0.666 0.249 0.285 0.173

Xu et al. [67] MR-CN-PV 0.702 0.476 0.726 0.520 0.492 0.224

Asha et al. [64] BMAL 0.864 0.797 0.880 0.769 0.781 0.653

Asha et al. [65] KSCDL 0.829 0.761 0.844 0.722 0.742 0.621

Gulrajani et al. [53] WGAN-GP 0.885 0.815 0.904 0.795 0.814 0.677

Liu et al. [69] CoGAN 0.868 0.812 0.901 0.793 0.813 0.674

Mirza et al. [68] CGAN 0.868 0.799 0.881 0.770 0.782 0.654

Asha et al. [66] NAS-SGAN 0.984 0.975 0.982 0.975 0.974 0.956

mode active learning on Riemannian manifold (BMALR) approach was consid-
ered for the comparison due to the active learning used in it [64, 66]. The method
was used to reduce the requirement for a labelled dataset. The problem of getting
precisely labelled and registered data which is often costly and laborious in the case
of histopathology images is resolved to an extend by the use of by the generative
adversarial network [66]. Three papers which use GAN concept were chosen for
comparative analysis due to exceptional accuracy level when compared to their tech-
niques. Out of the three techniques, complexity and issue of convergence were the
disadvantages of CoGAN and CGAN when compared to NAS-SGAN. Amongst
all the three techniques which use GAN concept, the NAS-SGAN which use semi-
supervised GAN concept was able to resolve the stability issue to an extend and
SGANs using its stacked feature matching it was able to collect the data distribu-
tion more effectively using both labelled and unlabelled data [66]. Figures 5 and 6
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Fig. 5 Performance analysis of nuclear atypia scoring algorithms on Aperio dataset

Fig. 6 Performance analysis of nuclear atypia scoring algorithms on Hamamatsu dataset

show the performance analysis of nuclear atypia scoring algorithms on Aperio and
Hamamatsu dataset [21]

2.5 Conclusion

The significant challenges of nuclear atypia detection in histopathological breast
tissue image analysis are distortions of image caused by inaccurate slide prepa-
ration, complicated structure of the underlying biological pattern, lack of stability
as well as inter- and intra-observer variation, which can affect diagnostic accuracy
and therapy planning. These challenges can be overcome with the help of computer
aided analytical techniques. This study reviews the methodologies used for nuclear
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atypia detection process in breast cancer grading, obstacles in existing computer-
ized automated grading process, prospective techniques of computer-assisted grading
for the disease diagnosis. This research is an attempt to synthesize information to
learn about the most recent changes in analyzing characteristics for breast cancer
grading and provide a summary of the precision and reliability of various methods
in the domain of nuclear atypia detection. The findings shows that deep learning
has exploded in popularity in the field of nuclear atypia detection as a result of its
superior results. Approaches based on deep learning offer higher prospects in the
future. In deep learning technique, generative adversarial network (GAN) outper-
forms non-adversarial and deep learning networks because adversarial training uses
the discriminator network to train the generator network, resulting in improvedmodel
performance. GAN also provides provision for automatic staining, and it performs
well even without perfectly annotated dataset. We also found that public datasets and
open challenges have a good impact on research on histopathological image analysis,
and most of the studies in the literature used public dataset. In the future variations,
of GAN technique can be developed with acceptable performance levels for clinical
applications. This study could serve as inspiration for future research.
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